Sample records for distinct processes involved

  1. Vestibular thalamus: Two distinct graviceptive pathways.

    PubMed

    Baier, Bernhard; Conrad, Julian; Stephan, Thomas; Kirsch, Valerie; Vogt, Thomas; Wilting, Janine; Müller-Forell, Wibke; Dieterich, Marianne

    2016-01-12

    To determine whether there are distinct thalamic regions statistically associated with either contraversive or ipsiversive disturbance of verticality perception measured by subjective visual vertical (SVV). We used modern statistical lesion behavior mapping on a sample of 37 stroke patients with isolated thalamic lesions to clarify which thalamic regions are involved in graviceptive otolith processing and whether there are distinct regions associated with contraversive or ipsiversive SVV deviation. We found 2 distinct systems of graviceptive processing within the thalamus. Contraversive tilt of SVV was associated with lesions to the nuclei dorsomedialis, intralamellaris, centrales thalami, posterior thalami, ventrooralis internus, ventrointermedii, ventrocaudales and superior parts of the nuclei parafascicularis thalami. The regions associated with ipsiversive tilt of SVV were located in more inferior regions, involving structures such as the nuclei endymalis thalami, inferior parts of the nuclei parafascicularis thalami, and also small parts of the junction zone of the nuclei ruber tegmenti and brachium conjunctivum. Our data indicate that there are 2 anatomically distinct graviceptive signal processing mechanisms within the vestibular network in humans that lead, when damaged, to a vestibular tone imbalance either to the contraversive or to the ipsiversive side. © 2015 American Academy of Neurology.

  2. The Demonstration of Short-Term Consolidation.

    ERIC Educational Resources Information Center

    Jolicoeur, Pierre; Dell'Acqua, Roberto

    1998-01-01

    Results of seven experiments involving 112 college students or staff using a dual-task approach provide evidence that encoding information into short-term memory involves a distinct process termed short-term consolidation (STC). Results suggest that STC has limited capacity and that it requires central processing mechanisms. (SLD)

  3. Postaccess processes in the open vs. closed class distinction.

    PubMed

    Matthei, E H; Kean, M L

    1989-02-01

    We present the results of two auditory lexical decision experiments in which we attempted to replicate findings originally presented in Bradley (1978, Computational distinctions of vocabulary type, Ph.D. dissertation, MIT). The results obtained by Bradley were used as evidence for a processing distinction between the open and the closed class vocabularies; this distinction then used as part of an explanation for agrammatism in the comprehension and production of Broca's aphasics. In our first experiment we failed to replicate Bradley's result of frequency insensitivity in the closed class. Our second experiment, however, replicates Bradley's finding that closed class based nonwords (e.g., thanage) fail to induce interference effects in nonword decisions. We argue that our results, together with the various other reported failures to replicate Bradley's frequency insensitivity result, indicate that the open and closed classes may play distinct roles in postaccess phenomena involving the processing of morphological information but that such studies cannot address the question of whether the open vs. closed class distinction plays a role in syntactic processing.

  4. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport.

    PubMed

    Cocucci, E; Kim, J Y; Bai, Y; Pabla, N

    2017-01-01

    Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  5. Distinct cognitive mechanisms involved in the processing of single objects and object ensembles

    PubMed Central

    Cant, Jonathan S.; Sun, Sol Z.; Xu, Yaoda

    2015-01-01

    Behavioral research has demonstrated that the shape and texture of single objects can be processed independently. Similarly, neuroimaging results have shown that an object's shape and texture are processed in distinct brain regions with shape in the lateral occipital area and texture in parahippocampal cortex. Meanwhile, objects are not always seen in isolation and are often grouped together as an ensemble. We recently showed that the processing of ensembles also involves parahippocampal cortex and that the shape and texture of ensemble elements are processed together within this region. These neural data suggest that the independence seen between shape and texture in single-object perception would not be observed in object-ensemble perception. Here we tested this prediction by examining whether observers could attend to the shape of ensemble elements while ignoring changes in an unattended texture feature and vice versa. Across six behavioral experiments, we replicated previous findings of independence between shape and texture in single-object perception. In contrast, we observed that changes in an unattended ensemble feature negatively impacted the processing of an attended ensemble feature only when ensemble features were attended globally. When they were attended locally, thereby making ensemble processing similar to single-object processing, interference was abolished. Overall, these findings confirm previous neuroimaging results and suggest that distinct cognitive mechanisms may be involved in single-object and object-ensemble perception. Additionally, they show that the scope of visual attention plays a critical role in determining which type of object processing (ensemble or single object) is engaged by the visual system. PMID:26360156

  6. Category Cued Recall Evokes a Generate-Recognize Retrieval Process

    PubMed Central

    Hunt, R. Reed; Smith, Rebekah E.; Toth, Jeffrey P.

    2015-01-01

    The experiments reported here were designed to replicate and extend McCabe, Roediger, and Karpicke’s (2011) finding that retrieval in category cued recall involves both controlled and automatic processes. The extension entailed identifying whether distinctive encoding affected one or both of these two processes. The first experiment successfully replicated McCabe et al., but the second, which added a critical baseline condition, produced data inconsistent with a two independent process model of recall. The third experiment provided evidence that retrieval in category cued recall reflects a generate-recognize strategy, with the effect of distinctive processing being localized to recognition. Overall, the data suggest that category cued recall evokes a generate-recognize retrieval strategy and that the sub-processes underlying this strategy can be dissociated as a function of distinctive versus relational encoding processes. PMID:26280355

  7. Distinctiveness of Adolescent and Emerging Adult Romantic Relationship Features in Predicting Externalizing Behavior Problems

    ERIC Educational Resources Information Center

    van Dulmen, Manfred H. M.; Goncy, Elizabeth A.; Haydon, Katherine C.; Collins, W. Andrew

    2008-01-01

    Romantic relationship involvement has repeatedly been associated with the incidence of externalizing behavior problems, but little is known about the nature and developmental significance of this relation. The current study extends previous research by investigating whether and through what processes romantic relationships distinctively predict…

  8. Two Distinct Synchronization Processes in the Transition to Sleep: A High-Density Electroencephalographic Study

    PubMed Central

    Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio

    2014-01-01

    Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially affected by experimental manipulations and sleep disorders. Citation: Siclari F, Bernardi G, Riedner BA, LaRocque JJ, Benca RM, Tononi G. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. SLEEP 2014;37(10):1621-1637. PMID:25197810

  9. Category cued recall evokes a generate-recognize retrieval process.

    PubMed

    Hunt, R Reed; Smith, Rebekah E; Toth, Jeffrey P

    2016-03-01

    The experiments reported here were designed to replicate and extend McCabe, Roediger, and Karpicke's (2011) finding that retrieval in category cued recall involves both controlled and automatic processes. The extension entailed identifying whether distinctive encoding affected 1 or both of these 2 processes. The first experiment successfully replicated McCabe et al., but the second, which added a critical baseline condition, produced data inconsistent with a 2 independent process model of recall. The third experiment provided evidence that retrieval in category cued recall reflects a generate-recognize strategy, with the effect of distinctive processing being localized to recognition. Overall, the data suggest that category cued recall evokes a generate-recognize retrieval strategy and that the subprocesses underlying this strategy can be dissociated as a function of distinctive versus relational encoding processes. (c) 2016 APA, all rights reserved).

  10. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    PubMed Central

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  11. Building a Training and Development Program.

    ERIC Educational Resources Information Center

    Bare, Alan C.

    An approach to building an effective training and development (T&D) process within postsecondary institutions is described. The process involves three distinct phases: developing an inservice skills training program, institutionalizing an on-the-job career development process, and conducting organizational development activities. The focus of the…

  12. Distinct pathways of neural coupling for different basic emotions.

    PubMed

    Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela

    2012-01-16

    Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.

  13. Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.

    PubMed

    Parisi, Laura R; Li, Nasi; Atilla-Gokcumen, G Ekin

    2017-12-21

    Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Language processing within the striatum: evidence from a PET correlation study in Huntington's disease.

    PubMed

    Teichmann, Marc; Gaura, Véronique; Démonet, Jean-François; Supiot, Frédéric; Delliaux, Marie; Verny, Christophe; Renou, Pierre; Remy, Philippe; Bachoud-Lévi, Anne-Catherine

    2008-04-01

    The role of sub-cortical structures in language processing, and more specifically of the striatum, remains controversial. In line with psycholinguistic models stating that language processing implies both the recovery of lexical information and the application of combinatorial rules, the striatum has been claimed to be involved either in the former component or in the latter. The present study reconciles these conflicting views by showing the striatum's involvement in both language processes, depending on distinct striatal sub-regions. Using PET scanning in a model of striatal disorders, namely Huntington's disease (HD), we correlated metabolic data of 31 early stage HD patients regarding different striatal sub-regions with behavioural scores on three rule/lexicon tasks drawn from word morphology, syntax and from a non-linguistic domain, namely arithmetic. Behavioural results reflected impairment on both processing aspects, while deficits predominated on rule application. Both correlated with the left striatum but involved distinct striatal sub-regions. We suggest that the left striatum encompasses linguistic and arithmetic circuits, which differ with respect to their anatomical and functional specification, comprising ventrally located regions dedicated to rule computations and more dorsal portions pertaining to lexical devices.

  15. Category Cued Recall Evokes a Generate-Recognize Retrieval Process

    ERIC Educational Resources Information Center

    Hunt, R. Reed; Smith, Rebekah E.; Toth, Jeffrey P.

    2016-01-01

    The experiments reported here were designed to replicate and extend McCabe, Roediger, and Karpicke's (2011) finding that retrieval in category cued recall involves both controlled and automatic processes. The extension entailed identifying whether distinctive encoding affected 1 or both of these 2 processes. The first experiment successfully…

  16. Neuroimaging social emotional processing in women: fMRI study of script-driven imagery

    PubMed Central

    Dozois, David J. A.; Neufeld, Richard W. J.; Densmore, Maria; Stevens, Todd K.; Lanius, Ruth A.

    2011-01-01

    Emotion theory emphasizes the distinction between social vs non-social emotional-processing (E-P) although few functional neuroimaging studies have examined whether the neural systems that mediate social vs non-social E-P are similar or distinct. The present fMRI study of script-driven imagery in 20 women demonstrates that social E-P, independent of valence, more strongly recruits brain regions involved in social- and self-referential processing, specifically the dorsomedial prefrontal cortex, posterior cingulate/precuneus, bilateral temporal poles, bilateral temporoparietal junction and right amygdala. Functional response within brain regions involved in E-P was also significantly more pronounced during negatively relative to positively valenced E-P. Finally, the effect for social E-P was increased for positive relative to negative stimuli in many of these same regions. Future research directions for social and affective neuroscience are discussed. PMID:20525743

  17. More than a feeling: Pervasive influences of memory without awareness of retrieval

    PubMed Central

    Voss, Joel L.; Lucas, Heather D.; Paller, Ken A.

    2015-01-01

    The subjective experiences of recollection and familiarity have featured prominently in the search for neurocognitive mechanisms of memory. However, these two explicit expressions of memory, which involve conscious awareness of memory retrieval, are distinct from an entire category of implicit expressions of memory that do not entail such awareness. This review summarizes recent evidence showing that neurocognitive processing related to implicit memory can powerfully influence the behavioral and neural measures typically associated with explicit memory. Although there are striking distinctions between the neurocognitive processing responsible for implicit versus explicit memory, tests designed to measure only explicit memory nonetheless often capture implicit memory processing as well. In particular, the evidence described here suggests that investigations of familiarity memory are prone to the accidental capture of implicit memory processing. These findings have considerable implications for neurocognitive accounts of memory, as they suggest that many neural and behavioral measures often accepted as signals of explicit memory instead reflect the distinct operation of implicit memory mechanisms that are only sometimes related to explicit memory expressions. Proper identification of the explicit and implicit mechanisms for memory is vital to understanding the normal operation of memory, in addition to the disrupted memory capabilities associated with many neurological disorders and mental illnesses. We suggest that future progress requires utilizing neural, behavioral, and subjective evidence to dissociate implicit and explicit memory processing so as to better understand their distinct mechanisms as well as their potential relationships. When searching for the neurocognitive mechanisms of memory, it is important to keep in mind that memory involves more than a feeling. PMID:24171735

  18. Fuel conditioning facility zone-to-zone transfer administrative controls.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C. L.

    2000-06-21

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less

  19. Gene regulatory and signaling networks exhibit distinct topological distributions of motifs

    NASA Astrophysics Data System (ADS)

    Ferreira, Gustavo Rodrigues; Nakaya, Helder Imoto; Costa, Luciano da Fontoura

    2018-04-01

    The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.

  20. Flexible Retrieval: When True Inferences Produce False Memories

    ERIC Educational Resources Information Center

    Carpenter, Alexis C.; Schacter, Daniel L.

    2017-01-01

    Episodic memory involves flexible retrieval processes that allow us to link together distinct episodes, make novel inferences across overlapping events, and recombine elements of past experiences when imagining future events. However, the same flexible retrieval and recombination processes that underpin these adaptive functions may also leave…

  1. The Tides--A Neglected Topic.

    ERIC Educational Resources Information Center

    Hartel, Hermann

    2000-01-01

    Finds that computer simulations can be used to visualize the processes involved with lunar tides. Technology adds value, thus opening new paths for a more distinct analysis and increased learning results. (Author/CCM)

  2. Similar or Different? The Role of the Ventrolateral Prefrontal Cortex in Similarity Detection

    PubMed Central

    Garcin, Béatrice; Volle, Emmanuelle; Dubois, Bruno; Levy, Richard

    2012-01-01

    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., “both have peel”), while others continue to look for differences between these objects (e.g., “one is yellow, the other is orange”). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC. PMID:22479551

  3. Extension in Planned Social Change, the Indian Experience.

    ERIC Educational Resources Information Center

    Rudramoorthy, B.

    Extension, the process of extending the knowledge of recent advances in science and technology to the people who need it, has been emphasized in India since the introduction of the Community Development Programme in 1952. Community development involves two distinct processes--extension education and community organization--and has had four…

  4. George Herbert Mead's Contribution to the Philosophy of American Education.

    ERIC Educational Resources Information Center

    Renger, Paul, III

    1980-01-01

    George Herbert Mead's general philsophy showed that he regarded the development of distinctively human behavior as essentially the result of an individual's meaningful participation in the social process of the community to which he belongs. Mead believed that education was a social process involving the meaningful interaction and communication…

  5. Specificity of regional brain activity in anxiety types during emotion processing.

    PubMed

    Engels, Anna S; Heller, Wendy; Mohanty, Aprajita; Herrington, John D; Banich, Marie T; Webb, Andrew G; Miller, Gregory A

    2007-05-01

    The present study tested the hypothesis that anxious apprehension involves more left- than right-hemisphere activity and that anxious arousal is associated with the opposite pattern. Behavioral and fMRI responses to threat stimuli in an emotional Stroop task were examined in nonpatient groups reporting anxious apprehension, anxious arousal, or neither. Reaction times were longer for negative than for neutral words. As predicted, brain activation distinguished anxious groups in a left inferior frontal region associated with speech production and in a right-hemisphere inferior temporal area. Addressing a second hypothesis about left-frontal involvement in emotion, distinct left frontal regions were associated with anxious apprehension versus processing of positive information. Results support the proposed distinction between the two types of anxiety and resolve an inconsistency about the role of left-frontal activation in emotion and psychopathology.

  6. Amnesia, rehearsal, and temporal distinctiveness models of recall.

    PubMed

    Brown, Gordon D A; Della Sala, Sergio; Foster, Jonathan K; Vousden, Janet I

    2007-04-01

    Classical amnesia involves selective memory impairment for temporally distant items in free recall (impaired primacy) together with relative preservation of memory for recency items. This abnormal serial position curve is traditionally taken as evidence for a distinction between different memory processes, with amnesia being associated with selectively impaired long-term memory. However recent accounts of normal serial position curves have emphasized the importance of rehearsal processes in giving rise to primacy effects and have suggested that a single temporal distinctiveness mechanism can account for both primacy and recency effects when rehearsal is considered. Here we explore the pattern of strategic rehearsal in a patient with very severe amnesia. When the patient's rehearsal pattern is taken into account, a temporal distinctiveness model can account for the serial position curve in both amnesic and control free recall. The results are taken as consistent with temporal distinctiveness models of free recall, and they motivate an emphasis on rehearsal patterns in understanding amnesic deficits in free recall.

  7. Contrasting effects of feature-based statistics on the categorisation and identification of visual objects

    PubMed Central

    Taylor, Kirsten I.; Devereux, Barry J.; Acres, Kadia; Randall, Billi; Tyler, Lorraine K.

    2013-01-01

    Conceptual representations are at the heart of our mental lives, involved in every aspect of cognitive functioning. Despite their centrality, a long-standing debate persists as to how the meanings of concepts are represented and processed. Many accounts agree that the meanings of concrete concepts are represented by their individual features, but disagree about the importance of different feature-based variables: some views stress the importance of the information carried by distinctive features in conceptual processing, others the features which are shared over many concepts, and still others the extent to which features co-occur. We suggest that previously disparate theoretical positions and experimental findings can be unified by an account which claims that task demands determine how concepts are processed in addition to the effects of feature distinctiveness and co-occurrence. We tested these predictions in a basic-level naming task which relies on distinctive feature information (Experiment 1) and a domain decision task which relies on shared feature information (Experiment 2). Both used large-scale regression designs with the same visual objects, and mixed-effects models incorporating participant, session, stimulus-related and feature statistic variables to model the performance. We found that concepts with relatively more distinctive and more highly correlated distinctive relative to shared features facilitated basic-level naming latencies, while concepts with relatively more shared and more highly correlated shared relative to distinctive features speeded domain decisions. These findings demonstrate that the feature statistics of distinctiveness (shared vs. distinctive) and correlational strength, as well as the task demands, determine how concept meaning is processed in the conceptual system. PMID:22137770

  8. Two distinct forms of functional lateralization in the human brain

    PubMed Central

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883

  9. Portraying the unique contribution of the default mode network to internally driven mnemonic processes

    PubMed Central

    Shapira-Lichter, Irit; Oren, Noga; Jacob, Yael; Gruberger, Michal; Hendler, Talma

    2013-01-01

    Numerous neuroimaging studies have implicated default mode network (DMN) involvement in both internally driven processes and memory. Nevertheless, it is unclear whether memory operations reflect a particular case of internally driven processing or alternatively involve the DMN in a distinct manner, possibly depending on memory type. This question is critical for refining neurocognitive memory theorem in the context of other endogenic processes and elucidating the functional significance of this key network. We used functional MRI to examine DMN activity and connectivity patterns while participants overtly generated words according to nonmnemonic (phonemic) or mnemonic (semantic or episodic) cues. Overall, mnemonic word fluency was found to elicit greater DMN activity and stronger within-network functional connectivity compared with nonmnemonic fluency. Furthermore, two levels of functional organization of memory retrieval were shown. First, across both mnemonic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribution to generic aspects of memory beyond its general involvement in endogenous processes. Second, parts of the DMN showed distinct selectivity for each of the mnemonic conditions; greater recruitment of the anterior prefrontal cortex, retroesplenial cortex, and hippocampi and elevated connectivity between anterior and posterior medial DMN nodes characterized the semantic condition, whereas increased recruitment of posterior DMN components and elevated connectivity between them characterized the episodic condition. This finding emphasizes the involvement of DMN elements in discrete aspects of memory retrieval. Altogether, our results show a specific contribution of the DMN to memory processes, corresponding to the specific type of memory retrieval. PMID:23479650

  10. Cortical areas involved in Arabic number reading.

    PubMed

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (<1 cm(2)). Over 259 language sites detected, 43 (17%) were exclusively involved in Arabic number reading (no sentence or word number reading interference detected in these sites). Specific Arabic number reading interferences were mainly found in three regions: the Broca area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p < 0.0001), and the temporal-basal area (Brodmann area 37; p < 0.05). Diverse types of interferences were observed (reading arrest, phonemic or semantic paraphasia). Error patterns were fairly similar across temporal, parietal, and frontal stimulation sites, except for phonemic paraphasias, which were found only in supramarginal gyrus. Our findings strongly support the fact that the acquisition through education of specific symbolic entities, such as Arabic numbers, could result in the segregation and the specialization of anatomically distinct brain areas.

  11. Carboxyl-terminal Domain of Transient Receptor Potential Vanilloid 1 Contains Distinct Segments Differentially Involved in Capsaicin- and Heat-induced Desensitization*

    PubMed Central

    Joseph, John; Wang, Sen; Lee, Jongseok; Ro, Jin Y.; Chung, Man-Kyo

    2013-01-01

    Multiple Ca2+-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca2+, although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys155, both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli. PMID:24174527

  12. A Processing Approach to the Working Memory/Long-Term Memory Distinction: Evidence from the Levels-of-Processing Span Task

    ERIC Educational Resources Information Center

    Rose, Nathan S.; Craik, Fergus I. M.

    2012-01-01

    Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or…

  13. Common and distinct networks for self-referential and social stimulus processing in the human brain.

    PubMed

    Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix

    2016-09-01

    Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.

  14. Dual-processing accounts of reasoning, judgment, and social cognition.

    PubMed

    Evans, Jonathan St B T

    2008-01-01

    This article reviews a diverse set of proposals for dual processing in higher cognition within largely disconnected literatures in cognitive and social psychology. All these theories have in common the distinction between cognitive processes that are fast, automatic, and unconscious and those that are slow, deliberative, and conscious. A number of authors have recently suggested that there may be two architecturally (and evolutionarily) distinct cognitive systems underlying these dual-process accounts. However, it emerges that (a) there are multiple kinds of implicit processes described by different theorists and (b) not all of the proposed attributes of the two kinds of processing can be sensibly mapped on to two systems as currently conceived. It is suggested that while some dual-process theories are concerned with parallel competing processes involving explicit and implicit knowledge systems, others are concerned with the influence of preconscious processes that contextualize and shape deliberative reasoning and decision-making.

  15. Worry in Children: Changing Associations with Fear, Thinking, and Problem-Solving

    ERIC Educational Resources Information Center

    Carr, Imogen; Szabó, Marianna

    2015-01-01

    Worry in adults has been conceptualized as a thinking process involving problem-solving attempts about anticipated negative outcomes. This process is related to, though distinct from, fear. Previous research suggested that compared to adults, children's experience of worry is less strongly associated with thinking and more closely related to fear.…

  16. Reason, emotion and decision-making: risk and reward computation with feeling.

    PubMed

    Quartz, Steven R

    2009-05-01

    Many models of judgment and decision-making posit distinct cognitive and emotional contributions to decision-making under uncertainty. Cognitive processes typically involve exact computations according to a cost-benefit calculus, whereas emotional processes typically involve approximate, heuristic processes that deliver rapid evaluations without mental effort. However, it remains largely unknown what specific parameters of uncertain decision the brain encodes, the extent to which these parameters correspond to various decision-making frameworks, and their correspondence to emotional and rational processes. Here, I review research suggesting that emotional processes encode in a precise quantitative manner the basic parameters of financial decision theory, indicating a reorientation of emotional and cognitive contributions to risky choice.

  17. Contrasting effects of feature-based statistics on the categorisation and basic-level identification of visual objects.

    PubMed

    Taylor, Kirsten I; Devereux, Barry J; Acres, Kadia; Randall, Billi; Tyler, Lorraine K

    2012-03-01

    Conceptual representations are at the heart of our mental lives, involved in every aspect of cognitive functioning. Despite their centrality, a long-standing debate persists as to how the meanings of concepts are represented and processed. Many accounts agree that the meanings of concrete concepts are represented by their individual features, but disagree about the importance of different feature-based variables: some views stress the importance of the information carried by distinctive features in conceptual processing, others the features which are shared over many concepts, and still others the extent to which features co-occur. We suggest that previously disparate theoretical positions and experimental findings can be unified by an account which claims that task demands determine how concepts are processed in addition to the effects of feature distinctiveness and co-occurrence. We tested these predictions in a basic-level naming task which relies on distinctive feature information (Experiment 1) and a domain decision task which relies on shared feature information (Experiment 2). Both used large-scale regression designs with the same visual objects, and mixed-effects models incorporating participant, session, stimulus-related and feature statistic variables to model the performance. We found that concepts with relatively more distinctive and more highly correlated distinctive relative to shared features facilitated basic-level naming latencies, while concepts with relatively more shared and more highly correlated shared relative to distinctive features speeded domain decisions. These findings demonstrate that the feature statistics of distinctiveness (shared vs. distinctive) and correlational strength, as well as the task demands, determine how concept meaning is processed in the conceptual system. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Toward Understanding the Cognitive Processes of Software Design in Novice Programmers

    ERIC Educational Resources Information Center

    Yeh, Kuo-Chuan

    2009-01-01

    This study provides insights with regard to the types of cognitive processes that are involved in the formation of mental models and the way those models change over the course of a semester in novice programmers doing a design task. Eight novice programmers participated in this study for three distinct software design sessions, using the same…

  19. The Hijab and the Integration of the Muslim "Other" in Spanish Schools

    ERIC Educational Resources Information Center

    DePalma, Renée; López, Laura Cruz

    2014-01-01

    The social integration of migrant populations has been defined as an intercultural, mutually enriching process, and can be distinguished from processes of assimilation that involve a more unilateral adaptation on the part of immigrants to the norms of the host country. In Spain, this distinction has become blurred in both political and educational…

  20. Age-Related Changes in Cognitive Processing of Moral and Social Conventional Violations

    ERIC Educational Resources Information Center

    Lahat, Ayelet; Helwig, Charles C.; Zelazo, Philip David

    2012-01-01

    Moral and conventional violations are usually judged differently: Only moral violations are treated as independent of social rules. To investigate the cognitive processing involved in the development of this distinction, undergraduates (N = 34), adolescents (N = 34), and children (N = 14) read scenarios presented on a computer that had 1 of 3…

  1. Two-photon processes based on quantum commutators

    NASA Astrophysics Data System (ADS)

    Fratini, F.; Safari, L.; Amaro, P.; Santos, J. P.

    2018-04-01

    We developed a method to calculate two-photon processes in quantum mechanics that replaces the infinite summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators that involve position, momentum, and Hamiltonian quantum operators. We analyzed several single- and many-particle cases for which a closed-form solution to the perturbation expansion exists, as well as more complicated cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson scattering, regarded as classical scattering, and quantum contributions. Such a distinction lets us derive general results concerning light scattering. Finally, possible extensions to the developed formalism are discussed.

  2. Reduced effects of pictorial distinctiveness on false memory following dynamic visual noise.

    PubMed

    Parker, Andrew; Kember, Timothy; Dagnall, Neil

    2017-07-01

    High levels of false recognition for non-presented items typically occur following exposure to lists of associated words. These false recognition effects can be reduced by making the studied items more distinctive by the presentation of pictures during encoding. One explanation of this is that during recognition, participants expect or attempt to retrieve distinctive pictorial information in order to evaluate the study status of the test item. If this involves the retrieval and use of visual imagery, then interfering with imagery processing should reduce the effectiveness of pictorial information in false memory reduction. In the current experiment, visual-imagery processing was disrupted at retrieval by the use of dynamic visual noise (DVN). It was found that effects of DVN dissociated true from false memory. Memory for studied words was not influenced by the presence of an interfering noise field. However, false memory was increased and the effects of picture-induced distinctiveness was eliminated. DVN also increased false recollection and remember responses to unstudied items.

  3. Semantic Processing in Native and Second Language: Evidence from Hemispheric Differences in Fine and Coarse Semantic Coding

    ERIC Educational Resources Information Center

    Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili

    2012-01-01

    Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., and ). The present study examined the…

  4. Perceptual priming versus explicit memory: dissociable neural correlates at encoding.

    PubMed

    Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah

    2002-05-15

    We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.

  5. Thalamic morphology in schizophrenia and schizoaffective disorder.

    PubMed

    Smith, Matthew J; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M; Csernansky, John G

    2011-03-01

    Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n = 47), individuals with schizoaffective disorder (n = 15), and controls (n = 42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Thalamic Morphology in Schizophrenia and Schizoaffective Disorder

    PubMed Central

    Smith, Matthew J.; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M.; Csernansky, John G.

    2010-01-01

    Background Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. Method T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n=47), individuals with schizoaffective disorder (n=15), and controls (n=42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Results Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Conclusions Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. PMID:20797731

  7. A Mixed Kijima Model Using the Weibull-Based Generalized Renewal Processes

    PubMed Central

    2015-01-01

    Generalized Renewal Processes are useful for approaching the rejuvenation of dynamical systems resulting from planned or unplanned interventions. We present new perspectives for the Generalized Renewal Processes in general and for the Weibull-based Generalized Renewal Processes in particular. Disregarding from literature, we present a mixed Generalized Renewal Processes approach involving Kijima Type I and II models, allowing one to infer the impact of distinct interventions on the performance of the system under study. The first and second theoretical moments of this model are introduced as well as its maximum likelihood estimation and random sampling approaches. In order to illustrate the usefulness of the proposed Weibull-based Generalized Renewal Processes model, some real data sets involving improving, stable, and deteriorating systems are used. PMID:26197222

  8. Feature Statistics Modulate the Activation of Meaning during Spoken Word Processing

    ERIC Educational Resources Information Center

    Devereux, Barry J.; Taylor, Kirsten I.; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K.

    2016-01-01

    Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in ("distinctiveness/sharedness") and likelihood of co-occurrence ("correlational…

  9. Mechanisms of Interaction in Speech Production

    ERIC Educational Resources Information Center

    Baese-Berk, Melissa; Goldrick, Matthew

    2009-01-01

    Many theories predict the presence of interactive effects involving information represented by distinct cognitive processes in speech production. There is considerably less agreement regarding the precise cognitive mechanisms that underlie these interactive effects. For example, are they driven by purely production-internal mechanisms (e.g., Dell,…

  10. Dreams of Death.

    ERIC Educational Resources Information Center

    Barrett, Deirdre

    1989-01-01

    Examined frequency and characteristics of overt dreams of dying among healthy young adults. Dreams of dying were found to be rare but distinctive content category, representing overwhelmingly pleasant dreams. Over one-half of death dreams involved lengthy afterlife sequence, remainder focused on process of death. Death dreams of these healthy…

  11. Origin of the Two Bands in the B800 Ring and Their Involvement in the Energy Transfer Network of Allochromatium vinosum.

    PubMed

    Schröter, Marco; Alcocer, Marcelo J P; Cogdell, Richard J; Kühn, Oliver; Zigmantas, Donatas

    2018-03-15

    Bacterial photosynthesis features robust and adaptable energy-harvesting processes in which light-harvesting proteins play a crucial role. The peripheral light-harvesting complex of the purple bacterium Allochromatium vinosum is particularly distinct, featuring a double peak structure in its B800 absorption band. Two hypotheses-not necessarily mutually exclusive-concerning the origin of this splitting have been proposed; either two distinct B800 bacteriochlorophyll site energies are involved, or an excitonic dimerization of bacteriochlorophylls within the B800 ring takes place. Through the use of two-dimensional electronic spectroscopy, we present unambiguous evidence that excitonic interaction shapes the split band. We further identify and characterize all of the energy transfer pathways within this complex by using a global kinetic fitting procedure. Our approach demonstrates how the combination of two-dimensional spectral resolution and self-consistent fitting allows for extraction of information on light-harvesting processes, which would otherwise be inaccessible due to signal congestion.

  12. Human TREX2 components PCID2 and centrin 2, but not ENY2, have distinct functions in protein export and co-localize to the centrosome.

    PubMed

    Cunningham, Corey N; Schmidt, Casey A; Schramm, Nathaniel J; Gaylord, Michelle R; Resendes, Karen K

    2014-01-15

    TREX-2 is a five protein complex, conserved from yeast to humans, involved in linking mRNA transcription and export. The centrin 2 subunit of TREX-2 is also a component of the centrosome and is additionally involved in a distinctly different process of nuclear protein export. While centrin 2 is a known multifunctional protein, the roles of other human TREX-2 complex proteins other than mRNA export are not known. In this study, we found that human TREX-2 member PCID2 but not ENY2 is involved in some of the same cellular processes as those of centrin 2 apart from the classical TREX-2 function. PCID2 is present at the centrosome in a subset of HeLa cells and this localization is centrin 2 dependent. Furthermore, the presence of PCID2 at the centrosome is prevalent throughout the cell cycle as determined by co-staining with cyclins E, A and B. PCID2 but not ENY2 is also involved in protein export. Surprisingly, siRNA knockdown of PCID2 delayed the rate of nuclear protein export, a mechanism distinct from the effects of centrin 2, which when knocked down inhibits export. Finally we showed that co-depletion of centrin 2 and PCID2 leads to blocking rather than delaying nuclear protein export, indicating the dominance of the centrin 2 phenotype. Together these results represent the first discovery of specific novel functions for PCID2 other than mRNA export and suggest that components of the TREX-2 complex serve alternative shared roles in the regulation of nuclear transport and cell cycle progression. © 2013 Published by Elsevier Inc.

  13. Self processing in the brain: a paradigmatic fMRI case study with a professional singer.

    PubMed

    Zaytseva, Yuliya; Gutyrchik, Evgeny; Bao, Yan; Pöppel, Ernst; Han, Shihui; Northoff, Georg; Welker, Lorenz; Meindl, Thomas; Blautzik, Janusch

    2014-06-01

    Understanding the mechanisms involved in perception and conception of oneself is a fundamental psychological topic with high relevance for psychiatric and neurological issues, and it is one of the great challenges in neuroscientific research. The paradigmatic single-case study presented here aimed to investigate different components of self- and other-processes and to elucidate corresponding neurobiological underpinnings. An eminent professional opera singer with profound performance experience has undergone functional magnetic resonance imaging and was exposed to excerpts of Mozart arias, sung by herself or another singer. The results indicate a distinction between self- and other conditions in cortical midline structures, differentially involved in self-related and self-referential processing. This lends further support to the assumption of cortical midline structures being involved in the neural processing of self-specific stimuli and also confirms the power of single case studies as a research tool. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells.

    PubMed

    Colcombet, Jean; Lelièvre, Françoise; Thomine, Sébastien; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie

    2005-07-01

    Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.

  15. Hilbert's Hotel in polarization singularities.

    PubMed

    Wang, Yangyundou; Gbur, Greg

    2017-12-15

    We demonstrate theoretically how the creation of polarization singularities by the evolution of a fractional nonuniform polarization optical element involves the peculiar mathematics of countably infinite sets in the form of "Hilbert's Hotel." Two distinct topological processes can be observed, depending on the structure of the fractional optical element.

  16. Global Academe: Engaging Intellectual Discourse

    ERIC Educational Resources Information Center

    Nagy-Zekmi, Silvia, Ed.; Hollis, Karyn, Ed.

    2012-01-01

    The representation of the economic, political, cultural and, more importantly, global interrelations between agents involved in the process of intellectual activity is at the core of the inquiry in this volume that scrutinizes a distinct transformation occurring in the modalities of intellectual production also detectable in the changing role of…

  17. Two Distinct Scene-Processing Networks Connecting Vision and Memory.

    PubMed

    Baldassano, Christopher; Esteva, Andre; Fei-Fei, Li; Beck, Diane M

    2016-01-01

    A number of regions in the human brain are known to be involved in processing natural scenes, but the field has lacked a unifying framework for understanding how these different regions are organized and interact. We provide evidence from functional connectivity and meta-analyses for a new organizational principle, in which scene processing relies upon two distinct networks that split the classically defined parahippocampal place area (PPA). The first network of strongly connected regions consists of the occipital place area/transverse occipital sulcus and posterior PPA, which contain retinotopic maps and are not strongly coupled to the hippocampus at rest. The second network consists of the caudal inferior parietal lobule, retrosplenial complex, and anterior PPA, which connect to the hippocampus (especially anterior hippocampus), and are implicated in both visual and nonvisual tasks, including episodic memory and navigation. We propose that these two distinct networks capture the primary functional division among scene-processing regions, between those that process visual features from the current view of a scene and those that connect information from a current scene view with a much broader temporal and spatial context. This new framework for understanding the neural substrates of scene-processing bridges results from many lines of research, and makes specific functional predictions.

  18. Molecular mechanisms of effects of botulinus and tetanus neurotoxins

    NASA Astrophysics Data System (ADS)

    Lutsenko, V. K.

    1982-10-01

    The physiochemical properties of toxin molecules, significance of different amino acids to toxicity and role of ganglio-sides in chemical reception of toxins are discussed. The distinctions of presynaptic effects on the central and peripheral synapses are analyzed. Effects of toxins on main processes involved in synaptic transmission are evaluated.

  19. Smart in Everything Except School.

    ERIC Educational Resources Information Center

    Getman, G. N.

    This book focuses on the prevention of academic failure through focus on developmental processes (especially development of essential visual skills) within the individual learner. A distinction is made between sight and vision with vision involving the entire person and his/her learning experiences The first chapter examines "The Dynamics of the…

  20. Modeling the Distinct Phases of Skill Acquisition

    ERIC Educational Resources Information Center

    Tenison, Caitlin; Anderson, John R.

    2016-01-01

    A focus of early mathematics education is to build fluency through practice. Several models of skill acquisition have sought to explain the increase in fluency because of practice by modeling both the learning mechanisms driving this speedup and the changes in cognitive processes involved in executing the skill (such as transitioning from…

  1. Enacting the Spiritual Dimension in Physical Education

    ERIC Educational Resources Information Center

    Lodewyk, Ken; Lu, Chunlei; Kentel, Jeanne

    2009-01-01

    Spirituality is a fundamental, everyday life process involving a joy of living, sacrifice and love for others, and a connection to self, others, nature, and to a larger meaning or purpose. Distinct from moral or religious beliefs, spirituality engages interactively with the psyche, body, and sociocultural setting to influence human functioning,…

  2. Dehistoricized Cultural Identity and Cultural Othering

    ERIC Educational Resources Information Center

    Weiguo, Qu

    2013-01-01

    The assumption that each culture has its own distinctive identity has been generally accepted in the discussion of cultural identities. Quite often identity formation is not perceived as a dynamic and interactive ongoing process that engages other cultures and involves change in its responses to different challenges at different times. I will…

  3. Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data

    PubMed Central

    Gonen-Yaacovi, Gil; de Souza, Leonardo Cruz; Levy, Richard; Urbanski, Marika; Josse, Goulven; Volle, Emmanuelle

    2013-01-01

    Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE) first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC), the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks) activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks), although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas. PMID:23966927

  4. Neuroanatomical substrates involved in unrelated false facial recognition.

    PubMed

    Ronzon-Gonzalez, Eliane; Hernandez-Castillo, Carlos R; Pasaye, Erick H; Vaca-Palomares, Israel; Fernandez-Ruiz, Juan

    2017-11-22

    Identifying faces is a process central for social interaction and a relevant factor in eyewitness theory. False recognition is a critical mistake during an eyewitness's identification scenario because it can lead to a wrongful conviction. Previous studies have described neural areas related to false facial recognition using the standard Deese/Roediger-McDermott (DRM) paradigm, triggering related false recognition. Nonetheless, misidentification of faces without trying to elicit false memories (unrelated false recognition) in a police lineup could involve different cognitive processes, and distinct neural areas. To delve into the neural circuitry of unrelated false recognition, we evaluated the memory and response confidence of participants while watching faces photographs in an fMRI task. Functional activations of unrelated false recognition were identified by contrasting the activation on this condition vs. the activations related to recognition (hits) and correct rejections. The results identified the right precentral and cingulate gyri as areas with distinctive activations during false recognition events suggesting a conflict resulting in a dysfunction during memory retrieval. High confidence suggested that about 50% of misidentifications may be related to an unconscious process. These findings add to our understanding of the construction of facial memories and its biological basis, and the fallibility of the eyewitness testimony.

  5. [Parietal Cortices and Body Information].

    PubMed

    Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo

    2016-11-01

    Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.

  6. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  7. Molecular Mechanisms in Perirhinal Cortex Selectively Necessary for Discrimination of Overlapping Memories, but Independent of Memory Persistence

    PubMed Central

    Miranda, Magdalena; Kent, Brianne A.; Weisstaub, Noelia V.

    2017-01-01

    Abstract Successful memory involves not only remembering over time but also keeping memories distinct. The ability to separate similar experiences into distinct memories is a main feature of episodic memory. Discrimination of overlapping representations has been investigated in the dentate gyrus of the hippocampus (DG), but little is known about this process in other regions such as the perirhinal cortex (Prh). We found in male rats that perirhinal brain-derived neurotrophic factor (BDNF) is required for separable storage of overlapping, but not distinct, object representations, which is identical to its role in the DG for spatial representations. Also, activity-regulated cytoskeletal-associated protein (Arc) is required for disambiguation of object memories, as measured by infusion of antisense oligonucleotides. This is the first time Arc has been implicated in the discrimination of objects with overlapping features. Although molecular mechanisms for object memory have been shown previously in Prh, these have been dependent on delay, suggesting a role specifically in memory duration. BDNF and Arc involvement were independent of delay—the same demand for memory persistence was present in all conditions—but only when discrimination of similar objects was required were these mechanisms recruited and necessary. Finally, we show that BDNF and Arc participate in the same pathway during consolidation of overlapping object memories. We provide novel evidence regarding the proteins involved in disambiguation of object memories outside the DG and suggest that, despite the anatomical differences, similar mechanisms underlie this process in the DG and Prh that are engaged depending on the similarity of the stimuli. PMID:29085903

  8. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    PubMed

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  9. The neurophysiological and evolutionary considerations of close combat: A modular approach.

    PubMed

    Dervenis, Kostas; Tsialogiannis, Evangelos

    2017-01-01

    Close Combat may be identified as a physical confrontation involving armed or unarmed fighting, lethal and/or non-lethal methods, or even simply escape from and/or de-escalation of the confrontation. Our model hypothesizes that distinct areas of the brain are utilized for specific levels of violence, based on evolutionary criteria, and that these levels of violence bring into effect distinct physiological criteria and kinesiology. This model is outlined similar to Paul D. MacLean's triune brain theory, but incorporates distinct processes inherent to the autonomic nervous system (i.e. a "quadrune brain"), and correlates the observed level of violence to a particular response to a specific neural complex associated with very specific reactive kinesiology in the body. Our hypothesis is that the reverse also holds true: specific movements, scenarios and breathing will "activate" corresponding neural centres that in turn correlate to a respective level of violence. Moreover, socio-historic records bear out the premise that specific behavioural violations of social protocols act as "triggers" for assaultive and lethal force involving weapons, and it is very likely that these triggers (and the concomitant decision to engage in assault or lethal force) are processed through neural centres in what McLean has described as his "limbic system." A modular system of close combat is being researched and developed in accord with the above, readily adaptable to the level of violence professional peacekeepers and law enforcement officers may encounter in the course of their duties, but also directly relevant to the self-protection needs of civilians and youth. Distinct modular training regimes have been identified and developed for situations involving escape from a threat, submission of an adversary, and assaultive/lethal force, with the hope of strengthening neural bridges between the four neural complexes postulated in our model, and therefore via these bridges limiting adverse reactions to the psyche from combat stress.

  10. Musical rhythm and reading development: does beat processing matter?

    PubMed

    Ozernov-Palchik, Ola; Patel, Aniruddh D

    2018-05-20

    There is mounting evidence for links between musical rhythm processing and reading-related cognitive skills, such as phonological awareness. This may be because music and speech are rhythmic: both involve processing complex sound sequences with systematic patterns of timing, accent, and grouping. Yet, there is a salient difference between musical and speech rhythm: musical rhythm is often beat-based (based on an underlying grid of equal time intervals), while speech rhythm is not. Thus, the role of beat-based processing in the reading-rhythm relationship is not clear. Is there is a distinct relation between beat-based processing mechanisms and reading-related language skills, or is the rhythm-reading link entirely due to shared mechanisms for processing nonbeat-based aspects of temporal structure? We discuss recent evidence for a distinct link between beat-based processing and early reading abilities in young children, and suggest experimental designs that would allow one to further methodically investigate this relationship. We propose that beat-based processing taps into a listener's ability to use rich contextual regularities to form predictions, a skill important for reading development. © 2018 New York Academy of Sciences.

  11. Neurobiological correlates of cognitions in fear and anxiety: a cognitive-neurobiological information-processing model.

    PubMed

    Hofmann, Stefan G; Ellard, Kristen K; Siegle, Greg J

    2012-01-01

    We review likely neurobiological substrates of cognitions related to fear and anxiety. Cognitive processes are linked to abnormal early activity reflecting hypervigilance in subcortical networks involving the amygdala, hippocampus, and insular cortex, and later recruitment of cortical regulatory resources, including activation of the anterior cingulate cortex and prefrontal cortex to implement avoidant response strategies. Based on this evidence, we present a cognitive-neurobiological information-processing model of fear and anxiety, linking distinct brain structures to specific stages of information processing of perceived threat.

  12. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

    PubMed

    Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

    2017-01-01

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  13. Processing Translational Motion Sequences.

    DTIC Science & Technology

    1982-10-01

    the initial ROADSIGN image using a (del)**2g mask with a width of 5 pixels The distinctiveness values were computed using features which were 5x5 pixel...the initial step size of the local search quite large. 34 4. EX P R g NTg The following experiments were performed using the roadsign and industrial...the initial image of the sequence. The third experiment involves processing the roadsign image sequence using the features extracted at the positions

  14. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue

    USDA-ARS?s Scientific Manuscript database

    Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programs of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and...

  15. Achieving Masculinity: A Review of the Literature on Male Gender Identity Development.

    ERIC Educational Resources Information Center

    Puls, Daniel W.

    Distinctions between males and females arise as a result of a complex developmental process involving biological, psychological, and sociological forces. Much research on male gender identity development has spurred from the increased interest in the etiology of homosexuality over the last two decades. Political, religious, and moral issues often…

  16. The Negro in the Tobacco Industry. The Racial Policies of American Industry.

    ERIC Educational Resources Information Center

    Northrup, Herbert R.; Ash, Robert I.

    The tobacco industry has employed Negroes since its inception in Colonial Virginia. This study is primarily concerned with the course of Negro employment and industry racial policies in the industry processing, manufacturing, selling, and distributing of cigarettes and manufactured tobacco, as distinct from the cigar industry which involves quite…

  17. Drug Abuse Prevention: A Human Development Model for Defining the Problem and Devising Solutions

    ERIC Educational Resources Information Center

    Sugarman, Barry

    1978-01-01

    Drug abuse is frequently the result of deficits in human development process and is one of several behavior patterns with which the individual attempts to fill an "emotional vacuum." Effective drug abuse prevention must involve the improvement of environment. A distinction is made between primary prevention, secondary prevention, and…

  18. Including Both Time and Accuracy in Defining Text Search Efficiency.

    ERIC Educational Resources Information Center

    Symons, Sonya; Specht, Jacqueline A.

    1994-01-01

    Examines factors related to efficiency in a textbook search task. Finds that time and accuracy involved distinct processes and that accuracy was related to verbal competence. Finds further that measures of planning and extracting information accounted for 59% of the variance in search efficiency. Suggests that both accuracy and rate need to be…

  19. E-Learning and the Development of "Voice" in Business Studies Education

    ERIC Educational Resources Information Center

    Hart, Mike; Rush, David

    2007-01-01

    Purpose: This paper seeks to engage in an examination of "Quality in Business Education" (the QUBE project) with a specific brief to examine student involvement in the quality process. Design/methodology/approach: The work was carried out in conjunction with five partner institutions. The semantic distinctions between the terms…

  20. Differential Involvement of Left Prefrontal Cortexin Inductive and Deductive Reasoning

    ERIC Educational Resources Information Center

    Goel, Vinod; Dolan, Raymond J.

    2004-01-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by…

  1. Strategy Choice Mediates the Link between Auditory Processing and Spelling

    PubMed Central

    Kwong, Tru E.; Brachman, Kyle J.

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities. PMID:25198787

  2. Strategy choice mediates the link between auditory processing and spelling.

    PubMed

    Kwong, Tru E; Brachman, Kyle J

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  3. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    PubMed

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The neurobiology of reward and cognitive control systems and their role in incentivizing health behavior.

    PubMed

    Garavan, Hugh; Weierstall, Karen

    2012-11-01

    This article reviews the neurobiology of cognitive control and reward processes and addresses their role in the treatment of addiction. We propose that the neurobiological mechanisms involved in treatment may differ from those involved in the etiology of addiction and consequently are worthy of increased investigation. We review the literature on reward and control processes and evidence of differences in these systems in drug addicted individuals. We also review the relatively small literature on neurobiological predictors of abstinence. We conclude that prefrontal control systems may be central to a successful recovery from addiction. The frontal lobes have been shown to regulate striatal reward-related processes, to be among the regions that predict treatment outcome, and to show elevated functioning in those who have succeeded in maintaining abstinence. The evidence of the involvement of the frontal lobes in recovery is consistent with the hypothesis that recovery is a distinct process that is more than the undoing of those processes involved in becoming addicted and a return to the pre-addiction state of the individual. The extent to which these frontal systems are engaged by treatment interventions may contribute to their efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Attention and implicit memory.

    PubMed

    Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia

    2011-01-01

    The distinction between identification and production priming assumes that tasks based on production processes involve two distinct stages: the activation of multiple solutions and the following selection of a final response. Previous research demonstrated that divided attention reduced production but not identification priming. However, an unresolved issue concerns whether the activation of candidate solutions is sufficient to account for the enhanced request of attentional resources, independently from the contribution of selection processes. The present paper investigated this question by using a version of the lexical decision task (LDT) in which the target words had either many or few orthographic neighbors. Two experiments showed that the effects of divided and selective attention were equivalent in both conditions, suggesting that the inclusion of a process of generation of multiple solutions in the LDT is not sufficient to increase the amount of cognitive resources needed to achieve full priming to the levels of production tasks.

  6. Rare earth elements in Angra dos Reis and Lewis Cliff 86010, two meteorites with similar but distinct magma evolutions

    NASA Technical Reports Server (NTRS)

    Crozaz, Ghislaine; Mckay, Gordon

    1990-01-01

    Data are presented on ion microprobe measurements of REE and selected trace element abundances in individual grains of merrillite, fassaite, olivine, kirschsteinite, and plagioclase of Lewis Cliff 86010 (LEW 86010) meteorite and in merrillite and fassaite grains of Angra dos Reis (ADOR). Results show a close relationship between the two meteorites and support a magmatic origin for LEW 86010. However, the measurements indicate that, despite numerous common characteristics, the two meteorites must have been produced in separate magmatic events involving similar but distinct processes and parent melts.

  7. A neuroanatomical model of space-based and object-centered processing in spatial neglect.

    PubMed

    Pedrazzini, Elena; Schnider, Armin; Ptak, Radek

    2017-11-01

    Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.

  8. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes.

    PubMed

    Castonguay, Jan; Orth, Joachim H C; Müller, Thomas; Sleman, Faten; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Mallmann, Robert Theodor; Bildl, Wolfgang; Schulte, Uwe; Klugbauer, Norbert

    2017-08-30

    Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca 2+ concentrations required for SNARE-mediated vesicle fusion.

  9. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

    PubMed Central

    Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380

  10. A conceptual study of automatic and semi-automatic quality assurance techniques for round image processing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This report summarizes the results of a study conducted by Engineering and Economics Research (EER), Inc. under NASA Contract Number NAS5-27513. The study involved the development of preliminary concepts for automatic and semiautomatic quality assurance (QA) techniques for ground image processing. A distinction is made between quality assessment and the more comprehensive quality assurance which includes decision making and system feedback control in response to quality assessment.

  11. Different groups, different motives: identity motives underlying changes in identification with novel groups.

    PubMed

    Easterbrook, Matt; Vignoles, Vivian L

    2012-08-01

    Social identification is known to have wide-reaching implications, but theorists disagree about the underlying motives. Integrating motivated identity construction theory with recent social identity research, the authors predicted which motives underlie identification with two types of groups: interpersonal networks and social categories. In a five-wave longitudinal study of social identity processes among 268 new university residents, multilevel analyses showed that motives involved in identity enactment processes--self-esteem, belonging, and efficacy--significantly predicted within-person changes in identification with flatmates (an interpersonal network group), whereas motives involved in identity definition processes--meaning, self-esteem, and distinctiveness--significantly predicted within-person changes in identification with halls of residence (an abstract social category). This article discusses implications for research into identity motives and social identity.

  12. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information.

    PubMed

    Satpute, Ajay B; Badre, David; Ochsner, Kevin N

    2014-05-01

    Research in social neuroscience has uncovered a social knowledge network that is particularly attuned to making social judgments. However, the processes that are being performed by both regions within this network and those outside of this network that are nevertheless engaged in the service of making a social judgment remain unclear. To help address this, we drew upon research in semantic memory, which suggests that making a semantic judgment engages 2 distinct control processes: A controlled retrieval process, which aids in bringing goal-relevant information to mind from long-term stores, and a selection process, which aids in selecting the information that is goal-relevant from the information retrieved. In a neuroimaging study, we investigated whether controlled retrieval and selection for social information engage distinct portions of both the social knowledge network and regions outside this network. Controlled retrieval for social information engaged an anterior ventrolateral portion of the prefrontal cortex, whereas selection engaged both the dorsomedial prefrontal cortex and temporoparietal junction within the social knowledge network. These results suggest that the social knowledge network may be more involved with the selection of social information than the controlled retrieval of it and incorporates lateral prefrontal regions in accessing memory for making social judgments.

  13. Glycosyltransferase-mediated Sweet Modification in Oral Streptococci.

    PubMed

    Zhu, F; Zhang, H; Wu, H

    2015-05-01

    Bacterial glycosyltransferases play important roles in bacterial fitness and virulence. Oral streptococci have evolved diverse strategies to survive and thrive in the carbohydrate-rich oral cavity. In this review, we discuss 2 important biological processes mediated by 2 distinct groups of glycosyltransferases in oral streptococci that are important for bacterial colonization and virulence. The first process is the glycosylation of highly conserved serine-rich repeat adhesins by a series of glycosyltransferases. Using Streptococcus parasanguinis as a model, we highlight new features of several glycosyltransferases that sequentially modify the serine-rich glycoprotein Fap1. Distinct features of a novel glycosyltransferase fold from a domain of unknown function 1792 are contrasted with common properties of canonical glycosyltransferases. The second biological process we cover is involved in building sticky glucan matrix to establish cariogenic biofilms by an important opportunistic pathogen Streptococcus mutans through the action of a family of 3 glucosyltransferases. We focus on discussing the structural feature of this family as a glycoside hydrolase family of enzymes. While the 2 processes are distinct, they all produce carbohydrate-coated biomolecules, which enable bacteria to stick better in the complex oral microbiome. Understanding the making of the sweet modification presents a unique opportunity to develop novel antiadhesion and antibiofilm strategies to fight infections by oral streptococci and beyond. © International & American Associations for Dental Research 2015.

  14. Glycosyltransferase-mediated Sweet Modification in Oral Streptococci

    PubMed Central

    Zhu, F.; Zhang, H.

    2015-01-01

    Bacterial glycosyltransferases play important roles in bacterial fitness and virulence. Oral streptococci have evolved diverse strategies to survive and thrive in the carbohydrate-rich oral cavity. In this review, we discuss 2 important biological processes mediated by 2 distinct groups of glycosyltransferases in oral streptococci that are important for bacterial colonization and virulence. The first process is the glycosylation of highly conserved serine-rich repeat adhesins by a series of glycosyltransferases. Using Streptococcus parasanguinis as a model, we highlight new features of several glycosyltransferases that sequentially modify the serine-rich glycoprotein Fap1. Distinct features of a novel glycosyltransferase fold from a domain of unknown function 1792 are contrasted with common properties of canonical glycosyltransferases. The second biological process we cover is involved in building sticky glucan matrix to establish cariogenic biofilms by an important opportunistic pathogen Streptococcus mutans through the action of a family of 3 glucosyltransferases. We focus on discussing the structural feature of this family as a glycoside hydrolase family of enzymes. While the 2 processes are distinct, they all produce carbohydrate-coated biomolecules, which enable bacteria to stick better in the complex oral microbiome. Understanding the making of the sweet modification presents a unique opportunity to develop novel antiadhesion and antibiofilm strategies to fight infections by oral streptococci and beyond. PMID:25755271

  15. Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer’s disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. Results In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose–response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of β-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. Conclusions Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and β-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer’s disease. PMID:22727043

  16. Music to My Eyes: Cross-Modal Interactions in the Perception of Emotions in Musical Performance

    ERIC Educational Resources Information Center

    Vines, Bradley W.; Krumhansl, Carol L.; Wanderley, Marcelo M.; Dalca, Ioana M.; Levitin, Daniel J.

    2011-01-01

    We investigate non-verbal communication through expressive body movement and musical sound, to reveal higher cognitive processes involved in the integration of emotion from multiple sensory modalities. Participants heard, saw, or both heard and saw recordings of a Stravinsky solo clarinet piece, performed with three distinct expressive styles:…

  17. Trees and logs important to wildlife in the interior Columbia River basin.

    Treesearch

    Evelyn L. Bull; Catherine G. Parks; Torolf R. Torgersen

    1997-01-01

    This publication provides qualitative and quantitative information on five distinct structures: living trees with decayed parts, trees with hollow chambers, trees with brooms, dead trees, and logs. Information is provided on the value of these structures to wildlife, the decay or infection processes involved in the formation of these structures, and the principles to...

  18. Stimulating Creativity: Modulation of Convergent and Divergent Thinking by Transcranial Direct Current Stimulation (tDCS)

    ERIC Educational Resources Information Center

    Zmigrod, Sharon; Colzato, Lorenza S.; Hommel, Bernhard

    2015-01-01

    Creativity has been conceptualized as involving 2 distinct components; divergent thinking, the search for multiple solutions to a single problem, and convergent thinking, the quest for a single solution either through an analytical process or the experience of insight. Studies have demonstrated that these abilities can be improved by cognitive…

  19. Perceiving Permutations as Distinct Outcomes: The Accommodation of a Complex Knowledge System

    ERIC Educational Resources Information Center

    Kapon, Shulamit; Ron, Gila; Hershkowitz, Rina; Dreyfus, Tommy

    2015-01-01

    There is ample evidence that reasoning about stochastic phenomena is often subject to systematic bias even after instruction. Few studies have examined the detailed learning processes involved in learning probability. This paper examines a case study drawn from a large corpus of data collected as part of a research project that dealt with the…

  20. Neural Specificity for Grammatical Operations is Revealed by Content-Independent fMR Adaptation

    PubMed Central

    Shapiro, Kevin A.; Moo, Lauren R.; Caramazza, Alfonso

    2012-01-01

    The ability to generate novel sentences depends on cognitive operations that specify the syntactic function of nouns, verbs, and other words retrieved from the mental lexicon. Although neuropsychological studies suggest that such operations rely on neural circuits distinct from those encoding word form and meaning, it has not been possible to characterize this distinction definitively with neuroimaging. We used functional magnetic resonance imaging (fMRI) to show that a brain area engaged in a given grammatical operation can be identified uniquely by a monotonic decrease in activation as that operation is repeated. We applied this methodology to identify areas involved selectively in the operation of inflection of nouns or verbs. By contrast, areas involved in processing word meaning do not show this monotonic adaptation across stimuli. These results are the first to demonstrate adaptation in the fMR signal evoked not by specific stimuli, but by well-defined cognitive linguistic operations. PMID:22347206

  1. Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?

    PubMed Central

    Hassa, Paul O.; Haenni, Sandra S.; Elser, Michael; Hottiger, Michael O.

    2006-01-01

    Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD+-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as “programmed necrosis” (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., “histone code”), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear ADP-ribosylation processes and other NAD+-dependent pathways is discussed. PMID:16959969

  2. Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix

    PubMed Central

    Friedman, Lisa; Kolter, Roberto

    2004-01-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. PMID:15231777

  3. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.

    PubMed

    Friedman, Lisa; Kolter, Roberto

    2004-07-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology

  4. Informatic parcellation of the network involved in the computation of subjective value

    PubMed Central

    Rangel, Antonio

    2014-01-01

    Understanding how the brain computes value is a basic question in neuroscience. Although individual studies have driven this progress, meta-analyses provide an opportunity to test hypotheses that require large collections of data. We carry out a meta-analysis of a large set of functional magnetic resonance imaging studies of value computation to address several key questions. First, what is the full set of brain areas that reliably correlate with stimulus values when they need to be computed? Second, is this set of areas organized into dissociable functional networks? Third, is a distinct network of regions involved in the computation of stimulus values at decision and outcome? Finally, are different brain areas involved in the computation of stimulus values for different reward modalities? Our results demonstrate the centrality of ventromedial prefrontal cortex (VMPFC), ventral striatum and posterior cingulate cortex (PCC) in the computation of value across tasks, reward modalities and stages of the decision-making process. We also find evidence of distinct subnetworks of co-activation within VMPFC, one involving central VMPFC and dorsal PCC and another involving more anterior VMPFC, left angular gyrus and ventral PCC. Finally, we identify a posterior-to-anterior gradient of value representations corresponding to concrete-to-abstract rewards. PMID:23887811

  5. I know I've seen you before: Distinguishing recent-single-exposure-based familiarity from pre-existing familiarity

    PubMed Central

    Gimbel, Sarah I.; Brewer, James B.; Maril, Anat

    2018-01-01

    This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. PMID:28073651

  6. Involvement of Dynein and Spectrin with Early Melanosome Transport and Melanosomal Protein Trafficking

    PubMed Central

    Watabe, Hidenori; Valencia, Julio C.; Le Pape, Elodie; Yamaguchi, Yuji; Nakamura, Masayuki; Rouzaud, François; Hoashi, Toshihiko; Kawa, Yoko; Mizoguchi, Masako; Hearing, Vincent J.

    2007-01-01

    Melanosomes are unique membrane-bound organelles specialized for the synthesis and distribution of melanin. Mechanisms involved in the trafficking of proteins to melanosomes and in the transport of mature pigmented melanosomes to the dendrites of melanocytic cells are being characterized but details about those processes during early stages of melanosome maturation are not well understood. Early melanosomes must remain in the perinuclear area until critical components are assembled. In this study, we characterized the processing of two distinct melanosomal proteins, TYR and Pmel17, to elucidate protein processing in early or late steps of the secretory pathway, respectively, and to determine mechanisms underlying the subcellular localization and transport of early melanosomes. We used immunological, biochemical and molecular approaches to demonstrate that the movement of early melanosomes in the perinuclear area depends primarily on microtubules but not on actin filaments. In contrast, the trafficking of TYR and Pmel17 depends on cytoplasmic dynein and its interaction with the spectrin/ankyrin system which is involved with the sorting of cargo from the plasma membrane. These results provide important clues towards understanding the processes involved with early events in melanosome formation and transport. PMID:17687388

  7. Pragmatics as Metacognitive Control

    PubMed Central

    Kissine, Mikhail

    2016-01-01

    The term “pragmatics” is often used to refer without distinction, on one hand, to the contextual selection of interpretation norms and, on the other hand, to the context-sensitive processes guided by these norms. Pragmatics in the first acception depends on language-independent contextual factors that can, but need not, involve Theory of Mind; in the second acception, pragmatics is a language-specific metacognitive process, which may unfold at an unconscious level without involving any mental state (meta-)representation. Distinguishing between these two kinds of ways context drives the interpretation of communicative stimuli helps dissolve the dispute between proponents of an entirely Gricean pragmatics and those who claim that some pragmatic processes do not depend on mind-reading capacities. According to the model defended in this paper, the typology of pragmatic processes is not entirely determined by a hierarchy of meanings, but by contextually set norms of interpretation. PMID:26834671

  8. Pragmatics as Metacognitive Control.

    PubMed

    Kissine, Mikhail

    2015-01-01

    The term "pragmatics" is often used to refer without distinction, on one hand, to the contextual selection of interpretation norms and, on the other hand, to the context-sensitive processes guided by these norms. Pragmatics in the first acception depends on language-independent contextual factors that can, but need not, involve Theory of Mind; in the second acception, pragmatics is a language-specific metacognitive process, which may unfold at an unconscious level without involving any mental state (meta-)representation. Distinguishing between these two kinds of ways context drives the interpretation of communicative stimuli helps dissolve the dispute between proponents of an entirely Gricean pragmatics and those who claim that some pragmatic processes do not depend on mind-reading capacities. According to the model defended in this paper, the typology of pragmatic processes is not entirely determined by a hierarchy of meanings, but by contextually set norms of interpretation.

  9. Characterizing Chain Processes in Visible Light Photoredox Catalysis

    PubMed Central

    Cismesia, Megan A.

    2015-01-01

    The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708

  10. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds.

    PubMed

    Rammsayer, Thomas; Ulrich, Rolf

    2011-05-01

    The distinct timing hypothesis suggests a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. To test this hypothesis, we employed a dual-task approach to investigate the effects of maintenance and elaborative rehearsal on temporal processing of brief and long durations. Unlike mere maintenance rehearsal, elaborative rehearsal as a secondary task involved transfer of information from working to long-term memory and elaboration of information to enhance storage in long-term memory. Duration discrimination of brief intervals was not affected by a secondary cognitive task that required either maintenance or elaborative rehearsal. Concurrent elaborative rehearsal, however, impaired discrimination of longer durations as compared to maintenance rehearsal and a control condition with no secondary task. These findings endorse the distinct timing hypothesis and are in line with the notion that executive functions, such as continuous memory updating and active transfer of information into long-term memory interfere with temporal processing of durations in the second, but not in the millisecond range. 2011 Elsevier B.V. All rights reserved.

  11. Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation

    PubMed Central

    Rolfe, Matthew D.; Rice, Christopher J.; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D. S.; Alston, Mark; Stringer, Michael F.; Betts, Roy P.; Baranyi, József; Peck, Michael W.

    2012-01-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not “poised” upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments. PMID:22139505

  12. The neural bases for valuing social equality.

    PubMed

    Aoki, Ryuta; Yomogida, Yukihito; Matsumoto, Kenji

    2015-01-01

    The neural basis of how humans value and pursue social equality has become a major topic in social neuroscience research. Although recent studies have identified a set of brain regions and possible mechanisms that are involved in the neural processing of equality of outcome between individuals, how the human brain processes equality of opportunity remains unknown. In this review article, first we describe the importance of the distinction between equality of outcome and equality of opportunity, which has been emphasized in philosophy and economics. Next, we discuss possible approaches for empirical characterization of human valuation of equality of opportunity vs. equality of outcome. Understanding how these two concepts are distinct and interact with each other may provide a better explanation of complex human behaviors concerning fairness and social equality. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Top-down and bottom-up attention-to-memory: mapping functional connectivity in two distinct networks that underlie cued and uncued recognition memory.

    PubMed

    Burianová, Hana; Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris

    2012-11-15

    The objective of this study was to examine the functional connectivity of brain regions active during cued and uncued recognition memory to test the idea that distinct networks would underlie these memory processes, as predicted by the attention-to-memory (AtoM) hypothesis. The AtoM hypothesis suggests that dorsal parietal cortex (DPC) allocates effortful top-down attention to memory retrieval during cued retrieval, whereas ventral parietal cortex (VPC) mediates spontaneous bottom-up capture of attention by memory during uncued retrieval. To identify networks associated with these two processes, we conducted a functional connectivity analysis of a left DPC and a left VPC region, both identified by a previous analysis of task-related regional activations. We hypothesized that the two parietal regions would be functionally connected with distinct neural networks, reflecting their engagement in the differential mnemonic processes. We found two spatially dissociated networks that overlapped only in the precuneus. During cued trials, DPC was functionally connected with dorsal attention areas, including the superior parietal lobules, right precuneus, and premotor cortex, as well as relevant memory areas, such as the left hippocampus and the middle frontal gyri. During uncued trials, VPC was functionally connected with ventral attention areas, including the supramarginal gyrus, cuneus, and right fusiform gyrus, as well as the parahippocampal gyrus. In addition, activity in the DPC network was associated with faster response times for cued retrieval. This is the first study to show a dissociation of the functional connectivity of posterior parietal regions during episodic memory retrieval, characterized by a top-down AtoM network involving DPC and a bottom-up AtoM network involving VPC. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. DGGE and multivariate analysis of a yeast community in spontaneous cocoa fermentation process.

    PubMed

    Ferreira, A C R; Marques, E L S; Dias, J C T; Rezende, R P

    2015-12-28

    Cocoa bean is the main raw material used in the production of chocolate. In southern Bahia, Brazil, cocoa farming and processing is an important economic activity. The fermentation of cocoa is the processing stage that yields important chocolate flavor precursors and complex microbial involvement is essential for this process. In this study, PCR-denaturing gradient gel electrophoreses (DGGE) was used to investigate the diversity of yeasts present during the spontaneous fermentation of cocoa in southern Bahia. The DGGE analysis revealed a richness of 8 to 13 distinct bands of varied intensities among the samples; and samples taken at 24, 36, and 48 h into the fermentation process were found to group with 70% similarity and showed the greatest diversity of bands. Hierarchical clustering showed that all samples had common operational taxonomic units (OTUs) and the highest number of OTUs was found in the 48 h sample. Variations in pH and temperature observed within the fermenting mass over time possibly had direct effects on the composition of the existing microbial community. The findings reported here indicate that a heterogeneous yeast community is involved in the complex cocoa fermentation process, which is known to involve a succession of specialized microorganisms.

  15. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    ERIC Educational Resources Information Center

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  16. Distinct phylogenetic relationships and biochemical properties of Arabidopsis ovarian tumor-related deubiquitinases support their functional differentiation

    PubMed Central

    Radjacommare, Ramalingam; Usharani, Raju; Kuo, Chih-Horng; Fu, Hongyong

    2014-01-01

    The reverse reaction of ubiquitylation is catalyzed by different classes of deubiquitylation enzymes (DUBs), including ovarian tumor domain (OTU)-containing DUBs; experiments using Homo sapiens proteins have demonstrated that OTU DUBs modulate various cellular processes. With the exception of OTLD1, plant OTU DUBs have not been characterized. We identified 12 Arabidopsis thaliana OTU loci and analyzed 11 of the encoded proteins in vitro to determine their preferences for the ubiquitin (UB) chains of M1, K48, and K63 linkages as well as the UB-/RUB-/SUMO-GST fusions. The A. thaliana OTU DUBs were shown to be cysteine proteases and classified into four groups with distinct linkage preferences: OTU1 (M1 = K48 > K63), OTU3/4/7/10 (K63 > K48 > M1), OTU2/9 (K48 = K63), and OTU5/11/12/OTLD1 (inactive). Five active OTU DUBs (OTU3/4/7/9/10) also cleaved RUB fusion. OTU1/3/4 cleaved M1 UB chains, suggesting a possible role for M1 chains in plant cellular signaling. The different substrate specificities of the various A. thaliana OTU DUBs indicate the involvement of distinct structural elements; for example, the OTU1 oxyanion residue D89 is essential for cleaving isopeptide bond-linked chains but dispensable for M1 chains. UB-binding activities were detected only for OTU2 and OTLD1, with distinct linkage preferences. These differences in biochemical properties support the involvement of A. thaliana OTU DUBs in different functions. Moreover, based on the established phylogenetic tree, plant- and H. sapiens-specific clades exist, which suggests that the proteins within these clades have taxa-specific functions. We also detected five OTU clades that are conserved across species, which suggests that the orthologs in different species within each clade are involved in conserved cellular processes, such as ERAD and DNA damage responses. However, different linkage preferences have been detected among potential cross-species OTU orthologs, indicating functional and mechanistic differentiation. PMID:24659992

  17. Shared decision-making, gender and new technologies.

    PubMed

    Zeiler, Kristin

    2007-09-01

    Much discussion of decision-making processes in medicine has been patient-centred. It has been assumed that there is, most often, one patient. Less attention has been given to shared decision-making processes where two or more patients are involved. This article aims to contribute to this special area. What conditions need to be met if decision-making can be said to be shared? What is a shared decision-making process and what is a shared autonomous decision-making process? Why make the distinction? Examples are drawn from the area of new reproductive medicine and clinical genetics. Possible gender-differences in shared decision-making are discussed.

  18. Distinct neural mechanisms for reading Arabic vs verbal numbers: an ERP study.

    PubMed

    Proverbio, Alice Mado; Bianco, Marco; de Benedetto, Francesco

    2018-05-12

    In this EEG/ERP study, 16 volunteers were asked to compare the numerical equality of 360 pairs of multi-digit numbers presented in Arabic or verbal format. Behavioural data showed faster and more accurate responses for digit targets, with a right hand/left hemisphere advantage only for verbal numerals. Occipito-temporal N1, peaking at approximately 180 ms, was strongly left-lateralized during verbal number processing and bilateral during digit processing. A LORETA (low resolution electromagnetic tomography) source reconstruction performed at the N1 latency stage (155-185 ms) revealed greater brain activation during coding of Arabic than of verbal stimuli. Digit perceptual coding was associated with the activation of the right angular gyrus (rAG), the left fusiform gyrus (FG, BA37), and left and right superior and medial frontal areas. N1 sources for verbal numerals included the left FG (BA37), the precuneus (BA31), the parahippocampal area and a small right prefrontal activation. In addition, verbal numerals elicited a late frontocentral negativity, possibly reflecting stimulus unfamiliarity or complexity. Overall, the data suggest distinct mechanisms for number reading through ciphers (digits) or words. Information about quantity was accessed earlier and more accurately if numbers were in a nonlinguistic code. Indeed, it can be speculated that numerosity processing would involve circuits originally involved in processing space (i.e.,rAG/rIPS). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. DISCO-SCA and Properly Applied GSVD as Swinging Methods to Find Common and Distinctive Processes

    PubMed Central

    Van Deun, Katrijn; Van Mechelen, Iven; Thorrez, Lieven; Schouteden, Martijn; De Moor, Bart; van der Werf, Mariët J.; De Lathauwer, Lieven; Smilde, Age K.; Kiers, Henk A. L.

    2012-01-01

    Background In systems biology it is common to obtain for the same set of biological entities information from multiple sources. Examples include expression data for the same set of orthologous genes screened in different organisms and data on the same set of culture samples obtained with different high-throughput techniques. A major challenge is to find the important biological processes underlying the data and to disentangle therein processes common to all data sources and processes distinctive for a specific source. Recently, two promising simultaneous data integration methods have been proposed to attain this goal, namely generalized singular value decomposition (GSVD) and simultaneous component analysis with rotation to common and distinctive components (DISCO-SCA). Results Both theoretical analyses and applications to biologically relevant data show that: (1) straightforward applications of GSVD yield unsatisfactory results, (2) DISCO-SCA performs well, (3) provided proper pre-processing and algorithmic adaptations, GSVD reaches a performance level similar to that of DISCO-SCA, and (4) DISCO-SCA is directly generalizable to more than two data sources. The biological relevance of DISCO-SCA is illustrated with two applications. First, in a setting of comparative genomics, it is shown that DISCO-SCA recovers a common theme of cell cycle progression and a yeast-specific response to pheromones. The biological annotation was obtained by applying Gene Set Enrichment Analysis in an appropriate way. Second, in an application of DISCO-SCA to metabolomics data for Escherichia coli obtained with two different chemical analysis platforms, it is illustrated that the metabolites involved in some of the biological processes underlying the data are detected by one of the two platforms only; therefore, platforms for microbial metabolomics should be tailored to the biological question. Conclusions Both DISCO-SCA and properly applied GSVD are promising integrative methods for finding common and distinctive processes in multisource data. Open source code for both methods is provided. PMID:22693578

  20. Syntactic and semantic restrictions on morphological recomposition: MEG evidence from Greek.

    PubMed

    Neophytou, K; Manouilidou, C; Stockall, L; Marantz, A

    2018-05-16

    Complex morphological processing has been extensively studied in the past decades. However, most of this work has either focused on only certain steps involved in this process, or it has been conducted on a few languages, like English. The purpose of the present study is to investigate the spatiotemporal cortical processing profile of the distinct steps previously reported in the literature, from decomposition to re-composition of morphologically complex items, in a relatively understudied language, Greek. Using magnetoencephalography, we confirm the role of the fusiform gyrus in early, form-based morphological decomposition, we relate the syntactic licensing of stem-suffix combinations to the ventral visual processing stream, somewhat independent from lexical access for the stem, and we further elucidate the role of orbitofrontal regions in semantic composition. Thus, the current study offers the most comprehensive test to date of visual morphological processing and additional, crosslinguistic validation of the steps involved in it. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Distinct frontal regions for processing sentence syntax and story grammar.

    PubMed

    Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y

    1998-12-01

    Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.

  2. Relationship between oscillatory neuronal activity during reward processing and trait impulsivity and sensation seeking.

    PubMed

    Leicht, Gregor; Troschütz, Stefan; Andreou, Christina; Karamatskos, Evangelos; Ertl, Matthias; Naber, Dieter; Mulert, Christoph

    2013-01-01

    The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects. During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss) and high or low magnitude (5 vs. 25 points). We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking. The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.

  3. Is Attentional Resource Allocation Across Sensory Modalities Task-Dependent?

    PubMed

    Wahn, Basil; König, Peter

    2017-01-01

    Human information processing is limited by attentional resources. That is, via attentional mechanisms, humans select a limited amount of sensory input to process while other sensory input is neglected. In multisensory research, a matter of ongoing debate is whether there are distinct pools of attentional resources for each sensory modality or whether attentional resources are shared across sensory modalities. Recent studies have suggested that attentional resource allocation across sensory modalities is in part task-dependent. That is, the recruitment of attentional resources across the sensory modalities depends on whether processing involves object-based attention (e.g., the discrimination of stimulus attributes) or spatial attention (e.g., the localization of stimuli). In the present paper, we review findings in multisensory research related to this view. For the visual and auditory sensory modalities, findings suggest that distinct resources are recruited when humans perform object-based attention tasks, whereas for the visual and tactile sensory modalities, partially shared resources are recruited. If object-based attention tasks are time-critical, shared resources are recruited across the sensory modalities. When humans perform an object-based attention task in combination with a spatial attention task, partly shared resources are recruited across the sensory modalities as well. Conversely, for spatial attention tasks, attentional processing does consistently involve shared attentional resources for the sensory modalities. Generally, findings suggest that the attentional system flexibly allocates attentional resources depending on task demands. We propose that such flexibility reflects a large-scale optimization strategy that minimizes the brain's costly resource expenditures and simultaneously maximizes capability to process currently relevant information.

  4. Distinct and shared cognitive functions mediate event- and time-based prospective memory impairment in normal ageing

    PubMed Central

    Gonneaud, Julie; Kalpouzos, Grégoria; Bon, Laetitia; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice

    2011-01-01

    Prospective memory (PM) is the ability to remember to perform an action at a specific point in the future. Regarded as multidimensional, PM involves several cognitive functions that are known to be impaired in normal aging. In the present study, we set out to investigate the cognitive correlates of PM impairment in normal aging. Manipulating cognitive load, we assessed event- and time-based PM, as well as several cognitive functions, including executive functions, working memory and retrospective episodic memory, in healthy subjects covering the entire adulthood. We found that normal aging was characterized by PM decline in all conditions and that event-based PM was more sensitive to the effects of aging than time-based PM. Whatever the conditions, PM was linked to inhibition and processing speed. However, while event-based PM was mainly mediated by binding and retrospective memory processes, time-based PM was mainly related to inhibition. The only distinction between high- and low-load PM cognitive correlates lays in an additional, but marginal, correlation between updating and the high-load PM condition. The association of distinct cognitive functions, as well as shared mechanisms with event- and time-based PM confirms that each type of PM relies on a different set of processes. PMID:21678154

  5. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology

    PubMed Central

    Berke, Joshua D.

    2017-01-01

    Many studies have implicated the basal ganglia in the suppression of action impulses (‘stopping’). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a ‘Go’ process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary ‘Stop’ process, there appear to be separate, complementary ‘Pause’ and ‘Cancel’ mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time—in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed–accuracy trade-offs. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. PMID:28242736

  6. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology.

    PubMed

    Schmidt, Robert; Berke, Joshua D

    2017-04-19

    Many studies have implicated the basal ganglia in the suppression of action impulses ('stopping'). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a 'Go' process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary 'Stop' process, there appear to be separate, complementary 'Pause' and 'Cancel' mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time-in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed-accuracy trade-offs.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Author(s).

  7. I know I've seen you before: Distinguishing recent-single-exposure-based familiarity from pre-existing familiarity.

    PubMed

    Gimbel, Sarah I; Brewer, James B; Maril, Anat

    2017-03-01

    This study examines how individuals differentiate recent-single-exposure-based familiarity from pre-existing familiarity. If these are two distinct cognitive processes, are they supported by the same neural bases? This study examines how recent-single-exposure-based familiarity and multiple-previous-exposure-based familiarity are supported and represented in the brain using functional MRI. In a novel approach, we first behaviorally show that subjects can divide retrieval of items in pre-existing memory into judgments of recollection and familiarity. Then, using functional magnetic resonance imaging, we examine the differences in blood oxygen level dependent activity and regional connectivity during judgments of recent-single-exposure-based and pre-existing familiarity. Judgments of these two types of familiarity showed distinct regions of activation in a whole-brain analysis, in medial temporal lobe (MTL) substructures, and in MTL substructure functional-correlations with other brain regions. Specifically, within the MTL, perirhinal cortex showed increased activation during recent-single-exposure-based familiarity while parahippocampal cortex showed increased activation during judgments of pre-existing familiarity. We find that recent-single-exposure-based and pre-existing familiarity are represented as distinct neural processes in the brain; this is supported by differing patterns of brain activation and regional correlations. This spatially distinct regional brain involvement suggests that the two separate experiences of familiarity, recent-exposure-based familiarity and pre-existing familiarity, may be cognitively distinct. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response

    PubMed Central

    Zhong, Mei; Niu, Wei; Lu, Zhi John; Sarov, Mihail; Murray, John I.; Janette, Judith; Raha, Debasish; Sheaffer, Karyn L.; Lam, Hugo Y. K.; Preston, Elicia; Slightham, Cindie; Hillier, LaDeana W.; Brock, Trisha; Agarwal, Ashish; Auerbach, Raymond; Hyman, Anthony A.; Gerstein, Mark; Mango, Susan E.; Kim, Stuart K.; Waterston, Robert H.; Reinke, Valerie; Snyder, Michael

    2010-01-01

    Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles. PMID:20174564

  9. Temporal dynamics reveal atypical brain response to social exclusion in autism.

    PubMed

    McPartland, James C; Crowley, Michael J; Perszyk, Danielle R; Naples, Adam; Mukerji, Cora E; Wu, Jia; Molfese, Peter; Bolling, Danielle Z; Pelphrey, Kevin A; Mayes, Linda C

    2011-07-01

    Despite significant social difficulties, children with autism spectrum disorder (ASD) are vulnerable to the effects of social exclusion. We recorded EEG while children with ASD and typical peers played a computerized game involving peer rejection. Children with ASD reported ostracism-related distress comparable to typically developing children. Event-related potentials (ERPs) indicated a distinct pattern of temporal processing of rejection events in children with ASD. While typically developing children showed enhanced response to rejection at a late slow wave indexing emotional arousal and regulation, those with autism showed attenuation at an early component, suggesting reduced engagement of attentional resources in the aversive social context. Results emphasize the importance of studying the time course of social information processing in ASD; they suggest distinct mechanisms subserving similar overt behavior and yield insights relevant to development and implementation of targeted treatment approaches and objective measures of response to treatment.

  10. The development of landscape-scale ecological units and their application to the greater Huachuca Mountains fire planning process

    Treesearch

    Larry E. Laing; David Gori; James T. Jones

    2005-01-01

    The multi-partner Greater Huachuca Mountains fire planning effort involves over 500,000 acres of public and private lands. This large area supports distinct landscapes that have evolved with fire. Utilizing GIS as a tool, the United States Forest Service (USFS), General Ecosystem Survey (GES), and Natural Resources Conservation Service (NRCS) State Soil Geographic...

  11. Prevention of Blast-Related Injuries

    DTIC Science & Technology

    2015-07-14

    pathology of traumatic axonal injury involves distinct injury processes, neurofilament compaction (NFC) and impaired axoplasmic transport (IAT)1. In rat...assessments and may render diagnosis of blast related pathology even more difficult. These neuronal injury changes in the grey matter that appeared...were from blast studies using rodents16,17 and impulse noise18. A putative pathological implication for microglia comes from studies by Kane et al

  12. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies.

    PubMed

    Hacker, Benedikt; Schultheiß, Christoph; Döring, Michael; Kurzik-Dumke, Ursula

    2018-06-01

    This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence for its in vivo interaction with the functionally linked proteins OSBP, OSBPL9 and LRP1, the SYPL1 protein and the transcription factor CREB3. Regarding the latter, we show that the 55 kDa N-glycosylated hNOT-1/ALG3-1 molecule binds the N-glycosylated CREB3 precursor but does not interact with CREB3's proteolytic products specific to the endoplasmic reticulum and to the nucleus. The interaction between the two partners is a prerequisite for the proteolytic activation of CREB3. In case of the further binding partners, our data suggest that hNOT-1/ALG3-1 interacts with both OSBPs and with their direct targets LRP1 and VAMP/VAP-A. Moreover, our results show that various partners of hNOT-1/ALG3-1 interact with its diverse post translationally processed products destined to distinct cellular compartments. Generally, our data suggest the involvement of hNOT-1/ALG3-1 in various molecular contexts determining essential processes associated with distinct cellular machineries and related to various pathologies, such as cancer, viral infections, neuronal and immunological disorders and CDG.

  13. SNARE-mediated membrane fusion in autophagy

    PubMed Central

    Wang, Yongyao; Li, Linsen; Hou, Chen; Lai, Ying; Long, Jiangang; Liu, Jiankang; Zhong, Qing; Diao, Jiajie

    2016-01-01

    Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy. PMID:27422330

  14. A model structure for an EBM program in a multihospital system.

    PubMed

    Schumacher, Dale N; Stock, Joseph R; Richards, Joan K

    2003-01-01

    Evidence-based medicine (EBM) offers a great opportunity to translate advances in medical science into advances in clinical practice. We describe the structure of a comprehensive EBM program in a multihospital community teaching system. This EBM model is distinct and separate from the peer review process and has achieved substantial physician involvement. The program emanates from the Board of Directors Quality of Care Committee and has strong administrative support. The approach relies extensively on physician involvement and expert physician panels to enhance existing EBM practice guidelines, with an explicit strategy of performance reports and feedback.

  15. Psychological Functions of Semiotic Borders in Sense-Making: Liminality of Narrative Processes

    PubMed Central

    De Luca Picione, Raffaele; Valsiner, Jaan

    2017-01-01

    In this paper we discuss the semiotic functions of the psychological borders that structure the flow of narrative processes. Each narration is always a contextual, situated and contingent process of sensemaking, made possible by the creation of borders, such as dynamic semiotic devices that are capable of connecting the past and the future, the inside and the outside, and the me with the non-me. Borders enable us to narratively construct one’s own experiences using three inherent processes: contextualization, intersubjective positioning and setting of pertinence. The narrative process – as a subjective articulation of signs in a contingent social context – involves several functions of semiotic borders: separation, differentiation, distinction-making, connection, articulation and relation-enabling. The relevant psychological aspect highlighted here is that a border is a semiotic device which is required for both maintaining stability and inducing transformation at the same time. The peculiar dynamics and the semiotic structure of borders generate a liminal space, which is characterized by instability, by a blurred space-time distinction and by ambiguities in the semantic and syntactic processes of sensemaking. The psychological processes that occur in liminal space are strongly affectively loaded, yet it is exactly the setting and activation of liminality processes that lead to novelty and creativity and enable the creation of new narrative forms. PMID:28904600

  16. Psychological Functions of Semiotic Borders in Sense-Making: Liminality of Narrative Processes.

    PubMed

    De Luca Picione, Raffaele; Valsiner, Jaan

    2017-08-01

    In this paper we discuss the semiotic functions of the psychological borders that structure the flow of narrative processes. Each narration is always a contextual, situated and contingent process of sensemaking, made possible by the creation of borders, such as dynamic semiotic devices that are capable of connecting the past and the future, the inside and the outside, and the me with the non-me. Borders enable us to narratively construct one's own experiences using three inherent processes: contextualization, intersubjective positioning and setting of pertinence. The narrative process - as a subjective articulation of signs in a contingent social context - involves several functions of semiotic borders: separation, differentiation, distinction-making, connection, articulation and relation-enabling. The relevant psychological aspect highlighted here is that a border is a semiotic device which is required for both maintaining stability and inducing transformation at the same time. The peculiar dynamics and the semiotic structure of borders generate a liminal space, which is characterized by instability, by a blurred space-time distinction and by ambiguities in the semantic and syntactic processes of sensemaking. The psychological processes that occur in liminal space are strongly affectively loaded, yet it is exactly the setting and activation of liminality processes that lead to novelty and creativity and enable the creation of new narrative forms.

  17. Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry*

    PubMed Central

    Argüello, José M.; Raimunda, Daniel; González-Guerrero, Manuel

    2012-01-01

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models. PMID:22389499

  18. Approaching the Distinction between Intuition and Insight.

    PubMed

    Zhang, Zhonglu; Lei, Yi; Li, Hong

    2016-01-01

    Intuition and insight share similar cognitive and neural basis. Though, there are still some essential differences between the two. Here in this short review, we discriminated between intuition, and insight in two aspects. First, intuition, and insight are toward different aspects of information processing. Whereas intuition involves judgment about "yes or no," insight is related to "what" is the solution. Second, tacit knowledge play different roles in between intuition and insight. On the one hand, tacit knowledge is conducive to intuitive judgment. On the other hand, tacit knowledge may first impede but later facilitate insight occurrence. Furthermore, we share theoretical, and methodological views on how to access the distinction between intuition and insight.

  19. Metal transport across biomembranes: emerging models for a distinct chemistry.

    PubMed

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  20. Nonequilibrium Population Dynamics of Phenotype Conversion of Cancer Cells

    PubMed Central

    Zhou, Joseph Xu; Pisco, Angela Oliveira; Qian, Hong; Huang, Sui

    2014-01-01

    Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection) or by environment-instructed transitions (Lamarckism induction). This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance. PMID:25438251

  1. 7 CFR 46.48 - Procedure for investigating complaints involving commodities of a unique nature or coming from a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct geographic area. 46.48 Section 46.48 Agriculture... Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct...

  2. 7 CFR 46.48 - Procedure for investigating complaints involving commodities of a unique nature or coming from a...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct geographic area. 46.48 Section 46.48 Agriculture... Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct...

  3. 7 CFR 46.48 - Procedure for investigating complaints involving commodities of a unique nature or coming from a...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct geographic area. 46.48 Section 46.48 Agriculture... Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct...

  4. 7 CFR 46.48 - Procedure for investigating complaints involving commodities of a unique nature or coming from a...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct geographic area. 46.48 Section 46.48 Agriculture... Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct...

  5. 7 CFR 46.48 - Procedure for investigating complaints involving commodities of a unique nature or coming from a...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct geographic area. 46.48 Section 46.48 Agriculture... Procedure for investigating complaints involving commodities of a unique nature or coming from a distinct...

  6. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin

    PubMed Central

    Deressa, Tekalign; Strandt, Helen; Florindo Pinheiro, Douglas; Mittermair, Roberta; Pizarro Pesado, Jennifer; Thalhamer, Josef; Hammerl, Peter; Stoecklinger, Angelika

    2015-01-01

    The skin accommodates multiple dendritic cell (DC) subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal) and chicken ovalbumin (OVA) under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC) as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation. PMID:26030383

  7. Removal of amino groups from anilines through diazonium salt-based reactions.

    PubMed

    He, Linman; Qiu, Guanyinsheng; Gao, Yueqiu; Wu, Jie

    2014-09-28

    This minireview describes the applications of in situ generated diazonium salts from anilines in organic synthesis. In situ generation of diazonium salts from anilines represents an efficient and practical pathway, leading to a series of useful structures. In these transformations, the amino group of aniline formally acts as a leaving group. Two distinctive kinds of mechanisms, including transition metal (especially palladium)-catalyzed oxidative addition-reductive elimination and a radical process, are involved in the removal of amino groups from anilines, and both catalytic processes are described in this minireview.

  8. RNA-based stable isotope probing (RNA-SIP) to unravel intestinal host-microbe interactions.

    PubMed

    Egert, Markus; Weis, Severin; Schnell, Sylvia

    2018-05-30

    The RNA-SIP technology, introduced into molecular microbial ecology in 2002, is an elegant technique to link the structure and function of complex microbial communities, i.e. to identify microbial key-players involved in distinct degradation and assimilation processes under in-situ conditions. Due to its dependence of microbial RNA, this technique is particularly suited for environments with high numbers of very active, i.e. significantly RNA-expressing, bacteria. So far, it was mainly used in environmental studies using microbiotas from soil or water habitats. Here we outline and summarize our application of RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in intestinal samples of human and animal origin. Following an isotope label from a prebiotic substrate into the RNA of distinct bacterial taxa will help to better understand the functionality of these medically and economically important nutrients in an intestinal environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Reward processing in neurodegenerative disease

    PubMed Central

    Perry, David C.; Kramer, Joel H.

    2015-01-01

    Representation of reward value involves a distributed network including cortical and subcortical structures. Because neurodegenerative illnesses target specific anatomic networks that partially overlap with the reward circuit they would be predicted to have distinct impairments in reward processing. This review presents the existing evidence of reward processing changes in neurodegenerative diseases including mild cognitive impairment, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease, as well as in healthy aging. Carefully distinguishing the different aspects of reward processing (primary rewards, secondary rewards, reward-based learning, and reward-based decision-making) and using tasks that differentiate the stages of processing reward will lead to improved understanding of this fundamental process and clarify a contributing cause of behavioral change in these illnesses. PMID:24417286

  10. Distinct Contributions of Dopamine in the Dorsolateral Striatum and Nucleus Accumbens Shell to the Reinforcing Properties of Cocaine

    PubMed Central

    Veeneman, Maartje M J; Broekhoven, Mark H; Damsteegt, Ruth; Vanderschuren, Louk J M J

    2012-01-01

    Dopaminergic neurotransmission in the dorsal and ventral striatum is thought to be involved in distinct aspects of cocaine addiction. Ventral striatal dopamine mediates the acute reinforcing properties of cocaine, whereas dopamine in the dorsolateral striatum (DLS) is thought to become involved in later stages of the addiction process to mediate well-established cue-controlled drug seeking. However, it is unclear whether the DLS also has a role in the reinforcing properties of cocaine itself. Therefore, we systematically investigated the involvement of dopamine in dorsal and ventral striatal regions in cocaine self-administration, using various schedules of reinforcement in animals with limited drug taking experience. Intra-DLS infusion of the dopamine receptor antagonist α-flupenthixol did not affect the acquisition of cocaine self-administration, increased cocaine self-administration under a fixed ratio-1 (FR-1) schedule of reinforcement, caused a rightward and downward shift of the dose–response curve of cocaine under an FR-1 schedule of reinforcement and decreased responding for cocaine under a progressive ratio (PR) schedule of reinforcement. Infusion of α-flupenthixol into the ventral nucleus accumbens (NAcc) shell inhibited the acquisition of cocaine self-administration, reduced responding for the drug under FR-1 and PR schedules of reinforcement, and caused a downward shift of the dose–response curve of cocaine self-administration under an FR-1 schedule of reinforcement. These data show that dopamine in both the DLS and NAcc shell is involved in cocaine reinforcement. We suggest that the DLS and the NAcc shell mediate somewhat distinct facets of the reinforcing properties of cocaine, related to its rewarding and motivational aspects, respectively. PMID:21918505

  11. Distinct functions of human RecQ helicases during DNA replication.

    PubMed

    Urban, Vaclav; Dobrovolna, Jana; Janscak, Pavel

    2017-06-01

    DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Transcriptomic analysis of two Beauveria bassiana strains grown on cuticle extracts of the silkworm uncovers their different metabolic response at early infection stage.

    PubMed

    Wang, Jing-Jie; Bai, Wen-Wen; Zhou, Wei; Liu, Jing; Chen, Jie; Liu, Xiao-Yuan; Xiang, Ting-Ting; Liu, Ren-Hua; Wang, Wen-Hui; Zhang, Bao-Ling; Wan, Yong-Ji

    2017-05-01

    Beauveria bassiana is an important entomopathogenic fungus which not only widely distributes in the environment but also shows phenotypic diversity. However, the mechanism of pathogenic differences among natural B. bassiana strains has not been revealed at transcriptome-wide level. In the present study, in order to explore the mechanism, two B. bassiana strains with different pathogenicity were isolated from silkworms (Bombyx mori L.) and selected to analyze the gene expression of early stage by culturing on cuticle extracts of the silkworm and using RNA-sequencing technique. A total of 2108 up-regulated and 1115 down-regulated genes were identified in B. bassiana strain GXsk1011 (hyper-virulent strain) compared with B. bassiana strain GXtr1009 (hypo-virulent strain), respectively. The function categorization of differential expressed genes (DEGs) showed that most of them involved in metabolic process, biosynthesis of secondary metabolites, catalytic activity, and some involved in nutrition uptake, adhesion and host defense were also noted. Based on our data, distinct pathogenicity among different strains of B. bassiana may largely attribute to unique gene expression pattern which differed at very early infection process. Most of the genes involved in conidia adhesion, cuticle degradation and fungal growth were up-regulated in hyper-virulent B. bassiana strain GXsk1011. Furthermore, in combination with fungal growth analysis, our research provided a clue that fungal growth may also play an important role during early infection process. The results will help to explain why different B. bassiana strains show distinct pathogenicity on the same host even under same condition. Moreover, the transcriptome data were also useful for screening potential virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The role of the left posterior parietal lobule in top-down modulation on space-based attention: a transcranial magnetic stimulation study.

    PubMed

    Du, Xiaoming; Chen, Lin; Zhou, Ke

    2012-10-01

    Converging evidence from neuroimaging as well as lesion and transcranial magnetic stimulation (TMS) studies has been obtained for the involvement of right ventral posterior parietal cortex (PPC) in exogenous orienting. However, the contribution of dorsal PPC to attentional orienting, particularly endogenous orienting, is still under debate. In an informative peripheral cueing paradigm, in which the exogenous and endogenous orienting can be studied in relative isolation within a single task, we applied TMS over sub-regions of dorsal PPC to explore their possible distinct involvement in exogenous and endogenous processes. We found that disruption of the left posterior intraparietal sulcus (pIPS) weakened the attentional effects of endogenous orienting, but did not affect exogenous processes. In addition, TMS applied over the right superior parietal lobule (SPL) resulted in an overall increase in reaction times. The present study provides the causal evidence that the left pIPS plays a crucial role in voluntary orienting of visual attention, while right SPL is involved in the processing of arousal and/or vigilance. Copyright © 2011 Wiley Periodicals, Inc.

  14. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus.

    PubMed

    Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Štastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert

    2015-03-10

    Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson's disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well.

  15. Cellular Decision Making by Non-Integrative Processing of TLR Inputs.

    PubMed

    Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş

    2017-04-04

    Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Effect of Value Congruence, Brand Distinctiveness, Brand Social, Brand Warmth, and Memorable Brand Experience on Customer-Brand Identification and Brand Loyalty (Case Study: Brand of ACER Laptop)

    NASA Astrophysics Data System (ADS)

    Susanty, Aries; Tresnaningrum, Aprilia

    2018-02-01

    This study has several purposes. First, this study aims to investigate the effect of consumer-brand value congruence, brand distinctiveness, brand social benefit, brand warmth, and memorable brand experience on customer-brand identification (CBI). We call all of those factors as the antecedent factor of CBI. Second, this study aims to investigate the effect of CBI on customer loyalty. Third, investigate the role of product involvement as a moderating variable of the relationship between brand distinctiveness, brand social benefit, brand warmth, memorable brand experience and CBI. This research used primary data collected through closed questionnaires using a Likert scale of 1 - 5. The total sample size was 273 respondents located in Semarang City who has or has been using Acer Laptop for minimal one year. This research was conducted using Partial Least Square (PLS) method through SmartPLS 3.0 software. The result of data processing indicated that all of the antecedent factors of CBI have the positive and significant effect on CBI of the user of Acer Laptop. In this case, among the five antecedent factors of CBI, value congruence has the greatest effect on CBI of the user of Acer Laptop. The result of data processing also indicated that CBI has the positive and significant effect on brand loyalty of user of Acer Laptop. This study fails to prove the role of product involvement as a moderating variable of the relationship between brand distinctiveness, brand social benefit, brand warmth, memorable brand experience and CBI of the user of Acer Laptop. Moreover, based on the result of hypothesis testing, this study gives some recommendation to Acer Laptop to develop or create some features which are match with the value of user of Laptop Acer in Semarang City.

  17. Manifesting the Quantum World

    NASA Astrophysics Data System (ADS)

    Mohrhoff, Ulrich

    2014-06-01

    In resisting attempts to explain the unity of a whole in terms of a multiplicity of interacting parts, quantum mechanics calls for an explanatory concept that proceeds in the opposite direction: from unity to multiplicity. Being part of the Scientific Image of the world, the theory concerns the process by which (the physical aspect of) what Sellars called the Manifest Image of the world comes into being. This process consists in the progressive differentiation of an intrinsically undifferentiated entity. By entering into reflexive spatial relations, this entity gives rise to (i) what looks like a multiplicity of relata if the reflexive quality of the relations is not taken into account, and (ii) what looks like a substantial expanse if the spatial quality of the relations is reified. If there is a distinctly quantum domain, it is a non-spatial and non-temporal dimension across which the transition from the unity of this entity to the multiplicity of the world takes place. Instead of being constituents of the physical world, subatomic particles, atoms, and molecules are instrumental in its manifestation. These conclusions are based on the following interpretive principle and its more direct consequences: whenever the calculation of probabilities calls for the addition of amplitudes, the distinctions we make between the alternatives lack objective reality. Applied to alternatives involving distinctions between regions of space, this principle implies that, owing to the indefiniteness of positions, the spatiotemporal differentiation of the physical world is incomplete: the existence of a real-valued spatiotemporal background is an unrealistic idealization. This guarantees the existence of observables whose values are real per se, as against "real by virtue of being indicated by the values of observables that are real per se." Applied to alternatives involving distinctions between things, it implies that, intrinsically, all fundamental particles are numerically identical and thus identifiable with the aforementioned undifferentiated entity.

  18. Identification of Knowledge, Skills, and Abilities for Army Design

    DTIC Science & Technology

    2014-04-01

    the problem. Ntuen and Leedom (2007) emphasized that an agile and adaptive commander regularly engages in metacognitive processes to assess whether the...described reflective thinking and metacognition as vital components of design. They described reflective thinking as involving self-awareness of...and evolutionary. It wasn’t like we sat down to write a battalion operations order.” Finally, the ability to hold and consider two distinct, and

  19. Exploring the function of selective attention and hypervigilance for threat in anxiety.

    PubMed

    Richards, Helen J; Benson, Valerie; Donnelly, Nick; Hadwin, Julie A

    2014-02-01

    Theoretical frameworks of anxiety propose that attentional biases to threat-related stimuli cause or maintain anxious states. The current paper draws on theoretical frameworks and key empirical studies to outline the distinctive attentional processes highlighted as being important in understanding anxiety. We develop a conceptual framework to make a distinction between two attentional biases: selective attention to threat and hypervigilance for threat. We suggest that these biases each have a different purpose and can account for the typical patterns of facilitated and impaired attention evident in anxious individuals. The framework is novel in its specification of the eye movement behavior associated with these attentional biases. We highlight that selective attention involves narrowing overt attention onto threat to ensure that these stimuli receive processing priority, leading to rapid engagement with task-relevant threat and delayed disengagement from task-irrelevant threat. We show that hypervigilance operates in the presence and absence of threat and involves monitoring for potential dangers via attentional broadening or excessive scanning of the environment with numerous eye movements, leading to improved threat detection and increased distraction from task-irrelevant threat. We conclude that future research could usefully employ eye movement measures to more clearly understand the diverse roles of attention in anxiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. [Cognition-Emotion Interactions and Psychopathic Personality: Distinct Pathways to Antisocial and Violent Behavior].

    PubMed

    Verona, Edelyn

    Researchers have long acknowledged heterogeneity among persons who exhibit antisocial and violent behaviours. The study of psychopathic personality or psychopathy can help elucidate this heterogeneity through examination of the different facets that constitute this disorder. In particular, the distinct correlates of the interpersonal-affective traits (Factor 1) and the impulsive-antisocial traits (Factor 2) of psychopathy suggest at least two possible pathways to antisocial behaviours. Building on basic studies in cognitive and affective neuroscience, we provide a focused, non-comprehensive review of work identifying the biopsychological mechanisms involved in these two pathways, with special attention to studies using event-related potential (ERP) methods. In specific, a series of studies are discussed which examined affective and cognitive processes that may distinguish offenders high on psychopathic traits from other offenders, with emphasis on alterations in emotion-cognition interactions related to each factor of psychopathy. The set of findings reviewed highlight a central conclusion: Factor 1 represents a pathway involving reduced emotional responding, exacerbated by attentional abnormalities, that make for a more deliberate and emotionally insensitive offender profile. In contrast, Factor 2 characterizes a pathway marked by emotional and behavioural dysregulation and cognitive control dysfunctions, particularly in emotional contexts. Implications for identifying etiological processes and the further understanding of antisocial and violent behaviours are discussed.

  1. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  2. Strategies for investigating nuclear-cytoplasmic tRNA dynamics in yeast and mammalian cells.

    PubMed

    Pierce, Jacqueline B; Chafe, Shawn C; Eswara, Manoja B K; van der Merwe, George; Mangroo, Dev

    2014-01-01

    Nuclear-cytoplasmic tRNA transport involves multiple pathways that are segregated by the involvement of distinct proteins. The tRNA export process begins in the nucleolus, where the functionality of newly produced tRNAs are tested by aminoacylation, and ends with the delivery of the exported aminoacyl tRNAs to the eukaryotic elongation factor eEF-1A for utilization in protein synthesis in the cytoplasm. Recent studies have identified a number of proteins that participate in nuclear tRNA export in both yeast and mammals. However, genetic and biochemical evidence suggest that additional components, which have yet to be identified, also participate in nuclear-cytoplasmic tRNA trafficking. Here we review key strategies that have led to the identification and characterization of proteins that are involved in the nuclear tRNA export process in yeasts and mammals. The approaches described will greatly facilitate the identification and delineation of the roles of new proteins involved in nuclear export of tRNAs to the cytoplasm. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The Message Is the Massage: Orality and Literacy Once More.

    ERIC Educational Resources Information Center

    Brandt, Deborah

    1989-01-01

    Reappraises conventional distinctions between oral-like and literate-like discourse, particularly Tannen's distinction between involvement focus and message focus. Treats message as an embodiment of involvement, and cohesion as an aspect of a developing writer-reader relationship. Offers speculations for rethinking "literate…

  4. Levels of integration in cognitive control and sequence processing in the prefrontal cortex.

    PubMed

    Bahlmann, Jörg; Korb, Franziska M; Gratton, Caterina; Friederici, Angela D

    2012-01-01

    Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.

  5. Levels of Integration in Cognitive Control and Sequence Processing in the Prefrontal Cortex

    PubMed Central

    Bahlmann, Jörg; Korb, Franziska M.; Gratton, Caterina; Friederici, Angela D.

    2012-01-01

    Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex. PMID:22952762

  6. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  7. SNARE-mediated membrane fusion in autophagy.

    PubMed

    Wang, Yongyao; Li, Linsen; Hou, Chen; Lai, Ying; Long, Jiangang; Liu, Jiankang; Zhong, Qing; Diao, Jiajie

    2016-12-01

    Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Exploring the process of capacity-building among community-based health promotion workers in Alberta, Canada.

    PubMed

    Montemurro, Genevieve R; Raine, Kim D; Nykiforuk, Candace I J; Mayan, Maria

    2014-09-01

    Community capacity-building is a central element to health promotion. While capacity-building features, domains and relationships to program sustainability have been well examined, information on the process of capacity-building as experienced by practitioners is needed. This study examined this process as experienced by coordinators working within a community-based chronic disease prevention project implemented in four communities in Alberta (Canada) from 2005-2010 using a case study approach with a mixed-method design. Data collection involved semi-structured interviews, a focus group and program documents tracking coordinator activity. Qualitative analysis followed the constant comparative method using open, axial and selective coding. Quantitative data were analyzed for frequency of major activity distribution. Capacity-building process involves distinct stages of networking, information exchange, partnering, prioritizing, planning/implementing and supporting/ sustaining. Stages are incremental though not always linear. Contextual factors exert a great influence on the process. Implications for research, practice and policy are discussed. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Patterns of Dating Violence Victimization and Perpetration among Latino Youth.

    PubMed

    Reyes, H Luz McNaughton; Foshee, Vangie A; Chen, May S; Ennett, Susan T

    2017-08-01

    Theory and research suggest that there may be significant heterogeneity in the development, manifestation, and consequences of adolescent dating violence that is not yet well understood. The current study contributed to our understanding of this heterogeneity by identifying distinct patterns of involvement in psychological, physical, and sexual dating violence victimization and perpetration in a sample of Latino youth (n = 201; M = 13.87 years; 42% male), a group that is understudied, growing, and at high risk for involvement in dating violence. Among both boys and girls, latent class analyses identified a three-class solution wherein the largest class demonstrated a low probability of involvement in dating violence across all indices ("uninvolved"; 56% of boys, 64% of girls) and the smallest class demonstrated high probability of involvement in all forms of dating violence except for sexual perpetration among girls and physical perpetration among boys ("multiform aggressive victims"; 10% of boys, 11% of girls). A third class of "psychologically aggressive victims" was identified for which there was a high probability of engaging and experiencing psychological dating violence, but low likelihood of involvement in physical or sexual dating violence (34% of boys, 24% of girls). Cultural (parent acculturation, acculturation conflict), family (conflict and cohesion) and individual (normative beliefs, conflict resolution skills, self-control) risk and protective factors were associated with class membership. Membership in the multiform vs. the uninvolved class was concurrently associated with emotional distress among girls and predicted emotional distress longitudinally among boys. The results contribute to understanding heterogeneity in patterns of involvement in dating violence among Latino youth that may reflect distinct etiological processes.

  10. The role of semantic processing in reading Japanese orthographies: an investigation using a script-switch paradigm.

    PubMed

    Dylman, Alexandra S; Kikutani, Mariko

    2018-01-01

    Research on Japanese reading has generally indicated that processing of the logographic script Kanji primarily involves whole-word lexical processing and follows a semantics-to-phonology route, while the two phonological scripts Hiragana and Katakana (collectively called Kana) are processed via a sub-lexical route, and more in a phonology-to-semantics manner. Therefore, switching between the two scripts often involves switching between two reading processes, which results in a delayed response for the second script (a script switch cost). In the present study, participants responded to pairs of words that were written either in the same orthography (within-script), or in two different Japanese orthographies (cross-script), switching either between Kanji and Hiragana, or between Katakana and Hiragana. They were asked to read the words aloud (Experiments 1 and 3) and to make a semantic decision about them (Experiments 2 and 4). In contrast to initial predictions, a clear switch cost was observed when participants switched between the two Kana scripts, while script switch costs were less consistent when participants switched between Kanji and Hiragana. This indicates that there are distinct processes involved in reading of the two types of Kana, where Hiragana reading appears to bear some similarities to Kanji processing. This suggests that the role of semantic processing in Hiragana (but not Katakana) reading is more prominent than previously thought and thus, Hiragana is not likely to be processed strictly phonologically.

  11. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities*

    PubMed Central

    Yao, Wei; Beckwith, Sean L.; Zheng, Tina; Young, Thomas; Dinh, Van T.; Ranjan, Anand; Morrison, Ashby J.

    2015-01-01

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement. PMID:26306040

  12. A systems neurophysiology approach to voluntary event coding.

    PubMed

    Petruo, Vanessa A; Stock, Ann-Kathrin; Münchau, Alexander; Beste, Christian

    2016-07-15

    Mechanisms responsible for the integration of perceptual events and appropriate actions (sensorimotor processes) have been subject to intense research. Different theoretical frameworks have been put forward with the "Theory of Event Coding (TEC)" being one of the most influential. In the current study, we focus on the concept of 'event files' within TEC and examine what sub-processes being dissociable by means of cognitive-neurophysiological methods are involved in voluntary event coding. This was combined with EEG source localization. We also introduce reward manipulations to delineate the neurophysiological sub-processes most relevant for performance variations during event coding. The results show that processes involved in voluntary event coding included predominantly stimulus categorization, feature unbinding and response selection, which were reflected by distinct neurophysiological processes (the P1, N2 and P3 ERPs). On a system's neurophysiological level, voluntary event-file coding is thus related to widely distributed parietal-medial frontal networks. Attentional selection processes (N1 ERP) turned out to be less important. Reward modulated stimulus categorization in parietal regions likely reflecting aspects of perceptual decision making but not in other processes. The perceptual categorization stage appears central for voluntary event-file coding. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Arc mRNA induction in striatal efferent neurons associated with response learning.

    PubMed

    Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A

    2007-07-01

    The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.

  14. Consumer participation in mental health research: articulating a model to guide practice.

    PubMed

    Happell, Brenda; Roper, Cath

    2007-06-01

    Consumer involvement in mental health research is considered both a right and a benefit, despite the identified barriers to forming effective collaborative relationships. The purpose of this paper is to examine the literature relating to consumer involvement in mental health research with a view to articulating a model to guide this process. A qualitative review of the relevant literature was undertaken. Literature referring to consumer roles in research was accessed and reviewed with the aim of articulating the benefits of, and barriers to, consumer participation in research. The literature has identified a number of important benefits and some significant barriers to consumer involvement in mental health research. However, a clear model to articulate definitions of involvement is lacking. Four distinct levels of involvement were articulated. The identification of clearly defined models for consumer involvement in mental health research is important in order to facilitate collaboration and avoid tokenism. Research is required in order to determine the applicability of these models within actual research projects.

  15. Parkinson’s disease dementia: a neural networks perspective

    PubMed Central

    Jahanshahi, Marjan; Foltynie, Thomas

    2015-01-01

    In the long-term, with progression of the illness, Parkinson’s disease dementia affects up to 90% of patients with Parkinson’s disease. With increasing life expectancy in western countries, Parkinson’s disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson’s disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson’s disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson’s disease dementia, and discuss how this may offer new therapeutic opportunities. PMID:25888551

  16. Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing.

    PubMed

    Devereux, Barry J; Taylor, Kirsten I; Randall, Billi; Geertzen, Jeroen; Tyler, Lorraine K

    2016-03-01

    Understanding spoken words involves a rapid mapping from speech to conceptual representations. One distributed feature-based conceptual account assumes that the statistical characteristics of concepts' features--the number of concepts they occur in (distinctiveness/sharedness) and likelihood of co-occurrence (correlational strength)--determine conceptual activation. To test these claims, we investigated the role of distinctiveness/sharedness and correlational strength in speech-to-meaning mapping, using a lexical decision task and computational simulations. Responses were faster for concepts with higher sharedness, suggesting that shared features are facilitatory in tasks like lexical decision that require access to them. Correlational strength facilitated responses for slower participants, suggesting a time-sensitive co-occurrence-driven settling mechanism. The computational simulation showed similar effects, with early effects of shared features and later effects of correlational strength. These results support a general-to-specific account of conceptual processing, whereby early activation of shared features is followed by the gradual emergence of a specific target representation. Copyright © 2015 The Authors. Cognitive Science published by Cognitive Science Society, Inc.

  17. Parkinson's disease dementia: a neural networks perspective.

    PubMed

    Gratwicke, James; Jahanshahi, Marjan; Foltynie, Thomas

    2015-06-01

    In the long-term, with progression of the illness, Parkinson's disease dementia affects up to 90% of patients with Parkinson's disease. With increasing life expectancy in western countries, Parkinson's disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson's disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson's disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson's disease dementia, and discuss how this may offer new therapeutic opportunities. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. 4D multiple-cathode ultrafast electron microscopy

    PubMed Central

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.

    2014-01-01

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261

  19. 4D multiple-cathode ultrafast electron microscopy.

    PubMed

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H

    2014-07-22

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.

  20. Reactive Radial Diffusion Model for the Aging/Sequestration Process

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.

    2001-12-01

    A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.

  1. The overlapping relationship between emotion perception and theory of mind.

    PubMed

    Mitchell, Rachel L C; Phillips, Louise H

    2015-04-01

    Socio-cognitive skills are crucial for successful interpersonal interactions. Two particularly important socio-cognitive processes are emotion perception (EP) and theory of mind (ToM), but agreement is lacking on terminology and conceptual links between these constructs. Here we seek to clarify the relationship between the two at multiple levels, from concept to neuroanatomy. EP is often regarded as a low-level perceptual process necessary to decode affective cues, while ToM is usually seen as a higher-level cognitive process involving mental state deduction. In information processing models, EP tends to precede ToM. At the neuroanatomical level, lesion study data suggest that EP and ToM are both right-hemisphere based, but there is also evidence that ToM requires temporal-cingulate networks, whereas EP requires partially separable regions linked to distinct emotions. Common regions identified in fMRI studies of EP and ToM have included medial prefrontal cortex and temporal lobe areas, but differences emerge depending on the perceptual, cognitive and emotional demands of the EP and ToM tasks. For the future, clarity of definition of EP and ToM will be paramount to produce distinct task manipulations and inform models of socio-cognitive processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biocommodity Engineering.

    PubMed

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of xylose and other nonglucose sugars, and "consolidated bioprocessing" in which cellulase production, cellulose hydrolysis, and fermentation of soluble carbohydrates to desired products occur in a single process step. With respect to product diversification, a distinction is made between replacement of a fossil resource-derived chemical with a biomass-derived chemical of identical composition and substitution of a biomass-derived chemical with equivalent functional characteristics but distinct composition. The substitution strategy involves larger transition issues but is seen as more promising in the long term. Metabolic engineering pursuant to the production of biocommodity products requires host organisms with properties such as the ability to use low-cost substrates, high product yield, competitive fitness, and robustness in industrial environments. In many cases, it is likely to be more successful to engineer a desired pathway into an organism having useful industrial properties rather than trying to engineer such often multi-gene properties into host organisms that do not have them naturally. Identification of host organisms with useful industrial properties and development of genetic systems for these organisms is a research challenge distinctive to biocommodity engineering. Chemical catalysis and separations technologies have important roles to play in downstream processing of biocommodity products and involve a distinctive set of challenges relative to petrochemical processing. At its current nascent state of development, the definition and advancement of the biocommodity field can benefit from integration at multiple levels. These include technical issues associated with integrating unit operations with each other, integrating production of individual products into a multi-product biorefinery, and integrating biorefineries into the broader resource, economic, and environmental systems in which they function. We anticipate that coproduction of multiple products, for example, production of fuels, chemicals, power, and/or feed, is likely to be essential for economic viability. Lifecycle analysis is necessary to verify the sustainability and environmental quality benefits of a particular biocommodity product or process. We see biocommodity engineering as a legitimate focus for graduate study, which is responsive to an established personnel demand in an industry that is expected to grow in the future. Graduate study in biocommodity engineering is supported by a distinctive blend of intellectual elements, including biotechnology, process engineering, and resource and environmental systems.

  3. The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian

    2017-10-01

    This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.

  4. Holistic systems biology approaches to molecular mechanisms of human helper T cell differentiation to functionally distinct subsets.

    PubMed

    Chen, Z; Lönnberg, T; Lahesmaa, R

    2013-08-01

    Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions. © 2013 John Wiley & Sons Ltd.

  5. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    PubMed

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  6. Learning, Empowerment and Judgement

    ERIC Educational Resources Information Center

    Luntley, Michael

    2007-01-01

    Here is a distinction that appears very simple, looks compelling and seems to be deeply rooted in our reflections on learning. The distinction is between activities of learning that involve training and those that involve reasoning. In the former, the pupil is a passive recipient of habits of mind and action. The mechanism by which they acquire…

  7. Insights into microbial involvement in desert varnish formation retrieved from metagenomic analysis.

    PubMed

    Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea S; Müller-Germann, Isabell; Yordanova, Petya; Rodriguez-Caballero, Emilio; Jochum, Klaus P; Al-Amri, Abdullah; Andreae, Meinrat O; Fröhlich-Nowoisky, Janine; Weber, Bettina

    2018-02-28

    Desert varnishes are dark rock coatings observed in arid environments and might resemble Mn-rich coatings found on Martian rocks. Their formation mechanism is not fully understood and the possible microbial involvement is under debate. In this study, we applied DNA metagenomic Shotgun sequencing of varnish and surrounding soil to evaluate the composition of the microbial community and its potential metabolic function. We found that the α diversity was lower in varnish compared to soil samples (p value < 0.05), suggesting distinct populations with significantly higher abundance of Actinobacteria, Proteobacteria and Cyanobacteria within the varnish. Additionally, we observed increased levels of transition metal metabolic processes in varnish compared to soil samples. Nevertheless, potentially relevant enzymes for varnish formation were detected at low to insignificant levels in both niches, indicating no current direct microbial involvement in Mn oxidation. This finding is supported by quantitative genomic analysis, elemental analysis, fluorescence imaging and scanning transmission X-ray microscopy. We thus conclude that the distinct microbial communities detected in desert varnish originate from settled Aeolian microbes, which colonized this nutrient-enriched niche, and discuss possible indirect contributions of microorganisms to the formation of desert varnish. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. The time course of symbolic number adaptation: oscillatory EEG activity and event-related potential analysis.

    PubMed

    Hsu, Yi-Fang; Szűcs, Dénes

    2012-02-15

    Several functional magnetic resonance imaging (fMRI) studies have used neural adaptation paradigms to detect anatomical locations of brain activity related to number processing. However, currently not much is known about the temporal structure of number adaptation. In the present study, we used electroencephalography (EEG) to elucidate the time course of neural events in symbolic number adaptation. The numerical distance of deviants relative to standards was manipulated. In order to avoid perceptual confounds, all levels of deviants consisted of perceptually identical stimuli. Multiple successive numerical distance effects were detected in event-related potentials (ERPs). Analysis of oscillatory activity further showed at least two distinct stages of neural processes involved in the automatic analysis of numerical magnitude, with the earlier effect emerging at around 200ms and the later effect appearing at around 400ms. The findings support for the hypothesis that numerical magnitude processing involves a succession of cognitive events. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  9. Microstructure and growth model for rice-hull-derived SiC whiskers

    NASA Technical Reports Server (NTRS)

    Nutt, Steven R.

    1988-01-01

    The microstructure of silicon carbide whiskers grown from rice hulls has been studied using methods of high-resolution analytical electron microscopy. Small, partially crystalline inclusions (about 10 nm) containing calcium, manganese, and oxygen are concentrated in whisker core regions, while peripheral regions are generally inclusion free. The distinct microphase distribution is evidence of a two-stage growth process in which the core region grows first, followed by normal growth toward whisker sides. Partial dislocations extend radially from the core region to the surface and tend to be paired in V-shaped configurations. Whisker surfaces exhibit microroughness due to a tendency to develop small facets on close-packed planes. The microstructural data obtained from TEM observations are used as a basis for discussion of the mechanisms involved in whisker growth, and a model of the growth process is proposed. The model includes a two-dimensional growth mechanism involving vapor, liquid, and solid phases, although it is significantly different from the classical vapor-liquid-solid (VLS) process of whisker growth.

  10. The Oregon migrant farmworker community: an evolving model for participatory research.

    PubMed Central

    McCauley, L A; Beltran, M; Phillips, J; Lasarev, M; Sticker, D

    2001-01-01

    Migrant farmworker communities present distinct challenges that require new approaches for community participation in research. In the State of Oregon an agency that advocates for the migrant farmworker community has collaborated successfully with university researchers to implement a research program directed to reducing pesticide exposures among the children of migrant farmworkers. The research process has included both qualitative research methods with members of the community and quantitative approaches to measure pesticide dust residues in homes, biomarkers of pesticide exposure, and effects on health. A committee of university and community stakeholders advises the research. Evaluative processes have been initiated to assess the effectiveness of the participatory model used in this project. The components of the preliminary process evaluation and results are presented. Evaluative data show that researchers and community members differ on perceptions of community involvement and the extent to which communication problems have been resolved between the two groups. Suggestions for improved community involvement and communication are given. PMID:11427395

  11. Semantic processing in native and second language: evidence from hemispheric differences in fine and coarse semantic coding.

    PubMed

    Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili

    2012-12-01

    Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., Chiarello, 2003; Faust, 2012). The present study examined the patterns of hemispheric involvement in fine/coarse semantic processing in native and non-native languages using a split visual field priming paradigm. Thirty native Hebrew speaking students made lexical decision judgments of Hebrew and English target words preceded by strongly, weakly, or unrelated primes. Results indicated that whereas for Hebrew pairs, priming effect for the weakly-related word pairs was obtained only for RH presented target words, for English pairs, no priming effect for the weakly-related pairs emerged for either LH or RH presented targets, suggesting that coarse semantic coding is much weaker for a non-native than native language. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The forgotten artist: Why to consider intentions and interaction in a model of aesthetic experience. Comment on "Move me, astonish me... delight my eyes and brain: The Vienna Integrated Model of top-down and bottom-up processes in Art Perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates" by Matthew Pelowski et al.

    NASA Astrophysics Data System (ADS)

    Brattico, Elvira; Brattico, Pauli; Vuust, Peter

    2017-07-01

    In their target article published in this journal issue, Pelowski et al. [1] address the question of how humans experience, and respond to, visual art. They propose a multi-layered model of the representations and processes involved in assessing visual art objects that, furthermore, involves both bottom-up and top-down elements. Their model provides predictions for seven different outcomes of human aesthetic experience, based on few distinct features (schema congruence, self-relevance, and coping necessity), and connects the underlying processing stages to ;specific correlates of the brain; (a similar attempt was previously done for music by [2-4]). In doing this, the model aims to account for the (often profound) experience of an individual viewer in front of an art object.

  13. Addressing the selective role of distinct prefrontal areas in response suppression: A study with brain tumor patients.

    PubMed

    Arbula, Sandra; Pacella, Valentina; De Pellegrin, Serena; Rossetto, Marta; Denaro, Luca; D'Avella, Domenico; Della Puppa, Alessandro; Vallesi, Antonino

    2017-06-01

    The diverging evidence for functional localization of response inhibition within the prefrontal cortex might be justified by the still unclear involvement of other intrinsically related cognitive processes like response selection and sustained attention. In this study, the main aim was to understand whether inhibitory impairments, previously found in patients with both left and right frontal lesions, could be better accounted for by assessing these potentially related cognitive processes. We tested 37 brain tumor patients with left prefrontal, right prefrontal and non-prefrontal lesions and a healthy control group on Go/No-Go and Foreperiod tasks. In both types of tasks inhibitory impairments are likely to cause false alarms, although additionally the former task requires response selection and the latter target detection abilities. Irrespective of the task context, patients with right prefrontal damage showed frequent Go and target omissions, probably due to sustained attention lapses. Left prefrontal patients, on the other hand, showed both Go and target omissions and high false alarm rates to No-Go and warning stimuli, suggesting a decisional rather than an inhibitory impairment. An exploratory whole-brain voxel-based lesion-symptom mapping analysis confirmed the association of left ventrolateral and dorsolateral prefrontal lesions with target discrimination failure, and right ventrolateral and medial prefrontal lesions with target detection failure. Results from this study show how left and right prefrontal areas, which previous research has linked to response inhibition, underlie broader cognitive control processes, particularly involved in response selection and target detection. Based on these findings, we suggest that successful inhibitory control relies on more than one functionally distinct process which, if assessed appropriately, might help us to better understand inhibitory impairments across different pathologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Processing structure in language and music: a case for shared reliance on cognitive control.

    PubMed

    Slevc, L Robert; Okada, Brooke M

    2015-06-01

    The relationship between structural processing in music and language has received increasing interest in the past several years, spurred by the influential Shared Syntactic Integration Resource Hypothesis (SSIRH; Patel, Nature Neuroscience, 6, 674-681, 2003). According to this resource-sharing framework, music and language rely on separable syntactic representations but recruit shared cognitive resources to integrate these representations into evolving structures. The SSIRH is supported by findings of interactions between structural manipulations in music and language. However, other recent evidence suggests that such interactions also can arise with nonstructural manipulations, and some recent neuroimaging studies report largely nonoverlapping neural regions involved in processing musical and linguistic structure. These conflicting results raise the question of exactly what shared (and distinct) resources underlie musical and linguistic structural processing. This paper suggests that one shared resource is prefrontal cortical mechanisms of cognitive control, which are recruited to detect and resolve conflict that occurs when expectations are violated and interpretations must be revised. By this account, musical processing involves not just the incremental processing and integration of musical elements as they occur, but also the incremental generation of musical predictions and expectations, which must sometimes be overridden and revised in light of evolving musical input.

  15. Animal social learning: associations and adaptations.

    PubMed

    Reader, Simon M

    2016-01-01

    Social learning, learning from others, is a powerful process known to impact the success and survival of humans and non-human animals alike. Yet we understand little about the neurocognitive and other processes that underpin social learning. Social learning has often been assumed to involve specialized, derived cognitive processes that evolve and develop independently from other processes. However, this assumption is increasingly questioned, and evidence from a variety of organisms demonstrates that current, recent, and early life experience all predict the reliance on social information and thus can potentially explain variation in social learning as a result of experiential effects rather than evolved differences. General associative learning processes, rather than adaptive specializations, may underpin much social learning, as well as social learning strategies. Uncovering these distinctions is important to a variety of fields, for example by widening current views of the possible breadth and adaptive flexibility of social learning. Nonetheless, just like adaptationist evolutionary explanations, associationist explanations for social learning cannot be assumed, and empirical work is required to uncover the mechanisms involved and their impact on the efficacy of social learning. This work is being done, but more is needed. Current evidence suggests that much social learning may be based on 'ordinary' processes but with extraordinary consequences.

  16. Distinctive amygdala subregions involved in emotion-modulated Stroop interference

    PubMed Central

    Han, Hyun Jung; Lee, Kanghee; Kim, Hyun Taek; Kim, Hackjin

    2014-01-01

    Despite the well-known role of the amygdala in mediating emotional interference during tasks requiring cognitive resources, no definite conclusion has yet been reached regarding the differential roles of functionally and anatomically distinctive subcomponents of the amygdala in such processes. In this study, we examined female participants and attempted to separate the neural processes for the detection of emotional information from those for the regulation of cognitive interference from emotional distractors by adding a temporal gap between emotional stimuli and a subsequent cognitive Stroop task. Reaction time data showed a significantly increased Stroop interference effect following emotionally negative stimuli compared with neutral stimuli, and functional magnetic resonance imaging data revealed that the anterior ventral amygdala (avAMYG) showed greater responses to negative stimuli compared with neutral stimuli. In addition, individuals who scored high in neuroticism showed greater posterior dorsal amygdala (pdAMYG) responses to incongruent compared with congruent Stroop trials following negative stimuli, but not following neutral stimuli. Taken together, the findings of this study demonstrated functionally distinctive contributions of the avAMYG and pdAMYG to the emotion-modulated Stroop interference effect and suggested that the avAMYG encodes associative values of emotional stimuli whereas the pdAMYG resolves cognitive interference from emotional distractors. PMID:23543193

  17. System analysis identifies distinct and common functional networks governed by transcription factor ASCL1, in glioma and small cell lung cancer.

    PubMed

    Donakonda, Sainitin; Sinha, Swati; Dighe, Shrinivas Nivrutti; Rao, Manchanahalli R Satyanarayana

    2017-07-25

    ASCL1 is a basic Helix-Loop-Helix transcription factor (TF), which is involved in various cellular processes like neuronal development and signaling pathways. Transcriptome profiling has shown that ASCL1 overexpression plays an important role in the development of glioma and Small Cell Lung Carcinoma (SCLC), but distinct and common molecular mechanisms regulated by ASCL1 in these cancers are unknown. In order to understand how it drives the cellular functional network in these two tumors, we generated a gene expression profile in a glioma cell line (U87MG) to identify ASCL1 gene targets by an si RNA silencing approach and then compared this with a publicly available dataset of similarly silenced SCLC (NCI-H1618 cells). We constructed TF-TF and gene-gene interactions, as well as protein interaction networks of ASCL1 regulated genes in glioma and SCLC cells. Detailed network analysis uncovered various biological processes governed by ASCL1 target genes in these two tumor cell lines. We find that novel ASCL1 functions related to mitosis and signaling pathways influencing development and tumor growth are affected in both glioma and SCLC cells. In addition, we also observed ASCL1 governed functional networks that are distinct to glioma and SCLC.

  18. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments.

    PubMed

    Gomes, Fernando; Palma, Flávio Romero; Barros, Mario H; Tsuchida, Eduardo T; Turano, Helena G; Alegria, Thiago G P; Demasi, Marilene; Netto, Luis E S

    2017-10-13

    Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H 2 O 2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks.

    PubMed

    Dixon, Matthew L; De La Vega, Alejandro; Mills, Caitlin; Andrews-Hanna, Jessica; Spreng, R Nathan; Cole, Michael W; Christoff, Kalina

    2018-02-13

    The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCN A exhibited stronger connectivity with the DN than the DAN, whereas FPCN B exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCN A may be preferentially involved in the regulation of introspective processes, whereas FPCN B may be preferentially involved in the regulation of visuospatial perceptual attention.

  20. Pattern separation in the hippocampus: distinct circuits under different conditions.

    PubMed

    Kassab, Randa; Alexandre, Frédéric

    2018-04-11

    Pattern separation is a fundamental hippocampal process thought to be critical for distinguishing similar episodic memories, and has long been recognized as a natural function of the dentate gyrus (DG), supporting autoassociative learning in CA3. Understanding how neural circuits within the DG-CA3 network mediate this process has received much interest, yet the exact mechanisms behind remain elusive. Here, we argue for the case that sparse coding is necessary but not sufficient to ensure efficient separation and, alternatively, propose a possible interaction of distinct circuits which, nevertheless, act in synergy to produce a unitary function of pattern separation. The proposed circuits involve different functional granule-cell populations, a primary population mediates sparsification and provides recurrent excitation to the other populations which are related to additional pattern separation mechanisms with higher degrees of robustness against interference in CA3. A variety of top-down and bottom-up factors, such as motivation, emotion, and pattern similarity, control the selection of circuitry depending on circumstances. According to this framework, a computational model is implemented and tested against model variants in a series of numerical simulations and biological experiments. The results demonstrate that the model combines fast learning, robust pattern separation and high storage capacity. It also accounts for the controversy around the involvement of the DG during memory recall, explains other puzzling findings, and makes predictions that can inform future investigations.

  1. Circuit mechanisms of sensorimotor learning

    PubMed Central

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  2. Separation anxiety: Stress, tension and cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Krithika; Iglesias, Pablo A., E-mail: pi@jhu.edu; Robinson, Douglas N., E-mail: dnr@jhmi.edu

    Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Latemore » in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.« less

  3. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus

    PubMed Central

    Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Šťastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert

    2015-01-01

    Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson’s disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well. PMID:25713375

  4. Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking

    PubMed Central

    Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus

    2013-01-01

    Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194

  5. Neural correlates of processing facial identity based on features versus their spacing.

    PubMed

    Maurer, D; O'Craven, K M; Le Grand, R; Mondloch, C J; Springer, M V; Lewis, T L; Grady, C L

    2007-04-08

    Adults' expertise in recognizing facial identity involves encoding subtle differences among faces in the shape of individual facial features (featural processing) and in the spacing among features (a type of configural processing called sensitivity to second-order relations). We used fMRI to investigate the neural mechanisms that differentiate these two types of processing. Participants made same/different judgments about pairs of faces that differed only in the shape of the eyes and mouth, with minimal differences in spacing (featural blocks), or pairs of faces that had identical features but differed in the positions of those features (spacing blocks). From a localizer scan with faces, objects, and houses, we identified regions with comparatively more activity for faces, including the fusiform face area (FFA) in the right fusiform gyrus, other extrastriate regions, and prefrontal cortices. Contrasts between the featural and spacing conditions revealed distributed patterns of activity differentiating the two conditions. A region of the right fusiform gyrus (near but not overlapping the localized FFA) showed greater activity during the spacing task, along with multiple areas of right frontal cortex, whereas left prefrontal activity increased for featural processing. These patterns of activity were not related to differences in performance between the two tasks. The results indicate that the processing of facial features is distinct from the processing of second-order relations in faces, and that these functions are mediated by separate and lateralized networks involving the right fusiform gyrus, although the FFA as defined from a localizer scan is not differentially involved.

  6. Involvement and Influence of Healthcare Providers, Family Members, and Other Mutation Carriers in the Cancer Risk Management Decision-Making Process of BRCA1 and BRCA2 Mutation Carriers.

    PubMed

    Puski, Athena; Hovick, Shelly; Senter, Leigha; Toland, Amanda Ewart

    2018-03-29

    Deciding between increased cancer screening or prophylactic surgery and the timing of such procedures can be a difficult and complex process for women with BRCA mutations. There are gaps in our understanding of involvement of others in the decision-making process for women with BRCA mutations. This study evaluated the management decision-making process of women with BRCA mutations, focusing on the involvement of others. Grounded theory was used to analyze and code risk management decision-making information from interviews with 20 BRCA mutation carriers. Unaffected at-risk participants with a BRCA mutation, those under age 40, and those with no children described having a difficult time making risk management decisions. Physicians were an integral part of the decision-making process by providing decisional support and management recommendations. Family members and other mutation carriers filled similar yet distinct roles by providing experiential information as well as decisional and emotional support for carriers. Participants described genetic counselors as short-term providers of risk information and management recommendations. The study findings suggest that unaffected at-risk women, women under 40, and those who do not have children may benefit from additional support and information during the decision-making process. Genetic counselors are well trained to help women through this process and connect them with resources, and may be under-utilized in long-term follow-up for women with a BRCA mutation.

  7. Reconciling Marriage and Care after Stroke.

    PubMed

    Anderson, Sharon; Keating, Norah; Wilson, Donna

    2017-09-01

    Most research on stroke's impact on couples has focused on the transition to caregiving/receiving. Despite considerable evidence that marriage is the primary source of support in the face of chronic conditions, little is known about what happens to marriage in the context of care after stroke. To address this gap, we undertook a qualitative grounded-theory study of 18 couples in which one partner had experienced a stroke. Findings revealed two interrelated themes of the couple processes: working out care, which involved discovering and addressing disruptions in day-to-day activities; and rethinking marriage, which involved determining the meaning of their relationship within the new context of care and disability. Three distinct types of marriages evolved from these processes: reconfirmed around their pre-stroke marriage; recalibrated around care; and a parallel relationship, "his" and "her" marriage. Our findings highlight the need to consider relationship dynamics in addition to knowledge about stroke and care.

  8. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval

    PubMed Central

    Bonnici, Heidi M.; Richter, Franziska R.; Yazar, Yasemin

    2016-01-01

    Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. SIGNIFICANCE STATEMENT Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. PMID:27194327

  9. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval.

    PubMed

    Bonnici, Heidi M; Richter, Franziska R; Yazar, Yasemin; Simons, Jon S

    2016-05-18

    Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. Copyright © 2016 Bonnici, Richter, et al.

  10. The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes

    PubMed Central

    Almeida, Inês; Soares, Sandra C.; Castelo-Branco, Miguel

    2015-01-01

    Introduction Visual processing of ecologically relevant stimuli involves a central bias for stimuli demanding detailed processing (e.g., faces), whereas peripheral object processing is based on coarse identification. Fast detection of animal shapes holding a significant phylogenetic value, such as snakes, may benefit from peripheral vision. The amygdala together with the pulvinar and the superior colliculus are implicated in an ongoing debate regarding their role in automatic and deliberate spatial processing of threat signals. Methods Here we tested twenty healthy participants in an fMRI task, and investigated the role of spatial demands (the main effect of central vs. peripheral vision) in the processing of fear-relevant ecological features. We controlled for stimulus dependence using true or false snakes; snake shapes or snake faces and for task constraints (implicit or explicit). The main idea justifying this double task is that amygdala and superior colliculus are involved in both automatic and controlled processes. Moreover the explicit/implicit instruction in the task with respect to emotion is not necessarily equivalent to explicit vs. implicit in the sense of endogenous vs. exogenous attention, or controlled vs. automatic processes. Results We found that stimulus-driven processing led to increased amygdala responses specifically to true snake shapes presented in the centre or in the peripheral left hemifield (right hemisphere). Importantly, the superior colliculus showed significantly biased and explicit central responses to snake-related stimuli. Moreover, the pulvinar, which also contains foveal representations, also showed strong central responses, extending the results of a recent single cell pulvinar study in monkeys. Similar hemispheric specialization was found across structures: increased amygdala responses occurred to true snake shapes presented to the right hemisphere, with this pattern being closely followed by the superior colliculus and the pulvinar. Conclusion These results show that subcortical structures containing foveal representations such as the amygdala, pulvinar and superior colliculus play distinct roles in the central and peripheral processing of snake shapes. Our findings suggest multiple phylogenetic fingerprints in the responses of subcortical structures to fear-relevant stimuli. PMID:26075614

  11. Two subdivisions of macaque LIP process visual-oculomotor information differently.

    PubMed

    Chen, Mo; Li, Bing; Guang, Jing; Wei, Linyu; Wu, Si; Liu, Yu; Zhang, Mingsha

    2016-10-11

    Although the cerebral cortex is thought to be composed of functionally distinct areas, the actual parcellation of area and assignment of function are still highly controversial. An example is the much-studied lateral intraparietal cortex (LIP). Despite the general agreement that LIP plays an important role in visual-oculomotor transformation, it remains unclear whether the area is primary sensory- or motor-related (the attention-intention debate). Although LIP has been considered as a functionally unitary area, its dorsal (LIPd) and ventral (LIPv) parts differ in local morphology and long-distance connectivity. In particular, LIPv has much stronger connections with two oculomotor centers, the frontal eye field and the deep layers of the superior colliculus, than does LIPd. Such anatomical distinctions imply that compared with LIPd, LIPv might be more involved in oculomotor processing. We tested this hypothesis physiologically with a memory saccade task and a gap saccade task. We found that LIP neurons with persistent memory activities in memory saccade are primarily provoked either by visual stimulation (vision-related) or by both visual and saccadic events (vision-saccade-related) in gap saccade. The distribution changes from predominantly vision-related to predominantly vision-saccade-related as the recording depth increases along the dorsal-ventral dimension. Consistently, the simultaneously recorded local field potential also changes from visual evoked to saccade evoked. Finally, local injection of muscimol (GABA agonist) in LIPv, but not in LIPd, dramatically decreases the proportion of express saccades. With these results, we conclude that LIPd and LIPv are more involved in visual and visual-saccadic processing, respectively.

  12. HIPPOCAMPAL CONTRIBUTIONS TO THE PROCESSING OF SOCIAL EMOTIONS

    PubMed Central

    Immordino-Yang, Mary Helen; Singh, Vanessa

    2012-01-01

    Inducing and experiencing emotions about others’ mental and physical circumstances is thought to involve self-relevant processing and personal memories of similar experiences. The hippocampus is important for self-referential processing during recall and prospection; however, its contributions during social emotions have not been systematically investigated. We use event-related averaging and Granger causal connectivity mapping to investigate hippocampal contributions during the processing of varieties of admiration and compassion pertaining to protagonists’ mental versus physical circumstances (admiration for virtue, AV, versus for skill; compassion for social/psychological pain, CSP, versus for physical pain). Data were collected using a multistep emotion induction paradigm that included psychosocial interviews, BOLD fMRI and simultaneous psychophysiological recording. Given that mnemonic demands were equivalent among conditions, we tested whether: (1) the hippocampi would be recruited more strongly and for a longer duration during the processing of AV and CSP; (2) connectivity between the hippocampi and cortical systems involved in visceral somatosensation/emotional feeling, social cognitive, and self-related processing would be more extensive during AV and CSP. Results elucidate the hippocampus’ facilitative role in inducing and sustaining appropriate emotional reactions, the importance of self-related processing during social emotions, and corroborate the conception that varieties of emotional processing pertaining to others’ mental and physical situations engage at least partially distinct neural mechanisms. PMID:22012639

  13. Distinct representations of subtraction and multiplication in the neural systems for numerosity and language

    PubMed Central

    Prado, Jérôme; Mutreja, Rachna; Zhang, Hongchuan; Mehta, Rucha; Desroches, Amy S.; Minas, Jennifer E.; Booth, James R.

    2010-01-01

    It has been proposed that recent cultural inventions such as symbolic arithmetic recycle evolutionary older neural mechanisms. A central assumption of this hypothesis is that the degree to which a pre-existing mechanism is recycled depends upon the degree of similarity between its initial function and the novel task. To test this assumption, we investigated whether the brain region involved in magnitude comparison in the intraparietal sulcus (IPS), localized by a numerosity comparison task, is recruited to a greater degree by arithmetic problems that involve number comparison (single-digit subtractions) than by problems that involve retrieving facts from memory (single-digit multiplications). Our results confirmed that subtractions are associated with greater activity in the IPS than multiplications, whereas multiplications elicit greater activity than subtractions in regions involved in verbal processing including the middle temporal gyrus and inferior frontal gyrus that were localized by a phonological processing task. Pattern analyses further indicated that the neural mechanisms more active for subtraction than multiplication in the IPS overlap with those involved in numerosity comparison, and that the strength of this overlap predicts inter-individual performance in the subtraction task. These findings provide novel evidence that elementary arithmetic relies on the co-option of evolutionary older neural circuits. PMID:21246667

  14. Cauchy flights in confining potentials

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr

    2010-03-01

    We analyze confining mechanisms for Lévy flights evolving under an influence of external potentials. Given a stationary probability density function (pdf), we address the reverse engineering problem: design a jump-type stochastic process whose target pdf (eventually asymptotic) equals the preselected one. To this end, dynamically distinct jump-type processes can be employed. We demonstrate that one “targeted stochasticity” scenario involves Langevin systems with a symmetric stable noise. Another derives from the Lévy-Schrödinger semigroup dynamics (closely linked with topologically induced super-diffusions), which has no standard Langevin representation. For computational and visualization purposes, the Cauchy driver is employed to exemplify our considerations.

  15. The different faces of one’s self: an fMRI study into the recognition of current and past self-facial appearances

    PubMed Central

    Apps, Matthew A. J.; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2013-01-01

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one’s own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one’s face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one’s self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one’s own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. PMID:22940117

  16. The different faces of one's self: an fMRI study into the recognition of current and past self-facial appearances.

    PubMed

    Apps, Matthew A J; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2012-11-15

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one's own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one's face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one's self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one's own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.

    PubMed

    Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L

    2017-03-23

    Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.

  18. A brain network instantiating approach and avoidance motivation.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy

    2012-09-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. Copyright © 2012 Society for Psychophysiological Research.

  19. A Brain Network Instantiating Approach and Avoidance Motivation

    PubMed Central

    Spielberg, Jeffrey M.; Miller, Gregory A.; Warren, Stacie L.; Engels, Anna S.; Crocker, Laura D.; Banich, Marie T.; Sutton, Bradley P.; Heller, Wendy

    2015-01-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. PMID:22845892

  20. History of the Magmatic Feeding System of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Orsi, G.; Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.

    2007-12-01

    The definition of the magmatic feeding system of active volcanoes, in terms of composition, time-scale of crystallization, relation between composition of the erupted magma and structural position of vents, magma chamber processes and architecture, is of extreme importance for the hazard evaluation. The studies that are carried out for the definition of the magmatic systems include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb). The Campi Flegrei caldera magmatic structure is characterized by deep and shallow magma chambers. In the deep reservoir (20-10 km depth) mantle derived magmas differentiate and are contaminated with continental crust. In the shallow reservoirs isotopically distinct magmas further differentiate, mix and mingle before the eruptions. These processes generated isotopically distinct components that were variably involved along different structures of the Campi Flegrei caldera during time. At Campi Flegrei caldera the relation between the structural position of the eruptive vent, for the last 14 ka of activity, and the isotopic composition of the emitted magma allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition, and the magma chamber location and processes, of the future eruption, according to the position of the vent

  1. The neural basis of visual word form processing: a multivariate investigation.

    PubMed

    Nestor, Adrian; Behrmann, Marlene; Plaut, David C

    2013-07-01

    Current research on the neurobiological bases of reading points to the privileged role of a ventral cortical network in visual word processing. However, the properties of this network and, in particular, its selectivity for orthographic stimuli such as words and pseudowords remain topics of significant debate. Here, we approached this issue from a novel perspective by applying pattern-based analyses to functional magnetic resonance imaging data. Specifically, we examined whether, where and how, orthographic stimuli elicit distinct patterns of activation in the human cortex. First, at the category level, multivariate mapping found extensive sensitivity throughout the ventral cortex for words relative to false-font strings. Secondly, at the identity level, the multi-voxel pattern classification provided direct evidence that different pseudowords are encoded by distinct neural patterns. Thirdly, a comparison of pseudoword and face identification revealed that both stimulus types exploit common neural resources within the ventral cortical network. These results provide novel evidence regarding the involvement of the left ventral cortex in orthographic stimulus processing and shed light on its selectivity and discriminability profile. In particular, our findings support the existence of sublexical orthographic representations within the left ventral cortex while arguing for the continuity of reading with other visual recognition skills.

  2. Neural Activity When People Solve Verbal Problems with Insight

    PubMed Central

    Bowden, Edward M; Haberman, Jason; Frymiare, Jennifer L; Arambel-Liu, Stella; Greenblatt, Richard; Reber, Paul J

    2004-01-01

    People sometimes solve problems with a unique process called insight, accompanied by an “Aha!” experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1) revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2) revealed a sudden burst of high-frequency (gamma-band) neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them. PMID:15094802

  3. The peripheral blood proteome signature of idiopathic pulmonary fibrosis is distinct from normal and is associated with novel immunological processes.

    PubMed

    O'Dwyer, David N; Norman, Katy C; Xia, Meng; Huang, Yong; Gurczynski, Stephen J; Ashley, Shanna L; White, Eric S; Flaherty, Kevin R; Martinez, Fernando J; Murray, Susan; Noth, Imre; Arnold, Kelly B; Moore, Bethany B

    2017-04-25

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia. The disease pathophysiology is poorly understood and the etiology remains unclear. Recent advances have generated new therapies and improved knowledge of the natural history of IPF. These gains have been brokered by advances in technology and improved insight into the role of various genes in mediating disease, but gene expression and protein levels do not always correlate. Thus, in this paper we apply a novel large scale high throughput aptamer approach to identify more than 1100 proteins in the peripheral blood of well-characterized IPF patients and normal volunteers. We use systems biology approaches to identify a unique IPF proteome signature and give insight into biological processes driving IPF. We found IPF plasma to be altered and enriched for proteins involved in defense response, wound healing and protein phosphorylation when compared to normal human plasma. Analysis also revealed a minimal protein signature that differentiated IPF patients from normal controls, which may allow for accurate diagnosis of IPF based on easily-accessible peripheral blood. This report introduces large scale unbiased protein discovery analysis to IPF and describes distinct biological processes that further inform disease biology.

  4. Distinct modes of perimembrane TRP channel turnover revealed by TIR-FRAP.

    PubMed

    Ghosh, Debapriya; Segal, Andrei; Voets, Thomas

    2014-11-19

    Transient Receptor Potential (TRP) channels form a broadly expressed and functionally diverse family of cation channels involved in various (patho)physiological processes. Whereas the mechanisms that control opening of TRP channels have been extensively studied, little is known about the transport processes of TRP channels to and within the plasma membrane. Here we used Total Internal Reflection--Fluorescence Recovery after Photobleaching (TIR-FRAP) to selectively visualize and bleach the fluorescently labeled TRP channels TRPV2 and TRPM4 in close proximity of the glass-plasma membrane interface, allowing detailed analysis of their perimembrane dynamics. We show that recovery of TRPM4 occurs via 200-nm diameter transport vesicles, and demonstrate the full fusion of such vesicles with the plasma membrane. In contrast, TRPV2 recovery proceeded mainly via lateral diffusion from non-bleached areas of the plasma membrane. Analysis of the two-dimensional channel diffusion kinetics yielded 2D diffusion coefficients ranging between 0.1 and 0.3 μm(2)/s, suggesting that these TRP channels move relatively unrestricted within the plasma membrane. These data demonstrate distinct modes of TRP channel turnover at the plasma membrane and illustrate the usefulness of TIR-FRAP to monitor these processes with high resolution.

  5. Unfolding the Spatial and Temporal Neural Processing of Making Dishonest Choices

    PubMed Central

    Wang, Zhaoxin; Chan, Chetwyn C. H.

    2016-01-01

    To understand the neural processing that underpins dishonest behavior in an economic exchange game task, this study employed both functional magnetic resonance imaging (fMRI) and event-related potential (ERP) methodologies to examine the neural conditions of 25 participants while they were making either dishonest or honest choices. It was discovered that dishonest choices, contrary to honest choices, elicited stronger fMRI activations in bilateral striatum and anterior insula. It also induced fluctuations in ERP amplitudes within two time windows, which are 270–30 milliseconds before and 110–290 milliseconds after the response, respectively. Importantly, when making either dishonest or honest choices, human and computer counterparts were associated with distinct fMRI activations in the left insula and different ERP amplitudes at medial and right central sites from 80 milliseconds before to 250 milliseconds after the response. These results support the hypothesis that there would be distinct neural processing during making dishonest decisions, especially when the subject considers the interests of the counterpart. Furthermore, the fMRI and ERP findings, together with ERP source reconstruction, clearly delineate the temporal sequence of the neural processes of a dishonest decision: the striatum is activated before response, then the left insula is involved around the time of response, and finally the thalamus is activated after response. PMID:27096474

  6. Optimization under variability and uncertainty: a case study for NOx emissions control for a gasification system.

    PubMed

    Chen, Jianjun; Frey, H Christopher

    2004-12-15

    Methods for optimization of process technologies considering the distinction between variability and uncertainty are developed and applied to case studies of NOx control for Integrated Gasification Combined Cycle systems. Existing methods of stochastic optimization (SO) and stochastic programming (SP) are demonstrated. A comparison of SO and SP results provides the value of collecting additional information to reduce uncertainty. For example, an expected annual benefit of 240,000 dollars is estimated if uncertainty can be reduced before a final design is chosen. SO and SP are typically applied to uncertainty. However, when applied to variability, the benefit of dynamic process control is obtained. For example, an annual savings of 1 million dollars could be achieved if the system is adjusted to changes in process conditions. When variability and uncertainty are treated distinctively, a coupled stochastic optimization and programming method and a two-dimensional stochastic programming method are demonstrated via a case study. For the case study, the mean annual benefit of dynamic process control is estimated to be 700,000 dollars, with a 95% confidence range of 500,000 dollars to 940,000 dollars. These methods are expected to be of greatest utility for problems involving a large commitment of resources, for which small differences in designs can produce large cost savings.

  7. NASA Processes and Requirements for Conducting Human-in-the-Loop Closed Chamber Tests

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Montz, Michael E.

    2004-01-01

    NASA has specific processes and requirements that must be followed for tests involving human subjects to be conducted in a safe and effective manner. There are five distinct phases of test operations. Phase one, the test request phase, consists of those activities related to initiating, processing, reviewing, and evaluating the test request. Phase two, the test preparation phase consists of those activities related to planning, coordinating, documenting, and building up the test. Phase three, the test readiness phase consists of those activities related to verifying and reviewing the planned test operations. Phase four, the test activity phase, consists of all pretest operations, functional checkouts, emergency drills, and test operations. Phase five, the post test activity phase, consists of those activities performed once the test is completed, including briefings, documentation of anomalies, data reduction and archiving, and reporting. Project management processes must be followed for facility modifications and major test buildup, which include six phases: initiation and assessment, requirements evaluation, preliminary design, detailed design, use readiness review (URR) and acceptance. Compliance with requirements for safety and quality assurance are documented throughout the test buildup and test operation processes. Tests involving human subjects must be reviewed by the applicable Institutional Review Board (IRB).

  8. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.

    PubMed

    Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde

    2011-12-01

    In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.

  9. Reality = Relevance? Insights from Spontaneous Modulations of the Brain's Default Network when Telling Apart Reality from Fiction

    PubMed Central

    Abraham, Anna; von Cramon, D. Yves

    2009-01-01

    Background Although human beings regularly experience fictional worlds through activities such as reading novels and watching movies, little is known about what mechanisms underlie our implicit knowledge of the distinction between reality and fiction. The first neuroimaging study to address this issue revealed that the mere exposure to contexts involving real entities compared to fictional characters led to engagement of regions in the anterior medial prefrontal and posterior cingulate cortices (amPFC, PCC). As these core regions of the brain's default network are involved during self-referential processing and autobiographical memory retrieval, it was hypothesized that real entities may be conceptually coded as being more personally relevant to us than fictional characters. Methodology/Principal Findings In the present functional magnetic resonance imaging (fMRI) study, we directly test the hypothesis that entity-associated personal relevance is the critical factor underlying the differential engagement of these brain regions by comparing the brain's response when processing contexts involving family or friends (high relevance), famous people (medium relevance), or fictional characters (low relevance). In line with predictions, a gradient pattern of activation was observed such that higher entity-associated personal relevance was associated with stronger activation in the amPFC and the PCC. Conclusions/Significance The results of the study have several important implications. Firstly, they provide informed grounds for characterizing the dynamics of reality-fiction distinction. Secondly, they provide further insights into the functions of the amPFC and the PCC. Thirdly, in view of the current debate related to the functional relevance and specificity of brain's default network, they reveal a novel approach by which the functions of this network can be further explored. PMID:19277108

  10. A test of the role of the medial temporal lobe in single-word decoding.

    PubMed

    Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph

    2011-01-15

    The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. A Test of the Role of the Medial Temporal Lobe in Single-Word Decoding

    PubMed Central

    Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph

    2012-01-01

    The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus, nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. PMID:20884357

  12. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  13. Orbital construction support equipment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Approximately 200 separate construction steps were defined for the three solar power satellite (SPS) concepts. Detailed construction scenarios were developed which describe the specific tasks to be accomplished, and identify general equipment requirements. The scenarios were used to perform a functional analysis, which resulted in the definition of 100 distinct SPS elements. These elements are the components, parts, subsystems, or assemblies upon which construction activities take place. The major SPS elements for each configuration are shown. For those elements, 300 functional requirements were identified in seven generic processes. Cumulatively, these processes encompass all functions required during SPS construction/assembly. Individually each process is defined such that it includes a specific type of activity. Each SPS element may involve activities relating to any or all of the generic processes. The processes are listed, and examples of the requirements defined for a typical element are given.

  14. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE PAGES

    Shukla, Anil K.

    2017-09-01

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  15. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil K.

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  16. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates.

    PubMed

    Kerfahi, Dorsaf; Tateno, Ryunosuke; Takahashi, Koichi; Cho, HyunJun; Kim, Hyoki; Adams, Jonathan M

    2017-05-01

    There is considerable interest in understanding the processes of microbial development in volcanic ash. We tested the predictions that there would be (1) a distinctive bacterial community associated with soil development on volcanic ash, including groups previously implicated in weathering studies; (2) a slower increase in bacterial abundance and soil C and N accumulation in cooler climates; and (3) a distinct communities developing on the same substrate in different climates. We set up an experiment, taking freshly fallen, sterilized volcanic ash from Sakurajima volcano, Japan. Pots of ash were positioned in multiple locations, with mean annual temperature (MAT) ranging from 18.6 to -3 °C. Within 12 months, bacteria were detectable by qPCR in all pots. By 24 months, bacterial copy numbers had increased by 10-100 times relative to a year before. C and N content approximately doubled between 12 and 24 months. HiSeq and MiSeq sequencing of the 16S rRNA gene revealed a distinctive bacterial community, different from developed vegetated soils in the same areas, for example in containing an abundance of unclassified bacterial groups. Community composition also differed between the ash pots at different sites, while showing no pattern in relation to MAT. Contrary to our predictions, the bacterial abundance did not show any relation to MAT. It also did not correlate to pH or N, and only C was statistically significant. It appears that bacterial community development on volcanic ash can be a rapid process not closely sensitive to temperature, involving distinct communities from developed soils.

  17. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    PubMed

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  18. A Comparative Analysis of Industrial Escherichia coli K–12 and B Strains in High-Glucose Batch Cultivations on Process-, Transcriptome- and Proteome Level

    PubMed Central

    Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M.; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald

    2013-01-01

    Escherichia coli K–12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (EttanTM DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K–12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation. PMID:23950949

  19. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level.

    PubMed

    Marisch, Karoline; Bayer, Karl; Scharl, Theresa; Mairhofer, Juergen; Krempl, Peter M; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Striedner, Gerald

    2013-01-01

    Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation.

  20. Integrin receptor involvement in actin cable formation in an in vitro model of events associated with wound contraction.

    PubMed

    Stephens, P; Genever, P G; Wood, E J; Raxworthy, M J

    1997-01-01

    Actin cables have been reported to act in vivo as contractile 'purse strings' capable of closing embryonic wounds through generation of circumferential tension. Furthermore, their involvement in wounds within in vitro model systems suggests that actin cable contraction may be an important mechanism involved in the process of wound closure. The aim of this study therefore, was to investigate the appearance of actin cables in a contracting fibroblast populated collagen lattice, an in vitro model of events associated with wound contraction. Utilising this in vitro model, the time-course of actin cable production was investigated and the involvement of integrin receptors analysed using immunofluorescent labelling techniques. Over a period of hours distinct cellular cable-like structures developed at the edges of collagen lattices coinciding with the onset of contraction. Cellular organisation within the cable was evident as was polymerisation of actin microfilaments into elongated stress fibres forming a continuous cell-cell 'actin cable' around the circumference of the lattice. Immunolocalisation demonstrated that integrin receptor subunits beta 1 and alpha 2 but not alpha 5 were involved in apparent intimate cell-cell contact between juxtaposed fibroblasts within this actin cable. This study demonstrates the involvement of integrin receptors in actin cable formation within collagen lattice systems undergoing reorganisation. Such integrin involvement may enable participating cells to respond to the tensional status of their surrounding environment and via cell-cell communication, to permit a co-ordinated contraction of the cable. It is concluded that integrin receptor involvement in active actin cable contraction may be involved in the process of wound contraction.

  1. Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind.

    PubMed

    van Veluw, Susanne J; Chance, Steven A

    2014-03-01

    The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.

  2. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana.

    PubMed

    Munekage, Yuri Nakajima; Inoue, Shio; Yoneda, Yuki; Yokota, Akiho

    2015-06-01

    Plants develop palisade tissue consisting of cylindrical mesophyll cells located at the adaxial side of leaves in response to high light. To understand high light signalling in palisade tissue development, we investigated leaf autonomous and long-distance signal responses of palisade tissue development using Arabidopsis thaliana. Illumination of a developing leaf with high light induced cell height elongation, whereas illumination of mature leaves with high light increased cell density and suppressed cell width expansion in palisade tissue of new leaves. Examination using phototropin1 phototropin2 showed that blue light signalling mediated by phototropins was involved in cell height elongation of the leaf autonomous response rather than the cell density increase induced by long-distance signalling. Hydrogen peroxide treatment induced cylindrical palisade tissue cell formation in both a leaf autonomous and long-distance manner, suggesting involvement of oxidative signals. Although constitutive expression of transcription factors involved in systemic-acquired acclimation to excess light, ZAT10 and ZAT12, induced cylindrical palisade tissue cell formation, knockout of these genes did not affect cylindrical palisade tissue cell formation. We conclude that two distinct signalling pathways - leaf autonomous signalling mostly dependent on blue light signalling and long-distance signalling from mature leaves that sense high light and oxidative stress - control palisade tissue development in A. thaliana. © 2014 John Wiley & Sons Ltd.

  3. Double dissociation between syntactic gender and picture naming processing: a brain stimulation mapping study.

    PubMed

    Vidorreta, Jose Garbizu; Garcia, Roser; Moritz-Gasser, Sylvie; Duffau, Hugues

    2011-03-01

    Neural foundations of syntactic gender processing remain poorly understood. We used electrostimulation mapping in nine right-handed awake patients during surgery for a glioma within the left hemisphere, to study whether the cortico-subcortical structures involved in naming versus syntactic gender processing are common or distinct. In French, the article determines the grammatical gender. Thus, the patient was asked to perform a picture naming task and to give the appropriate article for each picture, with and without stimulation. Cortical stimulation elicited reproducible syntactic gender disturbances in six patients, in the inferior frontal gyrus (three cases), and in the posterior middle temporal gyrus (three cases). Interestingly, no naming disorders were generated during stimulation of the syntactic sites, while cortical areas inducing naming disturbances never elicited grammatical gender errors when stimulated. Moreover, at the subcortical level, stimulation of the white matter lateral to the caudate nucleus induced gender errors in three patients, with no naming disorders. Using cortico-subcortical electrical mapping in awake patients, we demonstrate for the first time (1) a double dissociation between syntactic gender and naming processing, supporting independent network model rather than serial theory, (2) the involvement of the left inferior frontal gyrus, especially the pars triangularis, and the posterior left middle temporal gyrus in grammatical gender processing, (3) the existence of white matter pathways, likely a sub-part of the left superior longitudinal fasciculus, underlying a large-scale distributed cortico-subcortical circuit which might selectively sub-serve syntactic gender processing, even if interconnected with parallel sub-networks involved in naming (semantic and phonological) processing. Copyright © 2010 Wiley-Liss, Inc.

  4. Inside the black box of shared decision making: distinguishing between the process of involvement and who makes the decision

    PubMed Central

    Edwards, Adrian; Elwyn, Glyn

    2006-01-01

    Abstract Background  Shared decision making has practical implications for everyday health care. However, it stems from largely theoretical frameworks and is not widely implemented in routine practice. Aims  We undertook an empirical study to inform understanding of shared decision making and how it can be operationalized more widely. Method  The study involved patients visiting UK general practitioners already well experienced in shared decision making. After these consultations, semi‐structured telephone interviews were conducted and analysed using the constant comparative method of content analysis. Results  All patients described at least some components of shared decision making but half appeared to perceive the decision as shared and half as ‘patient‐led’. However, patients exhibited some uncertainty about who had made the decision, reflecting different meanings of decision making from those described in the literature. A distinction is indicated between the process of involvement (option portrayal, exchange of information and exploring preferences for who makes the decision) and the actual decisional responsibility (who makes the decision). The process of involvement appeared to deliver benefits for patients, not the action of making the decision. Preferences for decisional responsibility varied during some consultations, generating unsatisfactory interactions when actual decisional responsibility did not align with patient preferences at that stage of a consultation. However, when conducted well, shared decision making enhanced reported satisfaction, understanding and confidence in the decisions. Conclusions  Practitioners can focus more on the process of involving patients in decision making rather than attaching importance to who actually makes the decision. They also need to be aware of the potential for changing patient preferences for decisional responsibility during a consultation and address non‐alignment of patient preferences with the actual model of decision making if this occurs. PMID:17083558

  5. Fear of knowledge: Clinical hypotheses in diagnostic and prognostic reasoning.

    PubMed

    Chiffi, Daniele; Zanotti, Renzo

    2017-10-01

    Patients are interested in receiving accurate diagnostic and prognostic information. Models and reasoning about diagnoses have been extensively investigated from a foundational perspective; however, for all its importance, prognosis has yet to receive a comparable degree of philosophical and methodological attention, and this may be due to the difficulties inherent in accurate prognostics. In the light of these considerations, we discuss a considerable body of critical thinking on the topic of prognostication and its strict relations with diagnostic reasoning, pointing out the distinction between nosographic and pathophysiological types of diagnosis and prognosis, underlying the importance of the explication and explanation processes. We then distinguish between various forms of hypothetical reasoning applied to reach diagnostic and prognostic judgments, comparing them with specific forms of abductive reasoning. The main thesis is that creative abduction regarding clinical hypotheses in diagnostic process is very unlikely to occur, whereas this seems to be often the case for prognostic judgments. The reasons behind this distinction are due to the different types of uncertainty involved in diagnostic and prognostic judgments. © 2016 John Wiley & Sons, Ltd.

  6. Autophagy and self-defense.

    PubMed

    Martínez-Borra, Jesús; López-Larrea, Carlos

    2012-01-01

    Autophagy is a highly conserved mechanism which is essential for the maintenance of cellular homeostasis in response to cellular stress. Autophagy has been conserved from yeast to humans as a quality control process that is involved in the recognition and turnover of damaged proteins and organelles. It is also a response mechanism to nutrient starvation. In mammals, autophagy is involved in antigen presentation, tolerance, inflammation and protection against neurodegenerative diseases. The decrease of autophagy during aging reduces the removal of damaged organelles and increases the accumulation of waste products in the cells. In this chapter, we review these aspects of autophagy along with their role in self-nonself distinction, their implication in innate and adaptive immune response, and its dysregulation in the pathology of certain inflammatory and autoimmune diseases.

  7. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles.

    PubMed

    Steenbeek, Sander C; Pham, Thang V; de Ligt, Joep; Zomer, Anoek; Knol, Jaco C; Piersma, Sander R; Schelfhorst, Tim; Huisjes, Rick; Schiffelers, Raymond M; Cuppen, Edwin; Jimenez, Connie R; van Rheenen, Jacco

    2018-06-14

    Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre-LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi-faceted biological response including cell migration. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  8. On the ontological assumptions of the medical model of psychiatry: philosophical considerations and pragmatic tasks

    PubMed Central

    2010-01-01

    A common theme in the contemporary medical model of psychiatry is that pathophysiological processes are centrally involved in the explanation, evaluation, and treatment of mental illnesses. Implied in this perspective is that clinical descriptors of these pathophysiological processes are sufficient to distinguish underlying etiologies. Psychiatric classification requires differentiation between what counts as normality (i.e.- order), and what counts as abnormality (i.e.- disorder). The distinction(s) between normality and pathology entail assumptions that are often deeply presupposed, manifesting themselves in statements about what mental disorders are. In this paper, we explicate that realism, naturalism, reductionism, and essentialism are core ontological assumptions of the medical model of psychiatry. We argue that while naturalism, realism, and reductionism can be reconciled with advances in contemporary neuroscience, essentialism - as defined to date - may be conceptually problematic, and we pose an eidetic construct of bio-psychosocial order and disorder based upon complex systems' dynamics. However we also caution against the overuse of any theory, and claim that practical distinctions are important to the establishment of clinical thresholds. We opine that as we move ahead toward both a new edition of the Diagnostic and Statistical Manual, and a proposed Decade of the Mind, the task at hand is to re-visit nosologic and ontologic assumptions pursuant to a re-formulation of diagnostic criteria and practice. PMID:20109176

  9. The neural signatures of distinct psychopathic traits

    PubMed Central

    Carré, Justin M.; Hyde, Luke W.; Neumann, Craig S.; Viding, Essi; Hariri, Ahmad R.

    2016-01-01

    Recent studies suggest that psychopathy may be associated with dysfunction in the neural circuitry supporting both threat- and reward-related processes. However, these studies have involved small samples and often focused on extreme groups. Thus, it is unclear to what extent current findings may generalize to psychopathic traits in the general population. Furthermore, no studies have systematically and simultaneously assessed associations between distinct psychopathy facets and both threat- and reward-related brain function in the same sample of participants. Here, we examined the relationship between threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity and variation in four facets of self-reported psychopathy in a sample of 200 young adults. Path models indicated that amygdala reactivity to fearful facial expressions is negatively associated with the interpersonal facet of psychopathy, whereas amygdala reactivity to angry facial expressions is positively associated with the lifestyle facet. Furthermore, these models revealed that differential VS reactivity to positive versus negative feedback is negatively associated with the lifestyle facet. There was suggestive evidence for gender-specific patterns of association between brain function and psychopathy facets. Our findings are the first to document differential associations between both threat- and reward-related neural processes and distinct facets of psychopathy and thus provide a more comprehensive picture of the pattern of neural vulnerabilities that may predispose to maladaptive outcomes associated with psychopathy. PMID:22775289

  10. The neural signatures of distinct psychopathic traits.

    PubMed

    Carré, Justin M; Hyde, Luke W; Neumann, Craig S; Viding, Essi; Hariri, Ahmad R

    2013-01-01

    Recent studies suggest that psychopathy may be associated with dysfunction in the neural circuitry supporting both threat- and reward-related processes. However, these studies have involved small samples and often focused on extreme groups. Thus, it is unclear to what extent current findings may generalize to psychopathic traits in the general population. Furthermore, no studies have systematically and simultaneously assessed associations between distinct psychopathy facets and both threat- and reward-related brain function in the same sample of participants. Here, we examined the relationship between threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity and variation in four facets of self-reported psychopathy in a sample of 200 young adults. Path models indicated that amygdala reactivity to fearful facial expressions is negatively associated with the interpersonal facet of psychopathy, whereas amygdala reactivity to angry facial expressions is positively associated with the lifestyle facet. Furthermore, these models revealed that differential VS reactivity to positive versus negative feedback is negatively associated with the lifestyle facet. There was suggestive evidence for gender-specific patterns of association between brain function and psychopathy facets. Our findings are the first to document differential associations between both threat- and reward-related neural processes and distinct facets of psychopathy and thus provide a more comprehensive picture of the pattern of neural vulnerabilities that may predispose to maladaptive outcomes associated with psychopathy.

  11. BowMapCL: Burrows-Wheeler Mapping on Multiple Heterogeneous Accelerators.

    PubMed

    Nogueira, David; Tomas, Pedro; Roma, Nuno

    2016-01-01

    The computational demand of exact-search procedures has pressed the exploitation of parallel processing accelerators to reduce the execution time of many applications. However, this often imposes strict restrictions in terms of the problem size and implementation efforts, mainly due to their possibly distinct architectures. To circumvent this limitation, a new exact-search alignment tool (BowMapCL) based on the Burrows-Wheeler Transform and FM-Index is presented. Contrasting to other alternatives, BowMapCL is based on a unified implementation using OpenCL, allowing the exploitation of multiple and possibly different devices (e.g., NVIDIA, AMD/ATI, and Intel GPUs/APUs). Furthermore, to efficiently exploit such heterogeneous architectures, BowMapCL incorporates several techniques to promote its performance and scalability, including multiple buffering, work-queue task-distribution, and dynamic load-balancing, together with index partitioning, bit-encoding, and sampling. When compared with state-of-the-art tools, the attained results showed that BowMapCL (using a single GPU) is 2 × to 7.5 × faster than mainstream multi-threaded CPU BWT-based aligners, like Bowtie, BWA, and SOAP2; and up to 4 × faster than the best performing state-of-the-art GPU implementations (namely, SOAP3 and HPG-BWT). When multiple and completely distinct devices are considered, BowMapCL efficiently scales the offered throughput, ensuring a convenient load-balance of the involved processing in the several distinct devices.

  12. Discrete Neural Correlates for the Recognition of Negative Emotions: Insights from Frontotemporal Dementia

    PubMed Central

    Kumfor, Fiona; Irish, Muireann; Hodges, John R.; Piguet, Olivier

    2013-01-01

    Patients with frontotemporal dementia have pervasive changes in emotion recognition and social cognition, yet the neural changes underlying these emotion processing deficits remain unclear. The multimodal system model of emotion proposes that basic emotions are dependent on distinct brain regions, which undergo significant pathological changes in frontotemporal dementia. As such, this syndrome may provide important insight into the impact of neural network degeneration upon the innate ability to recognise emotions. This study used voxel-based morphometry to identify discrete neural correlates involved in the recognition of basic emotions (anger, disgust, fear, sadness, surprise and happiness) in frontotemporal dementia. Forty frontotemporal dementia patients (18 behavioural-variant, 11 semantic dementia, 11 progressive nonfluent aphasia) and 27 healthy controls were tested on two facial emotion recognition tasks: The Ekman 60 and Ekman Caricatures. Although each frontotemporal dementia group showed impaired recognition of negative emotions, distinct associations between emotion-specific task performance and changes in grey matter intensity emerged. Fear recognition was associated with the right amygdala; disgust recognition with the left insula; anger recognition with the left middle and superior temporal gyrus; and sadness recognition with the left subcallosal cingulate, indicating that discrete neural substrates are necessary for emotion recognition in frontotemporal dementia. The erosion of emotion-specific neural networks in neurodegenerative disorders may produce distinct profiles of performance that are relevant to understanding the neurobiological basis of emotion processing. PMID:23805313

  13. Collagenous mucosal inflammatory diseases of the gastrointestinal tract.

    PubMed

    Freeman, Hugh J

    2005-07-01

    Collagenous mucosal inflammatory diseases involve the columnar-lined gastric and intestinal mucosa and have become recognized increasingly as a significant cause of symptomatic morbidity, particularly in middle-aged and elderly women, especially with watery diarrhea. Still, mechanisms involved in the pathogenesis of this diarrhea remain poorly understood and require further elucidation. The prognosis and long-term outcome of these disorders has been documented only to a limited extent. Recent clinical and pathologic studies have indicated that collagenous mucosal inflammatory disease is a more extensive pathologic process that concomitantly may involve several sites in the gastric and intestinal mucosa. The dominant pathologic lesion is a distinct subepithelial hyaline-like deposit that has histochemical and ultrastructural features of collagen overlying a microscopically defined inflammatory process. An intimate relationship with other autoimmune connective tissue disorders is evident, particularly celiac disease. This is intriguing because these collagenous disorders have not been shown to be gluten dependent. Collagenous mucosal inflammatory disorders may represent a relatively unique but generalized inflammatory response to a multitude of causes, including celiac disease, along with a diverse group of pharmacologic agents. Some recent reports have documented treatment success but histopathologic reversal has been more difficult to substantiate owing to the focal, sometimes extensive nature, of this pathologic process.

  14. Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes

    PubMed Central

    Ariotti, Nicholas; Murphy, Samantha; Hamilton, Nicholas A.; Wu, Lizhen; Green, Kathryn; Schieber, Nicole L.; Li, Peng; Martin, Sally; Parton, Robert G.

    2012-01-01

    Despite the lipolysis–lipogenesis cycle being a fundamental process in adipocyte biology, very little is known about the morphological changes that occur during this process. The remodeling of lipid droplets to form micro lipid droplets (mLDs) is a striking feature of lipolysis in adipocytes, but once lipolysis ceases, the cell must regain its basal morphology. We characterized mLD formation in cultured adipocytes, and in primary adipocytes isolated from mouse epididymal fat pads, in response to acute activation of lipolysis. Using real-time quantitative imaging and electron tomography, we show that formation of mLDs in cultured adipocytes occurs throughout the cell to increase total LD surface area by ∼30% but does not involve detectable fission from large LDs. Peripheral mLDs are monolayered structures with a neutral lipid core and are sites of active lipolysis. Electron tomography reveals preferential association of mLDs with the endoplasmic reticulum. Treatment with insulin and fatty acids results in the reformation of macroLDs and return to the basal state. Insulin-dependent reformation of large LDs involves two distinct processes: microtubule-dependent homotypic fusion of mLDs and expansion of individual mLDs. We identify a physiologically important role for LD fusion that is involved in a reversible lipolytic cycle in adipocytes. PMID:22456503

  15. Motivational Processes Underlying Substance Abuse Disorder.

    PubMed

    Meyer, Paul J; King, Christopher P; Ferrario, Carrie R

    2016-01-01

    Drug addiction is a syndrome of dysregulated motivation, evidenced by intense drug craving and compulsive drug-seeking behavior. In the search for 'common neurobiological substrates of addiction to different classes of drugs, behavioral neuroscientists have attempted to determine the neural basis for a number of motivational concepts and describe how they are changed by repeated drug use. Here, we describe these concepts and summarize previous work describing three major neural systems that play distinct roles in different conceptual aspects of motivation: (1) a nigrostriatal system that is involved in two forms of instrumental learning, (2) a ventral striatal system that is involved in Pavlovian incentive motivation and negative reinforcement, and (3) frontal cortical areas that regulate decision making and motivational processes. Within striatal systems, drug addiction can involve a transition from goal-oriented, incentive processes to automatic, habit-based responding. In the cortex, weak inhibitory control is a predisposing factor to, as well as a consequence of, repeated drug intake. However, these transitions are not absolute, and addiction can occur without a transition to habit-based responding, occurring as a result of the overvaluation of drug outcomes and hypersensitivity to incentive properties of drug-associated cues. Finally, we point out that addiction is not monolithic and can depend not only on individual differences between addicts, but also on the neurochernical action of specific drug classes.

  16. C-terminal motifs in promyelocytic leukemia protein isoforms critically regulate PML nuclear body formation.

    PubMed

    Li, Chuang; Peng, Qiongfang; Wan, Xiao; Sun, Haili; Tang, Jun

    2017-10-15

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs), which are sub-nuclear protein structures, are involved in a variety of important cellular functions. PML-NBs are assembled by PML isoforms, and contact between small ubiquitin-like modifiers (SUMOs) with the SUMO interaction motif (SIM) are critically involved in this process. PML isoforms contain a common N-terminal region and a variable C-terminus. However, the contribution of the C-terminal regions to PML-NB formation remains poorly defined. Here, using high-resolution microscopy, we show that mutation of the SIM distinctively influences the structure of NBs formed by each individual PML isoform, with that of PML-III and PML-V minimally changed, and PML-I and PML-IV dramatically impaired. We further identify several C-terminal elements that are important in regulating NB structure and provide strong evidence to suggest that the 8b element in PML-IV possesses a strong ability to interact with SUMO-1 and SUMO-2, and critically participates in NB formation. Our findings highlight the importance of PML C-termini in NB assembly and function, and provide molecular insight into the PML-NB assembly of each distinctive isoform. © 2017. Published by The Company of Biologists Ltd.

  17. Involvement of opioid signaling in food preference and motivation: Studies in laboratory animals.

    PubMed

    Morales, I; Font, L; Currie, P J; Pastor, R

    2016-01-01

    Motivation is a complex neurobiological process that initiates, directs, and maintains goal-oriented behavior. Although distinct components of motivated behavior are difficult to investigate, appetitive and consummatory phases of motivation are experimentally separable. Different neurotransmitter systems, particularly the mesolimbic dopaminergic system, have been associated with food motivation. Over the last two decades, however, research focusing on the role of opioid signaling has been particularly growing in this area. Opioid receptors seem to be involved, via neuroanatomically distinct mechanisms, in both appetitive and consummatory aspects of food reward. In the present chapter, we review the pharmacology and functional neuroanatomy of opioid receptors and their endogenous ligands, in the context of food reinforcement. We examine literature aimed at the development of laboratory animal techniques to better understand different components of motivated behavior. We present recent data investigating the effect of opioid receptor antagonists on food preference and effort-related decision making in rats, which indicate that opioid signaling blockade selectively affects intake of relatively preferred foods, resulting in reduced willingness to exert effort to obtain them. Finally, we elaborate on the potential role of opioid system manipulations in disorders associated with excessive eating and obesity. © 2016 Elsevier B.V. All rights reserved.

  18. Are cognitive "insomnia" processes involved in the development and maintenance of delayed sleep wake phase disorder?

    PubMed

    Richardson, Cele E; Gradisar, Michael; Barbero, Sebastian C

    2016-04-01

    Although individuals with delayed sleep wake phase disorder (DSWPD) and chronic insomnia disorder (CID) share many of the same phenomenological experiences, theories relating to the development and maintenance of these disorders are distinct in focus. Unlike CID, theory relating to DSWPD is primarily physiologically based and assumes almost no cognitive pathway. However, recent research findings suggest that individuals with DSWPD also display many of the sleep-disordered cognitive processes that were previously assumed to be unique to the insomnia experience. As such, this review aims to summarise current research findings to address the question "Could cognitive processes be involved in the development and maintenance of DSWPD?" In particular, the presence of cognitive and physiological pre-sleep arousal, sleep-related attentional bias, distorted perception of sleep and daytime functioning, dysfunctional beliefs and safety behaviours will be investigated. As this emerging area of research requires a stronger evidence base, we highlight suggestions for future investigation and provide preliminary practice points for clinicians assessing and treating "insomnia" in patients with DSWPD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mentalizing in economic decision-making.

    PubMed

    Polezzi, David; Daum, Irene; Rubaltelli, Enrico; Lotto, Lorella; Civai, Claudia; Sartori, Giuseppe; Rumiati, Rino

    2008-07-19

    In the Ultimatum Game, participants typically reject monetary offers they consider unfair even if the alternative is to gain no money at all. In the present study, ERPs were recorded while subjects processed different offers of a proposer. In addition to clearly fair and unfair offers, mid-value offers which cannot be easily classified as fair or unfair and therefore involve more elaborate decision making were analyzed. A fast initial distinction between fair and other kinds of offers was reflected by amplitude of the feedback related negativity (FRN). Mid-value offers were associated with longer RTs, and a larger N350 amplitude. In addition, source analyses revealed a specific involvement of the superior temporal gyrus and the inferior parietal lobule during processing of mid-value offers compared to offers categorized clearly as fair or unfair, suggesting a contribution of mentalizing about the intention of the proposer to the decision making process. Taken together, the present findings support the idea that economic decisions are significantly affected by non-rational factors, trying to narrow the gap between formal theory and the real decisional behaviour.

  20. Brain sites involved in fear memory reconsolidation and extinction of rodents.

    PubMed

    Baldi, Elisabetta; Bucherelli, Corrado

    2015-06-01

    Fear memory is a motivational system essential for organisms survival having a central role in organization of defensive behaviors to threat. In the last years there has been a growing interest on conditioned fear memory reconsolidation and extinction, two specific phases of memorization process, both induced by memory retrieval. Understanding the mechanisms underlying these two mnemonic processes may allow to work out therapeutic interventions for treatment of human fear and anxiety disorders, such as specific phobias and post-traumatic stress disorder. Based on the use of one-trial conditioning paradigms, which allow to follow the evolution of a mnemonic trace in its various phases, the present paper has attempted to reorganize the current literature relative to the rodents highlighting both the role of several brain structures in conditioned fear memory reconsolidation and extinction and the selective cellular processes involved. A crucial role seems to be play by medial prefrontal cortex, in particular by prelimbic and infralimbic cortices, and by distinct connections between them and the amygdala, hippocampus and entorhinal cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A functional dissociation of conflict processing within anterior cingulate cortex.

    PubMed

    Kim, Chobok; Kroger, James K; Kim, Jeounghoon

    2011-02-01

    Goal-directed behavior requires cognitive control to regulate the occurrence of conflict. The dorsal anterior cingulate cortex (dACC) has been suggested in detecting response conflict during various conflict tasks. Recent findings, however, have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. In this study, we sought to examine whether perceptual and response conflicts are functionally dissociated in dACC. Thirteen healthy subjects performed a version of the Stroop task during functional magnetic resonance imaging (fMRI) scanning. We identified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in their responses to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict. Copyright © 2010 Wiley-Liss, Inc.

  2. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    PubMed

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  3. Using Fuzzy-Trace Theory to Understand and Improve Health Judgments, Decisions, and Behaviors: A Literature Review

    PubMed Central

    Blalock, Susan J.; Reyna, Valerie F.

    2016-01-01

    Objective Fuzzy-trace theory is a dual-process model of memory, reasoning, judgment, and decision making that contrasts with traditional expectancy-value approaches. We review the literature applying fuzzy-trace theory to health with three aims: evaluating whether the theory’s basic distinctions have been validated empirically in the domain of health; determining whether these distinctions are useful in assessing, explaining, and predicting health-related psychological processes; and determining whether the theory can be used to improve health judgments, decisions, or behaviors, especially in comparison to other approaches. Methods We conducted a literature review using PubMed, PsycInfo, and Web of Science to identify empirical peer-reviewed papers that applied fuzzy-trace theory, or central constructs of the theory, to investigate health judgments, decisions, or behaviors. Results 79 studies were identified, over half published since 2012, spanning a wide variety of conditions and populations. Study findings supported the prediction that verbatim and gist representations are distinct constructs that can be retrieved independently using different cues. Although gist-based reasoning was usually associated with improved judgment and decision making, four sources of bias that can impair gist reasoning were identified. Finally, promising findings were reported from intervention studies that used fuzzy-trace theory to improve decision making and decrease unhealthy risk taking. Conclusions Despite large gaps in the literature, most studies supported all three aims. By focusing on basic psychological processes that underlie judgment and decision making, fuzzy-trace theory provides insights into how individuals make decisions involving health risks and suggests innovative intervention approaches to improve health outcomes. PMID:27505197

  4. Clonal T-Cell Receptor γ-Chain Gene Rearrangements in Differential Diagnosis of Lymphomatoid Papulosis From Skin Metastasis of Nodal Anaplastic Large-Cell Lymphoma

    PubMed Central

    Akilov, Oleg E.; Pillai, Raju K.; Grandinetti, Lisa M.; Kant, Jeffrey A.; Geskin, Larisa

    2012-01-01

    Background In patients with a history of nodal anaplastic large-cell lymphoma (ALCL), differentiation of type C lymphomatoid papulosis from cutaneous involvement of systemic ALCL may be challenging because the 2 entities may exhibit identical histologic features. Although metastatic ALCL generally carries the same clone as the primary lymphoma, expression of a distinct clone likely represents a distinct process. Observations A 54-year-old white man had a history of anaplastic lymphoma kinase 1–negative ALCL in the right inguinal lymph node 6 years ago. A complete response was achieved after 6 cycles of CHOP (cyclophosphamide, doxorubicin, vincristine [Oncovin], and prednisone administered in 21-day cycles) and radiation therapy. After 3½ years, the patient observed waxing and waning papules and nodules. Examination of the biopsy specimen revealed a dense CD30+ lymphocytic infiltrate; no evidence of systemic malignancy was evident on positron emission tomography. Although clinically the presentation was consistent with lymphomatoid papulosis, metastatic ALCL had to be excluded. Polymerase chain reaction analysis with T-cell receptor γ-chain gene rearrangement (TCR-γR) was performed on the original lymph node and new skin lesions. Results of the TCR-γR analysis were positive for clonality in both lesions. However, separate clonal processes were identified. The identification of distinct clones supported the clinical impression of lymphomatoid papulosis. Conclusion Polymerase chain reaction analysis of TCR-γR is a useful method for distinguishing different clonal processes and is recommended when differentiation of primary and secondary lymphoproliferative disorders is required. PMID:21844453

  5. Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing

    PubMed Central

    Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis

    2009-01-01

    Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928

  6. 4D visualization of embryonic, structural crystallization by single-pulse microscopy

    PubMed Central

    Kwon, Oh-Hoon; Barwick, Brett; Park, Hyun Soon; Baskin, J. Spencer; Zewail, Ahmed H.

    2008-01-01

    In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding. PMID:18562291

  7. Sentence processing in the cerebral cortex.

    PubMed

    Sakai, K L; Hashimoto, R; Homae, F

    2001-01-01

    Human language is a unique faculty of the mind. It has been the ultimate mystery throughout the history of neuroscience. Despite many aphasia and functional imaging studies, the exact correlation between cortical language areas and subcomponents of the linguistic system has not been established. One notable drawback is that most functional imaging studies have tested language tasks at the word level, such as lexical decision and word generation tasks, thereby neglecting the syntactic aspects of the language faculty. As proposed by Chomsky, the critical knowledge of language involves universal grammar (UG), which governs the syntactic structure of sentences. In this article, we will review recent advances made by functional neuroimaging studies of language, focusing especially on sentence processing in the cerebral cortex. We also present the recent results of our functional magnetic resonance imaging (fMRI) study intended to identify cortical areas specifically involved in syntactic processing. A study of sentence processing that employs a newly developed technique, optical topography (OT), is also presented. Based on these findings, we propose a modular specialization of Broca's area, Wernicke's area, and the angular gyrus/supramarginal gyrus. The current direction of research in neuroscience is beginning to establish the existence of distinct modules responsible for our knowledge of language.

  8. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    PubMed

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context. Copyright © 2012. Published by Elsevier Ltd.

  9. Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach.

    PubMed

    Benítez-Burraco, Antonio; Di Pietro, Lorena; Barba, Marta; Lattanzi, Wanda

    2017-01-01

    Schizophrenia (SZ) is a pervasive neurodevelopmental disorder that entails social and cognitive deficits, including marked language problems. Its complex multifactorial etiopathogenesis, including genetic and environmental factors, is still widely uncertain. SZ incidence has always been high and quite stable in human populations, across time and regardless of cultural implications, for unclear reasons. It has been hypothesized that SZ pathophysiology may involve the biological components that changed during the recent human evolutionary history, and led to our distinctive mode of cognition, which includes language skills. In this paper we explore this hypothesis, focusing on the self-domestication of the human species. This has been claimed to account for many human-specific distinctive traits, including aspects of our behavior and cognition, and to favor the emergence of complex languages through cultural evolution. The "domestication syndrome" in mammals comprises the constellation of traits exhibited by domesticated strains, seemingly resulting from the hypofunction of the neural crest. It is our intention to show that people with SZ exhibit more marked domesticated traits at the morphological, physiological, and behavioral levels. We also show that genes involved in domestication and neural crest development and function comprise nearly 20% of SZ candidates, most of which exhibit altered expression profiles in the brain of SZ patients, specifically in areas involved in language processing. Based on these observations, we conclude that SZ may represent an abnormal ontogenetic itinerary for the human faculty of language, resulting, at least in part, from changes in genes important for the domestication syndrome and primarily involving the neural crest. © 2017 S. Karger AG, Basel.

  10. Predictors of Involvement and Warmth of Custodial Fathers in Israel: Comparison with Married and Noncustodial Divorced Fathers.

    PubMed

    Finzi-Dottan, Ricky; Cohen, Orna

    2016-03-01

    This study compared the levels and predictors of paternal warmth and involvement of 218 custodial fathers to 222 married fathers and 105 noncustodial (NC) divorced fathers in Israel. The examined predictors were fathers' perceptions of their own fathers; their own caregiving behaviors and parental self-efficacy; and child characteristics and coparental coordination. Results indicated that being a custodial father was associated with more involvement than being a married or NC divorced father. Regression analyses revealed that experience of care with own father predicted fathers' involvement, whereas own father control was related to lower paternal warmth. Lower avoidant caregiving and high paternal self-efficacy predicted both paternal involvement and warmth, whereas perceiving the child as more difficult predicted lower paternal warmth. Higher levels of coparental coordination were associated with more paternal involvement, whereas low coparental coordination was associated with less involvement, primarily among NC divorced fathers. These interactions highlight the distinct paternal behavior of custodial fathers. Unlike married and NC divorced fathers, they showed more warmth, regardless of their avoidant caregiving. Results are discussed in light of the different roles played by fathers in the three groups. © 2015 Family Process Institute.

  11. Prefrontal Cortex and Drug Abuse Vulnerability: Translation to Prevention and Treatment Interventions

    PubMed Central

    Perry, Jennifer L.; Joseph, Jane E.; Jiang, Yang; Zimmerman, Rick S.; Kelly, Thomas H.; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P.; Bardo, Michael T.

    2010-01-01

    Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and primates. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences factors (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals. PMID:20837060

  12. Characterizing the Associative Content of Brain Structures Involved in Habitual and Goal-Directed Actions in Humans: A Multivariate fMRI Study

    PubMed Central

    Liljeholm, Mimi; Zika, Ondrej; O'Doherty, John P.

    2015-01-01

    While there is accumulating evidence for the existence of distinct neural systems supporting goal-directed and habitual action selection in the mammalian brain, much less is known about the nature of the information being processed in these different brain regions. Associative learning theory predicts that brain systems involved in habitual control, such as the dorsolateral striatum, should contain stimulus and response information only, but not outcome information, while regions involved in goal-directed action, such as ventromedial and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing information about outcomes as well as stimuli and responses. To test this prediction, human participants underwent fMRI while engaging in a binary choice task designed to enable the separate identification of these different representations with a multivariate classification analysis approach. Consistent with our predictions, the dorsolateral striatum contained information about responses but not outcomes at the time of an initial stimulus, while the regions implicated in goal-directed action selection contained information about both responses and outcomes. These findings suggest that differential contributions of these regions to habitual and goal-directed behavioral control may depend in part on basic differences in the type of information that these regions have access to at the time of decision making. PMID:25740507

  13. Ligand-Mediated Ring → Cube Transformation in a Catalytic Subnanocluster: Co4O4(MeCN)n with n = 1-6.

    PubMed

    Luo, Sijie; Dibble, Collin J; Duncan, Michael A; Truhlar, Donald G

    2014-08-07

    We studied the Co4O4 subnanocluster and its MeCN-coated species using density functional theory, and we found that the Co4O4 core presents distinctive structures in bare and ligand-coated species. We propose a possible ligand-mediated ring → cube transformation mechanism during the ligand-coating process of the Co4O4 core due to the stronger binding energies of the MeCN ligands to the 3D distorted cube structure than to the 2D ring and ladder structures; theory indicates that three ligands are sufficient to stabilize the cube structure. Both ring and cube structures are ferromagnetic. Our finding is potentially useful for understanding the catalysis mechanism of Co4O4 species, which have important applications in solar energy conversion and water splitting; these catalysis reactions usually involve frequent addition and subtraction of various ligands and thus possibly involve core rearrangement processes similar to our findings.

  14. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis

    PubMed Central

    Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.

    2015-01-01

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382

  15. Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.

    PubMed

    Jones, Beryl M; Wcislo, William T; Robinson, Gene E

    2015-08-14

    Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.

  16. Arenavirus Budding: A Common Pathway with Mechanistic Differences

    PubMed Central

    Wolff, Svenja; Ebihara, Hideki; Groseth, Allison

    2013-01-01

    The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement. PMID:23435234

  17. fMRI responses to pictures of mutilation and contamination.

    PubMed

    Schienle, Anne; Schäfer, Axel; Hermann, Andrea; Walter, Bertram; Stark, Rudolf; Vaitl, Dieter

    2006-01-30

    Findings from several functional magnetic resonance imaging (fMRI) studies implicate the existence of a distinct neural disgust substrate, whereas others support the idea of distributed and integrative brain systems involved in emotional processing. In the present fMRI experiment 12 healthy females viewed pictures from four emotion categories. Two categories were disgust-relevant and depicted contamination or mutilation. The other scenes showed attacks (fear) or were affectively neutral. The two types of disgust elicitors received comparable ratings for disgust, fear and arousal. Both were associated with activation of the occipitotemporal cortex, the amygdala, and the orbitofrontal cortex; insula activity was nonsignificant in the two disgust conditions. Mutilation scenes induced greater inferior parietal activity than contamination scenes, which might mirror their greater capacity to capture attention. Our results are in disagreement with the idea of selective disgust processing at the insula. They point to a network of brain regions involved in the decoding of stimulus salience and the regulation of attention.

  18. Super-Memorizers Are Not Super-Recognizers

    PubMed Central

    Ramon, Meike; Miellet, Sebastien; Dzieciol, Anna M.; Konrad, Boris Nikolai

    2016-01-01

    Humans have a natural expertise in recognizing faces. However, the nature of the interaction between this critical visual biological skill and memory is yet unclear. Here, we had the unique opportunity to test two individuals who have had exceptional success in the World Memory Championships, including several world records in face-name association memory. We designed a range of face processing tasks to determine whether superior/expert face memory skills are associated with distinctive perceptual strategies for processing faces. Superior memorizers excelled at tasks involving associative face-name learning. Nevertheless, they were as impaired as controls in tasks probing the efficiency of the face system: face inversion and the other-race effect. Super memorizers did not show increased hippocampal volumes, and exhibited optimal generic eye movement strategies when they performed complex multi-item face-name associations. Our data show that the visual computations of the face system are not malleable and are robust to acquired expertise involving extensive training of associative memory. PMID:27008627

  19. Super-Memorizers Are Not Super-Recognizers.

    PubMed

    Ramon, Meike; Miellet, Sebastien; Dzieciol, Anna M; Konrad, Boris Nikolai; Dresler, Martin; Caldara, Roberto

    2016-01-01

    Humans have a natural expertise in recognizing faces. However, the nature of the interaction between this critical visual biological skill and memory is yet unclear. Here, we had the unique opportunity to test two individuals who have had exceptional success in the World Memory Championships, including several world records in face-name association memory. We designed a range of face processing tasks to determine whether superior/expert face memory skills are associated with distinctive perceptual strategies for processing faces. Superior memorizers excelled at tasks involving associative face-name learning. Nevertheless, they were as impaired as controls in tasks probing the efficiency of the face system: face inversion and the other-race effect. Super memorizers did not show increased hippocampal volumes, and exhibited optimal generic eye movement strategies when they performed complex multi-item face-name associations. Our data show that the visual computations of the face system are not malleable and are robust to acquired expertise involving extensive training of associative memory.

  20. The analysis of EEG coherence reflects middle childhood differences in mathematical achievement.

    PubMed

    González-Garrido, Andrés A; Gómez-Velázquez, Fabiola R; Salido-Ruiz, Ricardo A; Espinoza-Valdez, Aurora; Vélez-Pérez, Hugo; Romo-Vazquez, Rebeca; Gallardo-Moreno, Geisa B; Ruiz-Stovel, Vanessa D; Martínez-Ramos, Alicia; Berumen, Gustavo

    2018-07-01

    Symbolic numerical magnitude processing is crucial to arithmetic development, and it is thought to be supported by the functional activation of several brain-interconnected structures. In this context, EEG beta oscillations have been recently associated with attention and working memory processing that underlie math achievement. Due to that EEG coherence represents a useful measure of brain functional connectivity, we aimed to contrast the EEG coherence in forty 8-to-9-year-old children with different math skill levels (High: HA, and Low achievement: LA) according to their arithmetic scores in the Fourth Edition of the Wide Range Achievement Test (WRAT-4) while performing a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger). The analysis showed significantly greater coherence over the right hemisphere in the two groups, but with a distinctive connectivity pattern. Whereas functional connectivity in the HA group was predominant in parietal areas, especially involving beta frequencies, the LA group showed more extensive frontoparietal relationships, with higher participation of delta, theta and alpha band frequencies, along with a distinct time-frequency domain expression. The results seem to reflect that lower math achievements in children mainly associate with cognitive processing steps beyond stimulus encoding, along with the need of further attentional resources and cognitive control than their peers, suggesting a lower degree of numerical processing automation. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Taking a(c)count of eye movements: Multiple mechanisms underlie fixations during enumeration.

    PubMed

    Paul, Jacob M; Reeve, Robert A; Forte, Jason D

    2017-03-01

    We habitually move our eyes when we enumerate sets of objects. It remains unclear whether saccades are directed for numerosity processing as distinct from object-oriented visual processing (e.g., object saliency, scanning heuristics). Here we investigated the extent to which enumeration eye movements are contingent upon the location of objects in an array, and whether fixation patterns vary with enumeration demands. Twenty adults enumerated random dot arrays twice: first to report the set cardinality and second to judge the perceived number of subsets. We manipulated the spatial location of dots by presenting arrays at 0°, 90°, 180°, and 270° orientations. Participants required a similar time to enumerate the set or the perceived number of subsets in the same array. Fixation patterns were systematically shifted in the direction of array rotation, and distributed across similar locations when the same array was shown on multiple occasions. We modeled fixation patterns and dot saliency using a simple filtering model and show participants judged groups of dots in close proximity (2°-2.5° visual angle) as distinct subsets. Modeling results are consistent with the suggestion that enumeration involves visual grouping mechanisms based on object saliency, and specific enumeration demands affect spatial distribution of fixations. Our findings highlight the importance of set computation, rather than object processing per se, for models of numerosity processing.

  2. Visual crowding illustrates the inadequacy of local vs. global and feedforward vs. feedback distinctions in modeling visual perception

    PubMed Central

    Clarke, Aaron M.; Herzog, Michael H.; Francis, Gregory

    2014-01-01

    Experimentalists tend to classify models of visual perception as being either local or global, and involving either feedforward or feedback processing. We argue that these distinctions are not as helpful as they might appear, and we illustrate these issues by analyzing models of visual crowding as an example. Recent studies have argued that crowding cannot be explained by purely local processing, but that instead, global factors such as perceptual grouping are crucial. Theories of perceptual grouping, in turn, often invoke feedback connections as a way to account for their global properties. We examined three types of crowding models that are representative of global processing models, and two of which employ feedback processing: a model based on Fourier filtering, a feedback neural network, and a specific feedback neural architecture that explicitly models perceptual grouping. Simulations demonstrate that crucial empirical findings are not accounted for by any of the models. We conclude that empirical investigations that reject a local or feedforward architecture offer almost no constraints for model construction, as there are an uncountable number of global and feedback systems. We propose that the identification of a system as being local or global and feedforward or feedback is less important than the identification of a system's computational details. Only the latter information can provide constraints on model development and promote quantitative explanations of complex phenomena. PMID:25374554

  3. Tissue absence initiates regeneration through follistatin-mediated inhibition of activin signaling.

    PubMed

    Gaviño, Michael A; Wenemoser, Danielle; Wang, Irving E; Reddien, Peter W

    2013-09-10

    Regeneration is widespread, but mechanisms that activate regeneration remain mysterious. Planarians are capable of whole-body regeneration and mount distinct molecular responses to wounds that result in tissue absence and those that do not. A major question is how these distinct responses are activated. We describe a follistatin homolog (Smed-follistatin) required for planarian regeneration. Smed-follistatin inhibition blocks responses to tissue absence but does not prevent normal tissue turnover. Two activin homologs (Smed-activin-1 and Smed-activin-2) are required for the Smed-follistatin phenotype. Finally, Smed-follistatin is wound-induced and expressed at higher levels following injuries that cause tissue absence. These data suggest that Smed-follistatin inhibits Smed-Activin proteins to trigger regeneration specifically following injuries involving tissue absence and identify a mechanism critical for regeneration initiation, a process important across the animal kingdom. DOI:http://dx.doi.org/10.7554/eLife.00247.001.

  4. A relational framework for understanding bullying: Developmental antecedents and outcomes.

    PubMed

    Rodkin, Philip C; Espelage, Dorothy L; Hanish, Laura D

    2015-01-01

    This article reviews current research on the relational processes involved in peer bullying, considering developmental antecedents and long-term consequences. The following themes are highlighted: (a) aggression can be both adaptive and maladaptive, and this distinction has implications for bullies' functioning within peer social ecologies; (b) developmental antecedents and long-term consequences of bullying have not been well-distinguished from the extant research on aggressive behavior; (c) bullying is aggression that operates within relationships of power and abuse. Power asymmetry and repetition elements of traditional bullying definitions have been hard to operationalize, but without these specifications and more dyadic measurement approaches there may be little rationale for a distinct literature on bullying--separate from aggression. Applications of a relational approach to bullying are provided using gender as an example. Implications for future research are drawn from the study of relationships and interpersonal theories of developmental psychopathology. (c) 2015 APA, all rights reserved).

  5. Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.

    PubMed

    Costa, Vincent D; Dal Monte, Olga; Lucas, Daniel R; Murray, Elisabeth A; Averbeck, Bruno B

    2016-10-19

    Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL, we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with an RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys' choice reaction times, which emphasized a speed-accuracy trade-off that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. Published by Elsevier Inc.

  6. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis

    NASA Astrophysics Data System (ADS)

    Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping

    2016-09-01

    Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.

  7. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    PubMed

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  8. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance

    PubMed Central

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas CG

    2015-01-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection. PMID:25514534

  9. Amygdala and ventral striatum make distinct contributions to reinforcement learning

    PubMed Central

    Costa, Vincent D.; Monte, Olga Dal; Lucas, Daniel R.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2016-01-01

    Summary Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with a RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys’ choice reaction times, which emphasized a speed-accuracy tradeoff that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. PMID:27720488

  10. Cycling with BRCA2 from DNA repair to mitosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunsook, E-mail: HL212@snu.ac.kr

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner inmore » the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis.« less

  11. Probing the experimental phonon dispersion of graphene using 12C and 13C isotopes

    NASA Astrophysics Data System (ADS)

    Bernard, S.; Whiteway, E.; Yu, V.; Austing, D. G.; Hilke, M.

    2012-08-01

    Using very uniform large-scale chemical vapor deposition grown graphene transferred onto silicon, we were able to identify 15 distinct Raman lines associated with graphene monolayers. This was possible thanks to a combination of different carbon isotopes and different Raman laser energies and extensive averaging without increasing the laser power. This allowed us to obtain a detailed experimental phonon dispersion relation for many points in the Brillouin zone. We further identified a D+D' peak corresponding to a double-phonon process involving both an inter- and intravalley phonon.

  12. Hemispheric involvement in the processing of Chinese idioms: An fMRI study.

    PubMed

    Yang, Jie; Li, Ping; Fang, Xiaoping; Shu, Hua; Liu, Youyi; Chen, Lang

    2016-07-01

    Although the left hemisphere is believed to handle major language functions, the role of the right hemisphere in language comprehension remains controversial. Recently researchers have investigated hemispheric language processing with figurative language materials (e.g., metaphors, jokes, and idioms). The current study capitalizes on the pervasiveness and distinct features of Chinese idioms to examine the brain mechanism of figurative language processing. Native Chinese speakers performed a non-semantic task while reading opaque idioms, transparent idioms, and non-idiomatic literal phrases. Whole-brain analyses indicated strong activations for all three conditions in an overlapping brain network that includes the bilateral inferior/middle frontal gyrus and the temporo-parietal and occipital-temporal regions. The two idiom conditions elicited additional activations in the right superior parietal lobule and right precuneus. Item-based modulation analyses further demonstrated that activation amplitudes in the right angular gyrus, right superior parietal lobule and right precuneus, as well as left inferior temporo-occipital cortex, are negatively correlated with the semantic transparency of the idioms. These results suggest that both hemispheres are involved in idiom processing but they play different roles. Implications of the findings are discussed in light of theories of figurative language processing and hemispheric functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Acquisition of the Sentient-Nonsentient Distinction and Its Relationship to Causal Reasoning and Social Cognition.

    ERIC Educational Resources Information Center

    Tunmer, William E.

    1985-01-01

    Acquisition of sentient-nonsentient distinction in 48 children between four- and seven-years-of-age occurred later than animate-inanimate distinction. The children's use of naturalistic or nonnaturalistic explanations depended on the logical nature of events in which objects were involved rather than familiarity with objects themselves. Ability to…

  14. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios

    PubMed Central

    Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2016-01-01

    ABSTRACT Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2. The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4. RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria. The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia. Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic degradation produces the precursors of CH4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH4 production, while novel and unconventional degraders could be identified in a site where CO2 production greatly exceeds CH4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH4 production and reveal bacteria potentially producing the excess CO2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH4 emission from peatlands. PMID:27913414

  15. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios.

    PubMed

    Juottonen, Heli; Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2017-02-15

    Northern peatlands in general have high methane (CH 4 ) emissions, but individual peatlands show considerable variation as CH 4 sources. Particularly in nutrient-poor peatlands, CH 4 production can be low and exceeded by carbon dioxide (CO 2 ) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO 2 to CH 4 produced. After [ 13 C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH 4 and CO 2 The oligotrophic fen had lower CH 4 production but produced 3 to 59 times more CO 2 than CH 4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH 4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO 2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH 4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO 2 production in peatlands. Peatlands are major sources of the greenhouse gas methane (CH 4 ), yet in many peatlands, CO 2 production from unresolved anaerobic processes exceeds CH 4 production. Anaerobic degradation produces the precursors of CH 4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH 4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH 4 production, while novel and unconventional degraders could be identified in a site where CO 2 production greatly exceeds CH 4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH 4 production and reveal bacteria potentially producing the excess CO 2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH 4 emission from peatlands. Copyright © 2017 American Society for Microbiology.

  16. Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC.

    PubMed

    Meyers, Ethan M; Liang, Andy; Katsuki, Fumi; Constantinidis, Christos

    2017-10-11

    Objects that are highly distinct from their surroundings appear to visually "pop-out." This effect is present for displays in which: (1) a single cue object is shown on a blank background, and (2) a single cue object is highly distinct from surrounding objects; it is generally assumed that these 2 display types are processed in the same way. To directly examine this, we applied a decoding analysis to neural activity recorded from the lateral intraparietal (LIP) area and the dorsolateral prefrontal cortex (dlPFC). Our analyses showed that for the single-object displays, cue location information appeared earlier in LIP than in dlPFC. However, for the display with distractors, location information was substantially delayed in both brain regions, and information first appeared in dlPFC. Additionally, we see that pattern of neural activity is similar for both types of displays and across different color transformations of the stimuli, indicating that location information is being coded in the same way regardless of display type. These results lead us to hypothesize that 2 different pathways are involved processing these 2 types of pop-out displays. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Reward skewness coding in the insula independent of probability and loss

    PubMed Central

    Tobler, Philippe N.

    2011-01-01

    Rewards in the natural environment are rarely predicted with complete certainty. Uncertainty relating to future rewards has typically been defined as the variance of the potential outcomes. However, the asymmetry of predicted reward distributions, known as skewness, constitutes a distinct but neuroscientifically underexplored risk term that may also have an impact on preference. By changing only reward magnitudes, we study skewness processing in equiprobable ternary lotteries involving only gains and constant probabilities, thus excluding probability distortion or loss aversion as mechanisms for skewness preference formation. We show that individual preferences are sensitive to not only the mean and variance but also to the skewness of predicted reward distributions. Using neuroimaging, we show that the insula, a structure previously implicated in the processing of reward-related uncertainty, responds to the skewness of predicted reward distributions. Some insula responses increased in a monotonic fashion with skewness (irrespective of individual skewness preferences), whereas others were similarly elevated to both negative and positive as opposed to no reward skew. These data support the notion that the asymmetry of reward distributions is processed in the brain and, taken together with replicated findings of mean coding in the striatum and variance coding in the cingulate, suggest that the brain codes distinct aspects of reward distributions in a distributed fashion. PMID:21849610

  18. Temporal expectation and spectral expectation operate in distinct fashion on neuronal populations.

    PubMed

    Hsu, Yi-Fang; Hämäläinen, Jarmo A; Waszak, Florian

    2013-11-01

    The formation of temporal expectation (i.e., the prediction of "when") is of prime importance to sensory processing. It can modulate sensory processing at early processing stages probably via the entrainment of low-frequency neuronal oscillations in the brain. However, sensory predictions involve not only temporal expectation but also spectral expectation (i.e., the prediction of "what"). Here we investigated how temporal expectation may interrelate with spectral expectation by explicitly setting up temporal expectation and spectral expectation in a target detection task. We found that reaction time (RT) was shorter when targets were temporally expected than when they were temporally unexpected. The temporal expectation effect was larger with than without spectral expectation. However, this interaction in the behavioural data did not result from an interaction in the electroencephalography (EEG), where we observed independent main effects of temporal expectation and spectral expectation. More precisely, we found that the N1 and P2 event-related potential (ERP) components and the entrainment of low-frequency neuronal oscillations were exclusively modulated by temporal expectation, whilst only the P3 ERP component was modulated by spectral expectation. Our results, thus, support the idea that temporal expectation and spectral expectation operate in distinct fashion on neuronal populations. © 2013 Elsevier Ltd. All rights reserved.

  19. Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG.

    PubMed

    Pavlidou, Anastasia; Schnitzler, Alfons; Lange, Joachim

    2014-05-01

    The neural correlates of action recognition have been widely studied in visual and sensorimotor areas of the human brain. However, the role of neuronal oscillations involved during the process of action recognition remains unclear. Here, we were interested in how the plausibility of an action modulates neuronal oscillations in visual and sensorimotor areas. Subjects viewed point-light displays (PLDs) of biomechanically plausible and implausible versions of the same actions. Using magnetoencephalography (MEG), we examined dynamic changes of oscillatory activity during these action recognition processes. While both actions elicited oscillatory activity in visual and sensorimotor areas in several frequency bands, a significant difference was confined to the beta-band (∼20 Hz). An increase of power for plausible actions was observed in left temporal, parieto-occipital and sensorimotor areas of the brain, in the beta-band in successive order between 1650 and 2650 msec. These distinct spatio-temporal beta-band profiles suggest that the action recognition process is modulated by the degree of biomechanical plausibility of the action, and that spectral power in the beta-band may provide a functional interaction between visual and sensorimotor areas in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A Neuropsychological Approach to Understanding Risk-Taking for Potential Gains and Losses

    PubMed Central

    Levin, Irwin P.; Xue, Gui; Weller, Joshua A.; Reimann, Martin; Lauriola, Marco; Bechara, Antoine

    2012-01-01

    Affective neuroscience has helped guide research and theory development in judgment and decision-making by revealing the role of emotional processes in choice behavior, especially when risk is involved. Evidence is emerging that qualitatively and quantitatively different processes may be involved in risky decision-making for gains and losses. We start by reviewing behavioral work by Kahneman and Tversky (1979) and others, which shows that risk-taking differs for potential gains and potential losses. We then turn to the literature in decision neuroscience to support the gain versus loss distinction. Relying in part on data from a new task that separates risky decision-making for gains and losses, we test a neural model that assigns unique mechanisms for risky decision-making involving potential losses. Included are studies using patients with lesions to brain areas specified as important in the model and studies with healthy individuals whose brains are scanned to reveal activation in these and other areas during risky decision-making. In some cases, there is evidence that gains and losses are processed in different regions of the brain, while in other cases the same region appears to process risk in a different manner for gains and losses. At a more general level, we provide strong support for the notion that decisions involving risk-taking for gains and decisions involving risk-taking for losses represent different psychological processes. At a deeper level, we present mounting evidence that different neural structures play different roles in guiding risky choices in these different domains. Some structures are differentially activated by risky gains and risky losses while others respond uniquely in one domain or the other. Taken together, these studies support a clear functional dissociation between risk-taking for gains and risk-taking for losses, and further dissociation at the neural level. PMID:22347161

  1. SSME Main Combustion Chamber (MCC) hot oil dewaxing

    NASA Technical Reports Server (NTRS)

    Akpati, Anthony U.

    1995-01-01

    In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax (R) casting compound. Rigidax (R) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.

  2. SSME Main Combustion Chamber (MCC) 'Hot Oil' Dewaxing

    NASA Technical Reports Server (NTRS)

    Akpati, Anthony U.

    1994-01-01

    In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax(registered mark) casting compound. Rigidax(registered mark) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.

  3. The Neural Bases of Taxonomic and Thematic Conceptual Relations: An MEG Study

    PubMed Central

    Lewis, Gwyneth A.; Poeppel, David; Murphy, Gregory L.

    2015-01-01

    Converging evidence from behavioral and neuroimaging studies of human concepts indicate distinct neural systems for taxonomic and thematic knowledge. A recent study of naming in aphasia found involvement of the anterior temporal lobe (ATL) during taxonomic (feature-based) processing, and involvement of the temporoparietal junction (TPJ) during thematic (function-based) processing. We conducted an online magnetoencephalography (MEG) study to examine the spatio-temporal nature of taxonomic and thematic relations. We measured participants’ brain responses to words preceded by either a taxonomically or thematically related item (e.g., cottage→castle, king→castle). In a separate experiment we collected relatedness ratings of the word pairs from participants. We examined effects of relatedness and relation type on activation in ATL and TPJ regions of interest (ROIs) using permutation t-tests to identify differences in ROI activation between conditions as well as single-trial correlational analyses to examine the millisecond-by-millisecond influence of the stimulus variables on the ROIs. Taxonomic relations strongly predicted ATL activation, and both kinds of relations influenced the TPJ. Our results further strengthen the view of the ATL's importance to taxonomic knowledge. Moreover, they provide a nuanced view of thematic relations as involving taxonomic knowledge. PMID:25582406

  4. Neural mechanisms of attentional control differentiate trait and state negative affect.

    PubMed

    Crocker, Laura D; Heller, Wendy; Spielberg, Jeffrey M; Warren, Stacie L; Bredemeier, Keith; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2012-01-01

    The present research examined the hypothesis that cognitive processes are modulated differentially by trait and state negative affect (NA). Brain activation associated with trait and state NA was measured by fMRI during an attentional control task, the emotion-word Stroop. Performance on the task was disrupted only by state NA. Trait NA was associated with reduced activity in several regions, including a prefrontal area that has been shown to be involved in top-down, goal-directed attentional control. In contrast, state NA was associated with increased activity in several regions, including a prefrontal region that has been shown to be involved in stimulus-driven aspects of attentional control. Results suggest that NA has a significant impact on cognition, and that state and trait NA disrupt attentional control in distinct ways.

  5. Damage Control: Cellular Mechanisms of Plasma Membrane Repair

    PubMed Central

    Andrews, Norma W.; de Almeida, Patricia E.; Corrotte, Matthias

    2014-01-01

    Summary When wounded, eukaryotic cells reseal in a few seconds. Ca2+ influx induces exocytosis of lysosomes, a process previously thought to promote repair by “patching” wounds. New evidence suggests that resealing involves direct wound removal. Exocytosis of lysosomal acid sphingomyelinase triggers endocytosis of lesions, followed by intracellular degradation. Characterization of injury-induced endosomes revealed a role for caveolae, sphingolipid-enriched plasma membrane invaginations that internalize toxin pores and are abundant in mechanically stressed cells. These findings provide a novel mechanistic explanation for the muscle pathology associated with mutations in caveolar proteins. Membrane remodeling by the ESCRT complex was also recently shown to participate in small wound repair, emphasizing that cell resealing involves previously unrecognized mechanisms for lesion removal, which are distinct from the “patch” model. PMID:25150593

  6. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    PubMed

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  7. Parvalbumin and GAD65 Interneuron Inhibition in the Ventral Hippocampus Induces Distinct Behavioral Deficits Relevant to Schizophrenia

    PubMed Central

    Nguyen, Robin; Morrissey, Mark D.; Mahadevan, Vivek; Cajanding, Janine D.; Woodin, Melanie A.; Yeomans, John S.; Takehara-Nishiuchi, Kaori

    2014-01-01

    Hyperactivity within the ventral hippocampus (vHPC) has been linked to both psychosis in humans and behavioral deficits in animal models of schizophrenia. A local decrease in GABA-mediated inhibition, particularly involving parvalbumin (PV)-expressing GABA neurons, has been proposed as a key mechanism underlying this hyperactive state. However, direct evidence is lacking for a causal role of vHPC GABA neurons in behaviors associated with schizophrenia. Here, we probed the behavioral function of two different but overlapping populations of vHPC GABA neurons that express either PV or GAD65 by selectively inhibiting these neurons with the pharmacogenetic neuromodulator hM4D. We show that acute inhibition of vHPC GABA neurons in adult mice results in behavioral changes relevant to schizophrenia. Inhibiting either PV or GAD65 neurons produced distinct behavioral deficits. Inhibition of PV neurons, affecting ∼80% of the PV neuron population, robustly impaired prepulse inhibition of the acoustic startle reflex (PPI), startle reactivity, and spontaneous alternation, but did not affect locomotor activity. In contrast, inhibiting a heterogeneous population of GAD65 neurons, affecting ∼40% of PV neurons and 65% of cholecystokinin neurons, increased spontaneous and amphetamine-induced locomotor activity and reduced spontaneous alternation, but did not alter PPI. Inhibition of PV or GAD65 neurons also produced distinct changes in network oscillatory activity in the vHPC in vivo. Together, these findings establish a causal role for vHPC GABA neurons in controlling behaviors relevant to schizophrenia and suggest a functional dissociation between the GABAergic mechanisms involved in hippocampal modulation of sensorimotor processes. PMID:25378161

  8. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C.

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different frommore » those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.« less

  9. Perception as a closed-loop convergence process.

    PubMed

    Ahissar, Ehud; Assa, Eldad

    2016-05-09

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.

  10. Perception as a closed-loop convergence process

    PubMed Central

    Ahissar, Ehud; Assa, Eldad

    2016-01-01

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238

  11. Infant Perception of Non-Native Consonant Contrasts that Adults Assimilate in Different Ways*

    PubMed Central

    Best, Catherine C.; McRoberts, Gerald W.

    2009-01-01

    Numerous findings suggest that non-native speech perception undergoes dramatic changes before the infant’s first birthday. Yet the nature and cause of these changes remain uncertain. We evaluated the predictions of several theoretical accounts of developmental change in infants’ perception of non-native consonant contrasts. Experiment 1 assessed English-learning infants’ discrimination of three isiZulu distinctions that American adults had categorized and discriminated quite differently, consistent with the Perceptual Assimilation Model (PAM: Best, 1995; Best et al., 1988). All involved a distinction employing a single articulatory organ, in this case the larynx. Consistent with all theoretical accounts, 6–8 month olds discriminated all contrasts. However, 10–12 month olds performed more poorly on each, consistent with the Articulatory-Organ-matching hypothesis (AO) derived from PAM and Articulatory Phonology (Studdert-Kennedy & Goldstein, 2003), specifically that older infants should show a decline for non-native distinctions involving a single articulatory organ. However, the results may also be open to other interpretations. The converse AO hypothesis, that non-native between-organ distinctions will remain highly discriminate to older infants, was tested in Experiment 2. using a non-native Tigrinya distinction involving lips versus tongue tip. Both ages discriminated this between-organ contrast well, further supporting the AO hypothesis. Implications for theoretical accounts of infant speech perception are discussed. PMID:14748444

  12. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    PubMed

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p<0.05), were identified. Compared to that in the low titer circumstance, cells conducted distinct biological processes under high acetic acid stress, where >150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Asymmetric Correlation between Experienced Parental Attachment and Event-Related Potentials Evoked in Response to Parental Faces

    PubMed Central

    Dai, Junqiang; Zhai, Hongchang; Zhou, Anbang; Gong, Yongyuan; Luo, Lin

    2013-01-01

    This study aims to explore the modulation effects of attachment relationships with parents on the neural correlates that are associated with parental faces. The event-related potentials elicited in 31 college students while viewing facial stimuli of their parents in two single oddball paradigms (father vs. unfamiliar male and mother vs. unfamiliar female) were measured. We found that enhanced P3a and P3b and attenuated N2b were elicited by parental faces; however, the N170 component failed to discriminate parental faces from unfamiliar faces. An experienced attachment relationship with the father was positively correlated to the P3a response associated with the father’s face, whereas no correlation was found in the case of mothers. Further exploration in dipole source localization showed that, within the time window of the P300, distinctive brain regions were involved in the processing of parental faces; the father’s face was located in the medial frontal gyrus, which might be involved in self effect, and the anterior cingulate gyrus was activated in response to the mother’s face. This research is the first to demonstrate that neural mechanisms involved with parents can be modulated differentially by the qualities of the attachments to the parents. In addition, parental faces share a highly similar temporal pattern, but the origins of these neural responses are distinct, which could merit further investigation. PMID:23844240

  14. A processing approach to the working memory/long-term memory distinction: evidence from the levels-of-processing span task.

    PubMed

    Rose, Nathan S; Craik, Fergus I M

    2012-07-01

    Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or category-membership judgments about words, and immediate recall of the words was required after every 3 or 8 processing judgments. In Experiment 1, immediate recall did not demonstrate a levels-of-processing effect, but a subsequent LTM test (delayed recognition) of the same words did show a benefit of deeper processing. Experiment 2 showed that surprise immediate recall of 8-item lists did demonstrate a levels-of-processing effect, however. A processing account of the conditions in which levels-of-processing effects are and are not found in WM tasks was advanced, suggesting that the extent to which levels-of-processing effects are similar between WM and LTM tests largely depends on the amount of disruption to active maintenance processes. 2012 APA, all rights reserved

  15. Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.

    2012-01-01

    The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860

  16. Cognitive foundations of organizational learning: re-introducing the distinction between declarative and non-declarative knowledge

    PubMed Central

    Kump, Barbara; Moskaliuk, Johannes; Cress, Ulrike; Kimmerle, Joachim

    2015-01-01

    Contemporary research into socio-cognitive foundations of organizational learning tends to disregard the distinction between declarative and non-declarative knowledge. By reviewing the literature from organizational learning research and cognitive psychology we explain that this distinction is crucial. We describe the foundations of organizational learning by referring to models that consider the interplay between individual and collective knowledge-related processes in organizations. We highlight the existence of a research gap resulting from the finding that these approaches have widely neglected the existence of different types of knowledge. We then elaborate on characteristics of declarative and non-declarative knowledge in general, consider organizations as structures of distributed cognition, and discuss the relationship between organizational knowledge and practice. Subsequently, we examine the role of declarative and non-declarative knowledge in the context of organizational learning. Here, we analyze (1) the cognitive and social mechanisms underlying the development of declarative and non-declarative knowledge within structures of distributed cognition; and (2) the relationship between alterations in declarative and non-declarative types of knowledge on the one hand and changes in organizational practice on the other. Concluding, we discuss implications of our analysis for organizational learning research. We explain how our integrative perspective may offer starting points for a refined understanding of the sub-processes involved in organizational learning and unlearning and may support a better understanding of practical problems related to organizational learning and change. PMID:26483739

  17. Persistent recruitment of somatosensory cortex during active maintenance of hand images in working memory.

    PubMed

    Galvez-Pol, A; Calvo-Merino, B; Capilla, A; Forster, B

    2018-07-01

    Working memory (WM) supports temporary maintenance of task-relevant information. This process is associated with persistent activity in the sensory cortex processing the information (e.g., visual stimuli activate visual cortex). However, we argue here that more multifaceted stimuli moderate this sensory-locked activity and recruit distinctive cortices. Specifically, perception of bodies recruits somatosensory cortex (SCx) beyond early visual areas (suggesting embodiment processes). Here we explore persistent activation in processing areas beyond the sensory cortex initially relevant to the modality of the stimuli. Using visual and somatosensory evoked-potentials in a visual WM task, we isolated different levels of visual and somatosensory involvement during encoding of body and non-body-related images. Persistent activity increased in SCx only when maintaining body images in WM, whereas visual/posterior regions' activity increased significantly when maintaining non-body images. Our results bridge WM and embodiment frameworks, supporting a dynamic WM process where the nature of the information summons specific processing resources. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Using fuzzy-trace theory to understand and improve health judgments, decisions, and behaviors: A literature review.

    PubMed

    Blalock, Susan J; Reyna, Valerie F

    2016-08-01

    Fuzzy-trace theory is a dual-process model of memory, reasoning, judgment, and decision making that contrasts with traditional expectancy-value approaches. We review the literature applying fuzzy-trace theory to health with 3 aims: evaluating whether the theory's basic distinctions have been validated empirically in the domain of health; determining whether these distinctions are useful in assessing, explaining, and predicting health-related psychological processes; and determining whether the theory can be used to improve health judgments, decisions, or behaviors, especially compared to other approaches. We conducted a literature review using PubMed, PsycINFO, and Web of Science to identify empirical peer-reviewed papers that applied fuzzy-trace theory, or central constructs of the theory, to investigate health judgments, decisions, or behaviors. Seventy nine studies (updated total is 94 studies; see Supplemental materials) were identified, over half published since 2012, spanning a wide variety of conditions and populations. Study findings supported the prediction that verbatim and gist representations are distinct constructs that can be retrieved independently using different cues. Although gist-based reasoning was usually associated with improved judgment and decision making, 4 sources of bias that can impair gist reasoning were identified. Finally, promising findings were reported from intervention studies that used fuzzy-trace theory to improve decision making and decrease unhealthy risk taking. Despite large gaps in the literature, most studies supported all 3 aims. By focusing on basic psychological processes that underlie judgment and decision making, fuzzy-trace theory provides insights into how individuals make decisions involving health risks and suggests innovative intervention approaches to improve health outcomes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Distinct features distinguishing IgG4-related disease from multicentric Castleman’s disease

    PubMed Central

    Sasaki, Takanori; Akiyama, Mitsuhiro; Kaneko, Yuko; Mori, Takehiko; Yasuoka, Hidekata; Suzuki, Katsuya; Yamaoka, Kunihiro; Okamoto, Shinichiro; Takeuchi, Tsutomu

    2017-01-01

    Objectives Differentiating IgG4-related disease (IgG4-RD) from multicentric Castleman’s disease (MCD) is challenging because both diseases present high serum IgG4. The objective of this study is to clarify the differences in characteristics and identify a clinically useful approach to differentiate these two diseases. Methods Forty-five consecutive patients with untreated active IgG4-RD and 33 patients with MCD were included in this study, who visited our institution from January 2000 to August 2016. The clinical and laboratory findings for the patients of the two diseases were compared. Various combinations of the distinctive findings were evaluated to identify the most efficient differentiating features between IgG4-RD and MCD. Results The levels of serum IgG4 were not different between the two diseases. Orbits, lacrimal glands, salivary glands or pancreas were involved in 88.9% of IgG4-RD cases and only in 3.0% of MCD cases. All MCD cases involved lymph nodes. Atopic history was characteristic for IgG4-RD. The levels of C reactive protein (CRP) with a cut-off of 0.80 mg/dL and IgA with a cut-off of 330 mg/dL were the most distinctive. The combination of ‘Orbits, lacrimal glands, salivary glands or pancreas involvement, atopic history, or non-involvement of lymph node’ and ‘CRP ≤ 0.8 mg/dL or IgA ≤ 330 mg/dL’ yielded the probability of 97.8% in IgG4-RD, while that of 3.0 % in patients with MCD. Conclusions Our study revealed distinct features between IgG4-RD and MCD. Differentiating between the diseases based on those distinct features, including distribution of organ involvement, atopic history, levels of IgA and CRP, was a useful approach. PMID:28959455

  20. Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life

    PubMed Central

    Loker, Eric S.

    2012-01-01

    An emerging picture of the nature of immune systems across animal phyla reveals both conservatism of some features and the appearance among and within phyla of novel, lineage-specific defense solutions. The latter collectively represent a major and underappreciated form of animal diversity. Factors influencing this macroevolutionary (above the species level) pattern of novelty are considered and include adoption of different life styles, life histories, and body plans; a general advantage of being distinctive with respect to immune defenses; and the responses required to cope with parasites, many of which afflict hosts in a lineage-specific manner. This large-scale pattern of novelty implies that immunological phenomena can affect microevolutionary processes (at the population level within species) that can eventually lead to macroevolutionary events such as speciation, radiations, or extinctions. Immunologically based phenomena play a role in favoring intraspecific diversification, specialization and host specificity of parasites, and mechanisms are discussed whereby this could lead to parasite speciation. Host switching – the acquisition of new host species by parasites – is a major mechanism that drives parasite diversity and is frequently involved in disease emergence. It is also one that can be favored by reductions in immune competence of new hosts. Mechanisms involving immune phenomena favoring intraspecific diversification and speciation of host species are also discussed. A macroevolutionary perspective on immunology is invaluable in today’s world, including the need to study a broader range of species with distinctive immune systems. Many of these species are faced with extinction, another macroevolutionary process influenced by immune phenomena. PMID:22566909

  1. Direct evidence from intraoperative electrocortical stimulation indicates shared and distinct speech production center between Chinese and English languages.

    PubMed

    Wu, Jinsong; Lu, Junfeng; Zhang, Han; Zhang, Jie; Yao, Chengjun; Zhuang, Dongxiao; Qiu, Tianming; Guo, Qihao; Hu, Xiaobing; Mao, Ying; Zhou, Liangfu

    2015-12-01

    Chinese processing has been suggested involving distinct brain areas from English. However, current functional localization studies on Chinese speech processing use mostly "indirect" techniques such as functional magnetic resonance imaging and electroencephalography, lacking direct evidence by means of electrocortical recording. In this study, awake craniotomies in 66 Chinese-speaking glioma patients provide a unique opportunity to directly map eloquent language areas. Intraoperative electrocortical stimulation was conducted and the positive sites for speech arrest, anomia, and alexia were identified separately. With help of stereotaxic neuronavigation system and computational modeling, all positive sites elicited by stimulation were integrated and a series of two- and three-dimension Chinese language probability maps were built. We performed statistical comparisons between the Chinese maps and previously derived English maps. While most Chinese speech arrest areas located at typical language production sites (i.e., 50% positive sites in ventral precentral gyrus, 28% in pars opercularis and pars triangularis), which also serve English production, an additional brain area, the left middle frontal gyrus (Brodmann's areas 6/9), was found to be unique in Chinese production (P < 0.05). Moreover, Chinese speakers' inferior ventral precentral gyrus (Brodmann's area 6) was used more than that in English speakers. Our finding suggests that Chinese involves more perisylvian region (extending to left middle frontal gyrus) than English. This is the first time that direct evidence supports cross-cultural neurolinguistics differences in human beings. The Chinese language atlas will also helpful in brain surgery planning for Chinese-speakers. Copyright © 2015 Wiley Periodicals, Inc.

  2. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans.

    PubMed

    Parrish, S; Fire, A

    2001-10-01

    RNA interference (RNAi) is a cellular defense mechanism that uses double-stranded RNA (dsRNA) as a sequence-specific trigger to guide the degradation of homologous single-stranded RNAs. RNAi is a multistep process involving several proteins and at least one type of RNA intermediate, a population of small 21-25 nt RNAs (called siRNAs) that are initially derived from cleavage of the dsRNA trigger. Genetic screens in Caenorhabditis elegans have identified numerous mutations that cause partial or complete loss of RNAi. In this work, we analyzed cleavage of injected dsRNA to produce the initial siRNA population in animals mutant for rde-1 and rde-4, two genes that are essential for RNAi but that are not required for organismal viability or fertility. Our results suggest distinct roles for RDE-1 and RDE-4 in the interference process. Although null mutants lacking rde-1 show no phenotypic response to dsRNA, the amount of siRNAs generated from an injected dsRNA trigger was comparable to that of wild-type. By contrast, mutations in rde-4 substantially reduced the population of siRNAs derived from an injected dsRNA trigger. Injection of chemically synthesized 24- or 25-nt siRNAs could circumvent RNAi resistance in rde-4 mutants, whereas no bypass was observed in rde-1 mutants. These results support a model in which RDE-4 is involved before or during production of siRNAs, whereas RDE-1 acts after the siRNAs have been formed.

  3. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans.

    PubMed Central

    Parrish, S; Fire, A

    2001-01-01

    RNA interference (RNAi) is a cellular defense mechanism that uses double-stranded RNA (dsRNA) as a sequence-specific trigger to guide the degradation of homologous single-stranded RNAs. RNAi is a multistep process involving several proteins and at least one type of RNA intermediate, a population of small 21-25 nt RNAs (called siRNAs) that are initially derived from cleavage of the dsRNA trigger. Genetic screens in Caenorhabditis elegans have identified numerous mutations that cause partial or complete loss of RNAi. In this work, we analyzed cleavage of injected dsRNA to produce the initial siRNA population in animals mutant for rde-1 and rde-4, two genes that are essential for RNAi but that are not required for organismal viability or fertility. Our results suggest distinct roles for RDE-1 and RDE-4 in the interference process. Although null mutants lacking rde-1 show no phenotypic response to dsRNA, the amount of siRNAs generated from an injected dsRNA trigger was comparable to that of wild-type. By contrast, mutations in rde-4 substantially reduced the population of siRNAs derived from an injected dsRNA trigger. Injection of chemically synthesized 24- or 25-nt siRNAs could circumvent RNAi resistance in rde-4 mutants, whereas no bypass was observed in rde-1 mutants. These results support a model in which RDE-4 is involved before or during production of siRNAs, whereas RDE-1 acts after the siRNAs have been formed. PMID:11680844

  4. Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex

    PubMed Central

    Stevens, W. Dale; Tessler, Michael Henry; Peng, Cynthia S.; Martin, Alex

    2015-01-01

    One of the most robust and oft-replicated findings in cognitive neuroscience is that several spatially distinct, functionally dissociable ventral occipitotemporal cortex (VOTC) regions respond preferentially to different categories of concrete entities. However, the determinants of this category-related organization remain to be fully determined. One recent proposal is that privileged connectivity of these VOTC regions with other regions that store and/or process category-relevant properties may be a major contributing factor. To test this hypothesis, we used a multi-category functional MRI localizer to individually define category-related brain regions of interest (ROIs) in a large group of subjects (n=33). We then used these ROIs in resting-state functional connectivity MRI analyses to explore spontaneous functional connectivity among these regions. We demonstrate that during rest, distinct category-preferential VOTC regions show differentially stronger functional connectivity with other regions that have congruent category-preference, as defined by the functional localizer. Importantly, a ‘tool’-preferential region in the left medial fusiform gyrus showed differentially stronger functional connectivity with other left lateralized cortical regions associated with perceiving and knowing about common tools – posterior middle temporal gyrus (involved in perception of non-biological motion), lateral parietal cortex (critical for reaching, grasping, manipulating), and ventral premotor cortex (involved in storing/executing motor programs) – relative to other category-related regions in VOTC of both the right and left hemisphere. Our findings support the claim that privileged connectivity with other cortical regions that store and/or process category-relevant properties constrains the category-related organization of VOTC. PMID:25704493

  5. Motivational Processes Underlying Substance Abuse Disorder

    PubMed Central

    King, Christopher P.; Ferrario, Carrie R.

    2016-01-01

    Drug addiction is a syndrome of dysregulated motivation, evidenced by intense drug craving and compulsive drug-seeking behavior. In the search for common neurobiological substrates of addiction to different classes of drugs, behavioral neuroscientists have attempted to determine the neural basis for a number of motivational concepts and describe how they are changed by repeated drug use. Here, we describe these concepts and summarize previous work describing three major neural systems that play distinct roles in different conceptual aspects of motivation: (1) a nigrostriatal system that is involved in two forms of instrumental learning, (2) a ventral striatal system that is involved in Pavlovian incentive motivation and negative reinforcement, and (3) frontal cortical areas that regulate decision making and motivational processes. Within striatal systems, drug addiction can involve a transition from goal-oriented, incentive processes to automatic, habit-based responding. In the cortex, weak inhibitory control is a predisposing factor to, as well as a consequence of, repeated drug intake. However, these transitions are not absolute, and addiction can occur without a transition to habit-based responding, occurring as a result of the overvaluation of drug outcomes and hypersensitivity to incentive properties of drug-associated cues. Finally, we point out that addiction is not monolithic and can depend not only on individual differences between addicts, but also on the neurochemical action of specific drug classes. PMID:26475159

  6. Rule-Guided Executive Control of Response Inhibition: Functional Topography of the Inferior Frontal Cortex

    PubMed Central

    Cai, Weidong; Leung, Hoi-Chung

    2011-01-01

    Background The human inferior frontal cortex (IFC) is a large heterogeneous structure with distinct cytoarchitectonic subdivisions and fiber connections. It has been found involved in a wide range of executive control processes from target detection, rule retrieval to response control. Since these processes are often being studied separately, the functional organization of executive control processes within the IFC remains unclear. Methodology/Principal Findings We conducted an fMRI study to examine the activities of the subdivisions of IFC during the presentation of a task cue (rule retrieval) and during the performance of a stop-signal task (requiring response generation and inhibition) in comparison to a not-stop task (requiring response generation but not inhibition). We utilized a mixed event-related and block design to separate brain activity in correspondence to transient control processes from rule-related and sustained control processes. We found differentiation in control processes within the IFC. Our findings reveal that the bilateral ventral-posterior IFC/anterior insula are more active on both successful and unsuccessful stop trials relative to not-stop trials, suggesting their potential role in the early stage of stopping such as triggering the stop process. Direct countermanding seems to be outside of the IFC. In contrast, the dorsal-posterior IFC/inferior frontal junction (IFJ) showed transient activity in correspondence to the infrequent presentation of the stop signal in both tasks and the left anterior IFC showed differential activity in response to the task cues. The IFC subdivisions also exhibited similar but distinct patterns of functional connectivity during response control. Conclusions/Significance Our findings suggest that executive control processes are distributed across the IFC and that the different subdivisions of IFC may support different control operations through parallel cortico-cortical and cortico-striatal circuits. PMID:21673969

  7. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association

    PubMed Central

    Hoshi, Eiji

    2013-01-01

    Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692

  8. Proteolipidic Composition of Exosomes Changes during Reticulocyte Maturation*

    PubMed Central

    Carayon, Kévin; Chaoui, Karima; Ronzier, Elsa; Lazar, Ikrame; Bertrand-Michel, Justine; Roques, Véronique; Balor, Stéphanie; Terce, François; Lopez, André; Salomé, Laurence; Joly, Etienne

    2011-01-01

    During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process. PMID:21828046

  9. Micro- and mesoscopic process interactions in protein coagulation

    NASA Astrophysics Data System (ADS)

    San Biagio, P. L.; Martorana, V.; Emanuele, A.; Vaiana, S. M.; Manno, M.; Bulone, D.; Palma-Vittorelli, M. B.; Palma, M. U.

    2000-04-01

    It has recently been recognized that pathological protein coagulation is responsible for lethal pathologies as diverse as amyloidosis, Alzheimer and TSE. Understanding the coagulation mechanisms is therefore stirring great interest. In previous studies we have shown that on profoundly different systems coagulation is the result of a strong interaction between two processes on different length scales (mesoscopic and microscopic). Here we report experiments on bovine serum albumin (BSA) showing that the overall mechanism is the result of at least 3 distinct and strongly intertwined processes, on both length scales: molecular conformational changes, solution demixing and intermolecular crosslinking. This mechanism involves the statistical mechanics of protein-solvent interaction, its relation to the protein's landscape of configurational free energy and to the solution's thermodynamic stability, and its relation to the topological problem of crosslink-percolation, responsible for coagulation.

  10. Theory of Neutron Chain Reactions: Extracts from Volume I, Diffusion and Slowing Down of Neutrons: Chapter I. Elementary Theory of Neutron Diffusion. Chapter II. Second Order Diffusion Theory. Chapter III. Slowing Down of Neutrons

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.; Noderer, L. C.

    1951-05-15

    The large scale release of nuclear energy in a uranium fission chain reaction involves two essentially distinct physical phenomena. On the one hand there are the individual nuclear processes such as fission, neutron capture, and neutron scattering. These are essentially quantum mechanical in character, and their theory is non-classical. On the other hand, there is the process of diffusion -- in particular, diffusion of neutrons, which is of fundamental importance in a nuclear chain reaction. This process is classical; insofar as the theory of the nuclear chain reaction depends on the theory of neutron diffusion, the mathematical study of chain reactions is an application of classical, not quantum mechanical, techniques.

  11. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  12. Perceptual grouping in the human brain: common processing of different cues.

    PubMed

    Seymour, Kiley; Karnath, Hans-Otto; Himmelbach, Marc

    2008-12-03

    The perception of global scenes and objects consisting of multiple constituents is based on the integration of local elements or features. Gestalt grouping cues, such as proximity or similarity, can aid this process. Using functional MRI we investigated whether grouping guided by different gestalt cues rely on distinct networks in the brain or share a common network. Our study revealed that gestalt grouping involved the inferior parietal cortex, middle temporal gyrus and prefrontal cortex irrespective of the specific cue used. These findings agree with observations in neurological patients, which suggest that inferior parietal regions may aid the integration of local features into a global gestalt. Damage to this region results in simultanagnosia, a deficit in perceiving multiple objects and global scenes.

  13. Nursing communication in nursing care to mastectomized women: a grounded theory study.

    PubMed

    de Almeida Araújo, Iliana Maria; da Silva, Raimunda Magalhães; Bonfim, Isabela Melo; Fernandes, Ana Fátima Carvalho

    2010-01-01

    The goal was to understand the nurse/patient communication process, emphasizing nursing care to mastectomized women. Symbolic Interactionism and Grounded Theory were used to interview eight nurses from a referral institution in cancer treatment, using the guiding question: how do nurses perceive their communication process with mastectomized women? Data analysis allowed for the creation of a central theory: the meaning of communication in nursing care to women, constituted by three distinct but inter-related phenomena: perceiving communication, the relationship nurse/mastectomized woman and rethinking the communication nurse/mastectomized woman. With a view to satisfactory communication, professionals need to get involved and believe that their presence is as important as the performance of technical procedures that relieve situations of stress.

  14. Impact of heat-shock protein 90 on cancer metastasis

    PubMed Central

    Tsutsumi, Shinji; Beebe, Kristin; Neckers, Len

    2009-01-01

    Cancer metastasis is the result of complex processes, including alteration of cell adhesion/motility in the microenvironment and neoangiogenesis, that are necessary to support cancer growth in tissues distant from the primary tumor. The molecular chaperone heat-shock protein 90 (Hsp90), also termed the ‘cancer chaperone’, plays a crucial role in maintaining the stability and activity of numerous signaling proteins involved in these processes. Small-molecule Hsp90 inhibitors display anticancer activity both in vitro and in vivo, and multiple Phase II and Phase III clinical trials of several structurally distinct Hsp90 inhibitors are currently underway. In this review, we will highlight the importance of Hsp90 in cancer metastasis and the therapeutic potential of Hsp90 inhibitors as antimetastasis drugs. PMID:19519207

  15. Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis.

    PubMed

    Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon

    2013-11-01

    Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation, uncinate fasciculus and hippocampal portion of the cingulum bundles. Significant differences also emerged in the anterior corona radiata as well as in white matter underlying the superior, medial and inferior frontal gyri and the temporal gyri. Dual-task performance significantly correlated with fractional anisotropy measures in the middle frontal gyrus white matter and anterior corona radiata. Letter fluency indices significantly correlated with fractional anisotropy measures of the inferior frontal gyrus white matter and corpus callosum in addition to the corticospinal tracts and mean diffusivity measures in the white matter of the superior frontal gyrus. The current study demonstrates that cognitive impairment in amyotrophic lateral sclerosis is not due to generic slowing of processing speed. Moreover, different executive deficits are related to distinct prefrontal tract involvement in amyotrophic lateral sclerosis with dual-task impairment associating with dorsolateral prefrontal dysfunction and letter fluency showing greater dependence on inferolateral prefrontal dysfunction.

  16. Patient Involvement: A New Source of Stress in Health Care Work?

    PubMed

    Arnetz, Judith E; Zhdanova, Ludmila; Arnetz, Bengt B

    2016-12-01

    Patients have become increasingly well informed with higher expectations to be involved in decision-making processes regarding their care and treatment. However, few studies have examined the impact of patient involvement on health care providers' partnership-building communication. The aim of this study was to measure and explore the self-reported effects of patient involvement on the work of physicians and nurses. A questionnaire survey was distributed among cardiology staff in 12 Swedish hospitals (N = 488, response rate 67%). The sample was comprised of registered nurses (RNs, n = 303), licensed practical nurses (LPNs, n = 132), and physicians (MDs, n = 53). Confirmatory factor analysis was used to examine seven questionnaire statements concerning implications of patient involvement for one's clinical work. Regression analyses were used to examine factors associated with staff's partnership-building communication. Analysis confirmed two distinct factors accounting for 57% of the total variance, representing both negative-"Hassles"-and positive-"Uplifts"-aspects of patient involvement. Regression analyses revealed that only positive aspects (i.e., uplifts) of patient involvement predicted staff behavior aimed at involving patients. Working with actively involved patients may be a source of stress, both negative and positive, for health care professionals. By developing work routines for involving patients in their care, health care workplaces may help health care professionals to buffer the negative effects, and enhance the positive effects, of that stress.

  17. Patient involvement: A new source of stress in healthcare work?

    PubMed Central

    Arnetz, Judith E.; Zhdanova, Ludmila; Arnetz, Bengt B.

    2016-01-01

    Patients have become increasingly well-informed with higher expectations to be involved in decision-making processes regarding their care and treatment. However, few studies have examined the impact of patient involvement on health care providers’ partnership-building communication. The aim of this study was to measure and explore the self-reported effects of patient involvement on the work of physicians and nurses. A questionnaire survey was distributed among cardiology staff in 12 Swedish hospitals (N=488, response rate 67%). The sample was comprised of registered nurses (RNs, n=303), licensed practical nurses (LPNs, n=132) and physicians (MDs, n=53). Confirmatory factor analysis was used to examine 7 questionnaire statements concerning implications of patient involvement for one’s clinical work. Regression analyses were used to examine factors associated with staff’s partnership-building communication. Analysis confirmed two distinct factors accounting for 57% of the total variance, representing both negative – “Hassles”– and positive –“Uplifts” – aspects of patient involvement. Regression analyses revealed that only positive aspects (i.e., uplifts) of patient involvement predicted staff behavior aimed at involving patients. Working with actively involved patients may be a source of stress, both negative and positive, for health care professionals. By developing work routines for involving patients in their care, health care workplaces may help health care professionals to buffer the negative effects, and enhance the positive effects, of that stress. PMID:27054396

  18. Combining Temporal and Spectral Information with Spatial Mapping to Identify Differences between Phonological and Semantic Networks: A Magnetoencephalographic Approach.

    PubMed

    McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J; Rippon, Gina

    2012-01-01

    Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bands were analyzed in pre-selected time windows of 350-550 and 500-700 ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700 ms for the phonological task and 350-550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550 ms for the phonological task and 500-700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains.

  19. CB1 Cannabinoid Receptor Activation Dose-Dependently Modulates Neuronal Activity within Caudal but not Rostral Song Control Regions of Adult Zebra Finch Telencephalon

    PubMed Central

    Soderstrom, Ken; Tian, Qiyu

    2008-01-01

    CB1 cannabinoid receptors are distinctly expressed at high density within several regions of zebra finch telencephalon including those known to be involved in song learning (lMAN and Area X) and production (HVC and RA). Because: (1) exposure to cannabinoid agonists during developmental periods of auditory and sensory-motor song learning alters song patterns produced later in adulthood and; (2) densities of song region expression of CB1 waxes-and-wanes during song learning, it is becoming clear that CB1 receptor-mediated signaling is important to normal processes of vocal development. To better understand mechanisms involved in cannabinoid modulation of vocal behavior we have investigated the dose-response relationship between systemic cannabinoid exposure and changes in neuronal activity (as indicated by expression of the transcription factor, c-Fos) within telencephalic brain regions with established involvement in song learning and/or control. In adults we have found that low doses (0.1 mg/kg) of the cannabinoid agonist WIN-55212-2 decrease neuronal activity (as indicated by densities of c-fos-expressing nuclei) within vocal motor regions of caudal telencephalon (HVC and RA) while higher doses (3 mg/kg) stimulate activity. Both effects were reversed by pretreatment with the CB1-selective antagonist rimonabant. Interestingly, no effects of cannabinoid treatment were observed within the rostral song regions lMAN and Area X, despite distinct and dense CB1 receptor expression within these areas. Overall, our results demonstrate that, depending on dosage, CB1 agonism can both inhibit and stimulate neuronal activity within brain regions controlling adult vocal motor output, implicating involvement of multiple CB1-sensitive neuronal circuits. PMID:18509622

  20. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions

    PubMed Central

    Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho

    2015-01-01

    Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I. PMID:26285039

  1. Degos' disease: a distinctive pattern of disease, chiefly of lupus erythematosus, and not a specific disease per se.

    PubMed

    Ball, Elizabeth; Newburger, Amy; Ackerman, A Bernard

    2003-08-01

    Degos' disease, known confusingly as malignant strophic papularis, is an uncommon condition of unknown cause characterized by distinctive infarctive lesions in the skin, gastrointestinal tract, and central nervous system; the lesions at the two latter sites often result in death. We deem Degos' disease to be analogous to lupus erythematosus in the sense that each is fundamentally a systemic pathologic process involving several organs, among them the skin, but, moreover, we regard Degos' disease, in most instances, to be an actual manifestation of lupus erythematosus. Histopathologically, the findings in sections of tissue of skin lesions of Degos' disease are indistinguishable from those of one expression of cutaneous lupus erythematosus; immunopathologically, some patients with morphologic findings stereotypical of Degos' disease display signs characteristic of lupus erythematosus. For these reasons, we consider Degos' disease to be a distinctive pattern of disease, rather than a specific disease per se, just as are erythema multiforme, erythema nodosum, leukocytoclastic vasculitis, Sweet's syndrome, and pyoderma gangrenosum, to name but five of scores of them. The singular pattern that is designated Degos' disease usually is an expression of lupus erythematosus, but, episodically, of conditions like dermatomyositis and rheumatoid arthritis.

  2. Distinct but Overlapping Patterns of Response to Words and Faces in the Fusiform Gyrus.

    PubMed

    Harris, Richard J; Rice, Grace E; Young, Andrew W; Andrews, Timothy J

    2016-07-01

    Converging evidence suggests that the fusiform gyrus is involved in the processing of both faces and words. We used fMRI to investigate the extent to which the representation of words and faces in this region of the brain is based on a common neural representation. In Experiment 1, a univariate analysis revealed regions in the fusiform gyrus that were only selective for faces and other regions that were only selective for words. However, we also found regions that showed both word-selective and face-selective responses, particularly in the left hemisphere. We then used a multivariate analysis to measure the pattern of response to faces and words. Despite the overlap in regional responses, we found distinct patterns of response to both faces and words in the left and right fusiform gyrus. In Experiment 2, fMR adaptation was used to determine whether information about familiar faces and names is integrated in the fusiform gyrus. Distinct regions of the fusiform gyrus showed adaptation to either familiar faces or familiar names. However, there was no adaptation to sequences of faces and names with the same identity. Taken together, these results provide evidence for distinct, but overlapping, neural representations for words and faces in the fusiform gyrus. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Deregulation of a distinct set of microRNAs is associated with transformation of gastritis into MALT lymphoma.

    PubMed

    Thorns, Christoph; Kuba, Johannes; Bernard, Veronica; Senft, Andrea; Szymczak, Silke; Feller, Alfred C; Bernd, Heinz-Wolfram

    2012-04-01

    The mechanisms underlying the transformation from chronic Helicobacter pylori gastritis to gastric extranodal marginal zone lymphoma (MALT lymphoma) are poorly understood. This study aims to identify microRNAs that might be involved in the process of neoplastic transformation. We generated microRNA signatures by RT-PCR in 68 gastric biopsy samples representing normal mucosa, gastritis, suspicious lymphoid infiltrates, and overt MALT lymphoma according to Wotherspoon criteria. Analyses revealed a total of 41 microRNAs that were significantly upregulated (n = 33) or downregulated (n = 8) in succession from normal mucosa to gastritis and to MALT lymphoma. While some of these merely reflect the presence of lymphocytes (e.g. miR-566 and miR-212) or H. pylori infection (e.g. miR-155 and let7f), a distinct set of five microRNAs (miR-150, miR-550, miR-124a, miR-518b and miR-539) was shown to be differentially expressed in gastritis as opposed to MALT lymphoma. This differential expression might therefore indicate a central role of these microRNAs in the process of malignant transformation.

  4. Clinothem Lobe Growth and Possible Ties to Downslope Processes in the Gulf of Papua

    NASA Astrophysics Data System (ADS)

    Wei, E. A. Y.; Driscoll, N. W.; Milliman, J. D.; Slingerland, R. L.

    2014-12-01

    The Gulf of Papua is fed by the large-floodplain Fly River and small mountainous rivers to the north, thus creating an ideal environment where end-member cases of river systems and their deltas (e.g. the large-floodplain Brazos River and the narrow-shelved Eel River) can be studied. Input from five rivers into the gulf has constructed a three-dimensional mid-shelf clinothem composed of three depositional lobes, with a central lobe downlapped by two younger lobes to the north and south. This geometry suggests that the three lobes are not syndepositional but rather that clinoform depocenters have shifted 60 km, thus bypassing adjacent accommodation. Newly examined CHIRP (Compressed High Intensity Radar Pulse) seismic lines and XRF analysis of piston cores from the 2004 NSF MARGINS program reveal distinct lobes offshore that exhibit increased complexity moving shoreward. Evidence of shoreward complexity and lobe interfingering cause us to question the originally proposed mechanism for depocenter shift involving circulation changes. An alternative hypothesis that stems from distinct lobe architecture farther offshore suggests that channelized downslope processes and nearshore storage may play important roles in lobe growth.

  5. Some conservation issues for the dynamical cores of NWP and climate models

    NASA Astrophysics Data System (ADS)

    Thuburn, J.

    2008-03-01

    The rationale for designing atmospheric numerical model dynamical cores with certain conservation properties is reviewed. The conceptual difficulties associated with the multiscale nature of realistic atmospheric flow, and its lack of time-reversibility, are highlighted. A distinction is made between robust invariants, which are conserved or nearly conserved in the adiabatic and frictionless limit, and non-robust invariants, which are not conserved in the limit even though they are conserved by exactly adiabatic frictionless flow. For non-robust invariants, a further distinction is made between processes that directly transfer some quantity from large to small scales, and processes involving a cascade through a continuous range of scales; such cascades may either be explicitly parameterized, or handled implicitly by the dynamical core numerics, accepting the implied non-conservation. An attempt is made to estimate the relative importance of different conservation laws. It is argued that satisfactory model performance requires spurious sources of a conservable quantity to be much smaller than any true physical sources; for several conservable quantities the magnitudes of the physical sources are estimated in order to provide benchmarks against which any spurious sources may be measured.

  6. Preparation of clinker from paper pulp industry wastes.

    PubMed

    Buruberri, Leire H; Seabra, M P; Labrincha, J A

    2015-04-09

    The production of paper pulp by the Kraft method generates considerable amounts of wastes. Namely, lime mud generated in the recovery circuit of chemical reagents, biological sludge from the wastewater treatment of wood digestion process and fly ash collected in the fluidized bed combustor used to generate electricity from biomass burning. The final destination of such wastes is an important concern, since environmental regulations are becoming stricter regarding their landfill. Driven by this fact, industries are looking for more sustainable solutions, such as the recycling in distinct products. This work tested these wastes as secondary raw materials to produce clinker/cement that was then experienced in mortar formulations. The first step involved the residues detailed characterization and a generated amounts survey. Then, specific but simple steps were suggested, aiming to facilitate transport and manipulation. Distinct blends were prepared and fired in order to get belitic and Portland clinkers. The Portland clinkers were processed at lower temperatures than the normally used in the industry due to the presence of mineralizing impurities in some wastes. Belite-based cements were used to produce mortars that developed satisfactory mechanical strength and did not reveal signs of deterioration or durability weaknesses. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Thermal stability of DNA quadruplex-duplex hybrids.

    PubMed

    Lim, Kah Wai; Khong, Zi Jian; Phan, Anh Tuân

    2014-01-14

    DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.

  8. Reflections of Oneself: Neurocognitive Evidence for Dissociable Forms of Self-Referential Recollection.

    PubMed

    Bergström, Zara M; Vogelsang, David A; Benoit, Roland G; Simons, Jon S

    2015-09-01

    Research links the medial prefrontal cortex (mPFC) with a number of social cognitive processes that involve reflecting on oneself and other people. Here, we investigated how mPFC might support the ability to recollect information about oneself and others relating to previous experiences. Participants judged whether they had previously related stimuli conceptually to themselves or someone else, or whether they or another agent had performed actions. We uncovered a functional distinction between dorsal and ventral mPFC subregions based on information retrieved from episodic long-term memory. The dorsal mPFC was generally activated when participants attempted to retrieve social information about themselves and others, regardless of whether this information concerned the conceptual or agentic self or other. In contrast, a role was discerned for ventral mPFC during conceptual but not agentic self-referential recollection, indicating specific involvement in retrieving memories related to self-concept rather than bodily self. A subsequent recognition test for new items that had been presented during the recollection task found that conceptual and agentic recollection attempts resulted in differential incidental encoding of new information. Thus, we reveal converging fMRI and behavioral evidence for distinct neurocognitive forms of self-referential recollection, highlighting that conceptual and bodily aspects of self-reflection can be dissociated. © The Author 2014. Published by Oxford University Press.

  9. Reflections of Oneself: Neurocognitive Evidence for Dissociable Forms of Self-Referential Recollection

    PubMed Central

    Bergström, Zara M.; Vogelsang, David A.; Benoit, Roland G.; Simons, Jon S.

    2015-01-01

    Research links the medial prefrontal cortex (mPFC) with a number of social cognitive processes that involve reflecting on oneself and other people. Here, we investigated how mPFC might support the ability to recollect information about oneself and others relating to previous experiences. Participants judged whether they had previously related stimuli conceptually to themselves or someone else, or whether they or another agent had performed actions. We uncovered a functional distinction between dorsal and ventral mPFC subregions based on information retrieved from episodic long-term memory. The dorsal mPFC was generally activated when participants attempted to retrieve social information about themselves and others, regardless of whether this information concerned the conceptual or agentic self or other. In contrast, a role was discerned for ventral mPFC during conceptual but not agentic self-referential recollection, indicating specific involvement in retrieving memories related to self-concept rather than bodily self. A subsequent recognition test for new items that had been presented during the recollection task found that conceptual and agentic recollection attempts resulted in differential incidental encoding of new information. Thus, we reveal converging fMRI and behavioral evidence for distinct neurocognitive forms of self-referential recollection, highlighting that conceptual and bodily aspects of self-reflection can be dissociated. PMID:24700584

  10. Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing.

    PubMed

    Wang, Kai; Li, Qi; Zheng, Ya; Wang, Hongbin; Liu, Xun

    2014-04-01

    The ability to detect and resolve conflict is an essential function of cognitive control. Laboratory studies often use stimulus-response-compatibility (SRC) tasks to examine conflict processing in order to elucidate the mechanism and modular organization of cognitive control. Inspired by two influential theories regarding cognitive control, the conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and dimensional overlap taxonomy (Kornblum, Hasbroucq, & Osman, 1990), we explored the temporal and spectral similarities and differences between processing of stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts with event related potential (ERP) and time-frequency measures. We predicted that processing of S-S conflict starts earlier than that of S-R conflict and that the two types of conflict may involve different frequency bands. Participants were asked to perform two parallel SRC tasks, both combining the Stroop task (involving S-S conflict) and Simon task (involving S-R conflict). ERP results showed pronounced SRC effects (incongruent vs. congruent) on N2 and P3 components for both S-S and S-R conflicts. In both tasks, SRC effects of S-S conflict took place earlier than those of S-R conflict. Time-frequency analysis revealed that both types of SRC effects modulated theta and alpha bands, while S-R conflict effects additionally modulated power in the beta band. These results indicated that although S-S and S-R conflict processing shared considerable ERP and time-frequency properties, they differed in temporal and spectral dynamics. We suggest that the modular organization of cognitive control should take both commonality and distinction of S-S and S-R conflict processing into consideration. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Micro-RNA Profiling in Human Serum Reveals Compartment-Specific Roles of miR-571 and miR-652 in Liver Cirrhosis

    PubMed Central

    Roderburg, Christoph; Mollnow, Tobias; Bongaerts, Brenda; Elfimova, Natalia; Vargas Cardenas, David; Berger, Katharina; Zimmermann, Henning; Koch, Alexander; Vucur, Mihael; Luedde, Mark; Hellerbrand, Claus; Odenthal, Margarete; Trautwein, Christian; Tacke, Frank; Luedde, Tom

    2012-01-01

    Background and Aims Micro-RNAs (miRNAs) have recently emerged as crucial modulators of molecular processes involved in chronic liver diseases. The few miRNAs with previously proposed roles in liver cirrhosis were identified in screening approaches on liver parenchyma, mostly in rodent models. Therefore, in the present study we performed a systematic screening approach in order to identify miRNAs with altered levels in the serum of patients with chronic liver disease and liver cirrhosis. Methods We performed a systematic, array-based miRNA expression analysis on serum samples from patients with liver cirrhosis. In functional experiments we evaluated the relationship between alterations of miRNA serum levels and their role in distinct cellular compartments involved in hepatic cirrhosis. Results The array analysis and the subsequent confirmation by qPCR in a larger patient cohort identified significant alterations in serum levels of miR-513-3p, miR-571 and miR-652, three previously uncharacterized miRNAs, in patients with alcoholic or hepatitis C induced liver cirrhosis. Of these, miR-571 serum levels closely correlated with disease stages, thus revealing potential as a novel biomarker for hepatic cirrhosis. Further analysis revealed that up-regulation of miR-571 in serum reflected a concordant regulation in cirrhotic liver tissue. In isolated primary human liver cells, miR-571 was up-regulated in human hepatocytes and hepatic stellate cells in response to the pro-fibrogenic cytokine TGF-β. In contrast, alterations in serum levels of miR-652 were stage-independent, reflecting a concordant down-regulation of this miRNA in circulating monocytes of patients with liver cirrhosis, which was inducible by proinflammatory stimuli like bacterial lipopolysaccharide. Conclusion Alterations of miR571 and miR-652 serum levels in patients with chronic liver disease reflect their putative roles in the mediation of fibrogenic and inflammatory processes in distinct cellular compartments involved in the pathogenesis of liver cirrhosis. PMID:22412969

  12. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    PubMed

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.

  13. Charge transfer process at the Ag/MPH/TiO2 interface by SERS: alignment of the Fermi level.

    PubMed

    Zhang, Xiaolei; Sui, Huimin; Wang, Xiaolei; Su, Hongyang; Cheng, Weina; Wang, Xu; Zhao, Bing

    2016-11-02

    A nanoscale metal-molecule-semiconductor assembly (Ag/4-mercaptophenol/TiO 2 ) has been fabricated over Au nanoparticle (NP) films as a model to study the interfacial charge transfer (CT) effects involved in Ag/MPH/TiO 2 . Due to the interaction between Au NPs and Ag NPs, some distinct differences occur in the SERS spectra. We also measured the SERS of Ag/MPH (4-mercaptophenol), Ag/MPH/TiO 2 , and Au/Ag/MPH/TiO 2 assemblies at excitation wavelengths of 477, 514, 532, 633, and 785 nm. We found that the changes in the CT process, caused by the introduction of TiO 2 and Au, can be reflected in SERS. Then in combination with other detection methods, we proposed a possible CT process involved in the Ag/MPH, Ag/MPH/TiO 2 , and Au/Ag/MPH/TiO 2 assemblies. A Pt/Ag/MPH/TiO 2 assembly was also constructed to verify our proposed CT mechanism. This work not only provides more details about CT between metal-molecule-semiconductor interfaces but also aids in constructing nanoscale models to study interfacial problems with the SERS technique.

  14. Defense Profiles in Adaptation Process to Sport Competition and Their Relationships with Coping, Stress and Control

    PubMed Central

    Nicolas, Michel; Martinent, Guillaume; Drapeau, Martin; Chahraoui, Khadija; Vacher, Philippe; de Roten, Yves

    2017-01-01

    The purpose of this study was to identify the potentially distinct defense profiles of athletes in order to provide insight into the complex associations that can exist between defenses and other important variables tied to performance in sports (e.g., coping, perceived stress and control) and to further our understanding of the complexity of the adaptation process in sports. Two hundred and ninety-six (N = 296) athletes participated in a naturalistic study that involved a highly stressful situation: a sports competition. Participants were assessed before and after the competition. Hierarchical cluster analysis and a series of MANOVAs with post hoc comparisons indicated two stable defense profiles (high and low defense profiles) of athletes both before and during sport competition. These profiles differed with regards to coping, stress and control. Athletes with high defense profiles reported higher levels of coping strategies, perceived stress and control than athletes with low defense profiles. This study confirmed that defenses are involved in the psychological adaptation process and that research and intervention should not be based only on coping, but rather must include defense mechanisms in order to improve our understanding of psychological adaptation in competitive sports. PMID:29312070

  15. Defense Profiles in Adaptation Process to Sport Competition and Their Relationships with Coping, Stress and Control.

    PubMed

    Nicolas, Michel; Martinent, Guillaume; Drapeau, Martin; Chahraoui, Khadija; Vacher, Philippe; de Roten, Yves

    2017-01-01

    The purpose of this study was to identify the potentially distinct defense profiles of athletes in order to provide insight into the complex associations that can exist between defenses and other important variables tied to performance in sports (e.g., coping, perceived stress and control) and to further our understanding of the complexity of the adaptation process in sports. Two hundred and ninety-six ( N = 296) athletes participated in a naturalistic study that involved a highly stressful situation: a sports competition. Participants were assessed before and after the competition. Hierarchical cluster analysis and a series of MANOVAs with post hoc comparisons indicated two stable defense profiles (high and low defense profiles) of athletes both before and during sport competition. These profiles differed with regards to coping, stress and control. Athletes with high defense profiles reported higher levels of coping strategies, perceived stress and control than athletes with low defense profiles. This study confirmed that defenses are involved in the psychological adaptation process and that research and intervention should not be based only on coping, but rather must include defense mechanisms in order to improve our understanding of psychological adaptation in competitive sports.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shephard, Jacob J.; Vickers, Martin; Salzmann, Christoph G., E-mail: c.salzmann@ucl.ac.uk

    Low-density amorphous (LDA) ice is involved in critical cosmological processes and has gained prominence as one of the at least two distinct amorphous forms of ice. Despite these accolades, we still have an incomplete understanding of the structural diversity that is encompassed within the LDA state and the dynamic processes that take place upon heating LDA. Heating the high-pressure ice VIII phase at ambient pressure is a remarkable example of temperature-induced amorphisation yielding LDA. We investigate this process in detail using X-ray diffraction and Raman spectroscopy and show that the LDA obtained from ice VIII is structurally different from themore » more “traditional” states of LDA which are approached upon thermal annealing. This new structural relaxation pathway involves an increase of structural order on the intermediate range length scale. In contrast with other LDA materials the local structure is more ordered initially and becomes slightly more disordered upon annealing. We also show that the cascade of phase transitions upon heating ice VIII at ambient pressure includes the formation of ice IX which may be connected with the structural peculiarities of LDA from ice VIII. Overall, this study shows that LDA is a structurally more diverse material than previously appreciated.« less

  17. Pediatric neurology: the diagnostic process.

    PubMed

    Neville, Brian G R

    2013-01-01

    Pediatric neurology comprises a very large of number of conditions exhibiting symptoms and signs in several functional domains arising from damage and dysfunction to the developing nervous system. The diagnostic process involves ensuring that data from all possible domains are sought including those that are unaffected. The subsequent analysis involves fitting these data into patterns of classical natural history and rigorous investigation of the aspects that do not appear to fit. There may be a pattern of illness that is immediately recognized or something that is a fairly close fit. However, the aim is to develop a pathogenic sequence for the condition particularly so that conditions that have been lumped together for convenience are separated into distinct disease entities. The major presentations of pediatric neurology of fixed central motor impairments (the cerebral palsies), the epilepsies, and the progressive degenerative diseases are in the process of being split into such pathogenic sequences so that definitive treatments and possible primary prevention can be added to aims of simple diagnostic recognition. Much of this is at an early stage and pediatric neurology is still a young and fast developing specialty. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1990-01-01

    How people comprehend graphics is examined. Graphical comprehension involves the cognitive representation of information from a graphic display and the processing strategies that people apply to answer questions about graphics. Research on representation has examined both the features present in a graphic display and the cognitive representation of the graphic. The key features include the physical components of a graph, the relation between the figure and its axes, and the information in the graph. Tests of people's memory for graphs indicate that both the physical and informational aspect of a graph are important in the cognitive representation of a graph. However, the physical (or perceptual) features overshadow the information to a large degree. Processing strategies also involve a perception-information distinction. In order to answer simple questions (e.g., determining the value of a variable, comparing several variables, and determining the mean of a set of variables), people switch between two information processing strategies: (1) an arithmetic, look-up strategy in which they use a graph much like a table, looking up values and performing arithmetic calculations; and (2) a perceptual strategy in which they use the spatial characteristics of the graph to make comparisons and estimations. The user's choice of strategies depends on the task and the characteristics of the graph. A theory of graphic comprehension is presented.

  19. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    PubMed Central

    Nakatsu, Fubito; Hase, Koji; Ohno, Hiroshi

    2014-01-01

    The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells. PMID:25387275

  20. Independent component processes underlying emotions during natural music listening

    PubMed Central

    Zollinger, Nina; Elmer, Stefan; Jäncke, Lutz

    2016-01-01

    The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal. PMID:27217116

  1. Simulation of talking faces in the human brain improves auditory speech recognition

    PubMed Central

    von Kriegstein, Katharina; Dogan, Özgür; Grüter, Martina; Giraud, Anne-Lise; Kell, Christian A.; Grüter, Thomas; Kleinschmidt, Andreas; Kiebel, Stefan J.

    2008-01-01

    Human face-to-face communication is essentially audiovisual. Typically, people talk to us face-to-face, providing concurrent auditory and visual input. Understanding someone is easier when there is visual input, because visual cues like mouth and tongue movements provide complementary information about speech content. Here, we hypothesized that, even in the absence of visual input, the brain optimizes both auditory-only speech and speaker recognition by harvesting speaker-specific predictions and constraints from distinct visual face-processing areas. To test this hypothesis, we performed behavioral and neuroimaging experiments in two groups: subjects with a face recognition deficit (prosopagnosia) and matched controls. The results show that observing a specific person talking for 2 min improves subsequent auditory-only speech and speaker recognition for this person. In both prosopagnosics and controls, behavioral improvement in auditory-only speech recognition was based on an area typically involved in face-movement processing. Improvement in speaker recognition was only present in controls and was based on an area involved in face-identity processing. These findings challenge current unisensory models of speech processing, because they show that, in auditory-only speech, the brain exploits previously encoded audiovisual correlations to optimize communication. We suggest that this optimization is based on speaker-specific audiovisual internal models, which are used to simulate a talking face. PMID:18436648

  2. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    PubMed

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  3. New levels of language processing complexity and organization revealed by granger causation.

    PubMed

    Gow, David W; Caplan, David N

    2012-01-01

    Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even "early" processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of "language-specific" localized processes.

  4. Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: a multivariate FMRI study.

    PubMed

    McNamee, Daniel; Liljeholm, Mimi; Zika, Ondrej; O'Doherty, John P

    2015-03-04

    While there is accumulating evidence for the existence of distinct neural systems supporting goal-directed and habitual action selection in the mammalian brain, much less is known about the nature of the information being processed in these different brain regions. Associative learning theory predicts that brain systems involved in habitual control, such as the dorsolateral striatum, should contain stimulus and response information only, but not outcome information, while regions involved in goal-directed action, such as ventromedial and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing information about outcomes as well as stimuli and responses. To test this prediction, human participants underwent fMRI while engaging in a binary choice task designed to enable the separate identification of these different representations with a multivariate classification analysis approach. Consistent with our predictions, the dorsolateral striatum contained information about responses but not outcomes at the time of an initial stimulus, while the regions implicated in goal-directed action selection contained information about both responses and outcomes. These findings suggest that differential contributions of these regions to habitual and goal-directed behavioral control may depend in part on basic differences in the type of information that these regions have access to at the time of decision making. Copyright © 2015 the authors 0270-6474/15/353764-08$15.00/0.

  5. Age-related changes in the cerebral substrates of cognitive procedural learning.

    PubMed

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-04-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure. 2008 Wiley-Liss, Inc.

  6. Attention mechanisms in visual search -- an fMRI study.

    PubMed

    Leonards, U; Sunaert, S; Van Hecke, P; Orban, G A

    2000-01-01

    The human visual system is usually confronted with many different objects at a time, with only some of them reaching consciousness. Reaction-time studies have revealed two different strategies by which objects are selected for further processing: an automatic, efficient search process, and a conscious, so-called inefficient search [Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance, 17, 652--676; Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97--136; Wolfe, J. M. (1996). Visual search. In H. Pashler (Ed.), Attention. London: University College London Press]. Two different theories have been proposed to account for these search processes. Parallel theories presume that both types of search are treated by a single mechanism that is modulated by attentional and computational demands. Serial theories, in contrast, propose that parallel processing may underlie efficient search, but inefficient searching requires an additional serial mechanism, an attentional "spotlight" (Treisman, A., 1991) that successively shifts attention to different locations in the visual field. Using functional magnetic resonance imaging (fMRI), we show that the cerebral networks involved in efficient and inefficient search overlap almost completely. Only the superior frontal region, known to be involved in working memory [Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347--1351], and distinct from the frontal eye fields, that control spatial shifts of attention, was specifically involved in inefficient search. Activity modulations correlated with subjects' behavior best in the extrastriate cortical areas, where the amount of activity depended on the number of distracting elements in the display. Such a correlation was not observed in the parietal and frontal regions, usually assumed as being involved in spatial attention processing. These results can be interpreted in two ways: the most likely is that visual search does not require serial processing, otherwise we must assume the existence of a serial searchlight that operates in the extrastriate cortex but differs from the visuospatial shifts of attention involving the parietal and frontal regions.

  7. Posttransplantation lymphoproliferative disease involving the pituitary gland.

    PubMed

    Meriden, Zina; Bullock, Grant C; Bagg, Adam; Bonatti, Hugo; Cousar, John B; Lopes, M Beatriz; Robbins, Mark K; Cathro, Helen P

    2010-11-01

    Posttransplantation lymphoproliferative disorders (PTLD) are heterogeneous lesions with variable morphology, immunophenotype, and molecular characteristics. Multiple distinct primary lesions can occur in PTLD, rarely with both B-cell and T-cell characteristics. Lesions can involve both grafted organs and other sites; however, PTLD involving the pituitary gland has not been previously reported. We describe a patient who developed Epstein-Barr virus-negative PTLD 13 years posttransplantation involving the terminal ileum and pituitary, which was simultaneously involved by a pituitary adenoma. Immunohistochemistry of the pituitary lesion showed expression of CD79a, CD3, and CD7 with clonal rearrangements of both T-cell receptor gamma chain (TRG@) and immunoglobulin heavy chain (IGH@) genes. The terminal ileal lesion was immunophenotypically and molecularly distinct. This is the first report of pituitary PTLD and illustrates the potentially complex nature of PTLD. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. The picture superiority effect in conceptual implicit memory: a conceptual distinctiveness hypothesis.

    PubMed

    Hamilton, Maryellen; Geraci, Lisa

    2006-01-01

    According to leading theories, the picture superiority effect is driven by conceptual processing, yet this effect has been difficult to obtain using conceptual implicit memory tests. We hypothesized that the picture superiority effect results from conceptual processing of a picture's distinctive features rather than a picture's semantic features. To test this hypothesis, we used 2 conceptual implicit general knowledge tests; one cued conceptually distinctive features (e.g., "What animal has large eyes?") and the other cued semantic features (e.g., "What animal is the figurehead of Tootsie Roll?"). Results showed a picture superiority effect only on the conceptual test using distinctive cues, supporting our hypothesis that this effect is mediated by conceptual processing of a picture's distinctive features.

  9. Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing

    PubMed Central

    Meehan, Tracy L.; Joudi, Tony F.; Timmons, Allison K.; Taylor, Jeffrey D.; Habib, Corey S.; Peterson, Jeanne S.; Emmanuel, Shanan; Franc, Nathalie C.; McCall, Kimberly

    2016-01-01

    Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells. PMID:27347682

  10. Advancing the science of forensic data management

    NASA Astrophysics Data System (ADS)

    Naughton, Timothy S.

    2002-07-01

    Many individual elements comprise a typical forensics process. Collecting evidence, analyzing it, and using results to draw conclusions are all mutually distinct endeavors. Different physical locations and personnel are involved, juxtaposed against an acute need for security and data integrity. Using digital technologies and the Internet's ubiquity, these diverse elements can be conjoined using digital data as the common element. This result is a new data management process that can be applied to serve all elements of the community. The first step is recognition of a forensics lifecycle. Evidence gathering, analysis, storage, and use in legal proceedings are actually just distinct parts of a single end-to-end process, and thus, it is hypothesized that a single data system that can also accommodate each constituent phase using common network and security protocols. This paper introduces the idea of web-based Central Data Repository. Its cornerstone is anywhere, anytime Internet upload, viewing, and report distribution. Archives exist indefinitely after being created, and high-strength security and encryption protect data and ensure subsequent case file additions do not violate chain-of-custody or other handling provisions. Several legal precedents have been established for using digital information in courts of law, and in fact, effective prosecution of cyber crimes absolutely relies on its use. An example is a US Department of Agriculture division's use of digital images to back up its inspection process, with pictures and information retained on secure servers to enforce the Perishable Agricultural Commodities Act. Forensics is a cumulative process. Secure, web-based data management solutions, such as the Central Data Repository postulated here, can support each process step. Logically marrying digital technologies with Internet accessibility should help nurture a thought process to explore alternatives that make forensics data accessible to authorized individuals, whenever and wherever they need it.

  11. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    PubMed

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  12. Phylogeographic structure and demographic patterns of brown trout in North-West Africa.

    PubMed

    Snoj, Aleš; Marić, Saša; Bajec, Simona Sušnik; Berrebi, Patrick; Janjani, Said; Schöffmann, Johannes

    2011-10-01

    The objectives of the study were to determine the phylogeographic structure of brown trout (Salmo trutta) in Morocco, elucidate their colonization patterns in North-West Africa and identify the mtDNA lineages involved in this process. We also aimed to resolve whether certain brown trout entities are also genetically distinct. Sixty-two brown trout from eleven locations across the Mediterranean and the Atlantic drainages in Morocco were surveyed using sequence analysis of the mtDNA control region and nuclear gene LDH, and by genotyping twelve microsatellite loci. Our study confirms that in Morocco both the Atlantic and Mediterranean basins are populated by Atlantic mtDNA lineage brown trout only, demonstrating that the Atlantic lineage (especially its southern clade) invaded initially not only the western part of the Mediterranean basin in Morocco but also expanded deep into the central area. Atlantic haplotypes identified here sort into three distinct groups suggesting Morocco was colonized in at least three successive waves (1.2, 0.4 and 0.2-0.1 MY ago). This notion becomes more pronounced with the finding of a distinct haplotype in the Dades river system, whose origin appears to coalesce with the nascent stage of the basal mtDNA evolutionary lineages of brown trout. According to our results, Salmo akairos, Salmo pellegrini and "green trout" from Lake Isli do not exhibited any character states that distinctively separate them from the other brown trout populations studied. Therefore, their status as distinct species was not confirmed. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Imaginary parts of coupled electron and phonon propagators

    NASA Astrophysics Data System (ADS)

    Schwartzman, K.; Lawrence, W. E.

    1988-01-01

    Quasiparticle and phonon damping rates due to the electron-phonon and Coulomb interactions are obtained directly from the self-energy formalism of strong-coupling theory. This accounts for all processes involving phonon or quasiparticle decay into a single particle-hole pair, or quasiparticle decay by emission or absorption of a single real phonon. The two quasiparticle decay modes are treated on a common footing, without ad hoc separation, by accounting fully for the dynamics of the phonon propagator and the Coulomb vertex-the latter by expansion of the four-point Coulomb vertex function. The results are shown to be expressible in terms of only the physical (i.e., fully renormalized) energies and coupling constants, and are written in terms of spectral functions such as α2F(ω) and its generalizations. Expansion of these in powers of a phonon linewidth parameter distinguishes (in lowest orders) between quasiparticle decay modes involving real and virtual phonons. However, the simplest prescription for calculating decay rates involves an effective scattering amplitude in which this distinction is not made.

  14. Compliance revisited: pharmaceutical drug trials in the era of the contract research organization.

    PubMed

    Jonvallen, Petra

    2009-12-01

    Over the past decade, the management of clinical trials of pharmaceuticals has become a veritable industry, as evidenced by the emergence and proliferation of contract research organizations (CROs) that co-ordinate and monitor trials. This article focuses on work performed by one CRO involved in the introduction of new software, modelled on industrial production processes, into clinical trial practices. It investigates how this new management technique relates to the work performed in the clinic to ensure that trial participants comply with the protocol. Using an analytical distinction between 'classical' management work and invisible work, the article contextualizes the meaning of compliance in the clinic and suggests that the work involved in producing compliance should be taken into consideration by those concerned with validity of trials, as clinical trials are put under private industrial management. The article builds on participant observation at a Swedish university hospital and interviews the nurses, dieticians, doctors and a software engineer, all part of a team involved in pharmaceutical drug trials on a potential obesity drug.

  15. ERP evidence of distinct processes underlying semantic facilitation and interference in word production.

    PubMed

    Python, Grégoire; Fargier, Raphaël; Laganaro, Marina

    2018-02-01

    In everyday conversations, we take advantage of lexical-semantic contexts to facilitate speech production, but at the same time, we also have to reduce interference and inhibit semantic competitors. The blocked cyclic naming paradigm (BCNP) has been used to investigate such context effects. Typical results on production latencies showed semantic facilitation (or no effect) during the first presentation cycle, and interference emerging in subsequent cycles. Even if semantic contexts might be just as facilitative as interfering, previous BCNP studies focused on interference, which was interpreted as reflecting lemma selection and self-monitoring processes. Facilitation in the first cycle was rarely considered/analysed, although it potentially informs on word production to the same extent as interference. Here we contrasted the event-related potential (ERP) signatures of both semantic facilitation and interference in a BCNP. ERPs differed between homogeneous and heterogeneous blocks from about 365 msec post picture onset in the first cycle (facilitation) and in an earlier time-window (270 msec post picture onset) in the third cycle (interference). Three different analyses of the ERPs converge towards distinct processes underlying semantic facilitation and interference (post-lexical vs lexical respectively). The loci of semantic facilitation and interference are interpreted in the context of different theoretical frameworks of language production: the post-lexical locus of semantic facilitation involves interactive phonological-semantic processes and/or self-monitoring, whereas the lexical locus of semantic interference is in line with selection through increased lexical competition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reconsolidation revisited: a review and commentary on the phenomenon.

    PubMed

    Moore, Jennifer L; Roche, Richard A P

    2007-01-01

    Consolidation and reconsolidation constitute a large proportion of current research into memory formation. The evidence in favour of the Consolidation Theory is widespread, on both the cellular and systems level. Research has indicated that consolidation and reconsolidation employ similar mechanisms; both consolidation and reconsolidation of memory require protein synthesis and glutaminergic input, and both seem to be associated with the hippocampal formation. Despite this, other data seem to argue that the two concepts are entirely separate processes. The great interest in this topic is shown in the proliferation of studies. The current literature has been subject to extensive and continual review. The current manuscript attempts to address the inconsistency in the consolidation-reconsolidation literature by providing a selective review of some of the most pertinent experimental work in both areas. The core question underpinning this review paper is whether reconsolidation is an entity distinct from consolidation, or merely an extension of the consolidation process. It is concluded that consolidation and reconsolidation may be distinct, albeit similar, processes, and that only a subset of the brain areas involved in consolidation are implicated in reconsolidation. In addition, with advances in our understanding of, and approach to these processes (i.e., incorporation of boundary conditions of reconsolidation into the design of contemporary studies and the increased awareness of the need to temper the interpretation of data emerging from studies employing divergent methodologies), it is suggested that future reconsolidation research may yield significant progress into the vast potential underpinning the reconsolidation phenomenon.

  17. Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells.

    PubMed

    Chang, Veronica T; Spooner, Robert A; Crispin, Max; Davis, Simon J

    2015-01-01

    Some of the most important and interesting molecules in metazoan biology are glycoproteins. The importance of the carbohydrate component of these structures is often revealed by the disease phenotypes that manifest when the biosynthesis of particular glycoforms is disrupted. On the other hand, the presence of large amounts of carbohydrate can often hinder the structural and functional analysis of glycoproteins. There are often good reasons, therefore, for wanting to engineer and predefine the N-glycans present on glycoproteins, e.g., in order to characterize the functions of the glycans or facilitate their subsequent removal. Here, we describe in detail two distinct ways in which to usefully interfere with oligosaccharide processing, one involving the use of specific processing inhibitors, and the other the selection of cell lines mutated at gene loci that control oligosaccharide processing, using cytotoxic lectins. Both approaches have the capacity for controlled, radical alteration of oligosaccharide processing in eukaryotic cells used for heterologous protein expression, and have great utility in the structural analysis of glycoproteins.

  18. The patient's vulnerability, dependence and exposed situation in the discharge process: experiences of district nurses, geriatric nurses and social workers.

    PubMed

    Rydeman, IngBritt; Törnkvist, Lena

    2006-10-01

    The aim of the study was to obtain a deeper understanding of the experiences of the discharge process among different professionals. An optimal discharge process for hospitalized elderly to other forms of care is of crucial importance, especially since health and medical policies encourages shorter hospital stays and increased healthcare service in outpatient care. Nurses and social workers from inpatient care, outpatient care, municipal care and social services were interviewed. Eight focus-group interviews with a total of 31 persons were conducted. The subsequent analyses followed a phenomenological approach. The findings revealed three themes, Framework, Basic Values and Patient Resources, which influenced the professionals' actions in the discharge process. The overall emerging structure comprised the patient's vulnerability, dependence and exposed situation in the discharge process. In conclusion some factors are of special importance for the co-operation and the actions of professionals involved in the discharge process. Firstly, a distinct and common framework, with conscious and organizationally based values. Secondly the need to take the patient resources into consideration. Together these factors could contribute to secure the patients involvement in the discharge process and to design an optimal, safe and good care. Collaborative approaches among a range of professionals within a variety of organizations are common, especially in the care of the elderly. The role and support of both the organizations and the educational units are decisive factors in this area.

  19. Chromatin in embryonic stem cell neuronal differentiation.

    PubMed

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  20. Measurements of the interaction of wave groups with shorter wind-generated waves

    NASA Technical Reports Server (NTRS)

    Chu, Jacob S.; Long, Steven R.; Phillips, O. M.

    1992-01-01

    Fields of statistically steady wind-generated waves produced in a wind wave facility were perturbed by the injection of groups of longer, mechanically generated waves with various slopes. The time histories of the surface displacements were measured at four fetches in ensembles consisting of 100 realizations of each set of experimental conditions; the data were stored and analyzed digitally. Four distinct stages in the overall interaction are identified and characterized. The properties of the wave energy front are documented, and a preliminary discussion is given of the dynamic processes involved in its formation.

  1. A dual process model of perfectionism based on reinforcement theory.

    PubMed

    Slade, P D; Owens, R G

    1998-07-01

    This article begins with a brief review of the current literature on the structure and measurement of perfectionism. It is concluded from this review that two major types can be distinguished, a normal/healthy form and a pathological form. These two forms are then defined as positive and negative perfectionism and related directly to Skinnerian concepts of positive and negative reinforcement. The positive/negative distinction is then further elaborated on in terms of approach/avoidance behavior, goal differences, self-concept involvement, emotional correlates, and the promoting environment. Finally, some of the more obvious theoretical and practical implications are briefly explored.

  2. Agency and Anxiety: Delusions of Control and Loss of Control in Schizophrenia and Agoraphobia

    PubMed Central

    Gallagher, Shaun; Trigg, Dylan

    2016-01-01

    We review the distinction between sense of agency and sense of ownership, and then explore these concepts, and their reflective attributions, in schizophrenic symptoms and agoraphobia. We show how the underlying dynamics of these experiences are different across these disorders. We argue that these concepts are complex and cannot be reduced to neural mechanisms, but involve embodied and situated processes that include the physical and social environments. We conclude by arguing that the subjective and intersubjective dimensions of agency and ownership cannot be considered in isolation from one another, but instead form an interdependent pairing. PMID:27725796

  3. Evolution of the lunar highland crust

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.; Bence, A. E.

    1975-01-01

    The evolution of three distinct element associations in the lunar highland crust is discussed in terms of the Taylor-Jakes model which involves melting of most of the moon during accretion. Sources for (1) high Ca, Al, Sr, Eu, (2) high Mg and Cr, and (3) high K, REE, Zr, Hf, Nb are suggested. Bombardment by large projectiles during the differentiation process causes melting and mixing, which produces a wide range of compositions in the crust. The formation of dunite, troctolite, high-, medium-, and low-K Fra Mauro basalts, and rocks close to the olivine-spinel-plagioclase peritectic point is considered.

  4. Decreased sound tolerance: hyperacusis, misophonia, diplacousis, and polyacousis.

    PubMed

    Jastreboff, Pawel J; Jastreboff, Margaret M

    2015-01-01

    Definitions, potential mechanisms, and treatments for decreased sound tolerance, hyperacusis, misophonia, and diplacousis are presented with an emphasis on the associated physiologic and neurophysiological processes and principles. A distinction is made between subjects who experience these conditions versus patients who suffer from them. The role of the limbic and autonomic nervous systems and other brain systems involved in cases of bothersome decreased sound tolerance is stressed. The neurophysiological model of tinnitus is outlined with respect to how it may contribute to our understanding of these phenomena and their treatment. © 2015 Elsevier B.V. All rights reserved.

  5. Enrofloxacin enhances the formation of neutrophil extracellular traps in bovine granulocytes

    PubMed Central

    Jerjomiceva, Natalja; Seri, Hisham; Völlger, Lena; Wang, Yanming; Zeitouni, Nathalie; Naim, Hassan Y.; von Köckritz-Blickwede, Maren

    2014-01-01

    Several antibiotics are known for their ability to accumulate in neutrophils and thereby modulate the antimicrobial functions of those cells. This manuscript demonstrates for the first time that an antibiotic, namely the fluoroquinolone enrofloxacin, enhances the formation of bovine neutrophil extracellular traps (NETs). When pharmacologically inactivating NADPH oxidase or peptidylarginine deiminase-4, enrofloxacin-induced NET-formation was distinctly reduced. Additionally, when treating the cells with cytochalasin D or nocodazole, the enrofloxacin-mediated NET-induction was abolished, indicating that besides oxidative burst and histone citrullination also the actin and microtubule polymerization are involved in this process. PMID:24642685

  6. Differentiating between appraisal process and product in cognitive theories of posttraumatic stress

    PubMed Central

    Nanney, John T.; Constans, Joseph I.; Kimbrell, Timothy A.; Kramer, Teresa L.; Pyne, Jeffrey M.

    2014-01-01

    Biased appraisal is central to cognitive theories of posttraumatic stress, but little research has examined the potentially distinct meanings of the term. The on-going process of appraising social information and the beliefs that emerge as products of that process can be distinguished conceptually. The present study sought to examine if these two meanings are empirically distinct as well, and if so, to begin exploring potential relations between these appraisal constructs and posttraumatic stress symptoms. Soldiers (N = 424) preparing for deployment to Iraq or Afghanistan were administered measures of each construct. Results of confirmatory factor analysis suggest that the appraisal process and the products of that process (i.e., beliefs) are indeed distinct. Structural equation models are consistent with cognitive bias and social information processing literatures which posit that a biased appraisal process may contribute to the development of dysfunctional beliefs and posttraumatic stress symptoms following trauma. The potential utility of distinctly conceptualizing and measuring the appraisal process in both clinical and research settings is discussed. PMID:26147520

  7. Differentiating between appraisal process and product in cognitive theories of posttraumatic stress.

    PubMed

    Nanney, John T; Constans, Joseph I; Kimbrell, Timothy A; Kramer, Teresa L; Pyne, Jeffrey M

    2015-07-01

    Biased appraisal is central to cognitive theories of posttraumatic stress, but little research has examined the potentially distinct meanings of the term. The ongoing process of appraising social information and the beliefs that emerge as products of that process can be distinguished conceptually. This study sought to examine whether these 2 meanings are empirically distinct as well, and if so, to begin exploring potential relations between these appraisal constructs and posttraumatic stress symptoms. Soldiers (N = 424) preparing for deployment to Iraq or Afghanistan were administered measures of each construct. Results of confirmatory factor analysis suggest that the appraisal process and the products of that process (i.e., beliefs) are indeed distinct. Structural equation models are consistent with cognitive bias and social information processing literatures, which posit that a biased appraisal process may contribute to the development of dysfunctional beliefs and posttraumatic stress symptoms following trauma. The potential utility of distinctly conceptualizing and measuring the appraisal process in both clinical and research settings is discussed. (c) 2015 APA, all rights reserved).

  8. Sleep. 5: Driving and automobile crashes in patients with obstructive sleep apnoea/hypopnoea syndrome.

    PubMed

    George, C F P

    2004-09-01

    Driving is a complex task involving distinct cognitive, perceptual, motor, and decision making skills. After placing the vehicle on the road, the driver must constantly survey the ever changing roadway environment to keep the vehicle in the lane and moving at an appropriate safe speed. This surveillance involves two distinct visual tasks: estimating and responding to the oncoming curvature and controlling lane position. Driving is therefore a divided attention task involving speed and lane control as well as monitoring. To do this in a safe manner requires careful attention and alertness which can be problematic for patients with obstructive sleep apnoea/hypopnoea syndrome (OSAHS) or other sleep disorders.

  9. An evolutionary link between capsular biogenesis and surface motility in bacteria.

    PubMed

    Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm

    2015-05-01

    Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

  10. Neural Mechanisms of Attentional Control Differentiate Trait and State Negative Affect

    PubMed Central

    Crocker, Laura D.; Heller, Wendy; Spielberg, Jeffrey M.; Warren, Stacie L.; Bredemeier, Keith; Sutton, Bradley P.; Banich, Marie T.; Miller, Gregory A.

    2012-01-01

    The present research examined the hypothesis that cognitive processes are modulated differentially by trait and state negative affect (NA). Brain activation associated with trait and state NA was measured by fMRI during an attentional control task, the emotion-word Stroop. Performance on the task was disrupted only by state NA. Trait NA was associated with reduced activity in several regions, including a prefrontal area that has been shown to be involved in top-down, goal-directed attentional control. In contrast, state NA was associated with increased activity in several regions, including a prefrontal region that has been shown to be involved in stimulus-driven aspects of attentional control. Results suggest that NA has a significant impact on cognition, and that state and trait NA disrupt attentional control in distinct ways. PMID:22934089

  11. Functional Connectivity with Distinct Neural Networks Tracks Fluctuations in Gain/Loss Framing Susceptibility

    PubMed Central

    Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.

    2016-01-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445

  12. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes

    PubMed Central

    Schaetzlein, Sonja; Chahwan, Richard; Avdievich, Elena; Roa, Sergio; Wei, Kaichun; Eoff, Robert L.; Sellers, Rani S.; Clark, Alan B.; Kunkel, Thomas A.; Scharff, Matthew D.; Edelmann, Winfried

    2013-01-01

    Mammalian Exonuclease 1 (EXO1) is an evolutionarily conserved, multifunctional exonuclease involved in DNA damage repair, replication, immunoglobulin diversity, meiosis, and telomere maintenance. It has been assumed that EXO1 participates in these processes primarily through its exonuclease activity, but recent studies also suggest that EXO1 has a structural function in the assembly of higher-order protein complexes. To dissect the enzymatic and nonenzymatic roles of EXO1 in the different biological processes in vivo, we generated an EXO1-E109K knockin (Exo1EK) mouse expressing a stable exonuclease-deficient protein and, for comparison, a fully EXO1-deficient (Exo1null) mouse. In contrast to Exo1null/null mice, Exo1EK/EK mice retained mismatch repair activity and displayed normal class switch recombination and meiosis. However, both Exo1-mutant lines showed defects in DNA damage response including DNA double-strand break repair (DSBR) through DNA end resection, chromosomal stability, and tumor suppression, indicating that the enzymatic function is required for those processes. On a transformation-related protein 53 (Trp53)-null background, the DSBR defect caused by the E109K mutation altered the tumor spectrum but did not affect the overall survival as compared with p53-Exo1null mice, whose defects in both DSBR and mismatch repair also compromised survival. The separation of these functions demonstrates the differential requirement for the structural function and nuclease activity of mammalian EXO1 in distinct DNA repair processes and tumorigenesis in vivo. PMID:23754438

  13. Functional connectivity with distinct neural networks tracks fluctuations in gain/loss framing susceptibility.

    PubMed

    Smith, David V; Sip, Kamila E; Delgado, Mauricio R

    2015-07-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. © 2015 Wiley Periodicals, Inc.

  14. Value-Based Assessment of New Medical Technologies: Towards a Robust Methodological Framework for the Application of Multiple Criteria Decision Analysis in the Context of Health Technology Assessment.

    PubMed

    Angelis, Aris; Kanavos, Panos

    2016-05-01

    In recent years, multiple criteria decision analysis (MCDA) has emerged as a likely alternative to address shortcomings in health technology assessment (HTA) by offering a more holistic perspective to value assessment and acting as an alternative priority setting tool. In this paper, we argue that MCDA needs to subscribe to robust methodological processes related to the selection of objectives, criteria and attributes in order to be meaningful in the context of healthcare decision making and fulfil its role in value-based assessment (VBA). We propose a methodological process, based on multi-attribute value theory (MAVT) methods comprising five distinct phases, outline the stages involved in each phase and discuss their relevance in the HTA process. Importantly, criteria and attributes need to satisfy a set of desired properties, otherwise the outcome of the analysis can produce spurious results and misleading recommendations. Assuming the methodological process we propose is adhered to, the application of MCDA presents three very distinct advantages to decision makers in the context of HTA and VBA: first, it acts as an instrument for eliciting preferences on the performance of alternative options across a wider set of explicit criteria, leading to a more complete assessment of value; second, it allows the elicitation of preferences across the criteria themselves to reflect differences in their relative importance; and, third, the entire process of preference elicitation can be informed by direct stakeholder engagement, and can therefore reflect their own preferences. All features are fully transparent and facilitate decision making.

  15. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease.

    PubMed

    Skinner, Michael K; Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; Nilsson, Eric; McBirney, Margaux; Klukovich, Rachel; Xie, Yeming; Tang, Chong; Yan, Wei

    2018-02-27

    Environmental toxicants such as DDT have been shown to induce the epigenetic transgenerational inheritance of disease (e.g., obesity) through the germline. The current study was designed to investigate the DDT-induced concurrent alterations of a number of different epigenetic processes including DNA methylation, non-coding RNA (ncRNA) and histone retention in sperm. Gestating females were exposed transiently to DDT during fetal gonadal development, and then, the directly exposed F1 generation, the directly exposed germline F2 generation and the transgenerational F3 generation sperm were investigated. DNA methylation and ncRNA were altered in each generation sperm with the direct exposure F1 and F2 generations being predominantly distinct from the F3 generation epimutations. The piRNA and small tRNA were the most predominant classes of ncRNA altered. A highly conserved set of histone retention sites were found in the control lineage generations which was not significantly altered between generations, but a large number of new histone retention sites were found only in the transgenerational generation DDT lineage sperm. Therefore, all three different epigenetic processes were concurrently altered as DDT induced the epigenetic transgenerational inheritance of sperm epimutations. The direct exposure generations sperm epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene associations with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Observations demonstrate all three epigenetic processes are involved in transgenerational inheritance. The different epigenetic processes appear to be integrated in mediating the epigenetic transgenerational inheritance phenomenon.

  16. Distinctive fingerprints of erosional regimes in terrestrial channel networks

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.

    2017-12-01

    Satellite imagery and digital elevation maps capture the large scale morphology of channel networks attributed to long term erosional processes, such as fluvial, glacial, groundwater sapping and subglacial erosion. Characteristic morphologies associated with each of these styles of erosion have been studied in detail, but there exists a knowledge gap related to their parameterization and quantification. This knowledge gap prevents a rigorous analysis of the dominant processes that shaped a particular landscape, and a comparison across styles of erosion. To address this gap, we use previous morphological descriptions of glaciers, rivers, sapping valleys and tunnel valleys to identify and measure quantitative metrics diagnostic of these distinctive styles of erosion. From digital elevation models, we identify four geometric metrics: The minimum channel width, channel aspect ratio (longest length to channel width at the outlet), presence of undulating longitudinal profiles, and tributary junction angle. We also parameterize channel network complexity in terms of its stream order and fractal dimension. We then perform a statistical classification of the channel networks using a Principal Component Analysis on measurements of these six metrics on a dataset of 70 channelized systems. We show that rivers, glaciers, groundwater seepage and subglacial meltwater erode the landscape in rigorously distinguishable ways. Our methodology can more generally be applied to identify the contributions of different processes involved in carving a channel network. In particular, we are able to identify transitions from fluvial to glaciated landscapes or vice-versa.

  17. Deep Levels of Processing Elicit a Distinctiveness Heuristic: Evidence from the Criterial Recollection Task

    ERIC Educational Resources Information Center

    Gallo, David A.; Meadow, Nathaniel G.; Johnson, Elizabeth L.; Foster, Katherine T.

    2008-01-01

    Thinking about the meaning of studied words (deep processing) enhances memory on typical recognition tests, relative to focusing on perceptual features (shallow processing). One explanation for this levels-of-processing effect is that deep processing leads to the encoding of more distinctive representations (i.e., more unique semantic or…

  18. Effects of distinctive encoding on source-based false recognition: further examination of recall-to-reject processes in aging and Alzheimer disease.

    PubMed

    Pierce, Benton H; Waring, Jill D; Schacter, Daniel L; Budson, Andrew E

    2008-09-01

    To examine the use of distinctive materials at encoding on recall-to-reject monitoring processes in aging and Alzheimer disease (AD). AD patients, and to a lesser extent older adults, have shown an impaired ability to use recollection-based monitoring processes (eg, recall-to-reject) to avoid various types of false memories, such as source-based false recognition. Younger adults, healthy older adults, and AD patients engaged in an incidental learning task, in which critical category exemplars were either accompanied by a distinctive picture or were presented as only words. Later, participants studied a series of categorized lists in which several typical exemplars were omitted and were then given a source memory test. Both older and younger adults made more accurate source attributions after picture encoding compared with word-only encoding, whereas AD patients did not exhibit this distinctiveness effect. These results extend those of previous studies showing that monitoring in older adults can be enhanced with distinctive encoding, and suggest that such monitoring processes in AD patients many be insensitive to distinctiveness.

  19. Methods and apparatuses for information analysis on shared and distributed computing systems

    DOEpatents

    Bohn, Shawn J [Richland, WA; Krishnan, Manoj Kumar [Richland, WA; Cowley, Wendy E [Richland, WA; Nieplocha, Jarek [Richland, WA

    2011-02-22

    Apparatuses and computer-implemented methods for analyzing, on shared and distributed computing systems, information comprising one or more documents are disclosed according to some aspects. In one embodiment, information analysis can comprise distributing one or more distinct sets of documents among each of a plurality of processes, wherein each process performs operations on a distinct set of documents substantially in parallel with other processes. Operations by each process can further comprise computing term statistics for terms contained in each distinct set of documents, thereby generating a local set of term statistics for each distinct set of documents. Still further, operations by each process can comprise contributing the local sets of term statistics to a global set of term statistics, and participating in generating a major term set from an assigned portion of a global vocabulary.

  20. Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect.

    PubMed

    Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun

    2017-02-01

    The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Theory of Cooperative Activated Structural Relaxation in Polymer Nanocomposites Composed of Small and Sticky Particles

    NASA Astrophysics Data System (ADS)

    Xie, Shijie; Schweizer, Kenneth

    Recently, Cheng, Sokolov and coworkers have discovered qualitatively new dynamic behavior (exceptionally large Tg and fragility increases, unusual thermal and viscoelastic responses) in polymer nanocomposites composed of nanoparticles comparable in size to a polymer segment which form physical bonds with both themselves and segments. We generalize the Elastically Collective Nonlinear Langevin Equation theory of deeply supercooled molecular and polymer liquids to study the cooperative activated hopping dynamics of this system based on the dynamic free energy surface concept. The theoretical calculations are consistent with segmental relaxation time measurements as a function of temperature and nanoparticle volume fraction, and also the nearly linear growth of Tg with NP loading; predictions are made for the influence of nonuniversal chemical effects. The theory suggests the alpha process involves strongly coupled activated motion of segments and nanoparticles, consistent with the observed negligible change of the heat capacity jump with filler loading. Based on cohesive energy calculations and transient network ideas, full structural relaxation is suggested to involve a second, slower bond dissociation process with distinctive features and implications.

  2. Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy.

    PubMed

    Vlahakis, Ariadne; Lopez Muniozguren, Nerea; Powers, Ted

    2017-01-01

    Macroautophagy/autophagy is a starvation and stress-induced catabolic process critical for cellular homeostasis and adaptation. Several Atg proteins are involved in the formation of the autophagosome and subsequent degradation of cytoplasmic components, a process termed autophagy flux. Additionally, the expression of several Atg proteins, in particular Atg8, is modulated transcriptionally, yet the regulatory mechanisms involved remain poorly understood. Here we demonstrate that the AGC kinase Ypk1, target of the rapamycin-insensitive TORC2 signaling pathway, controls ATG8 expression by repressing the heterodimeric Zinc-finger transcription factors Msn2 and Msn4. We find that Msn2 and Msn4 promote ATG8 expression downstream of the histone deacetylase complex (HDAC) subunit Ume6, a previously identified negative regulator of ATG8 expression. Moreover, we demonstrate that TORC2-Ypk1 signaling is functionally linked to distinct mitochondrial respiratory complexes. Surprisingly, we find that autophagy flux during amino acid starvation is also dependent upon Msn2-Msn4 activity, revealing a broad role for these transcription factors in the autophagy response.

  3. Xenophagic pathways and their bacterial subversion in cellular self-defense - παντα ρει - everything is in flux.

    PubMed

    Radomski, Nadine; Rebbig, Annica; Leonhardt, Ralf M; Knittler, Michael R

    2017-11-02

    Autophagy is an evolutionarily ancient and highly conserved eukaryotic mechanism that targets cytoplasmic material for degradation. Autophagic flux involves the formation of autophagosomes and their degradation by lysosomes. The process plays a crucial role in maintaining cellular homeostasis and responds to various environmental conditions. While autophagy had previously been thought to be a non-selective process, it is now clear that it can also selectively target cellular organelles, such as mitochondria (referred to as mitophagy) and/or invading pathogens (referred to as xenophagy). Selective autophagy is characterized by specific substrate recognition and requires distinct cellular adaptor proteins. Here we review xenophagic mechanisms involved in the recognition and autolysosomal or autophagolysosomal degradation of different intracellular bacteria. In this context, we also discuss a recently discovered cellular self-defense pathway, termed mito-xenophagy, which occurs during bacterial infection of dendritic cells and depends on a TNF-α-mediated metabolic switch from oxidative phosphorylation to glycolysis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Endocannabinoids and stress.

    PubMed

    Riebe, Caitlin J; Wotjak, Carsten T

    2011-07-01

    Endogenous cannabinoids play an important role in the physiology and behavioral expression of stress responses. Activation of the hypothalamic-pituitary-adrenal (HPA) axis, including the release of glucocorticoids, is the fundamental hormonal response to stress. Endocannabinoid (eCB) signaling serves to maintain HPA-axis homeostasis, by buffering basal activity as well as by mediating glucocorticoid fast feedback mechanisms. Following chronic stressor exposure, eCBs are also involved in physiological and behavioral habituation processes. Behavioral consequences of stress include fear and stress-induced anxiety as well as memory formation in the context of stress, involving contextual fear conditioning and inhibitory avoidance learning. Chronic stress can also lead to depression-like symptoms. Prominent in these behavioral stress responses is the interaction between eCBs and the HPA-axis. Future directions may differentiate among eCB signaling within various brain structures/neuronal subpopulations as well as between the distinct roles of the endogenous cannabinoid ligands. Investigation into the role of the eCB system in allostatic states and recovery processes may give insight into possible therapeutic manipulations of the system in treating chronic stress-related conditions in humans.

  5. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.

    PubMed

    Zalabák, David; Pospíšilová, Hana; Šmehilová, Mária; Mrízová, Katarína; Frébort, Ivo; Galuszka, Petr

    2013-01-01

    Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. An approach to evaluating drug-nutrient interactions.

    PubMed

    Santos, Cristina A; Boullata, Joseph I

    2005-12-01

    Although the significance of interactions between drugs is widely appreciated, little attention has been given to interactions between drugs and nutrients. Pharmacists are challenged to remember documented interactions involving available drugs, and they face the possibility that each newly approved therapeutic agent may be involved not only in unrecognized drug-drug interactions but in drug-nutrient interactions as well. A more consistent approach to evaluating drug-nutrient interactions is needed. The approach must be systematic in order to assess the influence of nutritional status, food, or specific nutrients on a drug's pharmacokinetics and pharmacodynamics, as well as the influence of a drug on overall nutritional status or on the status of a specific nutrient. We provide such a process, using several recently approved drugs as working examples. Risk factors and clinical relevance are described, with distinctions made between documented and potential interactions. Application of this process by the pharmacist to any drug will help increase their expertise. Furthermore, full consideration by pharmacists of all possible interactions of the drug regimens used in practice can allow for improved patient care.

  7. Reading disorders and dyslexia.

    PubMed

    Hulme, Charles; Snowling, Margaret J

    2016-12-01

    We review current knowledge about the nature of reading development and disorders, distinguishing between the processes involved in learning to decode print, and the processes involved in reading comprehension. Children with decoding difficulties/dyslexia experience deficits in phoneme awareness, letter-sound knowledge and rapid automatized naming in the preschool years and beyond. These phonological/language difficulties appear to be proximal causes of the problems in learning to decode print in dyslexia. We review data from a prospective study of children at high risk of dyslexia to show that being at family risk of dyslexia is a primary risk factor for poor reading and children with persistent language difficulties at school entry are more likely to develop reading problems. Early oral language difficulties are strong predictors of later difficulties in reading comprehension. There are two distinct forms of reading disorder in children: dyslexia (a difficulty in learning to translate print into speech) and reading comprehension impairment. Both forms of reading problem appear to be predominantly caused by deficits in underlying oral language skills. Implications for screening and for the delivery of robust interventions for language and reading are discussed.

  8. The Arabidopsis translatome cell-specific mRNA atlas: Mining suberin and cutin lipid monomer biosynthesis genes as an example for data application.

    PubMed

    Mustroph, Angelika; Bailey-Serres, Julia

    2010-03-01

    Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.

  9. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function.

    PubMed

    Aggleton, John P

    2012-08-01

    A review of medial temporal lobe connections reveals three distinct groupings of hippocampal efferents. These efferent systems and their putative memory functions are: (1) The 'extended-hippocampal system' for episodic memory, which involves the anterior thalamic nuclei, mammillary bodies and retrosplenial cortex, originates in the subicular cortices, and has a largely laminar organisation; (2) The 'rostral hippocampal system' for affective and social learning, which involves prefrontal cortex, amygdala and nucleus accumbens, has a columnar organisation, and originates from rostral CA1 and subiculum; (3) The 'reciprocal hippocampal-parahippocampal system' for sensory processing and integration, which originates from the length of CA1 and the subiculum, and is characterised by columnar, connections with reciprocal topographies. A fourth system, the 'parahippocampal-prefrontal system' that supports familiarity signalling and retrieval processing, has more widespread prefrontal connections than those of the hippocampus, along with different thalamic inputs. Despite many interactions between these four systems, they may retain different roles in memory which when combined explain the importance of the medial temporal lobe for the formation of declarative memories. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Distinct organization of the candidate tumor suppressor gene RFP2 in human and mouse: multiple mRNA isoforms in both species- and human-specific antisense transcript RFP2OS.

    PubMed

    Baranova, Ancha; Hammarsund, Marianne; Ivanov, Dmitry; Skoblov, Mikhail; Sangfelt, Olle; Corcoran, Martin; Borodina, Tatiana; Makeeva, Natalia; Pestova, Anna; Tyazhelova, Tatiana; Nazarenko, Svetlana; Gorreta, Francesco; Alsheddi, Tariq; Schlauch, Karen; Nikitin, Eugene; Kapanadze, Bagrat; Shagin, Dmitry; Poltaraus, Andrey; Ivanovich Vorobiev, Andrey; Zabarovsky, Eugene; Lukianov, Sergey; Chandhoke, Vikas; Ibbotson, Rachel; Oscier, David; Einhorn, Stefan; Grander, Dan; Yankovsky, Nick

    2003-12-04

    In the present study, we describe the human and mouse RFP2 gene structure, multiple RFP2 mRNA isoforms in the two species that have different 5' UTRs and a human-specific antisense transcript RFP2OS. Since the human RFP2 5' UTR is not conserved in mouse, these findings might indicate a different regulation of RFP2 in the two species. The predicted human and mouse RFP2 proteins are shown to contain a tripartite RING finger-B-box-coiled-coil domain (RBCC), also known as a TRIM domain, and therefore belong to a subgroup of RING finger proteins that are often involved in developmental and tumorigenic processes. Because homozygous deletions of chromosomal region 13q14.3 are found in a number of malignancies, including chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), we suggest that RFP2 might be involved in tumor development. This study provides necessary information for evaluation of the role of RFP2 in malignant transformation and other biological processes.

  11. "This Is a Partnership Between All of Us": Audiologists' Perceptions of Family Member Involvement in Hearing Rehabilitation.

    PubMed

    Meyer, Carly; Scarinci, Nerina; Ryan, Brooke; Hickson, Louise

    2015-12-01

    The purpose of the study was to explore the perceptions of audiologists about the role of family members in hearing rehabilitation for older adults with hearing impairment (HI), the influence of family member involvement on outcomes, and factors affecting family members' involvement. A qualitative descriptive research study was undertaken. Using a purposeful sampling strategy, 9 audiologists were recruited. Audiologists participated in individual semistructured interviews. Interview transcripts were analyzed using thematic analysis, and a process of member checking was used to enhance the trustworthiness of findings reported. The importance of promoting partnership emerged as the overarching theme. Audiologists valued promoting partnership with family members so that a shared understanding could be established, family members could be active participants with distinct roles in hearing rehabilitation, and the rehabilitation outcomes for the person with HI could be improved. Audiologists generally reported low attendance rates of family members to appointments and identified 5 major factors affecting family participation. There is growing recognition among audiologists of the importance of promoting partnership with family members during the hearing rehabilitation process. More research is needed to develop and evaluate a family-centered model of hearing health care that considers the service-level barriers identified by audiologists in the present study.

  12. Contextual Classification of Point Cloud Data by Exploiting Individual 3d Neigbourhoods

    NASA Astrophysics Data System (ADS)

    Weinmann, M.; Schmidt, A.; Mallet, C.; Hinz, S.; Rottensteiner, F.; Jutzi, B.

    2015-03-01

    The fully automated analysis of 3D point clouds is of great importance in photogrammetry, remote sensing and computer vision. For reliably extracting objects such as buildings, road inventory or vegetation, many approaches rely on the results of a point cloud classification, where each 3D point is assigned a respective semantic class label. Such an assignment, in turn, typically involves statistical methods for feature extraction and machine learning. Whereas the different components in the processing workflow have extensively, but separately been investigated in recent years, the respective connection by sharing the results of crucial tasks across all components has not yet been addressed. This connection not only encapsulates the interrelated issues of neighborhood selection and feature extraction, but also the issue of how to involve spatial context in the classification step. In this paper, we present a novel and generic approach for 3D scene analysis which relies on (i) individually optimized 3D neighborhoods for (ii) the extraction of distinctive geometric features and (iii) the contextual classification of point cloud data. For a labeled benchmark dataset, we demonstrate the beneficial impact of involving contextual information in the classification process and that using individual 3D neighborhoods of optimal size significantly increases the quality of the results for both pointwise and contextual classification.

  13. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    PubMed

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.

  14. Functional localization of a "Time Keeper" function separate from attentional resources and task strategy.

    PubMed

    Tracy, J I; Faro, S H; Mohamed, F B; Pinsk, M; Pinus, A

    2000-03-01

    The functional neuroanatomy of time estimation has not been well-documented. This research investigated the fMRI measured brain response to an explicit, prospective time interval production (TIP) task. The study tested for the presence of brain activity reflecting a primary time keeper function, distinct from the brain systems involved either in conscious strategies to monitor time or attentional resource and other cognitive processes to accomplish the task. In the TIP task participants were given a time interval and asked to indicate when it elapsed. Two control tasks (counting forwards, backwards) were administered, in addition to a dual task format of the TIP task. Whole brain images were collected at 1.5 Tesla. Analyses (n = 6) yielded a statistical parametric map (SPM ¿z¿) reflecting time keeping and not strategy (counting, number manipulation) or attention resource utilization. Additional SPM ¿z¿s involving activation associated with the accuracy and magnitude the of time estimation response are presented. Results revealed lateral cerebellar and inferior temporal lobe activation were associated with primary time keeping. Behavioral data provided evidence that the procedures for the explicit time judgements did not occur automatically and utilized controlled processes. Activation sites associated with accuracy, magnitude, and the dual task provided indications of the other structures involved in time estimation that implemented task components related to controlled processing. The data are consistent with prior proposals that the cerebellum is a repository of codes for time processing, but also implicate temporal lobe structures for this type of time estimation task. Copyright 2000 Academic Press.

  15. Auditory verbal hallucinations: Social, but how?

    PubMed Central

    Alderson-Day, Ben; Fernyhough, Charles

    2017-01-01

    Summary Auditory verbal hallucinations (AVH) are experiences of hearing voices in the absence of an external speaker. Standard explanatory models propose that AVH arise from misattributed verbal cognitions (i.e. inner speech), but provide little account of how heard voices often have a distinct persona and agency. Here we review the argument that AVH have important social and agent-like properties and consider how different neurocognitive approaches to AVH can account for these elements, focusing on inner speech, memory, and predictive processing. We then evaluate the possible role of separate social-cognitive processes in the development of AVH, before outlining three ways in which speech and language processes already involve socially important information, such as cues to interact with others. We propose that when these are taken into account, the social characteristics of AVH can be explained without an appeal to separate social-cognitive systems. PMID:29238264

  16. What differs in visual recognition of handwritten vs. printed letters? An fMRI study.

    PubMed

    Longcamp, Marieke; Hlushchuk, Yevhen; Hari, Riitta

    2011-08-01

    In models of letter recognition, handwritten letters are considered as a particular font exemplar, not qualitatively different in their processing from printed letters. Yet, some data suggest that recognizing handwritten letters might rely on distinct processes, possibly related to motor knowledge. We applied functional magnetic resonance imaging to compare the neural correlates of perceiving handwritten letters vs. standard printed letters. Statistical analysis circumscribed to frontal brain regions involved in hand-movement triggering and execution showed that processing of handwritten letters is supported by a stronger activation of the left primary motor cortex and the supplementary motor area. At the whole-brain level, additional differences between handwritten and printed letters were observed in the right superior frontal, middle occipital, and parahippocampal gyri, and in the left inferior precentral and the fusiform gyri. The results are suggested to indicate embodiment of the visual perception of handwritten letters. Copyright © 2010 Wiley-Liss, Inc.

  17. Direct and real time probe of photoinduced structure transition in colossal magnetoresistive material

    DOE PAGES

    Li, Junjie; Wang, Xuan; Zhou, Haidong; ...

    2016-07-29

    Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La 0.84Sr 0.16MnO 3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion followingmore » the photo-excitation. We attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.« less

  18. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  19. An ecological process model of female sex offending: the role of victimization, psychological distress, and life stressors.

    PubMed

    DeCou, Christopher R; Cole, Trevor T; Rowland, Sarah E; Kaplan, Stephanie P; Lynch, Shannon M

    2015-06-01

    Female sex offenders may be implicated in up to one fifth of all sex crimes committed in the United States. Despite previous research findings that suggest unique patterns of offending among female sex offenders, limited empirical research has investigated the motivations and processes involved. The present study qualitatively examined female sex offenders' offense-related experiences and characterized the internal and external factors that contributed to offending. Semi-structured interviews with 24 female sex offenders were analyzed by a team of coders with limited exposure to the existing literature using grounded theory analysis. A conceptual framework emerged representing distinctive processes for solo- and co-offending, contextualized within ecological layers of social and environmental influence. This model extends previous work by offering an example of nested vulnerabilities proximal to female sexual offending. Implications for future research, prevention, and treatment are discussed. © The Author(s) 2014.

  20. Efficient Auger Charge-Transfer Processes in ZnO

    NASA Astrophysics Data System (ADS)

    Stehr, J. E.; Chen, S. L.; Svensson, B. G.; Buyanova, I. A.; Chen, W. M.

    2018-05-01

    Photoluminescence and magneto-optical measurements are performed on a line peaking at 3.354 eV (labeled as NBX) in electron-irradiated ZnO. Even though the energy position of the NBX line is close to that for bound excitons in ZnO, it has distinctively different magneto-optical properties. Photoelectron paramagnetic resonance measurements reveal a connection and a charge-transfer process involving NBX and Fe and Al centers. The experimental results are explained within a model which assumes that the NBX is a neutral donor bound exciton at a defect center located near a Fe impurity and an Auger-type charge-transfer process occurs between NBX and Fe3 + . While the NBX dissociates, its hole is captured by an excited state of Fe3 + and the released energy is transferred to the NBX electron, which is excited to the conduction band and subsequently trapped by a substitutional AlZn shallow donor.

  1. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-11-15

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantummore » ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.« less

  2. Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning.

    PubMed

    Taylor, Jordan A; Ivry, Richard B

    2014-01-01

    Traditionally, motor learning has been studied as an implicit learning process, one in which movement errors are used to improve performance in a continuous, gradual manner. The cerebellum figures prominently in this literature given well-established ideas about the role of this system in error-based learning and the production of automatized skills. Recent developments have brought into focus the relevance of multiple learning mechanisms for sensorimotor learning. These include processes involving repetition, reinforcement learning, and strategy utilization. We examine these developments, considering their implications for understanding cerebellar function and how this structure interacts with other neural systems to support motor learning. Converging lines of evidence from behavioral, computational, and neuropsychological studies suggest a fundamental distinction between processes that use error information to improve action execution or action selection. While the cerebellum is clearly linked to the former, its role in the latter remains an open question. © 2014 Elsevier B.V. All rights reserved.

  3. Adoption: biological and social processes linked to adaptation.

    PubMed

    Grotevant, Harold D; McDermott, Jennifer M

    2014-01-01

    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  4. Long term trending of engineering data for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Cox, Ross M.

    1993-01-01

    A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.

  5. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  6. Cerebellar and Prefrontal Cortex Contributions to Adaptation, Strategies, and Reinforcement Learning

    PubMed Central

    Taylor, Jordan A.; Ivry, Richard B.

    2014-01-01

    Traditionally, motor learning has been studied as an implicit learning process, one in which movement errors are used to improve performance in a continuous, gradual manner. The cerebellum figures prominently in this literature given well-established ideas about the role of this system in error-based learning and the production of automatized skills. Recent developments have brought into focus the relevance of multiple learning mechanisms for sensorimotor learning. These include processes involving repetition, reinforcement learning, and strategy utilization. We examine these developments, considering their implications for understanding cerebellar function and how this structure interacts with other neural systems to support motor learning. Converging lines of evidence from behavioral, computational, and neuropsychological studies suggest a fundamental distinction between processes that use error information to improve action execution or action selection. While the cerebellum is clearly linked to the former, its role in the latter remains an open question. PMID:24916295

  7. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd Michael; Alam, Mary Kathleen; McIntyre, Sarah K.

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show thatmore » there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.« less

  8. Metal Dusting: Catastrophic Corrosion by Carbon

    NASA Astrophysics Data System (ADS)

    Young, David J.; Zhang, Jianqiang

    2012-12-01

    Reducing gases rich in carbon-bearing species such as CO can be supersaturated with respect to graphite at intermediate temperatures of about 400-700°C. Engineering alloys such as low-alloy and stainless steels, and heat-resisting iron-, nickel-, and cobalt-base alloys catalyze gas processes that release the carbon. An understanding of how the resulting carbon deposition can destroy alloys at a catastrophically rapid rate has been the objective of a great deal of research. The current review of recent work on metal dusting covers the mass transfer—principally carbon diffusion—and graphite nucleation processes involved. A clear distinction emerges between ferritic alloys, which form cementite and precipitate graphite within that carbide, and austenitics that nucleate graphite directly within the metal. The latter process is facilitated by the strong orientation relationship between the graphite and face-centered cubic (fcc) lattices. Strategies for the control of dusting are briefly outlined.

  9. Neural basis of reward anticipation and its genetic determinants.

    PubMed

    Jia, Tianye; Macare, Christine; Desrivières, Sylvane; Gonzalez, Dante A; Tao, Chenyang; Ji, Xiaoxi; Ruggeri, Barbara; Nees, Frauke; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia J; Dove, Rachel; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lemaitre, Hervé; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Poline, Jean-Baptiste; Rietschel, Marcella; Robbins, Trevor; Smolka, Michael N; Müller, Christian P; Feng, Jianfeng; Rothenfluh, Adrian; Flor, Herta; Schumann, Gunter

    2016-04-05

    Dysfunctional reward processing is implicated in various mental disorders, including attention deficit hyperactivity disorder (ADHD) and addictions. Such impairments might involve different components of the reward process, including brain activity during reward anticipation. We examined brain nodes engaged by reward anticipation in 1,544 adolescents and identified a network containing a core striatal node and cortical nodes facilitating outcome prediction and response preparation. Distinct nodes and functional connections were preferentially associated with either adolescent hyperactivity or alcohol consumption, thus conveying specificity of reward processing to clinically relevant behavior. We observed associations between the striatal node, hyperactivity, and the vacuolar protein sorting-associated protein 4A (VPS4A) gene in humans, and the causal role of Vps4 for hyperactivity was validated in Drosophila Our data provide a neurobehavioral model explaining the heterogeneity of reward-related behaviors and generate a hypothesis accounting for their enduring nature.

  10. Neural basis of reward anticipation and its genetic determinants

    PubMed Central

    Jia, Tianye; Macare, Christine; Desrivières, Sylvane; Gonzalez, Dante A.; Tao, Chenyang; Ji, Xiaoxi; Ruggeri, Barbara; Nees, Frauke; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun L. W.; Bromberg, Uli; Büchel, Christian; Conrod, Patricia J.; Dove, Rachel; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A.; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lemaitre, Hervé; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Poline, Jean-Baptiste; Rietschel, Marcella; Robbins, Trevor; Müller, Christian P.; Feng, Jianfeng; Rothenfluh, Adrian; Flor, Herta; Schumann, Gunter

    2016-01-01

    Dysfunctional reward processing is implicated in various mental disorders, including attention deficit hyperactivity disorder (ADHD) and addictions. Such impairments might involve different components of the reward process, including brain activity during reward anticipation. We examined brain nodes engaged by reward anticipation in 1,544 adolescents and identified a network containing a core striatal node and cortical nodes facilitating outcome prediction and response preparation. Distinct nodes and functional connections were preferentially associated with either adolescent hyperactivity or alcohol consumption, thus conveying specificity of reward processing to clinically relevant behavior. We observed associations between the striatal node, hyperactivity, and the vacuolar protein sorting-associated protein 4A (VPS4A) gene in humans, and the causal role of Vps4 for hyperactivity was validated in Drosophila. Our data provide a neurobehavioral model explaining the heterogeneity of reward-related behaviors and generate a hypothesis accounting for their enduring nature. PMID:27001827

  11. Racial discrimination experiences and African American youth adjustment: The role of parenting profiles based on racial socialization and involved-vigilant parenting.

    PubMed

    Varner, Fatima A; Hou, Yang; Hodzic, Tajma; Hurd, Noelle M; Butler-Barnes, Sheretta T; Rowley, Stephanie J

    2018-04-01

    The purpose of this study was to test whether parenting profiles based on racial socialization and involved-vigilant parenting would compensate for or moderate associations between racial discrimination experiences and academic outcomes and psychological well-being among African American adolescents. Participants were 1,363 African American adolescents (M age = 14.19; 52.3% female) from 3 Midwestern suburban school districts. Latent profile analysis was used to examine whether there were distinct combinations of parenting. The relationships among racial discrimination experiences, parenting profiles, and adjustment were examined using structural equation modeling (SEM). Three distinct parenting profiles were found: moderate positive (n = 767; moderately high involved-vigilant parenting and racial barrier, racial pride, behavioral, and egalitarian messages, and low negative messages), unengaged (n = 351; low racial socialization messages and moderately low involved-vigilant parenting), and high negative parenting (n = 242; high negative messages, moderate other racial socialization messages, and moderately low involved-vigilant parenting). Racial discrimination experiences were negatively associated with youth adjustment. Moderate positive parenting was related to the best academic outcomes and unengaged parenting was associated with more positive academic outcomes than high negative parenting. Moderate positive parenting was associated with better psychological well-being than unengaged or high negative parenting although the benefits were greater for adolescents with fewer racial discrimination experiences. Distinct patterns of racial socialization messages and involved-vigilant parenting contribute to differences in African American youth adjustment. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release.

    PubMed

    Pawłowski, Tomasz Andrzej; Staszak, Aleksandra Maria

    2016-05-20

    Acer pseudoplatanus seeds are characterized by a deep physiological embryo dormancy that requires a few weeks of cold stratification in order to promote germination. Understanding the function of proteins and their related metabolic pathways, in conjunction with the plant hormones implicated in the breaking of seed dormancy, would expand our knowledge pertaining to this process. In this study, a proteomic approach was used to analyze the changes occurring in seeds in response to cold stratification, which leads to dormancy release. In addition, the involvement of abscisic (ABA) and gibberellic acids (GA) was also examined. Fifty-three proteins showing significant changes were identified by mass spectrometry. An effect of ABA on protein variation was observed at the beginning of stratification, while the influence of GA on protein abundance was observed during the middle phase of stratification. The majority of proteins associated with dormancy breaking in the presence of only water, and also ABA or GA, were classified as being involved in metabolism and genetic information processing. For metabolic-related proteins, the effect of ABA on protein abundance was stimulatory for half of the proteins and inhibitory for half of the proteins. On the other hand, the effect on genetic information processing related proteins was stimulatory. GA was found to upregulate both metabolic-related and genetic information processing-related proteins. While seed dormancy breaking depends on proteins involved in a variety of processes, proteins associated with methionine metabolism (adenosine kinase, methionine synthase) and glycine-rich RNA binding proteins appear to be of particular importance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. The Functional Neuroanatomy of Male Psychosexual and Physiosexual Arousal: A Quantitative Meta-Analysis

    PubMed Central

    Poeppl, Timm B.; Langguth, Berthold; Laird, Angela R.; Eickhoff, Simon B.

    2016-01-01

    Reproductive behavior is mandatory for conservation of species and mediated by a state of sexual arousal (SA), involving both complex mental processes and bodily reactions. An early neurobehavioral model of SA proposes cognitive, emotional, motivational, and autonomic components. In a comprehensive quantitative meta-analysis on previous neuroimaging findings, we provide here evidence for distinct brain networks underlying psychosexual and physiosexual arousal. Psychosexual (i.e., mental sexual) arousal recruits brain areas crucial for cognitive evaluation, top-down modulation of attention and exteroceptive sensory processing, relevance detection and affective evaluation, as well as regions implicated in the representation of urges and in triggering autonomic processes. In contrast, physiosexual (i.e., physiological sexual) arousal is mediated by regions responsible for regulation and monitoring of initiated autonomic processes and emotions and for somatosensory processing. These circuits are interconnected by subcortical structures (putamen and claustrum) that provide exchange of sensorimotor information and crossmodal processing between and within the networks. Brain deactivations may imply attenuation of introspective processes and social cognition, but be necessary to release intrinsic inhibition of SA. PMID:23674246

  14. Involvement of Corneal Lymphangiogenesis in a Mouse Model of Allergic Eye Disease

    PubMed Central

    Lee, Hyun-Soo; Hos, Deniz; Blanco, Tomas; Bock, Felix; Reyes, Nancy J.; Mathew, Rose; Cursiefen, Claus; Dana, Reza; Saban, Daniel R.

    2015-01-01

    Purpose. The contribution of lymphangiogenesis (LA) to allergy has received considerable attention and therapeutic inhibition of this process via targeting VEGF has been considered. Likewise, certain inflammatory settings affecting the ocular mucosa can trigger pathogenic LA in the naturally avascular cornea. Chronic inflammation in allergic eye disease (AED) impacts the conjunctiva and cornea, leading to sight threatening conditions. However, whether corneal LA is involved is completely unknown. We addressed this using a validated mouse model of AED. Methods. Allergic eye disease was induced by ovalbumin (OVA) immunization and chronic OVA exposure. Confocal microscopy of LYVE-1–stained cornea allowed evaluation of corneal LA, and qRT-PCR was used to evaluate expression of VEGF-C, -D, and -R3 in these mice. Administration of VEGF receptor (R) inhibitor was incorporated to inhibit corneal LA in AED. Immune responses were evaluated by in vitro OVA recall responses of T cells, and IgE levels in the serum. Results. Confocal microscopy of LYVE-1–stained cornea revealed the distinct presence of corneal LA in AED, and corroborated by increased corneal expression of VEGF-C, -D, and -R3. Importantly, prevention of corneal LA in AED via VEGFR inhibition was associated with decreased T helper two responses and IgE production. Furthermore, VEGFR inhibition led a significant reduction in clinical signs of AED. Conclusions. Collectively, these data reveal that there is a distinct involvement of corneal LA in AED. Furthermore, VEGFR inhibition prevents corneal LA and consequent immune responses in AED. PMID:26024097

  15. Goal-oriented networks and capacity building for natural hazards - examples in the Dresden region

    NASA Astrophysics Data System (ADS)

    Hutter, G.

    2013-04-01

    Networks and networking are important to build social capacities for natural hazards. However, up to now, it is an open question which types of networks contribute to capacity building under certain circumstances. The paper focuses on the type of a goal-oriented network. The distinction between goal orientation and goal directedness is used to show the following: goal directedness of networks to build capacities for natural hazards involves intensive and continuous processes of sensemaking (Weick, 1995) to specify the network goal. This process of specifying an initial goal statement is important in small and large networks. The governance form of a lead organization network facilitates goal specification. The paper illustrates these findings through evidence from two case studies conducted in the Dresden region in Germany.

  16. Intracranial recordings and human memory.

    PubMed

    Johnson, Elizabeth L; Knight, Robert T

    2015-04-01

    Recent work involving intracranial recording during human memory performance provides superb spatiotemporal resolution on mnemonic processes. These data demonstrate that the cortical regions identified in neuroimaging studies of memory fall into temporally distinct networks and the hippocampal theta activity reported in animal memory literature also plays a central role in human memory. Memory is linked to activity at multiple interacting frequencies, ranging from 1 to 500Hz. High-frequency responses and coupling between different frequencies suggest that frontal cortex activity is critical to human memory processes, as well as a potential key role for the thalamus in neocortical oscillations. Future research will inform unresolved questions in the neuroscience of human memory and guide creation of stimulation protocols to facilitate function in the damaged brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Are children conservative, liberal, or metacognitive? Preliminary evidence for the involvement of the distinctiveness heuristic in decision making.

    PubMed

    Geurten, Marie; Willems, Sylvie; Meulemans, Thierry

    2015-04-01

    The experiment tested whether young children are able to reduce their false recognition rate after distinctive encoding by implementing a strategic metacognitive rule. The participants, 72 children aged 4, 6, and 9 years, studied two lists of unrelated items. One of these lists was visually displayed (picture condition), whereas the other was presented auditorily (word condition). After each study phase, participants completed recognition tests. Finally, they answered questions about their explicit knowledge of the distinctive encoding effect. The results revealed that even the youngest children in our sample showed a smaller proportion of intrusions in the picture condition than in the word condition. Furthermore, the results of the signal detection analyses were consistent with the hypothesis that the lower rate of false recognitions after picture encoding results from the implementation of a conservative response criterion based on metacognitive expectations (distinctiveness heuristic). Moreover, the absence of correlation between children's explicit knowledge of the distinctiveness rule and their effective use of this metacognitive heuristic seems to indicate that its involvement in memory decisions could be mediated by implicit mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The role of aging in intra-item and item-context binding processes in visual working memory.

    PubMed

    Peterson, Dwight J; Naveh-Benjamin, Moshe

    2016-11-01

    Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory for the individual components. While robust patterns of age-related binding deficits are prevalent in studies of long-term episodic memory, observations of such deficits in visual working memory (VWM) may depend on the specific type of binding process being examined. For instance, a number of studies indicate that processes involved in item-context binding of items to occupied spatial locations within visual working memory are impaired in older relative to younger adults. Other findings suggest that intra-item binding of visual surface features (e.g., color, shape), compared to memory for single features, within visual working memory, remains relatively intact. Here, we examined each of these binding processes in younger and older adults under both optimal conditions (i.e., no concurrent load) and concurrent load (e.g., articulatory suppression, backward counting). Experiment 1 revealed an age-related intra-item binding deficit for surface features under no concurrent load but not when articulatory suppression was required. In contrast, in Experiments 2 and 3, we observed an age-related item-context binding deficit regardless of the level of concurrent load. These findings reveal that the influence of concurrent load on distinct binding processes within VWM, potentially those supported by rehearsal, is an important factor mediating the presence or absence of age-related binding deficits within VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study.

    PubMed

    Hanlon, Colleen A; Canterberry, Melanie; Taylor, Joseph J; DeVries, William; Li, Xingbao; Brown, Truman R; George, Mark S

    2013-01-01

    The prefrontal cortex (PFC) is an anatomically and functionally heterogeneous area which influences cognitive and limbic processing through connectivity to subcortical targets. As proposed by Alexander et al. (1986) the lateral and medial aspects of the PFC project to distinct areas of the striatum in parallel but functionally distinct circuits. The purpose of this preliminary study was to determine if we could differentially and consistently activate these lateral and medial cortical-subcortical circuits involved in executive and limbic processing though interleaved transcranial magnetic stimulation (TMS) in the MR environment. Seventeen healthy individuals received interleaved TMS-BOLD imaging with the coil positioned over the dorsolateral (EEG: F3) and ventromedial PFC (EEG: FP1). BOLD signal change was calculated in the areas directly stimulated by the coil and in subcortical regions with afferent and efferent connectivity to the TMS target areas. Additionally, five individuals were tested on two occasions to determine test-retest reliability. Region of interest analysis revealed that TMS at both prefrontal sites led to significant BOLD signal increases in the cortex under the coil, in the striatum, and the thalamus, but not in the visual cortex (negative control region). There was a significantly larger BOLD signal change in the caudate following medial PFC TMS, relative to lateral TMS. The hippocampus in contrast was significantly more activated by lateral TMS. Post-hoc voxel-based analysis revealed that within the caudate the location of peak activity was in the ventral caudate following medial TMS and the dorsal caudate following lateral TMS. Test-retest reliability data revealed consistent BOLD responses to TMS within each individual but a large variation between individuals. These data demonstrate that, through an optimized TMS/BOLD sequence over two unique prefrontal targets, it is possible to selectively interrogate the patency of these established cortical-subcortical networks in healthy individuals, and potentially patient populations.

  20. How does emotion influence different creative performances? The mediating role of cognitive flexibility.

    PubMed

    Lin, Wei-Lun; Tsai, Ping-Hsun; Lin, Hung-Yu; Chen, Hsueh-Chih

    2014-01-01

    Cognitive flexibility is proposed to be one of the factors underlying how positive emotions can improve creativity. However, previous works have seldom set up or empirically measured an independent index to demonstrate its mediating effect, nor have they investigated its mediating role on different types of creative performances, which involve distinct processes. In this study, 120 participants were randomly assigned to positive, neutral or negative affect conditions. Their levels of cognitive flexibility were then measured by a switch task. Finally, their creative performances were calibrated by either an open-ended divergent thinking test or a closed-ended insight problem-solving task. The results showed that positive emotional states could reduce switch costs and enhance both types of creative performances. However, cognitive flexibility exhibited a full mediating effect only on the relationship between positive emotion and insight problem solving, but not between positive emotion and divergent thinking. Divergent thinking was instead more associated with arousal level. These results suggest that emotions might influence different creative performances through distinct mechanisms.

  1. Development of distinct control networks through segregation and integration

    PubMed Central

    Fair, Damien A.; Dosenbach, Nico U. F.; Church, Jessica A.; Cohen, Alexander L.; Brahmbhatt, Shefali; Miezin, Francis M.; Barch, Deanna M.; Raichle, Marcus E.; Petersen, Steven E.; Schlaggar, Bradley L.

    2007-01-01

    Human attentional control is unrivaled. We recently proposed that adults depend on distinct frontoparietal and cinguloopercular networks for adaptive online task control versus more stable set control, respectively. During development, both experience-dependent evoked activity and spontaneous waves of synchronized cortical activity are thought to support the formation and maintenance of neural networks. Such mechanisms may encourage tighter “integration” of some regions into networks over time while “segregating” other sets of regions into separate networks. Here we use resting state functional connectivity MRI, which measures correlations in spontaneous blood oxygenation level-dependent signal fluctuations between brain regions to compare previously identified control networks between children and adults. We find that development of the proposed adult control networks involves both segregation (i.e., decreased short-range connections) and integration (i.e., increased long-range connections) of the brain regions that comprise them. Delay/disruption in the developmental processes of segregation and integration may play a role in disorders of control, such as autism, attention deficit hyperactivity disorder, and Tourette's syndrome. PMID:17679691

  2. Stress-driven buckling patterns in spheroidal core/shell structures.

    PubMed

    Yin, Jie; Cao, Zexian; Li, Chaorong; Sheinman, Izhak; Chen, Xi

    2008-12-09

    Many natural fruits and vegetables adopt an approximately spheroidal shape and are characterized by their distinct undulating topologies. We demonstrate that various global pattern features can be reproduced by anisotropic stress-driven buckles on spheroidal core/shell systems, which implies that the relevant mechanical forces might provide a template underpinning the topological conformation in some fruits and plants. Three dimensionless parameters, the ratio of effective size/thickness, the ratio of equatorial/polar radii, and the ratio of core/shell moduli, primarily govern the initiation and formation of the patterns. A distinct morphological feature occurs only when these parameters fall within certain ranges: In a prolate spheroid, reticular buckles take over longitudinal ridged patterns when one or more parameters become large. Our results demonstrate that some universal features of fruit/vegetable patterns (e.g., those observed in Korean melons, silk gourds, ribbed pumpkins, striped cavern tomatoes, and cantaloupes, etc.) may be related to the spontaneous buckling from mechanical perspectives, although the more complex biological or biochemical processes are involved at deep levels.

  3. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management

    PubMed Central

    Luo, Qiang; Ma, Yina; Bhatt, Meghana A.; Montague, P. Read; Feng, Jianfeng

    2017-01-01

    Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition. PMID:29163095

  4. Providing local color?: "cape coloreds," "cockneys," and Cape Town's identity from the late nineteenth century to the 1970s.

    PubMed

    Bickford-Smith, Vivian

    2012-01-01

    Jim Dyos, founding-father of British urban history, argued that cities have commonly acknowledged “individual characteristics” that distinguish them. Such distinctive characteristics, though usually based on material realities, are promoted through literary and visual representations. This article argues that those who seek to convey a city’s distinctiveness will do so not only through describing its particular topography, architecture, history or functions but also by describing its “local colour”: the supposedly unique customs, manner of speech, dress, or other special features of its inhabitants. In colonial cities this process involved white racial stereotyping of “others”. In Cape Town, depictions of “Coloured” inhabitants as unique “city types” became part of the city’s “destination branding”. The article analyses change and continuity in such representations. To this end it draws on the insights of Gareth Stedman Jones into changing depictions of London’s “Cockneys” and the insights of Stephen Ward into historical “place-selling”.

  5. The GABAB receptor agonist, baclofen, contributes to three distinct varieties of amnesia in the human brain - A detailed case report.

    PubMed

    Zeman, Adam; Hoefeijzers, Serge; Milton, Fraser; Dewar, Michaela; Carr, Melanie; Streatfield, Claire

    2016-01-01

    We describe a patient in whom long-term, therapeutic infusion of the selective gamma-amino-butyric acid type B (GABAB) receptor agonist, baclofen, into the cerebrospinal fluid (CSF) gave rise to three distinct varieties of memory impairment: i) repeated, short periods of severe global amnesia, ii) accelerated long-term forgetting (ALF), evident over intervals of days and iii) a loss of established autobiographical memories. This pattern of impairment has been reported in patients with temporal lobe epilepsy (TLE), in particular the subtype of Transient Epileptic Amnesia (TEA). The amnesic episodes and accelerated forgetting remitted on withdrawal of baclofen, while the autobiographical amnesia (AbA) persisted. This exceptional case highlights the occurrence of 'non-standard' forms of human amnesia, reflecting the biological complexity of memory processes. It suggests a role for GABAB signalling in the modulation of human memory over multiple time-scales and hints at its involvement in 'epileptic amnesia'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management.

    PubMed

    Luo, Qiang; Ma, Yina; Bhatt, Meghana A; Montague, P Read; Feng, Jianfeng

    2017-01-01

    Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition.

  7. Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis.

    PubMed

    Cheng, Ze; Otto, George Maxwell; Powers, Emily Nicole; Keskin, Abdurrahman; Mertins, Philipp; Carr, Steven Alfred; Jovanovic, Marko; Brar, Gloria Ann

    2018-02-22

    To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein. By this pervasive mechanism for the modulation of protein levels through a natural developmental program, a single transcription factor can coordinately activate and repress protein synthesis for distinct sets of genes. The distinction is not based on whether or not an mRNA is induced but rather on the type of transcript produced. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP.

    PubMed

    Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-11-11

    Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Clinically distinct presentations of copper deficiency myeloneuropathy and cytopenias in a patient using excessive zinc-containing denture adhesive.

    PubMed

    Cathcart, Sahara J; Sofronescu, Alina G

    2017-08-01

    While copper deficiency has long been known to cause cytopenias, copper deficiency myeloneuropathy is a more recently described entity. Here, we present the case of two clinically distinct presentations of acquired copper deficiency syndromes secondary to excessive use of zinc-containing denture adhesive over five years: myeloneuropathy and severe macrocytic anemia and neutropenia. Extensive laboratory testing and histologic evaluation of the liver and bone marrow, were necessary to rule out other disease processes and establish the diagnosis of copper deficiency. The initial presentation consisted of a myelopathy involving the posterior columns. Serum and urine copper were significantly decreased, and serum zinc was elevated. On second presentation (five years later), multiple hematological abnormalities were detected. Serum copper was again decreased, while serum zinc was elevated. Zinc overload is a preventable cause of copper deficiency syndromes. This rare entity presented herein highlights the importance of patient, as well as provider, education. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

    PubMed Central

    Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2018-01-01

    Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521

  11. Neural organization of linguistic short-term memory is sensory modality-dependent: evidence from signed and spoken language.

    PubMed

    Pa, Judy; Wilson, Stephen M; Pickell, Herbert; Bellugi, Ursula; Hickok, Gregory

    2008-12-01

    Despite decades of research, there is still disagreement regarding the nature of the information that is maintained in linguistic short-term memory (STM). Some authors argue for abstract phonological codes, whereas others argue for more general sensory traces. We assess these possibilities by investigating linguistic STM in two distinct sensory-motor modalities, spoken and signed language. Hearing bilingual participants (native in English and American Sign Language) performed equivalent STM tasks in both languages during functional magnetic resonance imaging. Distinct, sensory-specific activations were seen during the maintenance phase of the task for spoken versus signed language. These regions have been previously shown to respond to nonlinguistic sensory stimulation, suggesting that linguistic STM tasks recruit sensory-specific networks. However, maintenance-phase activations common to the two languages were also observed, implying some form of common process. We conclude that linguistic STM involves sensory-dependent neural networks, but suggest that sensory-independent neural networks may also exist.

  12. Not All Analogies Are Created Equal: Associative and Categorical Analogy Processing following Brain Damage

    ERIC Educational Resources Information Center

    Schmidt, Gwenda L.; Cardillo, Eileen R.; Kranjec, Alexander; Lehet, Matthew; Widick, Page; Chatterjee, Anjan

    2012-01-01

    Current research on analogy processing assumes that different conceptual relations are treated similarly. However, just as words and concepts are related in distinct ways, different kinds of analogies may employ distinct types of relationships. An important distinction in how words are related is the difference between associative (dog-bone) and…

  13. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts

    PubMed Central

    Schuetze, Katherine B.; Stratton, Matthew S.; Blakeslee, Weston W.; Wempe, Michael F.; Wagner, Florence F.; Holson, Edward B.; Kuo, Yin-Ming; Andrews, Andrew J.; Gilbert, Tonya M.; Hooker, Jacob M.

    2017-01-01

    Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix–producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development. PMID:28174211

  14. Physiotherapy: a historical analysis of the transformation from an occupation to a profession in Brazil

    PubMed Central

    Oliveira, Ana L. O.; Nunes, Everardo D.

    2015-01-01

    ABSTRACT Background: Analyzing the historical and social path of an occupation using the sociology of professions and the perspective of scientific knowledge promotes an understanding of the origin of physical therapy in Brazil and of discussions of the profession in its contemporary context. Objective: The aim of this paper was to discuss the professionalization process of physical therapy in São Paulo. The authors tried to analyze bath therapy, massage therapy, and physical therapy as occupations involving distinct expertise and as part of the group of occupations that evolved into the profession of physiotherapy in the first half of the twentieth century. Method: The analysis undertaken was a qualitative study based on an analysis of historical documents. Eighty-six professional records from the Service of Inspection of Professional Practice in the state of São Paulo and healthcare legislation from the 1930s and 1940s were analyzed. Results: The distinction between physical therapy practitioner and profession of physiotherapy can be seen by examining registration requirements for rank-and-file nurses with expertise in interactions; this distinction suggests the emergence of specialized expertise that was clearly a part of neither medicine nor nursing and contributed to expertise in physical therapy since the 1950s. Conclusion: The regulation of physiotherapy practices, the recognition of expertise, the accreditation of practical nurses by the State, and the institutionalization of a course for physical therapy practitioners in 1951 are key elements of the professionalization process for the physical therapy profession in Brazil. PMID:26443976

  15. Dependency-dependent interference: NPI interference, agreement attraction, and global pragmatic inferences.

    PubMed

    Xiang, Ming; Grove, Julian; Giannakidou, Anastasia

    2013-01-01

    Previous psycholinguistics studies have shown that when forming a long distance dependency in online processing, the parser sometimes accepts a sentence even though the required grammatical constraints are only partially met. A mechanistic account of how such errors arise sheds light on both the underlying linguistic representations involved and the processing mechanisms that put such representations together. In the current study, we contrast the negative polarity items (NPI) interference effect, as shown by the acceptance of an ungrammatical sentence like "The bills that democratic senators have voted for will ever become law," with the well-known phenomenon of agreement attraction ("The key to the cabinets are … "). On the surface, these two types of errors look alike and thereby can be explained as being driven by the same source: similarity based memory interference. However, we argue that the linguistic representations involved in NPI licensing are substantially different from those of subject-verb agreement, and therefore the interference effects in each domain potentially arise from distinct sources. In particular, we show that NPI interference at least partially arises from pragmatic inferences. In a self-paced reading study with an acceptability judgment task, we showed NPI interference was modulated by participants' general pragmatic communicative skills, as quantified by the Autism-Spectrum Quotient (AQ, Baron-Cohen et al., 2001), especially in offline tasks. Participants with more autistic traits were actually less prone to the NPI interference effect than those with fewer autistic traits. This result contrasted with agreement attraction conditions, which were not influenced by individual pragmatic skill differences. We also show that different NPI licensors seem to have distinct interference profiles. We discuss two kinds of interference effects for NPI licensing: memory-retrieval based and pragmatically triggered.

  16. Modeling Collective Animal Behavior with a Cognitive Perspective: A Methodological Framework

    PubMed Central

    Weitz, Sebastian; Blanco, Stéphane; Fournier, Richard; Gautrais, Jacques; Jost, Christian; Theraulaz, Guy

    2012-01-01

    The last decades have seen an increasing interest in modeling collective animal behavior. Some studies try to reproduce as accurately as possible the collective dynamics and patterns observed in several animal groups with biologically plausible, individual behavioral rules. The objective is then essentially to demonstrate that the observed collective features may be the result of self-organizing processes involving quite simple individual behaviors. Other studies concentrate on the objective of establishing or enriching links between collective behavior researches and cognitive or physiological ones, which then requires that each individual rule be carefully validated. Here we discuss the methodological consequences of this additional requirement. Using the example of corpse clustering in ants, we first illustrate that it may be impossible to discriminate among alternative individual rules by considering only observational data collected at the group level. Six individual behavioral models are described: They are clearly distinct in terms of individual behaviors, they all reproduce satisfactorily the collective dynamics and distribution patterns observed in experiments, and we show theoretically that it is strictly impossible to discriminate two of these models even in the limit of an infinite amount of data whatever the accuracy level. A set of methodological steps are then listed and discussed as practical ways to partially overcome this problem. They involve complementary experimental protocols specifically designed to address the behavioral rules successively, conserving group-level data for the overall model validation. In this context, we highlight the importance of maintaining a sharp distinction between model enunciation, with explicit references to validated biological concepts, and formal translation of these concepts in terms of quantitative state variables and fittable functional dependences. Illustrative examples are provided of the benefits expected during the often long and difficult process of refining a behavioral model, designing adapted experimental protocols and inversing model parameters. PMID:22761685

  17. Modeling collective animal behavior with a cognitive perspective: a methodological framework.

    PubMed

    Weitz, Sebastian; Blanco, Stéphane; Fournier, Richard; Gautrais, Jacques; Jost, Christian; Theraulaz, Guy

    2012-01-01

    The last decades have seen an increasing interest in modeling collective animal behavior. Some studies try to reproduce as accurately as possible the collective dynamics and patterns observed in several animal groups with biologically plausible, individual behavioral rules. The objective is then essentially to demonstrate that the observed collective features may be the result of self-organizing processes involving quite simple individual behaviors. Other studies concentrate on the objective of establishing or enriching links between collective behavior researches and cognitive or physiological ones, which then requires that each individual rule be carefully validated. Here we discuss the methodological consequences of this additional requirement. Using the example of corpse clustering in ants, we first illustrate that it may be impossible to discriminate among alternative individual rules by considering only observational data collected at the group level. Six individual behavioral models are described: They are clearly distinct in terms of individual behaviors, they all reproduce satisfactorily the collective dynamics and distribution patterns observed in experiments, and we show theoretically that it is strictly impossible to discriminate two of these models even in the limit of an infinite amount of data whatever the accuracy level. A set of methodological steps are then listed and discussed as practical ways to partially overcome this problem. They involve complementary experimental protocols specifically designed to address the behavioral rules successively, conserving group-level data for the overall model validation. In this context, we highlight the importance of maintaining a sharp distinction between model enunciation, with explicit references to validated biological concepts, and formal translation of these concepts in terms of quantitative state variables and fittable functional dependences. Illustrative examples are provided of the benefits expected during the often long and difficult process of refining a behavioral model, designing adapted experimental protocols and inversing model parameters.

  18. Health technology adoption and the politics of governance in the UK.

    PubMed

    Milewa, Timothy

    2006-12-01

    The manner in which clinical and cost-effectiveness data are used to inform decisions about the funding and availability of drugs, therapies and medical devices is inherently politicised within collectively financed systems of health care. The National Institute for Health and Clinical Excellence (NICE) was established by the British government in 1999 to reach evidence-based decisions on whether selected health technologies should be made available by the National Health Service in England and Wales. But NICE is also required to involve a broad range of interested parties in the decision-making process, provide detailed rationales for its rulings and defend appeals from aggrieved parties. Debates about the emergence of "deliberative" forms of policy governance--based upon participation by a broad range of stakeholders rather than reliance on scientific, bureaucratic or political expertise alone--are thus particularly apposite. This article draws on a study of decision-making within NICE by focusing upon the tenor and orientation of deliberation about the adoption of health technologies. Does such deliberation take place upon a level playing field for different interests? Or do implicit parameters and understandings in the deliberative process tend to privilege some interests by structuring debate and attendant outcomes? Findings suggest that deliberative assumptions and parameters pertaining to fluid and contestable ideas of transparent reasoning and domain competence both reflect and shape relationships of influence and marginality among participants. Broader analytical implications centre on a distinction between "deliberative democracy" and "democratic deliberation". The extent to which this distinction is acknowledged and addressed in policy and practise will have marked implications for the substantive nature of attempts to broaden involvement in decision-making within public sector bodies such as NICE.

  19. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem

    PubMed Central

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-01-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems. PMID:24108327

  20. Dependency-dependent interference: NPI interference, agreement attraction, and global pragmatic inferences

    PubMed Central

    Xiang, Ming; Grove, Julian; Giannakidou, Anastasia

    2013-01-01

    Previous psycholinguistics studies have shown that when forming a long distance dependency in online processing, the parser sometimes accepts a sentence even though the required grammatical constraints are only partially met. A mechanistic account of how such errors arise sheds light on both the underlying linguistic representations involved and the processing mechanisms that put such representations together. In the current study, we contrast the negative polarity items (NPI) interference effect, as shown by the acceptance of an ungrammatical sentence like “The bills that democratic senators have voted for will ever become law,” with the well-known phenomenon of agreement attraction (“The key to the cabinets are … ”). On the surface, these two types of errors look alike and thereby can be explained as being driven by the same source: similarity based memory interference. However, we argue that the linguistic representations involved in NPI licensing are substantially different from those of subject-verb agreement, and therefore the interference effects in each domain potentially arise from distinct sources. In particular, we show that NPI interference at least partially arises from pragmatic inferences. In a self-paced reading study with an acceptability judgment task, we showed NPI interference was modulated by participants' general pragmatic communicative skills, as quantified by the Autism-Spectrum Quotient (AQ, Baron-Cohen et al., 2001), especially in offline tasks. Participants with more autistic traits were actually less prone to the NPI interference effect than those with fewer autistic traits. This result contrasted with agreement attraction conditions, which were not influenced by individual pragmatic skill differences. We also show that different NPI licensors seem to have distinct interference profiles. We discuss two kinds of interference effects for NPI licensing: memory-retrieval based and pragmatically triggered. PMID:24109468

  1. Sphingosine 1-Phosphate (S1P) Signaling in Glioblastoma Multiforme—A Systematic Review

    PubMed Central

    Mahajan-Thakur, Shailaja; Bien-Möller, Sandra; Marx, Sascha; Schroeder, Henry

    2017-01-01

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis. PMID:29149079

  2. Ability to Maintain Internal Arousal and Motivation Modulates Brain Responses to Emotions

    PubMed Central

    Sterpenich, Virginie; Schwartz, Sophie; Maquet, Pierre; Desseilles, Martin

    2014-01-01

    Persistence (PS) is defined as the ability to generate and maintain arousal and motivation internally in the absence of immediate external reward. Low PS individuals tend to become discouraged when expectations are not rapidly fulfilled. The goal of this study was to investigate whether individual differences in PS influence the recruitment of brain regions involved in emotional processing and regulation. In a functional MRI study, 35 subjects judged the emotional intensity of displayed pictures. When processing negative pictures, low PS (vs. high PS) subjects showed higher amygdala and right orbito-frontal cortex (OFC) activity but lower left OFC activity. This dissociation in OFC activity suggests greater prefrontal cortical asymmetry for approach/avoidance motivation, suggesting an avoidance response to aversive stimuli in low PS. For positive or neutral stimuli, low PS subjects showed lower activity in the amygdala, striatum, and hippocampus. These results suggest that low PS may involve an imbalance in processing distinct emotional inputs, with greater reactivity to aversive information in regions involved in avoidance behaviour (amygdala, OFC) and dampened response to positive and neutral stimuli across circuits subserving motivated behaviour (striatum, hippocampus, amygdala). Low PS affective style was associated with depression vulnerability. These findings in non-depressed subjects point to a neural mechanism whereby some individuals are more likely to show systematic negative emotional biases, as frequently observed in depression. The assessment of these individual differences, including those that may cause vulnerability to depressive disorders, would therefore constitute a promising approach to risk assessment for depression. PMID:25438046

  3. Ability to maintain internal arousal and motivation modulates brain responses to emotions.

    PubMed

    Sterpenich, Virginie; Schwartz, Sophie; Maquet, Pierre; Desseilles, Martin

    2014-01-01

    Persistence (PS) is defined as the ability to generate and maintain arousal and motivation internally in the absence of immediate external reward. Low PS individuals tend to become discouraged when expectations are not rapidly fulfilled. The goal of this study was to investigate whether individual differences in PS influence the recruitment of brain regions involved in emotional processing and regulation. In a functional MRI study, 35 subjects judged the emotional intensity of displayed pictures. When processing negative pictures, low PS (vs. high PS) subjects showed higher amygdala and right orbito-frontal cortex (OFC) activity but lower left OFC activity. This dissociation in OFC activity suggests greater prefrontal cortical asymmetry for approach/avoidance motivation, suggesting an avoidance response to aversive stimuli in low PS. For positive or neutral stimuli, low PS subjects showed lower activity in the amygdala, striatum, and hippocampus. These results suggest that low PS may involve an imbalance in processing distinct emotional inputs, with greater reactivity to aversive information in regions involved in avoidance behaviour (amygdala, OFC) and dampened response to positive and neutral stimuli across circuits subserving motivated behaviour (striatum, hippocampus, amygdala). Low PS affective style was associated with depression vulnerability. These findings in non-depressed subjects point to a neural mechanism whereby some individuals are more likely to show systematic negative emotional biases, as frequently observed in depression. The assessment of these individual differences, including those that may cause vulnerability to depressive disorders, would therefore constitute a promising approach to risk assessment for depression.

  4. Neural processing of recollection, familiarity and priming at encoding: evidence from a forced-choice recognition paradigm.

    PubMed

    Meng, Yingfang; Ye, Xiaohong; Gonsalves, Brian D

    2014-10-17

    The distinction between neural mechanisms of explicit and implicit expressions of memory has been well studied at the retrieval stage, but less at encoding. In addition, dissociations obtained in many studies are complicated by methodological difficulties in obtaining process-pure measures of different types of memory. In this experiment, we applied a subsequent memory paradigm and a two-stage forced-choice recognition test to classify study ERP data into four categories: subsequent remembered (later retrieved accompanied by detailed information), subsequent known (later retrieved accompanied by a feeling of familiarity), subsequent primed (later retrieved without conscious awareness) and subsequent forgotten (not retrieved). Differences in subsequent memory effects (DM effects) were measured by comparing ERP waveform associated with later memory based on recollection, familiarity or priming with ERP waveform for later forgotten items. The recollection DM effect involved a robust sustained (onset at 300 ms) prefrontal positive-going DM effect which was right-lateralized, and a later (onset at 800 ms) occipital negative-going DM effect. Familiarity involved an earlier (300-400 ms) prefrontal positive-going DM effect and a later (500-600 ms) parietal positive-going DM effect. Priming involved a negative-going DM effect which onset at 600 ms, mainly distributed over anterior brain sites. These results revealed a sequence of components that represented cognitive processes underlying the encoding of verbal information into episodic memory, and separately supported later remembering, knowing and priming. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The role of the striatum in rule application: the model of Huntington's disease at early stage.

    PubMed

    Teichmann, Marc; Dupoux, Emmanuel; Kouider, Sid; Brugières, Pierre; Boissé, Marie-Françoise; Baudic, Sophie; Cesaro, Pierre; Peschanski, Marc; Bachoud-Lévi, Anne-Catherine

    2005-05-01

    The role of the basal ganglia, and more specifically of the striatum, in language is still debated. Recent studies have proposed that linguistic abilities involve two distinct types of processes: the retrieving of stored information, implicating temporal lobe areas, and the application of combinatorial rules, implicating fronto-striatal circuits. Studies of patients with focal lesions and neurodegenerative diseases have suggested a role for the striatum in morphological rule application, but functional imaging studies found that the left caudate was involved in syntactic processing and not morphological processing. In the present study, we tested the view that the basal ganglia are involved in rule application and not in lexical retrieving in a model of striatal dysfunction, namely Huntington's disease at early stages. We assessed the rule-lexicon dichotomy in the linguistic domain with morphology (conjugation of non-verbs and verbs) and syntax (sentence comprehension) and in a non-linguistic domain with arithmetic operations (subtraction and multiplication). Thirty Huntington's disease patients (15 at stage I and 15 at stage II) and 20 controls matched for their age and cultural level were included in this study. Huntington's disease patients were also assessed using the Unified Huntington's Disease Rating Scale (UHDRS) and MRI. We found that early Huntington's disease patients were impaired in rule application in the linguistic and non-linguistic domains (morphology, syntax and subtraction), whereas they were broadly spared with lexical processing. The pattern of performance was similar in patients at stage I and stage II, except that stage II patients were more impaired in all tasks assessing rules and had in addition a very slight impairment in the lexical condition of conjugation. Finally, syntactic rule abilities correlated with all markers of the disease evolution including bicaudate ratio and performance in executive function, whereas there was no correlation with arithmetic and morphological abilities. Together, this suggests that the striatum is involved in rule processing more than in lexical processing and that it extends to linguistic and non-linguistic domains. These results are discussed in terms of domain-specific versus domain-general processes of rule application.

  6. Regret as Autobiographical Memory

    ERIC Educational Resources Information Center

    Davison, Ian M.; Feeney, Aidan

    2008-01-01

    We apply an autobiographical memory framework to the study of regret. Focusing on the distinction between regrets for specific and general events we argue that the temporal profile of regret, usually explained in terms of the action-inaction distinction, is predicted by models of autobiographical memory. In two studies involving participants in…

  7. Community views and perspectives on public engagement in health technology assessment decision making.

    PubMed

    Wortley, Sally; Tong, Allison; Howard, Kirsten

    2017-03-01

    Objectives The aim of the present study was to describe community views and perspectives on public engagement processes in Australian health technology assessment (HTA) decision making. Methods Six focus groups were held in Sydney (NSW, Australia) as part of a broad program of work on public engagement and HTA. Eligible participants were aged ≥18 years and spoke English. Participants were asked about their views and perspectives of public engagement in the HTA decision-making process, with responses analysed using a public participation framework. Results Fifty-eight participants aged 19-71 years attended the focus groups. Responses from the public indicated that they wanted public engagement in HTA to include a diversity of individuals, be independent and transparent, involve individuals early in the process and ensure that public input is meaningful and useful to the process. This was consistent with the public participation framework. Perceived shortcomings of the current public engagement process were also identified, namely the lack of awareness of the HTA system in the general population and the need to acknowledge the role different groups of stakeholders or 'publics' can have in the process. Conclusions The public do see a role for themselves in the HTA decision-making process. This is distinct to the involvement of patients and carers. It is important that any future public engagement strategy in this field distinguishes between stakeholder groups and outline approaches that will involve members of the public in the decision-making process, especially if public expectations of involvement in healthcare decision-making continue to increase. What is known about this topic? The views and perspectives of patients and consumers are important in the HTA decision-making process. There is a move to involve the broader community, particularly as decisions become increasingly complex and resources more scarce. What does this paper add? It not been known to what extent, or at what points, the community would like to be engaged with the HTA decision-making process. The present study adds to the evidence base on this topic by identifying features of engagement that may be important in determining the extent of wider public involvement. It is clear that the community expects the system to be transparent, for patients to be involved early in specific processes and the wider community to be able to contribute to the broader vision of the healthcare system. What are the implications for practitioners? A formalised strategy is needed to include the public voice into health technology decisions. With the current level of reform in the healthcare sector and the focus on creating a sustainable healthcare system, there is a real opportunity to implement an approach that not only informs patients and the community of the challenges, but includes and incorporates their views into these decisions. This will assist in developing and adapting policy that is relevant and meets the needs of the population.

  8. Effects of distinctive encoding on correct and false memory: a meta-analytic review of costs and benefits and their origins in the DRM paradigm.

    PubMed

    Huff, Mark J; Bodner, Glen E; Fawcett, Jonathan M

    2015-04-01

    We review and meta-analyze how distinctive encoding alters encoding and retrieval processes and, thus, affects correct and false recognition in the Deese-Roediger-McDermott (DRM) paradigm. Reductions in false recognition following distinctive encoding (e.g., generation), relative to a nondistinctive read-only control condition, reflected both impoverished relational encoding and use of a retrieval-based distinctiveness heuristic. Additional analyses evaluated the costs and benefits of distinctive encoding in within-subjects designs relative to between-group designs. Correct recognition was design independent, but in a within design, distinctive encoding was less effective at reducing false recognition for distinctively encoded lists but more effective for nondistinctively encoded lists. Thus, distinctive encoding is not entirely "cost free" in a within design. In addition to delineating the conditions that modulate the effects of distinctive encoding on recognition accuracy, we discuss the utility of using signal detection indices of memory information and memory monitoring at test to separate encoding and retrieval processes.

  9. Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison.

    PubMed

    Kim, Hongkeun

    2016-01-08

    It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Therapists' thoughts on therapy: clinicians' perceptions of the therapy processes that distinguish schema, cognitive behavioural and psychodynamic approaches.

    PubMed

    Boterhoven De Haan, Katrina L; Lee, Christopher W

    2014-01-01

    Debates continue over shared factors in therapy processes between different theoretical orientations. By seeking the opinions of practicing clinicians, this study aimed to elucidate the similarities and differences between cognitive-behavioural (CBT), psychodynamic (PDT), and schema therapy (ST) approaches. Forty-eight practitioners aligning with one of the three approaches were asked to identify crucial processes in their therapy using a modified online version of the Psychotherapy Process Q-set. Distinct differences between each theoretical orientation with few shared common factors were found. A comparison with ratings from previous studies indicated that CBT therapists have not changed over the last 20 years, whereas PDT therapists have changed and the differences appeared consistent with modern PDT theory. The differences between the therapy approaches were consistent with theories underlying each model. PDT therapists valued a neutral relationship, CBT therapists emphasized a didactic interaction, and therapists form a ST orientation placed a greater emphasis on emotional involvement.

  11. Ventromedial prefrontal cortex activity and pathological worry in generalised anxiety disorder.

    PubMed

    Via, E; Fullana, M A; Goldberg, X; Tinoco-González, D; Martínez-Zalacaín, I; Soriano-Mas, C; Davey, C G; Menchón, J M; Straube, B; Kircher, T; Pujol, J; Cardoner, N; Harrison, B J

    2018-05-09

    Pathological worry is a hallmark feature of generalised anxiety disorder (GAD), associated with dysfunctional emotional processing. The ventromedial prefrontal cortex (vmPFC) is involved in the regulation of such processes, but the link between vmPFC emotional responses and pathological v. adaptive worry has not yet been examined.AimsTo study the association between worry and vmPFC activity evoked by the processing of learned safety and threat signals. In total, 27 unmedicated patients with GAD and 56 healthy controls (HC) underwent a differential fear conditioning paradigm during functional magnetic resonance imaging. Compared to HC, the GAD group demonstrated reduced vmPFC activation to safety signals and no safety-threat processing differentiation. This response was positively correlated with worry severity in GAD, whereas the same variables showed a negative and weak correlation in HC. Poor vmPFC safety-threat differentiation might characterise GAD, and its distinctive association with GAD worries suggests a neural-based qualitative difference between healthy and pathological worries.Declaration of interestNone.

  12. Distinct Neural Circuits Support Transient and Sustained Processes in Prospective Memory and Working Memory

    PubMed Central

    West, Robert; Braver, Todd

    2009-01-01

    Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581

  13. Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.

    PubMed

    Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-09-14

    We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.

  14. Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning.

    PubMed

    McDougle, Samuel D; Bond, Krista M; Taylor, Jordan A

    2015-07-01

    A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. Copyright © 2015 the authors 0270-6474/15/359568-12$15.00/0.

  15. Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning

    PubMed Central

    Bond, Krista M.; Taylor, Jordan A.

    2015-01-01

    A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. PMID:26134640

  16. Multistability of the Brain Network for Self-other Processing

    PubMed Central

    Chen, Yi-An; Huang, Tsung-Ren

    2017-01-01

    Early fMRI studies suggested that brain areas processing self-related and other-related information were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation patterns could be associated with different processing modes in the form of different synchronisation patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and white matter tracts involved in self-other processing. We sampled synchronisation patterns from the dynamical systems of this network using various combinations of physiological parameters. Our results showed that the self-other processing network, with simulated gamma-band activity, tended to stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” could serve as an alternative model in theorising the mechanism of processing self-other information. PMID:28256520

  17. Rethinking the role of the rTPJ in attention and social cognition in light of the opposing domains hypothesis: findings from an ALE-based meta-analysis and resting-state functional connectivity

    PubMed Central

    Kubit, Benjamin; Jack, Anthony I.

    2013-01-01

    The right temporo-parietal junction (rTPJ) has been associated with two apparently disparate functional roles: in attention and in social cognition. According to one account, the rTPJ initiates a “circuit-breaking” signal that interrupts ongoing attentional processes, effectively reorienting attention. It is argued this primary function of the rTPJ has been extended beyond attention, through a process of evolutionarily cooption, to play a role in social cognition. We propose an alternative account, according to which the capacity for social cognition depends on a network which is both distinct from and in tension with brain areas involved in focused attention and target detection: the default mode network (DMN). Theory characterizing the rTPJ based on the area's purported role in reorienting may be falsely guided by the co-occurrence of two distinct effects in contiguous regions: activation of the supramarginal gyrus (SMG), associated with its functional role in target detection; and the transient release, during spatial reorienting, of suppression of the angular gyrus (AG) associated with focused attention. Findings based on meta-analysis and resting functional connectivity are presented which support this alternative account. We find distinct regions, possessing anti-correlated patterns of resting connectivity, associated with social reasoning (AG) and target detection (SMG) at the rTPJ. The locus for reorienting was spatially intermediate between the AG and SMG and showed a pattern of connectivity with similarities to social reasoning and target detection seeds. These findings highlight a general methodological concern for brain imaging. Given evidence that certain tasks not only activate some areas but also suppress activity in other areas, it is suggested that researchers need to distinguish two distinct putative mechanisms, either of which may produce an increase in activity in a brain area: functional engagement in the task vs. release of suppression. PMID:23847497

  18. Therapist strategies early in therapy associated with good or poor outcomes among clients with low proactive agency.

    PubMed

    von der Lippe, Anna Louise; Oddli, Hanne Weie; Halvorsen, Margrethe Seeger

    2017-09-10

    Within a mixed methods program of research the present study aimed at expanding knowledge about interactions in the initial therapeutic collaboration by combining focus on client interpersonal style and therapist contribution. The study involves in-depth analyses of therapist-client interactions in the initial two sessions of good and poor outcome therapies. Based on interpersonal theory and previous research, the Inventory of Interpersonal Problems (IIP-64-C) was used to define poor outcome cases, that is, low proactive agency cases. To compare good and poor outcome cases matched on this interpersonal pattern, cases were drawn from two different samples; nine poor outcome cases from a large multi-site outpatient clinic study and nine good outcome cases from a process-outcome study of highly experienced therapists. Qualitative analysis of therapist behaviors resulted in 2 main categories, fostering client's proactive agentic involvement in change work and discouraging client's proactive agentic involvement in change work, 8 categories and 22 sub-categories. The findings revealed distinct and cohesive differences in therapist behaviors between the two outcome groups, and point to the particular therapist role of fostering client agency through engagement in a shared work on change when clients display strong unassertiveness and low readiness for change. Clinical or Methodological Significance Summary: The present analysis combines focus on client interpersonal style, therapist strategies/process and outcome. The categories generated from the present grounded theory analysis may serve as a foundation for identifying interactions that are associated with agentic involvement in future process research and practice, and hence we have formulated principles/strategies that were identified by the analysis.

  19. Neural signatures of co-occurring reading and mathematical difficulties.

    PubMed

    Skeide, Michael A; Evans, Tanya M; Mei, Edward Z; Abrams, Daniel A; Menon, Vinod

    2018-06-19

    Impaired abilities in multiple domains is common in children with learning difficulties. Co-occurrence of low reading and mathematical abilities (LRLM) appears in almost every second child with learning difficulties. However, little is known regarding the neural bases of this combination. Leveraging a unique and tightly controlled sample including children with LRLM, isolated low reading ability (LR), and isolated low mathematical ability (LM), we uncover a distinct neural signature in children with co-occurring low reading and mathematical abilities differentiable from LR and LM. Specifically, we show that LRLM is neuroanatomically distinct from both LR and LM based on reduced cortical folding of the right parahippocampal gyrus, a medial temporal lobe region implicated in visual associative learning. LRLM children were further distinguished from LR and LM by patterns of intrinsic functional connectivity between parahippocampal gyrus and brain circuitry underlying reading and numerical quantity processing. Our results critically inform cognitive and neural models of LRLM by implicating aberrations in both domain-specific and domain-general brain regions involved in reading and mathematics. More generally, our results provide the first evidence for distinct multimodal neural signatures associated with LRLM, and suggest that this population displays an independent phenotype of learning difficulty that cannot be explained simply as a combination of isolated low reading and mathematical abilities. © 2018 John Wiley & Sons Ltd.

  20. Use of Conserved Randomly Amplified Polymorphic DNA (RAPD) Fragments and RAPD Pattern for Characterization of Lactobacillus fermentum in Ghanaian Fermented Maize Dough

    PubMed Central

    Hayford, Alice E.; Petersen, Anne; Vogensen, Finn K.; Jakobsen, Mogens

    1999-01-01

    The present work describes the use of randomly amplified polymorphic DNA (RAPD) for the characterization of 172 dominant Lactobacillus isolates from present and previous studies of Ghanaian maize fermentation. Heterofermentative lactobacilli dominate the fermentation flora, since approximately 85% of the isolates belong to this group. Cluster analysis of the RAPD profiles obtained showed the presence of two main clusters. Cluster 1 included Lactobacillus fermentum, whereas cluster 2 comprised the remaining Lactobacillus spp. The two distinct clusters emerged at the similarity level of <50%. All isolates in cluster 1 showed similarity in their RAPD profile to the reference strains of L. fermentum included in the study. These isolates, yielding two distinct bands of approximately 695 and 773 bp with the primers used, were divided into four subclusters, indicating that several strains are involved in the fermentation and remain dominant throughout the process. The two distinct RAPD fragments were cloned, sequenced, and used as probes in Southern hybridization experiments. With one exception, Lactobacillus reuteri LMG 13045, the probes hybridized only to fragments of different sizes in EcoRI-digested chromosomal DNA of L. fermentum strains, thus indicating the specificity of the probes and variation within the L. fermentum isolates. PMID:10388723

  1. What Do People Find Incompatible With Causal Determinism?

    PubMed

    Bear, Adam; Knobe, Joshua

    2016-11-01

    Four studies explored people's judgments about whether particular types of behavior are compatible with determinism. Participants read a passage describing a deterministic universe, in which everything that happens is fully caused by whatever happened before it. They then assessed the degree to which different behaviors were possible in such a universe. Other participants evaluated the extent to which each of these behaviors had various features (e.g., requiring reasoning). We assessed the extent to which these features predicted judgments about whether the behaviors were possible in a deterministic universe. Experiments 1 and 2 found that people's judgments about whether a behavior was compatible with determinism were not predicted by their judgments about whether that behavior relies on physical processes in the brain and body, is uniquely human, is unpredictable, or involves reasoning. Experiment 3, however, found that a distinction between what we call "active" and "passive" behaviors can explain people's judgments. Experiment 4 extended these findings, showing that we can measure this distinction in several ways and that it is robustly predicted by two different cues. Taken together, these results suggest that people carve up mentally guided behavior into two distinct types-understanding one type to be compatible with determinism, but another type to be fundamentally incompatible with determinism. Copyright © 2015 Cognitive Science Society, Inc.

  2. The different facets of organelle interplay-an overview of organelle interactions.

    PubMed

    Schrader, Michael; Godinho, Luis F; Costello, Joseph L; Islinger, Markus

    2015-01-01

    Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy-a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction.

  3. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner.

    PubMed

    Malvaez, Melissa; McQuown, Susan C; Rogge, George A; Astarabadi, Mariam; Jacques, Vincent; Carreiro, Samantha; Rusche, James R; Wood, Marcelo A

    2013-02-12

    Nonspecific histone deacetylase (HDAC) inhibition has been shown to facilitate the extinction of drug-seeking behavior in a manner resistant to reinstatement. A key open question is which specific HDAC is involved in the extinction of drug-seeking behavior. Using the selective HDAC3 inhibitor RGFP966, we investigated the role of HDAC3 in extinction and found that systemic treatment with RGFP966 facilitates extinction in mice in a manner resistant to reinstatement. We also investigated whether the facilitated extinction is related to the enhancement of extinction consolidation during extinction learning or to negative effects on performance or reconsolidation. These are key distinctions with regard to any compound being used to modulate extinction, because a more rapid decrease in a defined behavior is interpreted as facilitated extinction. Using an innovative combination of behavioral paradigms, we found that a single treatment of RGFP966 enhances extinction of a previously established cocaine-conditioned place preference, while simultaneously enhancing long-term object-location memory within subjects. During extinction consolidation, HDAC3 inhibition promotes a distinct pattern of histone acetylation linked to gene expression within the infralimbic cortex, hippocampus, and nucleus accumbens. Thus, the facilitated extinction of drug-seeking cannot be explained by adverse effects on performance. These results demonstrate that HDAC3 inhibition enhances the memory processes involved in extinction of drug-seeking behavior.

  4. Clinical progression in Parkinson disease and the neurobiology of axons.

    PubMed

    Cheng, Hsiao-Chun; Ulane, Christina M; Burke, Robert E

    2010-06-01

    Despite tremendous growth in recent years in our knowledge of the molecular basis of Parkinson disease (PD) and the molecular pathways of cell injury and death, we remain without therapies that forestall disease progression. Although there are many possible explanations for this lack of success, one is that experimental therapeutics to date have not adequately focused on an important component of the disease process, that of axon degeneration. It remains unknown what neuronal compartment, either the soma or the axon, is involved at disease onset, although some have proposed that it is the axons and their terminals that take the initial brunt of injury. Nevertheless, this concept has not been formally incorporated into many of the current theories of disease pathogenesis, and it has not achieved a wide consensus. More importantly, in view of growing evidence that the molecular mechanisms of axon degeneration are separate and distinct from the canonical pathways of programmed cell death that mediate soma destruction, the possibility of early involvement of axons in PD has not been adequately emphasized as a rationale to explore the neurobiology of axons for novel therapeutic targets. We propose that ongoing degeneration of axons, not cell bodies, is the primary determinant of clinically apparent progression of disease, and that future experimental therapeutics intended to forestall disease progression will benefit from a new focus on the distinct mechanisms of axon degeneration.

  5. The genetics of colony form and function in Caribbean Acropora corals.

    PubMed

    Hemond, Elizabeth M; Kaluziak, Stefan T; Vollmer, Steven V

    2014-12-17

    Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct "staghorn" versus "elkhorn" morphologies of these two sister species. The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans.

  6. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings.

    PubMed

    Engelsberger, Wolfgang R; Schulze, Waltraud X

    2012-03-01

    Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  7. Intercellular and systemic spread of RNA and RNAi in plants.

    PubMed

    Nazim Uddin, Mohammad; Kim, Jae-Yean

    2013-01-01

    Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Single-Molecule View of Small RNA-Guided Target Search and Recognition.

    PubMed

    Globyte, Viktorija; Kim, Sung Hyun; Joo, Chirlmin

    2018-05-20

    Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.

  9. Perspectives on the Etiology of Violence in Later Life.

    PubMed

    Mysyuk, Yuliya; Westendorp, Rudi G J; Lindenberg, Jolanda

    2016-11-01

    This article focuses on the development of a conceptual framework for explaining the etiology of violence in later life by various groups involved in the field of elder abuse. In this study, we explore this through eight focus groups with different professionals involved in the field of elder abuse and older persons themselves and in interviews with 35 experts in the field. Our findings show that dependency, vulnerability, power and control, social isolation, stress, and care burden play a central role in their explanations for the occurrence of violence in later life. The role of a history of violence in violence in later life is equivocal. The complexity and ambiguity of dependency and vulnerability, the notion of mutual dependency, and diverse attitudes and expectations toward them that arise with the aging process are distinct features of violence in later life that were found. © The Author(s) 2015.

  10. Semiconductor structural damage attendant to contact formation in III-V solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.

  11. Tempo Rubato : Animacy Speeds Up Time in the Brain

    PubMed Central

    Carrozzo, Mauro; Moscatelli, Alessandro; Lacquaniti, Francesco

    2010-01-01

    Background How do we estimate time when watching an action? The idea that events are timed by a centralized clock has recently been called into question in favour of distributed, specialized mechanisms. Here we provide evidence for a critical specialization: animate and inanimate events are separately timed by humans. Methodology/Principal Findings In different experiments, observers were asked to intercept a moving target or to discriminate the duration of a stationary flash while viewing different scenes. Time estimates were systematically shorter in the sessions involving human characters moving in the scene than in those involving inanimate moving characters. Remarkably, the animate/inanimate context also affected randomly intermingled trials which always depicted the same still character. Conclusions/Significance The existence of distinct time bases for animate and inanimate events might be related to the partial segregation of the neural networks processing these two categories of objects, and could enhance our ability to predict critically timed actions. PMID:21206749

  12. Topographic Cues Reveal Two Distinct Spreading Mechanisms in Blood Platelets

    PubMed Central

    Sandmann, Rabea; Köster, Sarah

    2016-01-01

    Blood platelets are instrumental in blood clotting and are thus heavily involved in early wound closure. After adhering to a substrate they spread by forming protrusions like lamellipodia and filopodia. However, the interaction of these protrusions with the physical environment of platelets while spreading is not fully understood. Here we dynamically image platelets during this spreading process and compare their behavior on smooth and on structured substrates. In particular we analyze the temporal evolution of the spread area, the cell morphology and the dynamics of individual filopodia. Interestingly, the topographic cues enable us to distinguish two spreading mechanisms, one that is based on numerous persistent filopodia and one that rather involves lamellipodia. Filopodia-driven spreading coincides with a strong response of platelet morphology to the substrate topography during spreading, whereas lamellipodia-driven spreading does not. Thus, we quantify different degrees of filopodia formation in platelets and the influence of filopodia in spreading on structured substrates. PMID:26934830

  13. Contingency learning in human fear conditioning involves the ventral striatum.

    PubMed

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  14. Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon.

    PubMed

    Costa, M; Wiklendt, L; Simpson, P; Spencer, N J; Brookes, S J; Dinning, P G

    2015-10-01

    The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop. © 2015 John Wiley & Sons Ltd.

  15. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm.

    PubMed

    Lamm, Claus; Windischberger, Christian; Moser, Ewald; Bauer, Herbert

    2007-07-15

    Subjects deciding whether two objects presented at angular disparity are identical or mirror versions of each other usually show response times that linearly increase with the angle between objects. This phenomenon has been termed mental rotation. While there is widespread agreement that parietal cortex plays a dominant role in mental rotation, reports concerning the involvement of motor areas are less consistent. From a theoretical point of view, activation in motor areas suggests that mental rotation relies upon visuo-motor rather than visuo-spatial processing alone. However, the type of information that is processed by motor areas during mental rotation remains unclear. In this study we used event-related fMRI to assess whether activation in parietal and dorsolateral premotor areas (dPM) during mental rotation is distinctively related to processing spatial orientation information. Using a newly developed task paradigm we explicitly separated the processing steps (encoding, mental rotation proper and object matching) required by mental rotation tasks and additionally modulated the amount of spatial orientation information that had to be processed. Our results show that activation in dPM during mental rotation is not strongly modulated by the processing of spatial orientation information, and that activation in dPM areas is strongest during mental rotation proper. The latter finding suggests that dPM is involved in more generalized processes such as visuo-spatial attention and movement anticipation. We propose that solving mental rotation tasks is heavily dependent upon visuo-motor processes and evokes neural processing that may be considered as an implicit simulation of actual object rotation.

  16. Exploring (novel) gene expression during retinoid-induced maturation and cell death of acute promyelocytic leukemia.

    PubMed

    Benoit, G R; Tong, J H; Balajthy, Z; Lanotte, M

    2001-01-01

    During recent years, reports have shown that biological responses of acute promyelocytic leukemia (APL) cells to retinoids are more complex than initially envisioned. PML-RARalpha chimeric protein disturbs various biological processes such as cell proliferation, differentiation, and apoptosis. The distinct biological programs that regulate these processes stem from specific transcriptional activation of distinct (but overlapping) sets of genes. These programs are sometimes mutually exclusive and depend on whether the signals are delivered by RAR or RXR agonists. Furthermore, evidence that retinoid nuclear signaling by retinoid, on its own, is not enough to trigger these cellular responses is rapidly accumulating. Indeed, work with NB4 cells show that the fate of APL cells treated by retinoid depends on complex signaling cross-talk. Elucidation of the sequence of events and cascades of transcriptional regulation necessary for APL cell maturation will be an additional tool with which to further improve therapy by retinoids. In this task, the classical techniques used to analyze gene expression have proved time consuming, and their yield has been limited. Global analyses of the APL cell transcriptome are needed. We review the technical approaches currently available (differential display, complementary DNA microarrays), to identify novel genes involved in the determination of cell fate.

  17. Structural variants of yeast prions show conformer-specific requirements for chaperone activity

    PubMed Central

    Stein, Kevin C.; True, Heather L.

    2016-01-01

    Summary Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1, and its human ortholog Hdj1, had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone-client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation. PMID:25060529

  18. Contribution of stress and sex hormones to memory encoding.

    PubMed

    Merz, Christian J

    2017-08-01

    Distinct stages of the menstrual cycle and the intake of oral contraceptives (OC) affect sex hormone levels, stress responses, and memory processes critically involved in the pathogenesis of mental disorders. To characterize the interaction of sex and stress hormones on memory encoding, 30 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women were exposed to either a stress (socially evaluated cold-pressor test) or a control condition prior to memory encoding and immediate recall of neutral, positive, and negative words. On the next day, delayed free and cued recall was tested. Sex hormone levels verified distinct estradiol, progesterone, and testosterone levels between groups. Stress increased blood pressure, cortisol concentrations, and ratings of stress appraisal in all four groups as well as cued recall performance of negative words in men. Stress exposure in OC women led to a blunted cortisol response and rather enhanced cued recall of neutral words. Thus, pre-encoding stress facilitated emotional cued recall performance in men only, but not women with different sex hormone statuses pointing to the pivotal role of circulating sex hormones in modulation of learning and memory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The path to memory is guided by strategy: distinct networks are engaged in associative encoding under visual and verbal strategy and influence memory performance in healthy and impaired individuals

    PubMed Central

    Hales, J. B.; Brewer, J. B.

    2018-01-01

    Given the diversity of stimuli encountered in daily life, a variety of strategies must be used for learning new information. Relating and encoding visual and verbal stimuli into memory has been probed using various tasks and stimulus-types. Engagement of specific subsequent memory and cortical processing regions depends on the stimulus modality of studied material; however, it remains unclear whether different encoding strategies similarly influence regional activity when stimulus-type is held constant. In this study, subjects encoded object pairs using a visual or verbal associative strategy during functional magnetic resonance imaging (fMRI), and subsequent memory was assessed for pairs encoded under each strategy. Each strategy elicited distinct regional processing and subsequent memory effects: middle / superior frontal, lateral parietal, and lateral occipital for visually-associated pairs and inferior frontal, medial frontal, and medial occipital for verbally-associated pairs. This regional selectivity mimics the effects of stimulus modality, suggesting that cortical involvement in associative encoding is driven by strategy, and not simply by stimulus-type. The clinical relevance of these findings, probed in two patients with recent aphasic strokes, suggest that training with strategies utilizing unaffected cortical regions might improve memory ability in patients with brain damage. PMID:22390467

  20. Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis.

    PubMed

    Sottile, Francesco; Aulicino, Francesco; Theka, Ilda; Cosma, Maria Pia

    2016-11-09

    Homotypic and heterotypic cell-to-cell fusion are key processes during development and tissue regeneration. Nevertheless, aberrant cell fusion can contribute to tumour initiation and metastasis. Additionally, a form of cell-in-cell structure called entosis has been observed in several human tumours. Here we investigate cell-to-cell interaction between mouse mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs). MSCs represent an important source of adult stem cells since they have great potential for regenerative medicine, even though they are also involved in cancer progression. We report that MSCs can either fuse forming heterokaryons, or be invaded by ESCs through entosis. While entosis-derived hybrids never share their genomes and induce degradation of the target cell, fusion-derived hybrids can convert into synkaryons. Importantly we show that hetero-to-synkaryon transition occurs through cell division and not by nuclear membrane fusion. Additionally, we also observe that the ROCK-actin/myosin pathway is required for both fusion and entosis in ESCs but only for entosis in MSCs. Overall, we show that MSCs can undergo fusion or entosis in culture by generating distinct functional cellular entities. These two processes are profoundly different and their outcomes should be considered given the beneficial or possible detrimental effects of MSC-based therapeutic applications.

Top