Sample records for distinct population structure

  1. The head and body lice of humans are genetically distinct (Insecta: Phthiraptera, Pediculidae): evidence from double infestations.

    PubMed

    Leo, N P; Hughes, J M; Yang, X; Poudel, S K S; Brogdon, W G; Barker, S C

    2005-07-01

    Little is known about the population genetics of the louse infestations of humans. We used microsatellite DNA to study 11 double infestations, that is, hosts infested with head lice and body lice simultaneously. We tested for population structure on a host, and for population structure among seven hosts that shared sleeping quarters. We also sought evidence of migration among louse populations. Our results showed that: (i) the head and body lice on these individual hosts were two genetically distinct populations; (ii) each host had their own populations of head and body lice that were genetically distinct to those on other hosts; and (iii) lice had migrated from head to head, and from body to body, but not between heads and bodies. Our results indicate that head and body lice are separate species.

  2. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    Treesearch

    Colin M. Callahan; Carol A. Rowe; Ronald J. Ryel; John D. Shaw; Michael D. Madritch; Karen E. Mock

    2013-01-01

    Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene...

  3. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    PubMed

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  4. Evidence of segregated spawning in a single marine fish stock: Sympatric divergence of ecotypes in icelandic cod?

    USGS Publications Warehouse

    Grabowski, T.B.; Thorsteinsson, Vilhjalmur; McAdam, B.J.; Marteinsdottir, G.

    2011-01-01

    There is increasing recognition of intraspecific diversity and population structure within marine fish species, yet there is little direct evidence of the isolating mechanisms that maintain it or documentation of its ecological extent. We analyzed depth and temperature histories collected by electronic data storage tags retrieved from 104 Atlantic cod at liberty ???1 year to evaluate a possible isolating mechanisms maintaining population structure within the Icelandic cod stock. This stock consists of two distinct behavioral types, resident coastal cod and migratory frontal cod, each occurring within two geographically distinct populations. Despite being captured together on the same spawning grounds, we show the behavioral types seem reproductively isolated by fine-scale differences in spawning habitat selection, primarily depth. Additionally, the different groups occupied distinct seasonal thermal and bathymetric niches that generally demonstrated low levels of overlap throughout the year. Our results indicate that isolating mechanisms, such as differential habitat selection during spawning, might contribute to maintaining diversity and fine-scale population structure in broadcast-spawning marine fishes.

  5. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations.

    PubMed

    Garland, Ellen C; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Hauser, Nan Daeschler; Poole, M Michael; Robbins, Jooke; Noad, Michael J

    2015-08-01

    For cetaceans, population structure is traditionally determined by molecular genetics or photographically identified individuals. Acoustic data, however, has provided information on movement and population structure with less effort and cost than traditional methods in an array of taxa. Male humpback whales (Megaptera novaeangliae) produce a continually evolving vocal sexual display, or song, that is similar among all males in a population. The rapid cultural transmission (the transfer of information or behavior between conspecifics through social learning) of different versions of this display between distinct but interconnected populations in the western and central South Pacific region presents a unique way to investigate population structure based on the movement dynamics of a song (acoustic) display. Using 11 years of data, we investigated an acoustically based population structure for the region by comparing stereotyped song sequences among populations and years. We used the Levenshtein distance technique to group previously defined populations into (vocally based) clusters based on the overall similarity of their song display in space and time. We identified the following distinct vocal clusters: western cluster, 1 population off eastern Australia; central cluster, populations around New Caledonia, Tonga, and American Samoa; and eastern region, either a single cluster or 2 clusters, one around the Cook Islands and the other off French Polynesia. These results are consistent with the hypothesis that each breeding aggregation represents a distinct population (each occupied a single, terminal node) in a metapopulation, similar to the current understanding of population structure based on genetic and photo-identification studies. However, the central vocal cluster had higher levels of song-sharing among populations than the other clusters, indicating that levels of vocal connectivity varied within the region. Our results demonstrate the utility and value of using culturally transmitted vocal patterns as a way of defining connectivity to infer population structure. We suggest vocal patterns be incorporated by the International Whaling Commission in conjunction with traditional methods in the assessment of structure. © 2015, Society for Conservation Biology.

  6. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.

    PubMed

    Kopelman, Naama M; Mayzel, Jonathan; Jakobsson, Mattias; Rosenberg, Noah A; Mayrose, Itay

    2015-09-01

    The identification of the genetic structure of populations from multilocus genotype data has become a central component of modern population-genetic data analysis. Application of model-based clustering programs often entails a number of steps, in which the user considers different modelling assumptions, compares results across different predetermined values of the number of assumed clusters (a parameter typically denoted K), examines multiple independent runs for each fixed value of K, and distinguishes among runs belonging to substantially distinct clustering solutions. Here, we present Clumpak (Cluster Markov Packager Across K), a method that automates the postprocessing of results of model-based population structure analyses. For analysing multiple independent runs at a single K value, Clumpak identifies sets of highly similar runs, separating distinct groups of runs that represent distinct modes in the space of possible solutions. This procedure, which generates a consensus solution for each distinct mode, is performed by the use of a Markov clustering algorithm that relies on a similarity matrix between replicate runs, as computed by the software Clumpp. Next, Clumpak identifies an optimal alignment of inferred clusters across different values of K, extending a similar approach implemented for a fixed K in Clumpp and simplifying the comparison of clustering results across different K values. Clumpak incorporates additional features, such as implementations of methods for choosing K and comparing solutions obtained by different programs, models, or data subsets. Clumpak, available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population genetics and molecular ecology. © 2015 John Wiley & Sons Ltd.

  7. Genomic Tools for Evolution and Conservation in the Chimpanzee: Pan troglodytes ellioti Is a Genetically Distinct Population

    PubMed Central

    Myers, Simon; Hellenthal, Garrett; Nerrienet, Eric; Bontrop, Ronald E.; Freeman, Colin; Donnelly, Peter; Mundy, Nicholas I.

    2012-01-01

    In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ∼700 autosomal SNPs derived from chimpanzee genomic data and a further ∼100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10–20) is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions. PMID:22396655

  8. Genomic tools for evolution and conservation in the chimpanzee: Pan troglodytes ellioti is a genetically distinct population.

    PubMed

    Bowden, Rory; MacFie, Tammie S; Myers, Simon; Hellenthal, Garrett; Nerrienet, Eric; Bontrop, Ronald E; Freeman, Colin; Donnelly, Peter; Mundy, Nicholas I

    2012-01-01

    In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ∼700 autosomal SNPs derived from chimpanzee genomic data and a further ∼100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10-20) is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions.

  9. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida

    PubMed Central

    Fedrizzi, Nathan; Stiassny, Melanie L. J.; Boehm, J. T.; Dougherty, Eric R.; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa. PMID:26200110

  10. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida.

    PubMed

    Fedrizzi, Nathan; Stiassny, Melanie L J; Boehm, J T; Dougherty, Eric R; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.

  11. Zoonotic Babesia microti in the northeastern U.S.: Evidence for the expansion of a specific parasite lineage

    PubMed Central

    Molloy, Philip; Weeks, Karen

    2018-01-01

    The recent range expansion of human babesiosis in the northeastern United States, once found only in restricted coastal sites, is not well understood. This study sought to utilize a large number of samples to examine the population structure of the parasites on a fine scale to provide insights into the mode of emergence across the region. 228 B. microti samples collected in endemic northeastern U.S. sites were genotyped using published Variable number tandem repeat (VNTR) markers. The genetic diversity and population structure were analysed on a geographic scale using Phyloviz and TESS, programs that utilize two different methods to identify population membership without predefined population data. Three distinct populations were detected in northeastern US, each dominated by a single ancestral type. In contrast to the limited range of the Nantucket and Cape Cod populations, the mainland population dominated from New Jersey eastward to Boston. Ancestral populations of B. microti were sufficiently isolated to differentiate into distinct populations. Despite this, a single population was detected across a large geographic area of the northeast that historically had at least 3 distinct foci of transmission, central New Jersey, Long Island and southeastern Connecticut. We conclude that a single B. microti genotype has expanded across the northeastern U.S. The biological attributes associated with this parasite genotype that have contributed to such a selective sweep remain to be identified. PMID:29565993

  12. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus.

    PubMed

    Kashtan, Nadav; Roggensack, Sara E; Berta-Thompson, Jessie W; Grinberg, Maor; Stepanauskas, Ramunas; Chisholm, Sallie W

    2017-09-01

    The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.

  13. Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population.

    PubMed

    Lau, Audrey O T; Cereceres, Karla; Palmer, Guy H; Fretwell, Debbie L; Pedroni, Monica J; Mosqueda, Juan; McElwain, Terry F

    2010-08-01

    Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.

  14. Evolutionary and ecological forces influencing population diversification in Bornean montane passerines.

    PubMed

    Chua, Vivien L; Smith, Brian Tilston; Burner, Ryan C; Rahman, Mustafa Abdul; Lakim, Maklarin; Prawiradilaga, Dewi M; Moyle, Robert G; Sheldon, Frederick H

    2017-08-01

    The mountains of Borneo are well known for their high endemicity and historical role in preserving Southeast Asian rainforest biodiversity, but the diversification of populations inhabiting these mountains is poorly studied. Here we examine the genetic structure of 12 Bornean montane passerines by comparing complete mtDNA ND2 gene sequences of populations spanning the island. Maximum likelihood and Bayesian phylogenetic trees and haplotype networks are examined for common patterns that might signal important historical events or boundaries to dispersal. Morphological and ecological characteristics of each species are also examined using phylogenetic generalized least-squares (PGLS) for correlation with population structure. Populations in only four of the 12 species are subdivided into distinct clades or haplotype groups. Although this subdivision occurred at about the same time in each species (ca. 0.6-0.7Ma), the spatial positioning of the genetic break differs among the species. In two species, northeastern populations are genetically divergent from populations elsewhere on the island. In the other two species, populations in the main Bornean mountain chain, including the northeast, are distinct from those on two isolated peaks in northwestern Borneo. We suggest different historical forces played a role in shaping these two distributions, despite commonality in timing. PGLS analysis showed that only a single characteristic-hand-wing index-is correlated with population structure. Birds with longer wings, and hence potentially more dispersal power, have less population structure. To understand historical forces influencing montane population structure on Borneo, future studies must compare populations across the entirety of Sundaland. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Genetic Population Structure Analysis in New Hampshire Reveals Eastern European Ancestry

    PubMed Central

    Sloan, Chantel D.; Andrew, Angeline D.; Duell, Eric J.; Williams, Scott M.; Karagas, Margaret R.; Moore, Jason H.

    2009-01-01

    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population. PMID:19738909

  16. Genetic population structure analysis in New Hampshire reveals Eastern European ancestry.

    PubMed

    Sloan, Chantel D; Andrew, Angeline D; Duell, Eric J; Williams, Scott M; Karagas, Margaret R; Moore, Jason H

    2009-09-07

    Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population.

  17. The hypervariable domain of the mitochondrial control region in Atlantic spiny lobsters and its potential as a marker for investigating phylogeographic structuring.

    PubMed

    Diniz, Fabio M; Maclean, Norman; Ogawa, Masayoshi; Cintra, Israel H A; Bentzen, Paul

    2005-01-01

    Atlantic spiny lobsters support major fisheries in northeastern Brazilian waters and in the Caribbean Sea. To avoid reduction in diversity and elimination of distinct stocks, understanding their population dynamics, including structuring of populations and genetic diversity, is critical. We here explore the potential of using the hypervariable domain in the control region of the mitochondrial DNA as a genetic marker to characterize population subdivision in spiny lobsters, using Panulirus argus as the species model. The primers designed on the neighboring conserved genes have amplified the entire control region (approx. 780 bases) of P. argus and other closely related species. Average nucleotide and haplotype diversity within P. argus were found to be high, and population structuring was hypothesized. The data suggest a division of P. argus into genetically different phylogeographic groups. The hypervariable domain seems to be useful for determining genetic differentiation of geographically distinct stocks of P. argus and other Atlantic spiny lobsters.

  18. Patterns of Genetic Diversity and Co-Existence in Open Ocean Diatoms: the Effects of Water Mass Structure, Selection and Sex

    NASA Astrophysics Data System (ADS)

    Rynearson, T. A.; Chen, G.

    2016-02-01

    The open ocean North Atlantic spring bloom influences regional ecology and global biogeochemistry. Diatoms dominate the peak of the bloom and significantly impact productivity and export of organic carbon from the bloom. Despite their key role in a yearly event with global impacts, the genetic diversity and population structure of diatoms that comprise this open ocean bloom are unknown. Here we investigated the population genetics of the diatom Thalassiosira gravida sampled during the 2008 North Atlantic Bloom Experiment using newly-developed microsatellite markers. Here, we show that the genetic diversity of open ocean diatoms is high and that their population structure differs dramatically from coastal diatoms. High levels of genetic diversity were observed across all water samples and did not change during the bloom. Four genetically distinct populations were identified but were not associated with different water masses, depths or time points during the bloom. Instead, all four populations co-existed within samples, spanning different water masses, stages of the bloom and depths of over >300 m. The pattern of genetically distinct, co-existing populations in the open ocean contrasts dramatically with coastal habitats, where distinct populations have not been observed to co-exist at the same time and place. It is likely that populations originate via transport from disparate locations combined with overwintering capacity in the water column or sediments. The pattern of co-existence suggests that the open ocean may serve as a gene pool that harbors different populations that are then available for selection to act upon, which may contribute to the ecological and biogeochemical success of diatoms and influence their long-term evolutionary survival.

  19. Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations.

    PubMed

    Wang, Yuchen; Lu, Dongsheng; Chung, Yeun-Jun; Xu, Shuhua

    2018-01-01

    Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied. We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant. These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

  20. Evidence that Magnetic Navigation and Geomagnetic Imprinting Shape Spatial Genetic Variation in Sea Turtles.

    PubMed

    Brothers, J Roger; Lohmann, Kenneth J

    2018-04-23

    The canonical drivers of population genetic structure, or spatial genetic variation, are isolation by distance and isolation by environment. Isolation by distance predicts that neighboring populations will be genetically similar and geographically distant populations will be genetically distinct [1]. Numerous examples also exist of isolation by environment, a phenomenon in which populations that inhabit similar environments (e.g., same elevation, temperature, or vegetation) are genetically similar even if they are distant, whereas populations that inhabit different environments are genetically distinct even when geographically close [2-4]. These dual models provide a widely accepted conceptual framework for understanding population structure [5-8]. Here, we present evidence for an additional, novel process that we call isolation by navigation, in which the navigational mechanism used by a long-distance migrant influences population structure independently of isolation by either distance or environment. Specifically, we investigated the population structure of loggerhead sea turtles (Caretta caretta) [9], which return to nest on their natal beaches by seeking out unique magnetic signatures along the coast-a behavior known as geomagnetic imprinting [10-12]. Results reveal that spatial variation in Earth's magnetic field strongly predicts genetic differentiation between nesting beaches, even when environmental similarities and geographic proximity are taken into account. The findings provide genetic corroboration of geomagnetic imprinting [10, 13]. Moreover, they provide strong evidence that geomagnetic imprinting and magnetic navigation help shape the population structure of sea turtles and perhaps numerous other long-distance migrants that return to their natal areas to reproduce [13-17]. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Call types of Bigg's killer whales (Orcinus orca) in western Alaska: Using vocal dialects to assess population structure

    NASA Astrophysics Data System (ADS)

    Sharpe, Deborah Lynn

    Apex predators are important indicators of ecosystem health, but little is known about the population structure of Bigg's killer whales ( Orcinus orca; i.e. 'transient' ecotype) in western Alaska. Currently, all Bigg's killer whales in western Alaska are ascribed to a single broad stock for management under the US Marine Mammal Protection Act. However, recent nuclear microsatellite and mitochondrial DNA analyses indicate that this stock is likely comprised of genetically distinct sub-populations. In accordance with what is known about killer whale vocal dialects in other locations, I sought to evaluate Bigg's killer whale population structure by examining the spatial distribution of group-specific call types in western Alaska. Digital audio recordings were collected from 33 encounters with Bigg's killer whales throughout the Aleutian and Pribilof Islands in the summers of 2001-2007 and 2009-2010. Recorded calls were perceptually classified into discrete types and then quantitatively described using 12 structural and time-frequency measures. Resulting call categories were objectively validated using a random forest approach. A total of 36 call types and subtypes were identified across the entire study area, and regional patterns of call type usage revealed three distinct dialects, each of which corresponding to proposed genetic delineations. I suggest that at least three acoustically and genetically distinct subpopulations are present in western Alaska, and put forth an initial catalog for this area describing the regional vocal repertoires of Bigg's killer whale call types.

  2. Atlantic salmon Salmo salar in the chalk streams of England are genetically unique.

    PubMed

    Ikediashi, C; Paris, J R; King, R A; Beaumont, W R C; Ibbotson, A; Stevens, J R

    2018-03-01

    Recent research has identified genetic groups of Atlantic salmon Salmo salar that show association with geological and environmental boundaries. This study focuses on one particular subgroup of the species inhabiting the chalk streams of southern England, U.K. These fish are genetically distinct from other British and European S. salar populations and have previously demonstrated markedly low admixture with populations in neighbouring regions. The genetic population structure of S. salar occupying five chalk streams was explored using 16 microsatellite loci. The analysis provides evidence of the genetic distinctiveness of chalk-stream S. salar in southern England, in comparison with populations from non-chalk regions elsewhere in western Europe. Little genetic differentiation exists between the chalk-stream populations and a pattern of isolation by distance was evident. Furthermore, evidence of temporal stability of S. salar populations across the five chalk streams was found. This work provides new insights into the temporal stability and lack of genetic population sub-structuring within a unique component of the species' range of S. salar. © 2018 The Fisheries Society of the British Isles.

  3. Genetic differentiation of spring-spawning and fall-spawning male Atlantic sturgeon in the James River, Virginia

    PubMed Central

    Balazik, Matthew T.; Farrae, Daniel J.; Darden, Tanya L.; Garman, Greg C.

    2017-01-01

    Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F’ST = 0.181) with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically distinct dual spawning groups of Atlantic sturgeon in river systems along the U.S. Atlantic coast, suggesting that current reference population database should be updated to incorporate both new samples and our increased understanding of Atlantic sturgeon life history. PMID:28686610

  4. The genetic structure of Nautilus pompilius populations surrounding Australia and the Philippines.

    PubMed

    Williams, Rachel C; Jackson, Benjamin C; Duvaux, Ludovic; Dawson, Deborah A; Burke, Terry; Sinclair, William

    2015-07-01

    Understanding the distribution of genetic diversity in exploited species is fundamental to successful conservation. Genetic structure and the degree of gene flow among populations must be assessed to design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited legislative protection, despite the species' recent dramatic decline in the region. Here, we use 14 microsatellite markers to evaluate the population structure of N. pompilius around Australia and the Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST  = 0.312, 0.229, respectively). Conversely, despite the larger geographical distances between the Philippines and west Australian reefs, samples display a small degree of genetic structure (FST  = 0.015). Demographic scenarios modelled using approximate Bayesian computation analysis indicate that this limited divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, present-day genetic similarity can be explained by very limited genetic drift that has occurred due to large average effective population sizes that persisted at both locations following their separation. The lack of connectivity among populations suggests that immigrants from west Australia would not facilitate natural recolonization if Philippine populations were fished to extinction. These data help to rectify the paucity of information on the species' biology currently inhibiting their conservation classification. Understanding population structure can allow us to facilitate sustainable harvesting, thereby preserving the diversity of genetically distinct stocks. © 2015 John Wiley & Sons Ltd.

  5. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon.

    PubMed

    Vähä, Juha-Pekka; Erkinaro, Jaakko; Niemelä, Eero; Primmer, Craig R

    2007-07-01

    Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing management strategies for the system.

  6. Genetic population structure of Shoal Bass within their native range

    USGS Publications Warehouse

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is conserved and overall adaptability of the species is maintained.

  7. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides

    PubMed Central

    Teixeira, Marcus M.

    2016-01-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  8. Global Genetic Diversity of Aedes aegypti

    PubMed Central

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.

    2016-01-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732

  9. World Population Ageing, 1950-2050.

    ERIC Educational Resources Information Center

    United Nations, New York, NY. Dept. of Economic and Social Affairs.

    Population aging was one of the most distinctive events of the 20th century and will remain important throughout the 21st century. Initially, a phenomenon of more developed countries, the process has recently become apparent in much of the developing world as well. The shift in age structure associated with population aging has a profound impact…

  10. Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds' most traded snake species.

    PubMed

    Murray-Dickson, Gillian; Ghazali, Muhammad; Ogden, Rob; Brown, Rafe; Auliya, Mark

    2017-01-01

    As an important economic natural resource in Southeast Asia, reticulated pythons (Malayopython reticulatus ssp.) are primarily harvested from the wild for their skins-which are prized in the luxury leather goods industry. Trade dynamics of this CITES Appendix II listed species are complex and management approaches on the country or regional level appear obscure. Little is known about the actual geographic point-of-harvest of snakes, how genetic diversity is partitioned across the species range, how current harvest levels may affect the genetic viability of populations, and whether genetic structure could (or should) be accounted for when managing harvest quotas. As an initial survey, we use mitochondrial sequence data to define the broad-scale geographic structure of genetic diversity across a significant portion of the reticulated python's native range. Preliminary results reveal: (1) prominent phylogenetic structure across populations east and west of Huxley's modification of Wallace's line. Thirty-four haplotypes were apportioned across two geographically distinct groups, estimated to be moderately (5.2%); (2) Philippine, Bornean and Sulawesian populations appear to cluster distinctly; (3) individuals from Ambon Island suggest recent human introduction. Malayopython reticulatus is currently managed as a single taxonomic unit across Southeast Asia yet these initial results may justify special management considerations of the Philippine populations as a phylogenetically distinct unit, that warrants further examination. In Indonesia, genetic structure does not conform tightly to political boundaries and therefore we advocate the precautionary designation and use of Evolutionary Significant Units within Malayopython reticulatus, to inform and guide regional adaptive management plans.

  11. Phylogeography of the reticulated python (Malayopython reticulatus ssp.): Conservation implications for the worlds’ most traded snake species

    PubMed Central

    Ghazali, Muhammad; Ogden, Rob; Brown, Rafe; Auliya, Mark

    2017-01-01

    As an important economic natural resource in Southeast Asia, reticulated pythons (Malayopython reticulatus ssp.) are primarily harvested from the wild for their skins—which are prized in the luxury leather goods industry. Trade dynamics of this CITES Appendix II listed species are complex and management approaches on the country or regional level appear obscure. Little is known about the actual geographic point-of-harvest of snakes, how genetic diversity is partitioned across the species range, how current harvest levels may affect the genetic viability of populations, and whether genetic structure could (or should) be accounted for when managing harvest quotas. As an initial survey, we use mitochondrial sequence data to define the broad-scale geographic structure of genetic diversity across a significant portion of the reticulated python’s native range. Preliminary results reveal: (1) prominent phylogenetic structure across populations east and west of Huxley’s modification of Wallace’s line. Thirty-four haplotypes were apportioned across two geographically distinct groups, estimated to be moderately (5.2%); (2) Philippine, Bornean and Sulawesian populations appear to cluster distinctly; (3) individuals from Ambon Island suggest recent human introduction. Malayopython reticulatus is currently managed as a single taxonomic unit across Southeast Asia yet these initial results may justify special management considerations of the Philippine populations as a phylogenetically distinct unit, that warrants further examination. In Indonesia, genetic structure does not conform tightly to political boundaries and therefore we advocate the precautionary designation and use of Evolutionary Significant Units within Malayopython reticulatus, to inform and guide regional adaptive management plans. PMID:28817588

  12. Genetic divergence and fine scale population structure of the common bottlenose dolphin (Tursiops truncatus, Montagu) found in the Gulf of Guayaquil, Ecuador

    PubMed Central

    Bayas-Rea, Rosa de los Ángeles; Félix, Fernando

    2018-01-01

    The common bottlenose dolphin, Tursiops truncatus, is widely distributed along the western coast of South America. In Ecuador, a resident population of bottlenose dolphins inhabits the inner estuarine area of the Gulf of Guayaquil located in the southwestern part of the country and is under threat from different human activities in the area. Only one genetic study on South American common bottlenose dolphins has been carried out to date, and understanding genetic variation of wildlife populations, especially species that are identified as threatened, is crucial for defining conservation units and developing appropriate conservation strategies. In order to evaluate the evolutionary link of this population, we assessed the phylogenetic relationships, phylogeographic patterns, and population structure using mitochondrial DNA (mtDNA). The sampling comprised: (i) 31 skin samples collected from free-ranging dolphins at three locations in the Gulf of Guayaquil inner estuary, (ii) 38 samples from stranded dolphins available at the collection of the “Museo de Ballenas de Salinas,” (iii) 549 mtDNA control region (mtDNA CR) sequences from GenBank, and (iv) 66 concatenated sequences from 7-mtDNA regions (12S rRNA, 16S rRNA, NADH dehydrogenase subunit I–II, cytochrome oxidase I and II, cytochrome b, and CR) obtained from mitogenomes available in GenBank. Our analyses indicated population structure between both inner and outer estuary dolphin populations as well as with distinct populations of T. truncatus using mtDNA CR. Moreover, the inner estuary bottlenose dolphin (estuarine bottlenose dolphin) population exhibited lower levels of genetic diversity than the outer estuary dolphin population according to the mtDNA CR. Finally, the estuarine bottlenose dolphin population was genetically distinct from other T. truncatus populations based on mtDNA CR and 7-mtDNA regions. From these results, we suggest that the estuarine bottlenose dolphin population should be considered a distinct lineage. This dolphin population faces a variety of anthropogenic threats in this area; thus, we highlight its fragility and urge authorities to issue prompt management and conservation measures. PMID:29707430

  13. Evaluation of the genetic structure present in natural populations of four subspecies of black cherry (Prunus serotina Ehrh.) from North America using SSR markers

    USDA-ARS?s Scientific Manuscript database

    Black cherry (Prunus serotina) is a fruit tree native to North America, and almost all parts of this plant have some use. This species is a complex of five subspecies with morphological differences and distinctive habitats. The genetic structure of 18 natural populations of black cherry was evaluate...

  14. A European Concern? Genetic Structure and Expansion of Golden Jackals (Canis aureus) in Europe and the Caucasus

    PubMed Central

    Rutkowski, Robert; Krofel, Miha; Giannatos, Giorgos; Ćirović, Duško; Männil, Peep; Volokh, Anatoliy M.; Lanszki, József; Heltai, Miklós; Szabó, László; Banea, Ovidiu C.; Yavruyan, Eduard; Hayrapetyan, Vahram; Kopaliani, Natia; Miliou, Anastasia; Tryfonopoulos, George A.; Lymberakis, Petros; Penezić, Aleksandra; Pakeltytė, Giedrė; Suchecka, Ewa; Bogdanowicz, Wiesław

    2015-01-01

    In the first continent-wide study of the golden jackal (Canis aureus), we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 base-pair fragment of the mitochondrial control region. Bayesian-based and principal components methods were applied to evaluate whether the geographical grouping of samples corresponded with genetic groups. Our analysis revealed low levels of genetic diversity, reflecting the unique history of the golden jackal among Europe’s native carnivores. The results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with both contributing to the Baltic population, which appeared only recently. The population from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with samples from south-eastern Europe (ΔK approach in STRUCTURE, Principal Components Analysis [PCA]), although the results based on BAPS and the estimated likelihood in STRUCTURE indicate that Peloponnesian jackals may represent a distinct population. Moreover, analyses of population structure also suggest either genetic distinctiveness of the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE, PCA), or possibly its connection with the Caucasus population (one analysis in STRUCTURE). We speculate from our results that ancient Mediterranean jackal populations have persisted to the present day, and have merged with jackals colonising from Asia. These data also suggest that new populations of the golden jackal may be founded by long-distance dispersal, and thus should not be treated as an invasive alien species, i.e. an organism that is “non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health”. These insights into the genetic structure and ancestry of Baltic jackals have important implications for management and conservation of jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, considering also the results presented here, should be legally protected in all EU member states. PMID:26540195

  15. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjong, Harianto; Li, Wenyuan; Kalhor, Reza

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less

  16. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    DOE PAGES

    Tjong, Harianto; Li, Wenyuan; Kalhor, Reza; ...

    2016-03-07

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Here, our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm themore » presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization.« less

  17. Exploring Demographic, Physical, and Historical Explanations for the Genetic Structure of Two Lineages of Greater Antillean Bats

    PubMed Central

    Muscarella, Robert A.; Murray, Kevin L.; Ortt, Derek; Russell, Amy L.; Fleming, Theodore H.

    2011-01-01

    Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern. PMID:21445291

  18. Evolution at ‘Sutures’ and ‘Centers’: Recombination Can Aid Adaptation of Spatially Structured Populations on Rugged Fitness Landscapes

    PubMed Central

    Cooper, Jacob D.; Kerr, Benjamin

    2016-01-01

    Epistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple “peaks” of high-fitness allele combinations are separated by “valleys” of low-fitness genotypes. How populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. Sexual reproduction may affect how a population moves within a rugged fitness landscape. Sex may generate new high-fitness genotypes by recombination, but it may also destroy high-fitness genotypes by shuffling the genes of a fit parent with a genetically distinct mate, creating low-fitness offspring. Either of these opposing aspects of sex require genotypic diversity in the population. Spatially structured populations may harbor more diversity than well-mixed populations, potentially amplifying both positive and negative effects of sex. On the other hand, spatial structure leads to clumping in which mating is more likely to occur between like types, diminishing the effects of recombination. In this study, we use computer simulations to investigate the combined effects of recombination and spatial structure on adaptation in rugged fitness landscapes. We find that spatially restricted mating and offspring dispersal may allow multiple genotypes inhabiting suboptimal peaks to coexist, and recombination at the “sutures” between the clusters of these genotypes can create genetically novel offspring. Sometimes such an offspring genotype inhabits a new peak on the fitness landscape. In such a case, spatially restricted mating allows this fledgling subpopulation to avoid recombination with distinct genotypes, as mates are more likely to be the same genotype. Such population “centers” can allow nascent peaks to establish despite recombination. Spatial structure may therefore allow an evolving population to enjoy the creative side of sexual recombination while avoiding its destructive side. PMID:27973606

  19. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    PubMed

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed. © 2015 The Authors.

  20. Phylogeography, phylogeny and hybridization in trichechid sirenians: Implications for manatee conservation

    USGS Publications Warehouse

    Vianna, J.A.; Bonde, R.K.; Caballero, S.; Giraldo, J.P.; Lima, R.P.; Clark, A.; Marmontel, M.; Morales-Vela, B.; De Souza, M. J.; Parr, L.; Rodriguez-Lopez, M.A.; Mignucci-Giannoni, A. A.; Powell, J.A.; Santos, F.R.

    2006-01-01

    The three living species of manatees, West Indian (Trichechus manatus), Amazonian (Trichechus inunguis) and West African (Trichechus senegalensis), are distributed across the shallow tropical and subtropical waters of America and the western coast of Africa. We have sequenced the mitochondrial DNA control region in 330 Trichechus to compare their phylogeographic patterns. In T. manatus we observed a marked population structure with the identification of three haplotype clusters showing a distinct spatial distribution. A geographic barrier represented by the continuity of the Lesser Antilles to Trinidad Island, near the mouth of the Orinoco River in Venezuela, appears to have restricted the gene flow historically in T. manatus. However, for T. inunguis we observed a single expanding population cluster, with a high diversity of very closely related haplotypes. A marked geographic population structure is likely present in T. senegalensis with at least two distinct clusters. Phylogenetic analyses with the mtDNA cytochrome b gene suggest a clade of the marine Trichechus species, with T. inunguis as the most basal trichechid. This is in agreement with previous morphological analyses. Mitochondrial DNA, autosomal microsatellites and cytogenetic analyses revealed the presence of hybrids between the T. manatus and T. inunguis species at the mouth of the Amazon River in Brazil, extending to the Guyanas and probably as far as the mouth of the Orinoco River. Future conservation strategies should consider the distinct population structure of manatee species, as well as the historical barriers to gene flow and the likely occurrence of interspecific hybridization. ?? 2006 Blackwell Publishing Ltd.

  1. Structural polarity in the Chara rhizoid: a reevaluation

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Staehelin, L. A.

    1993-01-01

    The Chara rhizoid is a useful model system to study gravitropism since all phases of gravitropism occur in a single cell. Despite years of study, a complete description of the distinctive ultrastructure of Chara rhizoids is not available. Therefore, in this paper, we reevaluate the ultrastructural features of vertically grown rhizoids, which have a structural polarity consisting of seven distinct zones. We also characterize the apical vesicles and the cell wall in these rhizoids by using antibodies against pectic polysaccharides. These studies demonstrate that the cell wall consists of two pectinaceous domains and that a distinct population of apical vesicles contain methyl esterified pectin.

  2. Phylogeography and genetic structure of endemic Acmispon argophyllus and A. dendroideus (Fabaceae) across the California Channel Islands.

    PubMed

    Wallace, Lisa E; Wheeler, Gregory L; McGlaughlin, Mitchell E; Bresowar, Gerald; Helenurm, Kaius

    2017-05-01

    Taxa inhabiting the California Channel Islands exhibit variation in their degree of isolation, but few studies have considered patterns across the entire archipelago. We studied phylogeography of insular Acmispon argophyllus and A. dendroideus to determine whether infraspecific taxa are genetically divergent and to elucidate patterns of diversification across these islands. DNA sequences were collected from nuclear (ADH) and plastid genomes ( rpL16 , ndhA , psbD-trnT ) from >450 samples on the Channel Islands and California. We estimated population genetic diversity and structure, phylogenetic patterns among populations, and migration rates, and tested for population growth. Populations of northern island A. argophyllus var. niveus are genetically distinct from conspecific populations on southern islands. On the southern islands, A. argophyllus var. argenteus populations on Santa Catalina are phylogenetically distinct from populations of var. argenteus and var. adsurgens on the other southern islands. For A. dendroideus , we found the varieties to be monophyletic. Populations of A. dendroideus var. traskiae on San Clemente are genetically differentiated from other conspecific populations, whereas populations on the northern islands and Santa Catalina show varying degrees of gene flow. Evidence of population growth was found in both species. Oceanic barriers between islands have had a strong influence on population genetic structure in both Acmispon species, although the species have differing phylogeographic patterns. This study provides a contrasting pattern of dispersal on a near island system that does not follow a strict stepping-stone model, commonly found on isolated island systems. © 2017 Botanical Society of America.

  3. Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor

    PubMed Central

    Naydenov, Krassimir; Senneville, Sauphie; Beaulieu, Jean; Tremblay, Francine; Bousquet, Jean

    2007-01-01

    Background At the last glacial maximum, Fennoscandia was covered by an ice sheet while the tundra occupied most of the rest of northern Eurasia. More or less disjunct refugial populations of plants were dispersed in southern Europe, often trapped between mountain ranges and seas. Genetic and paleobotanical evidences indicate that these populations have contributed much to Holocene recolonization of more northern latitudes. Less supportive evidence has been found for the existence of glacial populations located closer to the ice margin. Scots pine (Pinus sylvestris L.) is a nordic conifer with a wide natural range covering much of Eurasia. Fractures in its extant genetic structure might be indicative of glacial vicariance and how different refugia contributed to the current distribution at the continental level. The population structure of Scots pine was investigated on much of its Eurasian natural range using maternally inherited mitochondrial DNA polymorphisms. Results A novel polymorphic region of the Scots pine mitochondrial genome has been identified, the intron 1 of nad7, with three variants caused by insertions-deletions. From 986 trees distributed among 54 populations, four distinct multi-locus mitochondrial haplotypes (mitotypes) were detected based on the three nad7 intron 1 haplotypes and two previously reported size variants for nad1 intron B/C. Population differentiation was high (GST = 0.657) and the distribution of the mitotypes was geographically highly structured, suggesting at least four genetically distinct ancestral lineages. A cosmopolitan lineage was widely distributed in much of Europe throughout eastern Asia. A previously reported lineage limited to the Iberian Peninsula was confirmed. A new geographically restricted lineage was found confined to Asia Minor. A new lineage was restricted to more northern latitudes in northeastern Europe and the Baltic region. Conclusion The contribution of the various ancestral lineages to the current distribution of Scots pine was asymmetric and extant endemism reflected the presence of large geographic barriers to migration. The results suggest a complex biogeographical history with glacial refugia shared with temperate plant species in southern European Peninsulas and Asia Minor, and a genetically distinct glacial population located more North. These results confirm recent observations for cold tolerant species about the possible existence of refugial populations at mid-northern latitudes contributing significantly to the recolonization of northern Europe. Thus, Eurasian populations of nordic plant species might not be as genetically homogenous as assumed by simply considering them as offsets of glacial populations located in southern peninsulas. As such, they might have evolved distinctive genetic adaptations during glacial vicariance, worth evaluating and considering for conservation. PMID:18034901

  4. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider.

    PubMed

    Wong, Mark K L; Woodman, James D; Rowell, David M

    2017-07-01

    Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.

  5. Genetic diversity and population structure of an Italian landrace of runner bean (Phaseolus coccineus L.): inferences for its safeguard and on-farm conservation.

    PubMed

    Mercati, F; Catarcione, G; Paolacci, A R; Abenavoli, M R; Sunseri, F; Ciaffi, M

    2015-08-01

    The landraces are considered important sources of valuable germplasm for breeding activities to face climatic changes as well as to satisfy the requirement of new varieties for marginal areas. Runner bean (Phaseolus coccineus L.) is one of the most cultivated Phaseolus species worldwide, but few studies have been addressed to assess the genetic diversity and structure within and among landrace populations. In the present study, 20 different populations of a runner bean landrace from Central Italy named "Fagiolone," together with 41 accessions from Italy and Mesoamerica, were evaluated by using 14 nuclear SSRs to establish its genetic structure and distinctiveness. Results indicated that "Fagiolone" landrace can be considered as a dynamic evolving open-pollinated population that shows a significant level of genetic variation, mostly detected within populations, and the presence of two main genetic groups, of which one distinguished from other Italian runner bean landraces. Results highlighted also a relevant importance of farmers' management practices able to influence the genetic structure of this landrace, in particular the seed exchanges and selection, and the past introduction in cultivation of landraces/cultivars similar to seed morphology, but genetically rather far from "Fagiolone." The most suitable on-farm strategies for seed collection, conservation and multiplication will be defined based on our results, as a model for threatened populations of other allogamous crop species. STRUCTURE and phylogenetic analyses indicated that Mesoamerican accessions and Italian landraces belong to two distinct gene pools confirming the hypothesis that Europe could be considered a secondary diversification center for P. coccineus.

  6. Multi-Genetic Marker Approach and Spatio-Temporal Analysis Suggest There Is a Single Panmictic Population of Swordfish Xiphias gladius in the Indian Ocean

    PubMed Central

    Muths, Delphine; Le Couls, Sarah; Evano, Hugues; Grewe, Peter; Bourjea, Jerome

    2013-01-01

    Genetic population structure of swordfish Xiphias gladius was examined based on 2231 individual samples, collected mainly between 2009 and 2010, among three major sampling areas within the Indian Ocean (IO; twelve distinct sites), Atlantic (two sites) and Pacific (one site) Oceans using analysis of nineteen microsatellite loci (n = 2146) and mitochondrial ND2 sequences (n = 2001) data. Sample collection was stratified in time and space in order to investigate the stability of the genetic structure observed with a special focus on the South West Indian Ocean. Significant AMOVA variance was observed for both markers indicating genetic population subdivision was present between oceans. Overall value of F-statistics for ND2 sequences confirmed that Atlantic and Indian Oceans swordfish represent two distinct genetic stocks. Indo-Pacific differentiation was also significant but lower than that observed between Atlantic and Indian Oceans. However, microsatellite F-statistics failed to reveal structure even at the inter-oceanic scale, indicating that resolving power of our microsatellite loci was insufficient for detecting population subdivision. At the scale of the Indian Ocean, results obtained from both markers are consistent with swordfish belonging to a single unique panmictic population. Analyses partitioned by sampling area, season, or sex also failed to identify any clear structure within this ocean. Such large spatial and temporal homogeneity of genetic structure, observed for such a large highly mobile pelagic species, suggests as satisfactory to consider swordfish as a single panmictic population in the Indian Ocean. PMID:23717447

  7. Genetic Diversity and Population Structure of Ethiopian Sheep Populations Revealed by High-Density SNP Markers

    PubMed Central

    Edea, Zewdu; Dessie, Tadelle; Dadi, Hailu; Do, Kyoung-Tag; Kim, Kwan-Suk

    2017-01-01

    Sheep in Ethiopia are adapted to a wide range of environments, including extreme habitats. Elucidating their genetic diversity is critical for improving breeding strategies and mapping quantitative trait loci associated with productivity. To this end, the present study investigated the genetic diversity and population structure of five Ethiopian sheep populations exhibiting distinct phenotypes and sampled from distinct production environments, including arid lowlands and highlands. To investigate the genetic relationships in greater detail and infer population structure of Ethiopian sheep breeds at the continental and global levels, we analyzed genotypic data of selected sheep breeds from the Ovine SNP50K HapMap dataset. All Ethiopian sheep samples were genotyped with Ovine Infinium HD SNP BeadChip (600K). Mean genetic diversity ranged from 0.29 in Arsi-Bale to 0.32 in Menz sheep, while estimates of genetic differentiation among populations ranged from 0.02 to 0.07, indicating low to moderate differentiation. An analysis of molecular variance revealed that 94.62 and 5.38% of the genetic variation was attributable to differences within and among populations, respectively. Our population structure analysis revealed clustering of five Ethiopian sheep populations according to tail phenotype and geographic origin—i.e., short fat-tailed (very cool high-altitude), long fat-tailed (mid to high-altitude), and fat-rumped (arid low-altitude), with clear evidence of admixture between long fat-tailed populations. North African sheep breeds showed higher levels of within-breed diversity, but were less differentiated than breeds from Eastern and Southern Africa. When African breeds were grouped according to geographic origin (North, South, and East), statistically significant differences were detected among groups (regions). A comparison of population structure between Ethiopian and global sheep breeds showed that fat-tailed breeds from Eastern and Southern Africa clustered together, suggesting that these breeds were introduced to the African continent via the Horn and migrated further south. PMID:29312441

  8. Global genetic diversity of Aedes aegypti.

    PubMed

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.

  9. Population Structure of Two Rabies Hosts Relative to the Known Distribution of Rabies Virus Variants in Alaska

    PubMed Central

    Goldsmith, Elizabeth W.; Renshaw, Benjamin; Clement, Christopher J.; Himschoot, Elizabeth A.; Hundertmark, Kris J.; Hueffer, Karsten

    2015-01-01

    For pathogens that infect multiple species the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We test the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (V. vulpes) in order to possibly distinguish reservoir and spill over hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found 2 groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising 2 regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the artic fox Therefore we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. PMID:26661691

  10. Population structure of two rabies hosts relative to the known distribution of rabies virus variants in Alaska.

    PubMed

    Goldsmith, Elizabeth W; Renshaw, Benjamin; Clement, Christopher J; Himschoot, Elizabeth A; Hundertmark, Kris J; Hueffer, Karsten

    2016-02-01

    For pathogens that infect multiple species, the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We tested the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) to possibly distinguish reservoir and spillover hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found two groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising two regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the arctic fox. Therefore, we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. © 2015 John Wiley & Sons Ltd.

  11. Intervarietal and intravarietal genetic structure in Douglas-fir: nuclear SSRs bring novel insights into past population demographic processes, phylogeography, and intervarietal hybridization

    PubMed Central

    van Loo, Marcela; Hintsteiner, Wolfgang; Pötzelsberger, Elisabeth; Schüler, Silvio; Hasenauer, Hubert

    2015-01-01

    Douglas-fir (Pseudotsuga menziesii) is one of numerous wide-range forest tree species represented by subspecies/varieties, which hybridize in contact zones. This study examined the genetic structure of this North American conifer and its two hybridizing varieties, coastal and Rocky Mountain, at intervarietal and intravarietal level. The genetic structure was subsequently associated with the Pleistocene refugial history, postglacial migration and intervarietal hybridization/introgression. Thirty-eight populations from the USA and Canada were genotyped for 13 nuclear SSRs and analyzed with simulations and traditional population genetic structuring methods. Eight genetic clusters were identified. The coastal clusters embodied five refugial populations originating from five distinct refugia. Four coastal refugial populations, three from California and one from western Canada, diverged during the Pleistocene (56.9–40.1 ka). The three Rocky Mountain clusters reflected distinct refugial populations of three glacial refugia. For Canada, ice covered during the Last Glacial Maximum, we present the following three findings. (1) One refugial population of each variety was revealed in the north of the distribution range. Additional research including paleodata is required to support and determine whether both northern populations originated from cryptic refugia situated south or north of the ice-covered area. (2) An interplay between intravarietal gene flow of different refugial populations and intervarietal gene flow by hybridization and introgression was identified. (3) The Canadian hybrid zone displayed predominantly introgressants of the Rocky Mountain into the coastal variety. This study provides new insights into the complex Quaternary dynamics of this conifer essential for understanding its evolution (outside and inside the native range), adaptation to future climates and for forest management. PMID:26140197

  12. Distinct population structure for co-occurring Anopheles goeldii and Anopheles triannulatus in Amazonian Brazil

    PubMed Central

    McKeon, Sascha Naomi; Moreno, Marta; Sallum, Maria Anise; Povoa, Marinete Marins; Conn, Jan Evelyn

    2013-01-01

    To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus. PMID:23903977

  13. Inflexibility and independence: Phase transitions in the majority-rule model.

    PubMed

    Crokidakis, Nuno; de Oliveira, Paulo Murilo Castro

    2015-12-01

    In this work we study opinion formation in a population participating in a public debate with two distinct choices. We consider three distinct mechanisms of social interactions and individuals' behavior: conformity, nonconformity, and inflexibility. The conformity is ruled by the majority-rule dynamics, whereas the nonconformity is introduced in the population as an independent behavior, implying the failure of attempted group influence. Finally, the inflexible agents are introduced in the population with a given density. These individuals present a singular behavior, in a way that their stubbornness makes them reluctant to change their opinions. We consider these effects separately and all together, with the aim to analyze the critical behavior of the system. We perform numerical simulations in some lattice structures and for distinct population sizes. Our results suggest that the different formulations of the model undergo order-disorder phase transitions in the same universality class as the Ising model. Some of our results are complemented by analytical calculations.

  14. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis.

    PubMed

    Schuller, Dorit; Casal, Margarida

    2007-02-01

    From the analysis of six polymorphic microsatellite loci performed in 361 Saccharomyces cerevisiae isolates, 93 alleles were identified, 52 of them being described for the first time. All these isolates have a distinct mtDNA RFLP pattern. They are derived from a pool of 1620 isolates obtained from spontaneous fermentations of grapes collected in three vineyards of the Vinho Verde Region in Portugal, during the 2001-2003 harvest seasons. For all loci analyzed, observed heterozygosity was 3-4 times lower than the expected value supposing a Hardy-Weinberg equilibrium (random mating and no evolutionary mechanisms acting), indicating a clonal structure and strong populational substructuring. Genetic differences among S. cerevisiae populations were apparent mainly from gradations in allele frequencies rather than from distinctive "diagnostic" genotypes, and the accumulation of small allele-frequency differences across six loci allowed the identification of population structures. Genetic differentiation in the same vineyard in consecutive years was of the same order of magnitude as the differences verified among the different vineyards. Correlation of genetic differentiation with the distance between sampling points within a vineyard suggested a pattern of isolation-by-distance, where genetic divergence in a vineyard increased with size. The continuous use of commercial yeasts has a limited influence on the autochthonous fermentative yeast population collected from grapes and may just slightly change populational structures of strains isolated from sites very close to the winery where they have been used. The present work is the first large-scale approach using microsatellite typing allowing a very fine resolution of indigenous S. cerevisiae populations isolated from vineyards.

  15. Demographic History, Population Structure, and Local Adaptation in Alpine Populations of Cardamine impatiens and Cardamine resedifolia

    PubMed Central

    Ometto, Lino; Li, Mingai; Bresadola, Luisa; Barbaro, Enrico; Neteler, Markus; Varotto, Claudio

    2015-01-01

    Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species. PMID:25933225

  16. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple (Acer saccharum Marshall).

    PubMed

    Graignic, Noémie; Tremblay, Francine; Bergeron, Yves

    2018-03-01

    Due to climate change, the ranges of many North American tree species are expected to shift northward. Sugar maple ( Acer saccharum Marshall) reaches its northern continuous distributional limit in northeastern North America at the transition between boreal mixed-wood and temperate deciduous forests. We hypothesized that marginal fragmented northern populations from the boreal mixed wood would have a distinct pattern of genetic structure and diversity. We analyzed variation at 18 microsatellite loci from 23 populations distributed along three latitudinal transects (west, central, and east) that encompass the continuous-discontinuous species range. Each transect was divided into two zones, continuous (temperate deciduous) and discontinuous (boreal mixed wood), based on sugar maple stand abundance. Respective positive and negative relationships were found between the distance of each population to the northern limit (D_north), and allelic richness ( A R ) and population differentiation ( F ST ). These relations were tested for each transect separately; the pattern (discontinuous-continuous) remained significant only for the western transect. structure analysis revealed the presence of four clusters. The most northern populations of each transect were assigned to a distinct group. Asymmetrical gene flow occurred from the southern into the four northernmost populations. Southern populations in Québec may have originated from two different postglacial migration routes. No evidence was found to validate the hypothesis that northern populations were remnants of a larger population that had migrated further north of the species range after the retreat of the ice sheet. The northernmost sugar maple populations possibly originated from long-distance dispersal.

  17. A Cryptic Species of the Tylonycteris pachypus Complex (Chiroptera: Vespertilionidae) and Its Population Genetic Structure in Southern China and nearby Regions

    PubMed Central

    HUANG, Chujing; YU, Wenhua; XU, Zhongxian; QIU, Yuanxiong; CHEN, Miao; QIU, Bing; MOTOKAWA, Masaharu; HARADA, Masashi; LI, Yuchun; WU, Yi

    2014-01-01

    Three distinct bamboo bat species (Tylonycteris) are known to inhabit tropical and subtropical areas of Asia, i.e., T. pachypus, T. robustula, and T. pygmaeus. This study performed karyotypic examinations of 4 specimens from southern Chinese T. p. fulvidus populations and one specimen from Thai T. p. fulvidus population, which detected distinct karyotypes (2n=30) compared with previous karyotypic descriptions of T. p. pachypus (2n=46) and T. robustula (2n=32) from Malaysia. This finding suggested a cryptic Tylonycteris species within T. pachypus complex in China and Thailand. Morphometric studies indicated the difficulty in distinguishing the cryptic species and T. p. pachypus from Indonesia apart from the external measurements, which might be the reason for their historical misidentification. Based on 623 bp mtDNA COI segments, a phylogeographic examination including T. pachypus individuals from China and nearby regions, i.e., Vietnam, Laos, and Cambodia, was conducted to examine the population genetic structure. Genealogical and phylogeographical results indicated that at least two diverged lineages existed in these regions (average 3.4 % of Kimura 2-parameter distances) and their population structure did not match the geographic pattern. These results suggested that at least two historical colonizations have occurred by the cryptic species. Furthermore, through integration of traditional and geometric morphological results, morphological differences on zygomatic arches, toothrows and bullae were detected between two lineages in China. Given the similarity of vegetation and climate of Guangdong and Guangxi regions, we suggested that such differences might be derived from their historical adaptation or distinct evolutionary history rather than the differences of habitats they occurred currently. PMID:24550688

  18. Epidemic spreading on dual-structure networks with mobile agents

    NASA Astrophysics Data System (ADS)

    Yao, Yiyang; Zhou, Yinzuo

    2017-02-01

    The rapid development of modern society continually transforms the social structure which leads to an increasingly distinct dual structure of higher population density in urban areas and lower density in rural areas. Such structure may induce distinctive spreading behavior of epidemics which does not happen in a single type structure. In this paper, we study the epidemic spreading of mobile agents on dual structure networks based on SIRS model. First, beyond the well known epidemic threshold for generic epidemic model that when the infection rate is below the threshold a pertinent infectious disease will die out, we find the other epidemic threshold which appears when the infection rate of a disease is relatively high. This feature of two thresholds for the SIRS model may lead to the elimination of infectious disease when social network has either high population density or low population density. Interestingly, however, we find that when a high density area is connected to a low density may cause persistent spreading of the infectious disease, even though the same disease will die out when it spreads in each single area. This phenomenon indicates the critical role of the connection between the two areas which could radically change the behavior of spreading dynamics. Our findings, therefore, provide new understanding of epidemiology pertinent to the characteristic modern social structure and have potential to develop controlling strategies accordingly.

  19. Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations.

    PubMed

    Venables, Samantha J; Daniel, Runa; Sarre, Stephen D; Soedarsono, Nurtami; Sudoyo, Herawati; Suryadi, Helena; van Oorschot, Roland A H; Walsh, Simon J; Widodo, Putut T; McNevin, Dennis

    2016-01-01

    Evolutionary and cultural history can affect the genetic characteristics of a population and influences the frequency of different variants at a particular genetic marker (allele frequency). These characteristics directly influence the strength of forensic DNA evidence and make the availability of suitable allele frequency information for every discrete country or jurisdiction highly relevant. Population sub-structure within Indonesia has not been well characterised but should be expected given the complex geographical, linguistic and cultural architecture of the Indonesian population. Here we use forensic short tandem repeat (STR) markers to identify a number of distinct genetic subpopulations within Indonesia and calculate appropriate population sub-structure correction factors. This data represents the most comprehensive investigation of population sub-structure within Indonesia to date using these markers. The results demonstrate that significant sub-structure is present within the Indonesian population and must be accounted for using island specific allele frequencies and corresponding sub-structure correction factors in the calculation of forensic DNA match statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Phylogeographic analysis reveals high genetic structure with uniform phenotypes in the paper wasp Protonectarina sylveirae (Hymenoptera: Vespidae).

    PubMed

    da Silva, Marjorie; Noll, Fernando Barbosa; E Castro, Adriana C Morales-Corrêa

    2018-01-01

    Swarm-founding wasps are endemic and common representatives of neotropical fauna and compose an interesting social tribe of vespids, presenting both complex social characteristics and uncommon traits for a eusocial group, such as the absence of castes with distinct morphology. The paper wasp Protonectarina sylveirae (Saussure) presents a broad distribution from Brazil, Argentina and Paraguay, occurring widespread in the Atlantic rainforest and arboreal Caatinga, being absent in the Amazon region. Given the peculiar distribution among swarm-founding wasps, an integrative approach to reconstruct the evolutionary history of P. sylveirae in a spatial-temporal framework was performed to investigate: the presence of genetic structure and its relationship with the geography, the evolution of distinct morphologic lineages and the possible historical event(s) in Neotropical region, which could explain the observed phylogeographic pattern. Individuals of P. sylveirae were obtained from populations of 16 areas throughout its distribution for DNA extraction and amplification of mitochondrial genes 12S, 16S and COI. Analysis of genetic diversity, construction of haplotype net, analysis of population structure and dating analysis of divergence time were performed. A morphometric analysis was also performed using 8 measures of the body of the adult (workers) to test if there are morphological distinction among populations. Thirty-five haplotypes were identified, most of them exclusively of a group and a high population structure was found. The possibility of genetic divergence because of isolation by distance was rejected. Morphological analysis pointed to a great uniformity in phenotypes, with only a small degree of differentiation between populations of south and the remaining. Divergence time analysis showed a Middle/Late Miocene origin, a period where an extensive marine ingression occurred in South America. Divergence of haplogroups began from the Plio/Pleistocene boundary and the last glacial maximum most likely modeled the current distribution of species, even though it was not the cause of genetic breaks.

  1. Phylogeographic analysis reveals high genetic structure with uniform phenotypes in the paper wasp Protonectarina sylveirae (Hymenoptera: Vespidae)

    PubMed Central

    2018-01-01

    Swarm-founding wasps are endemic and common representatives of neotropical fauna and compose an interesting social tribe of vespids, presenting both complex social characteristics and uncommon traits for a eusocial group, such as the absence of castes with distinct morphology. The paper wasp Protonectarina sylveirae (Saussure) presents a broad distribution from Brazil, Argentina and Paraguay, occurring widespread in the Atlantic rainforest and arboreal Caatinga, being absent in the Amazon region. Given the peculiar distribution among swarm-founding wasps, an integrative approach to reconstruct the evolutionary history of P. sylveirae in a spatial-temporal framework was performed to investigate: the presence of genetic structure and its relationship with the geography, the evolution of distinct morphologic lineages and the possible historical event(s) in Neotropical region, which could explain the observed phylogeographic pattern. Individuals of P. sylveirae were obtained from populations of 16 areas throughout its distribution for DNA extraction and amplification of mitochondrial genes 12S, 16S and COI. Analysis of genetic diversity, construction of haplotype net, analysis of population structure and dating analysis of divergence time were performed. A morphometric analysis was also performed using 8 measures of the body of the adult (workers) to test if there are morphological distinction among populations. Thirty-five haplotypes were identified, most of them exclusively of a group and a high population structure was found. The possibility of genetic divergence because of isolation by distance was rejected. Morphological analysis pointed to a great uniformity in phenotypes, with only a small degree of differentiation between populations of south and the remaining. Divergence time analysis showed a Middle/Late Miocene origin, a period where an extensive marine ingression occurred in South America. Divergence of haplogroups began from the Plio/Pleistocene boundary and the last glacial maximum most likely modeled the current distribution of species, even though it was not the cause of genetic breaks. PMID:29538451

  2. Genetic structure in the Sherpa and neighboring Nepalese populations.

    PubMed

    Cole, Amy M; Cox, Sean; Jeong, Choongwon; Petousi, Nayia; Aryal, Dhana R; Droma, Yunden; Hanaoka, Masayuki; Ota, Masao; Kobayashi, Nobumitsu; Gasparini, Paolo; Montgomery, Hugh; Robbins, Peter; Di Rienzo, Anna; Cavalleri, Gianpiero L

    2017-01-19

    We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations.

  3. Population genetics of seaside Sparrow (Ammodramus maritimus) subspecies along the gulf of Mexico.

    PubMed

    Woltmann, Stefan; Stouffer, Philip C; Bergeon Burns, Christine M; Woodrey, Mark S; Cashner, Mollie F; Taylor, Sabrina S

    2014-01-01

    Seaside Sparrows (Ammodramus maritimus) along the Gulf of Mexico are currently recognized as four subspecies, including taxa in Florida (A. m. juncicola and A. m. peninsulae) and southern Texas (Ammodramus m. sennetti), plus a widespread taxon between them (A. m. fisheri). We examined population genetic structure of this "Gulf Coast" clade using microsatellite and mtDNA data. Results of Bayesian analyses (Structure, GeneLand) of microsatellite data from nine locations do not entirely align with current subspecific taxonomy. Ammodramus m. sennetti from southern Texas is significantly differentiated from all other populations, but we found evidence of an admixture zone with A. m. fisheri near Corpus Christi. The two subspecies along the northern Gulf Coast of Florida are significantly differentiated from both A. m. sennetti and A. m. fisheri, but are not distinct from each other. We found a weak signal of isolation by distance within A. m. fisheri, indicating this population is not entirely panmictic throughout its range. Although continued conservation concern is warranted for all populations along the Gulf Coast, A. m. fisheri appears to be more secure than the far smaller populations in south Texas and the northern Florida Gulf Coast. In particular, the most genetically distinct populations, those in Texas south of Corpus Christi, occupy unique habitats within a very small geographic range.

  4. Who Are the Okinawans? Ancestry, Genome Diversity, and Implications for the Genetic Study of Human Longevity From a Geographically Isolated Population

    PubMed Central

    Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.

    2014-01-01

    Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611

  5. Spatial genetic structure and asymmetrical gene flow within the Pacific walrus

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Jay, Chadwick V.; Fischbach, Anthony S.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Pacific walruses (Odobenus rosmarus divergens) occupying shelf waters of Pacific Arctic seas migrate during spring and summer from 3 breeding areas in the Bering Sea to form sexually segregated nonbreeding aggregations. We assessed genetic relationships among 2 putative breeding populations and 6 nonbreeding aggregations. Analyses of mitochondrial DNA (mtDNA) control region sequence data suggest that males are distinct among breeding populations (ΦST=0.051), and between the eastern Chukchi and other nonbreeding aggregations (ΦST=0.336–0.449). Nonbreeding female aggregations were genetically distinct across marker types (microsatellite FST=0.019; mtDNA ΦST=0.313), as was eastern Chukchi and all other nonbreeding aggregations (microsatellite FST=0.019–0.035; mtDNA ΦST=0.386–0.389). Gene flow estimates are asymmetrical from St. Lawrence Island into the southeastern Bering breeding population for both sexes. Partitioning of haplotype frequencies among breeding populations suggests that individuals exhibit some degree of philopatry, although weak. High levels of genetic differentiation among eastern Chukchi and all other nonbreeding aggregations, but considerably lower genetic differentiation between breeding populations, suggest that at least 1 genetically distinct breeding population remained unsampled. Limited genetic structure at microsatellite loci between assayed breeding areas can emerge from several processes, including male-mediated gene flow, or population admixture following a decrease in census size (i.e., due to commercial harvest during 1880–1950s) and subsequent recovery. Nevertheless, high levels of genetic diversity in the Pacific walrus, which withstood prolonged decreases in census numbers with little impact on neutral genetic diversity, may reflect resiliency in the face of past environmental challenges.

  6. Identification of Neosho Smallmouth Bass (Micropterus dolomieu velox) stocks for possible introduction into Grand Lake, Oklahoma

    USGS Publications Warehouse

    Taylor, Andrew T.; Long, James M.; Schwemm, Michael R.; Tringali, Michael D.; Brewer, Shannon K.

    2016-01-01

    Stocking black basses (Micropterus spp.) is a common practice used to increase angling opportunities in impoundments; however, when non-native black basses are introduced they often invade riverine habitats where they threaten the persistence of other fishes, including native black basses. Neosho Smallmouth Bass (M. dolomieu velox) is endemic to portions of the Ozark Highlands and Boston Mountains ecoregions and is threatened by introductions of non-native Smallmouth Bass (“SMB”) forms. Because of recent interest in stocking SMB into Grand Lake o’ the Cherokees, we assessed the suitability of local Neosho SMB populations as potential broodstock sources by assessing introgression with non-native SMB forms, as well as characterizing population structure and genetic diversity. The majority of Neosho SMB populations contained low, but non-negligible, genomic proportions of two genetically distinct non-native SMB forms. Introgression was highest in the Illinois River upstream of Lake Tenkiller, where Tennessee ‘lake strain’ SMB were stocked in the early 1990’s. We recovered three genetically distinct clusters of Neosho SMB at the uppermost hierarchical level of population structure: a distinct Illinois River cluster and two Grand River clusters that appear to naturally mix at some sites. Genetic diversity measures generally increased with stream size, and smaller populations with low diversity measures may benefit from immigration of novel genetic material. Overall, introgression with non-native SMB forms appears to pose a prominent threat to Neosho SMB; however, relatively intact populations of Neosho SMB exist in some Grand Lake o’ the Cherokees tributaries. Results could be used in developing a stocking program that promotes and sustains existing genetic diversity within and among Neosho SMB populations.

  7. Genetic diversity in populations of Isatis glauca Aucher ex Boiss. ssp. from Central Anatolia in Turkey, as revealed by AFLP analysis.

    PubMed

    Özbek, Özlem; Görgülü, Elçin; Yıldırımlı, Şinasi

    2013-12-01

    Isatidae L. is a complex and systematically difficult genus in Brassicaceae. The genus displays great morphological polymorphism, which makes the classification of species and subspecies difficult as it is observed in Isatis glauca Aucher ex Boiss. The aim of this study is characterization of the genetic diversity in subspecies of Isatis glauca Aucher ex Boiss. distributed widely in Central Anatolia, in Turkey by using Amplified Fragment Length Polymorphism (AFLP) technique. Eight different Eco RI-Mse I primer combinations produced 805 AFLP loci, 793 (98.5%) of which were polymorphic in 67 accessions representing nine different populations. The data obtained by AFLP was computed with using GDA (Genetic Data Analysis) and STRUCTURE (version 2.3.3) software programs for population genetics. The mean proportion of the polymorphic locus (P), the mean number of alleles (A), the number of unique alleles (U) and the mean value of gene diversity (He) were 0.59, 1.59, 20, and 0.23 respectively. The coancestry coefficient (ϴ) was 0.24. The optimal number of K was identified as seven. The principal component analysis (PCA) explained 85.61% of the total genetic variation. Isatis glauca ssp. populations showed a high level of genetic diversity, and the AFLP analysis revealed that high polymorphism and differentiated subspecies could be used conveniently for population genetic studies. The principal coordinate analysis (PCoA) based on the dissimilarity matrix, the dendrogram drawn with UPGMA method and STRUCTURE cluster analysis distinguished the accessions successfully. The accessions formed distinctive population structures for populations AA, AB, E, K, and S. Populations AG1 and AG2 seemed to have similar genetic content, in addition, in both populations several hybrid individuals were observed. The accessions did not formed distinctive population structures for both populations AI and ANP. Consequently, Ankara province might be the area, where species Isatis glauca Aucher ex Boiss. originated.

  8. mtDNA variation in caste populations of Andhra Pradesh, India.

    PubMed

    Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B

    1996-02-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance include (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty distinct haplotypes are found in Africans, 17 in Asians, and 13 in Europeans. Mean nucleotide diversity is 0.019, 0.014, 0.009, and 0.007 for Africans, Indians, Asians, and Europeans, respectively. These populations are highly structured geographically (GST = 0.15; p < 0.001). The caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.

  9. The fine-scale genetic structure and evolution of the Japanese population.

    PubMed

    Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.

  10. Population Genetics of an Ecosystem-Defining Reef Coral Pocillopora damicornis in the Tropical Eastern Pacific

    PubMed Central

    Combosch, David J.; Vollmer, Steven V.

    2011-01-01

    Background Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP. Methodology Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama. Principal Findings/Conclusions We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly among regions, but even over meter scales within populations. PMID:21857900

  11. Population structure and comparative phylogeography of jack species (Caranx ignobilis and C. melampygus) in the high Hawaiian Islands.

    PubMed

    Santos, Scott R; Xiang, Yu; Tagawa, Annette W

    2011-01-01

    Members of the family Carangidae are top-level predators and highly prized food and sport fishes. Although ecologically and economically important, little is known about the biology of numerous species in the family. This is particularly true of the jacks Caranx ignobilis and C. melampygus, which have experienced recent population reductions around the high Hawaiian Islands due to overfishing. Previous studies have documented territorial tendencies as well as cases of long-distance excursions in both species, suggesting populations may exhibit a range of structure at the genetic level. To explore this possibility, mitochondrial DNA ATPase6 and ATPase8 gene sequence variation was assessed from 91 individuals (33 C. ignobilis and 58 C. melampygus) spanning the islands of Kaua'i, O'ahu, Moloka'i, Maui, and Hawai'i. Although a total of 20 distinct haplotypes (8 for C. ignobilis; 12 for C. melampygus) were recovered, no evidence of population structure was found for either species across the examined geographic range. However, distinct demographic patterns were identified, implying differing evolutionary histories and/or population dynamics. Additionally, ∼ 6% of the examined C. ignobilis were C. ignobilis × C. melampygus hybrids because they harbored mitochondrial haplotypes typical of C. melampygus. These hybrids contribute to measurable gene flow between the species and may play a significant role in the evolution of the genus.

  12. Pleistocene climatic oscillations in Neotropical open areas: Refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands

    PubMed Central

    Peçanha, Willian T.; Althoff, Sergio L.; Galiano, Daniel; Quintela, Fernando M.; Maestri, Renan; Freitas, Thales R. O.

    2017-01-01

    Pleistocene climatic oscillations favoured the expansion of grassland ecosystems and open vegetation landscapes throughout the Neotropics, and influenced the evolutionary history of species adapted to such environments. In this study, we sampled populations of the rodent Oxymycterus nasutus endemic to open areas in the Pampas and Atlantic Forest biomes to assess the tempo and mode of population divergence using an integrative approach, including coalescence theory, ecological niche models, and morphometry. Our results indicated that these O. nasutus populations exhibited high levels of genetic structure. Six major mtDNA clades were found, structuring these biomes into distinct groups. Estimates of their divergence times was indicated to be 0.571 myr. The high degree of genetic structure is reflected in the analyses of geometric morphometric; skull differences between lineages in the two ecoregions were detected. During the last glacial maximum, there was a strong increase in suitable abiotic conditions for O. nasutus. Distinct molecular markers revealed a population expansion over time, with a possible demographic retraction during the post-glacial period. Considering that all clades coalesce with the last interglacial maximum, our results indicated that reduction in suitable conditions during this period may have resulted in a possible vicariance associated with refuge isolation. PMID:29176839

  13. [Characteristics of the genetic structure of parasite and host populations by the example of helminthes from moor frog Rana arvalis Nilsson].

    PubMed

    Zhigalev, O N

    2010-01-01

    The genetic structure of populations of four helminth species from moor frog Rana arvalis, in comparison with the population-genetic structure of the host, has been studied with the gel-electrophoresis method. As compared with the host, parasites are characterized by more distinct deviation from the balance of genotypic frequencies and higher level of interpopulation genetic differences. The genetic variability indices in the three of four frog helminthes examined are lower than those in the host. Moreover, these indices are lower than the average indices typical of free-living invertebrates; this fact contradicts the opinion on polyhostality of these helminthes and their wide distribution.

  14. Mitochondrial DNA variation in natural populations of endangered Indian feather-back fish, Chitala chitala.

    PubMed

    Mandal, Anup; Mohindra, Vindhya; Singh, Rajeev Kumar; Punia, Peyush; Singh, Ajay Kumar; Lal, Kuldeep Kumar

    2012-02-01

    Genetic variation at mitochondrial cytochrome b (cyt b) and D-loop region reveals the evidence of population sub-structuring in Indian populations of highly endangered primitive feather-back fish Chitala chitala. Samples collected through commercial catches from eight riverine populations from different geographical locations of India were analyzed for cyt b region (307 bp) and D-loop region (636-716 bp). The sequences of the both the mitochondrial regions revealed high haplotype diversity and low nucleotide diversity. The patterns of genetic diversity, haplotypes networks clearly indicated two distinct mitochondrial lineages and mismatch distribution strongly suggest a historical influence on the genetic structure of C. chitala populations. The baseline information on genetic variation and the evidence of population sub-structuring generated from this study would be useful for planning effective strategies for conservation and rehabilitation of this highly endangered species.

  15. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  16. Phylogenetically conserved resource partitioning in the coastal microbial loop

    PubMed Central

    Bryson, Samuel; Li, Zhou; Chavez, Francisco; Weber, Peter K; Pett-Ridge, Jennifer; Hettich, Robert L; Pan, Chongle; Mayali, Xavier; Mueller, Ryan S

    2017-01-01

    Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populations did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone. PMID:28800138

  17. Population Structure and Gene Flow of the Yellow Anaconda (Eunectes notaeus) in Northern Argentina

    PubMed Central

    McCartney-Melstad, Evan; Waller, Tomás; Micucci, Patricio A.; Barros, Mariano; Draque, Juan; Amato, George; Mendez, Martin

    2012-01-01

    Yellow anacondas (Eunectes notaeus) are large, semiaquatic boid snakes found in wetland systems in South America. These snakes are commercially harvested under a sustainable management plan in Argentina, so information regarding population structuring can be helpful for determination of management units. We evaluated genetic structure and migration using partial sequences from the mitochondrial control region and mitochondrial genes cyt-b and ND4 for 183 samples collected within northern Argentina. A group of landscape features and environmental variables including several treatments of temperature and precipitation were explored as potential drivers of observed genetic patterns. We found significant population structure between most putative population comparisons and bidirectional but asymmetric migration in several cases. The configuration of rivers and wetlands was found to be significantly associated with yellow anaconda population structure (IBD), and important for gene flow, although genetic distances were not significantly correlated with the environmental variables used here. More in-depth analyses of environmental data may be needed to fully understand the importance of environmental conditions on population structure and migration. These analyses indicate that our putative populations are demographically distinct and should be treated as such in Argentina's management plan for the harvesting of yellow anacondas. PMID:22675425

  18. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean.

    PubMed

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-10-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species.

  19. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean

    PubMed Central

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-01-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species. PMID:21427750

  20. Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise

    PubMed Central

    Lah, Ljerka; Trense, Daronja; Benke, Harald; Berggren, Per; Gunnlaugsson, Þorvaldur; Lockyer, Christina; Öztürk, Ayaka; Öztürk, Bayram; Pawliczka, Iwona; Roos, Anna; Siebert, Ursula; Víkingsson, Gísli; Tiedemann, Ralph

    2016-01-01

    The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis. PMID:27783621

  1. European Population Substructure: Clustering of Northern and Southern Populations

    PubMed Central

    Seldin, Michael F; Shigeta, Russell; Villoslada, Pablo; Selmi, Carlo; Tuomilehto, Jaakko; Silva, Gabriel; Belmont, John W; Klareskog, Lars; Gregersen, Peter K

    2006-01-01

    Using a genome-wide single nucleotide polymorphism (SNP) panel, we observed population structure in a diverse group of Europeans and European Americans. Under a variety of conditions and tests, there is a consistent and reproducible distinction between “northern” and “southern” European population groups: most individual participants with southern European ancestry (Italian, Spanish, Portuguese, and Greek) have >85% membership in the “southern” population; and most northern, western, eastern, and central Europeans have >90% in the “northern” population group. Ashkenazi Jewish as well as Sephardic Jewish origin also showed >85% membership in the “southern” population, consistent with a later Mediterranean origin of these ethnic groups. Based on this work, we have developed a core set of informative SNP markers that can control for this partition in European population structure in a variety of clinical and genetic studies. PMID:17044734

  2. Puerto Rico and Florida manatees represent genetically distinct groups

    USGS Publications Warehouse

    Hunter, Margaret E.; Mignucci-Giannoni, Antonio A.; Tucker, Kimberly Pause; King, Timothy L.; Bonde, Robert K.; Gray, Brian A.; McGuire, Peter M.

    2012-01-01

    The West Indian manatee (Trichechus manatus) populations in Florida (T. m. latirostris) and Puerto Rico (T. m. manatus) are considered distinct subspecies and are listed together as endangered under the United States Endangered Species Act. Sustained management and conservation efforts for the Florida subspecies have led to the suggested reclassification of the species to a threatened or delisted status. However, the two populations are geographically distant, morphologically distinct, and habitat degradation and boat strikes continue to threaten the Puerto Rico population. Here, 15 microsatellite markers and mitochondrial control region sequences were used to determine the relatedness of the two populations and investigate the genetic diversity and phylogeographic organization of the Puerto Rico population. Highly divergent allele frequencies were identified between Florida and Puerto Rico using microsatellite (F ST = 0.16; R ST = 0.12 (P ST = 0.66; Φ ST = 0.50 (P E = 0.45; NA = 3.9), were similar, but lower than those previously identified in Florida (HE = 0.48, NA = 4.8). Within Puerto Rico, the mitochondrial genetic diversity values (π = 0.001; h = 0.49) were slightly lower than those previously reported (π = 0.002; h = 0.54) and strong phylogeographic structure was identified (F ST global = 0.82; Φ ST global = 0.78 (P < 0.001)). The genetic division with Florida, low diversity, small population size (N = 250), and distinct threats and habitat emphasize the need for separate protections in Puerto Rico. Conservation efforts including threat mitigation, migration corridors, and protection of subpopulations could lead to improved genetic variation in the endangered Puerto Rico manatee population.

  3. Surprisingly little population genetic structure in a fungus-associated beetle despite its exploitation of multiple hosts

    PubMed Central

    Wood, Corlett W; Donald, Hannah M; Formica, Vincent A; Brodie, Edmund D

    2013-01-01

    In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure. PMID:23789061

  4. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    PubMed

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common, tropical tree over multiple habitats and provide information for managers of a successional forest in a protected area.

  5. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan.

    PubMed

    Badgley, Brian D; Ferguson, John; Vanden Heuvel, Amy; Kleinheinz, Gregory T; McDermott, Colleen M; Sandrin, Todd R; Kinzelman, Julie; Junion, Emily A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan

    USGS Publications Warehouse

    Badgley, B.D.; Ferguson, J.; Heuvel, A.V.; Kleinheinz, G.T.; McDermott, C.M.; Sandrin, T.R.; Kinzelman, J.; Junion, E.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.

  7. Earliest evidence for the structure of Homo sapiens populations in Africa

    NASA Astrophysics Data System (ADS)

    Scerri, Eleanor M. L.; Drake, Nick A.; Jennings, Richard; Groucutt, Huw S.

    2014-10-01

    Understanding the structure and variation of Homo sapiens populations in Africa is critical for interpreting multiproxy evidence of their subsequent dispersals into Eurasia. However, there is no consensus on early H. sapiens demographic structure, or its effects on intra-African dispersals. Here, we show how a patchwork of ecological corridors and bottlenecks triggered a successive budding of populations across the Sahara. Using a temporally and spatially explicit palaeoenvironmental model, we found that the Sahara was not uniformly ameliorated between ∼130 and 75 thousand years ago (ka), as has been stated. Model integration with multivariate analyses of corresponding stone tools then revealed several spatially defined technological clusters which correlated with distinct palaeobiomes. Similarities between technological clusters were such that they decreased with distance except where connected by palaeohydrological networks. These results indicate that populations at the Eurasian gateway were strongly structured, which has implications for refining the demographic parameters of dispersals out of Africa.

  8. Genetic diversity analysis of Capparis spinosa L. populations by using ISSR markers.

    PubMed

    Liu, C; Xue, G P; Cheng, B; Wang, X; He, J; Liu, G H; Yang, W J

    2015-12-09

    Capparis spinosa L. is an important medicinal species in the Xinjiang Province of China. Ten natural populations of C. spinosa from 3 locations in North, Central, and South Xinjiang were studied using morphological trait inter simple sequence repeat (ISSR) molecular markers to assess the genetic diversity and population structure. In this study, the 10 ISSR primers produced 313 amplified DNA fragments, with 52% of fragments being polymorphic. Unweighted pair-group method with arithmetic average (UPGMA) cluster analysis indicated that 10 C. spinosa populations were clustered into 3 geographically distinct groups. The Nei gene of C. spinosa populations in different regions had Diversity and Shannon's information index ranges of 0.1312-0.2001 and 0.1004-0.1875, respectively. The 362 markers were used to construct the dendrogram based on the UPGMA cluster analysis. The dendrogram indicated that 10 populations of C. spinosa were clustered into 3 geographically distinct groups. The results showed these genotypes have high genetic diversity, and can be used for an alternative breeding program.

  9. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    PubMed

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn

    This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects onmore » carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.« less

  11. Global population structure and adaptive evolution of aflatoxin-producing fungi.

    PubMed

    Moore, Geromy G; Olarte, Rodrigo A; Horn, Bruce W; Elliott, Jacalyn L; Singh, Rakhi; O'Neal, Carolyn J; Carbone, Ignazio

    2017-11-01

    Aflatoxins produced by several species in Aspergillus section Flavi are a significant problem in agriculture and a continuous threat to human health. To provide insights into the biology and global population structure of species in section Flavi , a total of 1,304 isolates were sampled across six species ( A. flavus, A. parasiticus, A. nomius, A. caelatus, A. tamarii, and A. alliaceus ) from single fields in major peanut-growing regions in Georgia (USA), Australia, Argentina, India, and Benin (Africa). We inferred maximum-likelihood phylogenies for six loci, both combined and separately, including two aflatoxin cluster regions ( aflM/alfN and aflW/aflX ) and four noncluster regions ( amdS, trpC, mfs and MAT ), to examine population structure and history. We also employed principal component and STRUCTURE analysis to identify genetic clusters and their associations with six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type). Overall, seven distinct genetic clusters were inferred, some of which were more strongly structured by G chemotype diversity than geography. Populations of A. flavus S in Benin were genetically distinct from all other section Flavi species for the loci examined, which suggests genetic isolation. Evidence of trans-speciation within two noncluster regions, whereby A. flavus S BG strains from Australia share haplotypes with either A. flavus or A. parasiticus , was observed. Finally, while clay soil and precipitation may influence species richness in Aspergillus section Flavi , other region-specific environmental and genetic parameters must also be considered.

  12. Bacterial Biofilms as Complex Communities

    NASA Astrophysics Data System (ADS)

    Vlamakis, Hera

    2010-03-01

    Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.

  13. Rare variation facilitates inferences of fine-scale population structure in humans.

    PubMed

    O'Connor, Timothy D; Fu, Wenqing; Mychaleckyj, Josyf C; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S; Leal, Suzanne M; Smith, Joshua D; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A; Akey, Joshua M

    2015-03-01

    Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European-American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    PubMed Central

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients. PMID:22588131

  15. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient.

    PubMed

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-09-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.

  16. Conservation genetics of the genus Martes: Assessing within-species movements, units to conserve, and connectivity across ecological and evolutionary time [Chapter 17

    Treesearch

    Michael K. Schwartz; Aritz Ruiz-Gonzalez; Ryuchi Masuda; Cino Pertoldi

    2012-01-01

    Understanding the physical and temporal factors that structure Martes populations is essential to the conservation and management of the 8 recognized Martes species. Recently, advances in 3 distinct subdisciplines in molecular ecology have provided insights into historical and contemporary environmental factors that have created population substructure and influenced...

  17. Connectivity dominates larval replenishment in a coastal reef fish metapopulation

    PubMed Central

    Saenz-Agudelo, Pablo; Jones, Geoffrey P.; Thorrold, Simon R.; Planes, Serge

    2011-01-01

    Direct estimates of larval retention and connectivity are essential to understand the structure and dynamics of marine metapopulations, and optimize the size and spacing of reserves within networks of marine-protected areas (MPAs). For coral reef fishes, while there are some empirical estimates of self-recruitment at isolated populations, exchange among sub-populations has been rarely quantified. Here, we used microsatellite DNA markers and a likelihood-based parentage analysis to assess the relative magnitude of self-recruitment and exchange among eight geographically distinct sub-populations of the panda clownfish Amphiprion polymnus along 30 km of coastline near Port Moresby, Papua New Guinea. In addition, we used an assignment/exclusion test to identify immigrants arriving from genetically distinct sources. Overall, 82 per cent of the juveniles were immigrants while 18 per cent were progeny of parents genotyped in our focal metapopulation. Of the immigrants, only 6 per cent were likely to be genetically distinct from the focal metapopulation, suggesting most of the connectivity is among sub-populations from a rather homogeneous genetic pool. Of the 18 per cent that were progeny of known adults, two-thirds dispersed among the eight sub-populations and only one-third settled back into natal sub-populations. Comparison of our data with previous studies suggested that variation in dispersal distances is likely to be influenced by the geographical setting and spacing of sub-populations. PMID:21325328

  18. Connectivity dominates larval replenishment in a coastal reef fish metapopulation.

    PubMed

    Saenz-Agudelo, Pablo; Jones, Geoffrey P; Thorrold, Simon R; Planes, Serge

    2011-10-07

    Direct estimates of larval retention and connectivity are essential to understand the structure and dynamics of marine metapopulations, and optimize the size and spacing of reserves within networks of marine-protected areas (MPAs). For coral reef fishes, while there are some empirical estimates of self-recruitment at isolated populations, exchange among sub-populations has been rarely quantified. Here, we used microsatellite DNA markers and a likelihood-based parentage analysis to assess the relative magnitude of self-recruitment and exchange among eight geographically distinct sub-populations of the panda clownfish Amphiprion polymnus along 30 km of coastline near Port Moresby, Papua New Guinea. In addition, we used an assignment/exclusion test to identify immigrants arriving from genetically distinct sources. Overall, 82 per cent of the juveniles were immigrants while 18 per cent were progeny of parents genotyped in our focal metapopulation. Of the immigrants, only 6 per cent were likely to be genetically distinct from the focal metapopulation, suggesting most of the connectivity is among sub-populations from a rather homogeneous genetic pool. Of the 18 per cent that were progeny of known adults, two-thirds dispersed among the eight sub-populations and only one-third settled back into natal sub-populations. Comparison of our data with previous studies suggested that variation in dispersal distances is likely to be influenced by the geographical setting and spacing of sub-populations.

  19. Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    PubMed Central

    Oliveira, Hugo R.; Campana, Michael G.; Jones, Huw; Hunt, Harriet V.; Leigh, Fiona; Redhouse, David I.; Lister, Diane L.; Jones, Martin K.

    2012-01-01

    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields. PMID:22615891

  20. Phylogenetically conserved resource partitioning in the coastal microbial loop

    DOE PAGES

    Bryson, Samuel; Li, Zhou; Chavez, Francisco; ...

    2017-08-11

    Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less

  1. Phylogenetically conserved resource partitioning in the coastal microbial loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, Samuel; Li, Zhou; Chavez, Francisco

    Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less

  2. The fine-scale genetic structure and evolution of the Japanese population

    PubMed Central

    Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727

  3. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico.

    PubMed

    Domínguez-Contreras, José F; Munguia-Vega, Adrian; Ceballos-Vázquez, Bertha P; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides . These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.

  4. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA

    PubMed Central

    2012-01-01

    Background Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII) gene. Methods Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. Results A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP) in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. Conclusions The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be confirmed and its epidemiological significance further investigated. The lack of genetic population structure in the other north-east Indian populations likely reflects large population sizes of An. baimaii that, historically, were able to disperse through continuous forest habitats in the north-east India. Additional markers and analytical approaches are required to determine if recent deforestation is now preventing ongoing gene flow. Until such information is acquired, An. baimaii in north-east India should be treated as a single unit for the implementation of vector control measures. PMID:22429500

  5. Dental and phylogeographic patterns of variation in gorillas.

    PubMed

    Pilbrow, Varsha

    2010-07-01

    Gorilla patterns of variation have great relevance for studies of human evolution. In this study, molar morphometrics were used to evaluate patterns of geographic variation in gorillas. Dental specimens of 323 adult individuals, drawn from the current distribution of gorillas in equatorial Africa were divided into 14 populations. Discriminant analyses and Mahalanobis distances were used to study population structure. Results reveal that: 1) the West and East African gorillas form distinct clusters, 2) the Cross River gorillas are well separated from the rest of the western populations, 3) gorillas from the Virunga mountains and the Bwindi Forest can be differentiated from the lowland gorillas of Utu and Mwenga-Fizi, 4) the Tshiaberimu gorillas are distinct from other eastern gorillas, and the Kahuzi-Biega gorillas are affiliated with them. These findings provide support for a species distinction between Gorilla gorilla and Gorilla beringei, with subspecies G. g. diehli, G. g. gorilla, G. b. graueri, G. b. beringei, and possibly, G. b. rex-pygmaeorum. Clear correspondence between dental and other patterns of taxonomic diversity demonstrates that dental data reveal underlying genetic patterns of differentiation. Dental distances increased predictably with altitude but not with geographic distances, indicating that altitudinal segregation explains gorilla patterns of population divergence better than isolation-by-distance. The phylogeographic pattern of gorilla dental metric variation supports the idea that Plio-Pleistocene climatic fluctuations and local mountain building activity in Africa affected gorilla phylogeography. I propose that West Africa comprised the historic center of gorilla distribution and experienced drift-gene flow equilibrium, whereas Nigeria and East Africa were at the periphery, where climatic instability and altitudinal variation promoted drift and genetic differentiation. This understanding of gorilla population structure has implications for gorilla conservation, and for understanding the distribution of sympatric chimpanzees and Plio-Pleistocene hominins.

  6. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen

    PubMed Central

    2018-01-01

    The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the genomes of 60 diverse F. graminearum isolates. We also assembled the first pan-genome for F. graminearum to clarify population-level differences in gene content potentially contributing to pathogen diversity. Bayesian and phylogenomic analyses revealed genetic structure associated with isolates that produce the novel NX-2 mycotoxin, suggesting a North American population that has remained genetically distinct from other endemic and introduced cereal-infecting populations. Genome scans uncovered distinct signatures of selection within populations, focused in high diversity, frequently recombining regions. These patterns suggested selection for genomic divergence at the trichothecene toxin gene cluster and thirteen additional regions containing genes potentially involved in pathogen specialization. Gene content differences further distinguished populations, in that 121 genes showed population-specific patterns of conservation. Genes that differentiated populations had predicted functions related to pathogenesis, secondary metabolism and antagonistic interactions, though a subset had unique roles in temperature and light sensitivity. Our results indicated that F. graminearum populations are distinguished by dozens of genes with signatures of selection and an array of dispensable accessory genes, suggesting that FHB pathogen populations may be equipped with different traits to exploit the agroecosystem. These findings provide insights into the evolutionary processes and genomic features contributing to population divergence in plant pathogens, and highlight candidate genes for future functional studies of pathogen specialization across evolutionarily and ecologically diverse fungi. PMID:29584736

  7. Morphological and molecular dissection of wild rices from eastern India suggests distinct speciation between O. rufipogon and O. nivara populations.

    PubMed

    Samal, Rashmita; Roy, Pritesh Sundar; Sahoo, Auromira; Kar, Meera Kumari; Patra, Bhaskar Chandra; Marndi, Bishnu Charan; Gundimeda, Jwala Narasimha Rao

    2018-02-09

    The inter relationships between the two progenitors is interesting as both wild relatives are known to be the great untapped gene reservoirs. The debate continues on granting a separate species status to Oryza nivara. The present study was conducted on populations of Oryza rufipogon and Oryza nivara from Eastern India employing morphological and molecular characteristics. The cluster analysis of the data on morphological traits could clearly classify the two wild forms into two separate discrete groups without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Amplification of hyper variable regions of the genome could reveal 144 alleles suggesting high genetic diversity values (average He = 0.566). Moreover, with 42.37% of uncommon alleles between the two wild relatives, the molecular variance analysis (AMOVA) could detect only 21% of total variation (p < 0.001) among them and rest 59% was within them. The population structure analysis clearly classified these two wild populations into two distinct sub-populations (K = 2) without any overlaps i.e. lack of intermediate forms, suggesting the non-sympatric existence of the wild forms. Clear differentiation into two distinct groups indicates that O. rufipogon and O. nivara could be treated as two different species.

  8. Structure-function relationships between aldolase C/zebrin II expression and complex spike synchrony in the cerebellum.

    PubMed

    Tsutsumi, Shinichiro; Yamazaki, Maya; Miyazaki, Taisuke; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu; Kitamura, Kazuo

    2015-01-14

    Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals. Copyright © 2015 the authors 0270-6474/15/350843-10$15.00/0.

  9. Task Division within the Prefrontal Cortex: Distinct Neuron Populations Selectively Control Different Aspects of Aggressive Behavior via the Hypothalamus.

    PubMed

    Biro, Laszlo; Sipos, Eszter; Bruzsik, Biborka; Farkas, Imre; Zelena, Dora; Balazsfi, Diana; Toth, Mate; Haller, Jozsef

    2018-04-25

    An important question in behavioral neurobiology is how particular neuron populations and pathways mediate the overall roles of brain structures. Here we investigated this issue by studying the medial prefrontal cortex (mPFC), an established locus of inhibitory control of aggression. We established in male rats that dominantly distinct mPFC neuron populations project to and produce dense fiber networks with glutamate release sites in the mediobasal hypothalamus (MBH) and lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Optogenetic stimulation of mPFC terminals in MBH distinctively increased bite counts in resident/intruder conflicts, whereas the stimulation of similar terminals in LH specifically resulted in violent bites. No other behaviors were affected by stimulations. These findings show that the mPFC controls aggressiveness by behaviorally dedicated neuron populations and pathways, the roles of which may be opposite to those observed in experiments where the role of the whole mPFC (or of its major parts) has been investigated. Overall, our findings suggest that the mPFC organizes into working units that fulfill specific aspects of its wide-ranging roles. SIGNIFICANCE STATEMENT Aggression control is associated with many cognitive and emotional aspects processed by the prefrontal cortex (PFC). However, how the prefrontal cortex influences quantitative and qualitative aspects of aggressive behavior remains unclear. We demonstrated that dominantly distinct PFC neuron populations project to the mediobasal hypothalamus (MBH) and the lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Stimulation of mPFC fibers in MBH distinctively increased bite counts during fighting, whereas stimulation of similar terminals in LH specifically resulted in violent bites. Overall, our results suggest a direct prefrontal control over the hypothalamus, which is involved in the modulation of quantitative and qualitative aspects of aggressive behavior through distinct prefrontohypothalamic projections. Copyright © 2018 the authors 0270-6474/18/384065-11$15.00/0.

  10. Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): Natural replicate tests of post-Pleistocene evolution

    USGS Publications Warehouse

    Morris-Pocock, J. A.; Taylor, S.A.; Birt, T.P.; Damus, M.; Piatt, John F.; Warheit, K.I.; Friesen, Vicki L.

    2008-01-01

    Understanding the factors that influence population differentiation in temperate taxa can be difficult because the signatures of both historic and contemporary demographics are often reflected in population genetic patterns. Fortunately, analyses based on coalescent theory can help untangle the relative influence of these historic and contemporary factors. Common murres (Uria aalge) are vagile seabirds that breed in the boreal and low arctic waters of the Northern Hemisphere. Previous analyses revealed that Atlantic and Pacific populations are genetically distinct; however, less is known about population genetic structure within ocean basins. We employed the mitochondrial control region, four microsatellite loci and four intron loci to investigate population genetic structure throughout the range of common murres. As in previous studies, we found that Atlantic and Pacific populations diverged during the Pleistocene and do not currently exchange migrants. Therefore, Atlantic and Pacific murre populations can be used as natural replicates to test mechanisms of population differentiation. While we found little population genetic structure within the Pacific, we detected significant east-west structuring among Atlantic colonies. The degree that population genetic structure reflected contemporary population demographics also differed between ocean basins. Specifically, while the low levels of population differentiation in the Pacific are at least partially due to high levels of contemporary gene flow, the east-west structuring of populations within the Atlantic appears to be the result of historic fragmentation of populations rather than restricted contemporary gene flow. The contrasting results in the Atlantic and Pacific Oceans highlight the necessity of carefully considering multilocus nonequilibrium population genetic approaches when reconstructing the demographic history of temperate Northern Hemisphere taxa. ?? 2008 The Authors.

  11. A thermally driven differential mutation approach for the structural optimization of large atomic systems

    NASA Astrophysics Data System (ADS)

    Biswas, Katja

    2017-09-01

    A computational method is presented which is capable to obtain low lying energy structures of topological amorphous systems. The method merges a differential mutation genetic algorithm with simulated annealing. This is done by incorporating a thermal selection criterion, which makes it possible to reliably obtain low lying minima with just a small population size and is suitable for multimodal structural optimization. The method is tested on the structural optimization of amorphous graphene from unbiased atomic starting configurations. With just a population size of six systems, energetically very low structures are obtained. While each of the structures represents a distinctly different arrangement of the atoms, their properties, such as energy, distribution of rings, radial distribution function, coordination number, and distribution of bond angles, are very similar.

  12. Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure

    PubMed Central

    Basu, Analabha; Sarkar-Roy, Neeta; Majumder, Partha P.

    2016-01-01

    India, occupying the center stage of Paleolithic and Neolithic migrations, has been underrepresented in genome-wide studies of variation. Systematic analysis of genome-wide data, using multiple robust statistical methods, on (i) 367 unrelated individuals drawn from 18 mainland and 2 island (Andaman and Nicobar Islands) populations selected to represent geographic, linguistic, and ethnic diversities, and (ii) individuals from populations represented in the Human Genome Diversity Panel (HGDP), reveal four major ancestries in mainland India. This contrasts with an earlier inference of two ancestries based on limited population sampling. A distinct ancestry of the populations of Andaman archipelago was identified and found to be coancestral to Oceanic populations. Analysis of ancestral haplotype blocks revealed that extant mainland populations (i) admixed widely irrespective of ancestry, although admixtures between populations was not always symmetric, and (ii) this practice was rapidly replaced by endogamy about 70 generations ago, among upper castes and Indo-European speakers predominantly. This estimated time coincides with the historical period of formulation and adoption of sociocultural norms restricting intermarriage in large social strata. A similar replacement observed among tribal populations was temporally less uniform. PMID:26811443

  13. The world's most isolated and distinct whale population? Humpback whales of the Arabian Sea.

    PubMed

    Pomilla, Cristina; Amaral, Ana R; Collins, Tim; Minton, Gianna; Findlay, Ken; Leslie, Matthew S; Ponnampalam, Louisa; Baldwin, Robert; Rosenbaum, Howard

    2014-01-01

    A clear understanding of population structure is essential for assessing conservation status and implementing management strategies. A small, non-migratory population of humpback whales in the Arabian Sea is classified as "Endangered" on the IUCN Red List of Threatened Species, an assessment constrained by a lack of data, including limited understanding of its relationship to other populations. We analysed 11 microsatellite markers and mitochondrial DNA sequences extracted from 67 Arabian Sea humpback whale tissue samples and compared them to equivalent datasets from the Southern Hemisphere and North Pacific. Results show that the Arabian Sea population is highly distinct; estimates of gene flow and divergence times suggest a Southern Indian Ocean origin but indicate that it has been isolated for approximately 70,000 years, remarkable for a species that is typically highly migratory. Genetic diversity values are significantly lower than those obtained for Southern Hemisphere populations and signatures of ancient and recent genetic bottlenecks were identified. Our findings suggest this is the world's most isolated humpback whale population, which, when combined with low population abundance estimates and anthropogenic threats, raises concern for its survival. We recommend an amendment of the status of the population to "Critically Endangered" on the IUCN Red List.

  14. Two distinct mtDNA lineages of the blue crab reveal large-scale population structure in its native Atlantic distribution

    NASA Astrophysics Data System (ADS)

    Alaniz Rodrigues, Marcos; Dumont, Luiz Felipe Cestari; dos Santos, Cléverson Rannieri Meira; D'Incao, Fernando; Weiss, Steven; Froufe, Elsa

    2017-10-01

    For the first time, a molecular approach was used to evaluate the phylogenetic structure of the disjunct native American distribution of the blue crab Callinectes sapidus. Population structure was investigated by sequencing 648bp of the Cytochrome oxidase subunit 1 (COI), in a total of 138 sequences stemming from individual samples from both the northern and southern hemispheres of the Western Atlantic distribution of the species. A Bayesian approach was used to construct a phylogenetic tree for all samples, and a 95% confidence parsimony network was created to depict the relationship among haplotypes. Results revealed two highly distinct lineages, one containing all samples from the United States and some from Brazil (lineage 1) and the second restricted to Brazil (lineage 2). In addition, gene flow (at least for females) was detected among estuaries at local scales and there is evidence for shared haplotypes in the south. Furthermore, the findings of this investigation support the contemporary introduction of haplotypes that have apparently spread from the south to the north Atlantic.

  15. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes.

    PubMed

    Fernández, Leonardo D; Hernández, Cristián E; Schiaffino, M Romina; Izaguirre, Irina; Lara, Enrique

    2017-10-01

    The patterns and mechanisms underlying the genetic structure of microbial populations remain unresolved. Herein we investigated the role played by two non-mutually exclusive models (i.e. isolation by distance and isolation by environment) in shaping the genetic structure of lacustrine populations of a microalga (a freshwater Bathycoccaceae) in the Argentinean Patagonia. To our knowledge, this was the first study to investigate the genetic population structure in a South American microorganism. Population-level analyses based on ITS1-5.8S-ITS2 sequences revealed high levels of nucleotide and haplotype diversity within and among populations. Fixation index and a spatially explicit Bayesian analysis confirmed the occurrence of genetically distinct microalga populations in Patagonia. Isolation by distance and isolation by environment accounted for 38.5% and 17.7% of the genetic structure observed, respectively, whereas together these models accounted for 41% of the genetic differentiation. While our results highlighted isolation by distance and isolation by environment as important mechanisms in driving the genetic population structure of the microalga studied, none of these models (either alone or together) could explain the entire genetic differentiation observed. The unexplained variation in the genetic differentiation observed could be the result of founder events combined with rapid local adaptations, as proposed by the monopolisation hypothesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Gene flow at major transitional areas in sea bass (Dicentrarchus labrax) and the possible emergence of a hybrid swarm

    PubMed Central

    Quéré, Nolwenn; Desmarais, Erick; Tsigenopoulos, Costas S; Belkhir, Khalid; Bonhomme, François; Guinand, Bruno

    2012-01-01

    The population genetic structure of sea bass (Dicentrarchus labrax) along a transect from the Atlantic Ocean (AO) to the Eastern Mediterranean (EM) Sea differs from that of most other marine taxa in this area. Three populations (AO, Western Mediterranean [WM], EM) are recognized today, which were originally two allopatric populations. How two ancestral genetic units have evolved into three distinct units has not been addressed yet. Therefore, to investigate mechanisms that lead to the emergence of the central WM population, its current status, and its connectivity with the two parental populations, we applied 20 nuclear loci that were either gene associated or gene independent. Results confirmed the existence of three distinct gene pools, with higher differentiation at two transitional areas, the Almeria-Oran Front (AOF) and of the Siculo-Tunisian Strait (STS), than within any population. Significant linkage disequilibrium and heterozygote excess indicated that the STS is probably another tension zone, as already described for the AOF. Neutrality tests fail to reveal marker loci that could be driven by selection within or among metapopulations, except for locus DLA0068. Collectively, results support that the central WM population arose by trapping two tensions zones at distinct geographic locations of limited connectivity. Population assignment further revealed that WM individuals were more introgressed than individuals from the other two metapopulations. This suggests that this population might result from hybrid swarming, and was or is still seeded by genes received through the filter of each tension zone. PMID:23301173

  17. Evolutionary mechanisms shaping the genetic population structure of coastal fish: insight from populations of Coilia nasus in Northwestern Pacific.

    PubMed

    Gao, Tianxiang; Wan, Zhenzhen; Song, Na; Zhang, Xiumei; Han, Zhiqiang

    2014-12-01

    A number of evolutionary mechanisms have been suggested for generating significant genetic structuring among marine fish populations in Northwestern Pacific. We used mtDNA control region to assess the factors in shaping the genetic structure of Japanese grenadier anchovy, Coilia nasus, an anadromous and estuarine coastal species, in Northwestern Pacific. Sixty seven individuals from four locations in Northwestern Pacific were sequenced for mitochondrial control region, detecting 61 haplotypes. The length of amplified control region varied from 677 to 754 bp. This length variability was due to the presence of varying numbers of a 38-bp tandemly repeated sequence. Two distinct lineages were detected, which might have diverged during Pleistocene low sea levels. There were strong differences in the geographical distribution of the two lineages. Analyses of molecular variance and the population statistic ΦST revealed significant genetic structure between China and Ariake Bay populations. Based on the frequency distribution of tandem repeat units, significant genetic differentiation was also detected between China and Ariake Bay populations. Isolation by distance seems to be the main factor driving present genetic structuring of C. nasus populations, indicating coastal dispersal pattern in this coastal species. Such an evolutionary process agrees well with some of the biological features characterizing this species.

  18. Genetic diversity of Diaphorina citri and its endosymbionts across east and south-east Asia.

    PubMed

    Wang, Yanjing; Xu, Changbao; Tian, Mingyi; Deng, Xiaoling; Cen, Yijing; He, Yurong

    2017-10-01

    Diaphorina citri is the vector of 'Candidatus Liberibacter asiaticus', the most widespread pathogen associated huanglongbing, the most serious disease of citrus. To enhance our understanding of the distribution and origin of the psyllid, we investigated the genetic diversity and population structures of 24 populations in Asia and one from Florida based on the mtCOI gene. Simultaneously, genetic diversity and population structures of the primary endosymbiont (P-endosymbiont) 'Candidatus Carsonella ruddii' and secondary endosymbiont (S-endosymbiont) 'Candidatus Profftella armatura' of D. citri were determined with the housekeeping genes. AMOVA analysis indicated that populations of D. citri and its endosymbionts in east and south-east Asia were genetically distinct from populations in Pakistan and Florida. Furthermore, P-endosymbiont populations displayed a strong geographical structure across east and south-east Asia, while low genetic diversity indicated the absence of genetic structure among the populations of D. citri and its S-endosymbiont across these regions. The 'Ca. C. ruddii' is more diverse and structured than the D. citri and the 'Ca. P. armatura' across east and south-east Asia. Multiple introductions of the psyllid have occurred in China. Management application for controlling the pest is proposed based on the genetic information of D. citri and its endosymbionts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Comparison of genetic diversity and population structure between two Schistosoma japonicum isolates--the field and the laboratory.

    PubMed

    Bian, Chao-Rong; Gao, Yu-Meng; Lamberton, Poppy H L; Lu, Da-Bing

    2015-06-01

    Schistosomiasis japonicum is one of the most important human parasitic diseases, and a number of studies have recently elucidated the difference in biological characteristics of S. japonicum among different parasite isolates, for example, between the field and the laboratory isolates. Therefore, the understanding of underlying genetic mechanism is of both theoretical and practical importance. In this study, we used six microsatellite markers to assess genetic diversity, population structure, and the bottleneck effect (a sharp reduction in population size) of two parasite populations, one field and one laboratory. A total of 136 S. japonicum cercariae from the field and 86 from the laboratory, which were genetically unique within single snails, were analyzed. The results showed bigger numbers of alleles and higher allelic richness in the field parasite population than in the laboratory indicating lower genetic diversity in the laboratory parasites. A bottleneck effect was detected in the laboratory population. When the field and laboratory isolates were combined, there was a clear distinction between two parasite populations using the software Structure. These genetic differences may partially explain the previously observed contrasted biological traits.

  20. Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions

    PubMed Central

    Schuller, Dorit; Cardoso, Filipa; Sousa, Susana; Gomes, Paula; Gomes, Ana C.; Santos, Manuel A. S.; Casal, Margarida

    2012-01-01

    We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8–43 strains per fermentation) was associated with high percentage (60–100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0–40%) corresponded to a rather low strain diversity (1–10 strains per fermentation). For the majority of the populations, observed heterozygosity (Ho) was about two to five times lower than the expected heterozygosity (He). The inferred ancestry showed a very high degree of admixture and divergence was observed between both grape variety and geographical region. Analysis of molecular variance showed that 81–93% of the total genetic variation existed within populations, while significant differentiation within the groups could be detected. Results from AMOVA analysis and clustering of allelic frequencies agree in the distinction of genetically more dispersed populations from the larger wine region compared to the less extended region. Our data show that grape variety is a driver of populational structures, because vineyards with distinct varieties harbor genetically more differentiated S. cerevisiae populations. Conversely, S. cerevisiae strains from vineyards in close proximity (5–10 km) that contain the same grape variety tend to be less divergent. Populational similarities did not correlate with the distance between vineyards of the two wine regions. Globally, our results show that populations of S. cerevisiae in vineyards may occur locally due to multi-factorial influences, one of them being the grape variety. PMID:22393409

  1. Population structure of Salmonella enterica subspecies enterica (subspecies 1)

    USDA-ARS?s Scientific Manuscript database

    We sequenced and assembled 354 new Salmonella enterica ssp. enterica genomes. These genomes were chosen to maximize genetic diversity, representing at least 100 different serovars and distinct PFGE patterns within these serovars. 119 of the strains were of known antibiotic resistance,...

  2. Philopatry and migration of Pacific white sharks

    PubMed Central

    Jorgensen, Salvador J.; Reeb, Carol A.; Chapple, Taylor K.; Anderson, Scot; Perle, Christopher; Van Sommeran, Sean R.; Fritz-Cope, Callaghan; Brown, Adam C.; Klimley, A. Peter; Block, Barbara A.

    2010-01-01

    Advances in electronic tagging and genetic research are making it possible to discern population structure for pelagic marine predators once thought to be panmictic. However, reconciling migration patterns and gene flow to define the resolution of discrete population management units remains a major challenge, and a vital conservation priority for threatened species such as oceanic sharks. Many such species have been flagged for international protection, yet effective population assessments and management actions are hindered by lack of knowledge about the geographical extent and size of distinct populations. Combining satellite tagging, passive acoustic monitoring and genetics, we reveal how eastern Pacific white sharks (Carcharodon carcharias) adhere to a highly predictable migratory cycle. Individuals persistently return to the same network of coastal hotspots following distant oceanic migrations and comprise a population genetically distinct from previously identified phylogenetic clades. We hypothesize that this strong homing behaviour has maintained the separation of a northeastern Pacific population following a historical introduction from Australia/New Zealand migrants during the Late Pleistocene. Concordance between contemporary movement and genetic divergence based on mitochondrial DNA demonstrates a demographically independent management unit not previously recognized. This population's fidelity to discrete and predictable locations offers clear population assessment, monitoring and management options. PMID:19889703

  3. Phylogeographic structure and demographic patterns of brown trout in North-West Africa.

    PubMed

    Snoj, Aleš; Marić, Saša; Bajec, Simona Sušnik; Berrebi, Patrick; Janjani, Said; Schöffmann, Johannes

    2011-10-01

    The objectives of the study were to determine the phylogeographic structure of brown trout (Salmo trutta) in Morocco, elucidate their colonization patterns in North-West Africa and identify the mtDNA lineages involved in this process. We also aimed to resolve whether certain brown trout entities are also genetically distinct. Sixty-two brown trout from eleven locations across the Mediterranean and the Atlantic drainages in Morocco were surveyed using sequence analysis of the mtDNA control region and nuclear gene LDH, and by genotyping twelve microsatellite loci. Our study confirms that in Morocco both the Atlantic and Mediterranean basins are populated by Atlantic mtDNA lineage brown trout only, demonstrating that the Atlantic lineage (especially its southern clade) invaded initially not only the western part of the Mediterranean basin in Morocco but also expanded deep into the central area. Atlantic haplotypes identified here sort into three distinct groups suggesting Morocco was colonized in at least three successive waves (1.2, 0.4 and 0.2-0.1 MY ago). This notion becomes more pronounced with the finding of a distinct haplotype in the Dades river system, whose origin appears to coalesce with the nascent stage of the basal mtDNA evolutionary lineages of brown trout. According to our results, Salmo akairos, Salmo pellegrini and "green trout" from Lake Isli do not exhibited any character states that distinctively separate them from the other brown trout populations studied. Therefore, their status as distinct species was not confirmed. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem.

    PubMed

    Puechmaille, Sebastien J

    2016-05-01

    Inferences of population structure and more precisely the identification of genetically homogeneous groups of individuals are essential to the fields of ecology, evolutionary biology and conservation biology. Such population structure inferences are routinely investigated via the program structure implementing a Bayesian algorithm to identify groups of individuals at Hardy-Weinberg and linkage equilibrium. While the method is performing relatively well under various population models with even sampling between subpopulations, the robustness of the method to uneven sample size between subpopulations and/or hierarchical levels of population structure has not yet been tested despite being commonly encountered in empirical data sets. In this study, I used simulated and empirical microsatellite data sets to investigate the impact of uneven sample size between subpopulations and/or hierarchical levels of population structure on the detected population structure. The results demonstrated that uneven sampling often leads to wrong inferences on hierarchical structure and downward-biased estimates of the true number of subpopulations. Distinct subpopulations with reduced sampling tended to be merged together, while at the same time, individuals from extensively sampled subpopulations were generally split, despite belonging to the same panmictic population. Four new supervised methods to detect the number of clusters were developed and tested as part of this study and were found to outperform the existing methods using both evenly and unevenly sampled data sets. Additionally, a subsampling strategy aiming to reduce sampling unevenness between subpopulations is presented and tested. These results altogether demonstrate that when sampling evenness is accounted for, the detection of the correct population structure is greatly improved. © 2016 John Wiley & Sons Ltd.

  5. Enteroaggregative Escherichia coli have evolved independently as distinct complexes within the E. coli population with varying ability to cause disease.

    PubMed

    Chattaway, Marie Anne; Jenkins, Claire; Rajendram, Dunstan; Cravioto, Alejandro; Talukder, Kaisar Ali; Dallman, Tim; Underwood, Anthony; Platt, Steve; Okeke, Iruka N; Wain, John

    2014-01-01

    Enteroaggregative E. coli (EAEC) is an established diarrhoeagenic pathotype. The association with virulence gene content and ability to cause disease has been studied but little is known about the population structure of EAEC and how this pathotype evolved. Analysis by Multi Locus Sequence Typing of 564 EAEC isolates from cases and controls in Bangladesh, Nigeria and the UK spanning the past 29 years, revealed multiple successful lineages of EAEC. The population structure of EAEC indicates some clusters are statistically associated with disease or carriage, further highlighting the heterogeneous nature of this group of organisms. Different clusters have evolved independently as a result of both mutational and recombination events; the EAEC phenotype is distributed throughout the population of E. coli.

  6. A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows

    PubMed Central

    Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L

    2016-01-01

    Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323

  7. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure

    PubMed Central

    De Chiara, Matteo; Hood, Derek; Muzzi, Alessandro; Pickard, Derek J.; Perkins, Tim; Pizza, Mariagrazia; Dougan, Gordon; Rappuoli, Rino; Moxon, E. Richard; Soriani, Marco; Donati, Claudio

    2014-01-01

    One of the main hurdles for the development of an effective and broadly protective vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the species, which renders extremely difficult the identification of cross-protective candidate antigens. To assess whether a population structure of NTHi could be defined, we performed genome sequencing of a collection of diverse clinical isolates representative of both carriage and disease and of the diversity of the natural population. Analysis of the distribution of polymorphic sites in the core genome and of the composition of the accessory genome defined distinct evolutionary clades and supported a predominantly clonal evolution of NTHi, with the majority of genetic information transmitted vertically within lineages. A correlation between the population structure and the presence of selected surface-associated proteins and lipooligosaccharide structure, known to contribute to virulence, was found. This high-resolution, genome-based population structure of NTHi provides the foundation to obtain a better understanding, of NTHi adaptation to the host as well as its commensal and virulence behavior, that could facilitate intervention strategies against disease caused by this important human pathogen. PMID:24706866

  8. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure.

    PubMed

    De Chiara, Matteo; Hood, Derek; Muzzi, Alessandro; Pickard, Derek J; Perkins, Tim; Pizza, Mariagrazia; Dougan, Gordon; Rappuoli, Rino; Moxon, E Richard; Soriani, Marco; Donati, Claudio

    2014-04-08

    One of the main hurdles for the development of an effective and broadly protective vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the species, which renders extremely difficult the identification of cross-protective candidate antigens. To assess whether a population structure of NTHi could be defined, we performed genome sequencing of a collection of diverse clinical isolates representative of both carriage and disease and of the diversity of the natural population. Analysis of the distribution of polymorphic sites in the core genome and of the composition of the accessory genome defined distinct evolutionary clades and supported a predominantly clonal evolution of NTHi, with the majority of genetic information transmitted vertically within lineages. A correlation between the population structure and the presence of selected surface-associated proteins and lipooligosaccharide structure, known to contribute to virulence, was found. This high-resolution, genome-based population structure of NTHi provides the foundation to obtain a better understanding, of NTHi adaptation to the host as well as its commensal and virulence behavior, that could facilitate intervention strategies against disease caused by this important human pathogen.

  9. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan.

    PubMed

    Byappanahalli, Muruleedhara N; Whitman, Richard L; Shively, Dawn A; Ferguson, John; Ishii, Satoshi; Sadowsky, Michael J

    2007-08-01

    We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 10(6) colony-forming units/g dry weight) of the fecal indicator bacteria, Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected from Cladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.

  10. Theodosius Dobzhansky and the genetic race concept.

    PubMed

    Gannett, Lisa

    2013-09-01

    The use of 'race' as a proxy for population structure in the genetic mapping of complex traits has provoked controversy about its legitimacy as a category for biomedical research, given its social and political connotations. The controversy has reignited debates among scientists and philosophers of science about whether there is a legitimate biological concept of race. This paper examines the genetic race concept as it developed historically in the work of Theodosius Dobzhansky from the 1930s to 1950s. Dobzhansky's definitions of race changed over this time from races as 'arrays of forms' or 'clusters' in 1933-1939, to races as genetically distinct geographical populations in 1940-1946, to races as genetically distinct 'Mendelian populations' in 1947-1955. Dobzhansky responded to nominalist challenges by appealing to the biological reality of race as a process. This response came into tension with the object ontology of race that was implied by Dobzhansky's increasingly holistic treatment of Mendelian populations, a tension, the paper argues, he failed to appreciate or resolve. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae).

    PubMed

    Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.

  12. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae)

    PubMed Central

    Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608

  13. Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus vellerosus) in Argentina revealed by a set of novel microsatellite loci.

    PubMed

    Nardelli, Maximiliano; Ibáñez, Ezequiel Alejandro; Dobler, Dara; Justy, Fabienne; Delsuc, Frédéric; Abba, Agustín Manuel; Cassini, Marcelo Hernán; Túnez, Juan Ignacio

    2016-08-01

    The screaming hairy armadillo (Chaetophractus vellerosus) is a mammal species containing disjunct and isolated populations. In order to assess the effect of habitat fragmentation and geographic isolation, we developed seven new microsatellite loci isolated from low-coverage genome shotgun sequencing data for this species. Among these loci, six microsatellites were found to be polymorphic with 8-26 alleles per locus detected across 69 samples analyzed from a relictual population of the species located in the northeast of the Buenos Aires Province (Argentina). Mean allelic richness and polymorphic information content were 15 and 0.75, with observed and expected heterozygosities ranging from 0.40 to 0.67 and 0.58 to 0.90, respectively. All loci showed departures from Hardy-Weinberg equilibrium. The analysis of population structure in this relictual population revealed three groups of individuals that are genetically differentiated. These newly developed microsatellites will constitute a very useful tool for the estimation of genetic diversity and structure, population dynamics, social structure, parentage and mating system in this little-studied armadillo species. Such genetic data will be particularly helpful for the development of conservation strategies for this isolated population and also for the endangered Bolivian populations previously recognized as a distinct species (Chaetophractus nationi).

  14. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico

    PubMed Central

    Ceballos-Vázquez, Bertha P.; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J.; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures. PMID:29472993

  15. Human mining activity across the ages determines the genetic structure of modern brown trout (Salmo trutta L.) populations

    PubMed Central

    Paris, Josephine R; King, R Andrew; Stevens, Jamie R

    2015-01-01

    Humans have exploited the earth's metal resources for thousands of years leaving behind a legacy of toxic metal contamination and poor water quality. The southwest of England provides a well-defined example, with a rich history of metal mining dating to the Bronze Age. Mine water washout continues to negatively impact water quality across the region where brown trout (Salmo trutta L.) populations exist in both metal-impacted and relatively clean rivers. We used microsatellites to assess the genetic impact of mining practices on trout populations in this region. Our analyses demonstrated that metal-impacted trout populations have low genetic diversity and have experienced severe population declines. Metal-river trout populations are genetically distinct from clean-river populations, and also from one another, despite being geographically proximate. Using approximate Bayesian computation (ABC), we dated the origins of these genetic patterns to periods of intensive mining activity. The historical split of contemporary metal-impacted populations from clean-river fish dated to the Medieval period. Moreover, we observed two distinct genetic populations of trout within a single catchment and dated their divergence to the Industrial Revolution. Our investigation thus provides an evaluation of contemporary population genetics in showing how human-altered landscapes can change the genetic makeup of a species. PMID:26136823

  16. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra

    PubMed Central

    Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.

    2017-01-01

    Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245

  17. A genetically diverse but distinct North American population of Sarcocystis neurona includes an overrepresented clone described by 12 microsatellite alleles.

    PubMed

    Asmundsson, Ingrid M; Dubey, J P; Rosenthal, Benjamin M

    2006-09-01

    The population genetics and systematics of most coccidians remain poorly defined despite their impact on human and veterinary health. Non-recombinant parasite clones characterized by distinct transmission and pathogenesis traits persist in the coccidian Toxoplasma gondii despite opportunities for sexual recombination. In order to determine whether this may be generally true for tissue-cyst forming coccidia, and to address evolutionary and taxonomic problems within the genus Sarcocystis, we characterized polymorphic microsatellite markers in Sarcocystis neurona, the major causative agent of equine protozoal myeloencephalitis (EPM). Bayesian statistical modeling, phylogenetic reconstruction based on genotypic chord distances, and analyses of linkage disequilibrium were employed to examine the population structure within S. neurona and closely related Sarcocystis falcatula isolates from North and South America. North American S. neurona were clearly differentiated from those of South America and also from isolates of S. falcatula. Although S. neurona is characterized by substantial allelic and genotypic diversity typical of interbreeding populations, one genotype occurs with significantly excessive frequency; thus, some degree of asexual propagation of S. neurona clones may naturally occur. Finally, S. neurona isolated from disparate North American localities and diverse hosts (opossums, a Southern sea otter, and horses) comprise a single genetic population. Isolates associated with clinical neurological disease bear no obvious distinction as measured by these presumably neutral genetic markers.

  18. Cocaine-Induced Structural Plasticity in Input Regions to Distinct Cell Types in Nucleus Accumbens.

    PubMed

    Barrientos, Cindy; Knowland, Daniel; Wu, Mingche M J; Lilascharoen, Varoth; Huang, Kee Wui; Malenka, Robert C; Lim, Byung Kook

    2018-05-09

    The nucleus accumbens (NAc) is a brain region implicated in pathological motivated behaviors such as drug addiction and is composed predominantly of two discrete populations of neurons, dopamine receptor-1- and dopamine receptor-2-expressing medium spiny neurons (D1-MSNs and D2-MSNs, respectively). It is unclear whether these populations receive inputs from different brain areas and whether input regions to these cell types undergo distinct structural adaptations in response to the administration of addictive drugs such as cocaine. Using a modified rabies virus-mediated tracing method, we created a comprehensive brain-wide monosynaptic input map to NAc D1- and D2-MSNs. Next, we analyzed nearly 2000 dendrites and 125,000 spines of neurons across four input regions (the prelimbic cortex, medial orbitofrontal cortex, basolateral amygdala, and ventral hippocampus) at four separate time points during cocaine administration and withdrawal to examine changes in spine density in response to repeated intraperitoneal cocaine injection in mice. D1- and D2-MSNs display overall similar input profiles, with the exception that D1-MSNs receive significantly more input from the medial orbitofrontal cortex. We found that neurons in distinct brain areas projecting to D1- and D2-MSNs display different adaptations in dendritic spine density at different stages of cocaine administration and withdrawal. While NAc D1- and D2-MSNs receive input from similar brain structures, cocaine-induced spine density changes in input regions are quite distinct and dynamic. While previous studies have focused on input-specific postsynaptic changes within NAc MSNs in response to cocaine, these findings emphasize the dramatic changes that occur in the afferent input regions as well. Published by Elsevier Inc.

  19. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development.

    PubMed

    Joven, Alberto; Morona, Ruth; Moreno, Nerea; González, Agustín

    2013-07-01

    The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.

  20. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species.

    PubMed

    Oono, Ryoko; Lutzoni, François; Arnold, A Elizabeth; Kaye, Laurel; U'Ren, Jana M; May, Georgiana; Carbone, Ignazio

    2014-08-01

    • Fungal endophytes comprise one of the most ubiquitous groups of plant symbionts, inhabiting healthy leaves and stems of all major lineages of plants. Together, they comprise immense species richness, but little is known about the fundamental processes that generate their diversity. Exploration of their population structure is needed, especially with regard to geographic distributions and host affiliations.• We take a multilocus approach to examine genetic variation within and among populations of Lophodermium australe, an endophytic fungus commonly associated with healthy foliage of pines in the southeastern United States. Sampling focused on two pine species ranging from montane to coastal regions of North Carolina and Virginia.• Our sampling revealed two genetically distinct groups within Lophodermium australe. Our analysis detected less than one migrant per generation between them, indicating that they are distinct species. The species comprising the majority of isolates (major species) demonstrated a panmictic structure, whereas the species comprising the minority of isolates (cryptic species) demonstrated isolation by distance. Distantly related pine species hosted the same Lophodermium species, and host species did not influence genetic structure.• We present the first evidence for isolation by distance in a foliar fungal endophyte that is horizontally transmitted. Cryptic species may be common among microbial symbionts and are important to delimit when exploring their genetic structure and microevolutionary processes. The hyperdiversity of endophytic fungi may be explained in part by cryptic species without apparent ecological and morphological differences as well as genetic diversification within rare fungal species across large spatial scales. © 2014 Botanical Society of America, Inc.

  1. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a north–south gradient. This genetic subdivision within the Bi-State is likely the result of habitat loss and fragmentation that has been exacerbated by recent human activities and the encroachment of singleleaf pinyon (Pinus monophylla) and juniper (Juniperus spp.) trees. While genetic concerns may be only one of many priorities for the conservation and management of the Bi-State greater sage-grouse, we believe that they warrant attention along with other issues (e.g., quality of sagebrush habitat, preventing future loss of habitat). Management actions that promote genetic connectivity, especially with respect to WM and PNa, may be critical to the long-term viability of the Bi-State DPS.

  2. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    USGS Publications Warehouse

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  3. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses.

    PubMed

    Escorza-Treviño, S; Dizon, A E

    2000-08-01

    Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.

  4. The World's Most Isolated and Distinct Whale Population? Humpback Whales of the Arabian Sea

    PubMed Central

    Collins, Tim; Minton, Gianna; Findlay, Ken; Leslie, Matthew S.; Ponnampalam, Louisa; Baldwin, Robert; Rosenbaum, Howard

    2014-01-01

    A clear understanding of population structure is essential for assessing conservation status and implementing management strategies. A small, non-migratory population of humpback whales in the Arabian Sea is classified as “Endangered” on the IUCN Red List of Threatened Species, an assessment constrained by a lack of data, including limited understanding of its relationship to other populations. We analysed 11 microsatellite markers and mitochondrial DNA sequences extracted from 67 Arabian Sea humpback whale tissue samples and compared them to equivalent datasets from the Southern Hemisphere and North Pacific. Results show that the Arabian Sea population is highly distinct; estimates of gene flow and divergence times suggest a Southern Indian Ocean origin but indicate that it has been isolated for approximately 70,000 years, remarkable for a species that is typically highly migratory. Genetic diversity values are significantly lower than those obtained for Southern Hemisphere populations and signatures of ancient and recent genetic bottlenecks were identified. Our findings suggest this is the world's most isolated humpback whale population, which, when combined with low population abundance estimates and anthropogenic threats, raises concern for its survival. We recommend an amendment of the status of the population to “Critically Endangered” on the IUCN Red List. PMID:25470144

  5. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    PubMed

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

  6. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  7. Sexual recombination is a signature of a persisting malaria epidemic in Peru

    PubMed Central

    2011-01-01

    Background The aim of this study was to consider the impact that multi-clone, complex infections have on a parasite population structure in a low transmission setting. In general, complexity of infection (minimum number of clones within an infection) and the overall population level diversity is expected to be minimal in low transmission settings. Additionally, the parasite population structure is predicted to be clonal, rather than sexual due to infrequent parasite inoculation and lack of recombination between genetically distinct clones. However, in this low transmission of the Peruvian Amazon, complex infections are becoming more frequent, in spite of decreasing infection prevalence. In this study, it was hypothesized that sexual recombination between distinct clonal lineages of Plasmodium falciparum parasites were altering the subpopulation structure and effectively maintaining the population-level diversity. Methods Fourteen microsatellite markers were chosen to describe the genetic diversity in 313 naturally occurring P. falciparum infections from Peruvian Amazon. The population and subpopulation structure was characterized by measuring: clusteredness, expected heterozygosity (He), allelic richness, private allelic richness, and linkage disequilibrium. Next, microsatellite haplotypes and alleles were correlated with P. falciparum merozoite surface protein 1 Block 2 (Pfmsp1-B2) to examine the presence of recombinant microsatellite haplotypes. Results The parasite population structure consists of six genetically diverse subpopulations of clones, called "clusters". Clusters 1, 3, 4, and 6 have unique haplotypes that exceed 70% of the total number of clones within each cluster, while Clusters 2 and 5 have a lower proportion of unique haplotypes, but still exceed 46%. By measuring the He, allelic richness, and private allelic richness within each of the six subpopulations, relatively low levels of genetic diversity within each subpopulation (except Cluster 4) are observed. This indicated that the number of alleles, and not the combination of alleles, are limited. Next, the standard index of association (IAS) was measured, which revealed a significant decay in linkage disequilibrium (LD) associated with Cluster 6, which is indicative of independent assortment of alleles. This decay in LD is a signature of this subpopulation approaching linkage equilibrium by undergoing sexual recombination. To trace possible recombination events, the two most frequent microsatellite haplotypes observed over time (defined by either a K1 or Mad20) were selected as the progenitors and then potential recombinants were identified in within the natural population. Conclusions Contrary to conventional low transmission models, this study provides evidence of a parasite population structure that is superficially defined by a clonal backbone. Sexual recombination does occur and even arguably is responsible for maintaining the substructure of this population. PMID:22039962

  8. Spatial variation in anthropogenic mortality induces a source-sink system in a hunted mesopredator.

    PubMed

    Minnie, Liaan; Zalewski, Andrzej; Zalewska, Hanna; Kerley, Graham I H

    2018-04-01

    Lethal carnivore management is a prevailing strategy to reduce livestock predation. Intensity of lethal management varies according to land-use, where carnivores are more intensively hunted on farms relative to reserves. Variations in hunting intensity may result in the formation of a source-sink system where carnivores disperse from high-density to low-density areas. Few studies quantify dispersal between supposed sources and sinks-a fundamental requirement for source-sink systems. We used the black-backed jackal (Canis mesomelas) as a model to determine if heterogeneous anthropogenic mortality induces a source-sink system. We analysed 12 microsatellite loci from 554 individuals from lightly hunted and previously unhunted reserves, as well as heavily hunted livestock- and game farms. Bayesian genotype assignment showed that jackal populations displayed a hierarchical population structure. We identified two genetically distinct populations at the regional level and nine distinct subpopulations at the local level, with each cluster corresponding to distinct land-use types separated by various dispersal barriers. Migration, estimated using Bayesian multilocus genotyping, between reserves and farms was asymmetric and heterogeneous anthropogenic mortality induced source-sink dynamics via compensatory immigration. Additionally some heavily hunted populations also acted as source populations, exporting individuals to other heavily hunted populations. This indicates that heterogeneous anthropogenic mortality results in the formation of a complex series of interconnected sources and sinks. Thus, lethal management of mesopredators may not be an effective long-term strategy in reducing livestock predation, as dispersal and, more importantly, compensatory immigration may continue to affect population reduction efforts as long as dispersal from other areas persists.

  9. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries

    PubMed Central

    Marie, Amandine D.; Lejeusne, Christophe; Karapatsiou, Evgenia; Cuesta, José A.; Drake, Pilar; Macpherson, Enrique; Bernatchez, Louis; Rico, Ciro

    2016-01-01

    In a resource management perspective, the understanding of the relative influence of the physical factors on species connectivity remains a major challenge and is also of great ecological and conservation biology interest. Despite the overfishing threat on the wedge clam Donax trunculus in Europe, relatively little information is known about its population genetic structure and connectivity and their consequences on conservation policies. We employed 16 microsatellite loci to characterise the genetic diversity and population structure of D. trunculus. A total of 514 samples from seven different localities along the Atlantic-Mediterranean transition, from the Atlantic (Gulf of Cádiz) to the north-western Mediterranean were genotyped. The analysis of the population genetic structure displayed a clear distinction along the Atlantic-Mediterranean transition with different clusters in the Atlantic Ocean, the Alboran Sea and the northwestern Mediterranean. Consequently, we recommend that these three areas should be considered as different management units. We showed that all populations seem to be at high long-term risk of extinction with the exception of the protected Doñana National Park population which still seems to have evolutionary potential. Therefore, our results emphasized the necessity of protection of this economic resource and the validity of molecular tools to evaluate the population dynamics. PMID:27991535

  10. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries.

    PubMed

    Marie, Amandine D; Lejeusne, Christophe; Karapatsiou, Evgenia; Cuesta, José A; Drake, Pilar; Macpherson, Enrique; Bernatchez, Louis; Rico, Ciro

    2016-12-19

    In a resource management perspective, the understanding of the relative influence of the physical factors on species connectivity remains a major challenge and is also of great ecological and conservation biology interest. Despite the overfishing threat on the wedge clam Donax trunculus in Europe, relatively little information is known about its population genetic structure and connectivity and their consequences on conservation policies. We employed 16 microsatellite loci to characterise the genetic diversity and population structure of D. trunculus. A total of 514 samples from seven different localities along the Atlantic-Mediterranean transition, from the Atlantic (Gulf of Cádiz) to the north-western Mediterranean were genotyped. The analysis of the population genetic structure displayed a clear distinction along the Atlantic-Mediterranean transition with different clusters in the Atlantic Ocean, the Alboran Sea and the northwestern Mediterranean. Consequently, we recommend that these three areas should be considered as different management units. We showed that all populations seem to be at high long-term risk of extinction with the exception of the protected Doñana National Park population which still seems to have evolutionary potential. Therefore, our results emphasized the necessity of protection of this economic resource and the validity of molecular tools to evaluate the population dynamics.

  11. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries

    NASA Astrophysics Data System (ADS)

    Marie, Amandine D.; Lejeusne, Christophe; Karapatsiou, Evgenia; Cuesta, José A.; Drake, Pilar; MacPherson, Enrique; Bernatchez, Louis; Rico, Ciro

    2016-12-01

    In a resource management perspective, the understanding of the relative influence of the physical factors on species connectivity remains a major challenge and is also of great ecological and conservation biology interest. Despite the overfishing threat on the wedge clam Donax trunculus in Europe, relatively little information is known about its population genetic structure and connectivity and their consequences on conservation policies. We employed 16 microsatellite loci to characterise the genetic diversity and population structure of D. trunculus. A total of 514 samples from seven different localities along the Atlantic-Mediterranean transition, from the Atlantic (Gulf of Cádiz) to the north-western Mediterranean were genotyped. The analysis of the population genetic structure displayed a clear distinction along the Atlantic-Mediterranean transition with different clusters in the Atlantic Ocean, the Alboran Sea and the northwestern Mediterranean. Consequently, we recommend that these three areas should be considered as different management units. We showed that all populations seem to be at high long-term risk of extinction with the exception of the protected Doñana National Park population which still seems to have evolutionary potential. Therefore, our results emphasized the necessity of protection of this economic resource and the validity of molecular tools to evaluate the population dynamics.

  12. Analysis of Genetic Diversity and Structure Pattern of Indigofera Pseudotinctoria in Karst Habitats of the Wushan Mountains Using AFLP Markers.

    PubMed

    Fan, Yan; Zhang, Chenglin; Wu, Wendan; He, Wei; Zhang, Li; Ma, Xiao

    2017-10-16

    Indigofera pseudotinctoria Mats is an agronomically and economically important perennial legume shrub with a high forage yield, protein content and strong adaptability, which is subject to natural habitat fragmentation and serious human disturbance. Until now, our knowledge of the genetic relationships and intraspecific genetic diversity for its wild collections is still poor, especially at small spatial scales. Here amplified fragment length polymorphism (AFLP) technology was employed for analysis of genetic diversity, differentiation, and structure of 364 genotypes of I. pseudotinctoria from 15 natural locations in Wushan Montain, a highly structured mountain with typical karst landforms in Southwest China. We also tested whether eco-climate factors has affected genetic structure by correlating genetic diversity with habitat features. A total of 515 distinctly scoreable bands were generated, and 324 of them were polymorphic. The polymorphic information content (PIC) ranged from 0.694 to 0.890 with an average of 0.789 per primer pair. On species level, Nei's gene diversity ( H j ), the Bayesian genetic diversity index ( H B ) and the Shannon information index ( I ) were 0.2465, 0.2363 and 0.3772, respectively. The high differentiation among all sampling sites was detected ( F ST = 0.2217, G ST = 0.1746, G' ST = 0.2060, θ B = 0.1844), and instead, gene flow among accessions ( N m = 1.1819) was restricted. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. This structure pattern may indicate joint effects by the neutral evolution and natural selection. Restricted N m was observed across all accessions, and genetic barriers were detected between adjacent accessions due to specifically geographical landform.

  13. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    PubMed

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-04-05

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  14. Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups

    PubMed Central

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-01-01

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia. PMID:21483678

  15. Population Genetic Structure of the Deep-Sea Precious Coral Corallium secundum from the Hawaiian Archipelago Based on Microsatellites.

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.

    2006-12-01

    Deep-sea precious corals (Gerardia sp., Corallium lauuense, and Corallium secundum) on the Islands and seamounts of the Hawaiian Archipelago have supported an extremely profitable fishery, yet little is known about the life history and dispersal of the exploited species. Recent studies indicate significant genetic structure between shallow-water coral populations, including several species capable of long distance dispersal. If significant genetic structure exists in seamount and Island populations of precious corals, this could suggest that the elimination (through overharvesting) of a bed of precious corals would result in loss of overall genetic diversity in the species. Here I discuss results based on microsatellite studies of the precious coral, Corallium secundum, from 11 sites in the Hawaiian Archipelago collected between 1998 and 2004, and compare the population genetic structure and dispersal capabilities of Corallium secundum to the results for Corallium lauuense. Microsatellite studies of Corallium lauuense indicated significant heterozygote deficiency in most populations, suggesting recruitment in most populations is from local sources with only occasional long-distance dispersal events. Also, two populations appear to be significantly isolated from other populations of Corallium lauuense and may be separate stocks. In contrast, Corallium secundum populations have little heterozygote deficiency and separate into 3 distinct regions. In addition to having fisheries management implications for these corals, the results of these studies also have implications for the management and protection of seamount fauna.

  16. Population structure of Streptococcus oralis

    PubMed Central

    Do, Thuy; Jolley, Keith A.; Maiden, Martin C. J.; Gilbert, Steven C.; Clark, Douglas; Wade, William G.; Beighton, David

    2009-01-01

    Streptococcus oralis is a member of the normal human oral microbiota, capable of opportunistic pathogenicity; like related oral streptococci, it exhibits appreciable phenotypic and genetic variation. A multilocus sequence typing (MLST) scheme for S. oralis was developed and the resultant data analysed to examine the population structure of the species. Analysis of 113 isolates, confirmed as belonging to the S. oralis/mitis group by 16S rRNA gene sequencing, characterized the population as highly diverse and undergoing inter- and intra-species recombination with a probable clonal complex structure. ClonalFrame analysis of these S. oralis isolates along with examples of Streptococcus pneumoniae, Streptococcus mitis and Streptococcus pseudopneumoniae grouped the named species into distinct, coherent populations and did not support the clustering of S. pseudopneumoniae with S. mitis as reported previously using distance-based methods. Analysis of the individual loci suggested that this discrepancy was due to the possible hybrid nature of S. pseudopneumoniae. The data are available on the public MLST website (http://pubmlst.org/soralis/). PMID:19423627

  17. Population structure and plumage polymorphism: the intraspecific evolutionary relationships of a polymorphic raptor, Buteo jamaicensis harlani

    USGS Publications Warehouse

    Hull, Joshua M.; Mindell, David P.; McCormick, C.R.; Kay, Emily H.; Hoekstra, Hopi E.; Ernest, Holly B.

    2010-01-01

    These data suggest recent interbreeding and gene flow between B. j. harlani and the other B. jamaicensis subspecies examined, providing no support for the historical designation of B. j. harlani as a distinct species.

  18. Cooperative Charter Schools: New Enterprises in Instructional Delivery.

    ERIC Educational Resources Information Center

    Hanson, Katherine L.; Hentschke, Guilbert C.

    A wide variety of charter schools has emerged since the first charter was granted in 1991. Six distinct models include schools managed by grassroots organizations, schools focused on special student populations, schools centered around distance learning or home learning, business-managed schools, schools structured as teacher cooperatives, and…

  19. Trinidad and Tobago National Standardization of the Adjustment Scales for Children and Adolescents

    ERIC Educational Resources Information Center

    McDermott, Paul A.; Watkins, Marley W.; Rhoad, Anna M.; Chao, Jessica L.; Worrell, Frank C.; Hall, Tracey E.

    2015-01-01

    Given relevant cultural distinctions across nations, it is important to determine the dimensional structure and normative characteristics of psychological assessment devices in each focal population. This article examines the national standardization and validation of the Adjustment Scales for Children and Adolescents (ASCA) with a nationally…

  20. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model.

    PubMed

    Johnson, Eric G; Swenarton, Mary Katherine

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader's life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish ( Pterois volitans/miles ) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water.

  1. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model

    PubMed Central

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader’s life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish (Pterois volitans/miles) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water. PMID:27920953

  2. Preliminary Genetic Analysis Supports Cave Populations as Targets for Conservation in the Endemic Endangered Puerto Rican Boa (Boidae: Epicrates inornatus)

    PubMed Central

    Revell, Liam J.

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas. PMID:23691110

  3. Preliminary genetic analysis supports cave populations as targets for conservation in the endemic endangered Puerto Rican boa (Boidae: Epicrates inornatus).

    PubMed

    Puente-Rolón, Alberto R; Reynolds, R Graham; Revell, Liam J

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas.

  4. No population genetic structure in a widespread aquatic songbird from the Neotropics

    USGS Publications Warehouse

    Cadena, Carlos Daniel; Gutierrez-Pinto, Natalia; Davila, Nicolas; Chesser, R. Terry

    2011-01-01

    Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.

  5. Early Back-to-Africa Migration into the Horn of Africa

    PubMed Central

    Hodgson, Jason A.; Mulligan, Connie J.; Al-Meeri, Ali; Raaum, Ryan L.

    2014-01-01

    Genetic studies have identified substantial non-African admixture in the Horn of Africa (HOA). In the most recent genomic studies, this non-African ancestry has been attributed to admixture with Middle Eastern populations during the last few thousand years. However, mitochondrial and Y chromosome data are suggestive of earlier episodes of admixture. To investigate this further, we generated new genome-wide SNP data for a Yemeni population sample and merged these new data with published genome-wide genetic data from the HOA and a broad selection of surrounding populations. We used multidimensional scaling and ADMIXTURE methods in an exploratory data analysis to develop hypotheses on admixture and population structure in HOA populations. These analyses suggested that there might be distinct, differentiated African and non-African ancestries in the HOA. After partitioning the SNP data into African and non-African origin chromosome segments, we found support for a distinct African (Ethiopic) ancestry and a distinct non-African (Ethio-Somali) ancestry in HOA populations. The African Ethiopic ancestry is tightly restricted to HOA populations and likely represents an autochthonous HOA population. The non-African ancestry in the HOA, which is primarily attributed to a novel Ethio-Somali inferred ancestry component, is significantly differentiated from all neighboring non-African ancestries in North Africa, the Levant, and Arabia. The Ethio-Somali ancestry is found in all admixed HOA ethnic groups, shows little inter-individual variance within these ethnic groups, is estimated to have diverged from all other non-African ancestries by at least 23 ka, and does not carry the unique Arabian lactase persistence allele that arose about 4 ka. Taking into account published mitochondrial, Y chromosome, paleoclimate, and archaeological data, we find that the time of the Ethio-Somali back-to-Africa migration is most likely pre-agricultural. PMID:24921250

  6. Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan.

    PubMed

    Blanco Gonzalez, Enrique; Aritaki, Masato; Knutsen, Halvor; Taniguchi, Nobuhiko

    2015-01-01

    Large-scale hatchery releases are carried out for many marine fish species worldwide; nevertheless, the long-term effects of this practice on the genetic structure of natural populations remains unclear. The lack of knowledge is especially evident when independent stock enhancement programs are conducted simultaneously on the same species at different geographical locations, as occurs with red sea bream (Pagrus major, Temminck et Schlegel) in Japan. In this study, we examined the putative effects of intensive offspring releases on the genetic structure of red sea bream populations along the Japanese archipelago by genotyping 848 fish at fifteen microsatellite loci. Our results suggests weak but consistent patterns of genetic divergence (F(ST) = 0.002, p < 0.001). Red sea bream in Japan appeared spatially structured with several patches of distinct allelic composition, which corresponded to areas receiving an important influx of fish of hatchery origin, either released intentionally or from unintentional escapees from aquaculture operations. In addition to impacts upon local populations inhabiting semi-enclosed embayments, large-scale releases (either intentionally or from unintentional escapes) appeared also to have perturbed genetic structure in open areas. Hence, results of the present study suggest that independent large-scale marine stock enhancement programs conducted simultaneously on one species at different geographical locations may compromise native genetic structure and lead to patchy patterns in population genetic structure.

  7. Influence of language and ancestry on genetic structure of contiguous populations: A microsatellite based study on populations of Orissa

    PubMed Central

    Sahoo, Sanghamitra; Kashyap, VK

    2005-01-01

    Background We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja. These divergent groups provide a varied substratum for understanding variation of genetic patterns in a geographical area resulting from differential admixture between migrants groups and aboriginals, and the influence of this admixture on population stratification. Results The allele distribution pattern showed uniformity in the studied groups with approximately 81% genetic variability within populations. The coefficient of gene differentiation was found to be significantly higher in tribes (0.014) than caste groups (0.004). Genetic variance between the groups was 0.34% in both ethnic and linguistic clusters and statistically significant only in the ethnic apportionment. Although the populations were genetically close (FST = 0.010), the contemporary caste and tribal groups formed distinct clusters in both Principal-Component plot and Neighbor-Joining tree. In the phylogenetic tree, the Orissa Brahmins showed close affinity to populations of North India, while Khandayat and Gope clustered with the tribal groups, suggesting a possibility of their origin from indigenous people. Conclusions The extent of genetic differentiation in the contemporary caste and tribal groups of Orissa is highly significant and constitutes two distinct genetic clusters. Based on our observations, we suggest that since genetic distances and coefficient of gene differentiation were fairly small, the studied populations are indeed genetically similar and that the genetic structure of populations in a geographical region is primarily influenced by their ancestry and not by socio-cultural hierarchy or language. The scenario of genetic structure, however, might be different for other regions of the subcontinent where populations have more similar ethnic and linguistic backgrounds and there might be variations in the patterns of genomic and socio-cultural affinities in different geographical regions. PMID:15694006

  8. Shape-related characteristics of age-related differences in subcortical structures.

    PubMed

    Madan, Christopher R

    2018-01-11

    With an increasing aging population, it is important to understand biological markers of aging. Subcortical volume is known to differ with age; additionally considering shape-related characteristics may provide a better index of age-related differences. Fractal dimensionality is more sensitive to age-related differences, but is borne out of mathematical principles, rather than neurobiological relevance. We considered four distinct measures of shape and how they relate to aging and fractal dimensionality: surface-to-volume ratio, sphericity, long-axis curvature, and surface texture. Structural MRIs from a combined sample of over 600 healthy adults were used to measure age-related differences in the structure of the thalamus, putamen, caudate, and hippocampus. For each, volume and fractal dimensionality were calculated, as well as four distinct shape measures. These measures were examined for their utility in explaining age-related variability in brain structure. The four shape measures were able to account for 80%-90% of the variance in fractal dimensionality. Of the distinct shape measures, surface-to-volume ratio was the most sensitive biomarker. Though volume is often used to characterize inter-individual differences in subcortical structures, our results demonstrate that additional measures can be useful complements. Our results indicate that shape characteristics are useful biological markers of aging.

  9. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  10. Viability of piping plover Charadrius melodus metapopulations

    USGS Publications Warehouse

    Plissner, Jonathan H.; Haig, Susan M.

    2000-01-01

    The metapopulation viability analysis package, VORTEX, was used to examine viability and recovery objectives for piping plovers Charadrius melodus, an endangered shorebird that breeds in three distinct regions of North America. Baseline models indicate that while Atlantic Coast populations, under current management practices, are at little risk of near-term extinction, Great Plains and Great Lakes populations require 36% higher mean fecundity for a significant probability of persisting for the next 100 years. Metapopulation structure (i.e. the delineation of populations within the metapopulation) and interpopulation dispersal rates had varying effects on model results; however, spatially-structured metapopulations exhibited lower viability than that reported for single-population models. The models were most sensitive to variation in survivorship; hence, additional mortality data will improve their accuracy. With this information, such models become useful tools in identifying successful management objectives; and sensitivity analyses, even in the absence of some data, may indicate which options are likely to be most effective. Metapopulation viability models are best suited for developing conservation strategies for achieving recovery objectives based on maintaining an externally derived, target population size and structure.

  11. Representing Heterogeneity in Structural Relationships Among Multiple Choice Variables Using a Latent Segmentation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garikapati, Venu; Astroza, Sebastian; Pendyala, Ram M.

    Travel model systems often adopt a single decision structure that links several activity-travel choices together. The single decision structure is then used to predict activity-travel choices, with those downstream in the decision-making chain influenced by those upstream in the sequence. The adoption of a singular sequential causal structure to depict relationships among activity-travel choices in travel demand model systems ignores the possibility that some choices are made jointly as a bundle as well as the possible presence of structural heterogeneity in the population with respect to decision-making processes. As different segments in the population may adopt and follow different causalmore » decision-making mechanisms when making selected choices jointly, it would be of value to develop simultaneous equations model systems relating multiple endogenous choice variables that are able to identify population subgroups following alternative causal decision structures. Because the segments are not known a priori, they are considered latent and determined endogenously within a joint modeling framework proposed in this paper. The methodology is applied to a national mobility survey data set to identify population segments that follow different causal structures relating residential location choice, vehicle ownership, and car-share and mobility service usage. It is found that the model revealing three distinct latent segments best describes the data, confirming the efficacy of the modeling approach and the existence of structural heterogeneity in decision-making in the population. Future versions of activity-travel model systems should strive to incorporate such structural heterogeneity to better reflect varying decision processes across population subgroups.« less

  12. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan

    USGS Publications Warehouse

    Byappanahalli, M.N.; Whitman, R.L.; Shively, D.A.; Ferguson, J.; Ishii, S.; Sadowsky, M.J.

    2007-01-01

    We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 106 colony-forming units/g dry weight) of the fecal indicator bacteria,Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected fromCladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (⩾92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.

  13. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations.

    PubMed

    Wollenberg, M S; Ruby, E G

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.

  14. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  15. Separation and identification of structural isomers by quadrupole collision-induced dissociation-hydrogen/deuterium exchange-infrared multiphoton dissociation (QCID-HDX-IRMPD).

    PubMed

    Gucinski, Ashley C; Somogyi, Arpád; Chamot-Rooke, Julia; Wysocki, Vicki H

    2010-08-01

    A new approach that uses a hybrid Q-FTICR instrument and combines quadrupole collision-induced dissociation, hydrogen-deuterium exchange, and infrared multiphoton dissociation (QCID-HDX-IRMPD) has been shown to effectively separate and differentiate isomeric fragment ion structures present at the same m/z. This method was used to study protonated YAGFL-OH (free acid), YAGFL-NH(2) (amide), cyclic YAGFL, and YAGFL-OCH(3) (methyl ester). QCID-HDX of m/z 552.28 (C(29)H(38)N(5)O(6)) from YAGFL-OH reveals at least two distributions of ions corresponding to the b(5) ion and a non-C-terminal water loss ion structure. Subsequent IRMPD fragmentation of each population shows distinct fragmentation patterns, reflecting the different structures from which they arise. This contrasts with data for YAGFL-NH(2) and YAGFL-OCH(3), which do not show two distinct H/D exchange populations for the C(29)H(38)N(5)O(6) structure formed by NH(3) and HOCH(3) loss, respectively. Relative extents of exchange for C(29)H(38)N(5)O(6) ions from six sequence isomers (YAGFL, AGFLY, GFLYA, FLYAG, LYAGF, and LFGAY) show a sequence dependence of relative isomer abundance. Supporting action IRMPD spectroscopy data are also presented herein and also show that multiple structures are present for the C(29)H(38)N(5)O(6) species from YAGFL-OH. Copyright 2010. Published by Elsevier Inc.

  16. Restricted gene flow between resident Oncorhynchus mykiss and an admixed population of anadromous steelhead

    USGS Publications Warehouse

    Matala, Andrew P.; Allen, Brady; Narum, Shawn R.; Harvey, Elaine

    2017-01-01

    The species Oncorhynchus mykiss is characterized by a complex life history that presents a significant challenge for population monitoring and conservation management. Many factors contribute to genetic variation in O. mykiss populations, including sympatry among migratory phenotypes, habitat heterogeneity, hatchery introgression, and immigration (stray) rates. The relative influences of these and other factors are contingent on characteristics of the local environment. The Rock Creek subbasin in the middle Columbia River has no history of hatchery supplementation and no dams or artificial barriers. Limited intervention and minimal management have led to a dearth of information regarding the genetic distinctiveness of the extant O. mykiss population in Rock Creek and its tributaries. We used 192 SNP markers and collections sampled over a 5‐year period to evaluate the temporal and spatial genetic structures of O. mykissbetween upper and lower watersheds of the Rock Creek subbasin. We investigated potential limits to gene flow within the lower watershed where the stream is fragmented by seasonally dry stretches of streambed, and between upper and lower watershed regions. We found minor genetic differentiation within the lower watershed occupied by anadromous steelhead (FST = 0.004), and evidence that immigrant influences were prevalent and ubiquitous. Populations in the upper watershed above partial natural barriers were highly distinct (FST = 0.093) and minimally impacted by apparent introgression. Genetic structure between watersheds paralleled differences in local demographics (e.g., variation in size), migratory restrictions, and habitat discontinuity. The evidence of restricted gene flow between putative remnant resident populations in the upper watershed and the admixed anadromous population in the lower watershed has implications for local steelhead productivity and regional conservation.

  17. Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae).

    PubMed

    Hou, Yan; Lou, Anru

    2011-01-01

    Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations.

  18. Population Genetic Diversity and Structure of a Naturally Isolated Plant Species, Rhodiola dumulosa (Crassulaceae)

    PubMed Central

    Hou, Yan; Lou, Anru

    2011-01-01

    Aims Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations. PMID:21909437

  19. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations▿ †

    PubMed Central

    Wollenberg, M. S.; Ruby, E. G.

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. PMID:18997024

  20. Plasmodium vivax Diversity and Population Structure across Four Continents

    PubMed Central

    Koepfli, Cristian; Rodrigues, Priscila T.; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y. M.; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U.; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (F ST>0.2). Outside Central Asia F ST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189

  1. Plasmodium vivax Diversity and Population Structure across Four Continents.

    PubMed

    Koepfli, Cristian; Rodrigues, Priscila T; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y M; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999-2008. Diversity was highest in South-East Asia (mean allelic richness 10.0-12.8), intermediate in the South Pacific (8.1-9.9) Madagascar and Sudan (7.9-8.4), and lowest in South America and Central Asia (5.5-7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60-80% in Latin American populations, suggesting that typing of 2-6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11-0.16) between South American and all other populations, and lowest (0.04-0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations.

  2. Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes.

    PubMed

    Schlebusch, Carina M; Soodyall, Himlya

    2012-12-01

    The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Genetic studies [mitochondrial deoxyribonucleic acid (DNA) and Y-chromosome] conducted on San and Khoe groups revealed that they harbor some of the most divergent lineages found in living peoples throughout the world. Recently, high-density, autosomal, single-nucleotide polymorphism (SNP)-array studies confirmed the early divergence of Khoe-San population groups from all other human populations. The present study made use of 220 autosomal SNP markers (in the format of both haplotypes and genotypes) to examine the population structure of various San and Khoe groups and their relationship to other neighboring groups. Whereas analyses based on the genotypic SNP data only supported the division of the included populations into three main groups-Khoe-San, Bantu-speakers, and non-African populations-haplotype analyses revealed finer structure within Khoe-San populations. By the use of only 44 short SNP haplotypes (compiled from a total of 220 SNPs), most of the Khoe-San groups could be resolved as separate groups by applying STRUCTURE analyses. Therefore, by carefully selecting a few SNPs and combining them into haplotypes, we were able to achieve the same level of population distinction that was achieved previously in high-density SNP studies on the same population groups. Using haplotypes proved to be a very efficient and cost-effective way to study population structure. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.

  3. Population genetic structure and geographic differentiation in butter catfish, Ompok bimaculatus, from Indian waters inferred by cytochrome b mitochondrial gene.

    PubMed

    Kumar, Ravindra; Pandey, Brijesh Kumar; Sarkar, Uttam Kumar; Nagpure, Naresh Sahebrao; Baisvar, Vishwamitra Singh; Agnihotri, Praveen; Awasthi, Abhishek; Mishra, Abha; Kumar, Narendra

    2017-05-01

    Documentation of genetic differentiation among the populations of a species can provide useful information that has roles in conservation, breeding, and management plans. In the present study, we examined the genetic structure and phylogenetic relationships among the 149 individuals of Ompok bimaculatus belonging to 24 populations, collected from Indian waters, using cytochrome b gene. The combined analyses of data suggested that the Indian O. bimaculatus consist of three distinct mtDNA lineages with star-like haplotypes network, which exhibited high genetic variation and haplotypic diversity. Analysis of molecular variance indicated that most of the observed genetic variation was found among the populations suggesting restricted gene flow. Long-term interruption of gene flow was also evidenced by high overall Fst values (0.82367) that could be favored by the discontinuous distributions of the lineages.

  4. The Joint Structure of DSM–IV Axis I and Axis II Disorders

    PubMed Central

    Røysamb, Espen; Tambs, Kristian; Ørstavik, Ragnhild E.; Torgersen, Svenn; Kendler, Kenneth S.; Neale, Michael C.; Aggen, Steven H.; Reichborn-Kjennerud, Ted

    2011-01-01

    The Diagnostic and Statistical Manual (4th ed. [DSM–IV]; American Psychiatric Association, 1994) distinction between clinical disorders on Axis I and personality disorders on Axis II has become increasingly controversial. Although substantial comorbidity between axes has been demonstrated, the structure of the liability factors underlying these two groups of disorders is poorly understood. The aim of this study was to determine the latent factor structure of a broad set of common Axis I disorders and all Axis II personality disorders and thereby to identify clusters of disorders and account for comorbidity within and between axes. Data were collected in Norway, through a population-based interview study (N = 2,794 young adult twins). Axis I and Axis II disorders were assessed with the Composite International Diagnostic Interview (CIDI) and the Structured Interview for DSM–IV Personality (SIDP–IV), respectively. Exploratory and confirmatory factor analyses were used to investigate the underlying structure of 25 disorders. A four-factor model fit the data well, suggesting a distinction between clinical and personality disorders as well as a distinction between broad groups of internalizing and externalizing disorders. The location of some disorders was not consistent with the DSM–IV classification; antisocial personality disorder belonged primarily to the Axis I externalizing spectrum, dysthymia appeared as a personality disorder, and borderline personality disorder appeared in an interspectral position. The findings have implications for a meta-structure for the DSM. PMID:21319931

  5. Producing genome structure populations with the dynamic and automated PGS software.

    PubMed

    Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank

    2018-05-01

    Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

  6. Genetic and morphological consequences of Quaternary glaciations: A relic barbel lineage (Luciobarbus pallaryi, Cyprinidae) of Guir Basin (Algeria).

    PubMed

    Brahimi, Amina; Tarai, Nacer; Benhassane, Abdelkrim; Henrard, Arnaud; Libois, Roland

    2016-02-01

    Climatic variations during the Quaternary period had a considerable impact on landscapes and habitat fragmentation (rivers) in North Africa. These historical events can have significant consequences on the genetic structure of the populations. Indeed, geographically separated and genetically isolated populations tend to differentiate themselves through time, eventually becoming distinct lineages, allowing new species to emerge in later generations. The aim of the present study is to use genetic and morphological techniques to evaluate the major role of the Saalian glaciation (Middle Quaternary) in the establishment of the geographic space and in the evolution of the intraspecific genetic diversity, by tracing the demographic history of barbels belonging to the Luciobarbus pallaryi (Cyprinidae) species in the Guir Basin (Algeria). In this context, two populations, from two distinct and isolated sites, were studied. Analysis of the cytochrome b (cyt b) mitochondrial markers and of the "D-loop" control region has shown that the "upstream" and "downstream" Guir populations are genetically differentiated. The molecular analyses suggest that the upstream population was disconnected from this hydrographic system during the Saalian glaciation period of the Quaternary. Subsequently, it was isolated in the foggaras underground waters in the Great Western Erg, at approximately 320 000 years BP, creating, through a bottleneck effect, a new allopatric lineage referred to as "Adrar". Conversely, the high genetic diversity in the upstream Guir (Bechar) population suggests that the stock is globally in expansion. These barbels (n=52) were also examined with meristic, morphometric, osteological, and biological features. These data also reveal a complete discrimination between the two populations, with a remarkable and distinctive behavioural adaptation for the Adrar specimens: neoteny. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. The Genetic Structure of Pacific Islanders

    PubMed Central

    Friedlaender, Jonathan S; Friedlaender, Françoise R; Reed, Floyd A; Kidd, Kenneth K; Kidd, Judith R; Chambers, Geoffrey K; Lea, Rodney A; Loo, Jun-Hun; Koki, George; Hodgson, Jason A; Merriwether, D. Andrew; Weber, James L

    2008-01-01

    Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small “Austronesian” genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there. PMID:18208337

  8. Population Structure of Pythium irregulare, P. ultimum, and P. sylvaticum in Forest Nursery Soils of Oregon and Washington.

    PubMed

    Weiland, Jerry E; Garrido, Patricia; Kamvar, Zhian N; Espíndola, Andrés S; Marek, Stephen M; Grünwald, Niklaus J; Garzón, Carla D

    2015-05-01

    Pythium species are important soilborne pathogens occurring in the forest nursery industry of the Pacific Northwest. However, little is known about their genetic diversity or population structure and it is suspected that isolates are moved among forest nurseries on seedling stock and shared field equipment. In order to address these concerns, a total of 115 isolates of three Pythium species (P. irregulare, P. sylvaticum, and P. ultimum) were examined at three forest nurseries using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. Analyses revealed distinct patterns of intraspecific variation for the three species. P. sylvaticum exhibited the most diversity, followed by P. irregulare, while substantial clonality was found in P. ultimum. For both P. irregulare and P. sylvaticum, but not P. ultimum, there was evidence for significant variation among nurseries. However, all three species also exhibited at least two distinct lineages not associated with the nursery of origin. Finally, evidence was found that certain lineages and clonal genotypes, including fungicide-resistant isolates, are shared among nurseries, indicating that pathogen movement has occurred.

  9. Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan.

    PubMed

    Thormann, Imke; Reeves, Patrick; Reilley, Ann; Engels, Johannes M M; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M

    2016-01-01

    Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum.

  10. Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system.

    PubMed

    Kuhn, A; Bauman, D; Darras, H; Aron, S

    2017-10-01

    Reproduction and dispersal are key aspects of species life history that influence spatial genetic structure in populations. Several ant species in the genus Cataglyphis have evolved a unique breeding system in which new reproductives (that is, queens and males) are produced asexually by parthenogenesis; in contrast, non-reproductives (that is, workers) are produced via sexual reproduction by mates from distinct genetic lineages. We investigated how these two coexisting reproductive methods affect population-level spatial genetic structure using the ant Cataglyphis mauritanica as a model. We obtained genotypes for queens and their male mates from 338 colonies, and we found that the two lineages present in the study population occurred with equal frequency. Furthermore, analysis of spatial genetic structure revealed strong sex-biased dispersal. Because queens were produced by parthenogenesis and because they dispersed over short distances, there was an extreme level of spatial structuring: a mosaic of patches composed of clonal queens was formed. Males, on the other hand, dispersed over several hundred metres and, thus, across patches, ensuring successful interlineage mating.

  11. Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan

    PubMed Central

    Reeves, Patrick; Reilley, Ann; Engels, Johannes M. M.; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M.

    2016-01-01

    Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum. PMID:27513459

  12. The population structure of Escherichia coli isolated from subtropical and temperate soils.

    PubMed

    Byappanahalli, Muruleedhara N; Yan, Tao; Hamilton, Matthew J; Ishii, Satoshi; Fujioka, Roger S; Whitman, Richard L; Sadowsky, Michael J

    2012-02-15

    While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The population structure of Escherichia coli isolated from subtropical and temperate soils

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Yan, Tao; Hamilton, Matthew J.; Ishii, Satoshi; Fujioka, Roger S.; Whitman, Richard L.; Sadowsky, Michael J.

    2012-01-01

    While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora.

  14. Low Genetic Diversity and Structuring of the Arapaima (Osteoglossiformes, Arapaimidae) Population of the Araguaia-Tocantins Basin.

    PubMed

    Vitorino, Carla A; Nogueira, Fabrícia; Souza, Issakar L; Araripe, Juliana; Venere, Paulo C

    2017-01-01

    The arapaima, Arapaima gigas , is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas , although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise F ST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise) may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin.

  15. Low Genetic Diversity and Structuring of the Arapaima (Osteoglossiformes, Arapaimidae) Population of the Araguaia-Tocantins Basin

    PubMed Central

    Vitorino, Carla A.; Nogueira, Fabrícia; Souza, Issakar L.; Araripe, Juliana; Venere, Paulo C.

    2017-01-01

    The arapaima, Arapaima gigas, is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas, although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise FST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise) may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin. PMID:29114261

  16. Genetic diversity of Morato's Digger Toad, Proceratophrys moratoi: spatial structure, gene flow, effective size and the need for differential management strategies of populations.

    PubMed

    Arruda, Mauricio P; Costa, William P; Recco-Pimentel, Shirlei M

    2017-01-01

    The Morato's Digger Toad, Proceratophrys moratoi, is a critically endangered toad species with a marked population decline in southern Brazilian Cerrado. Despite this, new populations are being discovered, primarily in the northern part of the distribution range, which raises a number of questions with regard to the conservation status of the species. The present study analyzed the genetic diversity of the species based on microsatellite markers. Our findings permitted the identification of two distinct management units. We found profound genetic structuring between the southern populations, on the left margin of the Tietê River, and all other populations. A marked reduction was observed in the contemporary gene flow among the central populations that are most affected by anthropogenic impacts, such as extensive sugar cane plantations, which presumably decreases habitat connectivity. The results indicated reduced diversity in the southern populations which, combined with a smaller effective population size, may make these populations more susceptible to extinction. We recommend the reclassification of P. moratoi as vulnerable and the establishment of a special protection program for the southern populations. Our results provide important insights about the local extinction of southern populations of this toad.

  17. Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development

    PubMed Central

    Blake, Damer P.; Clark, Emily L.; Macdonald, Sarah E.; Thenmozhi, Venkatachalam; Kundu, Krishnendu; Garg, Rajat; Jatau, Isa D.; Ayoade, Simeon; Kawahara, Fumiya; Moftah, Abdalgader; Reid, Adam James; Adebambo, Ayotunde O.; Álvarez Zapata, Ramón; Srinivasa Rao, Arni S. R.; Thangaraj, Kumarasamy; Banerjee, Partha S.; Dhinakar-Raj, G.; Raman, M.; Tomley, Fiona M.

    2015-01-01

    The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host. PMID:26354122

  18. THY-1 Receptor Expression Differentiates Cardiosphere-Derived Cells with Divergent Cardiogenic Differentiation Potential

    PubMed Central

    Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb

    2014-01-01

    Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447

  19. Conservation genetics of high-arctic Gull species at risk: I. Diversity in the mtDNA control region of circumpolar populations of the Endangered Ivory Gull (Pagophila eburnea).

    PubMed

    Royston, Stephanie R; Carr, Steven M

    2016-11-01

    The high-arctic Ivory Gull (Pagophila eburnea) has recently undergone a sharp decline in numbers, and in Canada it is listed as "Endangered" under the Species-At-Risk Act. To test for circumpolar genetic distinctiveness, we examined 264 bp of the mtDNA Control Region Domain I from 127 museum specimens collected during the breeding season from northern Canada, Greenland, and Norway, and during the non-breeding season from adjacent overwintering grounds in Canada, Greenland, and a disjunct area in Alaska adjacent to the Bering Sea. Partition of genetic variance according to various phylogeographic and breeding ground models indicates no strong population structure, except that Alaska birds are consistently differentiated from other locations, and there are significant temporal shifts in haplotype frequencies. The evidence suggests that Ivory Gulls in Canada, Greenland, and Norway are a single genetic entity, in contrast to Alaska birds, which may represent a distinctive Siberian population.

  20. Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations.

    PubMed

    Ivors, K; Garbelotto, M; Vries, I D E; Ruyter-Spira, C; Te Hekkert, B; Rosenzweig, N; Bonants, P

    2006-05-01

    Analysis of 12 polymorphic simple sequence repeats identified in the genome sequence of Phytophthora ramorum, causal agent of 'sudden oak death', revealed genotypic diversity to be significantly higher in nurseries (91% of total) than in forests (18% of total). Our analysis identified only two closely related genotypes in US forests, while the genetic structure of populations from European nurseries was of intermediate complexity, including multiple, closely related genotypes. Multilocus analysis determined populations in US forests reproduce clonally and are likely descendants of a single introduced individual. The 151 isolates analysed clustered in three clades. US forest and European nursery isolates clustered into two distinct clades, while one isolate from a US nursery belonged to a third novel clade. The combined microsatellite, sequencing and morphological analyses suggest the three clades represent distinct evolutionary lineages. All three clades were identified in some US nurseries, emphasizing the role of commercial plant trade in the movement of this pathogen.

  1. Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds.

    PubMed

    Edea, Z; Bhuiyan, M S A; Dessie, T; Rothschild, M F; Dadi, H; Kim, K S

    2015-02-01

    Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69,903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.

  2. Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations.

    PubMed

    Jones, Kenneth L; Krapu, Gary L; Brandt, David A; Ashley, Mary V

    2005-08-01

    Previous studies of migratory sandhill cranes (Grus canadensis) have made significant progress explaining evolution of this group at the species scale, but have been unsuccessful in explaining the geographically partitioned variation in morphology seen on the population scale. The objectives of this study were to assess the population structure and gene flow patterns among migratory sandhill cranes using microsatellite DNA genotypes and mitochondrial DNA haplotypes of a large sample of individuals across three populations. In particular, we were interested in evaluating the roles of Pleistocene glaciation events and postglaciation gene flow in shaping the present-day population structure. Our results indicate substantial gene flow across regions of the Midcontinental population that are geographically adjacent, suggesting that gene flow for most of the region follows an isolation-by-distance model. Male-mediated gene flow and strong female philopatry may explain the differing patterns of nuclear and mitochondrial variation. Taken in context with precise geographical information on breeding locations, the morphologic and microsatellite DNA variation shows a gradation from the Arctic-nesting subspecies G. c. canadensis to the nonArctic subspecies G. c. tabida. Analogous to other Arctic-nesting birds, it is probable that the population structure seen in Midcontinental sandhill cranes reflects the result of postglacial secondary contact. Our data suggest that subspecies of migratory sandhills experience significant gene flow and therefore do not represent distinct and independent genetic entities.

  3. Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus).

    PubMed

    Schield, Drew R; Adams, Richard H; Card, Daren C; Corbin, Andrew B; Jezkova, Tereza; Hales, Nicole R; Meik, Jesse M; Perry, Blair W; Spencer, Carol L; Smith, Lydia L; García, Gustavo Campillo; Bouzid, Nassima M; Strickland, Jason L; Parkinson, Christopher L; Borja, Miguel; Castañeda-Gaytán, Gamaliel; Bryson, Robert W; Flores-Villela, Oscar A; Mackessy, Stephen P; Castoe, Todd A

    2018-06-15

    The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    NASA Astrophysics Data System (ADS)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, P<0.01). These results suggest that E. rhadinum populations in the East and South China Seas have developed divergent genetic structures. Tests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  5. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP.

    PubMed

    Ge, X J; Liu, M H; Wang, W K; Schaal, B A; Chiang, T Y

    2005-04-01

    Both demographic history and dispersal mechanisms influence the apportionment of genetic diversity among plant populations across geographical regions. In this study, phylogeography and population structure of wild banana, Musa balbisiana, one of the progenitors of cultivated bananas and plantains in China were investigated by an analysis of genetic diversity of simple sequence repeat (SSR) fingerprint markers and cpDNA PCR-RFLP. A chloroplast DNA (cpDNA) genealogy of 21 haplotypes identified two major clades, which correspond to two geographical regions separated by the Beijiang and Xijiang rivers, suggesting a history of vicariance. Significant genetic differentiation was detected among populations with cpDNA markers, a result consistent with limited seed dispersal in wild banana mediated by foraging of rodents. Nuclear SSR data also revealed significant geographical structuring in banana populations. In western China, however, there was no detected phylogeograpahical pattern, possibly due to frequent pollen flow via fruit bats. In contrast, populations east of the Beijiang River and the population of Hainan Island, where long-range soaring pollinators are absent, are genetically distinct. Colonization-extinction processes may have influenced the evolution of Musa populations, which have a metapopulation structure and are connected by migrating individuals. Effective gene flow via pollen, estimated from the nuclear SSR data, is 3.65 times greater than gene flow via seed, estimated from cpDNA data. Chloroplast and nuclear DNAs provide different insights into phylogeographical patterns of wild banana populations and, taken together, can inform conservation practices.

  6. Genetic Distinctiveness of Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources

    PubMed Central

    Monteiro, Filipa; Vidigal, Patrícia; Barros, André B.; Monteiro, Ana; Oliveira, Hugo R.; Viegas, Wanda

    2016-01-01

    Rye (Secale cereale L.) is a cereal crop of major importance in many parts of Europe and rye breeders are presently very concerned with the restrict pool of rye genetic resources available. Such narrowing of rye genetic diversity results from the presence of “Petkus” pool in most modern rye varieties as well as “Petkus” × “Carsten” heterotic pool in hybrid rye breeding programs. Previous studies on rye's genetic diversity revealed moreover a common genetic background on landraces (ex situ) and cultivars, regardless of breeding level or geographical origin. Thus evaluation of in situ populations is of utmost importance to unveil “on farm” diversity, which is largely undervalued. Here, we perform the first comprehensive assessment of rye's genetic diversity and population structuring using cultivars, ex situ landraces along a comprehensive sampling of in situ accessions from Portugal, through a molecular-directed analysis using SSRs markers. Rye genetic diversity and population structure analysis does not present any geographical trend but disclosed marked differences between genetic backgrounds of in situ accessions and those of cultivars/ex situ collections. Such genetic distinctiveness of in situ accessions highlights their unexplored potential as new genetic resources, which can be used to boost rye breeding strategies and the production of new varieties. Overall, our study successfully demonstrates the high prospective impact of comparing genetic diversity and structure of cultivars, ex situ, and in situ samples in ascertaining the status of plant genetic resources (PGR). PMID:27630658

  7. High Potential for Using DNA from Ancient Herring Bones to Inform Modern Fisheries Management and Conservation

    PubMed Central

    Speller, Camilla F.; Hauser, Lorenz; Lepofsky, Dana; Moore, Jason; Rodrigues, Antonia T.; Moss, Madonna L.; McKechnie, Iain; Yang, Dongya Y.

    2012-01-01

    Pacific herring (Clupea pallasi) are an abundant and important component of the coastal ecosystems for the west coast of North America. Current Canadian federal herring management assumes five regional herring populations in British Columbia with a high degree of exchange between units, and few distinct local populations within them. Indigenous traditional knowledge and historic sources, however, suggest that locally adapted, distinct regional herring populations may have been more prevalent in the past. Within the last century, the combined effects of commercial fishing and other anthropogenic factors have resulted in severe declines of herring populations, with contemporary populations potentially reflecting only the remnants of a previously more abundant and genetically diverse metapopulation. Through the analysis of 85 archaeological herring bones, this study attempted to reconstruct the genetic diversity and population structure of ancient herring populations using three different marker systems (mitochondrial DNA (mtDNA), microsatellites and SNPs). A high success rate (91%) of DNA recovery was obtained from the extremely small herring bone samples (often <10 mg). The ancient herring mtDNA revealed high haplotype diversity comparable to modern populations, although population discrimination was not possible due to the limited power of the mtDNA marker. Ancient microsatellite diversity was also similar to modern samples, but the data quality was compromised by large allele drop-out and stuttering. In contrast, SNPs were found to have low error rates with no evidence for deviations from Hardy-Weinberg equilibrium, and simulations indicated high power to detect genetic differentiation if loci under selection are used. This study demonstrates that SNPs may be the most effective and feasible approach to survey genetic population structure in ancient remains, and further efforts should be made to screen for high differentiation markers.This study provides the much needed foundation for wider scale studies on temporal genetic variation in herring, with important implications for herring fisheries management, Aboriginal title rights and herring conservation. PMID:23226474

  8. River mainstem thermal regimes influence population structuring within an Appalachian brook trout population

    USGS Publications Warehouse

    Aunins, Aaron W.; Petty, J. Todd; King, Timothy L.; Schilz, Mariya; Mazik, Patricia M.

    2015-01-01

    Brook trout (Salvelinus fontinalis) often exist as highly differentiated populations, even at small spatial scales, due either to natural or anthropogenic sources of isolation and low rates of dispersal. In this study, we used molecular approaches to describe the unique population structure of brook trout inhabiting the Shavers Fork watershed, located in eastern West Virginia, and contrast it to nearby populations in tributaries of the upper Greenbrier River and North Fork South Branch Potomac Rivers. Bayesian and maximum likelihood clustering methods identified minimal population structuring among 14 collections of brook trout from throughout the mainstem and tributaries of Shavers Fork, highlighting the role of the cold-water mainstem for connectivity and high rates of effective migration among tributaries. In contrast, the Potomac and Greenbrier River collections displayed distinct levels of population differentiation among tributaries, presumably resulting from tributary isolation by warm-water mainstems. Our results highlight the importance of protecting and restoring cold-water mainstem habitats as part of region-wide brook trout conservation efforts. In addition, our results from Shavers Fork provide a contrast to previous genetic studies that characterize Appalachian brook trout as fragmented isolates rather than well-mixed populations. Additional study is needed to determine whether the existence of brook trout as genetically similar populations among tributaries is truly unique and whether connectivity among brook trout populations can potentially be restored within other central Appalachian watersheds.

  9. The Embryonic Septum and Ventral Pallium, New Sources of Olfactory Cortex Cells

    PubMed Central

    de Carlos, Juan A.

    2012-01-01

    The mammalian olfactory cortex is a complex structure located along the rostro-caudal extension of the ventrolateral prosencephalon, which is divided into several anatomically and functionally distinct areas: the anterior olfactory nucleus, piriform cortex, olfactory tubercle, amygdaloid olfactory nuclei, and the more caudal entorhinal cortex. Multiple forebrain progenitor domains contribute to the cellular diversity of the olfactory cortex, which is invaded simultaneously by cells originating in distinct germinal areas in the dorsal and ventral forebrain. Using a combination of dye labeling techniques, we identified two novel areas that contribute cells to the developing olfactory cortices, the septum and the ventral pallium, from which cells migrate along a radial and then a tangential path. We characterized these cell populations by comparing their expression of calretinin, calbindin, reelin and Tbr1 with that of other olfactory cell populations. PMID:22984546

  10. Multi-layered population structure in Island Southeast Asians

    PubMed Central

    Mörseburg, Alexander; Pagani, Luca; Ricaut, Francois-Xavier; Yngvadottir, Bryndis; Harney, Eadaoin; Castillo, Cristina; Hoogervorst, Tom; Antao, Tiago; Kusuma, Pradiptajati; Brucato, Nicolas; Cardona, Alexia; Pierron, Denis; Letellier, Thierry; Wee, Joseph; Abdullah, Syafiq; Metspalu, Mait; Kivisild, Toomas

    2016-01-01

    The history of human settlement in Southeast Asia has been complex and involved several distinct dispersal events. Here, we report the analyses of 1825 individuals from Southeast Asia including new genome-wide genotype data for 146 individuals from three Mainland Southeast Asian (Burmese, Malay and Vietnamese) and four Island Southeast Asian (Dusun, Filipino, Kankanaey and Murut) populations. While confirming the presence of previously recognised major ancestry components in the Southeast Asian population structure, we highlight the Kankanaey Igorots from the highlands of the Philippine Mountain Province as likely the closest living representatives of the source population that may have given rise to the Austronesian expansion. This conclusion rests on independent evidence from various analyses of autosomal data and uniparental markers. Given the extensive presence of trade goods, cultural and linguistic evidence of Indian influence in Southeast Asia starting from 2.5 kya, we also detect traces of a South Asian signature in different populations in the region dating to the last couple of thousand years. PMID:27302840

  11. Compact groups in theory and practice - IV. The connection to large-scale structure

    NASA Astrophysics Data System (ADS)

    Mendel, J. Trevor; Ellison, Sara L.; Simard, Luc; Patton, David R.; McConnachie, Alan W.

    2011-12-01

    We investigate the properties of photometrically selected compact groups (CGs) in the Sloan Digital Sky Survey. In this paper, the fourth in a series, we focus on understanding the characteristics of our observed CG sample with particular attention paid to quantifying and removing contamination from projected foreground or background galaxies. Based on a simple comparison of pairwise redshift likelihoods, we find that approximately half of CGs in the parent sample contain one or more projected (interloping) members; our final clean sample contains 4566 galaxies in 1086 CGs. We show that half of the remaining CGs are associated with rich groups (or clusters), i.e. they are embedded sub-structure. The other half have spatial distributions and number-density profiles consistent with the interpretation that they are either independently distributed structures within the field (i.e. they are isolated) or associated with relatively poor structures. Comparisons of late-type and red-sequence fractions in radial annuli show that galaxies around apparently isolated CGs resemble the field population by 300 to 500 kpc from the group centre. In contrast, the galaxy population surrounding embedded CGs appears to remain distinct from the field out beyond 1 to 2 Mpc, consistent with results for rich groups. We take this as additional evidence that the observed distinction between CGs, i.e. isolated versus embedded, is a separation between different host environments.

  12. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus

    USGS Publications Warehouse

    Wirgin, I.; Waldman, J.; Stabile, J.; Lubinski, B.; King, T.

    2002-01-01

    Atlantic sturgeon Acipenser oxyrinchus is large, long-lived, and anadromous with subspecies distributed along the Atlantic (A. oxyrinchus oxyrinchus) and Gulf of Mexico (A. o. desotoi) coasts of North America. Although it is not certain if extirpation of some population units has occurred, because of anthropogenic influences abundances of all populations are low compared with historical levels. Informed management of A. oxyrinchus demands a detailed knowledge of its population structure, levels of genetic diversity, and likelihood to home to natal rivers. We compared the use of mitochondrial DNA (mtDNA) control region sequence and microsatellite nuclear DNA (nDNA) analyses in identifying the stock structure and homing fidelity of Atlantic and Gulf coast populations of A. oxyrinchus. The approaches were concordant in that they revealed moderate to high levels of genetic diversity and suggested that populations of Atlantic sturgeon are highly structured. At least six genetically distinct management units were detected using the two approaches among the rivers surveyed. Mitochondrial DNA sequences revealed a significant cline in haplotype diversity along the Atlantic coast with monomorphism observed in Canadian populations. High levels of nDNA diversity were also observed among populations along the Atlantic coast, including the two Canadian populations, probably resulting from the more rapid rate of mutational and evolutionary change at microsatellite loci. Estimates of gene flow among populations were similar between both approaches with the exception that because of mtDNA monomorphism in Canadian populations, gene flow estimates between them were unobtainable. Analyses of both genomes provided high resolution and confidence in characterizing the population structure of Atlantic sturgeon. Microsatellite analysis was particularly informative in delineating population structure in rivers that were recently glaciated and may prove diagnostic in rivers that are geographically proximal along the south Atlantic coast of the US.

  13. Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici

    PubMed Central

    Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F.; Hovmøller, Mogens S.; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-01-01

    Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen. PMID:24465211

  14. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of Koc values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in Koc between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with Koc illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  15. Persistence of Multiple Genetic Lineages within Intrahost Populations of Ross River Virus▿

    PubMed Central

    Liu, Wen J.; Rourke, Michelle F.; Holmes, Edward C.; Aaskov, John G.

    2011-01-01

    We examined the structure and extent of genetic diversity in intrahost populations of Ross River virus (RRV) in samples from six human patients, focusing on the nonstructural (nsP3) and structural (E2) protein genes. Strikingly, although the samples were collected from contrasting ecological settings 3,000 kilometers apart in Australia, we observed multiple viral lineages in four of the six individuals, which is indicative of widespread mixed infections. In addition, a comparison with previously published RRV sequences revealed that these distinct lineages have been in circulation for at least 5 years, and we were able to document their long-term persistence over extensive geographical distances. PMID:21430052

  16. On some genetic consequences of social structure, mating systems, dispersal, and sampling

    PubMed Central

    Parreira, Bárbara R.; Chikhi, Lounès

    2015-01-01

    Many species are spatially and socially organized, with complex social organizations and dispersal patterns that are increasingly documented. Social species typically consist of small age-structured units, where a limited number of individuals monopolize reproduction and exhibit complex mating strategies. Here, we model social groups as age-structured units and investigate the genetic consequences of social structure under distinct mating strategies commonly found in mammals. Our results show that sociality maximizes genotypic diversity, which contradicts the belief that social groups are necessarily subject to strong genetic drift and at high risk of inbreeding depression. Social structure generates an excess of genotypic diversity. This is commonly observed in ecological studies but rarely reported in population genetic studies that ignore social structure. This heterozygosity excess, when detected, is often interpreted as a consequence of inbreeding avoidance mechanisms, but we show that it can occur even in the absence of such mechanisms. Many seemly contradictory results from ecology and population genetics can be reconciled by genetic models that include the complexities of social species. We find that such discrepancies can be explained by the intrinsic properties of social groups and by the sampling strategies of real populations. In particular, the number of social groups and the nature of the individuals that compose samples (e.g., nonreproductive and reproductive individuals) are key factors in generating outbreeding signatures. Sociality is an important component of population structure that needs to be revisited by ecologists and population geneticists alike. PMID:26080393

  17. Phylogeography and population genetic structure of double-crested cormorants (Phalacrocorax auritus)

    USGS Publications Warehouse

    Mercer, Dacey; Haig, Susan M.; Roby, Daniel D.

    2013-01-01

    is genetically divergent from other populations in North America (net sequence divergence = 5.85 %;UST for mitochondrial control region = 0.708; FST for microsatellite loci = 0.052). Historical records, contemporary population estimates, and field observations are consistent with recognition of the Alaskan subspecies as distinct and potentially of conservation interest. Our data also indicated the presence of another divergent lineage, associated with the southwestern portion of the species range, as evidenced by highly unique haplotypes sampled in southern California. In contrast, there was little support for recognition of subspecies within the conterminous U.S. and Canada. Rather than genetically distinct regions corresponding to the putative subspecies [P. a. albociliatus (Pacific), P. a. auritus (Interior and North Atlantic), and P. a. floridanus (Southeast)], we observed a distribution of genetic variation consistent with a pattern of isolation by distance. This pattern implies that genetic differences across the range are due to geographic distance, rather than discrete subspecific breaks. Although three of the four traditional subspecies were not genetically distinct, possible demographic separation, habitat differences, and documented declines at some colonies within the regions, suggests that the Pacific and possibly North Atlantic portions of the breeding range may warrant differential consideration from the Interior and Southeast breeding regions.

  18. The carbon isotope biogeochemistry of the individual hydrocarbons in bat guano and the ecology of insectivorous bats in the region of Carlsbad, New Mexico

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Mitchell, J. M.; Meinschein, W. G.; Hayes, J. M.

    1980-01-01

    The structures and C-13 contents of individual alkanes extracted from bat guano found in the Carlsbad region of New Mexico can be related to both the photosynthetic pathways of the local plants and the feeding habits of the insects that support the bats. Carbon isotopic analyses of the 62 most important plant species in the Pecos River Valley, the most significant feeding area for the Carlsbad bats, reveal the presence of 29 species with C3 photosynthesis and 33 species, mostly grasses, with C4 photosynthesis. Although the abundances of nonagricultural C3 and C4 plants are similar, alfalfa and cotton, both C3 plants, constitute over 95 per cent of the crop biomass. The molecular composition of the bat guano hydrocarbons is fully consistent with an insect origin. Two isotopically distinct groups of insect branched alkanes were discerned. These two groups of alkanes derived from two chemotaxonomically distinct populations of insects possessing distinctly different feeding habits. It is likely that one population grazes predominantly on crops whereas the other population prefers native vegetation. This and other isotopic evidence supports the notion that crop pests constitute a major percentage of the bats' diet.

  19. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure.

    PubMed

    Kemppainen, Petri; Knight, Christopher G; Sarma, Devojit K; Hlaing, Thaung; Prakash, Anil; Maung Maung, Yan Naung; Somboon, Pradya; Mahanta, Jagadish; Walton, Catherine

    2015-09-01

    Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  20. Behavioural and chemical evidence for multiple colonisation of the Argentine ant, Linepithema humile, in the Western Cape, South Africa

    PubMed Central

    2011-01-01

    Background The Argentine ant, Linepithema humile, is a widespread invasive ant species that has successfully established in nearly all continents across the globe. Argentine ants are characterised by a social structure known as unicoloniality, where territorial boundaries between nests are absent and intraspecific aggression is rare. This is particularly pronounced in introduced populations and results in the formation of large and spatially expansive supercolonies. Although it is amongst the most well studied of invasive ants, very little work has been done on this ant in South Africa. In this first study, we investigate the population structure of Argentine ants in South Africa. We use behavioural (aggression tests) and chemical (CHC) approaches to investigate the population structure of Argentine ants within the Western Cape, identify the number of supercolonies and infer number of introductions. Results Both the aggression assays and chemical data revealed that the Western Cape Argentine ant population can be divided into two behaviourally and chemically distinct supercolonies. Intraspecific aggression was evident between the two supercolonies of Argentine ants with ants able to discriminate among conspecific non-nestmates. This discrimination is linked to the divergence in cuticular hydrocarbon profiles of ants originating from the two supercolonies. Conclusions The presence of these two distinct supercolonies is suggestive of at least two independent introductions of this ant within the Western Cape. Moreover, the pattern of colonisation observed in this study, with the two colonies interspersed, is in agreement with global patterns of Argentine ant invasions. Our findings are of interest because recent studies show that Argentine ants from South Africa are different from those identified in other introduced ranges and therefore provide an opportunity to further understand factors that determine the distributional and spread patterns of Argentine ant supercolonies. PMID:21288369

  1. Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises.

    PubMed

    Ciofi, Claudio; Milinkovitch, Michel C; Gibbs, James P; Caccone, Adalgisa; Powell, Jeffrey R

    2002-11-01

    Giant Galápagos tortoises represent an interesting model for the study of patterns of genetic divergence and adaptive differentiation related to island colonization events. Recent mitochondrial DNA work elucidated the evolutionary history of the species and helped to clarify aspects of nomenclature. We used 10 microsatellite loci to assess levels of genetic divergence among and within island populations. In particular, we described the genetic structure of tortoises on the island of Isabela, where discrimination of different taxa is still subject of debate. Individual island populations were all genetically distinct. The island of Santa Cruz harboured two distinct populations. On Isabela, populations of Volcan Wolf, Darwin and Alcedo were significantly different from each other. On the other hand, Volcan Wolf showed allelic similarity with the island of Santiago. On Southern Isabela, lower genetic divergence was found between Northeast Sierra Negra and Volcan Alcedo, while patterns of gene flow were recorded among tortoises of Cerro Azul and Southeast Sierra Negra. These tortoises have endured heavy exploitation during the last three centuries and recently attracted much concern due to the current number of stochastic and deterministic threats to extant populations. Our study complements previous investigation based on mtDNA diversity and provides further information that may help devising tortoise management plans.

  2. Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago.

    PubMed

    Zhao, Yong-Bin; Zhang, Ye; Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong

    2015-01-01

    The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.

  3. Ancient DNA Reveals That the Genetic Structure of the Northern Han Chinese Was Shaped Prior to 3,000 Years Ago

    PubMed Central

    Zhang, Quan-Chao; Li, Hong-Jie; Cui, Ying-Qiu; Xu, Zhi; Jin, Li; Zhou, Hui; Zhu, Hong

    2015-01-01

    The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area. PMID:25938511

  4. Harlequin Duck recovery from the Exxon Valdez oil spill: A population genetics perspective

    USGS Publications Warehouse

    Lanctot, R.; Goatcher, B.; Scribner, K.; Talbot, S.; Pierson, B.; Esler, Daniel N.; Zwiefelhofer, D.

    1999-01-01

    Concerns about Harlequin Duck (Histrionicus histrionicus) population recovery following the Exxon Valdez oil spill led biologists to ask whether birds located in different molting and wintering areas belong to genetically distinct and, thus, demographically independent populations. Owing to the lack of direct observations of movements among marine areas, three classes of genetic markers that differed in mode of inheritance were used to evaluate the degree of genetic differentiation among wintering areas within Prince William Sound (PWS) and the Alaska Peninsula and Kodiak Archipelago (APKA). We could not reject the null hypothesis that the wintering aggregations within each region are composed of a single genetically panmictic population. Differences in genotype frequencies among wintering locations within PWS and APKA were low and nonsignificant for all three classes of markers. Furthermore, we saw no evidence for deviations in Hardy-Weinberg equilibrium or gametic disequilibrium between loci within a winter collection site as would be expected if these locales were composed of individuals from reproductively isolated (and genetically distinct) breeding locales. Finally, no evidence for significant structuring was noted between PWS and APKA. Lack of spatial genetic structuring could be due to the cumulative effects of low levels of gene flow over long time periods, low levels of gene flow by immature birds moving between marine habitats, or to episodic dispersal caused by habitat alteration (e.g. volcanic eruptions). Harlequin Ducks are likely to recolonize or enhance populations in areas recovering from environmental damage via emigration of birds from non-affected areas. Demographic studies suggest, however, that levels of movements are low, and that population recovery by emigration is a long-term process.

  5. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult

    PubMed Central

    Pfaltzgraff, Elise R.; Shelton, Elaine L.; Galindo, Cristi L.; Nelms, Brian L.; Hooper, Christopher W.; Poole, Stanley D.; Labosky, Patricia A.; Bader, David M.; Reese, Jeff

    2014-01-01

    Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression. PMID:24508561

  6. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex

    NASA Astrophysics Data System (ADS)

    Marengo, M.; Baudouin, M.; Viret, A.; Laporte, M.; Berrebi, P.; Vignon, M.; Marchand, B.; Durieux, E. D. H.

    2017-10-01

    The common dentex, Dentex dentex, is an iconic marine coastal fish of the Mediterranean Sea. Despite its economic and ecological importance, data on the population structure of this species are still very limited. The aim of this study was to identify the stock structure of the common dentex at relatively fine spatial scale around Corsica Island, using a combination of markers that have different spatial and temporal scales of integration: microsatellite DNA markers, otolith shape analysis and parasites communities. Microsatellite analysis indicated that there was no significant genetic differentiation in D. dentex between the four sampling sites around Corsica. Otolith shape analysis suggests one potential distinct population unit of D. dentex centered in one site (Cap Corse) varying in their degree of differentiation from those in the other zones. Multivariate analysis on parasite abundance data highlights to a lower extent two sites (Bonifacio and Galeria) with some connectivity between adjacent zones. The combination of these three markers together highlights the resulting three sites while giving complementary insights and an opportunity to compare their utility and potential to understand population interactions. A complex population structure around Corsican coasts is then proposed, providing a new perspective on common dentex fishery stock conservation and management strategies.

  7. Population-structure and genetic diversity in a haplochromine cichlid fish [corrected] of a satellite lake of Lake Victoria.

    PubMed

    Abila, Romulus; Barluenga, Marta; Engelken, Johannes; Meyer, Axel; Salzburger, Walter

    2004-09-01

    The approximately 500 species of the cichlid fish species flock of Lake Victoria, East Africa, have evolved in a record-setting 100,000 years and represent one of the largest adaptive radiations. We examined the population structure of the endangered cichlid species Xystichromis phytophagus from Lake Kanyaboli, a satellite lake to Lake Victoria in the Kenyan Yala wetlands. Two sets of molecular markers were analysed--sequences of the mitochondrial control region as well as six microsatellite loci--and revealed surprisingly high levels of genetic variability in this species. Mitochondrial DNA sequences failed to detect population structuring among the three sample populations. A model-based population assignment test based on microsatellite data revealed that the three populations most probably aggregate into a larger panmictic population. However, values of population pairwise FST indicated moderate levels of genetic differentiation for one population. Eleven distinct mitochondrial haplotypes were found among 205 specimens of X. phytophagus, a relatively high number compared to the total number of 54 haplotypes that were recovered from hundreds of specimens of the entire cichlid species flock of Lake Victoria. Most of the X. phytophagus mitochondrial DNA haplotypes were absent from the main Lake Victoria, corroborating the putative importance of satellite lakes as refugia for haplochromine cichlids that went extinct from the main lake in the last decades and possibly during the Late Pleistocene desiccation of Lake Victoria.

  8. Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries

    PubMed Central

    Uren, Caitlin; Kim, Minju; Martin, Alicia R.; Bobo, Dean; Gignoux, Christopher R.; van Helden, Paul D.; Möller, Marlo; Hoal, Eileen G.; Henn, Brenna M.

    2016-01-01

    Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. PMID:27474727

  9. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes

    PubMed Central

    Waman, Vaishali P.; Kolekar, Pandurang; Ramtirthkar, Mukund R.; Kale, Mohan M.

    2016-01-01

    Background Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae). There are four serotypes of Dengue Virus (DENV-1 to DENV-4), each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. Methods Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. Results DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. Discussion Complete genome-based analysis revealed that the worldwide population of DENV-2 strains is subdivided into fifteen lineages. The population structure of DENV-2 is spatiotemporal and is shaped by episodic positive selection and recombination. Intra-genotype diversity was observed in four genotypes (Asian/American, Asian I, cosmopolitan and sylvatic). Episodic positive selection on envelope and non-structural genes translates into antigenic diversity and appears to be responsible for emergence of strains/lineages in DENV-2 genotypes. Understanding of the genotype diversity and emerging lineages will be useful to design strategies for epidemiological surveillance and vaccine design. PMID:27635316

  10. Paternal Genetic Structure of Hainan Aborigines Isolated at the Entrance to East Asia

    PubMed Central

    Li, Dongna; Li, Hui; Ou, Caiying; Lu, Yan; Sun, Yuantian; Yang, Bo; Qin, Zhendong; Zhou, Zhenjian; Li, Shilin; Jin, Li

    2008-01-01

    Background At the southern entrance to East Asia, early population migration has affected most of the Y-chromosome variations of East Asians. Methodology/Principal Findings To assess the isolated genetic structure of Hainan Island and the original genetic structure at the southern entrance, we studied the Y chromosome diversity of 405 Hainan Island aborigines from all the six populations, who have little influence of the recent mainland population relocations and admixtures. Here we report that haplogroups O1a* and O2a* are dominant among Hainan aborigines. In addition, the frequency of the mainland dominant haplogroup O3 is quite low among these aborigines, indicating that they have lived rather isolated. Clustering analyses suggests that the Hainan aborigines have been segregated since about 20 thousand years ago, after two dominant haplogroups entered East Asia (31 to 36 thousand years ago). Conclusions/Significance Our results suggest that Hainan aborigines have been isolated at the entrance to East Asia for about 20 thousand years, whose distinctive genetic characteristics could be used as important controls in many population genetic studies. PMID:18478090

  11. Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women

    PubMed Central

    Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M

    2013-01-01

    Objectives Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Methods Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. Results T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. Conclusions T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections. PMID:23694936

  12. Genetic diversity of Trichomonas vaginalis reinfection in HIV-positive women.

    PubMed

    Conrad, Melissa D; Kissinger, Patricia; Schmidt, Norine; Martin, David H; Carlton, Jane M

    2013-09-01

    Recently developed genotyping tools allow better understanding of Trichomonas vaginalis population genetics and epidemiology. These tools have yet to be applied to T vaginalis collected from HIV+ populations, where understanding the interaction between the pathogens is of great importance due to the correlation between T vaginalis infection and HIV transmission. The objectives of the study were twofold: first, to compare the genetic diversity and population structure of T vaginalis collected from HIV+ women with parasites from reference populations; second, to use the genetic markers to perform a case study demonstrating the usefulness of these techniques in investigating the mechanisms of repeat infections. Repository T vaginalis samples from a previously described treatment trial were genotyped at 11 microsatellite loci. Estimates of genetic diversity and population structure were determined using standard techniques and compared with previously reported estimates of global populations. Genotyping data were used in conjunction with behavioural data to evaluate mechanisms of repeat infections. T vaginalis from HIV+ women maintain many of the population genetic characteristics of parasites from global reference populations. Although there is evidence of reduced diversity and bias towards type 1 parasites in the HIV+ population, the populations share a two-type population structure and parasite haplotypes. Genotyping/behavioural data suggest that 36% (12/33) of repeat infections in HIV+ women can be attributed to treatment failure. T vaginalis infecting HIV+ women is not genetically distinct from T vaginalis infecting reference populations. Information from genotyping can be valuable for understanding mechanisms of repeat infections.

  13. Isolation by environmental distance in mobile marine species: molecular ecology of franciscana dolphins at their southern range.

    PubMed

    Mendez, Martin; Rosenbaum, Howard C; Subramaniam, Ajit; Yackulic, Charles; Bordino, Pablo

    2010-06-01

    The assessment of population structure is a valuable tool for studying the ecology of endangered species and drafting conservation strategies. As we enhance our understanding about the structuring of natural populations, it becomes important that we also understand the processes behind these patterns. However, there are few rigorous assessments of the influence of environmental factors on genetic patterns in mobile marine species. Given their dispersal capabilities and localized habitat preferences, coastal cetaceans are adequate study species for evaluating environmental effects on marine population structure. The franciscana dolphin, a rare coastal cetacean endemic to the Western South Atlantic, was studied to examine these issues. We analysed genetic data from the mitochondrial DNA and 12 microsatellite markers for 275 franciscana samples utilizing frequency-based, maximum-likelihood and Bayesian algorithms to assess population structure and migration patterns. This information was combined with 10 years of remote sensing environmental data (chlorophyll concentration, water turbidity and surface temperature). Our analyses show the occurrence of genetically isolated populations within Argentina, in areas that are environmentally distinct. Combined evidence of genetic and environmental structure suggests that isolation by distance and a process here termed isolation by environmental distance can explain the observed correlations. Our approach elucidated important ecological and conservation aspects of franciscana dolphins, and has the potential to increase our understanding of ecological processes influencing genetic patterns in other marine species.

  14. Adult Vampire Bats Produce Contact Calls When Isolated: Acoustic Variation by Species, Population, Colony, and Individual

    PubMed Central

    Carter, Gerald G.; Logsdon, Ryane; Arnold, Bryan D.; Menchaca, Angelica; Medellin, Rodrigo A.

    2012-01-01

    Background Bat pups produce individually distinct isolation calls to facilitate maternal recognition. Increasing evidence suggests that, in group-living bat species, adults often use similar calls to maintain contact. We investigated if isolated adults from all three species of the highly cooperative vampire bats (Phyllostomidae: Desmodontinae) would produce vocally distinct contact calls when physically isolated. Methods/Principal Findings We assessed variation in contact calls recorded from isolated captive and wild-caught adult common vampire bats (Desmodus rotundus), white-winged vampire bats (Diaemus youngi) and hairy-legged vampire bats (Diphylla ecaudata). We compared species-typical contact call structure, and used information theory and permuted discriminate function analyses to examine call structure variation, and to determine if the individuality of contact calls is encoded by different call features across species and populations. We found that isolated adult vampire bats produce contact calls that vary by species, population, colony, and individual. However, much variation occurred within a single context and individual. We estimated signature information for captive Diaemus (same colony), captive Desmodus (same colony), and wild Desmodus (different colonies) at 3.21, 3.26, and 3.88 bits, respectively. Contact calls from a captive colony of Desmodus were less individually distinct than calls from wild-caught Desmodus from different colonies. Both the degree of individuality and parameters encoding individuality differed between the bats from a single captive colony and the wild-caught individuals from different groups. This result is consistent with, but not sufficient evidence of, vocal convergence in groups. Conclusion Our results show that adult vampire bats of all three species produce highly variable contact calls when isolated. Contact calls contain sufficient information for vocal discrimination, but also possess more intra-individual variation than is required for the sole purpose of identifying individuals. PMID:22719947

  15. Genetic analysis of Black Tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands.

    PubMed

    Waqairatu, Salote S; Dierens, Leanne; Cowley, Jeff A; Dixon, Tom J; Johnson, Karyn N; Barnes, Andrew C; Li, Yutao

    2012-08-01

    The Black Tiger shrimp (Penaeus monodon) has a natural distribution range from East Africa to the South Pacific Islands. Although previous studies of Indo-Pacific P. monodon have found populations from the Indian Ocean and Australasia to differ genetically, their relatedness to South Pacific shrimp remains unknown. To address this, polymorphisms at eight shared microsatellite loci and haplotypes in a 418-bp mtDNA-CR (control region) sequence were examined across 682 P. monodon from locations spread widely across its natural range, including the South Pacific islands of Fiji, Palau, and Papua New Guinea (PNG). Observed microsatellite heterozygosities of 0.82-0.91, allele richness of 6.85-9.69, and significant mtDNA-CR haplotype variation indicated high levels of genetic diversity among the South Pacific shrimp. Analysis of microsatellite genotypes using a Bayesian STRUCTURE method segregated Indo-Pacific P. monodon into eight distinct clades, with Palau and PNG shrimp clustering among others from Southeast Asia and eastern Australia, respectively, and Fiji shrimp clustering as a distinct group. Phylogenetic analyses of mtDNA-CR haplotypes delineated shrimp into three groupings, with shrimp from Fiji again being distinct by sharing no haplotypes with other populations. Depending on regional location, the genetic structures and substructures identified from the genotyping and mtDNA-CR haplotype phylogeny could be explained by Metapopulation and/or Member-Vagrant type evolutionary processes. Neutrality tests of mutation-drift equilibrium and estimation of the time since population expansion supported a hypothesis that South Pacific P. monodon were colonized from Southeast Asia and eastern Australia during the Pleistocene period over 60,000 years ago when land bridges were more expansive and linked these regions more closely.

  16. Genetic analysis of Black Tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands

    PubMed Central

    Waqairatu, Salote S; Dierens, Leanne; Cowley, Jeff A; Dixon, Tom J; Johnson, Karyn N; Barnes, Andrew C; Li, Yutao

    2012-01-01

    The Black Tiger shrimp (Penaeus monodon) has a natural distribution range from East Africa to the South Pacific Islands. Although previous studies of Indo-Pacific P. monodon have found populations from the Indian Ocean and Australasia to differ genetically, their relatedness to South Pacific shrimp remains unknown. To address this, polymorphisms at eight shared microsatellite loci and haplotypes in a 418-bp mtDNA-CR (control region) sequence were examined across 682 P. monodon from locations spread widely across its natural range, including the South Pacific islands of Fiji, Palau, and Papua New Guinea (PNG). Observed microsatellite heterozygosities of 0.82–0.91, allele richness of 6.85–9.69, and significant mtDNA-CR haplotype variation indicated high levels of genetic diversity among the South Pacific shrimp. Analysis of microsatellite genotypes using a Bayesian STRUCTURE method segregated Indo-Pacific P. monodon into eight distinct clades, with Palau and PNG shrimp clustering among others from Southeast Asia and eastern Australia, respectively, and Fiji shrimp clustering as a distinct group. Phylogenetic analyses of mtDNA-CR haplotypes delineated shrimp into three groupings, with shrimp from Fiji again being distinct by sharing no haplotypes with other populations. Depending on regional location, the genetic structures and substructures identified from the genotyping and mtDNA-CR haplotype phylogeny could be explained by Metapopulation and/or Member–Vagrant type evolutionary processes. Neutrality tests of mutation-drift equilibrium and estimation of the time since population expansion supported a hypothesis that South Pacific P. monodon were colonized from Southeast Asia and eastern Australia during the Pleistocene period over 60,000 years ago when land bridges were more expansive and linked these regions more closely. PMID:22957205

  17. Spatio-temporal patterns of genetic variations in populations of yellowtail kingfish Seriola lalandi from the south-eastern Pacific Ocean and potential implications for its fishery management.

    PubMed

    Sepúlveda, F A; González, M T

    2017-01-01

    The genetic population structure and genetic diversity of yellowtail kingfish Seriola lalandi from the coastal south-eastern Pacific Ocean (SEP) were evaluated at spatiotemporal scale in order to understand the ecology of this species. Between 2012 and 2015, temporal and spatial population genetic structure and a low genetic diversity were detected in S. lalandi from SEP. These results suggest that S. lalandi specimens arriving annually from offshore to the SEP coast could come from at least two genetically distinct populations, revealing a particular life strategy (i.e. reproductive or habitat segregation) for this fish species. Therefore, the SEP coast might constitute a point of population mixing for this species. Additionally, the low genetic diversity of S. lalandi in the SEP could be a result of a founder effect or overfishing. Regardless of the process explaining the genetic diversity and structure of S. lalandi in this geographical area, this new information should be considered in order to implement successful fishery management of this resource in the South Pacific. © 2016 The Fisheries Society of the British Isles.

  18. Population divergence and gene flow in an endangered and highly mobile seabird

    PubMed Central

    Welch, A J; Fleischer, R C; James, H F; Wiley, A E; Ostrom, P H; Adams, J; Duvall, F; Holmes, N; Hu, D; Penniman, J; Swindle, K A

    2012-01-01

    Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future. PMID:22434012

  19. Population divergence and gene flow in an endangered and highly mobile seabird

    USGS Publications Warehouse

    Welch, A. J.; Fleischer, R. C.; James, H. F.; Wiley, A. E.; Ostrom, P. H.; Adams, J.; Duvall, F.; Holmes, N.; Hu, D.; Penniman, J.; Swindle, K. A.

    2012-01-01

    Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future.

  20. Islands within an island: Population genetic structure of the endemic Sardinian newt, Euproctus platycephalus.

    PubMed

    Ball, Sarah E; Bovero, Stefano; Sotgiu, Giuseppe; Tessa, Giulia; Angelini, Claudio; Bielby, Jon; Durrant, Christopher; Favelli, Marco; Gazzaniga, Enrico; Garner, Trenton W J

    2017-02-01

    The identification of historic and contemporary barriers to dispersal is central to the conservation of endangered amphibians, but may be hindered by their complex life history and elusive nature. The complementary information generated by mitochondrial (mtDNA) and microsatellite markers generates a valuable tool in elucidating population structure and the impact of habitat fragmentation. We applied this approach to the study of an endangered montane newt, Euproctus platycephalus . Endemic to the Mediterranean island of Sardinia, it is threatened by anthropogenic activity, disease, and climate change. We have demonstrated a clear hierarchy of structure across genetically divergent and spatially distinct subpopulations. Divergence between three main mountain regions dominated genetic partitioning with both markers. Mitochondrial phylogeography revealed a deep division dating to ca. 1 million years ago (Mya), isolating the northern region, and further differentiation between the central and southern regions ca. 0.5 Mya, suggesting an association with Pleistocene severe glacial oscillations. Our findings are consistent with a model of southward range expansion during glacial periods, with postglacial range retraction to montane habitat and subsequent genetic isolation. Microsatellite markers revealed further strong population structure, demonstrating significant divergence within the central region, and partial differentiation within the south. The northern population showed reduced genetic diversity. Discordance between mitochondrial and microsatellite markers at this scale indicated a further complexity of population structure, in keeping with male-biased dispersal and female philopatry. Our study underscores the need to elucidate cryptic population structure in the ecology and conservation strategies for endangered island-restricted amphibians, especially in the context of disease and climate change.

  1. Genetic Diversity and Population Structure of the Pelagic Thresher Shark (Alopias pelagicus) in the Pacific Ocean: Evidence for Two Evolutionarily Significant Units

    PubMed Central

    Cardeñosa, Diego; Hyde, John; Caballero, Susana

    2014-01-01

    There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range. PMID:25337814

  2. Genetic diversity and population structure of the pelagic thresher shark (Alopias pelagicus) in the Pacific Ocean: evidence for two evolutionarily significant units.

    PubMed

    Cardeñosa, Diego; Hyde, John; Caballero, Susana

    2014-01-01

    There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range.

  3. Geographic Population Structure in Epstein-Barr Virus Revealed by Comparative Genomics

    PubMed Central

    Chiara, Matteo; Manzari, Caterina; Lionetti, Claudia; Mechelli, Rosella; Anastasiadou, Eleni; Chiara Buscarinu, Maria; Ristori, Giovanni; Salvetti, Marco; Picardi, Ernesto; D’Erchia, Anna Maria; Pesole, Graziano; Horner, David S.

    2016-01-01

    Epstein-Barr virus (EBV) latently infects the majority of the human population and is implicated as a causal or contributory factor in numerous diseases. We sequenced 27 complete EBV genomes from a cohort of Multiple Sclerosis (MS) patients and healthy controls from Italy, although no variants showed a statistically significant association with MS. Taking advantage of the availability of ∼130 EBV genomes with known geographical origins, we reveal a striking geographic distribution of EBV sub-populations with distinct allele frequency distributions. We discuss mechanisms that potentially explain these observations, and their implications for understanding the association of EBV with human disease. PMID:27635051

  4. [VARIABILITY AND DETERMINING FACTORS OF THE BODY SIZE STRUCTURE OF THE INFRAPOPULATION OF COSMOCERCA ORNATA (NEMATODA: COSMOCERCIDAE) IN MARSH FROGS].

    PubMed

    Kirillov, A A; Kirillova, N Yu

    2015-01-01

    Variability of the body size in females of the Cosmocerca ornata (Dujardin, 1845), a parasite of marsh frogs, is studied. The influence of both biotic (age, sex and a phenotype of the host, density of the parasite population) and abiotic (a season of the year, water temperature) factors on the formation of the body size structure in the C. ornata hemipopulation (infrapopulation) is demonstrated. The body size structure of the C. ornata hemipopulation is characterized by the low level of individual variability as within certain subpopulation groups of amphibians (sex, age and phenotype), so within the population of marsh frogs as a whole. The more distinct are the differences in biology and ecology of these host subpopulations, the more pronounced is the variability in the body size of C ornata.

  5. Dissecting the genetic structure and admixture of four geographical Malay populations.

    PubMed

    Deng, Lian; Hoh, Boon-Peng; Lu, Dongsheng; Saw, Woei-Yuh; Twee-Hee Ong, Rick; Kasturiratne, Anuradhani; de Silva, H Janaka; Zilfalil, Bin Alwi; Kato, Norihiro; Wickremasinghe, Ananda R; Teo, Yik-Ying; Xu, Shuhua

    2015-09-23

    The Malay people are an important ethnic composition in Southeast Asia, but their genetic make-up and population structure remain poorly studied. Here we conducted a genome-wide study of four geographical Malay populations: Peninsular Malaysian Malay (PMM), Singaporean Malay (SGM), Indonesian Malay (IDM) and Sri Lankan Malay (SLM). All the four Malay populations showed substantial admixture with multiple ancestries. We identified four major ancestral components in Malay populations: Austronesian (17%-62%), Proto-Malay (15%-31%), East Asian (4%-16%) and South Asian (3%-34%). Approximately 34% of the genetic makeup of SLM is of South Asian ancestry, resulting in its distinct genetic pattern compared with the other three Malay populations. Besides, substantial differentiation was observed between the Malay populations from the north and the south, and between those from the west and the east. In summary, this study revealed that the genetic identity of the Malays comprises a mixed entity of multiple ancestries represented by Austronesian, Proto-Malay, East Asian and South Asian, with most of the admixture events estimated to have occurred 175 to 1,500 years ago, which in turn suggests that geographical isolation and independent admixture have significantly shaped the genetic architectures and the diversity of the Malay populations.

  6. Mineralogic control on abundance and diversity of surface-adherent microbial communities

    USGS Publications Warehouse

    Mauck, Brena S.; Roberts, Jennifer A.

    2007-01-01

    In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated activities in subsurface environments extend to the microscale and cautions over-interpretation of highly sample-dependent measurements in the context of interpreting field data.

  7. Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.)

    PubMed Central

    Blair, Matthew W.; Soler, Alvaro; Cortés, Andrés J.

    2012-01-01

    Wild accessions of crops and landraces are valuable genetic resources for plant breeding and for conserving alleles and gene combinations in planta. The primary genepool of cultivated common beans includes wild accessions of Phaseolus vulgaris. These are of the same species as the domesticates and therefore are easily crossable with cultivated accessions. Molecular marker assessment of wild beans and landraces is important for the proper utilization and conservation of these important genetic resources. The goal of this research was to evaluate a collection of wild beans with fluorescent microsatellite or simple sequence repeat markers and to determine the population structure in combination with cultivated beans of all known races. Marker diversity in terms of average number of alleles per marker was high (13) for the combination of 36 markers and 104 wild genotypes that was similar to the average of 14 alleles per marker found for the 606 cultivated genotypes. Diversity in wild beans appears to be somewhat higher than in cultivated beans on a per genotype basis. Five populations or genepools were identified in structure analysis of the wild beans corresponding to segments of the geographical range, including Mesoamerican (Mexican), Guatemalan, Colombian, Ecuadorian-northern Peruvian and Andean (Argentina, Bolivia and Southern Peru). The combined analysis of wild and cultivated accessions showed that the first and last of these genepools were related to the cultivated genepools of the same names and the penultimate was found to be distinct but not ancestral to the others. The Guatemalan genepool was very novel and perhaps related to cultivars of race Guatemala, while the Colombian population was also distinct. Results suggest geographic isolation, founder effects or natural selection could have created the different semi-discrete populations of wild beans and that multiple domestications and introgression were involved in creating the diversity of cultivated beans. PMID:23145179

  8. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms.

    PubMed

    Shi, Cheng; Runnels, Alexi M; Murphy, Coleen T

    2017-03-14

    Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis , and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation.

  9. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala

    PubMed Central

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M.; Cocas, Laura A.; Huntsman, Molly M.; Corbin, Joshua G.

    2009-01-01

    Development of the amygdala, a central structure of the limbic system, remains poorly understood. Using mouse as a model, our studies reveal that two spatially distinct and early specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature amygdala. We find that Dbx1+ cells of the ventral pallium (VP) generate excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a novel migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1+ POA-derived population migrates specifically to the amygdala, and as defined by both immunochemical and electrophysiological criteria, generates a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a novel progenitor pool dedicated to the limbic system. PMID:19136974

  10. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala.

    PubMed

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M; Cocas, Laura A; Huntsman, Molly M; Corbin, Joshua G

    2009-02-01

    The development of the amygdala, a central structure of the limbic system, remains poorly understood. We found that two spatially distinct and early-specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature mouse amygdala. We found that Dbx1-positive cells of the ventral pallium generate the excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a previously unknown migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1-positive, POA-derived population migrated specifically to the amygdala and, as defined by both immunochemical and electrophysiological criteria, generated a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a previously unknown progenitor pool dedicated to the limbic system.

  11. Population genetics of four heavily exploited shark species around the Arabian Peninsula

    PubMed Central

    Spaet, Julia L Y; Jabado, Rima W; Henderson, Aaron C; Moore, Alec B M; Berumen, Michael L

    2015-01-01

    The northwestern Indian Ocean harbors a number of larger marine vertebrate taxa that warrant the investigation of genetic population structure given remarkable spatial heterogeneity in biological characteristics such as distribution, behavior, and morphology. Here, we investigate the genetic population structure of four commercially exploited shark species with different biological characteristics (Carcharhinus limbatus, Carcharhinus sorrah, Rhizoprionodon acutus, and Sphyrna lewini) between the Red Sea and all other water bodies surrounding the Arabian Peninsula. To assess intraspecific patterns of connectivity, we constructed statistical parsimony networks among haplotypes and estimated (1) population structure; and (2) time of most recent population expansion, based on mitochondrial control region DNA and a total of 20 microsatellites. Our analysis indicates that, even in smaller, less vagile shark species, there are no contemporary barriers to gene flow across the study region, while historical events, for example, Pleistocene glacial cycles, may have affected connectivity in C. sorrah and R. acutus. A parsimony network analysis provided evidence that Arabian S. lewini may represent a population segment that is distinct from other known stocks in the Indian Ocean, raising a new layer of conservation concern. Our results call for urgent regional cooperation to ensure the sustainable exploitation of sharks in the Arabian region. PMID:26120422

  12. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord.

    PubMed

    Ryge, Jesper; Westerdahl, Ann-Charlotte; Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord.

  13. Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    PubMed Central

    Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    Background In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. Methodology/Principal Findings We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50–250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. Conclusions/Significance We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord. PMID:18923679

  14. Genetic diversity of Morato's Digger Toad, Proceratophrys moratoi: spatial structure, gene flow, effective size and the need for differential management strategies of populations

    PubMed Central

    Arruda, Mauricio P.; Costa, William P.; Recco-Pimentel, Shirlei M.

    2017-01-01

    Abstract The Morato's Digger Toad, Proceratophrys moratoi, is a critically endangered toad species with a marked population decline in southern Brazilian Cerrado. Despite this, new populations are being discovered, primarily in the northern part of the distribution range, which raises a number of questions with regard to the conservation status of the species. The present study analyzed the genetic diversity of the species based on microsatellite markers. Our findings permitted the identification of two distinct management units. We found profound genetic structuring between the southern populations, on the left margin of the Tietê River, and all other populations. A marked reduction was observed in the contemporary gene flow among the central populations that are most affected by anthropogenic impacts, such as extensive sugar cane plantations, which presumably decreases habitat connectivity. The results indicated reduced diversity in the southern populations which, combined with a smaller effective population size, may make these populations more susceptible to extinction. We recommend the reclassification of P. moratoi as vulnerable and the establishment of a special protection program for the southern populations. Our results provide important insights about the local extinction of southern populations of this toad. PMID:28590500

  15. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  16. Genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay

    USGS Publications Warehouse

    Duda, T. F.

    1994-01-01

    The genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay was described using starch gel electrophoresis at eight presumptive loci. Specimens were taken from five environmentally distinct sites located throughout the bay. The population maintains a high degree of genetic variation, with a mean heterozygosity of 0.295, a mean polymorphism of 0.75, and an average of 3.70 alleles per locus. The population is genetically homogeneous, as evidenced from genetic distance values and F-statistics. However, heterogeneity of populations was indicated from a contingency chi-square test. Significant deviations from Hardy-Weinberg equilibrium and heterozygote deficiencies were found at the Lap-1 locus for all populations and at the Lap-2 locus for a single population. High levels of variability could represent a universal characteristic of invading species, the levels of variability in the source population(s), and/or the dynamics of the introduction. Lack of differentiation between subpopulations may be due to the immaturity of the San Francisco Bay population, the “general purpose” phenotype genetic strategy of the species, high rates of gene flow in the population, and/or the selective neutrality of the loci investigated.

  17. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery

    PubMed Central

    Martiniuk, Jonathan T.; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards. PMID:27551920

  18. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    PubMed

    Martiniuk, Jonathan T; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  19. Application of a Dot Blot Hybridization Platform to Assess Streptococcus uberis Population Structure in Dairy Herds

    PubMed Central

    Albuquerque, Pedro; Ribeiro, Niza; Almeida, Alexandre; Panschin, Irena; Porfirio, Afonso; Vales, Marta; Diniz, Francisca; Madeira, Helena; Tavares, Fernando

    2017-01-01

    Streptococcus uberis is considered one of the most important pathogens associated with bovine mastitis. While traditionally acknowledged as an environmental pathogen, S. uberis has been shown to adopt a contagious epidemiological pattern in several dairy herds. Since different control strategies are employed depending on the mode of transmission, in-depth studies of S. uberis populations are essential to determine the best practices to control this pathogen. In this work, we optimized and validated a dot blot platform, combined with automatic image analysis, to rapidly assess the population structure of infective S. uberis, and evaluated its efficiency when compared to multilocus sequence analysis (MLSA) genotyping. Two dairy herds with prevalent S. uberis infections were followed in a 6 month period, in order to collect and characterize isolates from cows with persistent infections. These herds, located in Portugal (Barcelos and Maia regions), had similar management practices, with the herd from Barcelos being smaller and having a better milking parlor management, since infected cow segregation was immediate. A total of 54 S. uberis isolates were obtained from 24 different cows from the two herds. To overcome operator-dependent analysis of the dot blots and increase the technique's consistency and reliability, the hybridization signals were converted into probability values, with average probabilities higher than 0.5 being considered positive results. These data allowed to confirm the isolates' identity as S. uberis using taxa-specific markers and to determine the presence of virulence- and antibiotic resistance-related genes. In addition, MLSA allowed to disclose the most prevalent S. uberis clonal lineages in both herds. Seven different clusters were identified, with Barcelos showing a high clonal diversity and Maia a dominant lineage infecting most cows, suggesting distinct epidemiological patterns, with S. uberis displaying an environmental or contagious transmission pattern depending on the herd. Overall, this work showed the utility of dot blot and MLSA to characterize population structure and epidemiological patterns of mastitis-causing S. uberis. This approach allowed to disclose prevalent virulence patterns and clonal lineages of S. uberis in two distinct herds, and gain insights on the impact of herd management practices on pathogen population structure. PMID:28174566

  20. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity

    PubMed Central

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen

    2015-01-01

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952

  1. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-04-28

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.

  2. Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids?

    PubMed

    Cevallos, Stefania; Sánchez-Rodríguez, Aminael; Decock, Cony; Declerck, Stéphane; Suárez, Juan Pablo

    2017-04-01

    In epiphytic orchids, distinctive groups of fungi are involved in the symbiotic association. However, little is known about the factors that determine the mycorrhizal community structure. Here, we analyzed the orchid mycorrhizal fungi communities associated with three sympatric Cymbidieae epiphytic tropical orchids (Cyrtochilum flexuosum, Cyrtochilum myanthum, and Maxillaria calantha) at two sites located within the mountain rainforest of southern Ecuador. To characterize these communities at each orchid population, the ITS2 region was analyzed by Illumina MiSeq technology. Fifty-five mycorrhizal fungi operational taxonomic units (OTUs) putatively attributed to members of Serendipitaceae, Ceratobasidiaceae and Tulasnellaceae were identified. Significant differences in mycorrhizal communities were detected between the three sympatric orchid species as well as among sites/populations. Interestingly, some mycorrhizal OTUs overlapped among orchid populations. Our results suggested that populations of studied epiphytic orchids have site-adjusted mycorrhizal communities structured around keystone fungal species. Interaction with multiple mycorrhizal fungi could favor orchid site occurrence and co-existence among several orchid species.

  3. A population genetic analysis of the midget faded rattlesnake in Wyoming

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Parker, J.M.

    2010-01-01

    Little is known about the population biology of midget faded rattlesnakes, a sensitive subspecies of the Western Rattlesnake, despite conservation efforts to protect them. We conducted a molecular genetic study of midget faded rattlesnakes in southwestern Wyoming to investigate population genetic structure in this area, particularly with reference to Flaming Gorge Reservoir and its associated human activities, and to document levels of genetic diversity. We genotyped 229 snakes from 11 sampling sites using 9 microsatellite loci. We found significant levels of genetic structure among sites that were better explained by geographic region and isolation by distance than by position relative to waterways. Sites on either side of the reservoir at its widest point were not significantly different. Six of the sites showed signatures of a population bottleneck using an alpha value of 0.05. Three of these bottlenecked sites (the three most northern) were the most genetically distinct and occur in areas of greatest impact from human activity.

  4. Genetic structure in the Anaxyrus boreas species group (anura, Bufonidae): an evaluation of the Southern Rocky Mountain population

    USGS Publications Warehouse

    Switzer, John F.; Johnson, Robin L.; Lubinski, Barbara A.; King, Tim L.

    2009-01-01

    The Anaxyrus boreas species group is comprised of four species endemic to the western United States: A. boreas, A. canorus, A. exsul, and A. nelsoni. Disjunct populations of the widespread western toad Anaxyrus boreas from Colorado and southern Wyoming, the southern rocky mountain population (SRMP), were previously candidates for listing under the United States Endangered Species Act (ESA) as a distinct population segment (DPS), but were removed due to a lack of significant genetic differentiation in preliminary studies. The purpose of this study was to conduct phylogeographic and population genetic analyses of A. boreas and three related species using mitochondrial DNA sequence data and nuclear microsatellite genotype data. The study is specifically focused on testing the evolutionary significance of the SRMP.

  5. Individual, Cultural and Structural Predictors of Vaccine Safety Confidence and Influenza Vaccination Among Hispanic Female Subgroups.

    PubMed

    Moran, Meghan Bridgid; Chatterjee, Joyee S; Frank, Lauren B; Murphy, Sheila T; Zhao, Nan; Chen, Nancy; Ball-Rokeach, Sandra

    2017-08-01

    Rates of influenza vaccination among US Hispanics are lower than for non-Hispanic whites, yet little is known about factors affecting vaccination in this population. Additionally, although Hispanics are a diverse population with culturally distinct subgroups, they are often treated as a homogenous population. This study (1) examines how confidence in vaccine safety and influenza vaccine use vary by Hispanic subgroup and (2) identifies individual, cultural and structural correlates of these outcomes. This study analyzed survey data from 1565 Hispanic women who were recruited at clinic- and community-based sites in Los Angeles. Education, healthcare coverage, acculturation, fatalism, and religiosity were predictors of influenza vaccination behavior and predictors varied by subgroup. These findings provide guidance for how influenza vaccine promotion efforts can be developed for Hispanic subgroups. Confidence in the safety of a vaccine is a major predictor of flu vaccination and an important modifiable target for intervention.

  6. Phylogeography and alpha taxonomy of the common dolphin (Delphinus sp.).

    PubMed

    Natoli, A; Cañadas, A; Peddemors, V M; Aguilar, A; Vaquero, C; Fernández-Piqueras, P; Hoelzel, A R

    2006-05-01

    The resolution of taxonomic classifications for delphinid cetaceans has been problematic, especially for species in the genera Delphinus, Tursiops and Stenella. The frequent lack of correspondence between morphological and genetic differentiation in these species raises questions about the mechanisms responsible for their evolution. In this study we focus on the genus Delphinus, and use molecular markers to address questions about speciation and the evolution of population structure. Delphinus species have a worldwide distribution and show a high degree of morphological variation. Two distinct morphotypes, long-beaked and short-beaked, have been considered different species named D. capensis and D. delphis, respectively. However, genetic differentiation between these two forms has only been demonstrated in the Pacific. We analysed samples from eight different geographical regions, including two morphologically defined long-beaked form populations, and compared these with the eastern North Pacific populations. We found high differentiation among the populations described as long-beaked instead of the expected monophyly, suggesting that these populations may have evolved from independent events converging on the same morphotype. We observed low genetic differentiation among the short-beaked populations across a large geographical scale. We interpret these phylogeographical patterns in the context of life history and population structure in related species.

  7. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species.

    PubMed

    Schunter, C; Carreras-Carbonell, J; Macpherson, E; Tintoré, J; Vidal-Vijande, E; Pascual, A; Guidetti, P; Pascual, M

    2011-12-01

    Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population F(ST) values ranged between -0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria-Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts. © 2011 Blackwell Publishing Ltd.

  8. Fine-scale population structure in Atlantic salmon from Maine's Penobscot River drainage

    USGS Publications Warehouse

    Spidle, A.P.; Bane, Schill W.; Lubinski, B.A.; King, T.L.

    2001-01-01

    We report a survey of micro satellite DNA variation in Atlantic salmon from the unimpounded lower reaches of Maine's Penobscot River. Our analysis indicates that Atlantic salmon in the Penobscot River are distinct from other populations that have little or no history of human-mediated repopulation, including two of its tributaries, Cove Brook and Kenduskeag Stream, another Maine river, the Ducktrap, and Canada's Miramichi and Gander rivers. Significant heterogeneity was detected in allele frequency among all three subpopulations sampled in the Penobscot drainage. The high resolution of the 12-locus suite was quantified using maximum likelihood assignment tests, which correctly identified the source of 90.4-96.1% of individuals from within the Penobscot drainage. Current populations are clearly isolated from each other, however we are unable to determine from the present data whether the populations in Cove Brook and Kenduskeag Stream are recently diverged from populations stocked into the Penobscot River over the last century, or are aboriginal in origin. The degree of population structure identified in the Penobscot drainage is noteworthy in light of its lengthy history of systematic restocking, the geographic proximity of the subpopulations, and the extent of the differentiation. Similar population structure on this extremely limited geographic scale could exist among Atlantic salmon runs elsewhere in Maine and throughout the species' range and should be taken into account for future management decisions.

  9. Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.; Wiacek, Talia; Williams, Ian S.

    2005-01-01

    Genetic variation at 11 microsatellite loci described population genetic structure for Oncorhynchus mykiss in the Central Valley, California. Spatial and temporal variation was examined as well as relationships between hatchery and putative natural spawning anadromous stocks. Genetic diversity was analyzed at two distinct spatial scales: fine-scale within drainage for five populations on Clear Creek; between and among drainage diversity for 23 populations. Significant regional spatial structure was apparent, both within Clear Creek and among rainbow trout populations throughout the Central Valley. Significant differences in allelic frequencies were found among most river or drainage systems. Less than 1% of the molecular variance could be attributed to differences found between drainages. Hatchery populations were shown to carry similar genetic diversity to geographically proximate wild populations. Central Valley M = 0.626 (below the M < 0.68 threshold) supported recent population reductions within the Central Valley. However, average estimated effective population size was relatively high (Ne = 5066). Significant allelic differences were found in rainbow trout collected above and below impassable dams on the American, Yuba, Stanislaus and Tuolumne rivers. Rainbow trout sampled in Spring Creek were extremely bottlenecked with allelic variation at only two loci and an estimated effective population size of 62, suggesting some local freshwater O. mykiss stocks may be declining rapidly. These data support significant genetic population structure for steelhead and rainbow trout populations within the Central Valley across multiple scales. Careful consideration of this genetic diversity and its distribution across the landscape should be part of future conservation and restoration efforts. 

  10. SimBA: simulation algorithm to fit extant-population distributions.

    PubMed

    Parida, Laxmi; Haiminen, Niina

    2015-03-14

    Simulation of populations with specified characteristics such as allele frequencies, linkage disequilibrium etc., is an integral component of many studies, including in-silico breeding optimization. Since the accuracy and sensitivity of population simulation is critical to the quality of the output of the applications that use them, accurate algorithms are required to provide a strong foundation to the methods in these studies. In this paper we present SimBA (Simulation using Best-fit Algorithm) a non-generative approach, based on a combination of stochastic techniques and discrete methods. We optimize a hill climbing algorithm and extend the framework to include multiple subpopulation structures. Additionally, we show that SimBA is very sensitive to the input specifications, i.e., very similar but distinct input characteristics result in distinct outputs with high fidelity to the specified distributions. This property of the simulation is not explicitly modeled or studied by previous methods. We show that SimBA outperforms the existing population simulation methods, both in terms of accuracy as well as time-efficiency. Not only does it construct populations that meet the input specifications more stringently than other published methods, SimBA is also easy to use. It does not require explicit parameter adaptations or calibrations. Also, it can work with input specified as distributions, without an exemplar matrix or population as required by some methods. SimBA is available at http://researcher.ibm.com/project/5669 .

  11. Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon

    PubMed Central

    Banaticla-Hilario, Maria Celeste N; van den Berg, Ronald G; Hamilton, Nigel Ruaraidh Sackville; McNally, Kenneth L

    2013-01-01

    Genetic variation patterns within and between species may change along geographic gradients and at different spatial scales. This was revealed by microsatellite data at 29 loci obtained from 119 accessions of three Oryza series Sativae species in Asia Pacific: Oryza nivara Sharma and Shastry, O. rufipogon Griff., and O. meridionalis Ng. Genetic similarities between O. nivara and O. rufipogon across their distribution are evident in the clustering and ordination results and in the large proportion of shared alleles between these taxa. However, local-level species separation is recognized by Bayesian clustering and neighbor-joining analyses. At the regional scale, the two species seem more differentiated in South Asia than in Southeast Asia as revealed by FST analysis. The presence of strong gene flow barriers in smaller spatial units is also suggested in the analysis of molecular variance (AMOVA) results where 64% of the genetic variation is contained among populations (as compared to 26% within populations and 10% among species). Oryza nivara (HE = 0.67) exhibits slightly lower diversity and greater population differentiation than O. rufipogon (HE = 0.70). Bayesian inference identified four, and at a finer structural level eight, genetically distinct population groups that correspond to geographic populations within the three taxa. Oryza meridionalis and the Nepalese O. nivara seemed diverged from all the population groups of the series, whereas the Australasian O. rufipogon appeared distinct from the rest of the species. PMID:24101993

  12. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions.

    PubMed

    Zoldoš, Vlatka; Biruš, Ivan; Muratovic, Edina; Šatovic, Zlatko; Vojta, Aleksandar; Robin, Odile; Pustahija, Fatima; Bogunic, Faruk; Vicic Bockor, Vedrana; Siljak-Yakovlev, Sonja

    2018-01-01

    Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpentine soil. Amplified fragment length polymorphism and methylation-sensitive amplification polymorphism analyses revealed that the three populations did not differentiate genetically, but were clearly separated in three distinct clusters according to DNA methylation profiles. Principal coordinate analysis showed that overall epigenetic variation was closely related to habitat conditions. A new methylation-sensitive amplification polymorphism scoring approach allowed identification of mainly unmethylated (φST = 0.190) and fully CpG methylated (φST = 0.118) subepiloci playing a role in overall population differentiation, in comparison with hemimethylated sites (φST = 0.073). In addition, unusual rDNA repatterning and the presence of B chromosomes bearing 5S rDNA loci were recorded in the population growing on serpentine soil, suggesting dynamic chromosome rearrangements probably linked to global genome demethylation, which might have reactivated some mobile elements. We discuss our results considering our earlier data on morphology and leaf anatomy of several L. bosniacum populations, and suggest a possible role of epigenetics as a key element in population differentiation associated with environmental stress in these particular lily populations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Reconstructing population histories from single nucleotide polymorphism data.

    PubMed

    Sirén, Jukka; Marttinen, Pekka; Corander, Jukka

    2011-01-01

    Population genetics encompasses a strong theoretical and applied research tradition on the multiple demographic processes that shape genetic variation present within a species. When several distinct populations exist in the current generation, it is often natural to consider the pattern of their divergence from a single ancestral population in terms of a binary tree structure. Inference about such population histories based on molecular data has been an intensive research topic in the recent years. The most common approach uses coalescent theory to model genealogies of individuals sampled from the current populations. Such methods are able to compare several different evolutionary scenarios and to estimate demographic parameters. However, their major limitation is the enormous computational complexity associated with the indirect modeling of the demographies, which limits the application to small data sets. Here, we propose a novel Bayesian method for inferring population histories from unlinked single nucleotide polymorphisms, which is applicable also to data sets harboring large numbers of individuals from distinct populations. We use an approximation to the neutral Wright-Fisher diffusion to model random fluctuations in allele frequencies. The population histories are modeled as binary rooted trees that represent the historical order of divergence of the different populations. A combination of analytical, numerical, and Monte Carlo integration techniques are utilized for the inferences. A particularly important feature of our approach is that it provides intuitive measures of statistical uncertainty related with the estimates computed, which may be entirely lacking for the alternative methods in this context. The potential of our approach is illustrated by analyses of both simulated and real data sets.

  14. The mechanism of monomer transfer between two structurally distinct PrP oligomers

    PubMed Central

    Armiento, Aurora; Martin, Davy; Lepejova, Nad’a

    2017-01-01

    In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population. PMID:28746342

  15. The mechanism of monomer transfer between two structurally distinct PrP oligomers.

    PubMed

    Armiento, Aurora; Moireau, Philippe; Martin, Davy; Lepejova, Nad'a; Doumic, Marie; Rezaei, Human

    2017-01-01

    In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.

  16. Spatial genetic and morphologic structure of wolves and coyotes in relation to environmental heterogeneity in a Canis hybrid zone.

    PubMed

    Benson, John F; Patterson, Brent R; Wheeldon, Tyler J

    2012-12-01

    Eastern wolves have hybridized extensively with coyotes and gray wolves and are listed as a 'species of special concern' in Canada. However, a distinct population of eastern wolves has been identified in Algonquin Provincial Park (APP) in Ontario. Previous studies of the diverse Canis hybrid zone adjacent to APP have not linked genetic analysis with field data to investigate genotype-specific morphology or determine how resident animals of different ancestry are distributed across the landscape in relation to heterogeneous environmental conditions. Accordingly, we studied resident wolves and coyotes in and adjacent to APP to identify distinct Canis types, clarify the extent of the APP eastern wolf population beyond the park boundaries and investigate fine-scale spatial genetic structure and landscape-genotype associations in the hybrid zone. We documented three genetically distinct Canis types within the APP region that also differed morphologically, corresponding to putative gray wolves, eastern wolves and coyotes. We also documented a substantial number of hybrid individuals (36%) that were admixed between 2 or 3 of the Canis types. Breeding eastern wolves were less common outside of APP, but occurred in some unprotected areas where they were sympatric with a diverse combination of coyotes, gray wolves and hybrids. We found significant spatial genetic structure and identified a steep cline extending west from APP where the dominant genotype shifted abruptly from eastern wolves to coyotes and hybrids. The genotypic pattern to the south and northwest was a more complex mosaic of alternating genotypes. We modelled genetic ancestry in response to prey availability and human disturbance and found that individuals with greater wolf ancestry occupied areas of higher moose density and fewer roads. Our results clarify the structure of the Canis hybrid zone adjacent to APP and provide unique insight into environmental conditions influencing hybridization dynamics between wolves and coyotes. © 2012 Blackwell Publishing Ltd.

  17. Human impact in naturally patched small populations: genetic structure and conservation of the burrowing rodent, tuco-tuco (Ctenomys lami).

    PubMed

    Lopes, Carla M; de Freitas, Thales R O

    2012-01-01

    Isolated or semi-isolated small populations are commonly found among species, due to a naturally patchy occupancy of suitable habitats or also as a result of habitat alterations. These populations are subject to an increased risk of local extinction because they are more vulnerable to demographic, genetic, and environmental stochasticity. Considering that natural areas have been becoming progressively more fragmented and smaller, understanding the genetic structure and evolutionary dynamics of small populations is critical. Ctenomys lami has 26 karyotypes distributed in a small area (936 km(2)) continually modified by human actions. We assessed the genetic geographical structure of this species, examining 178 specimens sampled on a fine scale, using information from chromosomal variability, mitochondrial DNA control region and cytochrome c oxidase subunit I sequences, and 14 microsatellite loci. The observed isolation-by-distance pattern and a clinal genetic variation suggest a stepping-stone population model. The results did not indicate genetic structuring associated with distinct karyotypes. However, mitochondrial and nuclear molecular markers demonstrated the existence of 2 demes, which are not completely isolated but are probably reinforced by a geographical barrier. The vulnerability of C. lami is greater than previously supposed, and our data support the designation of one Evolutionary Significant Unit and one Management Unit, and also the inclusion of this species' conservation status as vulnerable.

  18. Phylogeography and genetic ancestry of tigers (Panthera tigris).

    PubMed

    Luo, Shu-Jin; Kim, Jae-Heup; Johnson, Warren E; van der Walt, Joelle; Martenson, Janice; Yuhki, Naoya; Miquelle, Dale G; Uphyrkina, Olga; Goodrich, John M; Quigley, Howard B; Tilson, Ronald; Brady, Gerald; Martelli, Paolo; Subramaniam, Vellayan; McDougal, Charles; Hean, Sun; Huang, Shi-Qiang; Pan, Wenshi; Karanth, Ullas K; Sunquist, Melvin; Smith, James L D; O'Brien, Stephen J

    2004-12-01

    Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.

  19. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax.

    PubMed

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-09-22

    Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2-0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection].

  20. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean.

    PubMed

    Bedoya, Claudia A; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L

    2017-01-01

    This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes.

  1. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean

    PubMed Central

    Bedoya, Claudia A.; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M.; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L.

    2017-01-01

    This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes. PMID:28403177

  2. Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1

    PubMed Central

    Ryu, Stephen I.; Shenoy, Krishna V.; Cunningham, John P.; Churchland, Mark M.

    2016-01-01

    Cortical firing rates frequently display elaborate and heterogeneous temporal structure. One often wishes to compute quantitative summaries of such structure—a basic example is the frequency spectrum—and compare with model-based predictions. The advent of large-scale population recordings affords the opportunity to do so in new ways, with the hope of distinguishing between potential explanations for why responses vary with time. We introduce a method that assesses a basic but previously unexplored form of population-level structure: when data contain responses across multiple neurons, conditions, and times, they are naturally expressed as a third-order tensor. We examined tensor structure for multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1 datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuron mode, while all M1 datasets were simplest along the condition mode. These differences could not be inferred from surface-level response features. Formal considerations suggest why tensor structure might differ across modes. For idealized linear models, structure is simplest across the neuron mode when responses reflect external variables, and simplest across the condition mode when responses reflect population dynamics. This same pattern was present for existing models that seek to explain motor cortex responses. Critically, only dynamical models displayed tensor structure that agreed with the empirical M1 data. These results illustrate that tensor structure is a basic feature of the data. For M1 the tensor structure was compatible with only a subset of existing models. PMID:27814353

  3. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis.

    PubMed

    Herrera, Carlos M; Bazaga, Pilar

    2010-08-01

    *In plants, epigenetic variations based on DNA methylation are often heritable and could influence the course of evolution. Before this hypothesis can be assessed, fundamental questions about epigenetic variation remain to be addressed in a real-world context, including its magnitude, structuring within and among natural populations, and autonomy in relation to the genetic context. *Extent and patterns of cytosine methylation, and the relationship to adaptive genetic divergence between populations, were investigated for wild populations of the southern Spanish violet Viola cazorlensis (Violaceae) using the methylation-sensitive amplified polymorphism (MSAP) technique, a modification of the amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation. *The genome of V. cazorlensis plants exhibited extensive levels of methylation, and methylation-based epigenetic variation was structured into distinct between- and within- population components. Epigenetic differentiation of populations was correlated with adaptive genetic divergence revealed by a Bayesian population-genomic analysis of AFLP data. Significant associations existed at the individual genome level between adaptive AFLP loci and the methylation state of methylation-susceptible MSAP loci. *Population-specific, divergent patterns of correlated selection on epigenetic and genetic individual variation could account for the coordinated epigenetic-genetic adaptive population differentiation revealed by this study.

  4. Evaluation of Genetic Diversity, Population Structure, and Relationship Between Legendary Vechur Cattle and Crossbred Cattle of Kerala State, India.

    PubMed

    Radhika, G; Aravindakshan, T V; Jinty, S; Ramya, K

    2018-01-02

    The legendary Vechur cattle of Kerala, described as a very short breed, and the crossbred (CB) Sunandini cattle population exhibited great phenotypic variation; hence, the present study attempted to analyze the genetic diversity existing between them. A set of 14 polymorphic microsatellites were chosen from FAO-ISAG panel and amplified from genomic DNA isolated from blood samples of 30 Vechur and 64 unrelated crossbred cattle, using fluorescent labeled primers. Both populations revealed high genetic diversity as evidenced from high observed number of alleles, Polymorphic Information Content and expected heterozygosity. Observed heterozygosity was lesser (0.699) than expected (0.752) in Vechur population which was further supported by positive F IS value of 0.1149, indicating slight level of inbreeding in Vechur population. Overall, F ST value was 0.065, which means genetic differentiation between crossbred and Vechur population was 6.5%, indicating that the crossbred cattle must have differentiated into a definite population that is different from the indigenous Vechur cows. Structure analysis indicated that the two populations showed distinct differences, with two underlying clusters. The present study supports the separation between Taurine and Zebu cattle and throws light onto the genetic diversity and relationship between native Vechur and crossbred cattle populations in Kerala state.

  5. Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression

    PubMed Central

    Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19–0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure. PMID:25265539

  6. Population structure of the Chagas disease vector, Triatoma infestans, at the urban-rural interface

    PubMed Central

    Foley, Erica A.; Khatchikian, Camilo E.; Hwang, Josephine; Ancca-Juárez, Jenny; Borrini-Mayori, Katty; Quıspe-Machaca, Victor R.; Levy, Michael Z.; Brisson, Dustin

    2013-01-01

    The increasing rate of biological invasions resulting from human transport or human-mediated changes to the environment have had devastating ecologic and public health consequences. The kissing bug, Triatoma infestans, has dispersed through the Peruvian city of Arequipa. The biological invasion of this insect has resulted in a public health crisis, putting thousands of residents of this city at risk of infection by Trypanosoma cruzi and subsequent development of Chagas disease. Here we show that populations of Tria. Infestans in geographically distinct districts within and around this urban center share a common recent evolutionary history although current gene flow is restricted even between proximal sites. The population structure among the Tria. Infestans in different districts is not correlated with the geographic distance between districts. These data suggest that migration among the districts is mediated by factors beyond the short-range migratory capabilities of Tria. Infestans and that human movement has played a significant role in the structuring of the Tria. Infestans population in the region. Rapid urbanization across southern South America will continue to create suitable environments for Tria. Infestans and knowledge of its urban dispersal patterns may play a fundamental role in mitigating human disease risk. PMID:24103030

  7. Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal and anthropogenic barriers to movement

    PubMed Central

    Bracken, Fiona S A; Hoelzel, A Rus; Hume, John B; Lucas, Martyn C

    2015-01-01

    The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater-resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater-resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine-scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater-resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater-resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers. PMID:25689694

  8. Ethnicity and Population Structure in Personal Naming Networks

    PubMed Central

    Mateos, Pablo; Longley, Paul A.; O'Sullivan, David

    2011-01-01

    Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how ‘naming networks’, constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply ‘emerge’ from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new understandings of migration, identity, integration and social interaction across the world. PMID:21909399

  9. Genetic connectivity across marginal habitats: the elephants of the Namib Desert.

    PubMed

    Ishida, Yasuko; Van Coeverden de Groot, Peter J; Leggett, Keith E A; Putnam, Andrea S; Fox, Virginia E; Lai, Jesse; Boag, Peter T; Georgiadis, Nicholas J; Roca, Alfred L

    2016-09-01

    Locally isolated populations in marginal habitats may be genetically distinctive and of heightened conservation concern. Elephants inhabiting the Namib Desert have been reported to show distinctive behavioral and phenotypic adaptations in that severely arid environment. The genetic distinctiveness of Namibian desert elephants relative to other African savanna elephant (Loxodonta africana) populations has not been established. To investigate the genetic structure of elephants in Namibia, we determined the mitochondrial (mt) DNA control region sequences and genotyped 17 microsatellite loci in desert elephants (n = 8) from the Hoanib River catchment and the Hoarusib River catchment. We compared these to the genotypes of elephants (n = 77) from other localities in Namibia. The mtDNA haplotype sequences and frequencies among desert elephants were similar to those of elephants in Etosha National Park, the Huab River catchment, the Ugab River catchment, and central Kunene, although the geographically distant Caprivi Strip had different mtDNA haplotypes. Likewise, analysis of the microsatellite genotypes of desert-dwelling elephants revealed that they were not genetically distinctive from Etosha elephants, and there was no evidence for isolation by distance across the Etosha region. These results, and a review of the historical record, suggest that a high learning capacity and long-distance migrations allowed Namibian elephants to regularly shift their ranges to survive in the face of high variability in climate and in hunting pressure.

  10. Genetic relationships among American donkey populations: insights into the process of colonization.

    PubMed

    Jordana, J; Ferrando, A; Miró, J; Goyache, F; Loarca, A; Martínez López, O R; Canelón, J L; Stemmer, A; Aguirre, L; Lara, M A C; Álvarez, L A; Llambí, S; Gómez, N; Gama, L T; Nóvoa, M F; Martínez, R D; Pérez, E; Sierra, A; Contreras, M A; Guastella, A M; Marletta, D; Arsenos, G; Curik, I; Landi, V; Martínez, A; Delgado, J V

    2016-04-01

    This study presents the first insights into the genetic diversity and structure of the American donkey metapopulation. The primary objectives were to detect the main structural features underlying variability among American donkey populations, identify boundaries between differentiated gene pools, and draw the main colonization pathways since the introduction of donkeys into America in the 15th century. A panel of 14 microsatellite markers was applied for genotyping 350 American donkeys from 13 countries. The genetic structure of this metapopulation was analysed using descriptive statistics and Bayesian model-based methods. These populations were then compared to a database containing information on 476 individuals from 11 European breeds to identify the most likely ancestral donor populations. Results showed the presence of two distinct genetic pools, with confluence of the two in Colombia. The southern pool showed a unique genetic signature subsequent to an older founder event, but lacked any significant influence of modern gene flow from Europe. The northern pool, conversely, may have retained more ancestral polymorphisms and/or have experienced modern gene flow from Spanish breeds. The Andalusian and, to a lesser extent, the Catalan breeds have left a more pronounced footprint in some of the American donkey populations analysed. © 2015 Blackwell Verlag GmbH.

  11. Genetic structure of soil population of fungus Fusarium oxysporum Schlechtend.: Fr.: Molecular reidentification of the species and genetic differentiation of isolates using polymerase chain reaction technique with universal primers (UP-PCR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulat, S.A.; Mironenko, N.V.; Zholkevich, Yu.G.

    1995-07-01

    The genetic structure of three soil populations of fungus Fusarium oxysporum was analyzed using polymerase chain reaction with universal primers (UP-PCR). Distinct UP-PCR variants revealed by means of cross-dot hybridization of amplified DNA and restriction analysis of nuclear ribosomal DNA represent subspecies or sibling species of F. oxysporum. The remaining isolates of F. oxysporum showed moderate UP-PCR polymorphism characterized by numerous types, whose relatedness was analyzed by computer treatment of the UP-PCR patterns. The genetic distance trees based on the UP-PCR patterns, which were obtained with different universal primers, demonstrated similar topology. This suggests that evolutionarily important genome rearrangements correlativelymore » occur within the entire genome. Isolates representing different UP-PCR polymorphisms were encountered in all populations, being distributed asymmetrically in two of these. In general, soil populations of F. oxysporum were represented by numerous genetically isolated groups with a similar genome structure. The genetic heterogeneity of the isolates within these groups is likely to be caused by the parasexual process. The usefulness of the UP-PCR technique for population studies of F. oxysporum was demonstrated. 39 refs., 7 figs., 2 tabs.« less

  12. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    PubMed

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  13. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.

  14. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis

    PubMed Central

    Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David

    2017-01-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411

  15. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival

    PubMed Central

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-01-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized. PMID:25540695

  16. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival.

    PubMed

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-11-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized.

  17. 76 FR 76386 - Endangered and Threatened Species; 5-Year Reviews for 4 Distinct Population Segments of Steelhead...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA852 Endangered and Threatened Species; 5-Year Reviews for 4 Distinct Population Segments of Steelhead in California... agency's Viable Salmonid Population framework, which relies on evaluating four key population parameters...

  18. Two distinct structures of alpha-conotoxin GI in aqueous solution.

    PubMed

    Maslennikov, I V; Sobol, A G; Gladky, K V; Lugovskoy, A A; Ostrovsky, A G; Tsetlin, V I; Ivanov, V T; Arseniev, A S

    1998-06-01

    The detailed analysis of conformational space of alpha-conotoxin GI in aqueous solution has been performed on the basis of two-dimensional NMR spectroscopy data using multiconformational approach. As the result, two topologically distinct interconvertible sets of GI conformations (populations of 78% and 22%) have been found. A common feature of the two sets is the Asn4-Cys7 beta-turn. The Gly8 to Tyrll region has a structure of right-handed helical turn in the major set and two sequential bends in the minor one. N-terminus and C-terminus also have different orientations, anti-parallel in the major conformational set and parallel in the minor one. An average pairwise rmsd for backbone heavy atoms is 0.56 A in the major set, 0.23 A in the minor, and 1.85 A between the structures of the two sets. The X-ray structure of GI [Guddat, L. W., Martin, J. A., Shan, L., Edmundson, A. B. & Gray, W. R. (1996) Biochemistry 35, 11329 - 11335] has the same folding pattern as the major NMR set, the average backbone rmsd between the two structures being 0.77 A.

  19. Urban Perceptions of the Natural Landscape: Implications for Public Awareness of Wilderness as a Distinct Resource

    Treesearch

    George W. Duffy

    1992-01-01

    As more and more of our population move from rural to suburban to urban to metropolitan settings, the connections between people and the land of which they are a part become less obvious, less immediately important and less clearly understood. The contrast between a complex, highly structured social and cultural urban environment and the natural world seems bipolar....

  20. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe

    PubMed Central

    Courant, Julien; Herrel, Anthony; Rebelo, Rui; Rödder, Dennis; Measey, G. John; Backeljau, Thierry

    2016-01-01

    Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis) populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population. PMID:26855879

  1. Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale.

    PubMed

    Lounnas, M; Correa, A C; Vázquez, A A; Dia, A; Escobar, J S; Nicot, A; Arenas, J; Ayaqui, R; Dubois, M P; Gimenez, T; Gutiérrez, A; González-Ramírez, C; Noya, O; Prepelitchi, L; Uribe, N; Wisnivesky-Colli, C; Yong, M; David, P; Loker, E S; Jarne, P; Pointier, J P; Hurtrez-Boussès, S

    2017-02-01

    Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self-fertilizing species. We here focus on the self-fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none-to-low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large-scale flash invasion may affect the spread of fasciolosis. © 2016 John Wiley & Sons Ltd.

  2. History and structure of sub-Saharan populations of Drosophila melanogaster.

    PubMed

    Pool, John E; Aquadro, Charles F

    2006-10-01

    Drosophila melanogaster is an important model organism in evolutionary genetics, yet little is known about the population structure and the demographic history of this species within sub-Saharan Africa, which is thought to contain its ancestral range. We surveyed nucleotide variation at four 1-kb fragments in 240 individual lines representing 21 sub-Saharan and 4 Palearctic population samples of D. melanogaster. In agreement with recent studies, we find a small but significant level of genetic differentiation within sub-Saharan Africa. A clear geographic pattern is observed, with eastern and western African populations composing two genetically distinct groups. This pattern may have resulted from a relatively recent establishment of D. melanogaster in western Africa. Eastern populations show greater evidence for long-term stability, consistent with the hypothesis that eastern Africa contains the ancestral range of the species. Three sub-Saharan populations show evidence for cosmopolitan introgression. Apart from those cases, the closest relationships between Palearctic and sub-Saharan populations involve a sample from the rift zone (Uganda), suggesting that the progenitors of Palearctic D. melanogaster might have come from this region. Finally, we find a large excess of singleton polymorphisms in the full data set, which is best explained by a combination of population growth and purifying selection.

  3. Dissecting the genetic structure and admixture of four geographical Malay populations

    PubMed Central

    Deng, Lian; Hoh, Boon-Peng; Lu, Dongsheng; Saw, Woei-Yuh; Twee-Hee Ong, Rick; Kasturiratne, Anuradhani; Janaka de Silva, H.; Zilfalil, Bin Alwi; Kato, Norihiro; Wickremasinghe, Ananda R.; Teo, Yik-Ying; Xu, Shuhua

    2015-01-01

    The Malay people are an important ethnic composition in Southeast Asia, but their genetic make-up and population structure remain poorly studied. Here we conducted a genome-wide study of four geographical Malay populations: Peninsular Malaysian Malay (PMM), Singaporean Malay (SGM), Indonesian Malay (IDM) and Sri Lankan Malay (SLM). All the four Malay populations showed substantial admixture with multiple ancestries. We identified four major ancestral components in Malay populations: Austronesian (17%–62%), Proto-Malay (15%–31%), East Asian (4%–16%) and South Asian (3%–34%). Approximately 34% of the genetic makeup of SLM is of South Asian ancestry, resulting in its distinct genetic pattern compared with the other three Malay populations. Besides, substantial differentiation was observed between the Malay populations from the north and the south, and between those from the west and the east. In summary, this study revealed that the genetic identity of the Malays comprises a mixed entity of multiple ancestries represented by Austronesian, Proto-Malay, East Asian and South Asian, with most of the admixture events estimated to have occurred 175 to 1,500 years ago, which in turn suggests that geographical isolation and independent admixture have significantly shaped the genetic architectures and the diversity of the Malay populations. PMID:26395220

  4. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools.

    PubMed

    Fuller, Zachary L; Niño, Elina L; Patch, Harland M; Bedoya-Reina, Oscar C; Baumgarten, Tracey; Muli, Elliud; Mumoki, Fiona; Ratan, Aakrosh; McGraw, John; Frazier, Maryann; Masiga, Daniel; Schuster, Stephen; Grozinger, Christina M; Miller, Webb

    2015-07-10

    With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including F ST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows ( http://usegalaxy.org/r/kenyanbee ) that can be applied to any model system with genomic information.

  5. Beyond sex differences: new approaches for thinking about variation in brain structure and function

    PubMed Central

    Joel, Daphna; Fausto-Sterling, Anne

    2016-01-01

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. PMID:26833844

  6. Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci.

    PubMed

    Yao, Hong-Bing; Wang, Chuan-Chao; Wang, Jiang; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Du, Qiajun; Deng, Qiongying; Xu, Bingying; Huang, Ying; Wang, Hong-Dan; Li, Shujin; Bin Cong; Ma, Liying; Jin, Li; Krause, Johannes; Li, Hui

    2017-01-23

    The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China.

  7. Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci

    PubMed Central

    Yao, Hong-Bing; Wang, Chuan-Chao; Wang, Jiang; Tao, Xiaolan; Shang, Lei; Wen, Shao-Qing; Du, Qiajun; Deng, Qiongying; Xu, Bingying; Huang, Ying; Wang, Hong-Dan; Li, Shujin; Bin Cong; Ma, Liying; Jin, Li; Krause, Johannes; Li, Hui

    2017-01-01

    The origin and diversification of Sino-Tibetan speaking populations have been long-standing hot debates. However, the limited genetic information of Tibetan populations keeps this topic far from clear. In the present study, we genotyped 15 forensic autosomal short tandem repeats (STRs) from 803 unrelated Tibetan individuals from Gansu Province (635 from Gannan and 168 from Tianzhu) in northwest China. We combined these data with published dataset to infer a detailed population affinities and genetic substructure of Sino-Tibetan populations. Our results revealed Tibetan populations in Gannan and Tianzhu are genetically very similar with Tibetans from other regions. The Tibetans in Tianzhu have received more genetic influence from surrounding lowland populations. The genetic structure of Sino-Tibetan populations was strongly correlated with linguistic affiliations. Although the among-population variances are relatively small, the genetic components for Tibetan, Lolo-Burmese, and Han Chinese were quite distinctive, especially for the Deng, Nu, and Derung of Lolo-Burmese. Han Chinese but not Tibetans are suggested to share substantial genetic component with southern natives, such as Tai-Kadai and Hmong-Mien speaking populations, and with other lowland East Asian populations, which implies there might be extensive gene flow between those lowland groups and Han Chinese after Han Chinese were separated from Tibetans. The dataset generated in present study is also valuable for forensic identification and paternity tests in China. PMID:28112227

  8. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  9. Population genetic structure and conservation genetics of threatened Okaloosa darters (Etheostoma okaloosae).

    USGS Publications Warehouse

    Austin, James D.; Jelks, Howard L.; Tate, Bill; Johnson, Aria R.; Jordan, Frank

    2011-01-01

    Imperiled Okaloosa darters (Etheostoma okaloosae) are small, benthic fish limited to six streams that flow into three bayous of Choctawhatchee Bay in northwest Florida, USA. We analyzed the complete mitochondrial cytochrome b gene and 10 nuclear microsatellite loci for 255 and 273 Okaloosa darters, respectively. Bayesian clustering analyses and AMOVA reflect congruent population genetic structure in both mitochondrial and microsatellite DNA. This structure reveals historical isolation of Okaloosa darter streams nested within bayous. Most of the six streams appear to have exchanged migrants though they remain genetically distinct. The U.S. Fish and Wildlife Service recently reclassified Okaloosa darters from endangered to threatened status. Our genetic data support the reclassification of Okaloosa darter Evolutionary Significant Units (ESUs) in the larger Tom's, Turkey, and Rocky creeks from endangered to threatened status. However, the three smaller drainages (Mill, Swift, and Turkey Bolton creeks) remain at risk due to their small population sizes and anthropogenic pressures on remaining habitat. Natural resource managers now have the evolutionary information to guide recovery actions within and among drainages throughout the range of the Okaloosa darter.

  10. Trichomonas vaginalis Metronidazole Resistance Is Associated with Single Nucleotide Polymorphisms in the Nitroreductase Genes ntr4Tv and ntr6Tv

    PubMed Central

    Paulish-Miller, Teresa E.; Augostini, Peter; Schuyler, Jessica A.; Smith, William L.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.; Secor, William E.

    2014-01-01

    Metronidazole resistance in the sexually transmitted parasite Trichomonas vaginalis is a problematic public health issue. We have identified single nucleotide polymorphisms (SNPs) in two nitroreductase genes (ntr4Tv and ntr6Tv) associated with resistance. These SNPs were associated with one of two distinct T. vaginalis populations identified by multilocus sequence typing, yet one SNP (ntr6Tv A238T), which results in a premature stop codon, was associated with resistance independent of population structure and may be of diagnostic value. PMID:24550324

  11. Multiple conformations of the cytidine repressor DNA-binding domain coalesce to one upon recognition of a specific DNA surface.

    PubMed

    Moody, Colleen L; Tretyachenko-Ladokhina, Vira; Laue, Thomas M; Senear, Donald F; Cocco, Melanie J

    2011-08-09

    The cytidine repressor (CytR) is a member of the LacR family of bacterial repressors with distinct functional features. The Escherichia coli CytR regulon comprises nine operons whose palindromic operators vary in both sequence and, most significantly, spacing between the recognition half-sites. This suggests a strong likelihood that protein folding would be coupled to DNA binding as a mechanism to accommodate the variety of different operator architectures to which CytR is targeted. Such coupling is a common feature of sequence-specific DNA-binding proteins, including the LacR family repressors; however, there are no significant structural rearrangements upon DNA binding within the three-helix DNA-binding domains (DBDs) studied to date. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the CytR DBD free in solution and to determine the high-resolution structure of a CytR DBD monomer bound specifically to one DNA half-site of the uridine phosphorylase (udp) operator. We find that the free DBD populates multiple distinct conformations distinguished by up to four sets of NMR peaks per residue. This structural heterogeneity is previously unknown in the LacR family. These stable structures coalesce into a single, more stable udp-bound form that features a three-helix bundle containing a canonical helix-turn-helix motif. However, this structure differs from all other LacR family members whose structures are known with regard to the packing of the helices and consequently their relative orientations. Aspects of CytR activity are unique among repressors; we identify here structural properties that are also distinct and that might underlie the different functional properties. © 2011 American Chemical Society

  12. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    NASA Astrophysics Data System (ADS)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.

  13. Genetic Diversity in Introduced Golden Mussel Populations Corresponds to Vector Activity

    PubMed Central

    Ghabooli, Sara; Zhan, Aibin; Sardiña, Paula; Paolucci, Esteban; Sylvester, Francisco; Perepelizin, Pablo V.; Briski, Elizabeta; Cristescu, Melania E.; MacIsaac, Hugh J.

    2013-01-01

    We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (H E = 0.667–0.746) than those in South America (H E = 0.519–0.575), suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise ФST, F ST, Bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise F ST values within both Asia (F ST = 0.017–0.126, P = 0.000–0.009) and South America (F ST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents (F ST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species. PMID:23533614

  14. Paternal phylogeographic structure of the brown bear (Ursus arctos) in northeastern Asia and the effect of male-mediated gene flow to insular populations.

    PubMed

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Murata, Koichi; Masuda, Ryuichi

    2017-01-01

    Sex-biased dispersal is widespread among mammals, including the brown bear ( Ursus arctos ). Previous phylogeographic studies of the brown bear based on maternally inherited mitochondrial DNA have shown intraspecific genetic structuring around the northern hemisphere. The brown bears on Hokkaido Island, northern Japan, comprise three distinct maternal lineages that presumably immigrated to the island from the continent in three different periods. Here, we investigate the paternal genetic structure across northeastern Asia and assess the connectivity among and within intraspecific populations in terms of male-mediated gene flow. We analyzed paternally inherited Y-chromosomal DNA sequence data and Y-linked microsatellite data of 124 brown bears from Hokkaido, the southern Kuril Islands (Kunashiri and Etorofu), Sakhalin, and continental Eurasia (Kamchatka Peninsula, Ural Mountains, European Russia, and Tibet). The Hokkaido brown bear population is paternally differentiated from, and lacked recent genetic connectivity with, the continental Eurasian and North American populations. We detected weak spatial genetic structuring of the paternal lineages on Hokkaido, which may have arisen through male-mediated gene flow among natal populations. In addition, our results suggest that the different dispersal patterns between male and female brown bears, combined with the founder effect and subsequent genetic drift, contributed to the makeup of the Etorofu Island population, in which the maternal and paternal lineages show different origins. Brown bears on Hokkaido and the adjacent southern Kuril Islands experienced different maternal and paternal evolutionary histories. Our results indicate that sex-biased dispersal has played a significant role in the evolutionary history of the brown bear in continental populations and in peripheral insular populations, such as on Hokkaido, the southern Kuril Islands, and Sakhalin.

  15. Population structure and genetic differentiation of livestock guard dog breeds from the Western Balkans.

    PubMed

    Ceh, E; Dovc, P

    2014-08-01

    Livestock guard dog (LGD) breeds from the Western Balkans are a good example of how complex genetic diversity pattern observed in dog breeds has been shaped by transition in dog breeding practices. Despite their common geographical origin and relatively recent formal recognition as separate breeds, the Karst Shepherd, Sarplaninac and Tornjak show distinct population dynamics, assessed by pedigree, microsatellite and mtDNA data. We genotyped 493 dogs belonging to five dog breeds using a set of 18 microsatellite markers and sequenced mtDNA from 94 dogs from these breeds. Different demographic histories of the Karst Shepherd and Tornjak breeds are reflected in the pedigree data with the former breed having more unbalanced contributions of major ancestors and a realized effective population size of less than 20 animals. The highest allelic richness was found in Sarplaninac (5.94), followed by Tornjak (5.72), whereas Karst Shepherd dogs exhibited the lowest allelic richness (3.33). Similarly, the highest mtDNA haplotype diversity was found in Sarplaninac, followed by Tornjak and Karst Shepherd, where only one haplotype was found. Based on FST differentiation values and high percentages of animals correctly assigned, all breeds can be considered genetically distinct. However, using microsatellite data, common ancestry between the Karst Shepherd and Sarplaninac could not be reconstructed, despite pedigree and mtDNA evidence of their historical admixture. Using neighbour-joining, STRUCTURE or DAPC methods, Sarplaninac and Caucasian Shepherd breeds could not be separated and additionally showed close proximity in the NeighborNet tree. STRUCTURE analysis of the Tornjak breed demonstrated substructuring, which needs further investigation. Altogether, results of this study show that the official separation of these dog breeds strongly affected the resolution of genetic differentiation and thus suggest that the relationships between breeds are not only determined by breed relatedness, but in small populations even more importantly by stochastic effects. © 2014 Blackwell Verlag GmbH.

  16. Tigers of Sundarbans in India: is the population a separate conservation unit?

    PubMed

    Singh, Sujeet Kumar; Mishra, Sudhanshu; Aspi, Jouni; Kvist, Laura; Nigam, Parag; Pandey, Puneet; Sharma, Reeta; Goyal, Surendra Prakash

    2014-01-01

    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate "evolutionarily significant unit" (ESU) following the adaptive evolutionary conservation (AEC) concept.

  17. Phylogeography of the dark fruit-eating bat Artibeus obscurus in the Brazilian Amazon.

    PubMed

    Ferreira, Wallax Augusto Silva; Borges, Bárbara do Nascimento; Rodrigues-Antunes, Symara; de Andrade, Fernanda Atanaena Gonçalves; Aguiar, Gilberto Ferreira de Souza; de Sousa e Silva-Junior, José; Marques-Aguiar, Suely Aparecida; Harada, Maria Lúcia

    2014-01-01

    Artibeus obscurus (Mammalia: Chiroptera) is endemic to South America, being found in at least 18 Brazilian states. Recent studies revealed that different populations of this genus present distinct phylogeographic patterns; however, very little is known on the population genetics structure of A. obscurus in the Amazon rainforest. Here, using a fragment (1010bp) of the mitochondrial gene cytochrome b from 87 samples, we investigated patterns of genetic divergence among populations of A. obscurus from different locations in the Brazilian Amazon rainforest and compared them with other Brazilian and South American regions. Analysis of molecular variance (AMOVA), fixation index (Fst) analysis, and phylogeographic patterns showed divergence between two major monophyletic groups, each one corresponding to a geographic region associated with the Atlantic and Amazon forest biomes. The Atlantic forest clusters formed a monophyletic group with a high bootstrap support and a fragmented distribution that follows the pattern predicted by the Refuge Theory. On the other hand, a different scenario was observed for the Amazon forest, where no fragmentation was identified. The AMOVA results revealed a significant geographic heterogeneity in the distribution of genetic variation, with 70% found within populations across the studied populations (Fst values ranging from 0.05864 to 0.09673; φST = 0.55). The intrapopulational analysis revealed that one population (Bragança) showed significant evidence of population expansion, with the formation of 2 distinct phylogroups, suggesting the occurrence of a subspecies or at least a different population in this region. These results also suggest considerable heterogeneity for A. obscurus in the Amazon region.

  18. Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease.

    PubMed

    Gomes, Clarissa P C; Nagata, Tatsuya; de Jesus, Waldir C; Neto, Carlos R Borges; Pappas, Georgios J; Martin, Darren P

    2008-01-16

    Citrus sudden death (CSD), a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV). CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms. A total of 286 RNA-dependent-RNA polymerase (RdRp) and 284 heat shock protein 70 homolog (HSP70h) gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h) was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD. We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence) of a single CTV variant within these populations that triggers the disease.

  19. Extensive population genetic structure in the giraffe

    PubMed Central

    Brown, David M; Brenneman, Rick A; Koepfli, Klaus-Peter; Pollinger, John P; Milá, Borja; Georgiadis, Nicholas J; Louis, Edward E; Grether, Gregory F; Jacobs, David K; Wayne, Robert K

    2007-01-01

    Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations. PMID:18154651

  20. Extensive population genetic structure in the giraffe.

    PubMed

    Brown, David M; Brenneman, Rick A; Koepfli, Klaus-Peter; Pollinger, John P; Milá, Borja; Georgiadis, Nicholas J; Louis, Edward E; Grether, Gregory F; Jacobs, David K; Wayne, Robert K

    2007-12-21

    A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  1. Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage

    PubMed Central

    Quek, Lynn; Garnett, Catherine; Karamitros, Dimitris; Stoilova, Bilyana; Doondeea, Jessica; Kennedy, Alison; Metzner, Marlen; Ivey, Adam; Sternberg, Alexander; Hunter, Hannah; Price, Andrew; Virgo, Paul; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Mead, Adam

    2016-01-01

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis. PMID:27377587

  2. Microbial Diversity of Impact-Generated Habitats

    NASA Astrophysics Data System (ADS)

    Pontefract, Alexandra; Osinski, Gordon R.; Cockell, Charles S.; Southam, Gordon; McCausland, Phil J. A.; Umoh, Joseph; Holdsworth, David W.

    2016-10-01

    Impact-generated lithologies have recently been identified as viable and important microbial habitats, especially within cold and arid regions such as the polar deserts on Earth. These unique habitats provide protection from environmental stressors, such as freeze-thaw events, desiccation, and UV radiation, and act to trap aerially deposited detritus within the fissures and pore spaces, providing necessary nutrients for endoliths. This study provides the first culture-independent analysis of the microbial community structure within impact-generated lithologies in a Mars analog environment, involving the analysis of 44,534 16S rRNA sequences from an assemblage of 21 rock samples that comprises three shock metamorphism categories. We find that species diversity increases (H = 2.4-4.6) with exposure to higher shock pressures, which leads to the development of three distinct populations. In each population, Actinobacteria were the most abundant (41%, 65%, and 59%), and the dominant phototrophic taxa came from the Chloroflexi. Calculated porosity (a function of shock metamorphism) for these samples correlates (R2 = 0.62) with inverse Simpson indices, accounting for overlap in populations in the higher shock levels. The results of our study show that microbial diversity is tied to the amount of porosity in the target substrate (as a function of shock metamorphism), resulting in the formation of distinct microbial populations.

  3. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    PubMed

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  4. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated indian population groups.

    PubMed

    Chopra, Rupali; Ali, Shafat; Srivastava, Amit K; Aggarwal, Shweta; Kumar, Bhupender; Manvati, Siddharth; Kalaiarasan, Ponnusamy; Jena, Mamta; Garg, Vijay K; Bhattacharya, Sambit N; Bamezai, Rameshwar N K

    2013-01-01

    Leprosy is a chronic infectious disease caused by Mycobacterium Leprae, where the host genetic background plays an important role toward the disease pathogenesis. Various studies have identified a number of human genes in association with leprosy or its clinical forms. However, non-replication of results has hinted at the heterogeneity among associations between different population groups, which could be due to differently evolved LD structures and differential frequencies of SNPs within the studied regions of the genome. A need for systematic and saturated mapping of the associated regions with the disease is warranted to unravel the observed heterogeneity in different populations. Mapping of the PARK2 and PACRG gene regulatory region with 96 SNPs, with a resolution of 1 SNP per 1 Kb for PARK2 gene regulatory region in a North Indian population, showed an involvement of 11 SNPs in determining the susceptibility towards leprosy. The association was replicated in a geographically distinct and unrelated population from Orissa in eastern India. In vitro reporter assays revealed that the two significantly associated SNPs, located 63.8 kb upstream of PARK2 gene and represented in a single BIN of 8 SNPs, influenced the gene expression. A comparison of BINs between Indian and Vietnamese populations revealed differences in the BIN structures, explaining the heterogeneity and also the reason for non-replication of the associated genomic region in different populations.

  5. Mapping of PARK2 and PACRG Overlapping Regulatory Region Reveals LD Structure and Functional Variants in Association with Leprosy in Unrelated Indian Population Groups

    PubMed Central

    Chopra, Rupali; Aggarwal, Shweta; Kumar, Bhupender; Manvati, Siddharth; Kalaiarasan, Ponnusamy; Jena, Mamta; Garg, Vijay K.; Bhattacharya, Sambit N.; Bamezai, Rameshwar N. K.

    2013-01-01

    Leprosy is a chronic infectious disease caused by Mycobacterium Leprae, where the host genetic background plays an important role toward the disease pathogenesis. Various studies have identified a number of human genes in association with leprosy or its clinical forms. However, non-replication of results has hinted at the heterogeneity among associations between different population groups, which could be due to differently evolved LD structures and differential frequencies of SNPs within the studied regions of the genome. A need for systematic and saturated mapping of the associated regions with the disease is warranted to unravel the observed heterogeneity in different populations. Mapping of the PARK2 and PACRG gene regulatory region with 96 SNPs, with a resolution of 1 SNP per 1 Kb for PARK2 gene regulatory region in a North Indian population, showed an involvement of 11 SNPs in determining the susceptibility towards leprosy. The association was replicated in a geographically distinct and unrelated population from Orissa in eastern India. In vitro reporter assays revealed that the two significantly associated SNPs, located 63.8 kb upstream of PARK2 gene and represented in a single BIN of 8 SNPs, influenced the gene expression. A comparison of BINs between Indian and Vietnamese populations revealed differences in the BIN structures, explaining the heterogeneity and also the reason for non-replication of the associated genomic region in different populations. PMID:23861666

  6. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    PubMed

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  7. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes.

    PubMed

    Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François

    2014-05-01

    Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco - the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity.

  8. Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes

    PubMed Central

    Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François

    2014-01-01

    Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity. PMID:24963380

  9. Highly Discriminatory Variable-Number Tandem-Repeat Markers for Genotyping of Trichophyton interdigitale Strains

    PubMed Central

    Drira, Ines; Hadrich, Ines; Neji, Sourour; Mahfouth, Nedia; Trabelsi, Houaida; Sellami, Hayet; Makni, Fattouma

    2014-01-01

    Trichophyton interdigitale is the second most frequent cause of superficial fungal infections of various parts of the human body. Studying the population structure and genotype differentiation of T. interdigitale strains may lead to significant improvements in clinical practice. The present study aimed to develop and select suitable variable-number tandem-repeat (VNTR) markers for 92 clinical strains of T. interdigitale. On the basis of an analysis of four VNTR markers, four to eight distinct alleles were detected for each marker. The marker with the highest discriminatory power had eight alleles and a D value of 0.802. The combination of all four markers yielded a D value of 0.969 with 29 distinct multilocus genotypes. VNTR typing revealed the genetic diversity of the strains, identifying three populations according to their colonization sites. A correlation between phenotypic characteristics and multilocus genotypes was observed. Seven patients harbored T. interdigitale strains with different genotypes. Typing of clinical T. interdigitale samples by VNTR markers displayed excellent discriminatory power and 100% reproducibility. PMID:24989614

  10. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms

    PubMed Central

    Shi, Cheng; Runnels, Alexi M; Murphy, Coleen T

    2017-01-01

    Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation. DOI: http://dx.doi.org/10.7554/eLife.23493.001 PMID:28290982

  11. Odour dialects among wild mammals.

    PubMed

    Kean, Eleanor Freya; Bruford, Michael William; Russo, Isa-Rita M; Müller, Carsten Theodor; Chadwick, Elizabeth Anna

    2017-10-19

    Across multiple taxa, population structure and dynamics depend on effective signalling between individuals. Among mammals, chemical communication is arguably the most important sense, underpinning mate choice, parental care, territoriality and even disease transmission. There is a growing body of evidence that odours signal genetic information that may confer considerable benefits including inbreeding avoidance and nepotism. To date, however, there has been no clear evidence that odours encode population-level information in wild mammals. Here we demonstrate for the first time the existence of 'odour dialects' in genetically distinct mammalian subpopulations across a large geographical scale. We found that otters, Lutra lutra, from across the United Kingdom possess sex and biogeography-specific odours. Subpopulations with the most distinctive odour profiles are also the most genetically diverse but not the most genetically differentiated. Furthermore, geographic distance between individuals does not explain regional odour differences, refuting other potential explanations such as group odour sharing behaviour. Differences in the language of odours between subpopulations have the potential to affect individual interactions, which could impact reproduction and gene-flow.

  12. Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing

    PubMed Central

    Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal

    2016-01-01

    Goats (Capra hircus) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat’s selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome. PMID:27989103

  13. Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing.

    PubMed

    Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal

    2016-12-01

    Goats ( Capra hircus ) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat's selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome.

  14. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  15. 77 FR 64316 - Endangered and Threatened Species; Recovery Plan South-Central California Coast Steelhead...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... and Threatened Species; Recovery Plan South-Central California Coast Steelhead Distinct Population... Coast (SCCCS) (Oncorhynchus mykiss) Distinct Population (DPS). NMFS is soliciting review and comment... plan development. NMFS is hereby soliciting relevant information on SCCC Steelhead DPS populations and...

  16. Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading.

    PubMed

    Ryan, Timothy M; Shaw, Colin N

    2015-01-13

    The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.

  17. Population studies of Glossina pallidipes in Ethiopia: emphasis on cuticular hydrocarbons and wing morphometric analysis.

    PubMed

    Getahun, M N; Cecchi, G; Seyoum, E

    2014-10-01

    Tsetse flies, like many insects, use pheromones for inter- and intra-specific communication. Several of their pheromones are cuticular hydrocarbons (CHCs) that are perceived by contact at close range. We hypothesized that for a successful implementation of the Sterile Insect Technique (SIT), along with proper identification of target area and target species, the target tsetse populations and the sterile flies must chemically communicate with each other. To study the population structuring of Glossina pallidipes in Ethiopia, CHCs were extracted and analyzed from three tsetse belts. As a comparative approach, wing morphometric analysis was performed. The analysis of the relative abundance of CHCs revealed that populations of G. pallidipes from the Rift Valley tsetse belt showed a distinct clustering compared to populations from the other two belts. The spatial pattern of CHC differences was complemented by the wing morphometric analysis. Our data suggest that CHCs of known biological and ecological role, when combined with wing morphometric data, will provide an alternative means for the study of population structuring of Glossina populations. This could aid the planning of area wide control strategies using SIT, which is dependent on sexual competence. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  18. Genetic differentiation, structure, and a transition zone among populations of the pitcher plant moth Exyra semicrocea: implications for conservation.

    PubMed

    Stephens, Jessica D; Santos, Scott R; Folkerts, Debbie R

    2011-01-01

    Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9-3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats.

  19. Rivers influence the population genetic structure of bonobos (Pan paniscus).

    PubMed

    Eriksson, J; Hohmann, G; Boesch, C; Vigilant, L

    2004-11-01

    Bonobos are large, highly mobile primates living in the relatively undisturbed, contiguous forest south of the Congo River. Accordingly, gene flow among populations is assumed to be extensive, but may be impeded by large, impassable rivers. We examined mitochondrial DNA control region sequence variation in individuals from five distinct localities separated by rivers in order to estimate relative levels of genetic diversity and assess the extent and pattern of population genetic structure in the bonobo. Diversity estimates for the bonobo exceed those for humans, but are less than those found for the chimpanzee. All regions sampled are significantly differentiated from one another, according to genetic distances estimated as pairwise FSTs, with the greatest differentiation existing between region East and each of the two Northern populations (N and NE) and the least differentiation between regions Central and South. The distribution of nucleotide diversity shows a clear signal of population structure, with some 30% of the variance occurring among geographical regions. However, a geographical patterning of the population structure is not obvious. Namely, mitochondrial haplotypes were shared among all regions excepting the most eastern locality and the phylogenetic analysis revealed a tree in which haplotypes were intermixed with little regard to geographical origin, with the notable exception of the close relationships among the haplotypes found in the east. Nonetheless, genetic distances correlated with geographical distances when the intervening distances were measured around rivers presenting effective current-day barriers, but not when straight-line distances were used, suggesting that rivers are indeed a hindrance to gene flow in this species.

  20. Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever

    PubMed Central

    Roe, Chandler C.; Hepp, Crystal M.; Teixeira, Marcus; Driebe, Elizabeth M.; Schupp, James M.; Gade, Lalitha; Waddell, Victor; Komatsu, Kenneth; Arathoon, Eduardo; Logemann, Heidi; Thompson, George R.; Chiller, Tom; Keim, Paul; Litvintseva, Anastasia P.

    2016-01-01

    ABSTRACT Coccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region. PMID:27118594

  1. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    PubMed

    Wong, Lai-Ping; Lai, Jason Kuan-Han; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Cheng, Anthony Youzhi; Pillai, Nisha Esakimuthu; Liu, Xuanyao; Xu, Wenting; Chen, Peng; Foo, Jia-Nee; Tan, Linda Wei-Lin; Koo, Seok-Hwee; Soong, Richie; Wenk, Markus Rene; Lim, Wei-Yen; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2014-05-01

    South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  2. Distinct Phylogeographic Structures of Wild Radish (Raphanus sativus L. var. raphanistroides Makino) in Japan

    PubMed Central

    Han, Qingxiang; Higashi, Hiroyuki; Mitsui, Yuki; Setoguchi, Hiroaki

    2015-01-01

    Coastal plants with simple linear distribution ranges along coastlines provide a suitable system for improving our understanding of patterns of intra-specific distributional history and genetic variation. Due to the combination of high seed longevity and high dispersibility of seeds via seawater, we hypothesized that wild radish would poorly represent phylogeographic structure at the local scale. On the other hand, we also hypothesized that wild radish populations might be geographically differentiated, as has been exhibited by their considerable phenotypic variations along the islands of Japan. We conducted nuclear DNA microsatellite loci and chloroplast DNA haplotype analyses for 486 samples and 144 samples, respectively, from 18 populations to investigate the phylogeographic structure of wild radish in Japan. Cluster analysis supported the existence of differential genetic structures between the Ryukyu Islands and mainland Japan populations. A significant strong pattern of isolation by distance and significant evidence of a recent bottleneck were detected. The chloroplast marker analysis resulted in the generation of eight haplotypes, of which two haplotypes (A and B) were broadly distributed in most wild radish populations. High levels of variation in microsatellite loci were identified, whereas cpDNA displayed low levels of genetic diversity within populations. Our results indicate that the Kuroshio Current would have contributed to the sculpting of the phylogeographic structure by shaping genetic gaps between isolated populations. In addition, the Tokara Strait would have created a geographic barrier between the Ryukyu Islands and mainland Japan. Finally, extant habitat disturbances (coastal erosion), migration patterns (linear expansion), and geographic characteristics (small islands and sea currents) have influenced the expansion and historical population dynamics of wild radish. Our study is the first to record the robust phylogeographic structure in wild radish between the Ryukyu Islands and mainland Japan, and might provide new insight into the genetic differentiation of coastal plants across islands. PMID:26247202

  3. Genetic evaluation of the evolutionary distinctness of a federally endangered butterfly, Lange's Metalmark.

    PubMed

    Proshek, Benjamin; Dupuis, Julian R; Engberg, Anna; Davenport, Ken; Opler, Paul A; Powell, Jerry A; Sperling, Felix A H

    2015-04-25

    The Mormon Metalmark (Apodemia mormo) species complex occurs as isolated and phenotypically variable colonies in dryland areas across western North America. Lange's Metalmark, A. m. langei, one of the 17 subspecies taxonomically recognized in the complex, is federally listed under the U.S. Endangered Species Act of 1973. Metalmark taxa have traditionally been described based on phenotypic and ecological characteristics, and it is unknown how well this nomenclature reflects their genetic and evolutionary distinctiveness. Genetic variation in six microsatellite loci and mitochondrial cytochrome oxidase subunit I sequence was used to assess the population structure of the A. mormo species complex across 69 localities, and to evaluate A. m. langei's qualifications as an Evolutionarily Significant Unit. We discovered substantial genetic divergence within the species complex, especially across the Continental Divide, with population genetic structure corresponding more closely with geographic proximity and local isolation than with taxonomic divisions originally based on wing color and pattern characters. Lange's Metalmark was as genetically divergent as several other locally isolated populations in California, and even the unique phenotype that warranted subspecific and conservation status is reminiscent of the morphological variation found in some other populations. This study is the first genetic treatment of the A. mormo complex across western North America and potentially provides a foundation for reassessing the taxonomy of the group. Furthermore, these results illustrate the utility of molecular markers to aid in demarcation of biological units below the species level. From a conservation point of view, Apodemia mormo langei's diagnostic taxonomic characteristics may, by themselves, not support its evolutionary significance, which has implications for its formal listing as an Endangered Species.

  4. Caught in the act: Incipient speciation across a latitudinal gradient in a semifossorial mammal from Madagascar, the mole tenrec Oryzorictes hova (Tenrecidae).

    PubMed

    Everson, Kathryn M; Hildebrandt, Kyndall B P; Goodman, Steven M; Olson, Link E

    2018-02-28

    Madagascar is one of the world's foremost biodiversity hotspots, yet a large portion of its flora and fauna remains undescribed and the driving forces of in situ diversification are not well understood. Recent studies have identified a widespread, latitudinally structured phylogeographic pattern in Madagascar's humid-forest mammals, amphibians, reptiles, and insects. Several factors may be driving this pattern, namely biogeographic barriers (i.e., rivers or valleys) or past episodes of forest contraction and expansion. In this study, we describe the phylogeographic structure of the small, semifossorial mammal Oryzorictes hova, one of Madagascar's two species of mole tenrec, found throughout Madagascar's eastern humid forest belt, from high-elevation montane forest to low-elevation forests, as well as disturbed habitat such as rice fields. Using one mitochondrial locus, four nuclear loci, and 31 craniomandibular measurements, we identified three distinct populations of O. hova associated with the northern, central, and southern regions of the island. We found little evidence of gene flow among these populations, so we treated each population as a potential species. We validated species limits using two Bayesian methods: BP&P, employing only DNA sequence data, and iBPP using both DNA and morphological data, and we assessed whether these methods are susceptible to producing false positive errors. Molecular and morphological data support the recognition of each of the three populations of O. hova as distinct species, but formal species descriptions will require additional data from type specimens. This study illustrates the importance of using integrative datasets, multiple methodological approaches, and extensive geographic sampling for species delimitation and adds evidence for a widespread phylogeographic pattern in Madagascar's humid forest taxa. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Genetic structure of wild boar (Sus scrofa) populations from East Asia based on microsatellite loci analyses

    PubMed Central

    2014-01-01

    Background Wild boar, Sus scrofa, is an extant wild ancestor of the domestic pig as an agro-economically important mammal. Wild boar has a worldwide distribution with its geographic origin in Southeast Asia, but genetic diversity and genetic structure of wild boar in East Asia are poorly understood. To characterize the pattern and amount of genetic variation and population structure of wild boar in East Asia, we genotyped and analyzed microsatellite loci for a total of 238 wild boar specimens from ten locations across six countries in East and Southeast Asia. Results Our data indicated that wild boar populations in East Asia are genetically diverse and structured, showing a significant correlation of genetic distance with geographic distance and implying a low level of gene flow at a regional scale. Bayesian-based clustering analysis was indicative of seven inferred genetic clusters in which wild boars in East Asia are geographically structured. The level of genetic diversity was relatively high in wild boars from Southeast Asia, compared with those from Northeast Asia. This gradient pattern of genetic diversity is consistent with an assumed ancestral population of wild boar in Southeast Asia. Genetic evidences from a relationship tree and structure analysis suggest that wild boar in Jeju Island, South Korea have a distinct genetic background from those in mainland Korea. Conclusions Our results reveal a diverse pattern of genetic diversity and the existence of genetic differentiation among wild boar populations inhabiting East Asia. This study highlights the potential contribution of genetic variation of wild boar to the high genetic diversity of local domestic pigs during domestication in East Asia. PMID:25034725

  6. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    PubMed

    Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M

    2012-01-01

    Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  7. Fine-scale human genetic structure in Western France.

    PubMed

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian

    2015-06-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.

  8. Comparison of Thaumarchaeotal populations from four deep sea basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Techtman, Stephen M.; Mahmoudi, Nagissa; Whitt, Kendall T.

    The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. Wemore » demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. In conclusion, these findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes.« less

  9. Comparison of Thaumarchaeotal populations from four deep sea basins

    DOE PAGES

    Techtman, Stephen M.; Mahmoudi, Nagissa; Whitt, Kendall T.; ...

    2017-10-03

    The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. Wemore » demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. In conclusion, these findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes.« less

  10. Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits.

    PubMed

    Tiwari, Pradeep; Kutum, Rintu; Sethi, Tavpritesh; Shrivastava, Ankita; Girase, Bhushan; Aggarwal, Shilpi; Patil, Rutuja; Agarwal, Dhiraj; Gautam, Pramod; Agrawal, Anurag; Dash, Debasis; Ghosh, Saurabh; Juvekar, Sanjay; Mukerji, Mitali; Prasher, Bhavana

    2017-01-01

    In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations.

  11. Stellar populations in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Lee, Myung G.; Freedman, Wendy L.; Madore, Barry F.

    1993-01-01

    The study presents BVRI CCD photometry of about 5300 stars in the central area of the dwarf elliptical galaxy NGC 185 in the Local Group. The color-magnitude diagram shows three distinct stellar populations: a dominant RGB population, AGB stars located above the tip of the RGB stars, and a small number of young stars having blue to yellow colors. The foreground reddening is estimated to be 0.19 +/- 0.03 mag using the (B - V) - (V - I) diagram for the bright foreground stars with good photometry. Surface photometry of the central area of NGC 185 is presented; it shows that the colors become rapidly bluer inside R of about 10 arcsec. Structural parameters indicate that the mass-to-luminosity ratio ranges from 3 to 5.

  12. Analysis of Spatial Pattern and Influencing Factors of E-Commerce

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, J.; Zhang, S.

    2017-09-01

    This paper aims to study the relationship between e-commerce development and geographical characteristics using data of e-commerce, economy, Internet, express delivery and population from 2011 to 2015. Moran's I model and GWR model are applied to analyze the spatial pattern of E-commerce and its influencing factors. There is a growth trend of e-commerce from west to east, and it is obvious to see that e-commerce development has a space-time clustering, especially around the Yangtze River delta. The comprehensive factors caculated through PCA are described as fundamental social productivity, resident living standard and population sex structure. The first two factors have positive correlation with e-commerce, and the intensity of effect increases yearly. However, the influence of population sex structure on the E-commerce development is not significant. Our results suggest that the clustering of e-commerce has a downward trend and the impact of driving factors on e-commerce is observably distinct from year to year in space.

  13. Revealing the distinct folding phases of an RNA three-helix junction.

    PubMed

    Plumridge, Alex; Katz, Andrea M; Calvey, George D; Elber, Ron; Kirmizialtin, Serdal; Pollack, Lois

    2018-05-14

    Remarkable new insight has emerged into the biological role of RNA in cells. RNA folding and dynamics enable many of these newly discovered functions, calling for an understanding of RNA self-assembly and conformational dynamics. Because RNAs pass through multiple structures as they fold, an ensemble perspective is required to visualize the flow through fleetingly populated sets of states. Here, we combine microfluidic mixing technology and small angle X-ray scattering (SAXS) to measure the Mg-induced folding of a small RNA domain, the tP5abc three helix junction. Our measurements are interpreted using ensemble optimization to select atomically detailed structures that recapitulate each experimental curve. Structural ensembles, derived at key stages in both time-resolved studies and equilibrium titrations, reproduce the features of known intermediates, and more importantly, offer a powerful new structural perspective on the time-progression of folding. Distinct collapse phases along the pathway appear to be orchestrated by specific interactions with Mg ions. These key interactions subsequently direct motions of the backbone that position the partners of tertiary contacts for later bonding, and demonstrate a remarkable synergy between Mg and RNA across numerous time-scales.

  14. Structural and electronic properties of the alkali metal incommensurate phases

    NASA Astrophysics Data System (ADS)

    Woolman, Gavin; Naden Robinson, Victor; Marqués, Miriam; Loa, Ingo; Ackland, Graeme J.; Hermann, Andreas

    2018-05-01

    Under pressure, the alkali elements sodium, potassium, and rubidium adopt nonperiodic structures based on two incommensurate interpenetrating lattices. While all elements form the same "host" lattice, their "guest" lattices are all distinct. The physical mechanism that stabilizes these phases is not known, and detailed calculations are challenging due to the incommensurability of the lattices. Using a series of commensurate approximant structures, we tackle this issue using density functional theory calculations. In Na and K, the calculations prove accurate enough to reproduce not only the stability of the host-guest phases, but also the complicated pressure dependence of the host-guest ratio and the two guest-lattice transitions. We find Rb-IV to be metastable at all pressures, and suggest it is a high-temperature phase. The electronic structure of these materials is unique: they exhibit two distinct, coexisting types of electride behavior, with both fully localized pseudoanions and electrons localized in 1D wells in the host lattice, leading to low conductivity. While all phases feature pseudogaps in the electronic density of states, the perturbative free-electron picture applies to Na, but not to K and Rb, due to significant d -orbital population in the latter.

  15. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    PubMed

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  16. Phylogeographic and population genetic analyses reveal multiple species of Boa and independent origins of insular dwarfism.

    PubMed

    Card, Daren C; Schield, Drew R; Adams, Richard H; Corbin, Andrew B; Perry, Blair W; Andrew, Audra L; Pasquesi, Giulia I M; Smith, Eric N; Jezkova, Tereza; Boback, Scott M; Booth, Warren; Castoe, Todd A

    2016-09-01

    Boa is a Neotropical genus of snakes historically recognized as monotypic despite its expansive distribution. The distinct morphological traits and color patterns exhibited by these snakes, together with the wide diversity of ecosystems they inhabit, collectively suggest that the genus may represent multiple species. Morphological variation within Boa also includes instances of dwarfism observed in multiple offshore island populations. Despite this substantial diversity, the systematics of the genus Boa has received little attention until very recently. In this study we examined the genetic structure and phylogenetic relationships of Boa populations using mitochondrial sequences and genome-wide SNP data obtained from RADseq. We analyzed these data at multiple geographic scales using a combination of phylogenetic inference (including coalescent-based species delimitation) and population genetic analyses. We identified extensive population structure across the range of the genus Boa and multiple lines of evidence for three widely-distributed clades roughly corresponding with the three primary land masses of the Western Hemisphere. We also find both mitochondrial and nuclear support for independent origins and parallel evolution of dwarfism on offshore island clusters in Belize and Cayos Cochinos Menor, Honduras. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Phylogeography of the Rickett's big-footed bat, Myotis pilosus (Chiroptera: Vespertilionidae): a novel pattern of genetic structure of bats in China.

    PubMed

    Lu, Guanjun; Lin, Aiqing; Luo, Jinhong; Blondel, Dimitri V; Meiklejohn, Kelly A; Sun, Keping; Feng, Jiang

    2013-11-05

    China is characterized by complex topographic structure and dramatic palaeoclimatic changes, making species biogeography studies particularly interesting. Previous researchers have also demonstrated multiple species experienced complex population histories, meanwhile multiple shelters existed in Chinese mainland. Despite this, species phylogeography is still largely unexplored. In the present study, we used a combination of microsatellites and mitochondrial DNA (mtDNA) to investigate the phylogeography of the east Asian fish-eating bat (Myotis pilosus). Phylogenetic analyses showed that M. pilosus comprised three main lineages: A, B and C, which corresponded to distinct geographic populations of the Yangtze Plain (YTP), Sichuan Basin (SCB) and North and South of China (NSC), respectively. The most recent common ancestor of M. pilosus was dated as 0.25 million years before present (BP). Population expansion events were inferred for populations of Clade C, North China Plain region, Clade B and YunGui Plateau region at 38,700, 15,900, 4,520 and 4,520 years BP, respectively. Conflicting results were obtained from mtDNA and microsatellite analyses; strong population genetic structure was obtained from mtDNA data but not microsatellite data. The microsatellite data indicated that genetic subdivision fits an isolation-by-distance (IBD) model, but the mtDNA data failed to support this model. Our results suggested that Pleistocene climatic oscillations might have had a profound influence on the demographic history of M. pilosus. Spatial genetic structures of maternal lineages that are different from those observed in other sympatric bats species may be as a result of interactions among special population history and local environmental factors. There are at least three possible refugia for M. pilosus during glacial episodes. Apparently contradictory genetic structure patterns of mtDNA and microsatellite could be explained by male-mediated gene flow among populations. This study also provides insights on the necessity of conservation of M. pilosus populations to conserve this genetic biodiversity, especially in the areas of YTP, SCB and NSC regions.

  18. Distinct responses of bacterial communities to agricultural and urban impacts in temperate southern African estuaries

    NASA Astrophysics Data System (ADS)

    Matcher, G. F.; Froneman, P. W.; Meiklejohn, I.; Dorrington, R. A.

    2018-01-01

    Worldwide, estuaries are regarded as amongst the most ecologically threatened ecosystems and are increasingly being impacted by urban development, agricultural activities and reduced freshwater inflow. In this study, we examined the influence of different human activities on the diversity and structure of bacterial communities in the water column and sediment in three distinct, temperate permanently open estuarine systems within the same geographic region of southern Africa. The Kariega system is freshwater-deprived and is considered to be relatively pristine; the Kowie estuary is marine-dominated and impacted by urban development, while the Sundays system is fresh-water dominated and impacted by agricultural activity in its catchment. The bacterial communities in all three systems comprise predominantly heterotrophic species belonging to the Bacteroidetes and Proteobacteria phyla with little overlap between bacterioplankton and benthic bacterial communities at the species level. There was overlap between the operational taxonomic units (OTUs) of the Kowie and Kariega, both marine-influenced estuaries. However, lower species richness in the Kowie, likely reflects the impact of human settlements along the estuary. The dominant OTUs in the Sundays River system were distinct from those of the Kariega and Kowie estuaries with an overall decrease in species richness and evenness. This study provides an important snapshot into the microbial population structures of permanently open temperate estuarine systems and the influence of anthropogenic impacts on bacterial diversity and community structure.

  19. Unexpectedly Low Rangewide Population Genetic Structure of the Imperiled Eastern Box Turtle Terrapene c. carolina

    PubMed Central

    Kimble, Steven J. A.; Rhodes Jr., O. E.; Williams, Rod N.

    2014-01-01

    Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799) individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756). Evidence of isolation by distance was detected in this species at a spatial scale of 300 – 500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived. PMID:24647580

  20. Evidence of new species for malaria vector Anopheles nuneztovari sensu lato in the Brazilian Amazon region.

    PubMed

    Scarpassa, Vera Margarete; Cunha-Machado, Antonio Saulo; Saraiva, José Ferreira

    2016-04-12

    Anopheles nuneztovari sensu lato comprises cryptic species in northern South America, and the Brazilian populations encompass distinct genetic lineages within the Brazilian Amazon region. This study investigated, based on two molecular markers, whether these lineages might actually deserve species status. Specimens were collected in five localities of the Brazilian Amazon, including Manaus, Careiro Castanho and Autazes, in the State of Amazonas; Tucuruí, in the State of Pará; and Abacate da Pedreira, in the State of Amapá, and analysed for the COI gene (Barcode region) and 12 microsatellite loci. Phylogenetic analyses were performed using the maximum likelihood (ML) approach. Intra and inter samples genetic diversity were estimated using population genetics analyses, and the genetic groups were identified by means of the ML, Bayesian and factorial correspondence analyses and the Bayesian analysis of population structure. The Barcode region dataset (N = 103) generated 27 haplotypes. The haplotype network suggested three lineages. The ML tree retrieved five monophyletic groups. Group I clustered all specimens from Manaus and Careiro Castanho, the majority of Autazes and a few from Abacate da Pedreira. Group II clustered most of the specimens from Abacate da Pedreira and a few from Autazes and Tucuruí. Group III clustered only specimens from Tucuruí (lineage III), strongly supported (97 %). Groups IV and V clustered specimens of A. nuneztovari s.s. and A. dunhami, strongly (98 %) and weakly (70 %) supported, respectively. In the second phylogenetic analysis, the sequences from GenBank, identified as A. goeldii, clustered to groups I and II, but not to group III. Genetic distances (Kimura-2 parameters) among the groups ranged from 1.60 % (between I and II) to 2.32 % (between I and III). Microsatellite data revealed very high intra-population genetic variability. Genetic distances showed the highest and significant values (P = 0.005) between Tucuruí and all the other samples, and between Abacate da Pedreira and all the other samples. Genetic distances, Bayesian (Structure and BAPS) analyses and FCA suggested three distinct biological groups, supporting the barcode region results. The two markers revealed three genetic lineages for A. nuneztovari s.l. in the Brazilian Amazon region. Lineages I and II may represent genetically distinct groups or species within A. goeldii. Lineage III may represent a new species, distinct from the A. goeldii group, and may be the most ancestral in the Brazilian Amazon. They may have differences in Plasmodium susceptibility and should therefore be investigated further.

  1. Using Vocal Dialects to Assess the Population Structure of Bigg's Killer Whales in Alaska

    NASA Astrophysics Data System (ADS)

    Sharpe, D. L.; Wade, P. R.; Castellote, M.; Cornick, L. A.

    2016-02-01

    Apex predators are important indicators of ecosystem health, but little is known about the population structure of Bigg's killer whales (Orcinus orca; i.e. "transient" ecotype) in western Alaska. Currently, all Bigg's killer whales in western Alaska are ascribed to a single broad stock for management under the US Marine Mammal Protection Act. However, recent nuclear microsatellite and mitochondrial DNA analyses indicate that this stock is likely comprised of genetically distinct sub-populations. In accordance with what is known about group-specific killer whale vocal dialects in other locations, we sought to evaluate and refine Bigg's killer whale population structure by using acoustic recordings to examine the spatial distribution of call types in western Alaska. Digital audio recordings were collected from 34 encounters with Bigg's killer whales throughout the Aleutian and Pribilof Islands in the summers of 2001-2007 and 2009-2010, then visually and aurally reviewed using the software Adobe Audition. High quality calls were identified and classified into discrete call types based on spectrographic characteristics and aural uniqueness. A comparative analysis of call types recorded throughout the study area revealed spatial segregation of call types, corresponding well with proposed genetic delineations. These results suggest that Bigg's killer whales exhibit regional vocal dialects, which can be used to help refine the putative sub-populations that have been genetically identified throughout western Alaska. Our findings support the proposal to restructure current stock designations.

  2. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria.

    PubMed

    Eggert, Lori S; Terwilliger, Lauren A; Woodworth, Bethany L; Hart, Patrick J; Palmer, Danielle; Fleischer, Robert C

    2008-11-14

    The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent.

  3. Historical and ecological determinants of genetic structure in arctic canids.

    PubMed

    Carmichael, L E; Krizan, J; Nagy, J A; Fuglei, E; Dumond, M; Johnson, D; Veitch, A; Berteaux, D; Strobeck, C

    2007-08-01

    Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.

  4. Population structure of the Chagas disease vector, Triatoma infestans, at the urban-rural interface.

    PubMed

    Foley, Erica A; Khatchikian, Camilo E; Hwang, Josephine; Ancca-Juárez, Jenny; Borrini-Mayori, Katty; Quıspe-Machaca, Victor R; Levy, Michael Z; Brisson, Dustin

    2013-10-01

    The increasing rate of biological invasions resulting from human transport or human-mediated changes to the environment has had devastating ecological and public health consequences. The kissing bug, Triatoma infestans, has dispersed through the Peruvian city of Arequipa. The biological invasion of this insect has resulted in a public health crisis, putting thousands of residents of this city at risk of infection by Trypanosoma cruzi and subsequent development of Chagas disease. Here, we show that populations of Tria. infestans in geographically distinct districts within and around this urban centre share a common recent evolutionary history although current gene flow is restricted even between proximal sites. The population structure among the Tria. infestans in different districts is not correlated with the geographical distance between districts. These data suggest that migration among the districts is mediated by factors beyond the short-range migratory capabilities of Tria. infestans and that human movement has played a significant role in the structuring of the Tria. infestans population in the region. Rapid urbanization across southern South America will continue to create suitable environments for Tria. infestans, and knowledge of its urban dispersal patterns may play a fundamental role in mitigating human disease risk. © 2013 John Wiley & Sons Ltd.

  5. Smoothness within ruggedness: the role of neutrality in adaptation.

    PubMed Central

    Huynen, M A; Stadler, P F; Fontana, W

    1996-01-01

    RNA secondary structure folding algorithms predict the existence of connected networks of RNA sequences with identical structure. On such networks, evolving populations split into subpopulations, which diffuse independently in sequence space. This demands a distinction between two mutation thresholds: one at which genotypic information is lost and one at which phenotypic information is lost. In between, diffusion enables the search of vast areas in genotype space while still preserving the dominant phenotype. By this dynamic the success of phenotypic adaptation becomes much less sensitive to the initial conditions in genotype space. Images Fig. 2 PMID:8552647

  6. Comparative Microsatellite Typing of New World Leishmania infantum Reveals Low Heterogeneity among Populations and Its Recent Old World Origin

    PubMed Central

    Kuhls, Katrin; Alam, Mohammad Zahangir; Cupolillo, Elisa; Ferreira, Gabriel Eduardo M.; Mauricio, Isabel L.; Oddone, Rolando; Feliciangeli, M. Dora; Wirth, Thierry; Miles, Michael A.; Schönian, Gabriele

    2011-01-01

    Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L. infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However, the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1, although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L. infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L. infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe. PMID:21666787

  7. CONTRIBUTIONS OF SEXUAL AND ASEXUAL REPRODUCTION TO POPULATION STRUCTURE IN THE CLONAL SOFT CORAL, ALCYONIUM RUDYI.

    PubMed

    McFadden, Catherine S

    1997-02-01

    Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (G o ) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics. © 1997 The Society for the Study of Evolution.

  8. Development and characterization of 16 polymorphic microsatellite loci for the Alaska blackfish (Esociformes: Dallia pectoralis)

    USGS Publications Warehouse

    Campbell, Matthew A.; Sage, George K.; DeWilde, Rachel L.; López, J. Andres; Talbot, Sandra L.

    2014-01-01

    Blackfishes (Esociformes: Esocidae: Dallia), small fishes with relictual distributions, are unique in being the only primary freshwater fish genus endemic to Beringia. Although the number of species of Dallia is debated, disjunct populations and distinct mitochondrial divisions that predate the end of the last glacial maximum are apparent. We developed sixteen polymorphic microsatellites from the Alaska blackfish (Dallia pectoralis) to study genetic diversity in Dallia. Genotypes from two populations, Denali (n = 31) and Bethel (n = 35), demonstrated the usefulness of the loci for population-level investigation. Observed and expected heterozygosity averaged 18.6 and 19.8 % in Denali and 61.1 and 63.7 % in Bethel. Number of alleles at each locus averaged 3.50 in Denali and 9.63 in Bethel. The observed signature of variability and structuring between populations is consistent with mitochondrial data.

  9. Photometric Application of the Gram Stain Method To Characterize Natural Bacterial Populations in Aquatic Environments

    PubMed Central

    Saida, H.; Ytow, N.; Seki, H.

    1998-01-01

    The Gram stain method was applied to the photometric characterization of aquatic bacterial populations with a charge-coupled device camera and an image analyzer. Escherichia coli and Bacillus subtilis were used as standards of typical gram-negative and gram-positive bacteria, respectively. A mounting agent to obtain clear images of Gram-stained bacteria on Nuclepore membrane filters was developed. The bacterial stainability by the Gram stain was indicated by the Gram stain index (GSI), which was applicable not only to the dichotomous classification of bacteria but also to the characterization of cell wall structure. The GSI spectra of natural bacterial populations in water with various levels of eutrophication showed a distinct profile, suggesting possible staining specificity that indicates the presence of a particular bacterial population in the aquatic environment. PMID:9464416

  10. Population structure of Helicobacter pylori among ethnic groups in Malaysia: recent acquisition of the bacterium by the Malay population

    PubMed Central

    2009-01-01

    Background Helicobacter pylori is a major gastric bacterial pathogen. This pathogen has been shown to follow the routes of human migration by their geographical origin and currently the global H. pylori population has been divided into six ancestral populations, three from Africa, two from Asia and one from Europe. Malaysia is made up of three major ethnic populations, Malay, Chinese and Indian, providing a good population for studying recent H. pylori migration and admixture. Results Seventy eight H. pylori isolates, including 27 Chinese, 35 Indian and 16 Malay isolates from Malaysia were analysed by multilocus sequence typing (MLST) of seven housekeeping genes and compared with the global MLST data. STRUCTURE analysis assigned the isolates to previously identified H. pylori ancestral populations, hpEastAsia, hpAsia2 and hpEurope, and revealed a new subpopulation, hspIndia, within hpAsia2. Statistical analysis allowed us to identify population segregation sites that divide the H. pylori populations and the subpopulations. The majority of Malay isolates were found to be grouped together with Indian isolates. Conclusion The majority of the Malay and Indian H. pylori isolates share the same origin while the Malaysian Chinese H. pylori is distinctive. The Malay population, known to have a low infection rate of H. pylori, was likely to be initially H. pylori free and gained the pathogen only recently from cross infection from other populations. PMID:19538757

  11. Structuralism, Post-Structuralism, and Neo-Liberalism: Assessing Foucault's Legacy.

    ERIC Educational Resources Information Center

    Olssen, Mark

    2003-01-01

    Traces Foucault's distinctive commitment to "post-structuralism." Argues that under the influence of Nietzsche, Foucault's approach marks a distinct break with structuralism in several crucial aspects. What results is a materialist post-structuralism that is also distinctively different from the post-structuralism of Derrida, Lyotard,…

  12. Ecological speciation by temporal isolation in a population of the stonefly Leuctra hippopus (Plecoptera, Leuctridae).

    PubMed

    Boumans, Louis; Hogner, Silje; Brittain, John; Johnsen, Arild

    2017-03-01

    Stream dwelling invertebrates are ideal candidates for the study of ecological speciation as they are often adapted to particular environmental conditions within a stream and inhabit only certain reaches of a drainage basin, separated by unsuitable habitat. We studied an atypical population of the stonefly Leuctra hippopus at a site in central Norway, the Isterfoss rapids, in relation to three nearby and two remote conspecific populations. Adults of this population emerge about a month earlier than those of nearby populations, live on large boulders emerging from the rapids, and are short-lived. This population also has distinct morphological features and was studied earlier during the period 1975-1990. We reassessed morphological distinctness with new measurements and added several analyses of genetic distinctness based on mitochondrial and nuclear sequence markers, as well as AFLP fingerprinting and SNPs mined from RAD sequences. The Isterfoss population is shown to be most closely related to its geographical neighbors, yet clearly morphologically and genetically distinct and homogeneous. We conclude that this population is in the process of sympatric speciation, with temporal isolation being the most important direct barrier to gene flow. The shift in reproductive season results from the particular temperature and water level regime in the Isterfoss rapids. The distinct adult body shape and loss of flight are hypothesized to be an adaptation to the unusual habitat. Ecological diversification on small spatial and temporal scales is one of the likely causes of the high diversity of aquatic insects.

  13. Population structure of guppies in north-eastern Venezuela, the area of putative incipient speciation

    PubMed Central

    2014-01-01

    Background Geographic barriers to gene flow and divergence among populations in sexual traits are two important causes of genetic isolation which may lead to speciation. Genetic isolation may be facilitated if these two mechanisms act synergistically. The guppy from the Cumaná region (within the Cariaco drainage) of eastern Venezuela has been previously described as a case of incipient speciation driven by sexual selection, significantly differentiated in sexual colouration and body shape from the common guppy, Poecilia reticulata. The latter occurs widely in northern Venezuela, including the south-eastern side of Cordillera de la Costa, where it inhabits streams belonging to the San Juan drainage. Here, we present molecular and morphological analyses of differentiation among guppy populations in the Cariaco and San Juan drainages. Our analyses are based on a 953 bp long mtDNA fragment, a set of 15 microsatellites (519 fish from 20 populations), and four phenotypic traits. Results Both microsatellite and mtDNA data showed that guppies inhabiting the two drainages are characterised by a significant genetic differentiation, but a higher proportion of the genetic variance was distributed among populations within regions. Most guppies in the Cariaco drainage had mtDNA from a distinct lineage, but we also found evidence for widespread introgression of mtDNA from the San Juan drainage into the Cariaco drainage. Phenotypically, populations in the two regions differed significantly only in the number of black crescents. Phenotypic clustering did not support existence of two distinct groupings, but indicated a degree of distinctiveness of Central Cumaná (CC) population. However, CC population showed little differentiation at the neutral markers from the proximate populations within the Cariaco drainage. Conclusions Our findings are consistent with only partial genetic isolation between the two geographic regions and indicate that the geographic barrier of Cordillera de la Costa has not played an important role in strengthening the incomplete pre-zygotic reproductive barrier between Cumaná and common guppy. Significant phenotypic differentiation between genetically similar (in terms of neutral variation) populations suggests that mate choice can maintain divergence at sexually selected traits despite gene flow. However, neither genetic nor phenotypic clustering supported delineation of two species within the region. PMID:24533965

  14. Genome-wide SNPs reveal fine-scale differentiation among wingless alpine stonefly populations and introgression between winged and wingless forms.

    PubMed

    Dussex, Nicolas; Chuah, Aaron; Waters, Jonathan M

    2016-01-01

    Insect flight loss is a repeated phenomenon in alpine habitats, where wing reduction is thought to enhance local recruitment and increase fecundity. One predicted consequence of flight loss is reduced dispersal ability, which should lead to population genetic differentiation and perhaps ultimately to speciation. Using a dataset of 15,123 SNP loci, we present comparative analyses of fine-scale population structure in codistributed Zelandoperla stonefly species, across three parallel altitudinal transects in New Zealand's Rock and Pillar mountain range. We find that winged populations (altitude 200-500 m; Zelandoperla decorata) show no genetic structuring within or among streams, suggesting substantial dispersal mediated by flight. By contrast, wingless populations (Zelandoperla fenestrata; altitude 200-1100 m) exhibit distinct genetic clusters associated with each stream, and additional evidence of isolation by distance within streams. Our data support the hypothesis that wing-loss can initiate diversification in alpine insect populations over small spatial scales. The often deep phylogenetic placement of lowland Z. fenestrata within their stream-specific clades suggests the possibility of independent alpine colonization events for each stream. Additionally, the detection of winged, interspecific hybrid individuals raises the intriguing possibility that a previously flightless lineage could reacquire flight via introgression. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  15. Isolation and prominent aboriginal maternal legacy in the present-day population of La Gomera (Canary Islands)

    PubMed Central

    Fregel, Rosa; Cabrera, Vicente M; Larruga, José M; Hernández, Juan C; Gámez, Alejandro; Pestano, Jose J; Arnay, Matilde; González, Ana M

    2015-01-01

    The present-day population structure of La Gomera is outstanding in its high aboriginal heritage, the greatest in the Canary Islands. This was earlier confirmed by both mitochondrial DNA and autosomal analyses, although genetic drift due to the fifteenth century European colonization could not be excluded as the main factor responsible. The present mtDNA study of aboriginal remains and extant samples from the six municipal districts of the island indeed demonstrates that the pre-Hispanic colonization of La Gomera by North African people involved a strong founder event, shown by the high frequency of the indigenous Canarian U6b1a lineage in the aboriginal samples (65%). This value is even greater than that observed in the extant population (44%), which in turn is the highest of all the seven Canary Islands. In contrast to previous results obtained for the aboriginal populations of Tenerife and La Palma, haplogroups related to secondary waves of migration were not detected in La Gomera aborigines, indicating that isolation also had an important role in shaping the current population. The rugged relief of La Gomera divided into several distinct valleys probably promoted subsequent aboriginal intra-insular differentiation that has continued after the European colonization, as seen in the present-day population structure observed on the island. PMID:25407001

  16. Serum chemistry reference ranges for Steller sea lion (Eumetopias jubatus) pups from Alaska: stock differentiation and comparisons within a North Pacific sentinel species.

    PubMed

    Lander, Michelle E; Fadely, Brian S; Gelatt, Thomas S; Rea, Lorrie D; Loughlin, Thomas R

    2013-12-01

    Blood chemistry and hematologic reference ranges are useful for population health assessment and establishing a baseline for future comparisons in the event of ecosystem changes due to natural or anthropogenic factors. The objectives of this study were to determine if there was any population spatial structure for blood variables of Steller sea lion (Eumetopias jubatus), an established sentinel species, and to report reference ranges for appropriate populations using standardized analyses. In addition to comparing reference ranges between populations with contrasting abundance trends, data were examined for evidence of disease or nutritional stress. From 1998 to 2011, blood samples were collected from 1,231 pups captured on 37 rookeries across their Alaskan range. Reference ranges are reported separately for the western and eastern distinct population segments (DPS) of Steller sea lion after cluster analysis and discriminant function analysis (DFA) supported underlying stock structure. Variables with greater loading scores for the DFA (creatinine, total protein, calcium, albumin, cholesterol, and alkaline phosphatase) also were greater for sea lions from the endangered western DPS, supporting previous studies that indicated pup condition in the west was not compromised during the first month postpartum. Differences between population segments were likely a result of ecological, physiological, or age related differences.

  17. Geographical and ethnic variability of finger ridge-counts: biplots of male and female Indian samples.

    PubMed

    Krishnan, T; Reddy, B M

    1994-01-01

    The graphical technique of biplot due to Gabriel and others is explained, and is applied to ten finger ridge-count means of 239 populations, mostly Indian. The biplots, together with concentration ellipses based on them, are used to study geographical, gender and ethnic/social group variability, to compare Indian populations with other populations and to study relations between individual counts and populations. The correlation structure of ridge-counts exhibits a tripartite division of digits demonstrated by many other studies, but with a somewhat different combination of digits. Comparisons are also made with the results of Leguebe and Vrydagh, who used principal components, discriminant functions, Andrews functions, etc., to study geographical and gender variations. There is a great deal of homogeneity in Indian populations when compared to populations from the rest of the world. Although broad geographical contiguity is reflected in the biplots, local (states within India) level contiguity is not maintained. Monogoloids and Caucasoids have distinct ridge-count structures. The higher level of homogeneity in females and on the left side observed by Leguebe and Vrydagh is also observed in the biplots. A comparison with principal component plots indicates that biplots yield a graphical representation similar to component plots, and convey more information than component plots.

  18. Seasonal Diversity Patterns of a Coastal Synechococcus Population

    NASA Astrophysics Data System (ADS)

    Hunter-Cevera, K. R.; Sosik, H. M.; Neubert, M.; Hammar, K.; Post, A.

    2016-02-01

    Understanding how environmental and ecological factors determine phytoplankton species abundances requires knowledge of the diversity present within a population. For the important primary producer Synechococcus, clades demonstrate differences in temperature tolerance, light acclimation, grazer palatability, and more. Marine Synechococcus populations are often composed of more than one clade, and overall population dynamics will be governed by the types of cells present and by their individual physiological capabilities. We investigate the diversity of the Synechococcus assemblage at the Martha's Vineyard Coastal Observatory with high-throughput sequencing of the V6 hypervariable region of the 16S rRNA gene. Small nucleotide differences within this region allow for resolution of distinct phylotypes that can have a direct correspondence to the well-defined Synechococcus clades. From a three-year time series, we find that the Synechococcus population is dominated by 5 distinct phylotypes, and that each type exhibits a repeatable, seasonal pattern in relative abundance. We use compositional data analysis techniques to investigate the relationships between these patterns and environmental factors. We further interpret these patterns in the context of Synechococcus population dynamics assessed by automated, submersible flow cytometry (FlowCytobot). Observed diel changes in cell size distributions, coupled with a validated matrix population model, provide estimates of in situ population division rates. We find strong evidence that the main seasonal diversity patterns are governed by temperature, but that biological loss agents likely shape the diversity structure for certain times of year. For some phylotypes, relative abundance patterns are also related to light and nutrients. The composition of Synechococcus over the annual cycle appears to directly affect seasonal features of cell abundance patterns, such as the spring bloom.

  19. Tigers of Sundarbans in India: Is the Population a Separate Conservation Unit?

    PubMed Central

    Singh, Sujeet Kumar; Mishra, Sudhanshu; Aspi, Jouni; Kvist, Laura; Nigam, Parag; Pandey, Puneet; Sharma, Reeta; Goyal, Surendra Prakash

    2015-01-01

    The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate “evolutionarily significant unit” (ESU) following the adaptive evolutionary conservation (AEC) concept. PMID:25919139

  20. Morphological and Genetic Evidence for Multiple Evolutionary Distinct Lineages in the Endangered and Commercially Exploited Red Lined Torpedo Barbs Endemic to the Western Ghats of India

    PubMed Central

    Dahanukar, Neelesh; Anvar Ali, Palakkaparambil Hamsa; Tharian, Josin; Raghavan, Rajeev; Antunes, Agostinho

    2013-01-01

    Red lined torpedo barbs (RLTBs) (Cyprinidae: Puntius) endemic to the Western Ghats Hotspot of India, are popular and highly priced freshwater aquarium fishes. Two decades of indiscriminate exploitation for the pet trade, restricted range, fragmented populations and continuing decline in quality of habitats has resulted in their ‘Endangered’ listing. Here, we tested whether the isolated RLTB populations demonstrated considerable variation qualifying to be considered as distinct conservation targets. Multivariate morphometric analysis using 24 size-adjusted characters delineated all allopatric populations. Similarly, the species-tree highlighted a phylogeny with 12 distinct RLTB lineages corresponding to each of the different riverine populations. However, coalescence-based methods using mitochondrial DNA markers identified only eight evolutionarily distinct lineages. Divergence time analysis points to recent separation of the populations, owing to the geographical isolation, more than 5 million years ago, after the lineages were split into two ancestral stocks in the Paleocene, on north and south of a major geographical gap in the Western Ghats. Our results revealing the existence of eight evolutionarily distinct RLTB lineages calls for the re-determination of conservation targets for these cryptic and endangered taxa. PMID:23894533

  1. Historical and contemporary factors generate unique butterfly communities on islands

    NASA Astrophysics Data System (ADS)

    Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Shreeve, Tim G.; Khaldi, Mourad; Barech, Ghania; Rebbas, Khellaf; Sammut, Paul; Scalercio, Stefano; Hebert, Paul D. N.; Vila, Roger

    2016-06-01

    The mechanisms shaping island biotas are not yet well understood mostly because of a lack of studies comparing eco-evolutionary fingerprints over entire taxonomic groups. Here, we linked community structure (richness, frequency and nestedness) and genetic differentiation (based on mitochondrial DNA) in order to compare insular butterfly communities occurring over a key intercontinental area in the Mediterranean (Italy-Sicily-Maghreb). We found that community characteristics and genetic structure were influenced by a combination of contemporary and historical factors, and among the latter, connection during the Pleistocene had an important impact. We showed that species can be divided into two groups with radically different properties: widespread taxa had high dispersal capacity, a nested pattern of occurrence, and displayed little genetic structure, while rare species were mainly characterized by low dispersal, high turnover and genetically differentiated populations. These results offer an unprecedented view of the distinctive butterfly communities and of the main processes determining them on each studied island and highlight the importance of assessing the phylogeographic value of populations for conservation.

  2. Taxonomy of the Loggerhead Kingbird (Tyrannus caudifasciatus) complex (Aves: Tyrannidae)

    Treesearch

    Orlando H. Garrido; James W. Wiley; George B. Reynard

    2009-01-01

    We examined the complex of populations of the Loggerhead Kingbird (Tyrannus caudifasciatus), a West Indian endemic. We separate populations in Puerto Rico and Isla Vieques (T. taylori), and Hispaniola (T. gabbii) as distinct species. Subspecific distinction is assigned to populations in Cuba, Isla de Pinos, and Cuban satellites (T. caudifasciatus caudifasciatus);...

  3. Patterns of Deep-Sea Genetic Connectivity in the New Zealand Region: Implications for Management of Benthic Ecosystems

    PubMed Central

    Bors, Eleanor K.; Rowden, Ashley A.; Maas, Elizabeth W.; Clark, Malcolm R.; Shank, Timothy M.

    2012-01-01

    Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region. PMID:23185341

  4. Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China

    PubMed Central

    Li, Kaili; Chen, Huiying; Jiang, Jinjin; Li, Xiangyu; Xu, Jiannong; Ma, Yajun

    2016-01-01

    Sand fly Phlebotomus chinensis is a primary vector of transmission of visceral leishmaniasis in China. The sand flies have adapted to various ecological niches in distinct ecosystems. Characterization of the microbial structure and function will greatly facilitate the understanding of the sand fly ecology, which would provide critical information for developing intervention strategy for sand fly control. In this study we compared the bacterial composition between two populations of Ph. chinensis from Henan and Sichuan, China. The phylotypes were taxonomically assigned to 29 genera of 19 families in 9 classes of 5 phyla. The core bacteria include Pseudomonas and enterobacteria, both are shared in the sand flies in the two regions. Interestingly, the endosymbionts Wolbachia and Rickettsia were detected only in Henan, while the Rickettsiella and Diplorickettsia only in Sichuan. The intracellular bacteria Rickettsia, Rickettsiella and Diplorickettsia were reported for the first time in sand flies. The influence of sex and feeding status on the microbial structure was also detected in the two populations. The findings suggest that the ecological diversity of sand fly in Sichuan and Henan may contribute to shaping the structure of associated microbiota. The structural classification paves the way to function characterization of the sand fly associated microbiome. PMID:27819272

  5. Beyond sex differences: new approaches for thinking about variation in brain structure and function.

    PubMed

    Joel, Daphna; Fausto-Sterling, Anne

    2016-02-19

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. © 2016 The Author(s).

  6. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures

    USGS Publications Warehouse

    Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.

    2007-01-01

    The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  7. Phylogeography and Genetic Ancestry of Tigers (Panthera tigris)

    PubMed Central

    Johnson, Warren E; van der Walt, Joelle; Martenson, Janice; Yuhki, Naoya; Miquelle, Dale G; Uphyrkina, Olga; Goodrich, John M; Quigley, Howard B; Tilson, Ronald; Brady, Gerald; Martelli, Paolo; Subramaniam, Vellayan; McDougal, Charles; Hean, Sun; Huang, Shi-Qiang; Pan, Wenshi; Karanth, Ullas K; Sunquist, Melvin; Smith, James L. D

    2004-01-01

    Eight traditional subspecies of tiger (Panthera tigris), of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA, DRB, and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti into northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000–108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers. PMID:15583716

  8. Toward a Two-Dimensional Model of Social Cognition in Clinical Neuropsychology: A Systematic Review of Factor Structure Studies.

    PubMed

    Etchepare, Aurore; Prouteau, Antoinette

    2018-04-01

    Social cognition has received growing interest in many conditions in recent years. However, this construct still suffers from a considerable lack of consensus, especially regarding the dimensions to be studied and the resulting methodology of clinical assessment. Our review aims to clarify the distinctiveness of the dimensions of social cognition. Based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements, a systematic review was conducted to explore the factor structure of social cognition in the adult general and clinical populations. The initial search provided 441 articles published between January 1982 and March 2017. Eleven studies were included, all conducted in psychiatric populations and/or healthy participants. Most studies were in favor of a two-factor solution. Four studies drew a distinction between low-level (e.g., facial emotion/prosody recognition) and high-level (e.g., theory of mind) information processing. Four others reported a distinction between affective (e.g., facial emotion/prosody recognition) and cognitive (e.g., false beliefs) information processing. Interestingly, attributional style was frequently reported as an additional separate factor of social cognition. Results of factor analyses add further support for the relevance of models differentiating level of information processing (low- vs. high-level) from nature of processed information (affective vs. cognitive). These results add to a significant body of empirical evidence from developmental, clinical research and neuroimaging studies. We argue the relevance of integrating low- versus high-level processing with affective and cognitive processing in a two-dimensional model of social cognition that would be useful for future research and clinical practice. (JINS, 2018, 24, 391-404).

  9. MC1R Genotype and Plumage Colouration in the Zebra Finch (Taeniopygia guttata): Population Structure Generates Artefactual Associations

    PubMed Central

    Hoffman, Joseph I.; Krause, E. Tobias; Lehmann, Katrin; Krüger, Oliver

    2014-01-01

    Polymorphisms at the melanocortin-1 receptor (MC1R) gene have been linked to coloration in many vertebrate species. However, the potentially confounding influence of population structure has rarely been controlled for. We explored the role of the MC1R in a model avian system by sequencing the coding region in 162 zebra finches comprising 79 wild type and 83 white individuals from five stocks. Allelic counts differed significantly between the two plumage morphs at multiple segregating sites, but these were mostly synonymous. To provide a control, the birds were genotyped at eight microsatellites and subjected to Bayesian cluster analysis, revealing two distinct groups. We therefore crossed wild type with white individuals and backcrossed the F1s with white birds. No significant associations were detected in the resulting offspring, suggesting that our original findings were a byproduct of genome-wide divergence. Our results are consistent with a previous study that found no association between MC1R polymorphism and plumage coloration in leaf warblers. They also contribute towards a growing body of evidence suggesting that care should be taken to quantify, and where necessary control for, population structure in association studies. PMID:24489736

  10. Plasmodium falciparum Genetic Diversity in Bangladesh Does Not Suggest a Hypoendemic Population Structure

    PubMed Central

    Alam, Mohammad Shafiul; Elahi, Rubayet; Mohon, Abu Naser; Al-Amin, Hasan Mohammad; Kibria, Mohammad Golam; Khan, Wasif A.; Khanum, Hamida; Haque, Rashidul

    2016-01-01

    Despite the recommendation for the use of merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2), and glutamate-rich protein (glurp) genes as markers in drug efficacy studies by World Health Organization and their limited use in Bangladesh, the circulating Plasmodium falciparum population genetic structure has not yet been assessed in Bangladesh. This study presents a comprehensive report on the circulating P. falciparum population structure based on msp1, msp2, and glurp polymorphic gene markers in Bangladesh. Among the 130 pretreatment (day 0) P. falciparum samples from seven malaria-endemic districts, 14 distinct genotypes were observed for msp1, 20 for msp2, and 13 for glurp. Polyclonal infection was reported in 94.6% (N = 123) of the samples. Multiplicity of infection (MOI) for msp1 was the highest (1.5) among the MOIs of the markers. The heterozygosity for msp1, msp2, and glurp was 0.89, 0.93, and 0.83, respectively. Data according to different malaria-endemic areas are also presented and discussed. Bangladesh is considered as a malaria-hypoendemic country. However, the prevalence of polyclonal infection and the genetic diversity of P. falciparum do not represent hypoendemicity. PMID:27139455

  11. Leveraging Hierarchical Population Structure in Discrete Association Studies

    PubMed Central

    Carlson, Jonathan; Kadie, Carl; Mallal, Simon; Heckerman, David

    2007-01-01

    Population structure can confound the identification of correlations in biological data. Such confounding has been recognized in multiple biological disciplines, resulting in a disparate collection of proposed solutions. We examine several methods that correct for confounding on discrete data with hierarchical population structure and identify two distinct confounding processes, which we call coevolution and conditional influence. We describe these processes in terms of generative models and show that these generative models can be used to correct for the confounding effects. Finally, we apply the models to three applications: identification of escape mutations in HIV-1 in response to specific HLA-mediated immune pressure, prediction of coevolving residues in an HIV-1 peptide, and a search for genotypes that are associated with bacterial resistance traits in Arabidopsis thaliana. We show that coevolution is a better description of confounding in some applications and conditional influence is better in others. That is, we show that no single method is best for addressing all forms of confounding. Analysis tools based on these models are available on the internet as both web based applications and downloadable source code at http://atom.research.microsoft.com/bio/phylod.aspx. PMID:17611623

  12. Clan, Language, and Migration History Has Shaped Genetic Diversity in Haida and Tlingit Populations From Southeast Alaska

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Owings, Amanda C.; Zhadanov, Sergey I.; Gaieski, Jill B.; Vilar, Miguel G.; Ramos, Judy; Moss, Mary Beth; Natkong, Francis

    2013-01-01

    The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a “northern” genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region. PMID:22549307

  13. A Parallel Population Genomic and Hydrodynamic Approach to Fishery Management of Highly-Dispersive Marine Invertebrates: The Case of the Fijian Black-Lip Pearl Oyster Pinctada margaritifera.

    PubMed

    Lal, Monal M; Southgate, Paul C; Jerry, Dean R; Bosserelle, Cyprien; Zenger, Kyall R

    2016-01-01

    Fishery management and conservation of marine species increasingly relies on genetic data to delineate biologically relevant stock boundaries. Unfortunately for high gene flow species which may display low, but statistically significant population structure, there is no clear consensus on the level of differentiation required to resolve distinct stocks. The use of fine-scale neutral and adaptive variation, considered together with environmental data can offer additional insights to this problem. Genome-wide genetic data (4,123 SNPs), together with an independent hydrodynamic particle dispersal model were used to inform farm and fishery management in the Fijian black-lip pearl oyster Pinctada margaritifera, where comprehensive fishery management is lacking, and the sustainability of exploitation uncertain. Weak fine-scale patterns of population structure were detected, indicative of broad-scale panmixia among wild oysters, while a hatchery-sourced farmed population exhibited a higher degree of genetic divergence (Fst = 0.0850-0.102). This hatchery-produced population had also experienced a bottleneck (NeLD = 5.1; 95% C.I. = [5.1-5.3]); compared to infinite NeLD estimates for all wild oysters. Simulation of larval transport pathways confirmed the existence of broad-scale mixture by surface ocean currents, correlating well with fine-scale patterns of population structuring. Fst outlier tests failed to detect large numbers of loci supportive of selection, with 2-5 directional outlier SNPs identified (average Fst = 0.116). The lack of biologically significant population genetic structure, absence of evidence for local adaptation and larval dispersal simulation, all indicate the existence of a single genetic stock of P. margaritifera in the Fiji Islands. This approach using independent genomic and oceanographic tools has allowed fundamental insights into stock structure in this species, with transferability to other highly-dispersive marine taxa for their conservation and management.

  14. Multiple SNP Markers Reveal Fine-Scale Population and Deep Phylogeographic Structure in European Anchovy (Engraulis encrasicolus L.)

    PubMed Central

    Zarraonaindia, Iratxe; Iriondo, Mikel; Albaina, Aitor; Pardo, Miguel Angel; Manzano, Carmen; Grant, W. Stewart; Irigoien, Xabier; Estonba, Andone

    2012-01-01

    Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian-Atlantic coast appear to have been founded by secondary waves of migrants from a southern refuge. PMID:22860082

  15. Less Pollen-Mediated Gene Flow for More Signatures of Glacial Lineages: Congruent Evidence from Balsam Fir cpDNA and mtDNA for Multiple Refugia in Eastern and Central North America

    PubMed Central

    Cinget, Benjamin; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean

    2015-01-01

    The phylogeographic structure and postglacial history of balsam fir (Abies balsamea), a transcontinental North American boreal conifer, was inferred using mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) markers. Genetic structure among 107 populations (mtDNA data) and 75 populations (cpDNA data) was analyzed using Bayesian and genetic distance approaches. Population differentiation was high for mtDNA (dispersed by seeds only), but also for cpDNA (dispersed by seeds and pollen), indicating that pollen gene flow is more restricted in balsam fir than in other boreal conifers. Low cpDNA gene flow in balsam fir may relate to low pollen production due to the inherent biology of the species and populations being decimated by recurrent spruce budworm epidemics, and/or to low dispersal of pollen grains due to their peculiar structural properties. Accordingly, a phylogeographic structure was detected using both mtDNA and cpDNA markers and population structure analyses supported the existence of at least five genetically distinct glacial lineages in central and eastern North America. Four of these would originate from glacial refugia located south of the Laurentide ice sheet, while the last one would have persisted in the northern Labrador region. As expected due to reduced pollen-mediated gene flow, congruence between the geographic distribution of mtDNA and cpDNA lineages was higher than in other North American conifers. However, concordance was not complete, reflecting that restricted but nonetheless detectable cpDNA gene flow among glacial lineages occurred during the Holocene. As a result, new cpDNA and mtDNA genome combinations indicative of cytoplasmic genome capture were observed. PMID:25849816

  16. Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus.

    PubMed

    Gonçalves, N; Gomes-Ferreira, C; Moura, C; Roncon-Albuquerque, R; Leite-Moreira, A F; Falcão-Pires, I

    2016-08-15

    Diabetic cardiomyopathy is characterized by cardiac structural and functional abnormalities. Additionally, chronic pressure overload conditions are highly prevalent amongst diabetic population and this association leads to a more severe myocardial impairment. The differences in myocardial pathophysiology between type 1 and type 2 diabetes mellitus (DM) still remain to be clarified. Thus, we aimed to investigate biventricular structural and functional changes promoted by the two types of DM and the impact of concomitant chronic pressure overload. Wistar rats were injected with streptozotocin (Type 1 DM, T1DM) or fed with a hypercaloric diet (Type 2 DM, T2DM). Pressure overload was imposed in DM animals by aortic constriction and after 5weeks of DM the cardiac function and structure were evaluated. Both types of DM promoted hypertrophy, increased fibrosis and advanced glycation end-products deposition, in the two ventricles. Interestingly, the induced myocardial alterations were distinct. While T1DM stimulated a pronounced hypertrophy and extracellular matrix remodeling, T2DM induced functional impairment. The negative impact of the association of DM with aortic constriction was more pronounced in T2DM, promoting impaired function and increased stiffness, particularly in the right ventricle. Our study demonstrated that the two types of diabetes induce distinct cardiac alterations per se or when combined with chronic pressure overload. T1DM promoted a more extensive remodeling in cardiac structure while T2DM significantly impaired ventricular function. The impact of pressure overload was more notorious in T2DM as observed by worse myocardial remodeling, suggesting a higher susceptibility to the deleterious effects of chronic pressure overload, namely hypertension, among this diabetic population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Point process models for localization and interdependence of punctate cellular structures.

    PubMed

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  18. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum

    PubMed Central

    Kumar, Nitin; Lad, Ganesh; Giuntini, Elisa; Kaye, Maria E.; Udomwong, Piyachat; Shamsani, N. Jannah; Young, J. Peter W.; Bailly, Xavier

    2015-01-01

    Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional ‘polyphasic taxonomy′ that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as ‘biovars' within species that are defined by core gene phylogeny. PMID:25589577

  19. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    PubMed Central

    Pailles, Yveline; Ho, Shwen; Pires, Inês S.; Tester, Mark; Negrão, Sónia; Schmöckel, Sandra M.

    2017-01-01

    Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance. PMID:28261227

  20. Cryptic Population Structuring and the Role of the Isthmus of Tehuantepec as a Gene Flow Barrier in the Critically Endangered Central American River Turtle

    PubMed Central

    González-Porter, Gracia P.; Maldonado, Jesús E.; Flores-Villela, Oscar; Vogt, Richard C.; Janke, Axel; Fleischer, Robert C.; Hailer, Frank

    2013-01-01

    The critically endangered Central American River Turtle (Dermatemys mawii) is the only remaining member of the Dermatemydidae family, yet little is known about its population structuring. In a previous study of mitochondrial (mt) DNA in the species, three main lineages were described. One lineage (Central) was dominant across most of the range, while two other lineages were restricted to Papaloapan (PAP; isolated by the Isthmus of Tehuantepec and the Sierra de Santa Marta) or the south-eastern part of the range (1D). Here we provide data from seven polymorphic microsatellite loci and the R35 intron to re-evaluate these findings using DNA from the nuclear genome. Based on a slightly expanded data set of a total of 253 samples from the same localities, we find that mtDNA and nuclear DNA markers yield a highly congruent picture of the evolutionary history and population structuring of D. mawii. While resolution provided by the R35 intron (sequenced for a subset of the samples) was very limited, the microsatellite data revealed pronounced population structuring. Within the Grijalva-Usumacinta drainage basin, however, many populations separated by more than 300 kilometers showed signals of high gene flow. Across the entire range, neither mitochondrial nor nuclear DNA show a significant isolation-by-distance pattern, but both genomes highlight that the D. mawii population in the Papaloapan basin is genetically distinctive. Further, both marker systems detect unique genomic signals in four individuals with mtDNA clade 1D sampled on the southeast edge of the Grijalva-Usumacinta basin. These individuals may represent a separate cryptic taxon that is likely impacted by recent admixture. PMID:24086253

  1. Genetic Differentiation, Structure, and a Transition Zone among Populations of the Pitcher Plant Moth Exyra semicrocea: Implications for Conservation

    PubMed Central

    Stephens, Jessica D.; Santos, Scott R.; Folkerts, Debbie R.

    2011-01-01

    Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9–3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats. PMID:21829473

  2. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    PubMed Central

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  3. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF.

  4. Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations.

    PubMed

    Shea, Patrick R; Beres, Stephen B; Flores, Anthony R; Ewbank, Amy L; Gonzalez-Lugo, Javier H; Martagon-Rosado, Alexandro J; Martinez-Gutierrez, Juan C; Rehman, Hina A; Serrano-Gonzalez, Monica; Fittipaldi, Nahuel; Ayers, Stephen D; Webb, Paul; Willey, Barbara M; Low, Donald E; Musser, James M

    2011-03-22

    Many pathogens colonize different anatomical sites, but the selective pressures contributing to survival in the diverse niches are poorly understood. Group A Streptococcus (GAS) is a human-adapted bacterium that causes a range of infections. Much effort has been expended to dissect the molecular basis of invasive (sterile-site) infections, but little is known about the genomes of strains causing pharyngitis (streptococcal "sore throat"). Additionally, there is essentially nothing known about the genetic relationships between populations of invasive and pharyngitis strains. In particular, it is unclear if invasive strains represent a distinct genetic subpopulation of strains that cause pharyngitis. We compared the genomes of 86 serotype M3 GAS pharyngitis strains with those of 215 invasive M3 strains from the same geographical location. The pharyngitis and invasive groups were highly related to each other and had virtually identical phylogenetic structures, indicating they belong to the same genetic pool. Despite the overall high degree of genetic similarity, we discovered that strains from different host environments (i.e., throat, normally sterile sites) have distinct patterns of diversifying selection at the nucleotide level. In particular, the pattern of polymorphisms in the hyaluronic acid capsule synthesis operon was especially different between the two strain populations. This finding was mirrored by data obtained from full-genome analysis of strains sequentially cultured from nonhuman primates. Our results answer the long-standing question of the genetic relationship between GAS pharyngitis and invasive strains. The data provide previously undescribed information about the evolutionary history of pathogenic microbes that cause disease in different anatomical sites.

  5. Population genetic diversity and genetic structure of Spodoptera exigua around the Bohai Gulf area of China based on mitochondrial DNA signatures.

    PubMed

    Zhou, L-H; Wang, X-Y; Lei, J-J

    2016-09-30

    The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is an economically important pest that causes major losses in some main crop-producing areas of China. To control this pest effectively, it is necessary to investigate its population genetic diversity and genetic structure around the Bohai Gulf area of China. In this study, we used two mitochondrial genes, COI (578 bp) and Cytb (724 bp), to investigate its genetic diversity. We obtained 622 COI sequences and 462 Cytb sequences from 23 populations, and 28 and 73 haplotypes, respectively, were identified. Low to moderate levels of genetic diversity (COI: Hd = 0.267 ± 0.023, Pi = 0.00082 ± 0.00010; Cytb: Hd = 0.689 ± 0.018, Pi = 0.00255 ± 0.00029) for the total populations were observed. Phylogenetic and median-joining network analyses indicated no distinct geographical distribution pattern among the haplotypes. Overall, this study revealed that there was significant differentiation among the populations (COI: F ST = 0.158, P < 0.001; Cytb: F ST = 0.148, P < 0.001). F ST values for Shenyang, Baoding, and Funing were significantly different to those for most of the other populations. Finally, unimodal mismatch distribution analysis, combined with negative neutrality test results, showed a recent population expansion of the beet armyworm around the Bohai Gulf area of China.

  6. Consanguinity and Its Sociodemographic Differentials in Bhimber District, Azad Jammu and Kashmir, Pakistan

    PubMed Central

    Jabeen, Nazish

    2014-01-01

    ABSTRACT Kashmiri population in the northeast of Pakistan has strong historical, cultural and linguistic affinities with the neighbouring populations of upper Punjab and Potohar region of Pakistan. However, the study of consanguineous unions, which are customarily practised in many populations of Pakistan, revealed marked differences between the Kashmiris and other populations of northern Pakistan with respect to the distribution of marriage types and inbreeding coefficient (F). The current descriptive epidemiological study carried out in Bhimber district of Mirpur division, Azad Jammu and Kashmir, Pakistan, demonstrated that consanguineous marriages were 62% of the total marriages (F=0.0348). First-cousin unions were the predominant type of marriages and constituted 50.13% of total marital unions. The estimates of inbreeding coefficient were higher in the literate subjects, and consanguinity was witnessed to be rising with increasing literacy level. Additionally, consanguinity was observed to be associated with ethnicity, family structure, language, and marriage arrangements. Based upon these data, a distinct sociobiological structure, with increased stratification and higher genomic homozygosity, is expected for this Kashmiri population. In this communication, we present detailed distribution of the types of marital unions and the incidences of consanguinity and inbreeding coefficient (F) across various sociodemographic strata of Bhimber/Mirpuri population. The results of this study would have implication not only for other endogamous populations of Pakistan but also for the sizeable Kashmiri community immigrated to Europe. PMID:25076667

  7. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  8. Population Structure of Barley Landrace Populations and Gene-Flow with Modern Varieties

    PubMed Central

    Bellucci, Elisa; Bitocchi, Elena; Rau, Domenico; Nanni, Laura; Ferradini, Nicoletta; Giardini, Alessandro; Rodriguez, Monica; Attene, Giovanna; Papa, Roberto

    2013-01-01

    Landraces are heterogeneous plant varieties that are reproduced by farmers as populations that are subject to both artificial and natural selection. Landraces are distinguished by farmers due to their specific traits, and different farmers often grow different populations of the same landrace. We used simple sequence repeats (SSRs) to analyse 12 barley landrace populations from Sardinia from two collections spanning 10 years. We analysed the population structure, and compared the population diversity of the landraces that were collected at field level (population). We used a representative pool of barley varieties for diversity comparisons and to analyse the effects of gene flow from modern varieties. We found that the Sardinian landraces are a distinct gene pool from those of both two-row and six-row barley varieties. There is also a low, but significant, mean level and population-dependent level of introgression from the modern varieties into the Sardinian landraces. Moreover, we show that the Sardinian landraces have the same level of gene diversity as the representative sample of modern commercial varieties grown in Italy in the last decades, even within population level. Thus, these populations represent crucial sources of germplasm that will be useful for crop improvement and for population genomics studies and association mapping, to identify genes, loci and genome regions responsible for adaptive variations. Our data also suggest that landraces are a source of valuable germplasm for sustainable agriculture in the context of future climate change, and that in-situ conservation strategies based on farmer use can preserve the genetic identity of landraces while allowing adaptation to local environments. PMID:24386303

  9. In silico Exploration of the Conformational Universe of GPCRs.

    PubMed

    Rodríguez-Espigares, Ismael; Kaczor, Agnieszka A; Selent, Jana

    2016-07-01

    The structural plasticity of G protein coupled receptors (GPCRs) leads to a conformational universe going from inactive to active receptor states with several intermediate states. Many of them have not been captured yet and their role for GPCR activation is not well understood. The study of this conformational space and the transition dynamics between different receptor populations is a major challenge in molecular biophysics. The rational design of effector molecules that target such receptor populations allows fine-tuning receptor signalling with higher specificity to produce drugs with safer therapeutic profiles. In this minireview, we outline highly conserved receptor regions which are considered determinant for the establishment of distinct receptor states. We then discuss in-silico approaches such as dimensionality reduction methods and Markov State Models to explore the GPCR conformational universe and exploit the obtained conformations through structure-based drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Population Diversity and Dispersal of Two Species of Stoneflies (Order Plecoptera) Within Four Watersheds of Northeastern Ohio.

    NASA Astrophysics Data System (ADS)

    Yasick, A. L.; Wolin, J. A.; Krebs, R. A.

    2005-05-01

    This study investigates two species of stoneflies with potentially opposing dispersal capabilities and genetic structure within four watersheds in the Lake Erie drainage system of Northeast Ohio. This research is two fold; it provides information on genetic variation of two understudied aquatic invertebrate species and the impact of human land-use practices on this variation. Populations of Allocapnia recta, a winter emerging stonefly are predicted to have the least genetic variation within the four watersheds and most differences among sites due to its rudimentary wing structure and winter emergence. Leuctra tenuis is predicted to have greater genetic variability within sites and fewer differences among sites because of its higher migration potential. In both species, models of isolation by distance will be tested. Distinct polymorphisms exist within the 16s rRNA region of A. recta suggesting that this fragment has sufficient variation to address these questions.

  11. Population structure analysis of the neglected parasite Thelazia callipaeda revealed high genetic diversity in Eastern Asia isolates.

    PubMed

    Zhang, Xi; Shi, Ya Li; Han, Lu Lu; Xiong, Chen; Yi, Shi Qi; Jiang, Peng; Wang, Zeng Xian; Shen, Ji Long; Cui, Jing; Wang, Zhong Quan

    2018-01-01

    Thelazia callipaeda is the causative agent of thelaziasis in canids, felids and humans. However, the population genetic structure regarding this parasite remains unclear. In this study, we first explored the genetic variation of 32 T. callipaeda clinical isolates using the following multi-molecular markers: cox1, cytb, 12S rDNA, ITS1 and 18S rDNA. The isolates were collected from 13 patients from 11 geographical locations in China. Next, the population structure of T. callipaeda from Europe and other Asian countries was analyzed using the cox1 sequences collected during this study and from the GenBank database. In general, the Chinese clinical isolates of T. callipaeda expressed high genetic diversity. Based on the cox1 gene, a total of 21 haplotypes were identified. One only circulated in European countries (Hap1), while the other 20 haplotypes were dispersed in Korea, Japan and China. There were five nucleotide positions in the cox1 sequences that were confirmed as invariable among individuals from Europe and Asia, but the sequences were distinct between these two regions. Population differences between Europe and Asian countries were greater than those among China, Korea and Japan. The T. callipaeda populations from Europe and Asia should be divided into two separate sub-populations. These two groups started to diverge during the middle Pleistocene. Neutrality tests, mismatch distribution and Bayesian skyline plot (BSP) analysis all rejected possible population expansion of T. callipaeda. The Asian population of T. callipaeda has a high level of genetic diversity, but further studies should be performed to explore the biology, ecology and epidemiology of T. callipaeda.

  12. Population structure analysis of the neglected parasite Thelazia callipaeda revealed high genetic diversity in Eastern Asia isolates

    PubMed Central

    Zhang, Xi; Shi, Ya Li; Han, Lu Lu; Xiong, Chen; Yi, Shi Qi; Jiang, Peng; Wang, Zeng Xian; Shen, Ji Long; Wang, Zhong Quan

    2018-01-01

    Background Thelazia callipaeda is the causative agent of thelaziasis in canids, felids and humans. However, the population genetic structure regarding this parasite remains unclear. Methodology/principal findings In this study, we first explored the genetic variation of 32 T. callipaeda clinical isolates using the following multi-molecular markers: cox1, cytb, 12S rDNA, ITS1 and 18S rDNA. The isolates were collected from 13 patients from 11 geographical locations in China. Next, the population structure of T. callipaeda from Europe and other Asian countries was analyzed using the cox1 sequences collected during this study and from the GenBank database. In general, the Chinese clinical isolates of T. callipaeda expressed high genetic diversity. Based on the cox1 gene, a total of 21 haplotypes were identified. One only circulated in European countries (Hap1), while the other 20 haplotypes were dispersed in Korea, Japan and China. There were five nucleotide positions in the cox1 sequences that were confirmed as invariable among individuals from Europe and Asia, but the sequences were distinct between these two regions. Population differences between Europe and Asian countries were greater than those among China, Korea and Japan. The T. callipaeda populations from Europe and Asia should be divided into two separate sub-populations. These two groups started to diverge during the middle Pleistocene. Neutrality tests, mismatch distribution and Bayesian skyline plot (BSP) analysis all rejected possible population expansion of T. callipaeda. Conclusions The Asian population of T. callipaeda has a high level of genetic diversity, but further studies should be performed to explore the biology, ecology and epidemiology of T. callipaeda. PMID:29324738

  13. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats

    PubMed Central

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten BH; Kurtz, Joachim

    2012-01-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences. PMID:22833789

  14. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    PubMed

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  15. A Preliminary Study of Genetic Variation in Populations of Monstera adansonii var. klotzschiana (Araceae) from North-East Brazil, Estimated with AFLP Molecular Markers

    PubMed Central

    Andrade, I. M.; Mayo, S. J.; van den Berg, C.; Fay, M. F.; Chester, M.; Lexer, C.; Kirkup, D.

    2007-01-01

    Background and Aims This study sought genetic evidence of long-term isolation in populations of Monstera adansonii var. klotzschiana (Araceae), a herbaceous, probably outbreeding, humid forest hemi-epiphyte, in the brejo forests of Ceará (north-east Brazil), and clarification of their relationships with populations in Amazonia and the Atlantic forest of Brazil. Methods Within-population genetic diversity and between-population dissimilarity were estimated using AFLP molecular markers in 75 individuals from eight populations located in Ceará, the Brazilian Atlantic Forest and Amazonia. Key Results The populations showed a clinal pattern of weak genetic differentiation over a large geographical region (FST = 0·1896). A strong correlation between genetic and geographical distance (Mantel test: r = 0·6903, P = 0·002) suggests a historical pattern of isolation by distance. Genetic structure analysis revealed at least two distinct gene pools in the data. The two isolated Ceará populations are significantly different from each other (pairwise ΦPT = 0·137, P = 0·003) and as diverse (Nei's gene diversity, average He = 0·1832, 0·1706) as those in the Atlantic and Amazon forest regions. The population in southern Brazil is less diverse (Nei's gene diversity, average He = 0·127) than the rest. The Ceará populations are related to those of the Atlantic forest rather than those from Amazonia (AMOVA, among-groups variation = 11·95 %, P = 0·037). Conclusions The gene pools detected within an overall pattern of clinal variation suggest distinct episodes of gene flow, possibly correlated with past humid forest expansions. The Ceará populations show no evidence of erosion of genetic diversity, although this was expected because of their isolation. Their genetic differentiation and relatively high diversity reinforce the importance of conserving the endangered brejo forests. PMID:17823112

  16. Population Genetic Structure in Glyphosate-Resistant and -Susceptible Palmer Amaranth (Amaranthus palmeri) Populations Using Genotyping-by-sequencing (GBS)

    PubMed Central

    Küpper, Anita; Manmathan, Harish K.; Giacomini, Darci; Patterson, Eric L.; McCloskey, William B.; Gaines, Todd A.

    2018-01-01

    Palmer amaranth (Amaranthus palmeri) is a major weed in United States cotton and soybean production systems. Originally native to the Southwest, the species has spread throughout the country. In 2004 a population of A. palmeri was identified with resistance to glyphosate, a herbicide heavily relied on in modern no-tillage and transgenic glyphosate-resistant (GR) crop systems. This project aims to determine the degree of genetic relatedness among eight different populations of GR and glyphosate-susceptible (GS) A. palmeri from various geographic regions in the United States by analyzing patterns of phylogeography and diversity to ascertain whether resistance evolved independently or spread from outside to an Arizona locality (AZ-R). Shikimic acid accumulation and EPSPS genomic copy assays confirmed resistance or susceptibility. With a set of 1,351 single nucleotide polymorphisms (SNPs), discovered by genotyping-by-sequencing (GBS), UPGMA phylogenetic analysis, principal component analysis, Bayesian model-based clustering, and pairwise comparisons of genetic distances were conducted. A GR population from Tennessee and two GS populations from Georgia and Arizona were identified as genetically distinct while the remaining GS populations from Kansas, Arizona, and Nebraska clustered together with two GR populations from Arizona and Georgia. Within the latter group, AZ-R was most closely related to the GS populations from Kansas and Arizona followed by the GR population from Georgia. GR populations from Georgia and Tennessee were genetically distinct from each other. No isolation by distance was detected and A. palmeri was revealed to be a species with high genetic diversity. The data suggest the following two possible scenarios: either glyphosate resistance was introduced to the Arizona locality from the east, or resistance evolved independently in Arizona. Glyphosate resistance in the Georgia and Tennessee localities most likely evolved separately. Thus, modern farmers need to continue to diversify weed management practices and prevent seed dispersal to mitigate herbicide resistance evolution in A. palmeri. PMID:29422910

  17. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

    PubMed Central

    Miotto, Olivo; Almagro-Garcia, Jacob; Manske, Magnus; MacInnis, Bronwyn; Campino, Susana; Rockett, Kirk A; Amaratunga, Chanaki; Lim, Pharath; Suon, Seila; Sreng, Sokunthea; Anderson, Jennifer M; Duong, Socheat; Nguon, Chea; Chuor, Char Meng; Saunders, David; Se, Youry; Lon, Chantap; Fukuda, Mark M; Amenga-Etego, Lucas; Hodgson, Abraham VO; Asoala, Victor; Imwong, Mallika; Takala-Harrison, Shannon; Nosten, Francois; Su, Xin-zhuan; Ringwald, Pascal; Ariey, Frédéric; Dolecek, Christiane; Hien, Tran Tinh; Boni, Maciej F; Thai, Cao Quang; Amambua-Ngwa, Alfred; Conway, David J; Djimdé, Abdoulaye A; Doumbo, Ogobara K; Zongo, Issaka; Ouedraogo, Jean-Bosco; Alcock, Daniel; Drury, Eleanor; Auburn, Sarah; Koch, Oliver; Sanders, Mandy; Hubbart, Christina; Maslen, Gareth; Ruano-Rubio, Valentin; Jyothi, Dushyanth; Miles, Alistair; O’Brien, John; Gamble, Chris; Oyola, Samuel O; Rayner, Julian C; Newbold, Chris I; Berriman, Matthew; Spencer, Chris CA; McVean, Gilean; Day, Nicholas P; White, Nicholas J; Bethell, Delia; Dondorp, Arjen M; Plowe, Christopher V; Fairhurst, Rick M; Kwiatkowski, Dominic P

    2013-01-01

    We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination. PMID:23624527

  18. The organization and control of an evolving interdependent population

    PubMed Central

    Vural, Dervis C.; Isakov, Alexander; Mahadevan, L.

    2015-01-01

    Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations. PMID:26040593

  19. Genetic Analysis of Aedes aegypti Using Random Amplified Polymorphic DNA (RAPD) Markers from Dengue Outbreaks in Pakistan.

    PubMed

    Ashraf, Hafiz Muhammad; Zahoor, Muhammad Kashif; Nasir, Shabab; Majeed, Humara Naz; Zahoor, Sarwat

    2016-12-01

    Keeping in view the havoc situation of dengue fever in Pakistan, the current study was designed to demonstrate the genetic variations, gene flow and rate of migration from Lahore and Faisalabad. The larvae were collected from both natural and artificial breeding places from each collection site. The adult mosquitoes were collected by means of sweep net and battery-operated aspirator. DNA extraction was performed using TNE buffer method. Ten GeneLink-A series RAPD primers were used for PCR amplification and the data was analyzed through POPGENE. The number of amplification products produced per primer varied from 8-12, ranging from 200 to 2000 bp with an average of 10.0 bands per primer. The percentage of polymorphic loci amplified by each primer varied from 22.5 to 51%. The UPGMA dendrogram demonstrates two distinct groups from Faisalabad and Lahore populations. The genetic diversity ranged from 0.260 in Faisalabad to 0.294 in Lahore with a total heterozygosity of 0.379. The G ST value for nine populations within Lahore was 0.131 (Nm= 3.317), whereas for nine populations in Faisalabad G ST value was 0.117 (Nm= 3.773). The overall genetic variation among eighteen populations showed G ST = 0.341 and Nm= 1.966. The genetic relatedness and Nm value show that Ae . aegypti populations exhibit intra-population gene flow both in Faisalabad and Lahore. Although, both cities show a distinct pattern of genetic structure; however, few areas from both the cities show genetic similarity. The gene flow and the genetic relatedness in few populations of Lahore and Faisalabad cities need further investigation.

  20. Koalas (Phascolarctos cinereus) From Queensland Are Genetically Distinct From 2 Populations in Victoria.

    PubMed

    Ruiz-Rodriguez, Christina T; Ishida, Yasuko; Murray, Neil D; O'Brien, Stephen J; Graves, Jennifer A M; Greenwood, Alex D; Roca, Alfred L

    2016-01-01

    The koala (Phascolarctos cinereus) suffered population declines and local extirpation due to hunting in the early 20th century, especially in southern Australia. Koalas were subsequently reintroduced to the Brisbane Ranges (BR) and Stony Rises (SR) by translocating individuals from a population on French Island descended from a small number of founders. To examine genetic diversity and north-south differentiation, we genotyped 13 microsatellite markers in 46 wild koalas from the BR and SR, and 27 Queensland koalas kept at the US zoos. The Queensland koalas displayed much higher heterozygosity (H O = 0.73) than the 2 southern Australian koala populations examined: H O = 0.49 in the BR, whereas H O = 0.41 in the SR. This is consistent with the historical accounts of bottlenecks and founder events affecting the southern populations and contrasts with reports of high genetic diversity in some southern populations. The 2 southern Australian koala populations were genetically similar (F ST = 0.018, P = 0.052). By contrast, northern and southern Australian koalas were highly differentiated (F ST = 0.27, P < 0.001), thereby suggesting that geographic structuring should be considered in the conservation management of koalas. Sequencing of 648bp of the mtDNA control region in Queensland koalas found 8 distinct haplotypes, one of which had not been previously detected among koalas. Queensland koalas displayed high mitochondrial haplotype diversity (H = 0.753) and nucleotide diversity (π = 0.0072), indicating along with the microsatellite data that North American zoos have maintained high levels of genetic diversity among their Queensland koalas. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Genetic variation in westslope cutthroat trout Oncorhynchusclarkii lewisi: implications for conservation

    USGS Publications Warehouse

    Daniel P. Drinan,; Kalinowski, Steven T.; Vu, Ninh V.; Shepard, Bradley B.; Muhlfeld, Clint C.; Campbell, Matthew R.

    2011-01-01

    Twenty-five populations of westslope cutthroat trout from throughout their native range were genotyped at 20 microsatellite loci to describe the genetic structure of westslope cutthroat trout. The most genetic diversity (heterozygosity, allelic richness, and private alleles) existed in populations from the Snake River drainage, while populations from the Missouri River drainage had the least. Neighbor-joining trees grouped populations according to major river drainages. A great amount of genetic differentiation was present among and within all drainages. Based on Nei’s DS, populations in the Snake River were the most differentiated, while populations in the Missouri River were the least. This pattern of differentiation is consistent with a history of sequential founding events through which westslope cutthroat trout may have experienced a genetic bottleneck as they colonized each river basin from the Snake to the Clark Fork to the Missouri river. These data should serve as a starting point for a discussion on management units and possible distinct population segments. Given the current threats to the persistence of westslope cutthroat trout, and the substantial genetic differentiation between populations, these topics warrant attention.

  2. Characterising private and shared signatures of positive selection in 37 Asian populations.

    PubMed

    Liu, Xuanyao; Lu, Dongsheng; Saw, Woei-Yuh; Shaw, Philip J; Wangkumhang, Pongsakorn; Ngamphiw, Chumpol; Fucharoen, Suthat; Lert-Itthiporn, Worachart; Chin-Inmanu, Kwanrutai; Chau, Tran Nguyen Bich; Anders, Katie; Kasturiratne, Anuradhani; de Silva, H Janaka; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Ohkubo, Takayoshi; Tabara, Yasuharu; Takeuchi, Fumihiko; Yamamoto, Ken; Yokota, Mitsuhiro; Mamatyusupu, Dolikun; Yang, Wenjun; Chung, Yeun-Jun; Jin, Li; Hoh, Boon-Peng; Wickremasinghe, Ananda R; Ong, RickTwee-Hee; Khor, Chiea-Chuen; Dunstan, Sarah J; Simmons, Cameron; Tongsima, Sissades; Suriyaphol, Prapat; Kato, Norihiro; Xu, Shuhua; Teo, Yik-Ying

    2017-04-01

    The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events.

  3. Characterising private and shared signatures of positive selection in 37 Asian populations

    PubMed Central

    Liu, Xuanyao; Lu, Dongsheng; Saw, Woei-Yuh; Shaw, Philip J; Wangkumhang, Pongsakorn; Ngamphiw, Chumpol; Fucharoen, Suthat; Lert-itthiporn, Worachart; Chin-inmanu, Kwanrutai; Chau, Tran Nguyen Bich; Anders, Katie; Kasturiratne, Anuradhani; de Silva, H Janaka; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Ohkubo, Takayoshi; Tabara, Yasuharu; Takeuchi, Fumihiko; Yamamoto, Ken; Yokota, Mitsuhiro; Mamatyusupu, Dolikun; Yang, Wenjun; Chung, Yeun-Jun; Jin, Li; Hoh, Boon-Peng; Wickremasinghe, Ananda R; Ong, RickTwee-Hee; Khor, Chiea-Chuen; Dunstan, Sarah J; Simmons, Cameron; Tongsima, Sissades; Suriyaphol, Prapat; Kato, Norihiro; Xu, Shuhua; Teo, Yik-Ying

    2017-01-01

    The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events. PMID:28098149

  4. Three Decades of Farmed Escapees in the Wild: A Spatio-Temporal Analysis of Atlantic Salmon Population Genetic Structure throughout Norway

    PubMed Central

    Glover, Kevin A.; Quintela, María; Wennevik, Vidar; Besnier, François; Sørvik, Anne G. E.; Skaala, Øystein

    2012-01-01

    Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population. PMID:22916215

  5. Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean

    PubMed Central

    Ritchie, Anna E.

    2012-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities. PMID:22307290

  6. Pre-Historic and Recent Vicariance Events Shape Genetic Structure and Diversity in Endangered Lion-Tailed Macaque in the Western Ghats: Implications for Conservation

    PubMed Central

    Ram, Muthuvarmadam S.; Marne, Minal; Gaur, Ajay; Kumara, Honnavalli N.; Singh, Mewa; Kumar, Ajith; Umapathy, Govindhaswamy

    2015-01-01

    Genetic isolation of populations is a potent force that helps shape the course of evolution. However, small populations in isolation, especially in fragmented landscapes, are known to lose genetic variability, suffer from inbreeding depression and become genetically differentiated among themselves. In this study, we assessed the genetic diversity of lion-tailed macaques (Macaca silenus) inhabiting the fragmented landscape of Anamalai hills and examined the genetic structure of the species across its distributional range in the Western Ghats. We sequenced around 900 bases of DNA covering two mitochondrial regions–hypervariable region-I and partial mitochondrial cytochrome b–from individuals sampled both from wild and captivity, constructed and dated phylogenetic trees. We found that the lion-tailed macaque troops in the isolated forest patches in Anamalai hills have depleted mitochondrial DNA diversity compared to troops in larger and continuous forests. Our results also revealed an ancient divergence in the lion-tailed macaque into two distinct populations across the Palghat gap, dating to 2.11 million years ago. In light of our findings, we make a few suggestions on the management of wild and captive populations. PMID:26561307

  7. Identification of Lygus hesperus by DNA barcoding reveals insignificant levels of genetic structure among distant and habitat diverse populations.

    PubMed

    Zhou, Changqing; Kandemir, Irfan; Walsh, Douglas B; Zalom, Frank G; Lavine, Laura Corley

    2012-01-01

    The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st) and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years) migration of the western tarnished plant bug into agricultural habitats across the western United States. This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.

  8. Children in an aging society.

    PubMed

    Uhlenberg, Peter

    2009-06-01

    This article explores ways in which population aging in the United States between 2010 and 2030 might impact the well-being of children, with a distinction made between advantaged and disadvantaged children. A variety of economic and demographic statistics are used to describe the changing age structure of the population and changing public spending on older people and children. Data from the 1985 General Social Survey and Wave 2 of the National Survey of Families and Households are also used to examine connections between older people and children. In recent decades, there has been a graying of the federal budget, and programs for children have received a declining proportion of domestic spending. These trends will be exaggerated between 2010 and 2030 unless structural changes occur. Grandparents may provide increasing resources for their grandchildren. Age segregation results in relatively few older people being directly involved with children not related to them by kinship. The implications of population aging for children are relevant primarily for disadvantaged children. Disadvantaged children have grandparents with fewest resources and are most in need of public spending. As costs of supporting the older population increase, intentional social changes will be needed to prevent growing inequality among children.

  9. Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia.

    PubMed

    Ansmann, Ina C; Parra, Guido J; Lanyon, Janet M; Seddon, Jennifer M

    2012-09-01

    Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small-scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine-scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (F(ST) = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite-based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA Φ(ST) = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine-scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter-related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine-scale population structure among bottlenose dolphins in Moreton Bay. © 2012 Blackwell Publishing Ltd.

  10. Helminth Community Dynamics in Populations of Blue-Winged Teal (Anas discors) Using Two Distinct Migratory Corridors.

    PubMed

    Garvon, Jason M; Fedynich, Alan M; Peterson, Markus J; Pence, Danny B

    2011-01-01

    The influence of spatially distinct host subpopulations on helminth community structure and pattern was examined in a migratory avian host species. Forty helminth species represented by 24,082 individuals were collected from 184 blue-winged teal (Anas discors; BWT) from 2 primary migratory corridors in Florida (eastern migratory corridor; EMC) and Louisiana and Texas (western migratory corridor; WMC). Mean species richness was greater in BWT from the WMC (x̅±SE = 10.2 ± 0.3 species) than the EMC (8.6 ± 0.2). The helminth community from the WMC had higher abundances of 6 common/intermediate species. Corridor helminth communities were similar in species composition but less similar when incorporating abundances of those species. Overlapping distributions of phylogenetically related host species that share generalist helminth species across ecologically similar habitats seem to mitigate the isolating mechanisms that are necessary for the distinct coevolutionary pathways to develop between adjacent corridors.

  11. Expression of the Diabetes-Associated Gene TCF7L2 in Adult Mouse Brain

    PubMed Central

    LEE, SYANN; LEE, CHARLOTTE E.; ELIAS, CAROL F.; ELMQUIST, JOEL K.

    2014-01-01

    Polymorphisms of the gene TCF7L2 (transcription factor 7-like 2) are strongly associated with the development and progression of type 2 diabetes. TCF7L2 is important in the development of peripheral organs such as adipocytes, pancreas, and the intestine. However, very little is known about its expression elsewhere. In this study we used in situ hybridization histochemistry to show that TCF7L2 has a unique expression pattern in the mouse brain. TCF7L2 is expressed in two distinct populations. First, it is highly ex pressed in thalamic and tectal structures. Additionally, TCF7L2 mRNA is expressed at moderate to low levels in specific cells of the hypothalamus, preoptic nucleus, and circumventricular organs. Collectively, these patterns of expression suggest that TCF7L2 has distinct functions within the brain, with a general role in the development and maintenance of thalamic and midbrain neurons, and then a distinct role in autonomic homeostasis. PMID:19845015

  12. Genome-wide analysis of Epstein-Barr virus identifies variants and genes associated with gastric carcinoma and population structure.

    PubMed

    Yao, Youyuan; Xu, Miao; Liang, Liming; Zhang, Haojiong; Xu, Ruihua; Feng, Qisheng; Feng, Lin; Luo, Bing; Zeng, Yi-Xin

    2017-10-01

    Epstein-Barr virus is a ubiquitous virus and is associated with several human malignances, including the significant subset of gastric carcinoma, Epstein-Barr virus-associated gastric carcinoma. Some Epstein-Barr virus-associated diseases are uniquely prevalent in populations with different geographic origins. However, the features of the disease and geographically associated Epstein-Barr virus genetic variation as well as the roles that the variation plays in carcinogenesis and evolution remain unclear. Therefore, in this study, we sequenced 95 geographically distinct Epstein-Barr virus isolates from Epstein-Barr virus-associated gastric carcinoma biopsies and saliva of healthy donors to detect variants and genes associated with gastric carcinoma and population structure from a genome-wide spectrum. We demonstrated that Epstein-Barr virus revealed the population structure between North China and South China. In addition, we observed population stratification between Epstein-Barr virus strains from gastric carcinoma and healthy controls, indicating that certain Epstein-Barr virus subtypes are associated with different gastric carcinoma risks. We identified that the BRLF1, BBRF3, and BBLF2/BBLF3 genes had significant associations with gastric carcinoma. LMP1 and BNLF2a genes were strongly geographically associated genes in Epstein-Barr virus. Our study provides insights into the genetic basis of oncogenic Epstein-Barr virus for gastric carcinoma, and the genetic variants associated with gastric carcinoma can serve as biomarkers for oncogenic Epstein-Barr virus.

  13. Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1).

    PubMed

    Moussy, C; Atterby, H; Griffiths, A G F; Allnutt, T R; Mathews, F; Smith, G C; Aegerter, J N; Bearhop, S; Hosken, D J

    2015-07-01

    Understanding of the movements of species at multiple scales is essential to appreciate patterns of population connectivity and in some cases, the potential for pathogen transmission. The serotine bat (Eptesicus serotinus) is a common and widely distributed species in Europe where it frequently harbours European bat lyssavirus type 1 (EBLV-1), a virus causing rabies and transmissible to humans. In the United Kingdom, it is rare, with a distribution restricted to south of the country and so far the virus has never been found there. We investigated the genetic structure and gene flow of E. serotinus across the England and continental Europe. Greater genetic structuring was found in England compared with continental Europe. Nuclear data suggest a single population on the continent, although further work with more intensive sampling is required to confirm this, while mitochondrial sequences indicate an east-west substructure. In contrast, three distinct populations were found in England using microsatellite markers, and mitochondrial diversity was very low. Evidence of nuclear admixture indicated strong male-mediated gene flow among populations. Differences in connectivity could contribute to the high viral prevalence on the continent in contrast with the United Kingdom. Although the English Channel was previously thought to restrict gene flow, our data indicate relatively frequent movement from the continent to England highlighting the potential for movement of EBLV-1 into the United Kingdom.

  14. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests

    PubMed Central

    Broders, K D; Boraks, A; Sanchez, A M; Boland, G J

    2012-01-01

    The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America. PMID:23139872

  15. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    PubMed Central

    2008-01-01

    Background The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. PMID:19014596

  16. Geographical genetic structuring and phenotypic variation in the Vellozia hirsuta (Velloziaceae) ochlospecies complex.

    PubMed

    Barbosa, Ariane R; Fiorini, Cecília F; Silva-Pereira, Viviane; Mello-Silva, Renato; Borba, Eduardo L

    2012-09-01

    Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Φ(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.

  17. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    USGS Publications Warehouse

    Eggert, L.S.; Terwilliger, L.A.; Woodworth, B.L.; Hart, P.J.; Palmer, D.; Fleischer, R.C.

    2008-01-01

    Background. The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. ?? 2008 Eggert et al; licensee BioMed Central Ltd.

  18. Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil

    PubMed Central

    Kajdacsi, Brittney; Costa, Federico; Hyseni, Chaz; Porter, Fleur; Brown, Julia; Rodrigues, Gorete; Farias, Helena; Reis, Mitermeyer G.; Childs, James E.; Ko, Albert I.; Caccone, Adalgisa

    2013-01-01

    Throughout the developing world, urban centers with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers, and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus), are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure, and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from 9 sites in the city of Salvador, Brazil. These sites were divided between three neighborhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographic distances. Most FST comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighborhoods or valleys within neighborhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies. PMID:24118116

  19. Individual-based assessment of population structure and admixture in Austrian, Croatian and German draught horses.

    PubMed

    Druml, T; Curik, I; Baumung, R; Aberle, K; Distl, O; Sölkner, J

    2007-02-01

    All over Europe, the number of draught horses has decreased drastically during the last 50 years. As a prerequisite for efficient management decisions, we analysed the conservation status in Austrian (Noriker Carinthia - NC, Noriker Salzburg - NS), Croatian (Croatian Coldblood - C, Posavina horse - P) and German (Altmaerkisch Coldblood - A, Black Forest horse - BF, Mecklenburg Coldblood - M, Rhenish German Draught horse - R, Saxon Thuringa Coldblood - ST, Schleswig Draught horse - Sch, South German Coldblood - SG) draught horses (434) using multilocus genotypic information from 30 (effectively 27) microsatellite loci. Populations located in areas with less intensive agricultural production (C, NC, NS, P and SG) had greater diversity within the population and estimated effective population size than A, BF, Sch, M, R and ST populations. The PCA plots revealed that populations form five separate groups. The 'Noriker' group (NC, NS and SG) and the 'Rhenish' group (A, M, R and ST) were the most distinctive (pairwise F(ST) values ranged from 0.078 to 0.094). The 'Croatian' group (C and P) was in the centre, while the BF and Sch populations formed two out-groups. A posterior Bayesian analysis detected further differentiation, mainly caused by political and geographical factors. Thus, it was possible to separate the South German Coldblood from the Austrian Noriker population where no subpopulation structure was detected. The admixture analysis revealed imprecise classification between C and P populations. A small but notable separation of R from A, M and ST populations was detected, while Sch and BF populations remained as out-groups. The information obtained should aid in making efficient conservation decisions.

  20. Multilocus nuclear DNA markers reveal population structure and demography of Anopheles minimus.

    PubMed

    Dixit, Jyotsana; Arunyawat, Uraiwan; Huong, Ngo Thi; Das, Aparup

    2014-11-01

    Utilization of multiple putatively neutral DNA markers for inferring evolutionary history of species population is considered to be the most robust approach. Molecular population genetic studies have been conducted in many species of Anopheles genus, but studies based on single nucleotide polymorphism (SNP) data are still very scarce. Anopheles minimus is one of the principal malaria vectors of Southeast (SE) Asia including the Northeastern (NE) India. Although population genetic studies with mitochondrial genetic variation data have been utilized to infer phylogeography of the SE Asian populations of this species, limited information on the population structure and demography of Indian An. minimus is available. We herewith have developed multilocus nuclear genetic approach with SNP markers located in X chromosome of An. minimus in eight Indian and two SE Asian population samples (121 individual mosquitoes in total) to infer population history and test several hypotheses on the phylogeography of this species. While the Thai population sample of An. minimus presented the highest nucleotide diversity, majority of the Indian samples were also fairly diverse. In general, An. minimus populations were moderately substructured in the distribution range covering SE Asia and NE India, largely falling under three distinct genetic clusters. Moreover, demographic expansion events could be detected in the majority of the presently studied populations of An. minimus. Additional DNA sequencing of the mitochondrial COII region in a subset of the samples (40 individual mosquitoes) corroborated the existing hypothesis of Indian An. minimus falling under the earlier reported mitochondrial lineage B. © 2014 John Wiley & Sons Ltd.

  1. Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation

    PubMed Central

    Wiman, Nik G.; Walton, Vaughn M.; Dalton, Daniel T.; Anfora, Gianfranco; Burrack, Hannah J.; Chiu, Joanna C.; Daane, Kent M.; Grassi, Alberto; Miller, Betsey; Tochen, Samantha; Wang, Xingeng; Ioriatti, Claudio

    2014-01-01

    Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations. PMID:25192013

  2. Genetic diversity and population structure of Theileria parva in South Sudan.

    PubMed

    Salih, Diaeldin A; Mwacharo, Joram M; Pelle, Roger; Njahira, Moses N; Odongo, David O; Mbole-Kariuki, Mary N; Marcellino, Wani L; Malak, Agol K; Kiara, Henary; El Hussein, Abdel Rahim M; Bishop, Richard P; Skilton, Robert A

    2018-05-01

    Theileria parva is a parasitic protozoan that causes East Coast fever (ECF), an economically important disease of cattle in eastern, central and southern Africa. In South Sudan, ECF is considered a major constraint for livestock development in regions where the disease is endemic. To obtain insights into the dynamics of T. parva in South Sudan, population genetic analysis was performed. Out of the 751 samples included in this study, 178 blood samples were positive for T. parva by species-specific PCR, were collected from cattle from four regions in South Sudan (Bor = 62; Juba = 45; Kajo keji = 41 and Yei = 30) were genotyped using 14 microsatellite markers spanning the four chromosomes. The T. parva Muguga strain was included in the study as a reference. Linkage disequilibrium was evident when populations from the four regions were treated as a single entity, but, when populations were analyzed separately, linkage disequilibrium was observed in Bor, Juba and Kajo keji. Juba region had a higher multiplicity of infection than the other three regions. Principal components analysis revealed a degree of sub-structure between isolates from each region, suggesting that populations are partially distinct, with genetic exchange and gene flow being limited between parasites in the four geographically separated populations studied. Panmixia was observed within individual populations. Overall T. parva population genetic analyses of four populations in South Sudan exhibited a low level of genetic exchange between the populations, but a high level of genetic diversity within each population. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.

    PubMed

    Sendiña-Nadal, I; Danziger, M M; Wang, Z; Havlin, S; Boccaletti, S

    2016-02-18

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  4. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod.

    PubMed

    Berg, Paul R; Star, Bastiaan; Pampoulie, Christophe; Sodeland, Marte; Barth, Julia M I; Knutsen, Halvor; Jakobsen, Kjetill S; Jentoft, Sissel

    2016-03-17

    Identification of genome-wide patterns of divergence provides insight on how genomes are influenced by selection and can reveal the potential for local adaptation in spatially structured populations. In Atlantic cod - historically a major marine resource - Northeast-Arctic- and Norwegian coastal cod are recognized by fundamental differences in migratory and non-migratory behavior, respectively. However, the genomic architecture underlying such behavioral ecotypes is unclear. Here, we have analyzed more than 8.000 polymorphic SNPs distributed throughout all 23 linkage groups and show that loci putatively under selection are localized within three distinct genomic regions, each of several megabases long, covering approximately 4% of the Atlantic cod genome. These regions likely represent genomic inversions. The frequency of these distinct regions differ markedly between the ecotypes, spawning in the vicinity of each other, which contrasts with the low level of divergence in the rest of the genome. The observed patterns strongly suggest that these chromosomal rearrangements are instrumental in local adaptation and separation of Atlantic cod populations, leaving footprints of large genomic regions under selection. Our findings demonstrate the power of using genomic information in further understanding the population dynamics and defining management units in one of the world's most economically important marine resources.

  5. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.

    2016-02-01

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  6. Conservation genetics of the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi): River valleys are critical features for snakes at northern range limits.

    PubMed

    Somers, Christopher M; Graham, Carly F; Martino, Jessica A; Frasier, Timothy R; Lance, Stacey L; Gardiner, Laura E; Poulin, Ray G

    2017-01-01

    On the North American Great Plains, several snake species reach their northern range limit where they rely on sparsely distributed hibernacula located in major river valleys. Independent colonization histories for the river valleys and barriers to gene flow caused by the lack of suitable habitat between them may have produced genetically differentiated snake populations. To test this hypothesis, we used 10 microsatellite loci to examine the population structure of two species of conservation concern in Canada: the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river valleys in southern Saskatchewan. Fixation indices (FST) showed that populations in river valleys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001; bullsnakes FST = 0.045-0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordination (DAPC) strongly supported genetically differentiated groups in the geographically distinct river valleys. Finer-scale subdivision of populations within river valleys was not apparent based on our data, but is a topic that should be investigated further. Our findings highlight the importance of major river valleys for snakes at the northern extent of their ranges, and raise the possibility that populations in each river valley may warrant separate management strategies.

  7. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    NASA Astrophysics Data System (ADS)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of <10 km apart were highly differentiated demonstrates considerable potential for genetic and/or cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  8. Progressive colonization and restricted gene flow shape island-dependent population structure in Galápagos marine iguanas (Amblyrhynchus cristatus)

    PubMed Central

    2009-01-01

    Background Marine iguanas (Amblyrhynchus cristatus) inhabit the coastlines of large and small islands throughout the Galápagos archipelago, providing a rich system to study the spatial and temporal factors influencing the phylogeographic distribution and population structure of a species. Here, we analyze the microevolution of marine iguanas using the complete mitochondrial control region (CR) as well as 13 microsatellite loci representing more than 1200 individuals from 13 islands. Results CR data show that marine iguanas occupy three general clades: one that is widely distributed across the northern archipelago, and likely spread from east to west by way of the South Equatorial current, a second that is found mostly on the older eastern and central islands, and a third that is limited to the younger northern and western islands. Generally, the CR haplotype distribution pattern supports the colonization of the archipelago from the older, eastern islands to the younger, western islands. However, there are also signatures of recurrent, historical gene flow between islands after population establishment. Bayesian cluster analysis of microsatellite genotypes indicates the existence of twenty distinct genetic clusters generally following a one-cluster-per-island pattern. However, two well-differentiated clusters were found on the easternmost island of San Cristóbal, while nine distinct and highly intermixed clusters were found on youngest, westernmost islands of Isabela and Fernandina. High mtDNA and microsatellite genetic diversity were observed for populations on Isabela and Fernandina that may be the result of a recent population expansion and founder events from multiple sources. Conclusions While a past genetic study based on pure FST analysis suggested that marine iguana populations display high levels of nuclear (but not mitochondrial) gene flow due to male-biased dispersal, the results of our sex-biased dispersal tests and the finding of strong genetic differentiation between islands do not support this view. Therefore, our study is a nice example of how recently developed analytical tools such as Bayesian clustering analysis and DNA sequence-based demographic analyses can overcome potential biases introduced by simply relying on FST estimates from markers with different inheritance patterns. PMID:20028547

  9. Target annihilation by diffusing particles in inhomogeneous geometries

    NASA Astrophysics Data System (ADS)

    Cassi, Davide

    2009-09-01

    The survival probability of immobile targets annihilated by a population of random walkers on inhomogeneous discrete structures, such as disordered solids, glasses, fractals, polymer networks, and gels, is analytically investigated. It is shown that, while it cannot in general be related to the number of distinct visited points as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behavior at large times can still be expressed in terms of the spectral dimension d˜ and its exact analytical expression is given. The results show that the asymptotic survival probability is site-independent of recurrent structures (d˜≤2) , while on transient structures (d˜>2) it can strongly depend on the target position, and such dependence is explicitly calculated.

  10. Population delimitation across contrasting evolutionary clines in deer mice (Peromyscus maniculatus)

    PubMed Central

    Yang, D-S; Kenagy, G

    2011-01-01

    Despite current interest in population genetics, a concrete definition of a “population” remains elusive. Multiple ecologically and evolutionarily based definitions of population are in current use, which focus, respectively, on demographic and genetic interactions. Accurate population delimitation is crucial for not only evolutionary and ecological population biology, but also for conservation of threatened populations. Along the Pacific Coast of North America, two contrasting patterns of geographic variation in deer mice (Peromyscus maniculatus) converge within the state of Oregon. Populations of these mice diverge morphologically across an east–west axis, and they diverge in mitochondrial DNA haplotypes across a north–south axis. In this study, we investigate these geographically contrasting patterns of differentiation in the context of ecological and evolutionary definitions (paradigms) of populations. We investigate these patterns using a new and geographically expansive sample that integrates data on morphology, mitochondrial DNA, and nuclear DNA. We found no evidence of nuclear genetic differentiation between the morphologically and mitochondrially distinct populations, thus indicating the occurrence of gene flow across Oregon. Under the evolutionary paradigm, Oregon populations can be considered a single population, whereas morphological and mitochondrial differentiations do not indicate distinct populations. In contrast, under the ecological paradigm morphological differentiation indicates distinct populations based on the low likelihood of demographic interactions between geographically distant individuals. The two sympatric but mitochondrially distinct haplogroups form a single population under the ecological paradigm. Hence, we find that the difference between evolutionary and ecological paradigms is the time-scale of interest, and we believe that the more chronologically inclusive evolutionary paradigm may be preferable except in cases where only a single generation is of interest. PMID:22393480

  11. Microallopatry caused strong diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa).

    PubMed

    Habel, Jan C; Husemann, Martin; Schmitt, Thomas; Zachos, Frank E; Honnen, Ann-Christin; Petersen, Britt; Parmakelis, Aristeidis; Stathi, Iasmi

    2012-01-01

    The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale.

  12. Microallopatry Caused Strong Diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa)

    PubMed Central

    Habel, Jan C.; Husemann, Martin; Schmitt, Thomas; Zachos, Frank E.; Honnen, Ann-Christin; Petersen, Britt; Parmakelis, Aristeidis; Stathi, Iasmi

    2012-01-01

    The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale. PMID:22383951

  13. Habitat selection by breeding waterbirds at ponds with size-structured fish populations

    NASA Astrophysics Data System (ADS)

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  14. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    PubMed Central

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  15. Spatial structure of morphological and neutral genetic variation in Brook Trout

    USGS Publications Warehouse

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  16. Restricted Gene Flow among Hospital Subpopulations of Enterococcus faecium

    PubMed Central

    Willems, Rob J. L.; Top, Janetta; van Schaik, Willem; Leavis, Helen; Bonten, Marc; Sirén, Jukka; Hanage, William P.; Corander, Jukka

    2012-01-01

    ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. PMID:22807567

  17. Individual differences in migratory behavior shape population genetic structure and microhabitat choice in sympatric blackcaps (Sylvia atricapilla)

    PubMed Central

    Rolshausen, Gregor; Segelbacher, Gernot; Hermes, Claudia; Hobson, Keith A; Schaefer, H Martin

    2013-01-01

    In migratory birds, traits such as orientation and distance are known to have a strong genetic background, and they often exhibit considerable within-population variation. How this variation relates to evolutionary responses to ongoing selection is unknown because the underlying mechanisms that translate environmental changes into population genetic changes are unclear. We show that within-population genetic structure in southern German blackcaps (Sylvia atricapilla) is related to individual differences in migratory behavior. Our 3-year study revealed a positive correlation between individual migratory origins, denoted via isotope (δ2H) values, and genetic distances. Genetic diversity and admixture differed not only across a recently established migratory polymorphism with NW- and SW-migrating birds but also across δ2H clusters within the same migratory route. Our results suggest assortment based on individual migratory origins which would facilitate evolutionary responses. We scrutinized arrival times and microhabitat choice as potential mechanisms mediating between individual variation in migratory behavior and assortment. We found significant support that microhabitat choice, rather than timing of arrival, is associated with individual variation in migratory origins. Moreover, examining genetic diversity across the migratory divide, we found migrants following the NW route to be genetically more distinct from each other compared with migrants following the traditional SW route. Our study suggests that migratory behavior shapes population genetic structure in blackcaps not only across the migratory divide but also on an individual level independent of the divide. Thus, within-population variation in migratory behavior might play an important role in translating environmental change into genetic change. PMID:24324877

  18. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    PubMed

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  19. Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus.

    PubMed

    King, David J; Freimanis, Graham L; Orton, Richard J; Waters, Ryan A; Haydon, Daniel T; King, Donald P

    2016-10-01

    Due to the poor-fidelity of the enzymes involved in RNA genome replication, foot-and-mouth disease (FMD) virus samples comprise of unique polymorphic populations. In this study, deep sequencing was utilised to characterise the diversity of FMD virus (FMDV) populations in 6 infected cattle present on a single farm during the series of outbreaks in the UK in 2007. A novel RT-PCR method was developed to amplify a 7.6kb nucleotide fragment encompassing the polyprotein coding region of the FMDV genome. Illumina sequencing of each sample identified the fine polymorphic structures at each nucleotide position, from consensus level changes to variants present at a 0.24% frequency. These data were used to investigate population dynamics of FMDV at both herd and host levels, evaluate the impact of host on the viral swarm structure and to identify transmission links with viruses recovered from other farms in the same series of outbreaks. In 7 samples, from 6 different animals, a total of 5 consensus level variants were identified, in addition to 104 sub-consensus variants of which 22 were shared between 2 or more animals. Further analysis revealed differences in swarm structures from samples derived from the same animal suggesting the presence of distinct viral populations evolving independently at different lesion sites within the same infected animal. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. [Depopulation of rural districts and mental health: the Sassim study (author's transl)].

    PubMed

    Marinoni, A; Torre, E; de Marco, R; Gatti, E; Ferrari, P

    1980-04-30

    The present investigation is a study of mental diseases in Sassim, a little rural district near Pavia (Italy), in which there has been an intensive process of depopulation during the last 20 years. In this communication the A.A. discuss the first phase of the study: they have investigated the demographic development of population from 1960 to 1977 and prevalence as well as incidence rates of mental diseases. Depopulation hasn't been only quantitative, but has altered the structure of population and has presented a quite different decrease velocity during the examined period; the trends of psychiatric morbidity seem to be associated with the distinctive feature of depopulation.

  1. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    PubMed

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E  = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E  = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic diversity (I = 0.95) and genetic evenness (J' = 0.80), and represented a wider range of phenotypic variation (MD = 9.45 %, CR = 98.40 %). A total of 240 accessions were selected from 3,821 Capsicum accessions based on transcriptome-based 48 SNP markers with genome-wide distribution and 32 traits using a systematic approach. This core collection will be a primary resource for pepper breeders and researchers for further genetic association and functional analyses.

  2. Palaeopolyploidy, spatial structure and conservation genetics of the narrow steppe plant Vella pseudocytisus subsp. paui (Vellinae, Cruciferae).

    PubMed

    Pérez-Collazos, Ernesto; Catalán, Pilar

    2006-04-01

    Vella pseudocytisus subsp. paui (Cruciferae) is a narrow endemic plant to the Teruel province (eastern Spain), which is listed in the National Catalogue of Endangered Species. Two distinct ploidy levels (diploid, 2n = 34, and tetraploid, 2n = 68) have been reported for this taxon that belongs to the core subtribe Vellinae, a western Mediterranean group of shrubby taxa with a chromosome base number of x = 17. Allozyme and AFLP analyses were conducted (a) to test for the ploidy and putative palaeo-allopolyploid origin of this taxon, (b) to explore levels of genetic diversity and spatial structure of its populations, and (c) to address in-situ and ex-situ strategies for its conservation. Six populations that covered the entire geographical range of this taxon were sampled and examined for 19 allozyme loci and three AFLP primer pair combinations. In addition, the gametic progenies of five individuals were analysed for two allozyme loci that showed fixed heterozygosity. Multiple banded allozyme profiles for most of the surveyed loci indicated the polyploidy of this taxon. Co-inherited fixed heterozygous patterns were exhibited by the gametophytic tissues of the mother plants. Both allozyme and AFLP markers detected high levels of genetic diversity, and a strong micro-spatial genetic structure was recovered from AFLP phenetic analyses and Mantel correlograms. Allozyme data support the hypothesis of an allotetraploid origin of Vella pseudocytisus subsp. paui that could be representative of other taxa of the core Vellinae group. AFLP data distinguished three geographically distinct groups with no genetic interaction among them. Allotetraploidy and outcrossing reproduction have probably contributed to maintenance of high levels of genetic variability of the populations, whereas habitat fragmentation may have enhanced the high genetic isolation observed among groups. In-situ microgenetic reserves and a selective sampling of germplasm stocks for ex-situ conservation of this taxon are proposed.

  3. Palaeopolyploidy, Spatial Structure and Conservation Genetics of the Narrow Steppe Plant Vella pseudocytisus subsp. paui (Vellinae, Cruciferae)

    PubMed Central

    PÉREZ-COLLAZOS, ERNESTO; CATALÁN, PILAR

    2006-01-01

    • Background and Aims Vella pseudocytisus subsp. paui (Cruciferae) is a narrow endemic plant to the Teruel province (eastern Spain), which is listed in the National Catalogue of Endangered Species. Two distinct ploidy levels (diploid, 2n = 34, and tetraploid, 2n = 68) have been reported for this taxon that belongs to the core subtribe Vellinae, a western Mediterranean group of shrubby taxa with a chromosome base number of x = 17. Allozyme and AFLP analyses were conducted (a) to test for the ploidy and putative palaeo-allopolyploid origin of this taxon, (b) to explore levels of genetic diversity and spatial structure of its populations, and (c) to address in-situ and ex-situ strategies for its conservation. • Methods Six populations that covered the entire geographical range of this taxon were sampled and examined for 19 allozyme loci and three AFLP primer pair combinations. In addition, the gametic progenies of five individuals were analysed for two allozyme loci that showed fixed heterozygosity. • Key Results Multiple banded allozyme profiles for most of the surveyed loci indicated the polyploidy of this taxon. Co-inherited fixed heterozygous patterns were exhibited by the gametophytic tissues of the mother plants. Both allozyme and AFLP markers detected high levels of genetic diversity, and a strong micro-spatial genetic structure was recovered from AFLP phenetic analyses and Mantel correlograms. • Conclusions Allozyme data support the hypothesis of an allotetraploid origin of Vella pseudocytisus subsp. paui that could be representative of other taxa of the core Vellinae group. AFLP data distinguished three geographically distinct groups with no genetic interaction among them. Allotetraploidy and outcrossing reproduction have probably contributed to maintenance of high levels of genetic variability of the populations, whereas habitat fragmentation may have enhanced the high genetic isolation observed among groups. In-situ microgenetic reserves and a selective sampling of germplasm stocks for ex-situ conservation of this taxon are proposed. PMID:16495317

  4. BoS: a large and diverse family of short interspersed elements (SINEs) in Brassica oleracea.

    PubMed

    Zhang, Xiaoyu; Wessler, Susan R

    2005-05-01

    Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at approximately 2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.

  5. [Family characteristics and the labor market in developed countries: a clear distinction between north and south].

    PubMed

    Barrere-maurisson, M; Marchand, O

    1990-09-01

    The relationship between family characteristics and the labor market is explored using data concerning 15 OECD countries. Several distinct geographical groupings are identified, including the Mediterranean countries, Scandinavia, North America, and Japan and West Germany. Belgium, France, the Netherlands, and the United Kingdom occupy a middle ground and are less specifically defined. Furthermore, "the statistical map shows a strong relationship which manifests itself in two opposite ways. On the one hand, it shows the link between a traditional family structure and a weak integration of women in the working population (Spain, Ireland), and, on the other hand, it shows a close link between a divided family and the fact women have a paying job, often just part time (Sweden, Denmark)." (SUMMARY IN ENG AND SPA) excerpt

  6. Interplay between intramolecular and intermolecular structures of 1,1,2,2-tetrachloro-1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Rovira-Esteva, M.; Murugan, N. A.; Pardo, L. C.; Busch, S.; Tamarit, J. Ll.; Pothoczki, Sz.; Cuello, G. J.; Bermejo, F. J.

    2011-08-01

    We report on the interplay between the short-range order of molecules in the liquid phase of 1,1,2,2-tetrachloro-1,2-difluoroethane and the possible molecular conformations, trans and gauche. Two complementary approaches have been used to get a comprehensive picture: analysis of neutron-diffraction data by a Bayesian fit algorithm and a molecular dynamics simulation. The results of both show that the population of trans and gauche conformers in the liquid state can only correspond to the gauche conformer being more stable than the trans conformer. Distinct conformer geometries induce distinct molecular short-range orders around them, suggesting that a deep intra- and intermolecular interaction coupling is energetically favoring one of the conformers by reducing the total molecular free energy.

  7. Brain oxygen tension controls the expansion of outer subventricular zone-like basal progenitors in the developing mouse brain.

    PubMed

    Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander

    2015-09-01

    The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.

  8. Regional analysis of social characteristics for evacuation resource planning: ARkStorm scenario

    USGS Publications Warehouse

    Wein, Anne; Ratliff, Jamie L.; Allan Baez,; Sleeter, Rachel

    2016-01-01

    Local planning is insufficient for regional catastrophes; regional exercises are needed to test emergency plans and decision-making structures. The ARkStorm scenario would trigger a mass evacuation that would be complicated by the social characteristics of populations [e.g., vehicle ownership, age, poverty, English language limitation (ELL), and shelter needs]. Land cover data and dasymetric mapping improves the allocation of residential populations and their social characteristics to the ARkStorm flood zone in 21 counties in California. Numbers and concentrations of county, urban, and rural residents exposed to flooding as well as populations in and out of the scenario flood zone are profiled. The results inform mass evacuation planning by providing a means to (1) examine the sufficiency of mutual aid agreements, (2) underscore planning for carless populations, and (3) tailor multilingual communication strategies. The various geographical distinctions emphasize different challenges throughout the region. It will be important to investigate behavioral responses to warnings, identify evacuation constraints (e.g., shelter capacity versus need), and obtain comparable data on transient populations.

  9. Biogeography of Drosophila (Diptera: Drosophilidae) in East and Southeast Asia

    PubMed Central

    Robert Liu, Fu-Guo; Tsaur, Shun-Chern; Huang, Hsiao-Ting

    2015-01-01

    The causes of high biological diversity in biodiversity hotspots have long been a major subject of study in conservation biology. To investigate this matter, we conducted a phylogeographic study of five Drosophila (Diptera: Drosophilidae) species from East and Southeast Asia: Drosophila albomicans Duda, D. formosana Duda, D. immigrans Sturtevant, D. melanogaster Meigen, and D. simulans Sturtevant. We collected 185 samples from 28 localities in eight countries. From each collected individual, we sequenced the autosomal extra sex comb gene (esc) and seven mitochondrial genes, including nicotinamide adenine dinucleotide hydrate-reductase dehydrogenase subunit 4 (ND4), ND4L, tRNA-His, tRNA-Pro, tRNA-Thr, partial ND5, and partial ND6. Phylogenetic analyses using maximum- likelihood and Bayesian methods revealed interesting population structure and identified the existence of two distinct D. formosana lineages (Southeast Asian and Taiwanese populations). Genetic differentiation among groups of D. immigrans suggests the possibility of endemic speciation in Taiwan. In contrast, D. melanogaster remained one extensively large population throughout East and Southeast Asia, including nearby islets. A molecular clock was used to estimate divergence times, which were compared with past geographical events to infer evolutionary scenarios. Our findings suggest that interglacial periods may have caused population isolation, thus enhancing population differentiation more strongly for some of the Drosophila species. The population structure of each Drosophila species in East and Southeast Asia has been influenced by past geographic events. PMID:26078303

  10. Population Genetics of the Endemic Hawaiian Species Chrysodracon hawaiiensis and Chrysodracon auwahiensis (Asparagaceae): Insights from RAPD and ISSR Variation.

    PubMed

    Lu, Pei-Luen; Yorkson, Mitsuko; Morden, Clifford W

    2016-08-16

    The genus Chrysodracon has six endemic species in the Hawaii Islands. Chrysodracon hawaiiensis is endemic to Hawaii Island and was described as a distinct species in 1980. It was listed as an endangered species on the International Union for the Conservation of Nature and Natural Resources (IUCN) Red List in 1997. This woody plant species was, at one time, common in exposed dry forests, but it became very rare due to grazing pressure and human development. The tree species Chrysodracon auwahiensis (C. auwahiensis), endemic to Maui and Molokai, still has large adult populations in dry lands of the islands, but unfortunately no regeneration from seed has been reported in those areas for many years. The two endemic species were examined using the molecular technique of random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) to determine the genetic structure of the populations and the amount of variation. Both species possess similar genetic structure. Larger and smaller populations of both species contain similar levels of genetic diversity as determined by the number of polymorphic loci, estimated heterozygosity, and Shannon's index of genetic diversity. Although population diversity of Chrysodracon hawaiiensis (C. hawaiiensis) is thought to have remained near pre-disturbance levels, population size continues to decline as recruitment is either absent or does not keep pace with senescence of mature plants. Conservation recommendations for both species are suggested.

  11. Evolution of acuteness in pathogen metapopulations: conflicts between “classical” and invasion-persistence trade-offs

    PubMed Central

    Shrestha, Sourya; Bjørnstad, Ottar N.; King, Aaron A.

    2014-01-01

    Classical life-history theory predicts that acute, immunizing pathogens should maximize between-host transmission. When such pathogens induce violent epidemic outbreaks, however, a pathogen’s short-term advantage at invasion may come at the expense of its ability to persist in the population over the long term. Here, we seek to understand how the classical and invasion-persistence trade-offs interact to shape pathogen life-history evolution as a function of the size and structure of the host population. We develop an individual-based infection model at three distinct levels of organization: within an individual host, among hosts within a local population, and among local populations within a metapopulation. We find a continuum of evolutionarily stable pathogen strategies. At one end of the spectrum—in large well-mixed populations—pathogens evolve to greater acuteness to maximize between-host transmission: the classical trade-off theory applies in this regime. At the other end of the spectrum—when the host population is broken into many small patches—selection favors less acute pathogens, which persist longer within a patch and thereby achieve enhanced between-patch transmission: the invasion-persistence tradeoff dominates in this regime. Between these extremes, we explore the effects of the size and structure of the host population in determining pathogen strategy. In general, pathogen strategies respond to evolutionary pressures arising at both scales. PMID:25214895

  12. Biology and ecology of Neosho Smallmouth Bass and the genetically distinct Ouachita lineage

    USGS Publications Warehouse

    Brewer, Shannon K.; Long, James M.; Tringali, Michael D.; Long, James M.; Birdsong, Timothy W.; Allen, Michael S.

    2015-01-01

    We reviewed the published and gray literature associated with Neosho Smallmouth Bass and the genetically-distinct Ouachita lineage. Substantial inter-stream variation appears to occur among these populations, particularly related to age. The Neosho subspecies is more abundant, grows faster, and lives longer than the genetically-distinct Ouachita lineage. Recruitment is highly variable among streams for both populations and appears to be related to some undescribed aspects of hydrology but also likely reflect bias due to sampling gear. Information on annual and seasonal trends is lacking for the Neosho subspecies and the Ouachita lineages, particularly as related to the spawning period. Conservation efforts for these lineages might benefit from agencies partnering to achieve goals that extend beyond a particular agencies responsibilities and state boundaries. Recognition of spatial and temporal considerations, combined with a better understanding of the population dynamics as related to abundance, growth, mortality and reproduction would benefit the creation of more effective conservation and management strategies for genetically-distinct populations of Smallmouth Bass.

  13. Molecular Diversity of Cyanobacteria Inhabiting Coniform Structures and Surrounding Mat in a Yellowstone Hot Spring

    NASA Astrophysics Data System (ADS)

    Lau, Evan; Nash, Cody Z.; Vogler, Detlev R.; Cullings, K. W.

    2005-02-01

    Lithified coniform structures are common within cyanobacterial mats in Yellowstone National Park hot springs. It is unknown whether these structures and the mats from which they develop are inhabited by the same cyanobacterial populations. Denaturing gradient gel electrophoresis and sequencing and phylogenetic analysis of 16S rDNA was used to determine whether (1) three different morphological types of lithified coniform structures are inhabited by different cyanobacterial species, (2) these species are partitioned along a vertical gradient of these structures, and (3) lithified and non-lithified sections of mat are inhabited by different cyanobacterial species. Our results, based on multiple samplings, indicate that the cyanobacterial community compositions in the three lithified morphological types were identical and lacked any vertical differentiation. However, lithified and non-lithified portions of the same mat were inhabited by distinct and different populations of cyanobacteria. Cyanobacteria inhabiting lithified structures included at least one undefined Oscillatorialean taxon, which may represent the dominant cyanobacteria genus in lithified coniform stromatolites, Phormidium, three Synechococcus-like species, and two unknown cyanobacterial taxa. In contrast, the surrounding mats contained four closely related Synechococcus-like species. Our results indicate that the distribution of lithified coniform stromatolites may be dependent on the presence of one or more microorganisms, which are phylogenetically different from those inhabiting surrounding non-lithified mats.

  14. Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    PubMed Central

    Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.

    2012-01-01

    Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659

  15. Population and genomic lessons from genetic analysis of two Indian populations.

    PubMed

    Juyal, Garima; Mondal, Mayukh; Luisi, Pierre; Laayouni, Hafid; Sood, Ajit; Midha, Vandana; Heutink, Peter; Bertranpetit, Jaume; Thelma, B K; Casals, Ferran

    2014-10-01

    Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.

  16. Genetic diversity and relationships among the tribes of Meghalaya compared to other Indian and Continental populations.

    PubMed

    Langstieh, B T; Reddy, B Mohan; Thangaraj, K; Kumar, V; Singh, Lalji

    2004-08-01

    The autosomal AmpFLSTR markers validated and widely used for forensic applications are used in this study to examine the extent of diversity and genetic relationships among nine Meghalaya populations. Altogether, 932 chromosomes from 9 populations were analyzed using 9 tetrameric AmpFLSTR loci. The included populations were all seven subtribes of the Austro-Asiatic Mon-Khmer-speaking Khasi and the neighboring Tibeto-Burman Garo. The Lyngngam, which are linguistically closer to the Khasi but are culturally intermediate between the Khasi and the Garo, are also included in the study. Although most of the microsatellite loci are highly polymorphic in each of these populations, the allele distributions are fairly uniform across the Meghalaya populations, suggesting relative homogeneity among them. Concurrent with this, the coefficient of gene differentiation (G(ST)) is observed to be low (0.026+/-0.002). This is naturally reflected in the lack of clear differentiation and clustering pattern of the Meghalaya tribes based on either geographic proximity or the historical or current affiliations of these tribes. Analysis of molecular variance (AMOVA) suggests no significant population structure. The structure analysis further suggests that, barring War-Khasi and Pnar, no other population shows any semblance of genetic identity. Even the position of the linguistically distinct Garo is not portrayed as separate from the Khasi. However, when comparable data from other Indian, Southeast Asian, and other continental populations were analyzed, the Meghalaya populations formed a compact cluster clearly separated from other populations, suggesting genetic identity of the Meghalaya populations as a whole. These results are concurrent with the hypothesis of a common and recent origin of these Meghalaya populations, whose genetic differentiation is overwhelmed by the homogenizing effect of continuous gene flow.

  17. WebStruct and VisualStruct: Web interfaces and visualization for Structure software implemented in a cluster environment.

    PubMed

    Jayashree, B; Rajgopal, S; Hoisington, D; Prasanth, V P; Chandra, S

    2008-09-24

    Structure, is a widely used software tool to investigate population genetic structure with multi-locus genotyping data. The software uses an iterative algorithm to group individuals into "K" clusters, representing possibly K genetically distinct subpopulations. The serial implementation of this programme is processor-intensive even with small datasets. We describe an implementation of the program within a parallel framework. Speedup was achieved by running different replicates and values of K on each node of the cluster. A web-based user-oriented GUI has been implemented in PHP, through which the user can specify input parameters for the programme. The number of processors to be used can be specified in the background command. A web-based visualization tool "Visualstruct", written in PHP (HTML and Java script embedded), allows for the graphical display of population clusters output from Structure, where each individual may be visualized as a line segment with K colors defining its possible genomic composition with respect to the K genetic sub-populations. The advantage over available programs is in the increased number of individuals that can be visualized. The analyses of real datasets indicate a speedup of up to four, when comparing the speed of execution on clusters of eight processors with the speed of execution on one desktop. The software package is freely available to interested users upon request.

  18. SNAP-25 IN NEUROPSYCHIATRIC DISORDERS

    PubMed Central

    Corradini, Irene; Verderio, Claudia; Sala, Mariaelvina; Wilson, Michael C.; Matteoli, Michela

    2009-01-01

    SNAP-25 is plasma membrane protein which, together with syntaxin and the synaptic vesicle protein VAMP/synaptobrevin, forms the SNARE docking complex for regulated exocytosis. SNAP-25 also modulates different voltage-gated calcium channels, representing therefore a multifunctional protein that plays essential roles in neurotransmitter release at different steps. Recent genetic studies of human populations and of some mouse models implicate that alterations in SNAP-25 gene structure, expression and/or function may contribute directly to these distinct neuropsychiatric and neurological disorders. PMID:19161380

  19. Philopatry of male marine turtles inferred from mitochondrial DNA markers

    PubMed Central

    FitzSimmons, Nancy N.; Limpus, Colin J.; Norman, Janette A.; Goldizen, Alan R.; Miller, Jeffrey D.; Moritz, Craig

    1997-01-01

    Recent studies of mitochondrial DNA (mtDNA) variation among marine turtle populations are consistent with the hypothesis that females return to beaches in their natal region to nest as adults. In contrast, less is known about breeding migrations of male marine turtles and whether they too are philopatric to natal regions. Studies of geographic structuring of restriction fragment and microsatellite polymorphisms at anonymous nuclear loci in green turtle (Chelonia mydas) populations indicate that nuclear gene flow is higher than estimates from mtDNA analyses. Regional populations from the northern and southern Great Barrier Reef were distinct for mtDNA but indistinguishable at nuclear loci, whereas the Gulf of Carpentaria (northern Australia) population was distinct for both types of marker. To assess whether this result was due to reduced philopatry of males across the Great Barrier Reef, we determined the mtDNA haplotypes of breeding males at courtship areas for comparison with breeding females from the same three locations. We used a PCR-restriction fragment length polymorphism approach to determine control region haplotypes and designed mismatch primers for the identification of specific haplotypes. The mtDNA haplotype frequencies were not significantly different between males and females at any of the three areas and estimates of Fst among the regions were similar for males and females (Fst = 0.78 and 0.73, respectively). We conclude that breeding males, like females, are philopatric to courtship areas within their natal region. Nuclear gene flow between populations is most likely occurring through matings during migrations of both males and females through nonnatal courtship areas. PMID:9238077

  20. Age-related prevalence of chronic rhinosinusitis and nasal polyps and their relationships with asthma onset.

    PubMed

    Won, Ha-Kyeong; Kim, Young-Chan; Kang, Min-Gyu; Park, Han-Ki; Lee, Seung-Eun; Kim, Min-Hye; Yang, Min-Suk; Chang, Yoon-Seok; Cho, Sang-Heon; Song, Woo-Jung

    2018-04-01

    Chronic rhinosinusitis (CRS) is a major disease condition with high morbidity and can influence lower airway disease status in adults. However, its associations with adult asthma onset and activity have not been examined in detail in a general adult population. To investigate relationships between CRS with nasal polyps (CRSwNP) and asthma characteristics. A cross-sectional data set of 17,506 adult participants (≥18 years old) in the Korean National Health and Nutrition Examination Survey from 2010 through 2012 was analyzed. CRS was defined using structured questionnaires according to the international guideline, and presence of nasal polyps was objectively assessed using nasal endoscopy. Presence of asthma and its onset and current activity were assessed using structured questionnaires. CRS was significantly related to asthma, but the relationships were distinct by CRS and asthma status. CRSwNP was significantly associated with adult-onset asthma (onset after 18 years of age) or late-onset asthma (onset after 40 years of age), whereas CRS without nasal polyps was related to childhood-onset asthma (onset before 18 years) or early-onset asthma (onset before 40 years) in adults. The 2 CRS subgroups showed significant associations with current asthma but not with past asthma. However, the comorbid asthma rate was lower than 10% among subjects with CRS. This study found distinct age-related patterns of CRSwNP and asthma and demonstrated their significant associations in a general population. However, the low prevalence of asthma in CRSwNP is in sharp contrast to findings in Western populations, which warrants further investigation for ethnic or regional differences in relationships between CRSwNP and asthma. Copyright © 2018 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Ecological dispersal barrier across the equatorial Atlantic in a migratory planktonic copepod

    NASA Astrophysics Data System (ADS)

    Goetze, Erica; Hüdepohl, Patricia T.; Chang, Chantel; Van Woudenberg, Lauren; Iacchei, Matthew; Peijnenburg, Katja T. C. A.

    2017-11-01

    Resolving the large-scale genetic structure of plankton populations is important to understanding their responses to climate change. However, few studies have reported on the presence and geographic extent of genetically distinct populations of marine zooplankton at ocean-basin scales. Using mitochondrial sequence data (mtCOI, 718 animals) from 18 sites across a basin-scale Atlantic transect (39°N-40°S), we show that populations of the dominant migratory copepod, Pleuromamma xiphias, are genetically subdivided across subtropical and tropical waters (global FST = 0.15, global ΦST = 0.21, both P < 0.00001), with a major genetic break observed in the equatorial Atlantic (between gyre FCT and ΦCT = 0.23, P < 0.005). This equatorial region of strong genetic transition coincides with an area of low abundance for the species. Transitional regions between the subtropical gyres and the equatorial province also harbor a distinct mitochondrial clade (clade 2), have higher haplotype and nucleotide diversities relative to the northern and/or southern subtropical gyres (e.g., mean h = 0.831 EQ, 0.742 North, 0.594 South, F2,11 = 20.53, P < 0.001), and are genetically differentiated from the majority of sites in the central gyre and temperate zones of the same hemisphere (significant pairwise ΦST 0.038-0.267, 79% significant). Our observations support the hypothesis that regions of low abundance within species mark areas of suboptimal habitat that serve as dispersal barriers for marine plankton, and we suggest that this may be a dominant mechanism driving the large-scale genetic structure of zooplankton species. Our results also demonstrate the potential importance of the Atlantic equatorial province as a region of evolutionary novelty for the holoplankton.

  2. Do recognizable lifetime eating disorder phenotypes naturally occur in a culturally asian population? A combined latent profile and taxometric approach.

    PubMed

    Thomas, Jennifer J; Eddy, Kamryn T; Ruscio, John; Ng, King Lam; Casale, Kristen E; Becker, Anne E; Lee, Sing

    2015-05-01

    We examined whether empirically derived eating disorder (ED) categories in Hong Kong Chinese patients (N = 454) would be consistent with recognizable lifetime ED phenotypes derived from latent structure models of European and American samples. We performed latent profile analysis (LPA) using indicator variables from data collected during routine assessment, and then applied taxometric analysis to determine whether latent classes were qualitatively versus quantitatively distinct. Latent profile analysis identified four classes: (i) binge/purge (47%); (ii) non-fat-phobic low-weight (34%); (iii) fat-phobic low-weight (12%); and (iv) overweight disordered eating (6%). Taxometric analysis identified qualitative (categorical) distinctions between the binge/purge and non-fat-phobic low-weight classes, and also between the fat-phobic and non-fat-phobic low-weight classes. Distinctions between the fat-phobic low-weight and binge/purge classes were indeterminate. Empirically derived categories in Hong Kong showed recognizable correspondence with recognizable lifetime ED phenotypes. Although taxometric findings support two distinct classes of low weight EDs, LPA findings also support heterogeneity among non-fat-phobic individuals. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  3. Genetic structuring among silverside fish (Atherinella brasiliensis) populations from different Brazilian regions

    NASA Astrophysics Data System (ADS)

    da Silva Cortinhas, Maria Cristina; Kersanach, Ralf; Proietti, Maíra; Dumont, Luiz Felipe Cestari; D'Incao, Fernando; Lacerda, Ana Luzia F.; Prata, Pedro Sanmartin; Matoso, Daniele Aparecida; Noleto, Rafael Bueno; Ramsdorf, Wanessa; Boni, Talge Aiex; Prioli, Alberto José; Cestari, Marta Margarete

    2016-09-01

    Estuaries are dynamic environments, key for the survival of innumerous ecologically or economically important fish species. Among these species are Neotropical silversides (Atherinella brasiliensis), which are resident and abundant in Brazilian estuaries and used as a complementary source of income and food for local communities. To better understand silverside populations in Brazil, we evaluated the genetic diversity, structure and demography of fish sampled at six estuaries from the northeastern to the southern coast, using Random Amplified Polymorphic DNA and mitochondrial DNA (D-loop) markers. High haplotype diversities (h ranging from 0.75 to 0.99) were found in all populations except Carapebus, located in Southeast Brazil (h = 0.54). A total of 69 mtDNA haplotypes were found, with Itaparica (Northeast Brazil) and Carapebus presenting only exclusive haplotypes, while some were shared among populations in the South. Strong regional structure was observed, with very high differentiation between Itaparica and Carapebus, as well as among these two populations and the ones from the Southern region (Paranaguá, Conceição, Camacho and Patos). Among southern areas, low/moderate structure was detected. Most populations showed unimodal mismatch distributions indicating recent demographic expansion, while Carapebus presented a multimodal distribution characteristic of a stable or bottlenecked population. Times since possible population expansion were highest in Itaparica (32,500 ya) and Carapebus (29,540 ya), while in the Southern region longest time was observed at Conceição (25,540 ya) and shortest at Patos (9720 ya). In a general manner, haplotype diversities were directly related to times since population expansions; again, Carapebus was the exception, displaying long time since expansion but low diversity, possibly due to a recent bottleneck caused by the isolation and human impacts this lagoon is subject to. Isolation by Distance was significant for Itaparica and Carapebus, and considering the extremely high differentiation of these populations, we suggest that they could be undergoing speciation. To adequately manage and maintain the genetic variability of silversides in Brazilian estuaries, we propose three distinct management units for this species: 1) Itaparica; 2) Carapebus; and 3) Southern Brazil.

  4. Fifty years after Welles and Welles: Distribution and genetic structure of Desert Bighorn Sheep in Death Valley National Park

    USGS Publications Warehouse

    Epps, Clinton W.; Wehausen, John D.; Sloan, William B.; Holt, Stacy; Creech, Tyler G.; Crowhurst, Rachel S.; Jaeger, Jef R.; Longshore, Kathleen M.; Monello, Ryan J.

    2013-01-01

    Where possible, we revisited many of the water sources and other locations originally investigated by Welles and Welles (1961) and earlier researchers. We extracted DNA from fecal pellets, carcass tissue samples, and blood samples archived from earlier captures and genotyped them using highly variable genetic markers (15 microsatellite loci) with sufficient power to distinguish individuals and characterize gene flow and genetic structure. We also analyzed DNA samples collected from other bighorn sheep populations extending north to the White Mountains, west to the Inyo Mountains, south to the Avawatz Mountains, and southeast to the Clark Mountain Range, Kingston Range, and Spring Mountains of Nevada. We estimated genetic structure and recent gene flow among nearly all known populations of bighorn sheep in and around Death Valley National Park (DEVA), and used assignment tests to evaluate individual and population-level genetic structure to infer connectivity across the region. We found that bighorn sheep are still widely distributed in mountain ranges throughout DEVA, including many of the areas described by Welles and Welles (1961), although some use patterns appear to have changed and other areas still require resurvey. Gene flow was relatively high through some sections of fairly continuous habitat, such as the Grapevine and Funeral Mountains along the eastern side of Death Valley, but other populations were more isolated. Genetic diversity was relatively high throughout the park. Although southern Death Valley populations were genetically distinct from populations to the southeast, population assignment tests and recent gene flow estimates suggested that individuals occasionally migrate between those regions, indicating the potential for the recent outbreak of respiratory disease in the southern Mojave Desert to spread into the Death Valley system. We recommend careful monitoring of bighorn sheep using remote cameras to check for signs of respiratory disease in southeastern DEVA and ground surveys in the still-understudied southwestern part of DEVA.

  5. Nuclear Genetic Diversity in Human Lice (Pediculus humanus) Reveals Continental Differences and High Inbreeding among Worldwide Populations

    PubMed Central

    Ascunce, Marina S.; Toups, Melissa A.; Kassu, Gebreyes; Fane, Jackie; Scholl, Katlyn; Reed, David L.

    2013-01-01

    Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus). This species is composed of two ecotypes: the head louse (Pediculus humanus capitis De Geer), and the clothing (body) louse (Pediculus humanus humanus Linnaeus). Hundreds of millions of head louse infestations affect children every year, and this number is on the rise, in part because of increased resistance to insecticides. Clothing lice affect mostly homeless and refugee-camp populations and although they are less prevalent than head lice, the medical consequences are more severe because they vector deadly bacterial pathogens. In this study we present the first assessment of the genetic structure of human louse populations by analyzing the nuclear genetic variation at 15 newly developed microsatellite loci in 93 human lice from 11 sites in four world regions. Both ecotypes showed heterozygote deficits relative to Hardy–Weinberg equilibrium and high inbreeding values, an expected pattern given their parasitic life history. Bayesian clustering analyses assigned lice to four distinct genetic clusters that were geographically structured. The low levels of gene flow among louse populations suggested that the evolution of insecticide resistance in lice would most likely be affected by local selection pressures, underscoring the importance of tailoring control strategies to population-specific genetic makeup and evolutionary history. Our panel of microsatellite markers provides powerful data to investigate not only ecological and evolutionary processes in lice, but also those in their human hosts because of the long-term coevolutionary association between lice and humans. PMID:23460886

  6. Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil.

    PubMed

    Reis, Talita Soares; Ciampi-Guillardi, Maísa; Bajay, Miklos Maximiliano; de Souza, Anete Pereira; Dos Santos, Flavio Antonio Maës

    2015-05-01

    Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self-compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80-216 m) and an upland site (1010-1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (F ST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation-by-distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ∼10-20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence for bottleneck.

  7. Nuclear genetic diversity in human lice (Pediculus humanus) reveals continental differences and high inbreeding among worldwide populations.

    PubMed

    Ascunce, Marina S; Toups, Melissa A; Kassu, Gebreyes; Fane, Jackie; Scholl, Katlyn; Reed, David L

    2013-01-01

    Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus). This species is composed of two ecotypes: the head louse (Pediculus humanus capitis De Geer), and the clothing (body) louse (Pediculus humanus humanus Linnaeus). Hundreds of millions of head louse infestations affect children every year, and this number is on the rise, in part because of increased resistance to insecticides. Clothing lice affect mostly homeless and refugee-camp populations and although they are less prevalent than head lice, the medical consequences are more severe because they vector deadly bacterial pathogens. In this study we present the first assessment of the genetic structure of human louse populations by analyzing the nuclear genetic variation at 15 newly developed microsatellite loci in 93 human lice from 11 sites in four world regions. Both ecotypes showed heterozygote deficits relative to Hardy-Weinberg equilibrium and high inbreeding values, an expected pattern given their parasitic life history. Bayesian clustering analyses assigned lice to four distinct genetic clusters that were geographically structured. The low levels of gene flow among louse populations suggested that the evolution of insecticide resistance in lice would most likely be affected by local selection pressures, underscoring the importance of tailoring control strategies to population-specific genetic makeup and evolutionary history. Our panel of microsatellite markers provides powerful data to investigate not only ecological and evolutionary processes in lice, but also those in their human hosts because of the long-term coevolutionary association between lice and humans.

  8. Population Genetics of Lactobacillus sakei Reveals Three Lineages with Distinct Evolutionary Histories

    PubMed Central

    Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2013-01-01

    Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products. PMID:24069179

  9. Population genetics of Lactobacillus sakei reveals three lineages with distinct evolutionary histories.

    PubMed

    Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2013-01-01

    Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products.

  10. Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds

    PubMed Central

    Gautier, Mathieu; Laloë, Denis; Moazami-Goudarzi, Katayoun

    2010-01-01

    Background Modern cattle originate from populations of the wild extinct aurochs through a few domestication events which occurred about 8,000 years ago. Newly domesticated populations subsequently spread worldwide following breeder migration routes. The resulting complex historical origins associated with both natural and artificial selection have led to the differentiation of numerous different cattle breeds displaying a broad phenotypic variety over a short period of time. Methodology/Principal Findings This study gives a detailed assessment of cattle genetic diversity based on 1,121 individuals sampled in 47 populations from different parts of the world (with a special focus on French cattle) genotyped for 44,706 autosomal SNPs. The analyzed data set consisted of new genotypes for 296 individuals representing 14 French cattle breeds which were combined to those available from three previously published studies. After characterizing SNP polymorphism in the different populations, we performed a detailed analysis of genetic structure at both the individual and population levels. We further searched for spatial patterns of genetic diversity among 23 European populations, most of them being of French origin, under the recently developed spatial Principal Component analysis framework. Conclusions/Significance Overall, such high throughput genotyping data confirmed a clear partitioning of the cattle genetic diversity into distinct breeds. In addition, patterns of differentiation among the three main groups of populations—the African taurine, the European taurine and zebus—may provide some additional support for three distinct domestication centres. Finally, among the European cattle breeds investigated, spatial patterns of genetic diversity were found in good agreement with the two main migration routes towards France, initially postulated based on archeological evidence. PMID:20927341

  11. Molecular genetic diversity and population structure of Ethiopian white lupin landraces: Implications for breeding and conservation.

    PubMed

    Atnaf, Mulugeta; Yao, Nasser; Martina, Kyalo; Dagne, Kifle; Wegary, Dagne; Tesfaye, Kassahun

    2017-01-01

    White lupin is one of the four economically important species of the Lupinus genus and is an important grain legume in the Ethiopian farming system. However, there has been limited research effort to characterize the Ethiopian white lupin landraces. Fifteen polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 212 Ethiopian white lupin (Lupinus albus) landraces and two genotypes from different species (Lupinus angustifolius and Lupinus mutabilis) were used as out-group. The SSR markers revealed 108 different alleles, 98 of them from 212 landraces and 10 from out-group genotypes, with an average of 6.5 alleles per locus. The average gene diversity was 0.31. Twenty eight landraces harbored one or more private alleles from the total of 28 private alleles identified in the 212 white lupin accessions. Seventy-seven rare alleles with a frequency of less than 5% were identified and accounted for 78.6% of the total alleles detected. Analysis of molecular variance (AMOVA) showed that 92% of allelic diversity was attributed to individual accessions within populations while only 8% was distributed among populations. At 70% similarity level, the UPGMA dendrogram resulted in the formation of 13 clusters comprised of 2 to 136 landraces, with the out-group genotypes and five landraces remaining distinct and ungrouped. Population differentiation and genetic distance were relatively high between Gondar and Ethiopian white lupin populations collected by Australians. A model-based population structure analysis divided the white lupin landraces into two populations. All Ethiopian white lupin landrace populations, except most of the landraces collected by Australians (77%) and about 44% from Awi, were grouped together with significant admixtures. The study also suggested that 34 accessions, as core collections, were sufficient to retain 100% of SSR diversity. These accessions (core G-34) represent 16% of the whole 212 Ethiopian white lupin accessions and populations from West Gojam, Awi and Australian collections contributed more accessions to the core collection.

  12. Molecular genetic diversity and population structure of Ethiopian white lupin landraces: Implications for breeding and conservation

    PubMed Central

    Yao, Nasser; Martina, Kyalo; Dagne, Kifle; Wegary, Dagne; Tesfaye, Kassahun

    2017-01-01

    White lupin is one of the four economically important species of the Lupinus genus and is an important grain legume in the Ethiopian farming system. However, there has been limited research effort to characterize the Ethiopian white lupin landraces. Fifteen polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 212 Ethiopian white lupin (Lupinus albus) landraces and two genotypes from different species (Lupinus angustifolius and Lupinus mutabilis) were used as out-group. The SSR markers revealed 108 different alleles, 98 of them from 212 landraces and 10 from out-group genotypes, with an average of 6.5 alleles per locus. The average gene diversity was 0.31. Twenty eight landraces harbored one or more private alleles from the total of 28 private alleles identified in the 212 white lupin accessions. Seventy-seven rare alleles with a frequency of less than 5% were identified and accounted for 78.6% of the total alleles detected. Analysis of molecular variance (AMOVA) showed that 92% of allelic diversity was attributed to individual accessions within populations while only 8% was distributed among populations. At 70% similarity level, the UPGMA dendrogram resulted in the formation of 13 clusters comprised of 2 to 136 landraces, with the out-group genotypes and five landraces remaining distinct and ungrouped. Population differentiation and genetic distance were relatively high between Gondar and Ethiopian white lupin populations collected by Australians. A model-based population structure analysis divided the white lupin landraces into two populations. All Ethiopian white lupin landrace populations, except most of the landraces collected by Australians (77%) and about 44% from Awi, were grouped together with significant admixtures. The study also suggested that 34 accessions, as core collections, were sufficient to retain 100% of SSR diversity. These accessions (core G-34) represent 16% of the whole 212 Ethiopian white lupin accessions and populations from West Gojam, Awi and Australian collections contributed more accessions to the core collection. PMID:29190792

  13. Organizing human functioning and rehabilitation research into distinct scientific fields. Part I: Developing a comprehensive structure from the cell to society.

    PubMed

    Stucki, Gerold; Grimby, Gunnar

    2007-05-01

    There is a need to organize rehabilitation and related research into distinct scientific fields in order to overcome the current limitations of rehabilitation research. Based on the general distinction in basic, applied and professional sciences applicable to research in general, and the rehabilitation relevant distinction between the comprehensive perspective based on WHO's integrative model of human functioning (ICF) and the partial perspective focusing on the biomedical aspects of functioning, it is possible to identify 5 distinct scientific fields of human functioning and rehabilitation research. These are the emerging human functioning sciences and integrative rehabilitation sciences from the comprehensive perspective, the established biosciences and biomedical rehabilitation sciences and engineering from the partial perspective, and the professional rehabilitation sciences at the cutting edge of research and practice. The human functioning sciences aim to understand human functioning and to identify targets for comprehensive interventions, with the goal of contributing to the minimization of the experience of disability in the population. The biosciences in rehabilitation aim to explain body injury and repair and to identify targets for biomedical interventions. The integrative rehabilitation sciences design and study comprehensive assessments and interventions that integrate biomedical, personal factor and environmental approaches suited to optimize people's performance. The biomedical rehabilitation sciences and engineering study diagnostic measures and interventions suitable to minimize impairment, including symptom control, and to optimize people's capacity. The professional rehabilitation sciences study how to provide best care with the goal of enabling people with health conditions experiencing or likely to experience disability to achieve and maintain optimal functioning in interaction with the environment. The organization of human functioning and rehabilitation research into the 5 distinct scientific fields facilitates the development of academic training programs and career building as well as the development of research structures dedicated to human functioning and rehabilitation research.

  14. Intraspecific Genetic Admixture and the Morphological Diversification of an Estuarine Fish Population Complex

    PubMed Central

    Legault, Michel

    2015-01-01

    The North-east American Rainbow smelt (Osmerus mordax) is composed of two glacial races first identified through the spatial distribution of two distinct mtDNA lineages. Contemporary breeding populations of smelt in the St. Lawrence estuary comprise contrasting mixtures of both lineages, suggesting that the two races came into secondary contact in this estuary. The overall objective of this study was to assess the role of intraspecific genetic admixture in the morphological diversification of the estuarine rainbow smelt population complex. The morphology of mixed-ancestry populations varied as a function of the relative contribution of the two races to estuarine populations, supporting the hypothesis of genetic admixture. Populations comprising both ancestral mtDNA races did not exhibit intermediate morphologies relative to pure populations but rather exhibited many traits that exceeded the parental trait values, consistent with the hypothesis of transgressive segregation. Evidence for genetic admixture at the level of the nuclear gene pool, however, provided only partial support for this hypothesis. Variation at nuclear AFLP markers revealed clear evidence of the two corresponding mtDNA glacial races. The admixture of the two races at the nuclear level is only pronounced in mixed-ancestry populations dominated by one of the mtDNA lineages, the same populations showing the greatest degree of morphological diversification and population structure. In contrast, mixed-ancestry populations dominated by the alternate mtDNA lineage showed little evidence of introgression of the nuclear genome, little morphological diversification and little contemporary population genetic structure. These results only partially support the hypothesis of transgressive segregation and may be the result of the differential effects of natural selection acting on admixed genomes from different sources. PMID:25856193

  15. Population structure of Venturia inaequalis, a causal agent of apple scab, in response to heterogeneous apple tree cultivation.

    PubMed

    Michalecka, Monika; Masny, Sylwester; Leroy, Thibault; Puławska, Joanna

    2018-01-19

    Tracking newly emergent virulent populations in agroecosystems provides an opportunity to increase our understanding of the co-evolution dynamics of pathogens and their hosts. On the one hand host plants exert selective pressure on pathogen populations, thus dividing them into subpopulations of different virulence, while on the other hand they create an opportunity for secondary contact between the two divergent populations on one tree. The main objectives of the study were to explore whether the previously reported structure between two Venturia inaequalis population types, virulent or avirulent towards Malus x domestica cultivars carrying Rvi6 gene, is maintained or broken several years after the first emergence of new virulent strains in Poland, and to investigate the relationship between 'new' and 'native' populations derived from the same commercial orchards. For this purpose, we investigated the genetic structure of populations of the apple scab fungus, occurring on apple tree cultivars containing Rvi6, Rvi1 or Rvi17 resistance gene or no resistance at all, based on microsatellite data obtained from 606 strains sampled in 10 orchards composed of various host cultivars. Application of genetic distance inferring and clustering methods allowed us to observe clear genetic distinctness of the populations virulent towards cultivars carrying Rvi6 gene from the Rvi6-avirulent populations and substructures within the Rvi6-group as a consequence of independent immigration events followed by rare, long-distance dispersals. We did not observe such a structuring effect of other genes determining apple scab resistance on any other populations, which in turn were genetically homogenous. However, in two orchards the co-occurrence of strains of different virulence pattern on the same trees was detected, blurring the genetic boundaries between populations. Among several resistance genes studied, only Rvi6 exerted selective pressure on pathogens populations: those virulent toward Rvi6 hosts show unique and clear genetic and virulence pattern. For the first time in commercial Malus x domestica orchards, we reported secondary contacts between populations virulent and avirulent toward Rvi6 hosts. These two populations, first diverged in allopatry, second came into contact and subsequently began interbreeding, in such way that they show unambiguous footprints of gene flow today.

  16. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    USGS Publications Warehouse

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  17. Social interactions predict genetic diversification: an experimental manipulation in shorebirds.

    PubMed

    Cunningham, Charles; Parra, Jorge E; Coals, Lucy; Beltrán, Marcela; Zefania, Sama; Székely, Tamás

    2018-01-01

    Mating strategy and social behavior influence gene flow and hence affect levels of genetic differentiation and potentially speciation. Previous genetic analyses of closely related plovers Charadrius spp. found strikingly different population genetic structure in Madagascar: Kittlitz's plovers are spatially homogenous whereas white-fronted plovers have well segregated and geographically distinct populations. Here, we test the hypotheses that Kittlitz's plovers are spatially interconnected and have extensive social interactions that facilitate gene flow, whereas white-fronted plovers are spatially discrete and have limited social interactions. By experimentally removing mates from breeding pairs and observing the movements of mate-searching plovers in both species, we compare the spatial behavior of Kittlitz's and white-fronted plovers within a breeding season. The behavior of experimental birds was largely consistent with expectations: Kittlitz's plovers travelled further, sought new mates in larger areas, and interacted with more individuals than white-fronted plovers, however there was no difference in breeding dispersal. These results suggest that mating strategies, through spatial behavior and social interactions, are predictors of gene flow and thus genetic differentiation and speciation. Our study highlights the importance of using social behavior to understand gene flow. However, further work is needed to investigate the relative importance of social structure, as well as intra- and inter-season dispersal, in influencing the genetic structures of populations.

  18. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto.

    PubMed

    Castillo-Ramírez, S; Fingerle, V; Jungnick, S; Straubinger, R K; Krebs, S; Blum, H; Meinel, D M; Hofmann, H; Guertler, P; Sing, A; Margos, G

    2016-03-09

    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s.s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgroup species Borrelia bissettii, ii) two divergent strains from Europe, and iii) a group composed of strains from both the USA and Europe. Phylogenetic analysis indicated that different genotypes were likely to have been introduced several times into the same area. Our results demonstrate that irrespective of whether B. burgdorferi s.s. originated in Europe or the USA, later trans-Atlantic exchange(s) have occurred and have shaped the population structure of this genospecies. This study clearly shows the utility of next generation sequencing to obtain a better understanding of the phylogeography of this bacterial species.

  19. Drainage isolation and climate change-driven population expansion shape the genetic structures of Tuber indicum complex in the Hengduan Mountains region.

    PubMed

    Feng, Bang; Zhao, Qi; Xu, Jianping; Qin, Jiao; Yang, Zhu L

    2016-02-24

    The orogenesis of the Qinghai-Tibetan Plateau and the Quaternary climate changes have played key roles in driving the evolution of flora and fauna in Southwest China, but their effects on higher fungi are poorly addressed. In this study, we investigated the phylogeographic pattern of the Tuber indicum species complex, an economically important fungal group distributed in the Hengduan Mountains region. Our data confirmed the existence of two distinct lineages, T. indicum and T. himalayense, within this species complex. Three geographic groups (Groups W, N and C) were revealed within T. indicum, with Group W found in the paleo-Lancang River region, while Groups N and C corresponded to the two banks along the contemporary Jinsha River, suggesting that rivers have acted as barriers for gene flow among populations from different drainages. Historical range expansion resulted from climate changes was inferred in Group C, contributing to the observed gene flow among geographic populations within this group. Although no significant geographic structure was identified in T. himalayense, evidence of drainage isolation for this species was also detected. Our findings demonstrate that both topographic changes and Quaternary climate oscillations have played important roles in driving the genetic structures of the T. indicum species complex.

  20. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto

    PubMed Central

    Castillo-Ramírez, S.; Fingerle, V.; Jungnick, S.; Straubinger, R. K.; Krebs, S.; Blum, H.; Meinel, D. M.; Hofmann, H.; Guertler, P.; Sing, A.; Margos, G.

    2016-01-01

    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s.s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgroup species Borrelia bissettii, ii) two divergent strains from Europe, and iii) a group composed of strains from both the USA and Europe. Phylogenetic analysis indicated that different genotypes were likely to have been introduced several times into the same area. Our results demonstrate that irrespective of whether B. burgdorferi s.s. originated in Europe or the USA, later trans-Atlantic exchange(s) have occurred and have shaped the population structure of this genospecies. This study clearly shows the utility of next generation sequencing to obtain a better understanding of the phylogeography of this bacterial species. PMID:26955886

Top