Sample records for distinct structural elements

  1. Structure-guided statistical textural distinctiveness for salient region detection in natural images.

    PubMed

    Scharfenberger, Christian; Wong, Alexander; Clausi, David A

    2015-01-01

    We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.

  2. BoS: a large and diverse family of short interspersed elements (SINEs) in Brassica oleracea.

    PubMed

    Zhang, Xiaoyu; Wessler, Susan R

    2005-05-01

    Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at approximately 2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.

  3. Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry*

    PubMed Central

    Argüello, José M.; Raimunda, Daniel; González-Guerrero, Manuel

    2012-01-01

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models. PMID:22389499

  4. Metal transport across biomembranes: emerging models for a distinct chemistry.

    PubMed

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  5. Hilbert's Hotel in polarization singularities.

    PubMed

    Wang, Yangyundou; Gbur, Greg

    2017-12-15

    We demonstrate theoretically how the creation of polarization singularities by the evolution of a fractional nonuniform polarization optical element involves the peculiar mathematics of countably infinite sets in the form of "Hilbert's Hotel." Two distinct topological processes can be observed, depending on the structure of the fractional optical element.

  6. Insights into Structural and Mechanistic Features of Viral IRES Elements

    PubMed Central

    Martinez-Salas, Encarnacion; Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Embarek, Azman M.

    2018-01-01

    Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements. PMID:29354113

  7. Adaptive Bloom Filter: A Space-Efficient Counting Algorithm for Unpredictable Network Traffic

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshihide; Hazeyama, Hiroaki; Kadobayashi, Youki

    The Bloom Filter (BF), a space-and-time-efficient hashcoding method, is used as one of the fundamental modules in several network processing algorithms and applications such as route lookups, cache hits, packet classification, per-flow state management or network monitoring. BF is a simple space-efficient randomized data structure used to represent a data set in order to support membership queries. However, BF generates false positives, and cannot count the number of distinct elements. A counting Bloom Filter (CBF) can count the number of distinct elements, but CBF needs more space than BF. We propose an alternative data structure of CBF, and we called this structure an Adaptive Bloom Filter (ABF). Although ABF uses the same-sized bit-vector used in BF, the number of hash functions employed by ABF is dynamically changed to record the number of appearances of a each key element. Considering the hash collisions, the multiplicity of a each key element on ABF can be estimated from the number of hash functions used to decode the membership of the each key element. Although ABF can realize the same functionality as CBF, ABF requires the same memory size as BF. We describe the construction of ABF and IABF (Improved ABF), and provide a mathematical analysis and simulation using Zipf's distribution. Finally, we show that ABF can be used for an unpredictable data set such as real network traffic.

  8. Structure and Strength in Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  9. Structural aspects of the inactive X chromosome.

    PubMed

    Bonora, Giancarlo; Disteche, Christine M

    2017-11-05

    A striking difference between male and female nuclei was recognized early on by the presence of a condensed chromatin body only in female cells. Mary Lyon proposed that X inactivation or silencing of one X chromosome at random in females caused this structural difference. Subsequent studies have shown that the inactive X chromosome (Xi) does indeed have a very distinctive structure compared to its active counterpart and all autosomes in female mammals. In this review, we will recap the discovery of this fascinating biological phenomenon and seminal studies in the field. We will summarize imaging studies using traditional microscopy and super-resolution technology, which revealed uneven compaction of the Xi. We will then discuss recent findings based on high-throughput sequencing techniques, which uncovered the distinct three-dimensional bipartite configuration of the Xi and the role of specific long non-coding RNAs in eliciting and maintaining this structure. The relative position of specific genomic elements, including genes that escape X inactivation, repeat elements and chromatin features, will be reviewed. Finally, we will discuss the position of the Xi, either near the nuclear periphery or the nucleolus, and the elements implicated in this positioning.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Authors.

  10. Structural variant of the intergenic internal ribosome entry site elements in dicistroviruses and computational search for their counterparts

    PubMed Central

    HATAKEYAMA, YOSHINORI; SHIBUYA, NORIHIRO; NISHIYAMA, TAKASHI; NAKASHIMA, NOBUHIKO

    2004-01-01

    The intergenic region (IGR) located upstream of the capsid protein gene in dicistroviruses contains an internal ribosome entry site (IRES). Translation initiation mediated by the IRES does not require initiator methionine tRNA. Comparison of the IGRs among dicistroviruses suggested that Taura syndrome virus (TSV) and acute bee paralysis virus have an extra side stem loop in the predicted IRES. We examined whether the side stem is responsible for translation activity mediated by the IGR using constructs with compensatory mutations. In vitro translation analysis showed that TSV has an IGR-IRES that is structurally distinct from those previously described. Because IGR-IRES elements determine the translation initiation site by virtue of their own tertiary structure formation, the discovery of this initiation mechanism suggests the possibility that eukaryotic mRNAs might have more extensive coding regions than previously predicted. To test this hypothesis, we searched full-length cDNA databases and whole genome sequences of eukaryotes using the pattern matching program, Scan For Matches, with parameters that can extract sequences containing secondary structure elements resembling those of IGR-IRES. Our search yielded several sequences, but their predicted secondary structures were suggested to be unstable in comparison to those of dicistroviruses. These results suggest that RNAs structurally similar to dicistroviruses are not common. If some eukaryotic mRNAs are translated independently of an initiator methionine tRNA, their structures are likely to be significantly distinct from those of dicistroviruses. PMID:15100433

  11. The influence of distinct types of aquatic vegetation on the flow field

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Barcroft, Stephen; Yagci, Oral

    2014-05-01

    The Sustainable management of fluvial systems dealing with flood prevention, erosion protection and restoration of rivers and estuaries requires implementation of soft/green-engineering methods. In-stream aquatic vegetation can be regarded as one of these as it plays an important role for both river ecology (function) and geomorphology (form). The goal of this research is to offer insight gained from pilot experimental studies on the effects of a number of different elements modeling instream, aquatic vegetation on the local flow field. It is hypothesized that elements of the same effective "blockage" area but of distinct characteristics (structure, porosity and flexibility), will affect both the mean and fluctuating levels of the turbulent flow to a different degree. The above hypothesis is investigated through a set of rigorous set of experimental runs which are appropriately designed to assess the variability between the interaction of aquatic elements and flow, both quantitatively and qualitatively. In this investigation three elements are employed to model aquatic vegetation, namely a rigid cylinder, a porous but rigid structure and a flexible live plant (Cupressus Macrocarpa). Firstly, the flow field downstream each of the mentioned elements was measured under steady uniform flow conditions employing acoustic Doppler velocimetry. Three-dimensional flow velocities downstream the vegetation element are acquired along a measurement grid extending about five-fold the element's diameter. These measurements are analyzed to develop mean velocity and turbulent intensity profiles for all velocity components. A detailed comparison between the obtained results is demonstrative of the validity of the above hypothesis as each of the employed elements affects in a different manner and degree the flow field. Then a flow visualization technique, during which fluorescent dye is injected upstream of the element and images are captured for further analysis and comparison, was employed to visualize the flow structures shed downstream the aquatic elements. This method allows to further observe qualitatively and visually identify the different characteristics of the eddies advected downstream, conclusively confirming the results of the aforementioned experimental campaign.

  12. Method for laser-based two-dimensional navigation system in a structured environment

    DOEpatents

    Boultinghouse, Karlan D.; Schoeneman, J. Lee; Tise, Bertice L.

    1989-01-01

    A low power, narrow laser beam, generated by a laser carried by a mobile vehicle, is rotated about a vertical reference axis as the vehicle navigates within a structured environment. At least three stationary retroreflector elements are located at known positions, preferably at the periphery of the structured environment, with one of the elements having a distinctive retroreflection. The projected rotating beam traverses each retroreflector in succession, and the corresponding retroreflections are received at the vehicle and focussed on a photoelectric cell to generate corresponding electrical signals. The signal caused by the distinctive retroreflection serves as an angle-measurement datum. An angle encoder coupled to the apparatus rotating the projected laser beam provides the angular separation from this datum of the lines connecting the mobile reference axis to successive retroreflectors. This real-time angular data is utilized with the known locations of the retroreflectors to trigonometrically compute using three point resection, the exact real-time location of the mobile reference axis (hence the navigating vehicle) vis-a-vis the structured environment, e.g., in terms of two-dimensional Cartesian coordinates associated with the environment.

  13. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    PubMed

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  14. Plasticity - Theory and finite element applications.

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H. S.

    1972-01-01

    A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.

  15. Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families.

    PubMed

    Reinharz, Vladimir; Soulé, Antoine; Westhof, Eric; Waldispühl, Jérôme; Denise, Alain

    2018-05-04

    The wealth of the combinatorics of nucleotide base pairs enables RNA molecules to assemble into sophisticated interaction networks, which are used to create complex 3D substructures. These interaction networks are essential to shape the 3D architecture of the molecule, and also to provide the key elements to carry molecular functions such as protein or ligand binding. They are made of organised sets of long-range tertiary interactions which connect distinct secondary structure elements in 3D structures. Here, we present a de novo data-driven approach to extract automatically from large data sets of full RNA 3D structures the recurrent interaction networks (RINs). Our methodology enables us for the first time to detect the interaction networks connecting distinct components of the RNA structure, highlighting their diversity and conservation through non-related functional RNAs. We use a graphical model to perform pairwise comparisons of all RNA structures available and to extract RINs and modules. Our analysis yields a complete catalog of RNA 3D structures available in the Protein Data Bank and reveals the intricate hierarchical organization of the RNA interaction networks and modules. We assembled our results in an online database (http://carnaval.lri.fr) which will be regularly updated. Within the site, a tool allows users with a novel RNA structure to detect automatically whether the novel structure contains previously observed RINs.

  16. Compilation of mRNA Polyadenylation Signals in Arabidopsis Revealed a New Signal Element and Potential Secondary Structures1[w

    PubMed Central

    Loke, Johnny C.; Stahlberg, Eric A.; Strenski, David G.; Haas, Brian J.; Wood, Paul Chris; Li, Qingshun Quinn

    2005-01-01

    Using a novel program, SignalSleuth, and a database containing authenticated polyadenylation [poly(A)] sites, we analyzed the composition of mRNA poly(A) signals in Arabidopsis (Arabidopsis thaliana), and reevaluated previously described cis-elements within the 3′-untranslated (UTR) regions, including near upstream elements and far upstream elements. As predicted, there are absences of high-consensus signal patterns. The AAUAAA signal topped the near upstream elements patterns and was found within the predicted location to only approximately 10% of 3′-UTRs. More importantly, we identified a new set, named cleavage elements, of poly(A) signals flanking both sides of the cleavage site. These cis-elements were not previously revealed by conventional mutagenesis and are contemplated as a cluster of signals for cleavage site recognition. Moreover, a single-nucleotide profile scan on the 3′-UTR regions unveiled a distinct arrangement of alternate stretches of U and A nucleotides, which led to a prediction of the formation of secondary structures. Using an RNA secondary structure prediction program, mFold, we identified three main types of secondary structures on the sequences analyzed. Surprisingly, these observed secondary structures were all interrupted in previously constructed mutations in these regions. These results will enable us to revise the current model of plant poly(A) signals and to develop tools to predict 3′-ends for gene annotation. PMID:15965016

  17. Structural and electronic properties of the alkali metal incommensurate phases

    NASA Astrophysics Data System (ADS)

    Woolman, Gavin; Naden Robinson, Victor; Marqués, Miriam; Loa, Ingo; Ackland, Graeme J.; Hermann, Andreas

    2018-05-01

    Under pressure, the alkali elements sodium, potassium, and rubidium adopt nonperiodic structures based on two incommensurate interpenetrating lattices. While all elements form the same "host" lattice, their "guest" lattices are all distinct. The physical mechanism that stabilizes these phases is not known, and detailed calculations are challenging due to the incommensurability of the lattices. Using a series of commensurate approximant structures, we tackle this issue using density functional theory calculations. In Na and K, the calculations prove accurate enough to reproduce not only the stability of the host-guest phases, but also the complicated pressure dependence of the host-guest ratio and the two guest-lattice transitions. We find Rb-IV to be metastable at all pressures, and suggest it is a high-temperature phase. The electronic structure of these materials is unique: they exhibit two distinct, coexisting types of electride behavior, with both fully localized pseudoanions and electrons localized in 1D wells in the host lattice, leading to low conductivity. While all phases feature pseudogaps in the electronic density of states, the perturbative free-electron picture applies to Na, but not to K and Rb, due to significant d -orbital population in the latter.

  18. Using NASTRAN to solve symmetric structures with nonsymmetric loads

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1982-01-01

    A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.

  19. Detection of Earthquake-Induced Damage in a Framed Structure Using a Finite Element Model Updating Procedure

    PubMed Central

    Kim, Seung-Nam; Park, Taewon; Lee, Sang-Hyun

    2014-01-01

    Damage of a 5-story framed structure was identified from two types of measured data, which are frequency response functions (FRF) and natural frequencies, using a finite element (FE) model updating procedure. In this study, a procedure to determine the appropriate weightings for different groups of observations was proposed. In addition, a modified frame element which included rotational springs was used to construct the FE model for updating to represent concentrated damage at the member ends (a formulation for plastic hinges in framed structures subjected to strong earthquakes). The results of the model updating and subsequent damage detection when the rotational springs (RS model) were used were compared with those obtained using the conventional frame elements (FS model). Comparisons indicated that the RS model gave more accurate results than the FS model. That is, the errors in the natural frequencies of the updated models were smaller, and the identified damage showed clearer distinctions between damaged and undamaged members and was more consistent with observed damage. PMID:24574888

  20. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    DOE PAGES

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...

    2017-05-19

    Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less

  1. Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses

    PubMed Central

    Chen, Augustine; Brown, Chris

    2012-01-01

    The hepadnavirus encapsidation signal, epsilon (ε), is an RNA structure located at the 5′ end of the viral pregenomic RNA. It is essential for viral replication and functions in polymerase protein binding and priming. This structure could also have potential regulatory roles in controlling the expression of viral replicative proteins. In addition to its structure, the primary sequence of this RNA element has crucial functional roles in the viral lifecycle. Although the ε elements in hepadnaviruses share common critical functions, there are some significant differences in mammalian and avian hepadnaviruses, which include both sequence and structural variations.   Here we present several covariance models for ε elements from the Hepadnaviridae. The model building included experimentally determined data from previous studies using chemical probing and NMR analysis. These models have sufficient similarity to comprise a clan. The clan has in common a highly conserved overall structure consisting of a lower-stem, bulge, upper-stem and apical-loop. The models differ in functionally critical regions—notably the two types of avian ε elements have a tetra-loop (UGUU) including a non-canonical UU base pair, while the hepatitis B virus (HBV) epsilon has a tri-loop (UGU). The avian epsilon elements have a less stable dynamic structure in the upper stem. Comparisons between these models and all other Rfam models, and searches of genomes, showed these structures are specific to the Hepadnaviridae. Two family models and the clan are available from the Rfam database. PMID:22418844

  2. Alternative approximation concepts for space frame synthesis

    NASA Technical Reports Server (NTRS)

    Lust, R. V.; Schmit, L. A.

    1985-01-01

    A structural synthesis methodology for the minimum mass design of 3-dimensionall frame-truss structures under multiple static loading conditions and subject to limits on displacements, rotations, stresses, local buckling, and element cross-sectional dimensions is presented. A variety of approximation concept options are employed to yield near optimum designs after no more than 10 structural analyses. Available options include: (A) formulation of the nonlinear mathematcal programming problem in either reciprocal section property (RSP) or cross-sectional dimension (CSD) space; (B) two alternative approximate problem structures in each design space; and (C) three distinct assumptions about element end-force variations. Fixed element, design element linking, and temporary constraint deletion features are also included. The solution of each approximate problem, in either its primal or dual form, is obtained using CONMIN, a feasible directions program. The frame-truss synthesis methodology is implemented in the COMPASS computer program and is used to solve a variety of problems. These problems were chosen so that, in addition to exercising the various approximation concepts options, the results could be compared with previously published work.

  3. NanoSIMS Reveals New Structural and Elemental Signatures of Early Life

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; Robert, Francois; McKay, David S.

    2006-01-01

    The young technology of NanoSIMS is unlocking new information from organic matter in ancient sediments. We have used this technique to characterize sub-micron scale element composition of Proterozoic organics that are clearly biogenic as a guide for interpreting problematic structures in terrestrial or extraterrestrial samples. We used the NanoSIMS 50 of the National Museum of Natural History in Paris to map carbon, nitrogen (as CN), and sulfur in organic structures from the approximately 0.8 Ga Bitter Springs Formation. We analyzed spheroidal and filamentous microfossils as well as organic laminae that appeared amorphous by optical and scanning electron microscopy. In clear-cut microfossils, a coincidence between optical images and NanoSIMS element maps suggests a biological origin for the mapped carbon, sulfur, and nitrogen; this conclusion is supported by high resolution NanoSIMS maps showing identical spatial distributions of C, CN and S. High resolution images also demonstrate distinctive nano structure of the filaments and spheroids. In the amorphous laminae, NanoSIMS reveals morphologies reminiscent of compressed microfossils. Distinct CN/C ratios of the spheroids, filaments, and laminae may reflect their biological precursors (cell walls, cyanobacterial sheaths, and microbial communities/biofilms, respectively). Similar amorphous laminae comprise a preponderance of the organic matter in many Precambrian deposits. Thus it is possible that NanoSIMS will provide fresh insight into a large body of previously uninterpretable material. Additionally, NanoSIMS analysis may establish new biosignatures that will be helpful for assessing the origin and biogenicity of controversial Archean structures and any organic materials that may occur in Martian or other extraterrestrial samples.

  4. Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method

    NASA Astrophysics Data System (ADS)

    Wu, Zhijing; Li, Fengming; Zhang, Chuanzeng

    2018-05-01

    Inspired by the hierarchical structures of butterfly wing surfaces, a new kind of lattice structures with a two-order hierarchical periodicity is proposed and designed, and the band-gap properties are investigated by the spectral element method (SEM). The equations of motion of the whole structure are established considering the macro and micro periodicities of the system. The efficiency of the SEM is exploited in the modeling process and validated by comparing the results with that of the finite element method (FEM). Based on the highly accurate results in the frequency domain, the dynamic behaviors of the proposed two-order hierarchical structures are analyzed. An original and interesting finding is the existence of the distinct macro and micro stop-bands in the given frequency domain. The mechanisms for these two types of band-gaps are also explored. Finally, the relations between the hierarchical periodicities and the different types of the stop-bands are investigated by analyzing the parametrical influences.

  5. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  6. Multiple conformations are a conserved and regulatory feature of the RB1 5′ UTR

    PubMed Central

    Kutchko, Katrina M.; Sanders, Wes; Ziehr, Ben; Phillips, Gabriela; Solem, Amanda; Halvorsen, Matthew; Weeks, Kevin M.; Moorman, Nathaniel

    2015-01-01

    Folding to a well-defined conformation is essential for the function of structured ribonucleic acids (RNAs) like the ribosome and tRNA. Structured elements in the untranslated regions (UTRs) of specific messenger RNAs (mRNAs) are known to control expression. The importance of unstructured regions adopting multiple conformations, however, is still poorly understood. High-resolution SHAPE-directed Boltzmann suboptimal sampling of the Homo sapiens Retinoblastoma 1 (RB1) 5′ UTR yields three distinct conformations compatible with the experimental data. Private single nucleotide variants (SNVs) identified in two patients with retinoblastoma each collapse the structural ensemble to a single but distinct well-defined conformation. The RB1 5′ UTRs from Bos taurus (cow) and Trichechus manatus latirostris (manatee) are divergent in sequence from H. sapiens (human) yet maintain structural compatibility with high-probability base pairs. SHAPE chemical probing of the cow and manatee RB1 5′ UTRs reveals that they also adopt multiple conformations. Luciferase reporter assays reveal that 5′ UTR mutations alter RB1 expression. In a traditional model of disease, causative SNVs disrupt a key structural element in the RNA. For the subset of patients with heritable retinoblastoma-associated SNVs in the RB1 5′ UTR, the absence of multiple structures is likely causative of the cancer. Our data therefore suggest that selective pressure will favor multiple conformations in eukaryotic UTRs to regulate expression. PMID:25999316

  7. A discourse on sensitivity analysis for discretely-modeled structures

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Haftka, Raphael T.

    1991-01-01

    A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.

  8. Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils

    PubMed Central

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  9. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  10. Celebration of Awareness; A Call for Institutional Revolution.

    ERIC Educational Resources Information Center

    Illich, Ivan D.

    As seen by Ivan Illich, many cherished elements of modern civilization--aid to developing nations, compulsory formal education, and others--embody artificial mystiques and structure which contribute little to the basic quality of human life. The resulting barriers of certification, class, and distinction harm the poor in particular, denying most…

  11. C-terminal motifs in promyelocytic leukemia protein isoforms critically regulate PML nuclear body formation.

    PubMed

    Li, Chuang; Peng, Qiongfang; Wan, Xiao; Sun, Haili; Tang, Jun

    2017-10-15

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs), which are sub-nuclear protein structures, are involved in a variety of important cellular functions. PML-NBs are assembled by PML isoforms, and contact between small ubiquitin-like modifiers (SUMOs) with the SUMO interaction motif (SIM) are critically involved in this process. PML isoforms contain a common N-terminal region and a variable C-terminus. However, the contribution of the C-terminal regions to PML-NB formation remains poorly defined. Here, using high-resolution microscopy, we show that mutation of the SIM distinctively influences the structure of NBs formed by each individual PML isoform, with that of PML-III and PML-V minimally changed, and PML-I and PML-IV dramatically impaired. We further identify several C-terminal elements that are important in regulating NB structure and provide strong evidence to suggest that the 8b element in PML-IV possesses a strong ability to interact with SUMO-1 and SUMO-2, and critically participates in NB formation. Our findings highlight the importance of PML C-termini in NB assembly and function, and provide molecular insight into the PML-NB assembly of each distinctive isoform. © 2017. Published by The Company of Biologists Ltd.

  12. Element distinctness revisited

    NASA Astrophysics Data System (ADS)

    Portugal, Renato

    2018-07-01

    The element distinctness problem is the problem of determining whether the elements of a list are distinct, that is, if x=(x_1,\\ldots ,x_N) is a list with N elements, we ask whether the elements of x are distinct or not. The solution in a classical computer requires N queries because it uses sorting to check whether there are equal elements. In the quantum case, it is possible to solve the problem in O(N^{2/3}) queries. There is an extension which asks whether there are k colliding elements, known as element k-distinctness problem. This work obtains optimal values of two critical parameters of Ambainis' seminal quantum algorithm (SIAM J Comput 37(1):210-239, 2007). The first critical parameter is the number of repetitions of the algorithm's main block, which inverts the phase of the marked elements and calls a subroutine. The second parameter is the number of quantum walk steps interlaced by oracle queries. We show that, when the optimal values of the parameters are used, the algorithm's success probability is 1-O(N^{1/(k+1)}), quickly approaching 1. The specification of the exact running time and success probability is important in practical applications of this algorithm.

  13. Automated Recognition of RNA Structure Motifs by Their SHAPE Data Signatures.

    PubMed

    Radecki, Pierce; Ledda, Mirko; Aviran, Sharon

    2018-06-14

    High-throughput structure profiling (SP) experiments that provide information at nucleotide resolution are revolutionizing our ability to study RNA structures. Of particular interest are RNA elements whose underlying structures are necessary for their biological functions. We previously introduced patteRNA , an algorithm for rapidly mining SP data for patterns characteristic of such motifs. This work provided a proof-of-concept for the detection of motifs and the capability of distinguishing structures displaying pronounced conformational changes. Here, we describe several improvements and automation routines to patteRNA . We then consider more elaborate biological situations starting with the comparison or integration of results from searches for distinct motifs and across datasets. To facilitate such analyses, we characterize patteRNA ’s outputs and describe a normalization framework that regularizes results. We then demonstrate that our algorithm successfully discerns between highly similar structural variants of the human immunodeficiency virus type 1 (HIV-1) Rev response element (RRE) and readily identifies its exact location in whole-genome structure profiles of HIV-1. This work highlights the breadth of information that can be gleaned from SP data and broadens the utility of data-driven methods as tools for the detection of novel RNA elements.

  14. Computational characterization of chromatin domain boundary-associated genomic elements

    PubMed Central

    Hong, Seungpyo

    2017-01-01

    Abstract Topologically associated domains (TADs) are 3D genomic structures with high internal interactions that play important roles in genome compaction and gene regulation. Their genomic locations and their association with CCCTC-binding factor (CTCF)-binding sites and transcription start sites (TSSs) were recently reported. However, the relationship between TADs and other genomic elements has not been systematically evaluated. This was addressed in the present study, with a focus on the enrichment of these genomic elements and their ability to predict the TAD boundary region. We found that consensus CTCF-binding sites were strongly associated with TAD boundaries as well as with the transcription factors (TFs) Zinc finger protein (ZNF)143 and Yin Yang (YY)1. TAD boundary-associated genomic elements include DNase I-hypersensitive sites, H3K36 trimethylation, TSSs, RNA polymerase II, and TFs such as Specificity protein 1, ZNF274 and SIX homeobox 5. Computational modeling with these genomic elements suggests that they have distinct roles in TAD boundary formation. We propose a structural model of TAD boundaries based on these findings that provides a basis for studying the mechanism of chromatin structure formation and gene regulation. PMID:28977568

  15. Structural mode significance using INCA. [Interactive Controls Analysis computer program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.

    1990-01-01

    Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.

  16. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  17. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling

    PubMed Central

    Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987

  18. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.

    PubMed

    Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.

  19. The Primacy of Language Mixing: The Effects of a Matrix System.

    ERIC Educational Resources Information Center

    Field, Fredric

    1999-01-01

    Focuses on the differences between bilingual mixtures and creoles. In both types of language, elements and structures of two or more distinct languages are intermingled. By contrasting Nahuatl, spoken in Central Mexico, with Palenquero, a Spanish-based creole spoken near the Caribbean coast of Colombia, examines two components of language thought…

  20. Evidence for Structural Alignment during Similarity Judgments.

    ERIC Educational Resources Information Center

    Markman, Arthur B.; Gentner, Dedre

    Similarity plays a central role in cognitive theories. Research has demonstrated that the similarity of a pair increases with its commonalities and decreases with its differences. These common and distinctive elements can take the form of parts of objects, relations between parts of properties of whole objects. Previous work has been unable to…

  1. PLANS: A finite element program for nonlinear analysis of structures. Volume 1: Theoretical manual

    NASA Technical Reports Server (NTRS)

    Pifko, A.; Levine, H. S.; Armen, H., Jr.

    1975-01-01

    The PLANS system is described which is a finite element program for nonlinear analysis. The system represents a collection of special purpose computer programs each associated with a distinct physical problem class. Modules of PLANS specifically referenced and described in detail include: (1) REVBY, for the plastic analysis of bodies of revolution; (2) OUT-OF-PLANE, for the plastic analysis of 3-D built-up structures where membrane effects are predominant; (3) BEND, for the plastic analysis of built-up structures where bending and membrane effects are significant; (4) HEX, for the 3-D elastic-plastic analysis of general solids; and (5) OUT-OF-PLANE-MG, for material and geometrically nonlinear analysis of built-up structures. The SATELLITE program for data debugging and plotting of input geometries is also described. The theoretical foundations upon which the analysis is based are presented. Discussed are the form of the governing equations, the methods of solution, plasticity theories available, a general system description and flow of the programs, and the elements available for use.

  2. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    PubMed Central

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-01-01

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance. PMID:26576477

  3. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    DOE PAGES

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; ...

    2015-11-18

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt 3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt 3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation;more » nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. In conlcusion, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.« less

  4. The 3D Structure of the Immunoglobulin Heavy-Chain Locus: Implications for Long-Range Genomic Interactions

    PubMed Central

    Jhunjhunwala, Suchit; van Zelm, Menno C.; Peak, Mandy M.; Cutchin, Steve; Riblet, Roy; van Dongen, Jacques J.M.; Grosveld, Frank G.; Knoch, Tobias A.; Murre, Cornelis

    2009-01-01

    SUMMARY The immunoglobulin heavy-chain (Igh) locus is organized into distinct regions that contain multiple variable (VH), diversity (DH), joining (JH) and constant (CH) coding elements. How the Igh locus is structured in 3D space is unknown. To probe the topography of the Igh locus, spatial distance distributions were determined between 12 genomic markers that span the entire Igh locus. Comparison of the distance distributions to computer simulations of alternative chromatin arrangements predicted that the Igh locus is organized into compartments containing clusters of loops separated by linkers. Trilateration and triple-point angle measurements indicated the mean relative 3D positions of the VH, DH, JH, and CH elements, showed compartmentalization and striking conformational changes involving VH and DH-JH elements during early B cell development. In pro-B cells, the entire repertoire of VH regions (2 Mbp) appeared to have merged and juxtaposed to the DH elements, mechanistically permitting long-range genomic interactions to occur with relatively high frequency. PMID:18423198

  5. Loose Words, Not Nukes: The Impact of U.S. Nuclear Force Structure Debate on NATO Perceptions of Extended Deterrence

    DTIC Science & Technology

    2012-02-15

    institutional mechanisms that may result in uncontrollable escalation in the belief there must be an irrevocable structural element of uncertainty...intentionally downplay the role of nuclear capabilities. Current U.S. strategy documents obliquely whisper nuclear linkages (if they are mentioned at...formally distance itself from the legacy (but still operative) NATO first-use declaratory policy.11 The express U.S. distinction exposes a fault line in

  6. The impact of domain knowledge on structured data collection and templated note design.

    PubMed

    Windle, T; McClay, J C; Windle, J R

    2013-01-01

    The objective of this case report is to evaluate the importance of specialized domain knowledge when designing and using structured templated notes in a clinical environment. To analyze the impact of specialization on structured note generation we compared notes generated for three scenarios: 1) We compared the templated history of present illness (HPI) for patients presenting with a dermatology concern to the dermatologist versus the emergency department. 2) We compared the evaluation of chest pain by ED physicians versus cardiologists. 3) Finally, we compared the data elements asked for in the evaluation of the gastrointestinal system between cardiologists and the liver transplant service (LTS). We used the SNOMED CT representation via BioPortal to evaluate specificity and grouping between data elements and specialized physician groups. We found few similarities in structured data elements designed by and for the specific physician groups. The distinctness represented both differences in granularity as well as fundamental differences in data elements requested. When compared to ED physicians, dermatologists had different and more granular elements while cardiologists requested much more granular data. Comparing cardiologists and LTS, there were differences in the data elements requested. This case study supports the importance of domain knowledge in EHR design and implementation. That different specialities should want and use different information is well supported by cognitive science literature. Despite this, it is rare for domain knowledge to be considered in EHR implementation. Physicians with correct domain knowledge should be involved in the design process of templated notes.

  7. Features of structure-phase transformations and segregation processes under irradiation of austenitic and ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Voyevodin, V. N.

    1994-09-01

    The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.

  8. Bacteria form tellurium nanocrystals

    USGS Publications Warehouse

    Oremland, R.S.

    2007-01-01

    A team of researchers have found two bacterial species that produce tellurium oxyanions as respiratory electron acceptors for growth, leaving elemental tellurium in the form of nanoparticles. The crystals from the two organisms exhibit distinctively different structures. Bacillus selenitireducens initially forms nanorods that cluster together to form rosettes. Sulfurospirillum barnesii forms irregularly-shaped nanospheres that coalesce into larger composite aggregates.

  9. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra

    PubMed Central

    Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.

    2017-01-01

    Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245

  10. Lagrangian coherent structures separate dynamically distinct regions in fluid flows.

    PubMed

    Kelley, Douglas H; Allshouse, Michael R; Ouellette, Nicholas T

    2013-07-01

    Using filter-space techniques, we study the scale-to-scale transport of energy in a quasi-two-dimensional, weakly turbulent fluid flow averaged along the trajectories of fluid elements. We find that although the spatial mean of this Lagrangian-averaged flux is nearly unchanged from its Eulerian counterpart, the spatial structure of the scale-to-scale energy flux changes significantly. In particular, its features appear to correlate with the positions of Lagrangian coherent structures (LCS's). We show that the LCS's tend to lie at zeros of the scale-to-scale flux, and therefore that the LCS's separate regions that have qualitatively different dynamics. Since LCS's are also known to be impenetrable barriers to advection and mixing, we therefore find that the fluid on either side of an LCS is both kinematically and dynamically distinct. Our results extend the utility of LCS's by making clear the role they play in the flow dynamics in addition to the kinematics.

  11. GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii).

    PubMed

    Xu, Zhenzhen; Liu, Jing; Ni, Wanchao; Peng, Zhen; Guo, Yue; Ye, Wuwei; Huang, Fang; Zhang, Xianggui; Xu, Peng; Guo, Qi; Shen, Xinlian; Du, Jianchang

    2017-01-01

    Although several diploid and tetroploid Gossypium species genomes have been sequenced, the well annotated web-based transposable elements (TEs) database is lacking. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton genome, a comprehensive, specific, and user-friendly web-based database, Gossypium raimondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs were structurally annotated and clearly categorized in G. raimondii genome, and these elements have been classified into seven distinct superfamilies based on the order of protein-coding domains, structures and/or sequence similarity, including 2929 Copia-like elements, 10 368 Gypsy-like elements, 299 L1 , 12 Mutators , 435 PIF-Harbingers , 275 CACTAs and 14 Helitrons . Meanwhile, the web-based sequence browsing, searching, downloading and blast tool were implemented to help users easily and effectively to annotate the TEs or TE fragments in genomic sequences from G. raimondii and other closely related Gossypium species. GrTEdb provides resources and information related with TEs in G. raimondii , and will facilitate gene and genome analyses within or across Gossypium species, evaluating the impact of TEs on their host genomes, and investigating the potential interaction between TEs and protein-coding genes in Gossypium species. http://www.grtedb.org/. © The Author(s) 2017. Published by Oxford University Press.

  12. The Fuzziness of Giant Planets’ Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helled, Ravit; Stevenson, David

    2017-05-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not bemore » distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.« less

  13. Tyrosine Recombinase Retrotransposons and Transposons.

    PubMed

    Poulter, Russell T M; Butler, Margi I

    2015-04-01

    Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes.

  14. The role of structural characteristics in video-game play motivation: a Q-methodology study.

    PubMed

    Westwood, Dave; Griffiths, Mark D

    2010-10-01

    Until recently, there has been very little naturalistic study of what gaming experiences are like, and how gaming fits into people's lives. Using a recently developed structural characteristic taxonomy of video games, this study examined the psycho-structural elements of computer games that motivate gamers to play them. Using Q-Sort methodology, 40 gamers participated in an online Q-sort task. Results identified six distinct types of gamers based on the factors generated: (a) story-driven solo gamers; (b) social gamers; (c) solo limited gamers; (d) hardcore online gamers; (e) solo control/identity gamers; and (f ) casual gamers. These gaming types are discussed, and a brief evaluation of similar and unique elements of the different types of gamer is also offered. The current study shows Q-methodology to be a relevant and applicable method in the psychological research of gaming.

  15. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups

    PubMed Central

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A.; Bar-On, Benny

    2017-01-01

    Background and Aims Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. Methods A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns (Asplenium nidus and Platycerium bifurcatum) and angiosperms (Arabidopsis thaliana and Commelina erecta) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata (Sorghum bicolor and Triticum aestivum). Key Results Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. Conclusions The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. PMID:28158449

  16. Masonry structures built with fictile tubules: Experimental and numerical analyses

    NASA Astrophysics Data System (ADS)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  17. Formal Verification of Large Software Systems

    NASA Technical Reports Server (NTRS)

    Yin, Xiang; Knight, John

    2010-01-01

    We introduce a scalable proof structure to facilitate formal verification of large software systems. In our approach, we mechanically synthesize an abstract specification from the software implementation, match its static operational structure to that of the original specification, and organize the proof as the conjunction of a series of lemmas about the specification structure. By setting up a different lemma for each distinct element and proving each lemma independently, we obtain the important benefit that the proof scales easily for large systems. We present details of the approach and an illustration of its application on a challenge problem from the security domain

  18. Selfish genetic elements favor the evolution of a distinction between soma and germline.

    PubMed

    Johnson, Louise J

    2008-08-01

    Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.

  19. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  20. A Combined Remote Sensing-Numerical Modelling Approach to the Stability Analysis of Delabole Slate Quarry, Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Havaej, Mohsen; Coggan, John; Stead, Doug; Elmo, Davide

    2016-04-01

    Rock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately geo-referenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three-dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D distinct element simulations to better understand the stochastic nature of the geological structure and its effect on the quarry slope failure mechanism. The numerical modelling results highlight the influence of discontinuity characteristics and kinematics on the slope failure mechanism and the variability in the size and shape of the failed blocks.

  1. Origin of polymorphism of the two-dimensional group-IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Wu, Minghui; Wei, Su-Huai; Huang, Li

    2017-11-01

    Unlike other two-dimensional (2D) isovalent materials, the 2D group IV monochalcogenides, M X (M =Si , Ge, Sn, and Pb; X =S , Se, and Te), are found to be either in a black phosphorene-derived distorted NaCl-type (d -NaCl) structure or a recently predicted P m a 2 structure. Both M and X atoms in the d -NaCl structure are threefold coordinated, whereas M and X in the P m a 2 structure are fourfold and twofold coordinated, respectively. Using first-principles total energy and electronic structure calculations and a global structural search technique, we systematically investigated the mechanism underlying the polymorphism of the 2D group-IV monochalcogenides. Our analysis show that the relative stability of the two distinct crystallographic phases depends on the strength of the M -M covalent bond and the electronegativity difference between the constituent elements M and X . For small cations, the covalency plays more important role, whereas for large cations the Coulomb interaction becomes more dominant. Therefore, the Si X and Ge X compounds assume the P m a 2 structure, whereas the M X compounds with heavy cation elements (M =Sn and Pb) tend to adopt the d -NaCl structure.

  2. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    PubMed

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  3. Timing of magmatism following initial convergence at a passive margin, southwestern U.S. Cordillera, and ages of lower crustal magma sources

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.

    2006-01-01

    Initiation of the Cordilleran magmatic arc in the southwestern United States is marked by intrusion of granitic plutons, predominantly composed of alkali-calcic Fe- and Sr-enriched quartz monzodiorite and monzonite, that intruded Paleoproterozoic basement and its Paleozoic cratonal-miogeoclinal cover. Three intrusive suites, recognized on the basis of differences in high field strength element and large ion lithophile element abundances, contain texturally complex but chronologically distinctive zircons. These zircons record heterogeneous but geochemically discrete mafic crustal magma sources, discrete Permo-Triassic intrusion ages, and a prolonged postemplacement thermal history within the long-lived Cordilleran arc, leading to episodic loss of radiogenic Pb. Distinctive lower crustal magma sources reflect lateral heterogeneity within the composite lithosphere of the Proterozoic craton. Limited interaction between derived magmas and middle and upper crustal rocks probably reflects the relatively cool thermal structure of the nascent Cordilleran continental margin magmatic arc. ?? 2006 by The University of Chicago. All rights reserved.

  4. Decoding a Signature-Based Model of Transcription Cofactor Recruitment Dictated by Cardinal Cis-Regulatory Elements in Proximal Promoter Regions

    PubMed Central

    Benner, Christopher; Hutt, Kasey R.; Stunnenberg, Rieka; Garcia-Bassets, Ivan

    2013-01-01

    Genome-wide maps of DNase I hypersensitive sites (DHSs) reveal that most human promoters contain perpetually active cis-regulatory elements between −150 bp and +50 bp (−150/+50 bp) relative to the transcription start site (TSS). Transcription factors (TFs) recruit cofactors (chromatin remodelers, histone/protein-modifying enzymes, and scaffold proteins) to these elements in order to organize the local chromatin structure and coordinate the balance of post-translational modifications nearby, contributing to the overall regulation of transcription. However, the rules of TF-mediated cofactor recruitment to the −150/+50 bp promoter regions remain poorly understood. Here, we provide evidence for a general model in which a series of cis-regulatory elements (here termed ‘cardinal’ motifs) prefer acting individually, rather than in fixed combinations, within the −150/+50 bp regions to recruit TFs that dictate cofactor signatures distinctive of specific promoter subsets. Subsequently, human promoters can be subclassified based on the presence of cardinal elements and their associated cofactor signatures. In this study, furthermore, we have focused on promoters containing the nuclear respiratory factor 1 (NRF1) motif as the cardinal cis-regulatory element and have identified the pervasive association of NRF1 with the cofactor lysine-specific demethylase 1 (LSD1/KDM1A). This signature might be distinctive of promoters regulating nuclear-encoded mitochondrial and other particular genes in at least some cells. Together, we propose that decoding a signature-based, expanded model of control at proximal promoter regions should lead to a better understanding of coordinated regulation of gene transcription. PMID:24244184

  5. Organic Matrix-related mineralization of sea urchin spicules, spines, test and teeth

    PubMed Central

    Veis, Arthur

    2012-01-01

    The camarodont echinoderms have five distinct mineralized skeletal elements: the embryonic spicules and mature test; spines, lantern stereom and teeth. The embryonic spicules are transient structural elements of the larval skeleton whereas the spines and test plates are permanent structural elements. The teeth are continuously growing structures, matching wear at the incisal adoral end to the rate of new production at the aboral plumula. The mineral in all cases is a high magnesium calcite, but the magnesium content, crystal shape and growth pattern is different in each type of skeletal element. The crystal shape and organization into macro structures depends on the presence of an organic matrix which creates the spaces and controls the environments for crystal initiation and growth. The detailed mechanisms of crystal regulation are not known, but much work has been done on defining the proteins which appear to be involved. Phosphorylated matrix proteins may be of special importance. Biochemical isolation of proteins, construction and analysis of cDNA libraries, and most recently high-throughput proteomic analysis in conjunction with the sequencing of the complete genome have yielded a detailed list of protein components likely to be involved in the mineralization processes. However, the proteome-genome analyses have not yet provided insight into the mechanisms of crystallization, calcite composition, and orientation applicable to all skeletal elements. Although the embryonic pluteus and their spicules are the best studied system, it appears that spicule is not representative of the mature skeletal elements. Now armed with the compositions of most of the proteins involved, the next phase of research will have to focus on the specific localization of the proteins and individual biochemistries of each system with regard to mineral content and placement. PMID:21622194

  6. Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macholdt, D. S.; Jochum, K. P.; Pöhlker, C.

    We investigated rock varnishes collected from several locations and environments worldwide by a wide range of microanalytical techniques. These techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer- to nanometer-sized structures in these geological materials. Femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS), scanning transmission X-ray microscopy-near edge X-ray adsorption fine structure spectroscopy (STXM-NEXAFS) in combination with scanning electron microscopy (SEM) of focused ion beam (FIB) ultra-thin (100–200 nm) sections, conventional and polarization microscopy, as well as electron paramagnetic resonance (EPR) measurements were used to obtain information about these rock varnishes. Rockmore » varnishes from different environments, which cannot readily be distinguished based on their macroscopic appearance, differ significantly in their constituent elemental mass fractions, e.g., of Mn, Fe, Ni, Co, Ba, and Pb, and their rare earth element (REE) patterns. Structural characteristics such as the particle sizes of embedded dust grains, internal structures such as layers of Mn-, Fe-, and Ca -rich material, and structures such as cavities varied between varnishes from different environments and regions in the world. The EPR spectra were consistent with aged biogenic Mn oxides in all samples, but showed subtle differences between samples of different origin. Our observations allow us to separate rock varnishes into different types, with differences that might be indicators of distinct geneses. Five different types of rock varnish could be distinguished, Type I–V, of which only Type I might be used as potential paleoclimate archive. Each varnish type has specific characteristics in terms of their elemental composition, element distribution, and structures. The combination of element ratios (Mn/Ba, Al/Ni, Mn/REY, Mn/Ce, Mn/Pb, La N /Yb N , and Ce/Ce*), total REE contents, and structures can be used to separate the different types of rock varnish from each other.« less

  7. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  8. Epigenomics and the concept of degeneracy in biological systems

    PubMed Central

    Mason, Paul H.; Barron, Andrew B.

    2014-01-01

    Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy—referring to the multiple pathways that a system recruits to achieve functional plasticity—is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability. PMID:24335757

  9. Matrix management in hospitals: testing theories of matrix structure and development.

    PubMed

    Burns, L R

    1989-09-01

    A study of 315 hospitals with matrix management programs was used to test several hypotheses concerning matrix management advanced by earlier theorists. The study verifies that matrix management involves several distinctive elements that can be scaled to form increasingly complex types of lateral coordinative devices. The scalability of these elements is evident only cross-sectionally. The results show that matrix complexity is not an outcome of program age, nor does matrix complexity at the time of implementation appear to influence program survival. Matrix complexity, finally, is not determined by the organization's task diversity and uncertainty. The results suggest several modifications in prevailing theories of matrix organization.

  10. Coil-to-coil physiological noise correlations and their impact on fMRI time-series SNR

    PubMed Central

    Triantafyllou, C.; Polimeni, J. R.; Keil, B.; Wald, L. L.

    2017-01-01

    Purpose Physiological nuisance fluctuations (“physiological noise”) are a major contribution to the time-series Signal to Noise Ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR0), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. Theory and Methods We extend the theoretical relationship between tSNR and SNR0 to include a time-series noise covariance matrix Ψt, distinct from the thermal noise covariance matrix Ψ0, and compare its structure to Ψ0 and the signal coupling matrix SSH formed from the signal intensity vectors S. Results Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ0 or SSH. Conclusion Time-series noise covariances in array coils are found to differ from Ψ0 and more surprisingly, from the signal coupling matrix SSH. Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. PMID:26756964

  11. Human body perception and higher-level person perception are dissociated in early development.

    PubMed

    Slaughter, Virginia

    2011-01-01

    Abstract Developmental data support the proposal that human body perceptual processing is distinct from other aspects of person perception. Infants are sensitive to human bodily motion and attribute goals to human arm movements before they demonstrate recognition of human body structure. The developmental data suggest the possibility of bidirectional linkages between EBA- and FBA-mediated representations and these higher-level elements of person perception.

  12. Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile

    NASA Astrophysics Data System (ADS)

    Veloso, E.; Cembrano, J.; Arancibia, G.; Heuser, G.; Neira, S.; Siña, A.; Garrido, I.; Vermeesch, P.; Selby, D.

    2017-04-01

    The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe-Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite-magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite-magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U-Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe-Cu-rich (vermiculite-anhydrite-chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re-Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite-calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime probably due to oblique subduction during the Mesozoic. However, the orientations of the stress and strain fields calculated for each structural system suggest a back-and-forth rotation pattern during transition from one structural system to the other—as they change between transtension and transpression—and between alteration/mineralization stages.

  13. Thermal Effects Modeling Developed for Smart Structures

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1998-01-01

    Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.

  14. The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.

    PubMed

    Gentil, F; Parente, M; Martins, P; Garbe, C; Jorge, R N; Ferreira, A; Tavares, João Manuel R S

    2011-01-01

    The interest in computer modelling of biomechanical systems, mainly by using the finite element method (FEM), has been increasing, in particular for analysis of the mechanical behaviour of the human ear. In this work, a finite element model of the middle ear was developed to study the dynamic structural response to harmonic vibrations for distinct sound pressure levels applied on the eardrum. The model includes different ligaments and muscle tendons with elastic and hyperelastic behaviour for these supportive structures. Additionally, the nonlinear behaviour of the ligaments and muscle tendons was investigated, as they are the connection between ossicles by contact formulation. Harmonic responses of the umbo and stapes footplate displacements, between 100 Hz and 10 kHz, were obtained and compared with previously published work. The stress state of ligaments (superior, lateral, and anterior of malleus and superior and posterior of incus) was analysed, with the focus on balance of the supportive structures of the middle ear, as ligaments make the link between the ossicular chain and the walls of the tympanic cavity. The results obtained in this work highlight the importance of using hyperelastic models to simulate the mechanical behaviour for the ligaments and tendons.

  15. Perforated Pit Membranes in Imperforate Tracheary Elements of Some Angiosperms

    PubMed Central

    SANO, YUZOU; JANSEN, STEVEN

    2006-01-01

    • Background and Aims The structure of pit membranes in angiosperms has not been fully examined and our understanding about the structure is incomplete. Therefore, this study aims to illustrate the micromorphology of pit membranes in fibres and tracheids of woody species from various families. • Methods Specimens from ten species from ten genera and eight families were prepared using two techniques and examined by field-emission scanning electron microscopy. • Key Results Interfibre pit membranes with an average diameter of <4 µm were frequently perforated or appeared to be very porous. In contrast, pit membranes in imperforate tracheary elements with distinctly bordered pits and an average diameter of ≥4 µm were homogeneous and densely packed with microfibrils. These differences were observed consistently not only among species but also within a single species in which different types of imperforate tracheary elements were present. • Conclusions This study demonstrates that the structure of interfibre pit membranes differs among cell types and the differences are closely associated with the specialization of the fibre cells. It is suggested that perforated pit membranes between specialized fibres contribute to the dehydration of the fibre cells at or soon after maturation. PMID:16520339

  16. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    PubMed

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less

  18. An Ordinary Chondrite Impactor Composition for the Bosumtwi Impact Structure, Ghana, West Africa: Discussion of Siderophile Element Contents and Os and Cr Isotope Data

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shukolyukov, Alex; Lugmair, Guenter

    2004-01-01

    Osmium isotope data had shown that Ivory Coast tektites contain an extraterrestrial component, but do not allow distinction between chondritic and iron meteorite contamination. PGE abundances of Ivory Coast tektites and impactites and target rocks from the Bosumtwi crater, the source crater of the Ivory Coast tektites, were all relatively high and did not allow to resolve the presence, or identify the nature, of the meteoritic component. However, Cr isotope analyses of an Ivory Coast tektite yielded a distinct 53Cr excess of 0.30+/-0.06, which indicates that the Bosumtwi impactor was an ordinary chondrite.

  19. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth.

    PubMed

    Veis, Arthur

    2011-06-01

    The camarodont echinoderms have five distinct mineralized skeletal elements: embryonic spicules, mature test, spines, lantern stereom and teeth. The spicules are transient structural elements whereas the spines, and test plates are permanent. The teeth grow continuously. The mineral is a high magnesium calcite, but the magnesium content is different in each type of skeletal element, varying from 5 to 40 mole% Mg. The organic matrix creates the spaces and environments for crystal initiation and growth. The detailed mechanisms of crystal regulation are not known, but acidic and phosphorylated matrix proteins may be of special importance. Biochemical studies, sequencing of the complete genome, and high-throughput proteomic analysis have not yet provided insight into the mechanisms of crystallization, calcite composition, and orientation applicable to all skeletal elements. The embryonic spicules are not representative of the mature skeletal elements. The next phase of research will have to focus on the specific localization of the proteins and individual biochemistries of each system with regard to mineral content and placement.

  20. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs.

    PubMed

    Lim, Chun Shen; Brown, Chris M

    2017-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.

  1. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs

    PubMed Central

    Lim, Chun Shen; Brown, Chris M.

    2018-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101

  2. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    PubMed

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  3. Nonclinical and Clinical Enterococcus faecium Strains, but Not Enterococcus faecalis Strains, Have Distinct Structural and Functional Genomic Features

    PubMed Central

    Kim, Eun Bae

    2014-01-01

    Certain strains of Enterococcus faecium and Enterococcus faecalis contribute beneficially to animal health and food production, while others are associated with nosocomial infections. To determine whether there are structural and functional genomic features that are distinct between nonclinical (NC) and clinical (CL) strains of those species, we analyzed the genomes of 31 E. faecium and 38 E. faecalis strains. Hierarchical clustering of 7,017 orthologs found in the E. faecium pangenome revealed that NC strains clustered into two clades and are distinct from CL strains. NC E. faecium genomes are significantly smaller than CL genomes, and this difference was partly explained by significantly fewer mobile genetic elements (ME), virulence factors (VF), and antibiotic resistance (AR) genes. E. faecium ortholog comparisons identified 68 and 153 genes that are enriched for NC and CL strains, respectively. Proximity analysis showed that CL-enriched loci, and not NC-enriched loci, are more frequently colocalized on the genome with ME. In CL genomes, AR genes are also colocalized with ME, and VF are more frequently associated with CL-enriched loci. Genes in 23 functional groups are also differentially enriched between NC and CL E. faecium genomes. In contrast, differences were not observed between NC and CL E. faecalis genomes despite their having larger genomes than E. faecium. Our findings show that unlike E. faecalis, NC and CL E. faecium strains are equipped with distinct structural and functional genomic features indicative of adaptation to different environments. PMID:24141120

  4. Ab initio studies of isolated boron substitutional defects in graphane

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Chetty, N.

    2017-10-01

    We have systematically studied energetics, structural and electronic properties of different configurations of the B atoms substituting C-H pairs located on a single hexagonal ring in a graphane system using the first-principles density functional theory (DFT). A total number of 12 distinct B dopants configurations were identified and characterized. Based on the formation energy analysis, we found that relative stability of B dopants depends greatly on the defect configurations. Our results suggest that the B substitutions prefer to be distributed randomly but avoiding the formation of homo-elemental B-B bonds in a graphane system, at any concentration. Generally, the values of band gap decrease as the number of B dopants increases, but the low energy configurations have large band gaps compared to those that have homo-elemental bonds. As a result, the band gap of graphane can be fine tuned through the change in the structural arrangement of B atoms. The adequate control of the electronic structure of graphane through doping should be essential for technological device applications.

  5. Earthquake behavior of steel cushion-implemented reinforced concrete frames

    NASA Astrophysics Data System (ADS)

    Özkaynak, Hasan

    2018-04-01

    The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.

  6. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of Koc values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in Koc between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with Koc illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  7. Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels with Seed Plants1[OPEN

    PubMed Central

    Li, Xingxing; Huang, Shixin; Van de Meene, Allison M.L.; Tran, Mai L.; Killeavy, Erin; Mercure, Danielle; Burton, Rachel A.

    2017-01-01

    The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens. Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis. PMID:28768816

  8. O' Connell bridge inspection by means of Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Santos Assuncao, Sonia, ,, Dr

    2016-04-01

    Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.

  9. Hissar-Alai and the Pamirs: Junction and Position in the System of Mobile Belts of Central Asia

    NASA Astrophysics Data System (ADS)

    Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.

    2018-01-01

    The position of the Pamirs and the Hissar-Alai mountainous system in the structure of Central Asia and features of their junction are considered. It is shown that their outer contours and tectonic infrastructure are significantly distinct in the planar pattern: latitudinally linear and arched for the Hissar-Alai and the Pamirs, respectively. These structures logically match those of the Central Asian and Alpine-Himalayan belts, respectively. The Pamir orogen is a relatively autonomous structural element of the crust, which is located discordantly relative to the country lithospheric blocks. Most of the Pamirs (at least, the Northern and Central) probably form a giant allochthon on the ancient basement of the Tarim and Afghan-Tajik blocks. The junction zone of these two "hard" crustal segments is reflected in the transverse Transpamir threshold, which is expressed in the relief, deep structure, and seismicity. The specific geological structure of the junction zone of the Pamirs and Hissar-Alai (systems of the Tarim, Alai, and Afghan-Tajik troughs) is shown. It suggested that this zone is a damper, which significantly neutralizes the dynamic influence of the Pamir and the southernmost elements of the Pamir-Punjab syntax on Hissar-Alai structures.

  10. The influence of context on distinct facial expressions of disgust.

    PubMed

    Reschke, Peter J; Walle, Eric A; Knothe, Jennifer M; Lopez, Lukas D

    2018-06-11

    Face perception is susceptible to contextual influence and perceived physical similarities between emotion cues. However, studies often use structurally homogeneous facial expressions, making it difficult to explore how within-emotion variability in facial configuration affects emotion perception. This study examined the influence of context on the emotional perception of categorically identical, yet physically distinct, facial expressions of disgust. Participants categorized two perceptually distinct disgust facial expressions, "closed" (i.e., scrunched nose, closed mouth) and "open" (i.e., scrunched nose, open mouth, protruding tongue), that were embedded in contexts comprising emotion postures and scenes. Results demonstrated that the effect of nonfacial elements was significantly stronger for "open" disgust facial expressions than "closed" disgust facial expressions. These findings provide support that physical similarity within discrete categories of facial expressions is mutable and plays an important role in affective face perception. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.

  12. Application of finite element substructuring to composite micromechanics. M.S. Thesis - Akron Univ., May 1984

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.

    1984-01-01

    Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.

  13. Applying ecological models to communities of genetic elements: the case of neutral theory.

    PubMed

    Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan

    2015-07-01

    A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.

  14. Composite theory applied to elastomers

    NASA Technical Reports Server (NTRS)

    Clark, S. K.

    1986-01-01

    Reinforced elastomers form the basis for most of the structural or load carrying applications of rubber products. Computer based structural analysis in the form of finite element codes was highly successful in refining structural design in both isotropic materials and rigid composites. This has lead the rubber industry to attempt to make use of such techniques in the design of structural cord-rubber composites. While such efforts appear promising, they were not easy to achieve for several reasons. Among these is a distinct lack of a clearly defined set of material property descriptors suitable for computer analysis. There are substantial differences between conventional steel, aluminum, or even rigid composites such as graphite-epoxy, and textile-cord reinforced rubber. These differences which are both conceptual and practical are discussed.

  15. Vital effects in coral skeletal composition display strict three-dimensional control

    USGS Publications Warehouse

    Meibom, A.; Yurimoto, H.; Cuif, J.-P.; Domart-Coulon, I.; Houlbreque, F.; Constantz, B.; Dauphin, Y.; Tambutte, E.; Tambutte, S.; Allemand, D.; Wooden, J.; Dunbar, R.

    2006-01-01

    Biological control over coral skeletal composition is poorly understood but critically important to paleoenvironmental reconstructions. We present microanalytical measurements of trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate coral Colpophyllia sp. Our data show that centers of calcification (COC) have higher trace element concentrations and distinctly lighter isotopic compositions than the fibrous components of the skeleton. These observations necessitate that COC and the fibrous skeleton are precipitated by different mechanisms, which are controlled by specialized domains of the calicoblastic cell-layer. Biological processes control the composition of the skeleton even at the ultra-structure level. Copyright 2006 by the American Geophysical Union.

  16. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    PubMed

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in environmental selection along the course of plant evolution. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  17. Differential autoshaping to common and distinctive elements of positive and negative discriminative stimuli1

    PubMed Central

    Wasserman, Edward A.; Anderson, Patricia A.

    1974-01-01

    The learning by hungry pigeons of a discrimination between two successively presented compound visual stimuli was investigated using a two-key autoshaping procedure. Common and distinctive stimulus elements were simultaneously presented on separate keys and either followed by food delivery, S+, or not, S−. The subjects acquired both between-trial and within-trial discriminations. On S+ trials, pigeons pecked the distinctive stimulus more than the common stimulus; before responding ceased on S− trials, they pecked the common stimulus more than the distinctive one. Mastery of the within-display discrimination during S+ trials preceded mastery of the between-trials discrimination. These findings extend the Jenkins-Sainsbury analysis of discriminations based upon a single distinguishing feature to discriminations in which common and distinctive elements are associated with both the positive and negative discriminative stimuli. The similarity of these findings to other effects found in autoshaping—approach to signals that forecast reinforcement and withdrawal from signals that forecast nonreinforcement—is also discussed. PMID:16811812

  18. Differential autoshaping to common and distinctive elements of positive and negative discriminative stimuli.

    PubMed

    Wasserman, E A; Anderson, P A

    1974-11-01

    The learning by hungry pigeons of a discrimination between two successively presented compound visual stimuli was investigated using a two-key autoshaping procedure. Common and distinctive stimulus elements were simultaneously presented on separate keys and either followed by food delivery, S+, or not, S-. The subjects acquired both between-trial and within-trial discriminations. On S+ trials, pigeons pecked the distinctive stimulus more than the common stimulus; before responding ceased on S- trials, they pecked the common stimulus more than the distinctive one. Mastery of the within-display discrimination during S+ trials preceded mastery of the between-trials discrimination. These findings extend the Jenkins-Sainsbury analysis of discriminations based upon a single distinguishing feature to discriminations in which common and distinctive elements are associated with both the positive and negative discriminative stimuli. The similarity of these findings to other effects found in autoshaping-approach to signals that forecast reinforcement and withdrawal from signals that forecast nonreinforcement-is also discussed.

  19. The X chromosome in space.

    PubMed

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  20. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    PubMed

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  1. The New Element Berkelium (Atomic Number 97)

    DOE R&D Accomplishments Database

    Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

    1950-04-26

    An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

  2. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells.

    PubMed

    Kim, Sol; Lee, Soo-Bin; Han, Chae-Seong; Lim, Mi-Na; Lee, Sung-Eun; Yoon, In Sun; Hwang, Yong-Sic

    2017-08-01

    Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio.

    PubMed

    Triantafyllou, Christina; Polimeni, Jonathan R; Keil, Boris; Wald, Lawrence L

    2016-12-01

    Physiological nuisance fluctuations ("physiological noise") are a major contribution to the time-series signal-to-noise ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR 0 ), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. We extend the theoretical relationship between tSNR and SNR 0 to include a time-series noise covariance matrix Ψ t , distinct from the thermal noise covariance matrix Ψ 0 , and compare its structure to Ψ 0 and the signal coupling matrix SS H formed from the signal intensity vectors S. Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR 0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ 0 or SS H . Time-series noise covariances in array coils are found to differ from Ψ 0 and more surprisingly, from the signal coupling matrix SS H . Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. Magn Reson Med 76:1708-1719, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns.

    PubMed

    Ko, Jaewon

    2017-01-01

    Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives.

  5. Mechanosensitive channel activation by diffusio-osmotic force.

    PubMed

    Bonthuis, Douwe Jan; Golestanian, Ramin

    2014-10-03

    For ion channel gating, the appearance of two distinct conformational states and the discrete transitions between them are essential, and therefore of crucial importance to all living organisms. We show that the physical interplay between two structural elements that are commonly present in bacterial mechanosensitive channels--namely, a charged vestibule and a hydrophobic constriction--creates two distinct conformational states, open and closed, as well as the gating between them. We solve the nonequilibrium Stokes-Poisson-Nernst-Planck equations, extended to include a molecular potential of mean force, and show that a first order transition between the closed and open states arises naturally from the diffusio-osmotic stress caused by the ions and the water inside the channel and the elastic restoring force from the membrane.

  6. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns

    PubMed Central

    Ko, Jaewon

    2017-01-01

    Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives. PMID:28659766

  7. Responses of infaunal populations to benthoscape structure and the potential importance of transition zones

    USGS Publications Warehouse

    Zajac, R.N.; Lewis, R.S.; Poppe, L.J.; Twichell, D.C.; Vozarik, J.; DiGiacomo-Cohen, M. L.

    2003-01-01

    Relationships between population abundance and seafloor landscape, or benthoscape, structure were examined for 16 infaunal taxa in eastern Long Island Sound. Based on analyses of a side-scan sonar mosaic, the 19.4-km2 study area was comprised of six distinct large-scale (> km2) benthoscape elements, with varying levels of mesoscale (km2-m2) and small-scale (2) physical and biological habitat heterogeneity. Transition zones among elements varied from ~50 to 200 m in width, comprised ~32% of the benthoscape, and added to overall benthoscape heterogeneity. Population abundances of nine taxa varied significantly among the large-scale elements. Most species were found at high abundances only in one benthoscape element, but three had several foci of elevated abundances. Analyses of population responses to habitat heterogeneity at different spatial scales indicated that abundances of eight taxa varied significantly among spatial scales, but the significant scales were mixed among these species. Relatively large residual variations suggest significant amounts of mesoscale spatial variation were unaccounted for, varying from ~1 km2 to several m2. Responses to transition zones were mixed as well. Abundances of nine taxa varied significantly among transition zones and interiors of benthoscape elements, most with elevated abundances in transition zones. Our results show that infaunal populations exhibit complex and spatially varying patterns of abundance in relation to benthoscape structure and suggest that mesoscale variation may be particularly critical in this regard. Also, transition zones among benthoscape features add considerably to this variation and may be ecological important areas in seafloor environments.

  8. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.

  9. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    PubMed

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  10. Structural flexibility in magnetocaloric RE 5T 4 (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Sumohan

    The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE 5Tt 4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd 5Si 2Ge 2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs andmore » the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE 5T 4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.« less

  11. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    PubMed

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  12. Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion.

    PubMed

    Gladyshev, Eugene A; Arkhipova, Irina R

    2009-12-15

    Ribosomal DNA genes in many eukaryotes contain insertions of non-LTR retrotransposable elements belonging to the R2 clade. These elements persist in the host genomes by inserting site-specifically into multicopy target sites, thereby avoiding random disruption of single-copy host genes. Here we describe R9 retrotransposons from the R2 clade in the 28S RNA genes of bdelloid rotifers, small freshwater invertebrate animals best known for their long-term asexuality and for their ability to survive repeated cycles of desiccation and rehydration. While the structural organization of R9 elements is highly similar to that of other members of the R2 clade, they are characterized by two distinct features: site-specific insertion into a previously unreported target sequence within the 28S gene, and an unusually long target site duplication of 126 bp. We discuss the implications of these findings in the context of bdelloid genome organization and the mechanisms of target-primed reverse transcription.

  13. Assessment of urban green space structures and their quality from a multidimensional perspective.

    PubMed

    Daniels, Benjamin; Zaunbrecher, Barbara S; Paas, Bastian; Ottermanns, Richard; Ziefle, Martina; Roß-Nickoll, Martina

    2018-02-15

    Facing the growing amount of people living in cities and, at the same time, the need for a compact and sustainable urban development to mitigate urban sprawl, it becomes increasingly important that green spaces in compact cities are designed to meet the various needs within an urban environment. Urban green spaces have a multitude of functions: Maintaining ecological processes and resulting services, e.g. providing habitat for animals and plants, providing a beneficial city microclimate as well as recreational space for citizens. Regarding these requirements, currently existing assessment procedures for green spaces have some major shortcomings, which are discussed in this paper. It is argued why a more detailed spatial level as well as a distinction between natural and artificial varieties of structural elements is justified and needed and how the assessment of urban green spaces benefits from the multidimensional perspective that is applied. By analyzing a selection of structural elements from an ecological, microclimatic and social perspective, indicator values are derived and a new, holistic metrics 1 is proposed. The results of the integrated analysis led to two major findings: first, that for some elements, the evaluation differs to a great extent between the different perspectives (disciplines) and second, that natural and artificial varieties are, in most cases, evaluated considerably different from each other. The differences between the perspectives call for an integrative planning policy which acknowledges the varying contribution of a structural element to different purposes (ecological, microclimatic, social) as well as a discussion about the prioritization of those purposes. The differences in the evaluation of natural vs. artificial elements verify the assumption that indicators which consider only generic elements fail to account for those refinements and are thus less suitable for planning and assessment purposes. Implications, challenges and scenarios for the application of such a metrics are finally discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA

    PubMed Central

    Howe, Kenneth James; Ares, Manuel

    1997-01-01

    Skipping of internal exons during removal of introns from pre-mRNA must be avoided for proper expression of most eukaryotic genes. Despite significant understanding of the mechanics of intron removal, mechanisms that ensure inclusion of internal exons in multi-intron pre-mRNAs remain mysterious. Using a natural two-intron yeast gene, we have identified distinct RNA–RNA complementarities within each intron that prevent exon skipping and ensure inclusion of internal exons. We show that these complementarities are positioned to act as intron identity elements, bringing together only the appropriate 5′ splice sites and branchpoints. Destroying either intron self-complementarity allows exon skipping to occur, and restoring the complementarity using compensatory mutations rescues exon inclusion, indicating that the elements act through formation of RNA secondary structure. Introducing new pairing potential between regions near the 5′ splice site of intron 1 and the branchpoint of intron 2 dramatically enhances exon skipping. Similar elements identified in single intron yeast genes contribute to splicing efficiency. Our results illustrate how intron secondary structure serves to coordinate splice site pairing and enforce exon inclusion. We suggest that similar elements in vertebrate genes could assist in the splicing of very large introns and in the evolution of alternative splicing. PMID:9356473

  15. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

    PubMed

    Safavieh, Roozbeh; Juncker, David

    2013-11-07

    Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.

  16. Multiple intensity distributions from a single optical element

    NASA Astrophysics Data System (ADS)

    Berens, Michael; Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter

    2013-09-01

    We report on an extension of the previously published two-step freeform optics tailoring algorithm using a Monge-Kantorovich mass transportation framework. The algorithm's ability to design multiple freeform surfaces allows for the inclusion of multiple distinct light paths and hence the implementation of multiple lighting functions in a single optical element. We demonstrate the procedure in the context of automotive lighting, in which a fog lamp and a daytime running lamp are integrated in a single optical element illuminated by two distinct groups of LEDs.

  17. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

    NASA Astrophysics Data System (ADS)

    Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario

    2018-03-01

    In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

  18. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  19. The Interiors of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Helled, Ravit

    2018-05-01

    Probing the interiors of the giant planets in our Solar System is not an easy task. This requires a set of observations combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 318 and 96 Earth masses, respectively, and since a few decades, we know that they mostly consist of hydrogen and helium. It is the mass of heavy elements (all elements heavier than helium) that is not well determined, as well as its distribution within the planets. While the heavy elements are not the dominating materials in Jupiter and Saturn, they are the key for our understanding of their formation and evolution histories. The planetary internal structure is inferred to fit the available observational constraints including the planetary masses, radii, 1-bar temperatures, rotation rates, and gravitational fields. Then, using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices), a structure model is developed. However, there is no unique solution for the planetary structure, and the results depend on the used EOSs and the model assumptions imposed by the modeler. Standard interior models of Jupiter and Saturn include three main regions: (1) the central region (core) that consists of heavy elements, (2) an inner metallic hydrogen envelope that is helium rich, and (3) an outer molecular hydrogen envelope depleted with helium. The distribution of heavy elements can be either homogenous or discontinuous between the two envelopes. Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location/pressure where the envelopes are divided. Alternative structure models assume a less distinct division between the layers and/or a less non-homogenous distribution of the heavy elements. The fact that the behavior of hydrogen at high pressures and temperatures in not perfectly known, and that helium separates from hydrogen at the deep interior add sources of uncertainties to the interior model. Today, with accurate measurements of the gravitational fields of Jupiter and Saturn from the Juno and Cassini missions, structure models can be further constrained. At the same time, these measurements introduce new challenges and open question for planetary modelers.

  20. The Variscan calc-alkalic plutonism of western Corsica: mineralogy and major and trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Cocherie, A.; Rossi, Ph.; Le Bel, L.

    1984-10-01

    Petrographic and structural observations on the calc-alkalic plutonism of western Corsica revealed the existence of several successively emplaced units associated with large basic bodies. The present mineralogical and geochemical study deals with the genesis, evolution and relationships of these different units. Basic plutonism is represented by three genetically linked types of rock: norites and troctolites with cumulate textures characterized by low REE contents and either no Eu anomaly or a positive Eu anomaly; gabbros with enriched LREE relatively to HREE patterns, probably close to an initial basaltic liquid; and diorites ranging up to charnockites which represent liquids evolved to varying degrees, mainly by fractional crystallization. Trace element data and studies on the evolution of pyroxene pairs demonstrate the consanguinity of these calc-alkaline basic rocks which are derived from a high alumina basaltic melt. The various granitoids (granodiorites, monzogranites and leucocratic monzogranites, i.e., adamellites) have distinct evolution trends as shown by the composition of their mafic minerals and by trace element distributions. They cannot be considered as being derivatives of the basic suite and they cannot be related by a common fractionation sequence. Rather, they represent distinctive batches of crustal anatexis. In addition, hybridization phenomena with the basic melt are noticed in granodiorites. The particular problem of the low La/Yb, Eu/Eu∗ and the high U, Th, Cs leucocratic monzogranites is discussed in detail. In addition to more conventional trace element diagrams, the simultaneous statistical treatment of all the geochemical data by correspondence factor analysis is shown to be a very use tool in distinguishing between the different units and to classify the elements according to their geochemical properties.

  1. Rebels with a cause: molecular features and physiological consequences of yeast prions.

    PubMed

    Garcia, David M; Jarosz, Daniel F

    2014-02-01

    Prions are proteins that convert between structurally and functionally distinct states, at least one of which is self-perpetuating. The prion fold templates the conversion of native protein, altering its structure and function, and thus serves as a protein-based element of inheritance. Molecular chaperones ensure that these prion aggregates are divided and faithfully passed from mother cells to their daughters. Prions were originally identified as the cause of several rare neurodegenerative diseases in mammals, but the last decade has brought great progress in understanding their broad importance in biology and evolution. Most prion proteins regulate information flow in signaling networks, or otherwise affect gene expression. Consequently, switching into and out of prion states creates diverse new traits – heritable changes based on protein structure rather than nucleic acid. Despite intense study of the molecular mechanisms of this paradigm-shifting, epigenetic mode of inheritance, many key questions remain. Recent studies in yeast that support the view that prions are common, often beneficial elements of inheritance that link environmental stress to the appearance of new traits.

  2. Selective buckling via states of self-stress in topological metamaterials

    PubMed Central

    Paulose, Jayson; Meeussen, Anne S.; Vitelli, Vincenzo

    2015-01-01

    States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices. PMID:26056303

  3. Initiation of viral RNA-dependent RNA polymerization.

    PubMed

    van Dijk, Alberdina A; Makeyev, Eugene V; Bamford, Dennis H

    2004-05-01

    This review summarizes the combined insights from recent structural and functional studies of viral RNA-dependent RNA polymerases (RdRPs) with the primary focus on the mechanisms of initiation of RNA synthesis. Replication of RNA viruses has traditionally been approached using a combination of biochemical and genetic methods. Recently, high-resolution structures of six viral RdRPs have been determined. For three RdRPs, enzyme complexes with metal ions, single-stranded RNA and/or nucleoside triphosphates have also been solved. These advances have expanded our understanding of the molecular mechanisms of viral RNA synthesis and facilitated further RdRP studies by informed site-directed mutagenesis. What transpires is that the basic polymerase right hand shape provides the correct geometrical arrangement of substrate molecules and metal ions at the active site for the nucleotidyl transfer catalysis, while distinct structural elements have evolved in the different systems to ensure efficient initiation of RNA synthesis. These elements feed the template, NTPs and ions into the catalytic cavity, correctly position the template 3' terminus, transfer the products out of the catalytic site and orchestrate the transition from initiation to elongation.

  4. Intermediates and the folding of proteins L and G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Scott; Head-Gordon, Teresa

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contactsmore » involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.« less

  5. Intermediates and the folding of proteins L and G

    PubMed Central

    Brown, Scott; Head-Gordon, Teresa

    2004-01-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted β-1 and β-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third β-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment. PMID:15044729

  6. Reusable EGaIn-Injected Substrate-Integrated-Waveguide Resonator for Wireless Sensor Applications

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2015-01-01

    The proposed structure in this research is constructed on substrate integrated waveguide (SIW) technology and has a mechanism that produces 16 different and distinct resonant frequencies between 2.45 and 3.05 GHz by perturbing a fundamental TE10 mode. It is a unique method for producing multiple resonances in a radio frequency planar structure without any extra circuitry or passive elements is developed. The proposed SIW structure has four vertical fluidic holes (channels); injecting eutectic gallium indium (EGaIn), also known commonly as liquid metal (LM), into these vertical channels produces different resonant frequencies. Either a channel is empty, or it is filled with LM. In total, the combination of different frequencies produced from four vertical channels is 16. PMID:26569257

  7. Analysis of a Waveguide-Fed Metasurface Antenna

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.

    2017-11-01

    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.

  8. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues.

    PubMed

    Corces, M Ryan; Trevino, Alexandro E; Hamilton, Emily G; Greenside, Peyton G; Sinnott-Armstrong, Nicholas A; Vesuna, Sam; Satpathy, Ansuman T; Rubin, Adam J; Montine, Kathleen S; Wu, Beijing; Kathiria, Arwa; Cho, Seung Woo; Mumbach, Maxwell R; Carter, Ava C; Kasowski, Maya; Orloff, Lisa A; Risca, Viviana I; Kundaje, Anshul; Khavari, Paul A; Montine, Thomas J; Greenleaf, William J; Chang, Howard Y

    2017-10-01

    We present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol generates chromatin accessibility profiles from archival frozen tissue samples and 50-μm sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.

  9. From circuits to behaviour in the amygdala

    PubMed Central

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  10. Indentation creep behaviors of amorphous Cu-based composite alloys

    NASA Astrophysics Data System (ADS)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structuresmore » of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.« less

  12. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    PubMed Central

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  13. Multi-temporal mapping of a large, slow-moving earth flow for kinematic interpretation

    USGS Publications Warehouse

    Guerriero, Luigi; Coe, Jeffrey A.; Revellino, Paola; Guadagno, Francesco M.

    2014-01-01

    Periodic movement of large, thick landslides on discrete basal surfaces produces modifications of the topographic surface, creates faults and folds, and influences the locations of springs, ponds, and streams (Baum, et al., 1993; Coe et al., 2009). The geometry of the basal-slip surface, which can be controlled by geological structures (e.g., fold axes, faults, etc.; Revellino et al., 2010; Grelle et al., 2011), and spatial variation in the rate of displacement, are responsible for differential deformation and kinematic segmentation of the landslide body. Thus, large landslides are often composed of several distinct kinematic elements. Each element represents a discrete kinematic domain within the main landslide that is broadly characterized by stretching (extension) of the upper part of the landslide and shortening (compression) near the landslide toe (Baum and Fleming, 1991; Guerriero et al., in review). On the basis of this knowledge, we used photo interpretive and GPS field mapping methods to map structures on the surface of the Montaguto earth flow in the Apennine Mountains of southern Italy at a scale of 1:6,000. (Guerriero et al., 2013a; Fig.1). The earth flow has been periodically active since at least 1954. The most extensive and destructive period of activity began on April 26, 2006, when an estimated 6 million m3 of material mobilized, covering and closing Italian National Road SS90, and damaging residential structures (Guerriero et al., 2013b). Our maps show the distribution and evolution of normal faults, thrust faults, strike-slip faults, flank ridges, and hydrological features at nine different dates (October, 1954; June, 1976; June, 1991; June, 2003; June, 2005; May, 2006; October, 2007; July, 2009; and March , 2010) between 1954 and 2010. Within the earth flow we recognized several kinematic elements and associated structures (Fig.2a). Within each kinematic element (e.g. the earth flow neck; Fig.2b), the flow velocity was highest in the middle, and lowest in the upper and lower parts. As the velocity of movement initiated and increased, stretching of the earth flow body induced the formation of normal faults. Conversely, decreasing velocity and shortening of the earth flow induced the formation of thrust faults. A zone with relatively few structures, bounded by strike-slip faults, was located between stretching and shortening areas. These kinematic elements indicate that the overall earth flow was actually composed of numerous linked internal earth flows, with each internal flow having a distinct pattern of structures representative of stretching and shortening (Guerriero et al., in review). These observations indicated that the spatial variation in movement velocity associated with each internal earth flow, mimicked the pattern of movement for the overall earth flow. That is, the earth flow displayed a self-similar pattern at different scales. Furthermore, the presence of other structures such as back-tilted surfaces, flank-ridges, and hydrological elements provide specific information about the shape of the basal topographic surface. Our multi-temporal maps provided a basis for interpretation of the long-term kinematic evolution of the earth flow and the influence of the basal-slip surface on the earth flow movement. Our maps showed that main faults remained stationary through time, despite extensive mobilization and movement of material. This observation indicated that the slip-surface has remained relatively stationary since at least 1954.

  14. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  15. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    PubMed

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  16. Stiffness degradation-based damage model for RC members and structures using fiber-beam elements

    NASA Astrophysics Data System (ADS)

    Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian

    2016-12-01

    To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.

  17. The application of the Wigner Distribution to wave type identification in finite length beams

    NASA Technical Reports Server (NTRS)

    Wahl, T. J.; Bolton, J. Stuart

    1994-01-01

    The object of the research described in this paper was to develop a means of identifying the wave-types propagating between two points in a finite length beam. It is known that different structural wave-types possess different dispersion relations: i.e., that their group speeds and the frequency dependence of their group speeds differ. As a result of those distinct dispersion relationships, different wave-types may be associated with characteristic features when structural responses are examined in the time frequency domain. Previously, the time-frequency character of analytically generated structural responses of both single element and multi-element structures were examined by using the Wigner Distribution (WD) along with filtering techniques that were designed to detect the wave-types present in the responses. In the work to be described here, the measure time-frequency response of finite length beam is examined using the WD and filtering procedures. This paper is organized as follows. First the concept of time-frequency analysis of structural responses is explained. The WD is then introduced along with a description of the implementation of a discrete version. The time-frequency filtering techniques are then presented and explained. The results of applying the WD and the filtering techniques to the analysis of a transient response is then presented.

  18. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    NASA Astrophysics Data System (ADS)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the dynamics of cable bridges.

  19. History of the magmatic feeding system of the Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Civetta, L.; Arienzo, I.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Orsi, G.

    2007-05-01

    The definition of the magmatic feeding system of active volcanoes in terms of architecture, composition, crystallization time-scale, relationships between composition of the erupted magmas and structural position of the vents, and magma processes, is of paramount importance for volcanic hazards evaluation. Investigations aimed at defining the Campi Flegeri magmatic system, include detailed mineralogical, geochemical and isotopic analyses (Sr, Nd, Pb, Th,U). The magmatic feeding system of the Campi Flegrei caldera is characterized by deep and shallow magma reservoirs. In the deep reservoirs (20-10 km depth) mantle- derived magmas differentiated and were contaminated by continental crust. In the shallow reservoirs isotopically distinct magmas, further differentiated, contaminated, and mixed and mingled before eruptions. These processes generated isotopically distinct components, variably interacting with the different structural elements of the Campi Flegrei caldera through time. The relationships between the structural position of the eruption vents, during the last 15 ka of activity, and the isotopic composition of the magmas erupted at the Campi Flegrei caldera allow us to reconstruct the architecture of the magmatic feeding system and to infer the chemical and isotopic composition of the magma feeding a future eruption, according to vent position.

  20. Searching the Sinus Amoris: Using profiles of geological units, impact and volcanic features to characterize a major terrane interface on the Moon

    NASA Technical Reports Server (NTRS)

    Clark, P.; Joerg, S.; Dehon, R.

    1994-01-01

    Geochemical profiles of surface units, impact, and volcanic features are studied in detail to determine the underlying structure in an area of extensive mare/highland interface, Sinus Amoris. This study region includes and surrounds the northeastern embayment of Mare Tranquillitatis. The concentrations of two major rock-forming elements (Mg and Al), which were derived from the Apollo 15 orbital geochemical measurements, were used in this study. Mapped units and deposits associated with craters in the northwestern part of the region tend to have correlated low Mg and Al concentrations, indicating the presence of Potassium (K)-Rare Earth Elements (REE)-Phosphorus (P) (KREEP)-enriched basalt. Found along the northeastern rim of Tranquillitatis were areas with correlated high Mg and Al concentration, indicating the presence of troctolite. Distinctive west/east and north/south trends were observed in the concentrations of Mg and Al, and, by implication, in the distribution of major rock components on the surface. Evidence for a systematic geochemical transition in highland or basin-forming units may be observed here in the form of distinctive differences in chemistry in otherwise similar units in the western and eastern portions of the study region.

  1. Grid point extraction and coding for structured light system

    NASA Astrophysics Data System (ADS)

    Song, Zhan; Chung, Ronald

    2011-09-01

    A structured light system simplifies three-dimensional reconstruction by illuminating a specially designed pattern to the target object, thereby generating a distinct texture on it for imaging and further processing. Success of the system hinges upon what features are to be coded in the projected pattern, extracted in the captured image, and matched between the projector's display panel and the camera's image plane. The codes have to be such that they are largely preserved in the image data upon illumination from the projector, reflection from the target object, and projective distortion in the imaging process. The features also need to be reliably extracted in the image domain. In this article, a two-dimensional pseudorandom pattern consisting of rhombic color elements is proposed, and the grid points between the pattern elements are chosen as the feature points. We describe how a type classification of the grid points plus the pseudorandomness of the projected pattern can equip each grid point with a unique label that is preserved in the captured image. We also present a grid point detector that extracts the grid points without the need of segmenting the pattern elements, and that localizes the grid points in subpixel accuracy. Extensive experiments are presented to illustrate that, with the proposed pattern feature definition and feature detector, more features points in higher accuracy can be reconstructed in comparison with the existing pseudorandomly encoded structured light systems.

  2. System and method for authentication of goods

    DOEpatents

    Kaish, Norman; Fraser, Jay; Durst, David I.

    1999-01-01

    An authentication system comprising a medium having a plurality of elements, the elements being distinctive, detectable and disposed in an irregular pattern or having an intrinsic irregularity. Each element is characterized by a determinable attribute distinct from a two-dimensional coordinate representation of simple optical absorption or simple optical reflection intensity. An attribute and position of the plurality of elements, with respect to a positional reference is detected. A processor generates an encrypted message including at least a portion of the attribute and position of the plurality of elements. The encrypted message is recorded in physical association with the medium. The elements are preferably dichroic fibers, and the attribute is preferably a polarization or dichroic axis, which may vary over the length of a fiber. An authentication of the medium based on the encrypted message may be authenticated with a statistical tolerance, based on a vector mapping of the elements of the medium, without requiring a complete image of the medium and elements to be recorded.

  3. Integrative structure and functional anatomy of a nuclear pore complex

    NASA Astrophysics Data System (ADS)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  4. Integrative structure and functional anatomy of a nuclear pore complex.

    PubMed

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  5. Atomic structure of the Y complex of the nuclear pore

    DOE PAGES

    Kelley, Kotaro; Knockenhauer, Kevin E.; Kabachinski, Greg; ...

    2015-03-30

    The nuclear pore complex (NPC) is the principal gateway for transport into and out of the nucleus. Selectivity is achieved through the hydrogel-like core of the NPC. The structural integrity of the NPC depends on ~15 architectural proteins, which are organized in distinct subcomplexes to form the >40-MDa ring-like structure. In this paper, we present the 4.1-Å crystal structure of a heterotetrameric core element ('hub') of the Y complex, the essential NPC building block, from Myceliophthora thermophila. Using the hub structure together with known Y-complex fragments, we built the entire ~0.5-MDa Y complex. Our data reveal that the conserved coremore » of the Y complex has six rather than seven members. Finally, evolutionarily distant Y-complex assemblies share a conserved core that is very similar in shape and dimension, thus suggesting that there are closely related architectural codes for constructing the NPC in all eukaryotes.« less

  6. Unraveling Appalachian tectonics: domain analysis of topographic lineaments in Pennsylvania

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Schon, K.; Nussbaum, G. W.; Storer, N. D.; McGuire, J. L.; Hardcastle, K.

    2016-12-01

    Litho-tectonic provinces provide different components of a regions' tectonic history, and are identified as spatial entities with common structural elements, or a number of contiguous related elements. The province boundaries are easily identified when geomorphic expressions are distinct, or significant rock exposure allows for little uncertainty. When exposures are limited, locations of boundaries between provinces are uncertain. In such instances, satellite imagery can be quite advantageous, as tectonically sourced features (faults, folds, fractures, and joints) may exert a strong control on topographic patterns by creating pathways for weathering and erosion. Lineament analyses of topography often focus on well-pronounced tectonic features to interpret regional tectonics. We suggest that lineament analyses including all topographic features may include more subtle tectonic features, resulting in the identification of minor heterogeneities within litho-tectonic provinces. Our study focuses on Appalachian tectonics, specifically in Pennsylvania (PA), home to the Appalachian Orocline and 5 distinct tectonic provinces. Using hillshades from a digital elevation model (DEM) of PA, we manually pick all topographic lineaments 1 km or greater, discriminating only against man-made structures. The final lineament coverage of the state is subdivided into smaller areas for which rose diagrams were prepared. The dominant lineament trends were compared and associated with known structural features. Peaks with no known source are marked as possible tectonic features requiring further research. A domain analysis is performed on the lineament data to identify the extent and interplay of swarms, followed by an investigation of their azimuthal compatibility. We present the results of our domain analysis of all topographic lineaments in the context of identifying litho-tectonic provinces associated with Appalachian tectonics in Pennsylvania, and possible heterogeneities within them.

  7. Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes

    USGS Publications Warehouse

    Dymond, J.; Lyle, M.; Finney, B.; Piper, D.Z.; Murphy, K.; Conard, R.; Pisias, N.

    1984-01-01

    The chemical composition of ferromanganese nodules from the three nodule-bearing MANOP sites in the Pacific can be accounted for in a qualitative way by variable contributions of distinct accretionary processes. These accretionary modes are: 1. (1) hydrogenous, i.e., direct precipitation or accumulation of colloidal metal oxides in seawater, 2. (2) oxic diagenesis which refers to a variety of ferromanganese accretion processes occurring in oxic sediments; and 3. (3) suboxic diagenesis which results from reduction of Mn+4 by oxidation of organic matter in the sediments. Geochemical evidence suggests processes (1) and (2) occur at all three MANOP nodule-bearing sites, and process (3) occurs only at the hemipelagic site, H, which underlies the relatively productive waters of the eastern tropical Pacific. A normative model quantitatively accounts for the variability observed in nearly all elements. Zn and Na, however, are not well explained by the three end-member model, and we suggest that an additional accretionary process results in greater variability in the abundances of these elements. Variable contributions from the three accretionary processes result in distinct top-bottom compositional differences at the three sites. Nodule tops from H are enriched in Ni, Cu, and Zn, instead of the more typical enrichments of these elements in nodule bottoms. In addition, elemental correlations typical of most pelagic nodules are reversed at site H. The three accretionary processes result in distinct mineralogies. Hydrogenous precipitation produces ??MnO2. Oxic diagenesis, however, produces Cu-Ni-rich todorokite, and suboxic diagenesis results in an unstable todorokite which transforms to a 7 A?? phase ("birnessite") upon dehydration. The presence of Cu and Ni as charge-balancing cations influence the stability of the todorokite structure. In the bottoms of H nodules, which accrete dominantly by suboxic diagenesis, Na+ and possibly Mn+2 provide much of the charge balance for the todorokite structure. Limited growth rate data for H nodules suggest suboxic accretion is the fastest of the three processes, with rates at least 200 mm/106 yr. Oxic accretion is probably 10 times slower and hydrogenous 100 times slower. Since these rates predict more suboxic component in bulk nodules than is calculated by the normative analysis, we propose that suboxic accretion is a non-steady-state process. Variations in surface water productivity cause pulses of particulate flux to the sea floor which result in transient Mn reduction in the surface sediments and reprecipitation on nodule surfaces. ?? 1984.

  8. Ferromanganese nodules from MANOP Sites H, S, and R - Control of mineralogical and chemical composition by multiple accretionary processes

    NASA Astrophysics Data System (ADS)

    Dymond, Jack; Lyle, Mitchell; Finney, Bruce; Piper, David Z.; Murphy, Kim; Conard, Roberta; Pisias, Nicklas

    1984-05-01

    The chemical composition of ferromanganese nodules from the three nodule-bearing MANOP sites in the Pacific can be accounted for in a qualitative way by variable contributions of distinct accretionary processes. These accretionary modes are: (1) hydrogenous, i.e., direct precipitation or accumulation of colloidal metal oxides in seawater, (2) oxic diagenesis which refers to a variety of ferromanganese accretion processes occurring in oxic sediments; and (3) suboxic diagenesis which results from reduction of Mn +4 by oxidation of organic matter in the sediments. Geochemical evidence suggests processes (1) and (2) occur at all three MANOP nodule-bearing sites, and process (3) occurs only at the hemipelagic site, H, which underlies the relatively productive waters of the eastern tropical Pacific. A normative model quantitatively accounts for the variability observed in nearly all elements. Zn and Na, however, are not well explained by the three end-member model, and we suggest that an additional accretionary process results in greater variability in the abundances of these elements. Variable contributions from the three accretionary processes result in distinct top-bottom compositional differences at the three sites. Nodule tops from H are enriched in Ni, Cu, and Zn, instead of the more typical enrichments of these elements in nodule bottoms. In addition, elemental correlations typical of most pelagic nodules are reversed at site H. The three accretionary processes result in distinct mineralogies. Hydrogenous precipitation produces δMnO 2. Oxic diagenesis, however, produces Cu-Ni-rich todorokite, and suboxic diagenesis results in an unstable todorokite which transforms to a 7 Å phase ("birnessite") upon dehydration. The presence of Cu and Ni as charge-balancing cations influence the stability of the todorokite structure. In the bottoms of H nodules, which accrete dominantly by suboxic diagenesis, Na + and possibly Mn +2 provide much of the charge balance for the todorokite structure. Limited growth rate data for H nodules suggest suboxic accretion is the fastest of the three processes, with rates at least 200 mm/10 6 yr. Oxic accretion is probably 10 times slower and hydrogenous 100 times slower. Since these rates predict more suboxic component in bulk nodules than is calculated by the normative analysis, we propose that suboxic accretion is a non-steady-state process. Variations in surface water productivity cause pulses of particulate flux to the sea floor which result in transient Mn reduction in the surface sediments and reprecipitation on nodule surfaces.

  9. The chemistry of gold as an anion.

    PubMed

    Jansen, Martin

    2008-09-01

    Due to relativistic and classical shell structure effects, the 6s orbital of gold is significantly contracted and energetically stabilized. This is reflected by a strikingly high electron affinity, and a distinct tendency to adopt negatively polarized valence states. This tutorial review focuses on the chemistry of gold as an anion, displaying the integral ionic charge number of 1-. Two synthetic approaches to compounds containing monoatomic gold anions have become available: (1) reacting elemental gold with molten caesium and an oxide, e.g. Cs2O; (2) metathesis reactions involving Au- dissolved in liquid ammonia. Both procedures have proven to be rather versatile. Aurides synthesized along these routes are surveyed, in particular with respect to their structures and bonding properties.

  10. ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide

    NASA Technical Reports Server (NTRS)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.

  11. Juvenile zebra finches learn the underlying structural regularities of their fathers’ song

    PubMed Central

    Menyhart, Otília; Kolodny, Oren; Goldstein, Michael H.; DeVoogd, Timothy J.; Edelman, Shimon

    2015-01-01

    Natural behaviors, such as foraging, tool use, social interaction, birdsong, and language, exhibit branching sequential structure. Such structure should be learnable if it can be inferred from the statistics of early experience. We report that juvenile zebra finches learn such sequential structure in song. Song learning in finches has been extensively studied, and it is generally believed that young males acquire song by imitating tutors (Zann, 1996). Variability in the order of elements in an individual’s mature song occurs, but the degree to which variation in a zebra finch’s song follows statistical regularities has not been quantified, as it has typically been dismissed as production error (Sturdy et al., 1999). Allowing for the possibility that such variation in song is non-random and learnable, we applied a novel analytical approach, based on graph-structured finite-state grammars, to each individual’s full corpus of renditions of songs. This method does not assume syllable-level correspondence between individuals. We find that song variation can be described by probabilistic finite-state graph grammars that are individually distinct, and that the graphs of juveniles are more similar to those of their fathers than to those of other adult males. This grammatical learning is a new parallel between birdsong and language. Our method can be applied across species and contexts to analyze complex variable learned behaviors, as distinct as foraging, tool use, and language. PMID:26005428

  12. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure

    PubMed Central

    Suddala, Krishna C.; Rinaldi, Arlie J.; Feng, Jun; Mustoe, Anthony M.; Eichhorn, Catherine D.; Liberman, Joseph A.; Wedekind, Joseph E.; Al-Hashimi, Hashim M.; Brooks, Charles L.; Walter, Nils G.

    2013-01-01

    Riboswitches are structural elements in the 5′ untranslated regions of many bacterial messenger RNAs that regulate gene expression in response to changing metabolite concentrations by inhibition of either transcription or translation initiation. The preQ1 (7-aminomethyl-7-deazaguanine) riboswitch family comprises some of the smallest metabolite sensing RNAs found in nature. Once ligand-bound, the transcriptional Bacillus subtilis and translational Thermoanaerobacter tengcongensis preQ1 riboswitch aptamers are structurally similar RNA pseudoknots; yet, prior structural studies have characterized their ligand-free conformations as largely unfolded and folded, respectively. In contrast, through single molecule observation, we now show that, at near-physiological Mg2+ concentration and pH, both ligand-free aptamers adopt similar pre-folded state ensembles that differ in their ligand-mediated folding. Structure-based Gō-model simulations of the two aptamers suggest that the ligand binds late (Bacillus subtilis) and early (Thermoanaerobacter tengcongensis) relative to pseudoknot folding, leading to the proposal that the principal distinction between the two riboswitches lies in their relative tendencies to fold via mechanisms of conformational selection and induced fit, respectively. These mechanistic insights are put to the test by rationally designing a single nucleotide swap distal from the ligand binding pocket that we find to predictably control the aptamers′ pre-folded states and their ligand binding affinities. PMID:24003028

  13. Evidence for holistic episodic recollection via hippocampal pattern completion.

    PubMed

    Horner, Aidan J; Bisby, James A; Bush, Daniel; Lin, Wen-Jing; Burgess, Neil

    2015-07-02

    Recollection is thought to be the hallmark of episodic memory. Here we provide evidence that the hippocampus binds together the diverse elements forming an event, allowing holistic recollection via pattern completion of all elements. Participants learn complex 'events' from multiple overlapping pairs of elements, and are tested on all pairwise associations. At encoding, element 'types' (locations, people and objects/animals) produce activation in distinct neocortical regions, while hippocampal activity predicts memory performance for all within-event pairs. When retrieving a pairwise association, neocortical activity corresponding to all event elements is reinstated, including those incidental to the task. Participant's degree of incidental reinstatement correlates with their hippocampal activity. Our results suggest that event elements, represented in distinct neocortical regions, are bound into coherent 'event engrams' in the hippocampus that enable episodic recollection--the re-experiencing or holistic retrieval of all aspects of an event--via a process of hippocampal pattern completion and neocortical reinstatement.

  14. GCD TechPort Data Sheets Thermal Protection System Materials (TPSM) Project

    NASA Technical Reports Server (NTRS)

    Chinnapongse, Ronald L.

    2014-01-01

    The Thermal Protection System Materials (TPSM) Project consists of three distinct project elements: the 3-Dimensional Multifunctional Ablative Thermal Protection System (3D MAT) project element; the Conformal Ablative Thermal Protection System (CA-TPS) project element; and the Heatshield for Extreme Entry Environment Technology (HEEET) project element. 3D MAT seeks to design, develop and deliver a game changing material solution based on 3-dimensional weaving and resin infusion approach for manufacturing a material that can function as a robust structure as well as a thermal protection system. CA-TPS seeks to develop and deliver a conformal ablative material designed to be efficient and capable of withstanding peak heat flux up to 500 W/ sq cm, peak pressure up to 0.4 atm, and shear up to 500 Pa. HEEET is developing a new ablative TPS that takes advantage of state-of-the-art 3D weaving technologies and traditional manufacturing processes to infuse woven preforms with a resin, machine them to shape, and assemble them as a tiled solution on the entry vehicle substructure or heatshield.

  15. Node-controlled allocation of mineral elements in Poaceae.

    PubMed

    Yamaji, Naoki; Ma, Jian Feng

    2017-10-01

    Mineral elements taken up by the roots will be delivered to different organs and tissues depending on their requirements. In Poaceae, this selective distribution is mainly mediated in the nodes, which have highly developed and fully organized vascular systems. Inter-vascular transfer of mineral elements from enlarged vascular bundles to diffuse vascular bundles is required for their preferential distribution to developing tissues and reproductive organs. A number of transporters involved in this inter-vascular transfer processes have been identified mainly in rice. They are localized at the different cell layers and form an efficient machinery within the node. Furthermore, some these transporters show rapid response to the environmental changes of mineral elements at the protein level. In addition to the node-based transporters, distinct nodal structures including enlarged xylem area, folded plasma membrane of xylem transfer cells and presence of an apoplastic barrier are also required for the efficient inter-vascular transfer. Manipulation of node-based transporters will provide a novel breeding target to improve nutrient use efficiency, productivity, nutritional value and safety in cereal crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Autoshaping with common and distinctive stimulus elements, compact and dispersed arrays.

    PubMed

    Sperling, S E; Perkins, M E

    1979-05-01

    Four groups of pigeons were trained with a standard autoshaping procedure in which a brief fixed-duration interval always followed by a grain delivery alternated with a longer variable-duration interval never associated with grain delivery. One of two stimuli was always presented during each interval. One of them contained three black dots and a black star on a green background; the other contained four black dots on a green background. The four elements of each stimulus were arranged in a more compact array for two groups and in a more dispersed array for the other two groups. Which of the two stimuli preceded grain delivery was counterbalanced within each pair of groups. The speed of occurrence of the first autoshaped peck was not affected by whether the stimulus containing the distinctive star element preceded grain delivery, but autoshaping was faster when the stimulus arrays were compact than when they were dispersed. During 560 response-independent training trials that followed the first autoshaped peck, this pattern reversed; both discriminative control over responding and the relative frequency of pecking the stimulus that preceded grain delivery were greater for the two groups where this stimulus contained the discriminative element than for the two groups where it contained only common elements. During subsequent testing with stimuli containing only a single element each, the distinctive feature was responded to proportionately more often by the two groups for which it had been an element of the stimulus preceding grain delivery than by the two groups for which it had been an element of the stimulus complex that never was associated with grain delivery. These data add further support to the hypothesis that the initial occurrence of autoshaped responding and its subsequent maintenance are not affected by the same variables. They also suggest that automaintenance is as sensitive as response-dependent training to the presence or absence of a distinctive stimulus element among several common elements and that this sensitivity appears to be independent of the specific method used for presenting the stimuli during automaintenance.

  17. Autoshaping with common and distinctive stimulus elements, compact and dispersed arrays1

    PubMed Central

    Sperling, Sally E.; Perkins, Mark E.

    1979-01-01

    Four groups of pigeons were trained with a standard autoshaping procedure in which a brief fixed-duration interval always followed by a grain delivery alternated with a longer variable-duration interval never associated with grain delivery. One of two stimuli was always presented during each interval. One of them contained three black dots and a black star on a green background; the other contained four black dots on a green background. The four elements of each stimulus were arranged in a more compact array for two groups and in a more dispersed array for the other two groups. Which of the two stimuli preceded grain delivery was counterbalanced within each pair of groups. The speed of occurrence of the first autoshaped peck was not affected by whether the stimulus containing the distinctive star element preceded grain delivery, but autoshaping was faster when the stimulus arrays were compact than when they were dispersed. During 560 response-independent training trials that followed the first autoshaped peck, this pattern reversed; both discriminative control over responding and the relative frequency of pecking the stimulus that preceded grain delivery were greater for the two groups where this stimulus contained the discriminative element than for the two groups where it contained only common elements. During subsequent testing with stimuli containing only a single element each, the distinctive feature was responded to proportionately more often by the two groups for which it had been an element of the stimulus preceding grain delivery than by the two groups for which it had been an element of the stimulus complex that never was associated with grain delivery. These data add further support to the hypothesis that the initial occurrence of autoshaped responding and its subsequent maintenance are not affected by the same variables. They also suggest that automaintenance is as sensitive as response-dependent training to the presence or absence of a distinctive stimulus element among several common elements and that this sensitivity appears to be independent of the specific method used for presenting the stimuli during automaintenance. PMID:16812139

  18. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  19. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  20. Organization of the ER–Golgi interface for membrane traffic control

    PubMed Central

    Brandizzi, Federica; Barlowe, Charles

    2014-01-01

    Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER–Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER–Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway. PMID:23698585

  1. 7SK-BAF axis controls pervasive transcription at enhancers

    PubMed Central

    Flynn, Ryan A.; Do, Brian T.; Rubin, Adam J.; Calo, Eliezer; Lee, Byron; Kuchelmeister, Hannes; Rale, Michael; Chu, Ci; Kool, Eric T.; Wysocka, Joanna; Khavari, Paul A.

    2016-01-01

    RNA functions at enhancers remain mysterious. Here we show that the 7SK small nuclear RNA (snRNA) inhibits enhancer transcription by modulating nucleosome position. 7SK occupies enhancers and super enhancers genome-wide in mouse and human cells, and 7SK is required to limit eRNA initiation and synthesis in a manner distinct from promoter pausing. Clustered elements at super enhancers uniquely require 7SK to prevent convergent transcription and DNA damage signaling. 7SK physically interacts with the BAF chromatin remodeling complex, recruit BAF to enhancers, and inhibits enhancer transcription by modulating chromatin structure. In turn, 7SK occupancy at enhancers coincides with Brd4 and is exquisitely sensitive to the bromodomain inhibitor JQ1. Thus, 7SK employs distinct mechanisms to counteract diverse consequences of pervasive transcription that distinguish super enhancers, enhancers, and promoters. PMID:26878240

  2. Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load

    ERIC Educational Resources Information Center

    Sweller, John

    2010-01-01

    In cognitive load theory, element interactivity has been used as the basic, defining mechanism of intrinsic cognitive load for many years. In this article, it is suggested that element interactivity underlies extraneous cognitive load as well. By defining extraneous cognitive load in terms of element interactivity, a distinct relation between…

  3. Whole body-element composition of Atlantic salmon Salmo salar influenced by migration direction and life stage in three distinct populations.

    PubMed

    Ebel, J D; Leroux, S J; Robertson, M J; Dempson, J B

    2016-11-01

    Body-element content was measured for three life stages of wild Atlantic salmon Salmo salar from three distinct Newfoundland populations as individuals crossed between freshwater and marine ecosystems. Life stage explained most of the variation in observed body-element concentration whereas river of capture explained very little variation. Element composition of downstream migrating post-spawn adults (i.e. kelts) and juvenile smolts were similar and the composition of these two life stages strongly differed from adults migrating upstream to spawn. Low variation within life stages and across populations suggests that S. salar may exert rheostatic control of their body-element composition. Additionally, observed differences in trace element concentration between adults and other life stages were probably driven by the high carbon concentration in adults because abundant elements, such as carbon, can strongly influence the observed concentrations of less abundant elements. Thus, understanding variation among individuals in trace elements composition requires the measurement of more abundant elements. Changes in element concentration with ontogeny have important consequences the role of fishes in ecosystem nutrient cycling and should receive further attention. © 2016 The Fisheries Society of the British Isles.

  4. Spin Vortex Resonance in Non-planar Ferromagnetic Dots

    DOE PAGES

    Ding, Junjia; Lapa, Pavel; Jain, Shikha; ...

    2016-05-04

    In planar structures, the vortex resonance frequency changes little as a function of an in-plane magnetic field as long as the vortex state persists. Altering the topography of the element leads to a vastly different dynamic response that arises due to the local vortex core confinement effect. In this work, we studied the magnetic excitations in non-planar ferromagnetic dots using a broadband microwave spectroscopy technique. Two distinct regimes of vortex gyration were detected depending on the vortex core position. The experimental results are in qualitative agreement with micromagnetic simulations.

  5. Optical absorption of zigzag single walled boron nitride nanotubes in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2013-11-01

    We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic-semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n-2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.

  6. A novel partitioning method for block-structured adaptive meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtainmore » the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.« less

  7. A novel partitioning method for block-structured adaptive meshes

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  8. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    PubMed

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  9. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors

    PubMed Central

    Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter

    2010-01-01

    The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028

  10. Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Portugal).

    PubMed

    Cabrita, Maria Teresa

    2014-08-01

    This work reports changes in suspended particulate matter, turbidity, dissolved Cr, Ni, Cu, Cd, Hg and Pb concentrations, and phytoplankton biomass and composition during a 5-month period dredging operation, in a trace element contaminated area of the Tagus estuary (Portugal). Phytoplankton biomass, diatom:other groups ratio, benthic:pelagic diatom ratio, Margalef's, Simpson's diversity, Shannon-Wiever's, and Warwick and Clarke's taxonomic diversity and distinctness indices, and individual taxa were investigated as indicators of dredging induced changes. Significant rise in sediment resuspension and trace element mobilisation caused by dredging influenced the community structure but not the overall biomass. Benthic diatom displacement into the water column maintained species diversity, and therefore, none of the indices highlighted community changes. Contrastingly, diatom:other groups ratio and benthic:pelagic diatom ratio were reliable indicators for the assessment of dredging induced changes. A shift in composition towards species less susceptible to trace elements was observed, disclosing some individual taxa as potential indicators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Prony series spectra of structural relaxation in N-BK7 for finite element modeling.

    PubMed

    Koontz, Erick; Blouin, Vincent; Wachtel, Peter; Musgraves, J David; Richardson, Kathleen

    2012-12-20

    Structural relaxation behavior of N-BK7 glass was characterized at temperatures 20 °C above and below T(12) for this glass, using a thermo mechanical analyzer (TMA). T(12) is a characteristic temperature corresponding to a viscosity of 10(12) Pa·s. The glass was subject to quick temperature down-jumps preceded and followed by long isothermal holds. The exponential-like decay of the sample height was recorded and fitted using a unique Prony series method. The result of his method was a plot of the fit parameters revealing the presence of four distinct peaks or distributions of relaxation times. The number of relaxation times decreased as final test temperature was increased. The relaxation times did not shift significantly with changing temperature; however, the Prony weight terms varied essentially linearly with temperature. It was also found that the structural relaxation behavior of the glass trended toward single exponential behavior at temperatures above the testing range. The result of the analysis was a temperature-dependent Prony series model that can be used in finite element modeling of glass behavior in processes such as precision glass molding (PGM).

  12. Artificial engineering of secondary lymphoid organs.

    PubMed

    Tan, Jonathan K H; Watanabe, Takeshi

    2010-01-01

    Secondary lymphoid organs such as spleen and lymph nodes are highly organized immune structures essential for the initiation of immune responses. They display distinct B cell and T cell compartments associated with specific stromal follicular dendritic cells and fibroblastic reticular cells, respectively. Interweaved through the parenchyma is a conduit system that distributes small antigens and chemokines directly to B and T cell zones. While most structural aspects between lymph nodes and spleen are common, the entry of lymphocytes, antigen-presenting cells, and antigen into lymphoid tissues is regulated differently, reflecting the specialized functions of each organ in filtering either lymph or blood. The overall organization of lymphoid tissue is vital for effective antigen screening and recognition, and is a feature which artificially constructed lymphoid organoids endeavor to replicate. Synthesis of artificial lymphoid tissues is an emerging field that aims to provide therapeutic application for the treatment of severe infection, cancer, and age-related involution of secondary lymphoid tissues. The development of murine artificial lymphoid tissues has benefited greatly from an understanding of organogenesis of lymphoid organs, which has delineated cellular and molecular elements essential for the recruitment and organization of lymphocytes into lymphoid structures. Here, the field of artificial lymphoid tissue engineering is considered including elements of lymphoid structure and development relevant to organoid synthesis. (c) 2010 Elsevier Inc. All rights reserved.

  13. RNA Polymerase III promoter screen uncovers a novel noncoding RNA family conserved in Caenorhabditis and other clade V nematodes.

    PubMed

    Gruber, Andreas R

    2014-07-10

    RNA Polymerase III is a highly specialized enzyme complex responsible for the transcription of a very distinct set of housekeeping noncoding RNAs including tRNAs, 7SK snRNA, Y RNAs, U6 snRNA, and the RNA components of RNaseP and RNaseMRP. In this work we have utilized the conserved promoter structure of known RNA Polymerase III transcripts consisting of characteristic sequence elements termed proximal sequence elements (PSE) A and B and a TATA-box to uncover a novel RNA Polymerase III-transcribed, noncoding RNA family found to be conserved in Caenorhabditis as well as other clade V nematode species. Homology search in combination with detailed sequence and secondary structure analysis revealed that members of this novel ncRNA family evolve rapidly, and only maintain a potentially functional small stem structure that links the 5' end to the very 3' end of the transcript and a small hairpin structure at the 3' end. This is most likely required for efficient transcription termination. In addition, our study revealed evidence that canonical C/D box snoRNAs are also transcribed from a PSE A-PSE B-TATA-box promoter in Caenorhabditis elegans. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways.

    PubMed Central

    Argüello-Astorga, G R; Herrera-Estrella, L R

    1996-01-01

    Regulation of plant gene transcription by light is mediated by multipartite cis-regulatory units. Previous attempts to identify structural features that are common to all light-responsive elements (LREs) have been unsuccessful. To address the question of what is needed to confer photoresponsiveness to a promoter, the upstream sequences from more than 110 light-regulated plant genes were analyzed by a new, phylogenetic-structural method. As a result, 30 distinct conserved DNA module arrays (CMAs) associated with light-responsive promoter regions were identified. Several of these CMAs have remained invariant throughout the evolutionary radiation of angiosperms and are conserved between homologous genes as well as between members of different gene families. The identified CMAs share a gene superfamily-specific core that correlates with the particular phytochrome-dependent transduction pathway that controls their expression, i.e. ACCTA(A/C)C(A/C) for the cGMP-dependent phenylpropanoid metabolism-associated genes, and GATA(A/T)GR for the Ca2+/calmodulin-dependent photosynthesis-associated nuclear genes. In addition to suggesting a general model for the functional and structural organization of LREs, the data obtained in this study indicate that angiosperm LREs probably evolved from complex cis-acting elements involved in regulatory processes other than photoregulation in gymnosperms. PMID:8938415

  15. An unconventional family 1 uracil DNA glycosylase in Nitratifractor salsuginis.

    PubMed

    Li, Jing; Chen, Ran; Yang, Ye; Zhang, Zhemin; Fang, Guang-Chen; Xie, Wei; Cao, Weiguo

    2017-12-01

    The uracil DNA glycosylase superfamily consists of at least six families with a diverse specificity toward DNA base damage. Family 1 uracil N-glycosylase (UNG) exhibits exclusive specificity on uracil-containing DNA. Here, we report a family 1 UNG homolog from Nitratifractor salsuginis with distinct biochemical features that differentiate it from conventional family 1 UNGs. Globally, the crystal structure of N. salsuginisUNG shows a few additional secondary structural elements. Biochemical and enzyme kinetic analysis, coupled with structural determination, molecular modeling, and molecular dynamics simulations, shows that N. salsuginisUNG contains a salt bridge network that plays an important role in DNA backbone interactions. Disruption of the amino acid residues involved in the salt bridges greatly impedes the enzymatic activity. A tyrosine residue in motif 1 (GQDPY) is one of the distinct sequence features setting family 1 UNG apart from other families. The crystal structure of Y81G mutant indicates that several subtle changes may account for its inactivity. Unlike the conventional family 1 UNG enzymes, N. salsuginisUNG is not inhibited by Ugi, a potent inhibitor specific for family 1 UNG. This study underscores the diversity of paths that a uracil DNA glycosylase may take to acquire its unique structural and biochemical properties during evolution. Structure data are available in the PDB under accession numbers 5X3G and 5X3H. © 2017 Federation of European Biochemical Societies.

  16. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less

  17. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    DOE PAGES

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; ...

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less

  18. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  19. Modeling patient safety incidents knowledge with the Categorial Structure method.

    PubMed

    Souvignet, Julien; Bousquet, Cédric; Lewalle, Pierre; Trombert-Paviot, Béatrice; Rodrigues, Jean Marie

    2011-01-01

    Following the WHO initiative named World Alliance for Patient Safety (PS) launched in 2004 a conceptual framework developed by PS national reporting experts has summarized the knowledge available. As a second step, the Department of Public Health of the University of Saint Etienne team elaborated a Categorial Structure (a semi formal structure not related to an upper level ontology) identifying the elements of the semantic structure underpinning the broad concepts contained in the framework for patient safety. This knowledge engineering method has been developed to enable modeling patient safety information as a prerequisite for subsequent full ontology development. The present article describes the semantic dissection of the concepts, the elicitation of the ontology requirements and the domain constraints of the conceptual framework. This ontology includes 134 concepts and 25 distinct relations and will serve as basis for an Information Model for Patient Safety.

  20. A proposed method for enhanced eigen-pair extraction using finite element methods: Theory and application

    NASA Technical Reports Server (NTRS)

    Jara-Almonte, J.; Mitchell, L. D.

    1988-01-01

    The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.

  1. Extensive length variation in the ribosomal DNA intergenic spacer of yellow perch (Perca flavescens).

    PubMed

    Kakou, Bidénam; Angers, Bernard; Glémet, Hélène

    2016-03-01

    The intergenic spacer (IGS) is located between ribosomal RNA (rRNA) gene copies. Within the IGS, regulatory elements for rRNA gene transcription are found, as well as a varying number of other repetitive elements that are at the root of IGS length heterogeneity. This heterogeneity has been shown to have a functional significance through its effect on growth rate. Here, we present the structural organization of yellow perch (Perca flavescens) IGS based on its entire sequence, as well as the IGS length variation within a natural population. Yellow perch IGS structure has four discrete regions containing tandem repeat elements. For three of these regions, no specific length class was detected as allele size was seemingly normally distributed. However, for one repeat region, PCR amplification uncovered the presence of two distinctive IGS variants representing a length difference of 1116 bp. This repeat region was also devoid of any CpG sites despite a high GC content. Balanced selection may be holding the alleles in the population and would account for the high diversity of length variants observed for adjacent regions. Our study is an important precursor for further work aiming to assess the role of IGS length variation in influencing growth rate in fish.

  2. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    PubMed Central

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Eileen Tan, M. H.; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    G protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signaling to numerous G protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly, in which rhodopsin uses distinct structural elements, including TM7 and Helix 8 to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the N- and C- domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signaling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology. PMID:26200343

  3. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE PAGES

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; ...

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  4. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    PubMed

    Kang, Yanyong; Zhou, X Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Ke, Jiyuan; Tan, M H Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M; Pascal, Bruce D; Van Eps, Ned; Caro, Lydia N; Vishnivetskiy, Sergey A; Lee, Regina J; Suino-Powell, Kelly M; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P; Katritch, Vsevolod; Gurevich, Vsevolod V; Griffin, Patrick R; Hubbell, Wayne L; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2015-07-30

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  5. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  6. Brain Mechanisms Supporting Discrimination of Sensory Features of Pain: A New Model

    PubMed Central

    Oshiro, Yoshitetsu; Quevedo, Alexandre S.; McHaffie, John G.; Kraft, Robert A.; Coghill, Robert C.

    2010-01-01

    Pain can be very intense or only mild, and can be well localized or diffuse. To date, little is known as to how such distinct sensory aspects of noxious stimuli are processed by the human brain. Using functional magnetic resonance imaging and a delayed match-to-sample task, we show that discrimination of pain intensity, a non-spatial aspect of pain, activates a ventrally directed pathway extending bilaterally from the insular cortex to the prefrontal cortex. This activation is distinct from the dorsally-directed activation of the posterior parietal cortex and right dorsolateral prefrontal cortex that occurs during spatial discrimination of pain. Both intensity and spatial discrimination tasks activate highly similar aspects of the anterior cingulate cortex, suggesting that this structure contributes to common elements of the discrimination task such as the monitoring of sensory comparisons and response selection. Taken together, these results provide the foundation for a new model of pain in which bidirectional dorsal and ventral streams preferentially amplify and process distinct sensory features of noxious stimuli according to top-down task demands. PMID:19940188

  7. Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Barca, Donatella; Bohrson, Wendy A.; D'Oriano, Claudia; Giuffrida, Marisa; Nicotra, Eugenio; Pitcher, Bradley W.

    2016-04-01

    Trace element zoning in plagioclase of selected alkaline lavas from the historic (1607-1892 AD) and recent (1983-2013 AD) activity of Mt. Etna volcano has been used to explore the possible role that volcano-tectonics exert on magma transfer dynamics. The observed textural characteristics of crystals include near-equilibrium textures (i.e., oscillatory zoning) and textures with variable extent of disequilibrium (patchy zoning, coarse sieve textures and dissolved cores). Historic crystals exhibit lower K concentrations at lower anorthite contents, a feature in agreement with the general more potassic character of the recent lavas if compared to the historic products. Historic plagioclases have statistically higher Ba and lower Sr concentrations than the recent crystals, which result in different Sr/Ba ratios for the two suites of plagioclase. Variations in the anorthite content along core-to-rim profiles obtained on crystals with different types of textures for both the historic and recent eruptive periods were evaluated particularly versus Sr/Ba. At comparable average An contents, crystals characterized by oscillatory zoning, which are representative of near-equilibrium crystallization from the magma, display distinct Sr/Ba ratios. We suggest that these features are primarily related to recharge of a new, geochemically-distinct magma into the storage and transport system of the volcano. In addition to distinct trace element and textural characteristics of plagioclase, Sr diffusion modeling for plagioclase suggests that residence times are generally shorter for crystals found in recently erupted lavas (25-77 years, average 43 years) compared to those of the historic products (43-163 years, average 99 years). Shorter residences times correlate with gradual increases in eruption volume and eruption frequency rates through time. We attribute these features to an increasing influence, since the 17th century, of extensional tectonic structures within the upper 10 km of the Etnean crust, which have promoted shorter residence times and higher eruption frequency.

  8. Fallon, Nevada FORGE Distinct Element Reservoir Modeling

    DOE Data Explorer

    Blankenship, Doug; Pettitt, Will; Riahi, Azadeh; Hazzard, Jim; Blanksma, Derrick

    2018-03-12

    Archive containing input/output data for distinct element reservoir modeling for Fallon FORGE. Models created using 3DEC, InSite, and in-house Python algorithms (ITASCA). List of archived files follows; please see 'Modeling Metadata.pdf' (included as a resource below) for additional file descriptions. Data sources include regional geochemical model, well positions and geometry, principal stress field, capability for hydraulic fractures, capability for hydro-shearing, reservoir geomechanical model-stimulation into multiple zones, modeled thermal behavior during circulation, and microseismicity.

  9. Silver-cotton nanocomposites: Nano-design of microfibrillar structure causes morphological changes and increased tenacity

    PubMed Central

    Nam, Sunghyun; Condon, Brian D.; Delhom, Christopher D.; Fontenot, Krystal R.

    2016-01-01

    The interactions of nanoparticles with polymer hosts have important implications for directing the macroscopic properties of composite fibers, yet little is known about such interactions with hierarchically ordered natural polymers due to the difficulty of achieving uniform dispersion of nanoparticles within semi-crystalline natural fiber. In this study we have homogeneously dispersed silver nanoparticles throughout an entire volume of cotton fiber. The resulting electrostatic interaction and distinct supramolecular structure of the cotton fiber provided a favorable environment for the controlled formation of nanoparticles (12 ± 3 nm in diameter). With a high surface-to-volume ratio, the extensive interfacial contacts of the nanoparticles efficiently “glued” the structural elements of microfibrils together, producing a unique inorganic-organic hybrid substructure that reinforced the multilayered architecture of the cotton fiber. PMID:27849038

  10. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  11. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Jiqiang; Peterson, Kaitlyn M.; Simonovic, Ivana

    2014-03-12

    Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular ?? with a threonine (Thr) anticodon, MST1 also recognizes an unusual ??, which contains an enlarged anticodon loop and an anticodon triplet that reassigns the CUN codons from leucine to threonine. Our data show that MST1 recognizes the anticodon loop in both tRNAs, but employsmore » distinct recognition mechanisms. The size but not the sequence of the anticodon loop is critical for ?? recognition, whereas the anticodon sequence is essential for aminoacylation of ??. The crystal structure of MST1 reveals that, while lacking the N-terminal editing domain, the enzyme closely resembles the bacterial threonyl-tRNA synthetase (ThrRS). A detailed structural comparison with Escherichia coli ThrRS, which is unable to aminoacylate ??, reveals differences in the anticodon-binding domain that probably allow recognition of the distinct anticodon loops. Finally, our mutational and modeling analyses identify the structural elements in MST1 (e.g., helix {alpha}11) that define tRNA selectivity. Thus, MTS1 exemplifies that a single aaRS can recognize completely divergent anticodon loops of natural isoacceptor tRNAs and that in doing so it facilitates the reassignment of the genetic code in yeast mitochondria.« less

  12. Change of the image of the city in process of using traffic infrastructure

    NASA Astrophysics Data System (ADS)

    Alihodžić, Rifat; Vasiljević Tomić, Dragana; Iablonskii, Leonid

    2017-10-01

    Unique urban image cannot be experienced without moving within its structure. This paper deals with phenomenology considering changes of images of the city and influential factors closely related to it. Infrastructure gives basic structural scheme of every city, so its planning requires a high level proficiency. Some changes in these images can be observed during longer period of time. Sometimes it includes rapid changes of temporal layers, generated by building new urban elements on the exact same place where the old ones existed; while lighter change during the time passing is a regular occurrence. Creating completely new urban frames, caused by expanding the city, represents its dynamical variant. Topography is a significant factor, giving distinctive feature to the urbanity. This paper considers factors identified as generators of the change of the urban image, based on research so far. The structural elements are considered with the utmost attention. The importance of the city landmark, monumental complexes not possessing these features but having the importance in image of the city stability (as well as the inhabitants’ memory) are crucial elements of identifying its picture. Another significant factor is related to individual personal experience. However, there are also certain factors of significance features, but not considered within this paper. One such factor is change in coloring, being the special topic itself. The purpose of this work is to indicate that urban planning requires special attention in order to keep continuous nature of the urban image for the city to preserve its visual identity.

  13. Structure and function of echinoderm telomerase RNA

    PubMed Central

    Podlevsky, Joshua D.; Li, Yang; Chen, Julian J.-L.

    2016-01-01

    Telomerase is a ribonucleoprotein (RNP) enzyme that requires an integral telomerase RNA (TR) subunit, in addition to the catalytic telomerase reverse transcriptase (TERT), for enzymatic function. The secondary structures of TRs from the three major groups of species, ciliates, fungi, and vertebrates, have been studied extensively and demonstrate dramatic diversity. Herein, we report the first comprehensive secondary structure of TR from echinoderms—marine invertebrates closely related to vertebrates—determined by phylogenetic comparative analysis of 16 TR sequences from three separate echinoderm classes. Similar to vertebrate TR, echinoderm TR contains the highly conserved template/pseudoknot and H/ACA domains. However, echinoderm TR lacks the ancestral CR4/5 structural domain found throughout vertebrate and fungal TRs. Instead, echinoderm TR contains a distinct simple helical region, termed eCR4/5, that is functionally equivalent to the CR4/5 domain. The urchin and brittle star eCR4/5 domains bind specifically to their respective TERT proteins and stimulate telomerase activity. Distinct from vertebrate telomerase, the echinoderm TR template/pseudoknot domain with the TERT protein is sufficient to reconstitute significant telomerase activity. This gain-of-function of the echinoderm template/pseudoknot domain for conferring telomerase activity presumably facilitated the rapid structural evolution of the eCR4/5 domain throughout the echinoderm lineage. Additionally, echinoderm TR utilizes the template-adjacent P1.1 helix as a physical template boundary element to prevent nontelomeric DNA synthesis, a mechanism used by ciliate and fungal TRs. Thus, the chimeric and eccentric structural features of echinoderm TR provide unparalleled insights into the rapid evolution of telomerase RNP structure and function. PMID:26598712

  14. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function

    PubMed Central

    Cabeen, Matthew T; Herrmann, Harald; Jacobs-Wagner, Christine

    2011-01-01

    Crescentin is a bacterial filament-forming protein that exhibits domain organization features found in metazoan intermediate filament (IF) proteins. Structure-function studies of eukaryotic IFs have been hindered by a lack of simple genetic systems and easily quantifiable phenotypes. Here we exploit the characteristic localization of the crescentin structure along the inner curvature of Caulobacter crescentus cells and the loss of cell curvature associated with impaired crescentin function to analyze the importance of the domain organization of crescentin. By combining biochemistry and ultrastructural analysis in vitro with cellular localization and functional studies, we show that crescentin requires its distinctive domain organization, and furthermore that different structural elements have distinct structural and functional contributions. The head domain can be functionally subdivided into two subdomains; the first (amino-terminal) is required for function but not assembly, while the second is necessary for structure assembly. The rod domain is similarly required for structure assembly, and the linker L1 appears important to prevent runaway assembly into nonfunctional aggregates. The data also suggest that the stutter and the tail domain have critical functional roles in stabilizing crescentin structures against disassembly by monovalent cations in the cytoplasm. This study suggests that the IF-like behavior of crescentin is a consequence of its domain organization, implying that the IF protein layout is an adaptable cytoskeletal motif, much like the actin and tubulin folds, that is broadly exploited for various functions throughout life from bacteria to humans. © 2011 Wiley-Liss, Inc. PMID:21360832

  15. Distinctive Pattern of Serum Elements During the Progression of Alzheimer’s Disease

    PubMed Central

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer’s disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD. PMID:26957294

  16. Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease.

    PubMed

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-03-09

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer's disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD.

  17. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.

    PubMed

    Herod, Tyler W; Chambers, Neil C; Veres, Samuel P

    2016-09-15

    In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. A novel abundant family of retroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus).

    PubMed

    Churakov, Gennady; Smit, Arian F A; Brosius, Jürgen; Schmitz, Jürgen

    2005-04-01

    About half of the mammalian genome is composed of retroposons. Long interspersed elements (LINEs) and short interspersed elements (SINEs) are the most abundant repetitive elements and account for about 21% and 13% of the human genome, respectively. SINEs have been detected in all major mammalian lineages, except for the South American order Xenarthra, also termed Edentata (armadillos, anteaters, and sloths). Investigating this order, we discovered a novel high-copy-number family of tRNA derived SINEs in the nine-banded armadillo Dasypus novemcinctus, a species that successfully crossed the Central American land bridge to North America in the Pliocene. A specific computer algorithm was developed, and we detected and extracted 687 specific SINEs from databases. Termed DAS-SINEs, we further divided them into six distinct subfamilies. We extracted tRNA(Ala)-derived monomers, two types of dimers, and three subfamilies of chimeric fusion products of a tRNA(Ala) domain and an approximately 180-nt sequence of thus far unidentified origin. Comparisons of secondary structures of the DAS-SINEs' tRNA domains suggest selective pressure to maintain a tRNA-like D-arm structure in the respective founder RNAs, as shown by compensatory mutations. By analysis of subfamily-specific genetic variability, comparison of the proportion of direct repeats, and analysis of self-integrations as well as key events of dimerization and deletions or insertions, we were able to delineate the evolutionary history of the DAS-SINE subfamilies.

  19. Chemical synthesis and structural characterization of small AuZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.

    2007-03-01

    In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.

  20. In cell mutational interference mapping experiment (in cell MIME) identifies the 5' polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging.

    PubMed

    Smyth, Redmond P; Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe; von Kleist, Max; Marquet, Roland

    2018-05-18

    Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.

  1. In cell mutational interference mapping experiment (in cell MIME) identifies the 5′ polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging

    PubMed Central

    Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe

    2018-01-01

    Abstract Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5′ region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5′ PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production. PMID:29514260

  2. Determining distinct circuit in complete graphs using permutation

    NASA Astrophysics Data System (ADS)

    Karim, Sharmila; Ibrahim, Haslinda; Darus, Maizon Mohd

    2017-11-01

    A Half Butterfly Method (HBM) is a method introduced to construct the distinct circuits in complete graphs where used the concept of isomorphism. The Half Butterfly Method was applied in the field of combinatorics such as in listing permutations of n elements. However the method of determining distinct circuit using HBM for n > 4 is become tedious. Thus, in this paper, we present the method of generating distinct circuit using permutation.

  3. Structural and functional features of lysine acetylation of plant and animal tubulins.

    PubMed

    Rayevsky, Alexey V; Sharifi, Mohsen; Samofalova, Dariya A; Karpov, Pavel A; Blume, Yaroslav B

    2017-10-10

    The study of the genome and the proteome of different species and representatives of distinct kingdoms, especially detection of proteome via wide-scaled analyses has various challenges and pitfalls. Attempts to combine all available information together and isolate some common features for determination of the pathway and their mechanism of action generally have a highly complicated nature. However, microtubule (MT) monomers are highly conserved protein structures, and microtubules are structurally conserved from Homo sapiens to Arabidopsis thaliana. The interaction of MT elements with microtubule-associated proteins and post-translational modifiers is fully dependent on protein interfaces, and almost all MT modifications are well described except acetylation. Crystallography and interactome data using different approaches were combined to identify conserved proteins important in acetylation of microtubules. Application of computational methods and comparative analysis of binding modes generated a robust predictive model of acetylation of the ϵ-amino group of Lys40 in α-tubulins. In turn, the model discarded some probable mechanisms of interaction between elements of interest. Reconstruction of unresolved protein structures was carried out with modeling by homology to the existing crystal structure (PDBID: 1Z2B) from B. taurus using Swiss-model server, followed by a molecular dynamics simulation. Docking of the human tubulin fragment with Lys40 into the active site of α-tubulin acetyltransferase, reproduces the binding mode of peptidomimetic from X-ray structure (PDBID: 4PK3). © 2017 International Federation for Cell Biology.

  4. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less

  5. Computational Modeling of Airway and Pulmonary Vascular Structure and Function: Development of a “Lung Physiome”

    PubMed Central

    Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.

    2011-01-01

    Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236

  6. Riboswitches: emerging themes in RNA structure and function.

    PubMed

    Montange, Rebecca K; Batey, Robert T

    2008-01-01

    Riboswitches are RNAs capable of binding cellular metabolites using a diverse array of secondary and tertiary structures to modulate gene expression. The recent determination of the three-dimensional structures of parts of six different riboswitches illuminates common features that allow riboswitches to be grouped into one of two types. Type I riboswitches, as exemplified by the purine riboswitch, are characterized by a single, localized binding pocket supported by a largely pre-established global fold. This arrangement limits ligand-induced conformational changes in the RNA to a small region. In contrast, Type II riboswitches, such as the thiamine pyrophosphate riboswitch, contain binding pockets split into at least two spatially distinct sites. As a result, binding induces both local changes to the binding pocket and global architecture. Similar organizational themes are found in other noncoding RNAs, making it possible to begin to build a hierarchical classification of RNA structure based on the spatial organization of their active sites and associated secondary structural elements.

  7. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemicalmore » nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.« less

  8. LATDYN - PROGRAM FOR SIMULATION OF LARGE ANGLE TRANSIENT DYNAMICS OF FLEXIBLE AND RIGID STRUCTURES

    NASA Technical Reports Server (NTRS)

    Housner, J. M.

    1994-01-01

    LATDYN is a computer code for modeling the Large Angle Transient DYNamics of flexible articulating structures and mechanisms involving joints about which members rotate through large angles. LATDYN extends and brings together some of the aspects of Finite Element Structural Analysis, Multi-Body Dynamics, and Control System Analysis; three disciplines that have been historically separate. It combines significant portions of their distinct capabilities into one single analysis tool. The finite element formulation for flexible bodies in LATDYN extends the conventional finite element formulation by using a convected coordinate system for constructing the equation of motion. LATDYN's formulation allows for large displacements and rotations of finite elements subject to the restriction that deformations within each are small. Also, the finite element approach implemented in LATDYN provides a convergent path for checking solutions simply by increasing mesh density. For rigid bodies and joints LATDYN borrows extensively from methodology used in multi-body dynamics where rigid bodies may be defined and connected together through joints (hinges, ball, universal, sliders, etc.). Joints may be modeled either by constraints or by adding joint degrees of freedom. To eliminate error brought about by the separation of structural analysis and control analysis, LATDYN provides symbolic capabilities for modeling control systems which are integrated with the structural dynamic analysis itself. Its command language contains syntactical structures which perform symbolic operations which are also interfaced directly with the finite element structural model, bypassing the modal approximation. Thus, when the dynamic equations representing the structural model are integrated, the equations representing the control system are integrated along with them as a coupled system. This procedure also has the side benefit of enabling a dramatic simplification of the user interface for modeling control systems. Three FORTRAN computer programs, the LATDYN Program, the Preprocessor, and the Postprocessor, make up the collective LATDYN System. The Preprocessor translates user commands into a form which can be used while the LATDYN program provides the computational core. The Postprocessor allows the user to interactively plot and manage a database of LATDYN transient analysis results. It also includes special facilities for modeling control systems and for programming changes to the model which take place during analysis sequence. The documentation includes a Demonstration Problem Manual for the evaluation and verification of results and a Postprocessor guide. Because the program should be viewed as a byproduct of research on technology development, LATDYN's scope is limited. It does not have a wide library of finite elements, and 3-D Graphics are not available. Nevertheless, it does have a measure of "user friendliness". The LATDYN program was developed over a period of several years and was implemented on a CDC NOS/VE & Convex Unix computer. It is written in FORTRAN 77 and has a virtual memory requirement of 1.46 MB. The program was validated on a DEC MICROVAX operating under VMS 5.2.

  9. [Bacteriophage λ: electrostatic properties of the genome and its elements].

    PubMed

    Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A

    2015-01-01

    Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome.

  10. Speciation in Metal Toxicity and Metal-Based Therapeutics

    PubMed Central

    Templeton, Douglas M.

    2015-01-01

    Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure. PMID:29056656

  11. The population structure of Vibrio cholerae from the Chandigarh Region of Northern India.

    PubMed

    Abd El Ghany, Moataz; Chander, Jagadish; Mutreja, Ankur; Rashid, Mamoon; Hill-Cawthorne, Grant A; Ali, Shahjahan; Naeem, Raeece; Thomson, Nicholas R; Dougan, Gordon; Pain, Arnab

    2014-07-01

    Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century. Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters. The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.

  12. Genomic Organization of the Drosophila Telomere RetrotransposableElements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, J.A.; DeBaryshe, P.G.; Traverse, K.L.

    2006-10-16

    The emerging sequence of the heterochromatic portion of the Drosophila melanogaster genome, with the most recent update of euchromatic sequence, gives the first genome-wide view of the chromosomal distribution of the telomeric retrotransposons, HeT-A, TART, and Tahre. As expected, these elements are entirely excluded from euchromatin, although sequence fragments of HeT-A and TART 3 untranslated regions are found in nontelomeric heterochromatin on the Y chromosome. The proximal ends of HeT-A/TART arrays appear to be a transition zone because only here do other transposable elements mix in the array. The sharp distinction between the distribution of telomeric elements and that ofmore » other transposable elements suggests that chromatin structure is important in telomere element localization. Measurements reported here show (1) D. melanogaster telomeres are very long, in the size range reported for inbred mouse strains (averaging 46 kb per chromosome end in Drosophila stock 2057). As in organisms with telomerase, their length varies depending on genotype. There is also slight under-replication in polytene nuclei. (2) Surprisingly, the relationship between the number of HeT-A and TART elements is not stochastic but is strongly correlated across stocks, supporting the idea that the two elements are interdependent. Although currently assembled portions of the HeT-A/TART arrays are from the most-proximal part of long arrays, {approx}61% of the total HeT-A sequence in these regions consists of intact, potentially active elements with little evidence of sequence decay, making it likely that the content of the telomere arrays turns over more extensively than has been thought.« less

  13. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions.

    PubMed

    Zoldoš, Vlatka; Biruš, Ivan; Muratovic, Edina; Šatovic, Zlatko; Vojta, Aleksandar; Robin, Odile; Pustahija, Fatima; Bogunic, Faruk; Vicic Bockor, Vedrana; Siljak-Yakovlev, Sonja

    2018-01-01

    Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpentine soil. Amplified fragment length polymorphism and methylation-sensitive amplification polymorphism analyses revealed that the three populations did not differentiate genetically, but were clearly separated in three distinct clusters according to DNA methylation profiles. Principal coordinate analysis showed that overall epigenetic variation was closely related to habitat conditions. A new methylation-sensitive amplification polymorphism scoring approach allowed identification of mainly unmethylated (φST = 0.190) and fully CpG methylated (φST = 0.118) subepiloci playing a role in overall population differentiation, in comparison with hemimethylated sites (φST = 0.073). In addition, unusual rDNA repatterning and the presence of B chromosomes bearing 5S rDNA loci were recorded in the population growing on serpentine soil, suggesting dynamic chromosome rearrangements probably linked to global genome demethylation, which might have reactivated some mobile elements. We discuss our results considering our earlier data on morphology and leaf anatomy of several L. bosniacum populations, and suggest a possible role of epigenetics as a key element in population differentiation associated with environmental stress in these particular lily populations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Structuralism, Post-Structuralism, and Neo-Liberalism: Assessing Foucault's Legacy.

    ERIC Educational Resources Information Center

    Olssen, Mark

    2003-01-01

    Traces Foucault's distinctive commitment to "post-structuralism." Argues that under the influence of Nietzsche, Foucault's approach marks a distinct break with structuralism in several crucial aspects. What results is a materialist post-structuralism that is also distinctively different from the post-structuralism of Derrida, Lyotard,…

  15. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning.

    PubMed

    Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R

    2016-09-01

    Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.

  16. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.

    PubMed

    Lu, Yuan; Shen, Gong Xin

    2008-04-01

    Following the identification and confirmation of the substructures of the leading-edge vortex (LEV) system on flapping wings, it is apparent that the actual LEV structures could be more complex than had been estimated in previous investigations. In this experimental study, we reveal for the first time the detailed three-dimensional (3-D) flow structures and evolution of the LEVs on a flapping wing in the hovering condition at high Reynolds number (Re=1624). This was accomplished by utilizing an electromechanical model dragonfly wing flapping in a water tank (mid-stroke angle of attack=60 degrees) and applying phase-lock based multi-slice digital stereoscopic particle image velocimetry (DSPIV) to measure the target flow fields at three typical stroke phases: at 0.125 T (T=stroke period), when the wing was accelerating; at 0.25 T, when the wing had maximum speed; and at 0.375 T, when the wing was decelerating. The result shows that the LEV system is a collection of four vortical elements: one primary vortex and three minor vortices, instead of a single conical or tube-like vortex as reported or hypothesized in previous studies. These vortical elements are highly time-dependent in structure and show distinct ;stay properties' at different spanwise sections. The spanwise flows are also time-dependent, not only in the velocity magnitude but also in direction.

  17. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. G.; Wang, Z.; Wang, W. H., E-mail: whw@iphy.ac.cn

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical andmore » mechanical properties of MGs.« less

  18. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings

    NASA Astrophysics Data System (ADS)

    Weiersbye, I. M.; Straker, C. J.; Przybylowicz, W. J.

    1999-10-01

    A combination of PIXE, proton back-scattering (BS) spectrometry and confocal laser scanning microscopy (CLSM) was used to determine in situ elemental concentrations in arbuscular mycorrhizal (AM) grass roots and AM fungal spores from gold and uranium mine tailings in South Africa. AM regions of roots were characterised by locally elevated P and vesicles were defined by distinctive transition metal and radionuclide distributions. Vesicles (AM structures responsible for nutrient storage), accumulated Mn, Cu, Ni and U, whereas Fe and Zn were present at lower levels than in host tissue. AM spores from mine tailings accumulated Ca, Cr, Fe, Ni, Cu, Br, Y, Th and U, but were deficient in P and K. The sequestration of excess metals and radionuclides in vesicles may limit metal availability, and thus toxicity, to the host.

  19. Evolution of lung breathing from a lungless primitive vertebrate.

    PubMed

    Hoffman, M; Taylor, B E; Harris, M B

    2016-04-01

    Air breathing was critical to the terrestrial radiation and evolution of tetrapods and arose in fish. The vertebrate lung originated from a progenitor structure present in primitive boney fish. The origin of the neural substrates, which are sensitive to metabolically produced CO2 and which rhythmically activate respiratory muscles to match lung ventilation to metabolic demand, is enigmatic. We have found that a distinct periodic centrally generated rhythm, described as "cough" and occurring in lamprey in vivo and in vitro, is modulated by central sensitivity to CO2. This suggests that elements critical for the evolution of breathing in tetrapods, were present in the most basal vertebrate ancestors prior to the evolution of the lung. We propose that the evolution of breathing in all vertebrates occurred through exaptations derived from these critical basal elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290

  1. A new method for computation of eigenvector derivatives with distinct and repeated eigenvalues in structural dynamic analysis

    NASA Astrophysics Data System (ADS)

    Li, Zhengguang; Lai, Siu-Kai; Wu, Baisheng

    2018-07-01

    Determining eigenvector derivatives is a challenging task due to the singularity of the coefficient matrices of the governing equations, especially for those structural dynamic systems with repeated eigenvalues. An effective strategy is proposed to construct a non-singular coefficient matrix, which can be directly used to obtain the eigenvector derivatives with distinct and repeated eigenvalues. This approach also has an advantage that only requires eigenvalues and eigenvectors of interest, without solving the particular solutions of eigenvector derivatives. The Symmetric Quasi-Minimal Residual (SQMR) method is then adopted to solve the governing equations, only the existing factored (shifted) stiffness matrix from an iterative eigensolution such as the subspace iteration method or the Lanczos algorithm is utilized. The present method can deal with both cases of simple and repeated eigenvalues in a unified manner. Three numerical examples are given to illustrate the accuracy and validity of the proposed algorithm. Highly accurate approximations to the eigenvector derivatives are obtained within a few iteration steps, making a significant reduction of the computational effort. This method can be incorporated into a coupled eigensolver/derivative software module. In particular, it is applicable for finite element models with large sparse matrices.

  2. Quality, Social Justice and Accountability--Crucial Determinants of Excellence in Education

    ERIC Educational Resources Information Center

    Rossouw, J. P.

    2015-01-01

    Internationally, the quality of education, social justice and accountability can be regarded as key elements of successful school systems and societies. Separately or jointly, these elements can be analysed and debated as distinct fields of study, and linked to an education system to determine the success thereof. Being a pivotal element of…

  3. Intramolecular triple helix as a model for regular polyribonucleotide (CAA)(n).

    PubMed

    Efimov, Alexander V; Spirin, Alexander S

    2009-10-09

    The regular (CAA)(n) polyribonucleotide, as well as the omega leader sequence containing (CAA)-rich core, have recently been shown to form cooperatively melted and compact structures. In this report, we propose a structural model for the (CAA)(n) sequence in which the polyribonucleotide chain is folded upon itself, so that it forms an intramolecular triple helix. The triple helix is stabilized by hydrogen bonding between bases thus forming coplanar triads, and by stacking interactions between the base triads. A distinctive feature of the proposed triple helix is that it does not contain the canonical double-helix elements. The difference from the known triple helices is that Watson-Crick hydrogen bond pairings do not take place in the interactions between the bases within the base triads.

  4. Witchcraft illness in the Evuzok nosological system.

    PubMed

    Guimera, L M

    1978-12-01

    The Evuzok nosological system is structured with respect to two frames of reference, one designating illness as an empirical reality (descriptive subsystem), the other designating it according to its religious, magical and social significance (etiological subsystem). The articulation of these two subsystems is brought about in the process of diagnosis. Having examined this system as a whole, the author devotes his attention to a particular set of etiological categories, those which associate illness with witchcraft (nocturnal illnesses). He attempts to define their distinctive traits and, from this, to determine their common elemental structure. This study, based on a number of years of fieldwork, is part of an ongoing research program on African folk-medicine pursued by the Laboratoire d'Ethnologie et de Sociologie Comparative of the Université de Paris X.

  5. Structure and Composition of Isolated Core-Shell (In ,Ga )N /GaN Rods Based on Nanofocus X-Ray Diffraction and Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Krause, Thilo; Hanke, Michael; Nicolai, Lars; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Kahnt, Maik; Falkenberg, Gerald; Schroer, Christian G.; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2017-02-01

    Nanofocus x-ray diffraction is used to investigate the structure and local strain field of an isolated (In ,Ga )N /GaN core-shell microrod. Because the high spatial resolution of the x-ray beam is only 80 ×90 nm2, we are able to investigate several distinct volumes on one individual side facet. Here, we find a drastic increase in thickness of the outer GaN shell along the rod height. Additionally, we performed high-angle annular dark-field scanning-transmission-electron-microscopy measurements on several rods from the same sample showing that (In,Ga)N double-quantum-well and GaN barrier thicknesses also increase strongly along the height. Moreover, plastic relaxation is observed in the top part of the rod. Based on the experimentally obtained structural parameters, we simulate the strain-induced deformation using the finite-element method, which serves as the input for subsequent kinematic scattering simulations. The simulations reveal a significant increase of elastic in-plane relaxation along the rod height. However, at a certain height, the occurrence of plastic relaxation yields a decrease of the elastic strain. Because of the experimentally obtained structural input for the finite-element simulations, we can exclude unknown structural influences on the strain distribution, and we are able to translate the elastic relaxation into an indium concentration which increases by a factor of 4 from the bottom to the height where plastic relaxation occurs.

  6. Structure of MRDI Explains its Dual Function as a Metabolic Enzyme and a Mediator of Cell Invasion

    PubMed Central

    Templeton, Paul D.; Litman, Elizabeth S.; Metzner, Sandra I.; Ahn, Natalie G.; Sousa, Marcelo C.

    2013-01-01

    Metastatic melanoma is among the most intractable cancers to treat, where patients show resistance to therapy and limited survival time. A critical step in the development of metastatic melanoma is the acquisition of invasion and transition from thin to thick tumors on the skin, followed by invasion to lymph nodes. Prior studies have shown that metastatic melanoma is associated with dysregulation of RhoA and enhanced expression of a protein named “mediator of RhoA-dependent invasion (MRDI)”. Importantly, MRDI is a “moonlighting” enzyme, with two distinct functions in melanoma cells. First, MRDI acts as a methylthioribose-1-phosphate (MTR-1-P) isomerase, catalyzing a critical step in methionine salvage. Second, MRDI promotes and is necessary for melanoma cell invasion, independent of its catalytic activity. Here, we demonstrate that MtnA, a bacterial MTR-1-P isomerase, rescues the methionine salvage function of MRDI, but is unable to rescue its role in invasion. We then solve the crystal structure of MRDI to a resolution of 2.5 Å, in order to identify structural elements important for its invasion activity. We present this structure and its comparison with other MTR-1-P isomerases, and identify mutations within a region separate from the MTR-1-P binding site which interfere with invasion. Thus, structural elements in MRDI distal from the MTR-1-P catalytic site are responsible for the invasion phenotype. PMID:23859498

  7. Experimental and analytical analysis of stress-strain behavior in a (90/0 deg)2s, SiC/Ti-15-3 laminate

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Melis, Matthew E.; Tong, Mike

    1991-01-01

    The nonlinear stress strain behavior of 90 degree/0 degree sub 2s, SiC/Ti-15-3 composite laminate was numerically investigated with a finite element, unit cell approach. Tensile stress-strain curves from room temperature experiments depicted three distinct regions of deformation, and these regions were predicted by finite element analysis. The first region of behavior, which was linear elastic, occurred at low applied stresses. As applied stresses increased, fiber/matrix debonding in the 90 degree plies caused a break in the stress-strain curve and initiated a second linear region. In this second region, matrix plasticity in the 90 degree plies developed. The third region, which was typified by nonlinear, stress-strain behavior occr red at high stresses. In this region, the onset of matrix plasticity in the 0 degree plies stiffened the laminate in the direction transverse to the applied load. Metallographic sections confirmed the existence of matrix plasticity in specific areas of the structure. Finite element analysis also predicted these locations of matrix slip.

  8. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    NASA Astrophysics Data System (ADS)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  9. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  10. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans.

    PubMed

    Childers, Delma S; Kadosh, David

    2015-01-01

    Candida albicans is the most frequently isolated human fungal pathogen and can cause a range of mucosal and systemic infections in immunocompromised individuals. Morphogenesis, the ability to undergo a reversible transition from budding yeast to elongated filaments, is an essential virulence trait. The yeast-to-filament transition is associated with expression of genes specifically important for filamentation as well as other virulence-related processes, and is controlled, in part, by the key transcriptional regulators Nrg1 and Ume6. Both of these regulators are themselves controlled at the transcriptional level by filament-inducing environmental cues, although little is known about how this process occurs. In order to address this question and determine whether environmental signals regulate transcription of UME6 and NRG1 via distinct and/or common promoter elements, we performed promoter deletion analyses. Strains bearing promoter deletion constructs were induced to form filaments in YEPD plus 10% serum at 37°C, Spider medium (nitrogen and carbon starvation) and/or Lee's medium pH 6.8 (neutral pH) and reporter gene expression was measured. In the NRG1 promoter we identified several distinct condition-specific response elements for YEPD plus 10% serum at 37°C and Spider medium. In the UME6 promoter we also identified response elements for YEPD plus 10% serum at 37°C. While a few of these elements are distinct, others overlap with those which respond to Lee's pH 6.8 medium. Consistent with UME6 possessing a very long 5' UTR, many response elements in the UME6 promoter are located significantly upstream from the coding sequence. Our data indicate that certain distinct condition-specific elements can control expression of C. albicans UME6 and NRG1 in response to key filament-inducing environmental cues. Because C. albicans encounters a variety of host microenvironments during infection, our results suggest that UME6 and NRG1 expression can be differentially modulated by multiple signaling pathways to control filamentation and virulence in vivo.

  11. Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize.

    PubMed

    Selinger, D A; Chandler, V L

    1999-12-21

    The b locus encodes a transcription factor that regulates the expression of genes that produce purple anthocyanin pigment. Different b alleles are expressed in distinct tissues, causing tissue-specific anthocyanin production. Understanding how phenotypic diversity is produced and maintained at the b locus should provide models for how other regulatory genes, including those that influence morphological traits and development, evolve. We have investigated how different levels and patterns of pigmentation have evolved by determining the phenotypic and evolutionary relationships between 18 alleles that represent the diversity of b alleles in Zea mays. Although most of these alleles have few phenotypic differences, five alleles have very distinct tissue-specific patterns of pigmentation. Superimposing the phenotypes on the molecular phylogeny reveals that the alleles with strong and distinctive patterns of expression are closely related to alleles with weak expression, implying that the distinctive patterns have arisen recently. We have identified apparent insertions in three of the five phenotypically distinct alleles, and the fourth has unique upstream restriction fragment length polymorphisms relative to closely related alleles. The insertion in B-Peru has been shown to be responsible for its unique expression and, in the other two alleles, the presence of the insertion correlates with the phenotype. These results suggest that major changes in gene expression are probably the result of large-scale changes in DNA sequence and/or structure most likely mediated by transposable elements.

  12. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  13. Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae.

    PubMed

    Seth-Smith, Helena M B; Fookes, Maria C; Okoro, Chinyere K; Baker, Stephen; Harris, Simon R; Scott, Paul; Pickard, Derek; Quail, Michael A; Churcher, Carol; Sanders, Mandy; Harmse, Johan; Dougan, Gordon; Parkhill, Julian; Thomson, Nicholas R

    2012-03-01

    Integrative and conjugative elements (ICEs) are self-mobile genetic elements found in the genomes of some bacteria. These elements may confer a fitness advantage upon their host bacteria through the cargo genes that they carry. Salmonella pathogenicity island 7 (SPI-7), found within some pathogenic strains of Salmonella enterica, possesses features indicative of an ICE and carries genes implicated in virulence. We aimed to identify and fully analyze ICEs related to SPI-7 within the genus Salmonella and other Enterobacteriaceae. We report the sequence of two novel SPI-7-like elements, found within strains of Salmonella bongori, which share 97% nucleotide identity over conserved regions with SPI-7 and with each other. Although SPI-7 within Salmonella enterica serovar Typhi appears to be fixed within the chromosome, we present evidence that these novel elements are capable of excision and self-mobility. Phylogenetic analyses show that these Salmonella mobile elements share an ancestor which existed approximately 3.6 to 15.8 million years ago. Additionally, we identified more distantly related ICEs, with distinct cargo regions, within other strains of Salmonella as well as within Citrobacter, Erwinia, Escherichia, Photorhabdus, and Yersinia species. In total, we report on a collection of 17 SPI-7 related ICEs within enterobacterial species, of which six are novel. Using comparative and mutational studies, we have defined a core of 27 genes essential for conjugation. We present a growing family of SPI-7-related ICEs whose mobility, abundance, and cargo variability indicate that these elements may have had a large impact on the evolution of the Enterobacteriaceae.

  14. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  15. Sequential protein unfolding through a carbon nanotube pore

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghe; Zhang, Shuang; Weber, Jeffrey K.; Luan, Binquan; Zhou, Ruhong; Li, Jingyuan

    2016-06-01

    An assortment of biological processes, like protein degradation and the transport of proteins across membranes, depend on protein unfolding events mediated by nanopore interfaces. In this work, we exploit fully atomistic simulations of an artificial, CNT-based nanopore to investigate the nature of ubiquitin unfolding. With one end of the protein subjected to an external force, we observe non-canonical unfolding behaviour as ubiquitin is pulled through the pore opening. Secondary structural elements are sequentially detached from the protein and threaded into the nanotube, interestingly, the remaining part maintains native-like characteristics. The constraints of the nanopore interface thus facilitate the formation of stable ``unfoldon'' motifs above the nanotube aperture that can exist in the absence of specific native contacts with the other secondary structure. Destruction of these unfoldons gives rise to distinct force peaks in our simulations, providing us with a sensitive probe for studying the kinetics of serial unfolding events. Our detailed analysis of nanopore-mediated protein unfolding events not only provides insight into how related processes might proceed in the cell, but also serves to deepen our understanding of structural arrangements which form the basis for protein conformational stability.An assortment of biological processes, like protein degradation and the transport of proteins across membranes, depend on protein unfolding events mediated by nanopore interfaces. In this work, we exploit fully atomistic simulations of an artificial, CNT-based nanopore to investigate the nature of ubiquitin unfolding. With one end of the protein subjected to an external force, we observe non-canonical unfolding behaviour as ubiquitin is pulled through the pore opening. Secondary structural elements are sequentially detached from the protein and threaded into the nanotube, interestingly, the remaining part maintains native-like characteristics. The constraints of the nanopore interface thus facilitate the formation of stable ``unfoldon'' motifs above the nanotube aperture that can exist in the absence of specific native contacts with the other secondary structure. Destruction of these unfoldons gives rise to distinct force peaks in our simulations, providing us with a sensitive probe for studying the kinetics of serial unfolding events. Our detailed analysis of nanopore-mediated protein unfolding events not only provides insight into how related processes might proceed in the cell, but also serves to deepen our understanding of structural arrangements which form the basis for protein conformational stability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00410e

  16. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  17. Structural basis of ligand interaction with atypical chemokine receptor 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje

    2017-01-18

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally drivenmore » models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.« less

  18. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles

    NASA Astrophysics Data System (ADS)

    Shih, Yu-Ling; Le, Trung; Rothfield, Lawrence

    2003-06-01

    The MinCDE proteins of Escherichia coli are required for proper placement of the division septum at midcell. The site selection process requires the rapid oscillatory redistribution of the proteins from pole to pole. We report that the three Min proteins are organized into extended membrane-associated coiled structures that wind around the cell between the two poles. The pole-to-pole oscillation of the proteins reflects oscillatory changes in their distribution within the coiled structure. We also report that the E. coli MreB protein, which is required for maintaining the rod shape of the cell, also forms extended coiled structures, which are similar to the MreB structures that have previously been reported in Bacillus subtilis. The MreB and MinCDE coiled arrays do not appear identical. The results suggest that at least two functionally distinct cytoskeletal-like elements are present in E. coli and that structures of this type can undergo dynamic changes that play important roles in division site placement and possibly other aspects of the life of the cell.

  19. Lightweight Thermoformed Structural Components and Optics

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.

    2004-01-01

    A technique that involves the use of thermoformed plastics has been developed to enable the design and fabrication of ultra-lightweight structural components and mirrors for use in outer space. The technique could also be used to produce items for special terrestrial uses in which minimization of weight is a primary design consideration. Although the inherent strengths of thermoplastics are clearly inferior to those of metals and composite materials, thermoplastics offer a distinct advantage in that they can be shaped, at elevated temperatures, to replicate surfaces (e.g., prescribed mirror surfaces) precisely. Furthermore, multiple elements can be bonded into structures of homogeneous design that display minimal thermal deformation aside from simple expansion. The design aspect of the present technique is based on the principle that the deflection of a plate that has internal structure depends far more on the overall thickness than on the internal details; thus, a very stiff, light structure can be made from thin plastic that is heatformed to produce a sufficiently high moment of inertia. General examples of such structures include I beams and eggcrates.

  20. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  1. Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

    PubMed

    Leung, Wilson; Shaffer, Christopher D; Reed, Laura K; Smith, Sheryl T; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E J; Machone, Joshua F; Patterson, Seantay D; Price, Amber L; Turner, Bryce A; Robic, Srebrenka; Luippold, Erin K; McCartha, Shannon R; Walji, Tezin A; Walker, Chelsea A; Saville, Kenneth; Abrams, Marita K; Armstrong, Andrew R; Armstrong, William; Bailey, Robert J; Barberi, Chelsea R; Beck, Lauren R; Blaker, Amanda L; Blunden, Christopher E; Brand, Jordan P; Brock, Ethan J; Brooks, Dana W; Brown, Marie; Butzler, Sarah C; Clark, Eric M; Clark, Nicole B; Collins, Ashley A; Cotteleer, Rebecca J; Cullimore, Peterson R; Dawson, Seth G; Docking, Carter T; Dorsett, Sasha L; Dougherty, Grace A; Downey, Kaitlyn A; Drake, Andrew P; Earl, Erica K; Floyd, Trevor G; Forsyth, Joshua D; Foust, Jonathan D; Franchi, Spencer L; Geary, James F; Hanson, Cynthia K; Harding, Taylor S; Harris, Cameron B; Heckman, Jonathan M; Holderness, Heather L; Howey, Nicole A; Jacobs, Dontae A; Jewell, Elizabeth S; Kaisler, Maria; Karaska, Elizabeth A; Kehoe, James L; Koaches, Hannah C; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J; Kus, Jordan E; Lammers, Jennifer A; Leads, Rachel R; Leatherman, Emily C; Lippert, Rachel N; Messenger, Gregory S; Morrow, Adam T; Newcomb, Victoria; Plasman, Haley J; Potocny, Stephanie J; Powers, Michelle K; Reem, Rachel M; Rennhack, Jonathan P; Reynolds, Katherine R; Reynolds, Lyndsey A; Rhee, Dong K; Rivard, Allyson B; Ronk, Adam J; Rooney, Meghan B; Rubin, Lainey S; Salbert, Luke R; Saluja, Rasleen K; Schauder, Taylor; Schneiter, Allison R; Schulz, Robert W; Smith, Karl E; Spencer, Sarah; Swanson, Bryant R; Tache, Melissa A; Tewilliager, Ashley A; Tilot, Amanda K; VanEck, Eve; Villerot, Matthew M; Vylonis, Megan B; Watson, David T; Wurzler, Juliana A; Wysocki, Lauren M; Yalamanchili, Monica; Zaborowicz, Matthew A; Emerson, Julia A; Ortiz, Carlos; Deuschle, Frederic J; DiLorenzo, Lauren A; Goeller, Katie L; Macchi, Christopher R; Muller, Sarah E; Pasierb, Brittany D; Sable, Joseph E; Tucci, Jessica M; Tynon, Marykathryn; Dunbar, David A; Beken, Levent H; Conturso, Alaina C; Danner, Benjamin L; DeMichele, Gabriella A; Gonzales, Justin A; Hammond, Maureen S; Kelley, Colleen V; Kelly, Elisabeth A; Kulich, Danielle; Mageeney, Catherine M; McCabe, Nikie L; Newman, Alyssa M; Spaeder, Lindsay A; Tumminello, Richard A; Revie, Dennis; Benson, Jonathon M; Cristostomo, Michael C; DaSilva, Paolo A; Harker, Katherine S; Jarrell, Jenifer N; Jimenez, Luis A; Katz, Brandon M; Kennedy, William R; Kolibas, Kimberly S; LeBlanc, Mark T; Nguyen, Trung T; Nicolas, Daniel S; Patao, Melissa D; Patao, Shane M; Rupley, Bryan J; Sessions, Bridget J; Weaver, Jennifer A; Goodman, Anya L; Alvendia, Erica L; Baldassari, Shana M; Brown, Ashley S; Chase, Ian O; Chen, Maida; Chiang, Scott; Cromwell, Avery B; Custer, Ashley F; DiTommaso, Tia M; El-Adaimi, Jad; Goscinski, Nora C; Grove, Ryan A; Gutierrez, Nestor; Harnoto, Raechel S; Hedeen, Heather; Hong, Emily L; Hopkins, Barbara L; Huerta, Vilma F; Khoshabian, Colin; LaForge, Kristin M; Lee, Cassidy T; Lewis, Benjamin M; Lydon, Anniken M; Maniaci, Brian J; Mitchell, Ryan D; Morlock, Elaine V; Morris, William M; Naik, Priyanka; Olson, Nicole C; Osterloh, Jeannette M; Perez, Marcos A; Presley, Jonathan D; Randazzo, Matt J; Regan, Melanie K; Rossi, Franca G; Smith, Melanie A; Soliterman, Eugenia A; Sparks, Ciani J; Tran, Danny L; Wan, Tiffany; Welker, Anne A; Wong, Jeremy N; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J; Hoogewerf, Arlene J; Ackerman, Cheri M; Armistead, Isaac O; Baatenburg, Lara; Borr, Matthew J; Brouwer, Lindsay K; Burkhart, Brandon J; Bushhouse, Kelsey T; Cesko, Lejla; Choi, Tiffany Y Y; Cohen, Heather; Damsteegt, Amanda M; Darusz, Jess M; Dauphin, Cory M; Davis, Yelena P; Diekema, Emily J; Drewry, Melissa; Eisen, Michelle E M; Faber, Hayley M; Faber, Katherine J; Feenstra, Elizabeth; Felzer-Kim, Isabella T; Hammond, Brandy L; Hendriksma, Jesse; Herrold, Milton R; Hilbrands, Julia A; Howell, Emily J; Jelgerhuis, Sarah A; Jelsema, Timothy R; Johnson, Benjamin K; Jones, Kelly K; Kim, Anna; Kooienga, Ross D; Menyes, Erika E; Nollet, Eric A; Plescher, Brittany E; Rios, Lindsay; Rose, Jenny L; Schepers, Allison J; Scott, Geoff; Smith, Joshua R; Sterling, Allison M; Tenney, Jenna C; Uitvlugt, Chris; VanDyken, Rachel E; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P; Agbley, Kwabea; Boham, Sampson K; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S; Banker, Roxanne; Bartling, Justina R; Bhatiya, Chinmoy I; Boudoures, Anna L; Christiansen, Lena; Fosselman, Daniel S; French, Kristin M; Gill, Ishwar S; Havill, Jessen T; Johnson, Jaelyn L; Keny, Lauren J; Kerber, John M; Klett, Bethany M; Kufel, Christina N; May, Francis J; Mecoli, Jonathan P; Merry, Callie R; Meyer, Lauren R; Miller, Emily G; Mullen, Gregory J; Palozola, Katherine C; Pfeil, Jacob J; Thomas, Jessica G; Verbofsky, Evan M; Spana, Eric P; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I N; Fitzgibbons, John D; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J; Knouse, Kristin A; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S; Norton, Diana; Pham, Philip; Polk, Jessica W; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D; Scala, Victoria; Schwartz, Nicholas U; Shuen, Jessica A; Xu, Amy; Xu, Thomas Q; Zhang, Yi; Rosenwald, Anne G; Burg, Martin G; Adams, Stephanie J; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J; Robertson, Gregory M; Smith, Samuel I; DiAngelo, Justin R; Sassu, Eric D; Bhalla, Satish C; Sharif, Karim A; Choeying, Tenzin; Macias, Jason S; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E; Alvarez, Consuelo J; Davis, Kristen C; Dunham, Carrie A; Grantham, Alaina J; Hare, Amber N; Schottler, Jennifer; Scott, Zackary W; Kuleck, Gary A; Yu, Nicole S; Kaehler, Marian M; Jipp, Jacob; Overvoorde, Paul J; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques Dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T; Poet, Jeffrey L; Allen, Alica B; Anderson, John E; Barnett, Jason M; Baumgardner, Jordan S; Brown, Adam D; Carney, Jordan E; Chavez, Ramiro A; Christgen, Shelbi L; Christie, Jordan S; Clary, Andrea N; Conn, Michel A; Cooper, Kristen M; Crowley, Matt J; Crowley, Samuel T; Doty, Jennifer S; Dow, Brian A; Edwards, Curtis R; Elder, Darcie D; Fanning, John P; Janssen, Bridget M; Lambright, Anthony K; Lane, Curtiss E; Limle, Austin B; Mazur, Tammy; McCracken, Marly R; McDonough, Alexa M; Melton, Amy D; Minnick, Phillip J; Musick, Adam E; Newhart, William H; Noynaert, Joseph W; Ogden, Bradley J; Sandusky, Michael W; Schmuecker, Samantha M; Shipman, Anna L; Smith, Anna L; Thomsen, Kristen M; Unzicker, Matthew R; Vernon, William B; Winn, Wesley W; Woyski, Dustin S; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J; Aronhalt, Todd; Bellush, James M; Burke, Christa; DeFazio, Steve; Does, Benjamin R; Johnson, Todd D; Keysock, Nicholas; Knudsen, Nelson H; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S; Stagaard, Erica; Starcher, Justin R; Waggoner, Andrew W; Yemelyanova, Anastasia K; Hark, Amy T; Bertolet, Anne; Kuschner, Cyrus E; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E; Smith, Mary A; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S Catherine Silver; Henry, Tyneshia C P; Johnson, Ashlee G; White, Jackie X; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L M; Chau, Kim M; Ward, Alyssa; Regisford, E Gloria C; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M; Bahr, Thomas J; Caesar, Nicole M; Campana, Christopher; Cassidy, Daniel W; Cognetti, Peter A; English, Johnathan D; Fadus, Matthew C; Fick, Cameron N; Freda, Philip J; Hennessy, Bryan M; Hockenberger, Kelsey; Jones, Jennifer K; King, Jessica E; Knob, Christopher R; Kraftmann, Karen J; Li, Linghui; Lupey, Lena N; Minniti, Carl J; Minton, Thomas F; Moran, Joseph V; Mudumbi, Krishna; Nordman, Elizabeth C; Puetz, William J; Robinson, Lauren M; Rose, Thomas J; Sweeney, Edward P; Timko, Ashley S; Paetkau, Don W; Eisler, Heather L; Aldrup, Megan E; Bodenberg, Jessica M; Cole, Mara G; Deranek, Kelly M; DeShetler, Megan; Dowd, Rose M; Eckardt, Alexandra K; Ehret, Sharon C; Fese, Jessica; Garrett, Amanda D; Kammrath, Anna; Kappes, Michelle L; Light, Morgan R; Meier, Anne C; O'Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R; Reilly, Mary T; Robinett, Deirdre; Rossi, Nadine L; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R; Herrick, Douglas A; Khoury, Christopher B; Lea, Charlotte; Louie, Christopher A; Lowell, Shannon M; Reynolds, Thomas J; Schibler, Jeanine; Scoma, Alexandra H; Smith-Gee, Maxwell T; Tuberty, Sarah; Smith, Christopher D; Lopilato, Jane E; Hauke, Jeanette; Roecklein-Canfield, Jennifer A; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R; Flohr, Sarah; Flores, Amanda H; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B; Smith, Jonathan E; Unruh, Anna K; Velasquez, Vicente; Wolski, Matthew W; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T; Moore, Zachary D; Savell, Christopher D; Watson, Reece; Mel, Stephanie F; Anilkumar, Arjun A; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M; Dai, Tiffany; Garbagnati, Giancarlo F; Horton, Lanor S; Kim, Dongyeon; Lau, Joyce H; Liu, James Z; Mach, Sandy D; Phan, Thu A; Ren, Yi; Stapleton, Kenneth E; Strelitz, Jean M; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J; Fafara-Thompson, Antoinette E; Gross, Meleah J; Gygi, Amber M; Jackson, Lesley E; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L; Neely, Jessica; Ogawa, Emmy E; Rich, Ashley; Rogers, Anna; Spencer, J Devin; Stemler, Kristina M; Throm, Allison A; Van Camp, Matt; Weihbrecht, Katie; Wiles, T Aaron; Williams, Mallory A; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M; Bashiri, Azita; Bower, Mindy E; Florian, Kayla A; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S; Karim, Helmet; Mullen, Victor W; Pelchen, Carly E; Yenerall, Paul M; Zhang, Jiayu; Rubin, Michael R; Arias-Mejias, Suzette M; Bermudez-Capo, Armando G; Bernal-Vega, Gabriela V; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G; Martinez-Rodriguez, Javier O; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J; Santiago-Sanabria, Arnaldo J; Senquiz-Gonzalez, Andrea M; delValle, Frank R Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I; Zambrana-Burgos, Joan D; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P; Collado-Méndez, Xavier A; Colón-Cruz, Luis R; Correa-Muller, Ana I; Crooke-Rosado, Jonathan L; Cruz-García, José M; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M; Feliciano-Cancela, Alex J; Gónzalez-Pérez, Valerie M; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N; Laboy-Corales, Ángel L; Llaurador-Caraballo, Gabriela A; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A; Martínez-Traverso, Idaliz M; Medina-Ortega, Kiara N; Méndez-Castellanos, Sonya G; Menéndez-Serrano, Krizia C; Morales-Caraballo, Carol I; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M; Ramírez-Aponte, Edwin G; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S; Rivera-Pagán, Ingrid T; Rivera-Vicéns, Ramón E; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O; Rodríguez-García, Priscila M; Rodríguez-Laboy, Abneris E; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L; Rubio-Marrero, Eva N; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L; Santos-Ramos, Carlos E; Serrano-González, Joseline; Tamayo-Figueroa, Alina M; Tascón-Peñaranda, Edna P; Torres-Castillo, José L; Valentín-Feliciano, Nelson A; Valentín-Feliciano, Yashira M; Vargas-Barreto, Nadyan M; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L; Molleston, Jerome M; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y; Zheng, Yin; Preuss, Mary L; Garcia, Angelica; Juergens, Matt; Morris, Robert W; Nagengast, Alexis A; Azarewicz, Julie; Carr, Thomas J; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L; Adams, Ashley L; Barnard, Brianna K; Cheramie, Martin N; Eime, Anne M; Golden, Kathryn L; Hawkins, Allyson P; Hill, Jessica E; Kampmeier, Jessica A; Kern, Cody D; Magnuson, Emily E; Miller, Ashley R; Morrow, Cody M; Peairs, Julia C; Pickett, Gentry L; Popelka, Sarah A; Scott, Alexis J; Teepe, Emily J; TerMeer, Katie A; Watchinski, Carmen A; Watson, Lucas A; Weber, Rachel E; Woodard, Kate A; Barnard, Daron C; Appiah, Isaac; Giddens, Michelle M; McNeil, Gerard P; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2015-03-04

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. Copyright © 2015 Leung et al.

  2. Bacterial phylogeny structures soil resistomes across habitats

    PubMed Central

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-01-01

    Summary Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil1–3, including genes identical to those in human pathogens4. Despite the apparent overlap between soil and clinical resistomes4–6, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown3. General metagenome functions often correlate with the underlying structure of bacterial communities7–12. However, ARGs are hypothesized to be highly mobile4,5,13, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions13,14. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2895 ARGs we discovered were predominantly novel, and represent all major resistance mechanisms15. We demonstrate that distinct soil types harbor distinct resistomes, and that nitrogen fertilizer amendments strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements syntenic with ARGs were rare in soil compared to sequenced pathogens, suggesting that ARGs in the soil may not transfer between bacteria as readily as is observed in the clinic. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny13,14. PMID:24847883

  3. Bacterial phylogeny structures soil resistomes across habitats

    NASA Astrophysics Data System (ADS)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  4. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements

    PubMed Central

    Prangishvili, David

    2016-01-01

    ABSTRACT Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome. PMID:27681128

  5. Long-delayed bright dancing sprite with large Horizontal displacement from its parent flash

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Lu, Gaopeng; Lee, Li-Jou; Feng, Guili

    2015-07-01

    We reported in this paper the observation of a very bright long-delayed dancing sprite with distinct horizontal displacement from its parent stroke. The dancing sprite lasted only 60 ms, and the morphology consisted of three fields with two slim dim sprite elements in the first two fields and a very bright large element in the third field, different from other observations where the dancing sprites usually contained multiple elements over a longer time interval, and the sprite shape and brightness in the video field are often similar to the previous fields. The bright sprite was displaced at least 38 km from its parent cloud-to-ground (CG) stroke and occurred over comparatively higher cloud top region. The parent flash of this compact dancing sprite was of positive polarity, with only one return stroke (approximately +24 kA) and obvious continuing current process, and the charge moment change of stroke was small (barely above the threshold for sprite production). All the sprite elements occurred during the continuing current stage, and the bright long-delayed sprite element induced a considerable current pulse. The dancing feature of this sprite may be linked to the electrical charge structure, dynamics and microphysics of parent storm, and the inferred development of parent CG flash was consistent with previous very high-frequency (VHF) observations of lightning in the same region.

  6. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  7. Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-hong; Zhang, Xue-hua; Schröder, Heinz C.; Müller, Werner E. G.

    2009-09-01

    Like all sponges (phylum Porifera), the glass sponges (Hexactinellida) are provided with an elaborate and distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Schulze described the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, collected during the German Deep Sea Expedition "Valdivia" (1898-1899). This species develops an equally large bio-silica structure, the giant basal spicule (3 m × 10 mm). Using these spicules as a model, one can obtain the basic knowledge on the morphology, formation, and development of silica skeletal elements. The silica matrix is composed of almost pure silica, endowing it with unusual optophysical properties, which are superior to those of man-made waveguides. Experiments suggest that the spicules function in vivo as a nonocular photoreception system. The spicules are also provided with exceptional mechanical properties. Like demosponges, the hexactinellids synthesize their silica enzymatically via the enzyme silicatein (27 kDa protein). This enzyme is located in/embedded in the silica layers. This knowledge will surely contribute to a further utilization and exploration of silica in biomaterial/biomedical science.

  8. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE PAGES

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; ...

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  9. Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements

    USGS Publications Warehouse

    Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.

    2009-01-01

    During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.

  10. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons

    PubMed Central

    Kwon, Sung E.; Chapman, Edwin R.

    2011-01-01

    Summary Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate that synaptophysin is required for kinetically efficient endocytosis of synaptic vesicles in cultured hippocampal neurons. Truncation analysis revealed that distinct structural elements of synaptophysin differentially regulate vesicle retrieval during and after stimulation. Thus, synaptophysin regulates at least two phases of endocytosis to ensure vesicle availability during and after sustained neuronal activity. PMID:21658579

  11. Nondestructive Memory Elements Based on Polymeric Langmuir-Blodgett Thin Films

    NASA Astrophysics Data System (ADS)

    Reece, T. J.; Ducharme, S.

    2007-03-01

    Ferroelectric field effect transistors (FeFETs) have attracted much attention recently because of their low power consumption and fast nondestructive readout. Among the ferroelectric thin films used in FET devices; the ferroelectric copolymer of polyvinylidene fluoride, PVDF (C2H2F2), with trifluoroethylene, TrFE (C2HF3), has distinct advantages, including low dielectric constant, low processing temperature, low cost and compatibility with organic semiconductors. By employing the Langmuir-Blodgett technique, we are able to deposit films as thin as 1.8 nm. We discuss the characterization, modeling and fabrication of metal-ferroelectric-insulator-semiconductor (MFIS) structures incorporating these films.

  12. Passive On-Chip Superconducting Circulator Using a Ring of Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Müller, Clemens; Guan, Shengwei; Vogt, Nicolas; Cole, Jared H.; Stace, Thomas M.

    2018-05-01

    We present the design of a passive, on-chip microwave circulator based on a ring of superconducting tunnel junctions. We investigate two distinct physical realizations, based on Josephson junctions (JJs) or quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively (QPS) to the ring structure. A constant bias applied to the center of the ring provides an effective symmetry breaking field, and no microwave or rf bias is required. We show that this design offers high isolation, robustness against fabrication imperfections and bias fluctuations, and a bandwidth in excess of 500 MHz for realistic device parameters.

  13. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group. PMID:24088337

  14. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code.

    PubMed

    Predoi, Mihai Valentin

    2014-09-01

    The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Close encounters of the third kind: disordered domains and the interactions of proteins.

    PubMed

    Tompa, Peter; Fuxreiter, Monika; Oldfield, Christopher J; Simon, Istvan; Dunker, A Keith; Uversky, Vladimir N

    2009-03-01

    Protein-protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein-protein recognition mechanism, mediated by disordered regions longer than 20-30 residues. Bioinformatics predictions and well-characterized examples, such as the kinase-inhibitory domain of Cdk inhibitors and the Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 of actin-binding proteins, show that these disordered regions conform to the definition of domains rather than motifs, i.e., they represent functional, evolutionary, and structural units. Their functions are distinct from those of short motifs and ordered domains, and establish a third kind of interaction principle. With these points, we argue that these long disordered regions should be recognized as a distinct class of biologically functional protein domains.

  16. Rare earth elements in Angra dos Reis and Lewis Cliff 86010, two meteorites with similar but distinct magma evolutions

    NASA Technical Reports Server (NTRS)

    Crozaz, Ghislaine; Mckay, Gordon

    1990-01-01

    Data are presented on ion microprobe measurements of REE and selected trace element abundances in individual grains of merrillite, fassaite, olivine, kirschsteinite, and plagioclase of Lewis Cliff 86010 (LEW 86010) meteorite and in merrillite and fassaite grains of Angra dos Reis (ADOR). Results show a close relationship between the two meteorites and support a magmatic origin for LEW 86010. However, the measurements indicate that, despite numerous common characteristics, the two meteorites must have been produced in separate magmatic events involving similar but distinct processes and parent melts.

  17. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction.

    PubMed

    Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping

    2008-09-01

    Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into alpha-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca(2+), which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118-124 and residues 284-287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca(2+) in the pseudo-Michaelis complex or with NADPH, AKG, and Ca(2+) in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes.

  18. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction

    PubMed Central

    Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping

    2008-01-01

    Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into α-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca2+, which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118–124 and residues 284–287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca2+ in the pseudo-Michaelis complex or with NADPH, AKG, and Ca2+ in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes. PMID:18552125

  19. Single kernel ionomic profiles are highly heritable indicators of genetic and environmental influences on elemental accumulation in maize grain (Zea mays)

    USDA-ARS?s Scientific Manuscript database

    The ionome, or elemental profile, of a maize kernel represents at least two distinct ideas. First, the collection of elements within the kernel are food, feed and feedstocks for people, animals and industrial processes. Second, the ionome of the kernel represents a developmental end point that can s...

  20. Comparisons of Elemental Profiles of the Western Spruce Budworm Reared on Three host Foilages and Artificial Medium

    Treesearch

    John A. McLean; P. Laks; T.L. Shore

    1983-01-01

    Western spruce budworm were reared on three host foliages and artificial medium. Trace element analyses showed large differences in elemental concentrations between food sources and only minor differences between insect life stages. Discriminant analyses were carried out to test the distinctiveness of adult chemoprints from each rearing regime. Fe, Cu, and Zn were...

  1. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogure, Takahisa; Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Niitsu, Niigata 956-8603; Takagi, Masamichi

    2005-04-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated thatmore » three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.« less

  2. The data model for social welfare in Finland.

    PubMed

    Kärki, Jarmo; Ailio, Erja

    2014-01-01

    A client data model for social welfare was gradually developed in the National Project of IT in Social Services in Finland. The client data model describes the nationally uniformed data structures and relationships between the data elements needed in production of social services. It contains the structures of social care client records, unique core components and distinct classifications. The modeling method guaranteed the coverage, integrity, flexibility and device independency of the model. The model is maintained and developed by the National Institute for Health and Welfare (THL) together with the social workers and other experts of social welfare. It forms the basis of the electronic information management of the social services. Implementation of the data model in information systems enables the availability of the client data where and when ever a client has to be helped.

  3. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  4. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically polycentric structure of radiocesium distribution believed to reflect the character of radial and lateral water body migration and a high sensitivity of water distribution to surface parameters. This leads to an unusual wavy type of Cs-137 distribution down, along and across all the slopes examined for surface Cs-137 activity at every measured point. The finding is believed to have an important practical outcome allowing much more detailed evaluation of micronutrients distribution and optimization of their application.

  5. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruiying; Zheng, Han; Preamplume, Gan

    The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of amore » noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.« less

  6. Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline

    NASA Astrophysics Data System (ADS)

    Ho, Min-Hua; Hsu, Wei-Hong

    In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.

  7. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization.

    PubMed

    Gong, Xin; Qian, Hongwu; Shao, Wei; Li, Jingxian; Wu, Jianping; Liu, Jun-Jie; Li, Wenqi; Wang, Hong-Wei; Espenshade, Peter; Yan, Nieng

    2016-11-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation.

  8. Mapping Potassium

    NASA Image and Video Library

    2015-04-16

    During the first year of NASA MESSENGER orbital mission, the spacecraft GRS instrument measured the elemental composition of Mercury surface materials. mong the most important discoveries from the GRS was the observation of higher abundances of the moderately volatile elements potassium, sodium, and chlorine than expected from previous scientific models and theories. Particularly high concentrations of these elements were observed at high northern latitudes, as illustrated in this potassium abundance map, which provides a view of the surface centered at 60° N latitude and 120° E longitude. This map was the first elemental map ever made of Mercury's surface and is to-date the only map to report absolute elemental concentrations, in comparison to element ratios. Prior to MESSENGER's arrival at Mercury, scientists expected that the planet would be depleted in moderately volatile elements, as is the case for our Moon. The unexpectedly high abundances observed with the GRS have forced a reevaluation of our understanding of the formation and evolution of Mercury. In addition, the K map provided the first evidence for distinct geochemical terranes on Mercury, as the high-potassium region was later found to also be distinct in its low Mg/Si, Ca/Si, S/Si, and high Na/Si and Cl/Si abundances. Instrument: Gamma-Ray Spectrometer (GRS) http://photojournal.jpl.nasa.gov/catalog/PIA19414

  9. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    PubMed Central

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.; Turner, Bryce A.; Robic, Srebrenka; Luippold, Erin K.; McCartha, Shannon R.; Walji, Tezin A.; Walker, Chelsea A.; Saville, Kenneth; Abrams, Marita K.; Armstrong, Andrew R.; Armstrong, William; Bailey, Robert J.; Barberi, Chelsea R.; Beck, Lauren R.; Blaker, Amanda L.; Blunden, Christopher E.; Brand, Jordan P.; Brock, Ethan J.; Brooks, Dana W.; Brown, Marie; Butzler, Sarah C.; Clark, Eric M.; Clark, Nicole B.; Collins, Ashley A.; Cotteleer, Rebecca J.; Cullimore, Peterson R.; Dawson, Seth G.; Docking, Carter T.; Dorsett, Sasha L.; Dougherty, Grace A.; Downey, Kaitlyn A.; Drake, Andrew P.; Earl, Erica K.; Floyd, Trevor G.; Forsyth, Joshua D.; Foust, Jonathan D.; Franchi, Spencer L.; Geary, James F.; Hanson, Cynthia K.; Harding, Taylor S.; Harris, Cameron B.; Heckman, Jonathan M.; Holderness, Heather L.; Howey, Nicole A.; Jacobs, Dontae A.; Jewell, Elizabeth S.; Kaisler, Maria; Karaska, Elizabeth A.; Kehoe, James L.; Koaches, Hannah C.; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J.; Kus, Jordan E.; Lammers, Jennifer A.; Leads, Rachel R.; Leatherman, Emily C.; Lippert, Rachel N.; Messenger, Gregory S.; Morrow, Adam T.; Newcomb, Victoria; Plasman, Haley J.; Potocny, Stephanie J.; Powers, Michelle K.; Reem, Rachel M.; Rennhack, Jonathan P.; Reynolds, Katherine R.; Reynolds, Lyndsey A.; Rhee, Dong K.; Rivard, Allyson B.; Ronk, Adam J.; Rooney, Meghan B.; Rubin, Lainey S.; Salbert, Luke R.; Saluja, Rasleen K.; Schauder, Taylor; Schneiter, Allison R.; Schulz, Robert W.; Smith, Karl E.; Spencer, Sarah; Swanson, Bryant R.; Tache, Melissa A.; Tewilliager, Ashley A.; Tilot, Amanda K.; VanEck, Eve; Villerot, Matthew M.; Vylonis, Megan B.; Watson, David T.; Wurzler, Juliana A.; Wysocki, Lauren M.; Yalamanchili, Monica; Zaborowicz, Matthew A.; Emerson, Julia A.; Ortiz, Carlos; Deuschle, Frederic J.; DiLorenzo, Lauren A.; Goeller, Katie L.; Macchi, Christopher R.; Muller, Sarah E.; Pasierb, Brittany D.; Sable, Joseph E.; Tucci, Jessica M.; Tynon, Marykathryn; Dunbar, David A.; Beken, Levent H.; Conturso, Alaina C.; Danner, Benjamin L.; DeMichele, Gabriella A.; Gonzales, Justin A.; Hammond, Maureen S.; Kelley, Colleen V.; Kelly, Elisabeth A.; Kulich, Danielle; Mageeney, Catherine M.; McCabe, Nikie L.; Newman, Alyssa M.; Spaeder, Lindsay A.; Tumminello, Richard A.; Revie, Dennis; Benson, Jonathon M.; Cristostomo, Michael C.; DaSilva, Paolo A.; Harker, Katherine S.; Jarrell, Jenifer N.; Jimenez, Luis A.; Katz, Brandon M.; Kennedy, William R.; Kolibas, Kimberly S.; LeBlanc, Mark T.; Nguyen, Trung T.; Nicolas, Daniel S.; Patao, Melissa D.; Patao, Shane M.; Rupley, Bryan J.; Sessions, Bridget J.; Weaver, Jennifer A.; Goodman, Anya L.; Alvendia, Erica L.; Baldassari, Shana M.; Brown, Ashley S.; Chase, Ian O.; Chen, Maida; Chiang, Scott; Cromwell, Avery B.; Custer, Ashley F.; DiTommaso, Tia M.; El-Adaimi, Jad; Goscinski, Nora C.; Grove, Ryan A.; Gutierrez, Nestor; Harnoto, Raechel S.; Hedeen, Heather; Hong, Emily L.; Hopkins, Barbara L.; Huerta, Vilma F.; Khoshabian, Colin; LaForge, Kristin M.; Lee, Cassidy T.; Lewis, Benjamin M.; Lydon, Anniken M.; Maniaci, Brian J.; Mitchell, Ryan D.; Morlock, Elaine V.; Morris, William M.; Naik, Priyanka; Olson, Nicole C.; Osterloh, Jeannette M.; Perez, Marcos A.; Presley, Jonathan D.; Randazzo, Matt J.; Regan, Melanie K.; Rossi, Franca G.; Smith, Melanie A.; Soliterman, Eugenia A.; Sparks, Ciani J.; Tran, Danny L.; Wan, Tiffany; Welker, Anne A.; Wong, Jeremy N.; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J.; Hoogewerf, Arlene J.; Ackerman, Cheri M.; Armistead, Isaac O.; Baatenburg, Lara; Borr, Matthew J.; Brouwer, Lindsay K.; Burkhart, Brandon J.; Bushhouse, Kelsey T.; Cesko, Lejla; Choi, Tiffany Y. Y.; Cohen, Heather; Damsteegt, Amanda M.; Darusz, Jess M.; Dauphin, Cory M.; Davis, Yelena P.; Diekema, Emily J.; Drewry, Melissa; Eisen, Michelle E. M.; Faber, Hayley M.; Faber, Katherine J.; Feenstra, Elizabeth; Felzer-Kim, Isabella T.; Hammond, Brandy L.; Hendriksma, Jesse; Herrold, Milton R.; Hilbrands, Julia A.; Howell, Emily J.; Jelgerhuis, Sarah A.; Jelsema, Timothy R.; Johnson, Benjamin K.; Jones, Kelly K.; Kim, Anna; Kooienga, Ross D.; Menyes, Erika E.; Nollet, Eric A.; Plescher, Brittany E.; Rios, Lindsay; Rose, Jenny L.; Schepers, Allison J.; Scott, Geoff; Smith, Joshua R.; Sterling, Allison M.; Tenney, Jenna C.; Uitvlugt, Chris; VanDyken, Rachel E.; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P.; Agbley, Kwabea; Boham, Sampson K.; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A.; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E.; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S.; Banker, Roxanne; Bartling, Justina R.; Bhatiya, Chinmoy I.; Boudoures, Anna L.; Christiansen, Lena; Fosselman, Daniel S.; French, Kristin M.; Gill, Ishwar S.; Havill, Jessen T.; Johnson, Jaelyn L.; Keny, Lauren J.; Kerber, John M.; Klett, Bethany M.; Kufel, Christina N.; May, Francis J.; Mecoli, Jonathan P.; Merry, Callie R.; Meyer, Lauren R.; Miller, Emily G.; Mullen, Gregory J.; Palozola, Katherine C.; Pfeil, Jacob J.; Thomas, Jessica G.; Verbofsky, Evan M.; Spana, Eric P.; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I.N.; Fitzgibbons, John D.; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J.; Knouse, Kristin A.; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S.; Norton, Diana; Pham, Philip; Polk, Jessica W.; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D.; Scala, Victoria; Schwartz, Nicholas U.; Shuen, Jessica A.; Xu, Amy; Xu, Thomas Q.; Zhang, Yi; Rosenwald, Anne G.; Burg, Martin G.; Adams, Stephanie J.; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E.; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J.; Robertson, Gregory M.; Smith, Samuel I.; DiAngelo, Justin R.; Sassu, Eric D.; Bhalla, Satish C.; Sharif, Karim A.; Choeying, Tenzin; Macias, Jason S.; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E.; Alvarez, Consuelo J.; Davis, Kristen C.; Dunham, Carrie A.; Grantham, Alaina J.; Hare, Amber N.; Schottler, Jennifer; Scott, Zackary W.; Kuleck, Gary A.; Yu, Nicole S.; Kaehler, Marian M.; Jipp, Jacob; Overvoorde, Paul J.; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A.; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T.; Poet, Jeffrey L.; Allen, Alica B.; Anderson, John E.; Barnett, Jason M.; Baumgardner, Jordan S.; Brown, Adam D.; Carney, Jordan E.; Chavez, Ramiro A.; Christgen, Shelbi L.; Christie, Jordan S.; Clary, Andrea N.; Conn, Michel A.; Cooper, Kristen M.; Crowley, Matt J.; Crowley, Samuel T.; Doty, Jennifer S.; Dow, Brian A.; Edwards, Curtis R.; Elder, Darcie D.; Fanning, John P.; Janssen, Bridget M.; Lambright, Anthony K.; Lane, Curtiss E.; Limle, Austin B.; Mazur, Tammy; McCracken, Marly R.; McDonough, Alexa M.; Melton, Amy D.; Minnick, Phillip J.; Musick, Adam E.; Newhart, William H.; Noynaert, Joseph W.; Ogden, Bradley J.; Sandusky, Michael W.; Schmuecker, Samantha M.; Shipman, Anna L.; Smith, Anna L.; Thomsen, Kristen M.; Unzicker, Matthew R.; Vernon, William B.; Winn, Wesley W.; Woyski, Dustin S.; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J.; Aronhalt, Todd; Bellush, James M.; Burke, Christa; DeFazio, Steve; Does, Benjamin R.; Johnson, Todd D.; Keysock, Nicholas; Knudsen, Nelson H.; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S.; Stagaard, Erica; Starcher, Justin R.; Waggoner, Andrew W.; Yemelyanova, Anastasia K.; Hark, Amy T.; Bertolet, Anne; Kuschner, Cyrus E.; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E.; Smith, Mary A.; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S. Catherine Silver; Henry, Tyneshia C. P.; Johnson, Ashlee G.; White, Jackie X.; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L. M.; Chau, Kim M.; Ward, Alyssa; Regisford, E. Gloria C.; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M.; Bahr, Thomas J.; Caesar, Nicole M.; Campana, Christopher; Cassidy, Daniel W.; Cognetti, Peter A.; English, Johnathan D.; Fadus, Matthew C.; Fick, Cameron N.; Freda, Philip J.; Hennessy, Bryan M.; Hockenberger, Kelsey; Jones, Jennifer K.; King, Jessica E.; Knob, Christopher R.; Kraftmann, Karen J.; Li, Linghui; Lupey, Lena N.; Minniti, Carl J.; Minton, Thomas F.; Moran, Joseph V.; Mudumbi, Krishna; Nordman, Elizabeth C.; Puetz, William J.; Robinson, Lauren M.; Rose, Thomas J.; Sweeney, Edward P.; Timko, Ashley S.; Paetkau, Don W.; Eisler, Heather L.; Aldrup, Megan E.; Bodenberg, Jessica M.; Cole, Mara G.; Deranek, Kelly M.; DeShetler, Megan; Dowd, Rose M.; Eckardt, Alexandra K.; Ehret, Sharon C.; Fese, Jessica; Garrett, Amanda D.; Kammrath, Anna; Kappes, Michelle L.; Light, Morgan R.; Meier, Anne C.; O’Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R.; Reilly, Mary T.; Robinett, Deirdre; Rossi, Nadine L.; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M.; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R.; Herrick, Douglas A.; Khoury, Christopher B.; Lea, Charlotte; Louie, Christopher A.; Lowell, Shannon M.; Reynolds, Thomas J.; Schibler, Jeanine; Scoma, Alexandra H.; Smith-Gee, Maxwell T.; Tuberty, Sarah; Smith, Christopher D.; Lopilato, Jane E.; Hauke, Jeanette; Roecklein-Canfield, Jennifer A.; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A.; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R.; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R.; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R.; Flohr, Sarah; Flores, Amanda H.; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B.; Smith, Jonathan E.; Unruh, Anna K.; Velasquez, Vicente; Wolski, Matthew W.; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E.; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J.; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T.; Moore, Zachary D.; Savell, Christopher D.; Watson, Reece; Mel, Stephanie F.; Anilkumar, Arjun A.; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M.; Dai, Tiffany; Garbagnati, Giancarlo F.; Horton, Lanor S.; Kim, Dongyeon; Lau, Joyce H.; Liu, James Z.; Mach, Sandy D.; Phan, Thu A.; Ren, Yi; Stapleton, Kenneth E.; Strelitz, Jean M.; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C.; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J.; Fafara-Thompson, Antoinette E.; Gross, Meleah J.; Gygi, Amber M.; Jackson, Lesley E.; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L.; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L.; Neely, Jessica; Ogawa, Emmy E.; Rich, Ashley; Rogers, Anna; Spencer, J. Devin; Stemler, Kristina M.; Throm, Allison A.; Van Camp, Matt; Weihbrecht, Katie; Wiles, T. Aaron; Williams, Mallory A.; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M.; Bashiri, Azita; Bower, Mindy E.; Florian, Kayla A.; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S.; Karim, Helmet; Mullen, Victor W.; Pelchen, Carly E.; Yenerall, Paul M.; Zhang, Jiayu; Rubin, Michael R.; Arias-Mejias, Suzette M.; Bermudez-Capo, Armando G.; Bernal-Vega, Gabriela V.; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G.; Martinez-Rodriguez, Javier O.; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O.; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J.; Santiago-Sanabria, Arnaldo J.; Senquiz-Gonzalez, Andrea M.; delValle, Frank R. Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I.; Zambrana-Burgos, Joan D.; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D.; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P.; Collado-Méndez, Xavier A.; Colón-Cruz, Luis R.; Correa-Muller, Ana I.; Crooke-Rosado, Jonathan L.; Cruz-García, José M.; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M.; Feliciano-Cancela, Alex J.; Gónzalez-Pérez, Valerie M.; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N.; Laboy-Corales, Ángel L.; Llaurador-Caraballo, Gabriela A.; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A.; Martínez-Traverso, Idaliz M.; Medina-Ortega, Kiara N.; Méndez-Castellanos, Sonya G.; Menéndez-Serrano, Krizia C.; Morales-Caraballo, Carol I.; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M.; Ramírez-Aponte, Edwin G.; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S.; Rivera-Pagán, Ingrid T.; Rivera-Vicéns, Ramón E.; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O.; Rodríguez-García, Priscila M.; Rodríguez-Laboy, Abneris E.; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L.; Rubio-Marrero, Eva N.; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L.; Santos-Ramos, Carlos E.; Serrano-González, Joseline; Tamayo-Figueroa, Alina M.; Tascón-Peñaranda, Edna P.; Torres-Castillo, José L.; Valentín-Feliciano, Nelson A.; Valentín-Feliciano, Yashira M.; Vargas-Barreto, Nadyan M.; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R.; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R.; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L.; Molleston, Jerome M.; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J.; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P.; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y.; Zheng, Yin; Preuss, Mary L.; Garcia, Angelica; Juergens, Matt; Morris, Robert W.; Nagengast, Alexis A.; Azarewicz, Julie; Carr, Thomas J.; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L.; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L.; Adams, Ashley L.; Barnard, Brianna K.; Cheramie, Martin N.; Eime, Anne M.; Golden, Kathryn L.; Hawkins, Allyson P.; Hill, Jessica E.; Kampmeier, Jessica A.; Kern, Cody D.; Magnuson, Emily E.; Miller, Ashley R.; Morrow, Cody M.; Peairs, Julia C.; Pickett, Gentry L.; Popelka, Sarah A.; Scott, Alexis J.; Teepe, Emily J.; TerMeer, Katie A.; Watchinski, Carmen A.; Watson, Lucas A.; Weber, Rachel E.; Woodard, Kate A.; Barnard, Daron C.; Appiah, Isaac; Giddens, Michelle M.; McNeil, Gerard P.; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C.; Buhler, Jeremy; Mardis, Elaine R.

    2015-01-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  10. Impact of trace metals on the water structure at the calcite surface

    NASA Astrophysics Data System (ADS)

    Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

    2014-05-01

    Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

  11. Porosity and mechanical properties of zirconium ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buyakova, S., E-mail: sbuyakova@ispms.tsc.ru; Kulkov, S.; Tomsk Polytechnic University

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. Theremore » were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.« less

  12. Accelerated Evolution in Distinctive Species Reveals Candidate Elements for Clinically Relevant Traits, Including Mutation and Cancer Resistance.

    PubMed

    Ferris, Elliott; Abegglen, Lisa M; Schiffman, Joshua D; Gregg, Christopher

    2018-03-06

    The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genome-wide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ∼33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Mineralogy and petrogenesis of lunar magnesian granulitic meteorite Northwest Africa 5744

    NASA Astrophysics Data System (ADS)

    Kent, Jeremy J.; Brandon, Alan D.; Joy, Katherine H.; Peslier, Anne H.; Lapen, Thomas J.; Irving, Anthony J.; Coleff, Daniel M.

    2017-09-01

    Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first-discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg-suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact-related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact-induced shock.

  14. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.

    PubMed

    Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D

    2018-06-05

    Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. The complex magnetic field topology of the cool Ap star 49 Cam

    NASA Astrophysics Data System (ADS)

    Silvester, J.; Kochukhov, O.; Rusomarov, N.; Wade, G. A.

    2017-10-01

    49 Cam is a cool magnetic chemically peculiar star that has been noted for showing strong, complex Zeeman linear polarization signatures. This paper describes magnetic and chemical surface maps obtained for 49 Cam using the Invers10 magnetic Doppler imaging code and high-resolution spectropolarimetric data in all four Stokes parameters collected with the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and Pic du Midi Observatory. The reconstructed magnetic field maps of 49 Cam show a relatively complex structure. Describing the magnetic field topology in terms of spherical harmonics, we find significant contributions of modes up to ℓ = 3, including toroidal components. Observations cannot be reproduced using a simple low-order multipolar magnetic field structure. 49 Cam exhibits a level of field complexity that has not been seen in magnetic maps of other cool Ap stars. Hence, we concluded that relatively complex magnetic fields are observed in Ap stars at both low and high effective temperatures. In addition to mapping the magnetic field, we also derive surface abundance distributions of nine chemical elements, including Ca, Sc, Ti, Cr, Fe, Ce, Pr, Nd and Eu. Comparing these abundance maps with the reconstructed magnetic field geometry, we find no clear relationship of the abundance distributions with the magnetic field for some elements. However, for other elements some distinct patterns are found. We discuss these results in the context of other recent magnetic mapping studies and theoretical predictions of radiative diffusion.

  16. Thermal stability of DNA quadruplex-duplex hybrids.

    PubMed

    Lim, Kah Wai; Khong, Zi Jian; Phan, Anh Tuân

    2014-01-14

    DNA has the capacity to adopt several distinct structural forms, such as duplex and quadruplex helices, which have been implicated in cellular processes and shown to exhibit important functional properties. Quadruplex-duplex hybrids, generated from the juxtaposition of these two structural elements, could find applications in therapeutics and nanotechnology. Here we used NMR and CD spectroscopy to investigate the thermal stability of two classes of quadruplex-duplex hybrids comprising fundamentally distinct modes of duplex and quadruplex connectivity: Construct I involves the coaxial orientation of the duplex and quadruplex helices with continual base stacking across the two components; Construct II involves the orthogonal orientation of the duplex and quadruplex helices with no base stacking between the two components. We have found that for both constructs, the stability of the quadruplex generally increases with the length of the stem-loop incorporated, with respect to quadruplexes comprising nonstructured loops of the same length, which showed a continuous drop in stability with increasing loop length. The stability of these complexes, particularly Construct I, can be substantially influenced by the base-pair steps proximal to the quadruplex-duplex junction. Bulges at the junction are largely detrimental to the adoption of the desired G-quadruplex topology for Construct I but not for Construct II. These findings should facilitate future design and prediction of quadruplex-duplex hybrids.

  17. Autoantigens in systemic autoimmunity: critical partner in pathogenesis

    PubMed Central

    Rosen, A.; Casciola-Rosen, L.

    2013-01-01

    Understanding the mechanisms of human autoimmune rheumatic diseases presents a major challenge, due to marked complexity involving multiple domains, including genetics, environment and kinetics. In spite of this, the immune response in each of these diseases is largely specific, with distinct autoantibodies associated with different disease phenotypes. Defining the basis of such specificity will provide important insights into disease mechanism. Accumulating data suggest an interesting paradigm for antigen selection in autoimmunity, in which target tissue and immune effector pathways form a mutually reinforcing partnership. In this model, distinct autoantibody patterns in autoimmunity may be viewed as the integrated, amplified output of several interacting systems, including: (i) the specific target tissue, (ii) the immune effector pathways that modify antigen structure and cause tissue damage and dysfunction, and (iii) the homeostatic pathways activated in response to damage (e.g. regeneration/differentiation/cytokine effects). As unique antigen expression and structure may occur exclusively under these amplifying circumstances, it is useful to view the molecules targeted as ‘neo-antigens’, that is, antigens expressed under specific conditions, rather than ubiquitously. This model adds an important new dynamic element to selection of antigen targets in autoimmunity, and suggests that the amplifying loop will only be identified by studying the diseased target tissue in vivo. PMID:19493056

  18. Large scale genomic reorganization of topological domains at the HoxD locus.

    PubMed

    Fabre, Pierre J; Leleu, Marion; Mormann, Benjamin H; Lopez-Delisle, Lucille; Noordermeer, Daan; Beccari, Leonardo; Duboule, Denis

    2017-08-07

    The transcriptional activation of HoxD genes during mammalian limb development involves dynamic interactions with two topologically associating domains (TADs) flanking the HoxD cluster. In particular, the activation of the most posterior HoxD genes in developing digits is controlled by regulatory elements located in the centromeric TAD (C-DOM) through long-range contacts. To assess the structure-function relationships underlying such interactions, we measured compaction levels and TAD discreteness using a combination of chromosome conformation capture (4C-seq) and DNA FISH. We assessed the robustness of the TAD architecture by using a series of genomic deletions and inversions that impact the integrity of this chromatin domain and that remodel long-range contacts. We report multi-partite associations between HoxD genes and up to three enhancers. We find that the loss of native chromatin topology leads to the remodeling of TAD structure following distinct parameters. Our results reveal that the recomposition of TAD architectures after large genomic re-arrangements is dependent on a boundary-selection mechanism in which CTCF mediates the gating of long-range contacts in combination with genomic distance and sequence specificity. Accordingly, the building of a recomposed TAD at this locus depends on distinct functional and constitutive parameters.

  19. The Role of Triads in the Evolution of the Periodic Table: Past and Present

    ERIC Educational Resources Information Center

    Scerri, Eric

    2008-01-01

    The purpose of this article is to propose a new design for the presentation of the periodic system of the elements. It is a system that highlights the fundamental importance of elements as basic substances rather than elements as simple substances, a distinction that is explained in the article. The proposed table is a variant of the Janet or…

  20. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging.

    PubMed

    Meredith, Dennis S; Losina, Elena; Neumann, Gesa; Yoshioka, Hiroshi; Lang, Philipp K; Katz, Jeffrey N

    2009-10-29

    In this cross-sectional study, we conducted a comprehensive assessment of all articular elements that could be measured using knee MRI. We assessed the association of pathological change in multiple articular structures involved in the pathoanatomy of osteoarthritis. Knee MRI scans from patients over 45 years old were assessed using a semi-quantitative knee MRI assessment form. The form included six distinct elements: cartilage, bone marrow lesions, osteophytes, subchondral sclerosis, joint effusion and synovitis. Each type of pathology was graded using an ordinal scale with a value of zero indicating no pathology and higher values indicating increasingly severe levels of pathology. The principal dependent variable for comparison was the mean cartilage disease score (CDS), which captured the aggregate extent of involvement of articular cartilage. The distribution of CDS was compared to the individual and cumulative distributions of each articular element using the Chi-squared test. The correlations between pathological change in the various articular structures were assessed in a Spearman correlation table. Data from 140 patients were available for review. The cohort had a median age of 61 years (range 45-89) and was 61% female. The cohort included a wide spectrum of OA severity. Our analysis showed a statistically significant trend towards pathological change involving more articular elements as CDS worsened (p-value for trend < 0.0001). Comparison of CDS to change in the severity of pathology of individual articular elements showed statistically significant trends towards more severe pathology as CDS worsened for osteophytes (p-value for trend < 0.0001), bone marrow lesions (p = 0.0003), and subchondral sclerosis (p = 0.009), but not joint effusion or synovitis. There was a moderate correlation between cartilage damage, osteophytes and BMLs as well as a moderate correlation between joint effusion and synovitis. However, cartilage damage and osteophytes were only weakly associated with synovitis or joint effusion. Our results support an inter-relationship of multiple articular elements in the pathoanatomy of knee OA. Prospective studies of OA pathogenesis in humans are needed to correlate these findings to clinically relevant outcomes such as pain and function.

  1. Petrographic and geochemical characterization of the granitic rocks of the Araguainha impact crater, Brazil

    NASA Astrophysics Data System (ADS)

    Silva, Dailto; Lana, Cristiano; Souza Filho, Carlos Roberto

    2016-03-01

    Petrographic and geochemical data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact-induced congruent melting of an alkali-granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and geochemical variability in the granite and its impactogenic derivatives, and therefore, little is known about the geochemical behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium-rich granite, similar to postcollisional, A-type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar geochemical composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact-induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with geochemical data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.

  2. Laser-Scanner Survey of Structural Disorders: AN Instrument to Inspect the History of Parma Cathedral's Central Nave

    NASA Astrophysics Data System (ADS)

    Bruno, N.; Coïsson, E.; Cotti, M.

    2017-05-01

    This paper presents the use of laser scanner derived data for the study of the structural disorders in the central nave of the Parma Cathedral. An accurate three-dimensional model of the entire nave was realized to investigate deformations, in order to reconstruct the original conformation and the subsequent evolutions, also in comparison with previous surveys. Specifically, for the analysis presented in the paper, seven scans were performed, one for each bay: the results allowed to compare the deformations on the seven vaults, on the transverse and diagonal arches, giving first hints on the possible differences in the behaviour between the different elements. The measures on the levels of floor and pillars bases were analysed in a historical monitoring approach, in order to retrace the evolution of the differential settlements in time, since the construction of the building. Moreover, a structural analysis has been carried out on one transverse arch with distinct element analysis, with two different approaches. In one case, the structure was inserted exactly as surveyed, and then subjected to the actions. In the second case, the original geometry, before the deformation, was retraced through a parametric approach and the structural analysis basically started at the beginning of the building's life, thus trying to model not only the present structural situation, but also the path which led to the current deformation. The results were particularly meaningful as they showed that in the first case, disregarding the footsteps of history, the stress pattern inside the masonry was very different from the one obtained in the second case, which is more likely to represent the present conditions.

  3. Using Symmetry to Design Self-Assembling Protein Cages and Nanomaterials on the Mid-Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Yeates, Todd

    Self-assembling molecular structures having diverse cellular functions are widespread in nature. Some of the largest and most sophisticated types are built from many copies of the same or similar protein molecules arranged following principles of symmetry. A long-standing engineering goal has been to design novel protein molecules to self-assemble into geometrically specific structures similar to the extraordinary structures that have evolved in Nature. Practical routes to this goal have been developed by using ideas in symmetry to articulate the minimum design requirements for achieving various types of symmetric architectures, including cages, extended two-dimensional layers, and three-dimensional crystalline materials. The key requirement is that two distinct self-associating interfaces, each conferring one element of rotational symmetry, have to be engineered into the protein molecule (or molecules), following particular geometric specifications. The main principle is that combining two separate symmetry elements into a single molecular entity produces a molecule that necessarily assembles into an architecture dictated by a symmetry group that is the product of the two simpler contributing symmetries. Recent experiments have demonstrated success using a variety of symmetry-based strategies. Strategic variations are emerging that differ from each other with respect to biophysical features such as flexibility vs rigidity in the assembled structures, and with respect to design aspects such as whether the protein interfaces are inherited from natural oligomeric proteins or are designed de novo by advanced computational methods. The success of these strategies has been proven by determining crystal structures of several giant, self-assembling protein cages and clusters (10-25 nm in diameter), created by design. The ability to create sophisticated supramolecular structures from designed protein subunits opens the way to broad applications in synthetic biology and nanotechnology.

  4. ARE ELEMENTAL FINGERPRINTS OF FISH OTOLITHS DISTINCT AMONG GREAT LAKES COASTAL NURSERY AREAS?

    EPA Science Inventory

    Elemental composition of an otolith reflects a fish's rearing environment,
    so otolith geochemistry can record differences in ambient water conditions
    specific to habitats used during a fish's life history. Although few studies
    have been conducted in freshwater, trace ...

  5. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane.

    PubMed

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-04-01

    The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Together, these bc(1) subunits build up the core structure of the cytochrome bc(1) complex, which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc(1) core structure may represent a true assembly intermediate during the maturation of the bc(1) complex; first, because of its wide distribution in distinct yeast deletion strains and, second, for its characteristics of stability, which resemble those of the intact homodimeric bc(1) complex. By contrast, the bc(1) core structure is unable to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc(1) complex provides a number of new elements clarifying the molecular events leading to the maturation of the yeast cytochrome bc(1) complex in the inner mitochondrial membrane.

  6. Evidence that assembly of the yeast cytochrome bc1 complex involves formation of a large core structure in the inner mitochondrial membrane

    PubMed Central

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.

    2009-01-01

    The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481

  7. Enhancer elements upstream of the SHOX gene are active in the developing limb.

    PubMed

    Durand, Claudia; Bangs, Fiona; Signolet, Jason; Decker, Eva; Tickle, Cheryll; Rappold, Gudrun

    2010-05-01

    Léri-Weill Dyschondrosteosis (LWD) is a dominant skeletal disorder characterized by short stature and distinct bone anomalies. SHOX gene mutations and deletions of regulatory elements downstream of SHOX resulting in haploinsufficiency have been found in patients with LWD. SHOX encodes a homeodomain transcription factor and is known to be expressed in the developing limb. We have now analyzed the regulatory significance of the region upstream of the SHOX gene. By comparative genomic analyses, we identified several conserved non-coding elements, which subsequently were tested in an in ovo enhancer assay in both chicken limb bud and cornea, where SHOX is also expressed. In this assay, we found three enhancers to be active in the developing chicken limb, but none were functional in the developing cornea. A screening of 60 LWD patients with an intact SHOX coding and downstream region did not yield any deletion of the upstream enhancer region. Thus, we speculate that SHOX upstream deletions occur at a lower frequency because of the structural organization of this genomic region and/or that SHOX upstream deletions may cause a phenotype that differs from the one observed in LWD.

  8. Enhancer elements upstream of the SHOX gene are active in the developing limb

    PubMed Central

    Durand, Claudia; Bangs, Fiona; Signolet, Jason; Decker, Eva; Tickle, Cheryll; Rappold, Gudrun

    2010-01-01

    Léri-Weill Dyschondrosteosis (LWD) is a dominant skeletal disorder characterized by short stature and distinct bone anomalies. SHOX gene mutations and deletions of regulatory elements downstream of SHOX resulting in haploinsufficiency have been found in patients with LWD. SHOX encodes a homeodomain transcription factor and is known to be expressed in the developing limb. We have now analyzed the regulatory significance of the region upstream of the SHOX gene. By comparative genomic analyses, we identified several conserved non-coding elements, which subsequently were tested in an in ovo enhancer assay in both chicken limb bud and cornea, where SHOX is also expressed. In this assay, we found three enhancers to be active in the developing chicken limb, but none were functional in the developing cornea. A screening of 60 LWD patients with an intact SHOX coding and downstream region did not yield any deletion of the upstream enhancer region. Thus, we speculate that SHOX upstream deletions occur at a lower frequency because of the structural organization of this genomic region and/or that SHOX upstream deletions may cause a phenotype that differs from the one observed in LWD. PMID:19997128

  9. Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats.

    PubMed

    de Sotero-Caio, Cibele Gomes; Cabral-de-Mello, Diogo Cavalcanti; Calixto, Merilane da Silva; Valente, Guilherme Targino; Martins, Cesar; Loreto, Vilma; de Souza, Maria José; Santos, Neide

    2017-10-01

    Despite their ubiquitous incidence, little is known about the chromosomal distribution of long interspersed elements (LINEs) in mammalian genomes. Phyllostomid bats, characterized by lineages with distinct trends of chromosomal evolution coupled with remarkable ecological and taxonomic diversity, represent good models to understand how these repetitive sequences contribute to the evolution of genome architecture and its link to lineage diversification. To test the hypothesis that LINE-1 sequences were important modifiers of bat genome architecture, we characterized the distribution of LINE-1-derived sequences on genomes of 13 phyllostomid species within a phylogenetic framework. We found massive accumulation of LINE-1 elements in the centromeres of most species: a rare phenomenon on mammalian genomes. We hypothesize that expansion of these elements has occurred early in the radiation of phyllostomids and recurred episodically. LINE-1 expansions on centromeric heterochromatin probably spurred chromosomal change before the radiation of phyllostomids into the extant 11 subfamilies and contributed to the high degree of karyotypic variation observed among different lineages. Understanding centromere architecture in a variety of taxa promises to explain how lineage-specific changes on centromere structure can contribute to karyotypic diversity while not disrupting functional constraints for proper cell division.

  10. Evolution of neuroarchitecture, multi-level analyses and calibrative reductionism

    PubMed Central

    Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.

    2012-01-01

    Evolution has sculpted the incredibly complex human nervous system, among the most complex functions of which extend beyond the individual to an intricate social structure. Although these functions are deterministic, those determinants are legion, heavily interacting and dependent on a specific evolutionary trajectory. That trajectory was directed by the adaptive significance of quasi-random genetic variations, but was also influenced by chance and caprice. With a different evolutionary pathway, the same neural elements could subserve functions distinctly different from what they do in extant human brains. Consequently, the properties of higher level neural networks cannot be derived readily from the properties of the lower level constituent elements, without studying these elements in the aggregate. Thus, a multi-level approach to integrative neuroscience may offer an optimal strategy. Moreover, the process of calibrative reductionism, by which concepts and understandings from one level of organization or analysis can mutually inform and ‘calibrate’ those from other levels (both higher and lower), may represent a viable approach to the application of reductionism in science. This is especially relevant in social neuroscience, where the basic subject matter of interest is defined by interacting organisms across diverse environments. PMID:23386961

  11. Mammalian monogamy is not controlled by a single gene

    PubMed Central

    Fink, Sabine; Excoffier, Laurent; Heckel, Gerald

    2006-01-01

    Complex social behavior in Microtus voles and other mammals has been postulated to be under the direct genetic control of a single locus: the arginine vasopressin 1a receptor (avpr1a) gene. Using a phylogenetic approach, we show that a repetitive element in the promoter region of avpr1a, which reportedly causes social monogamy, is actually widespread in nonmonogamous Microtus and other rodents. There was no evidence for intraspecific polymorphism in regard to the presence or absence of the repetitive element. Among 25 rodent species studied, the element was absent in only two closely related nonmonogamous species, indicating that this absence is certainly the result of an evolutionarily recent loss. Our analyses further demonstrate that the repetitive structures upstream of the avpr1a gene in humans and primates, which have been associated with social bonding, are evolutionarily distinct from those in rodents. Our evolutionary approach reveals that monogamy in rodents is not controlled by a single polymorphism in the promoter region of the avpr1a gene. We thus resolve the contradiction between the claims for an evolutionarily conserved genetic programming of social behavior in mammals and the vast evidence for highly complex and flexible mating systems. PMID:16832060

  12. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies.

    PubMed

    Yutin, Natalya; Raoult, Didier; Koonin, Eugene V

    2013-05-23

    Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide viruses and other classes of capsid-less mobile elements.

  13. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies

    PubMed Central

    2013-01-01

    Background Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. Results We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknownvirus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. Conclusions The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide viruses and other classes of capsid-less mobile elements. PMID:23701946

  14. A robust automated system elucidates mouse home cage behavioral structure

    PubMed Central

    Goulding, Evan H.; Schenk, A. Katrin; Juneja, Punita; MacKay, Adrienne W.; Wade, Jennifer M.; Tecott, Laurence H.

    2008-01-01

    Patterns of behavior exhibited by mice in their home cages reflect the function and interaction of numerous behavioral and physiological systems. Detailed assessment of these patterns thus has the potential to provide a powerful tool for understanding basic aspects of behavioral regulation and their perturbation by disease processes. However, the capacity to identify and examine these patterns in terms of their discrete levels of organization across diverse behaviors has been difficult to achieve and automate. Here, we describe an automated approach for the quantitative characterization of fundamental behavioral elements and their patterns in the freely behaving mouse. We demonstrate the utility of this approach by identifying unique features of home cage behavioral structure and changes in distinct levels of behavioral organization in mice with single gene mutations altering energy balance. The robust, automated, reproducible quantification of mouse home cage behavioral structure detailed here should have wide applicability for the study of mammalian physiology, behavior, and disease. PMID:19106295

  15. An atomic structure of human γ-secretase

    NASA Astrophysics Data System (ADS)

    Bai, Xiao-Chen; Yan, Chuangye; Yang, Guanghui; Lu, Peilong; Ma, Dan; Sun, Linfeng; Zhou, Rui; Scheres, Sjors H. W.; Shi, Yigong

    2015-09-01

    Dysfunction of the intramembrane protease γ-secretase is thought to cause Alzheimer's disease, with most mutations derived from Alzheimer's disease mapping to the catalytic subunit presenilin 1 (PS1). Here we report an atomic structure of human γ-secretase at 3.4 Å resolution, determined by single-particle cryo-electron microscopy. Mutations derived from Alzheimer's disease affect residues at two hotspots in PS1, each located at the centre of a distinct four transmembrane segment (TM) bundle. TM2 and, to a lesser extent, TM6 exhibit considerable flexibility, yielding a plastic active site and adaptable surrounding elements. The active site of PS1 is accessible from the convex side of the TM horseshoe, suggesting considerable conformational changes in nicastrin extracellular domain after substrate recruitment. Component protein APH-1 serves as a scaffold, anchoring the lone transmembrane helix from nicastrin and supporting the flexible conformation of PS1. Ordered phospholipids stabilize the complex inside the membrane. Our structure serves as a molecular basis for mechanistic understanding of γ-secretase function.

  16. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals.

    PubMed

    Fung, Ho Yee Joyce; Fu, Szu-Chin; Chook, Yuh Min

    2017-03-10

    Nuclear export receptor CRM1 binds highly variable nuclear export signals (NESs) in hundreds of different cargoes. Previously we have shown that CRM1 binds NESs in both polypeptide orientations (Fung et al., 2015). Here, we show crystal structures of CRM1 bound to eight additional NESs which reveal diverse conformations that range from loop-like to all-helix, which occupy different extents of the invariant NES-binding groove. Analysis of all NES structures show 5-6 distinct backbone conformations where the only conserved secondary structural element is one turn of helix that binds the central portion of the CRM1 groove. All NESs also participate in main chain hydrogen bonding with human CRM1 Lys568 side chain, which acts as a specificity filter that prevents binding of non-NES peptides. The large conformational range of NES backbones explains the lack of a fixed pattern for its 3-5 hydrophobic anchor residues, which in turn explains the large array of peptide sequences that can function as NESs.

  17. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    PubMed

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    Microfossils of large filamentous trichomic prokaryotes have been detected during in-situ investigations of carbonaceous meteorites. This research has been carried out using the Field Emission Scanning Electron Microscope (FESEM) to examine freshly fractured interior surfaces of the meteorites. The images obtained reveal that many of these remains are embedded in the meteorite rock matrix. Energy Dispersive X-Ray Spectroscopy (EDS) studies establish that the filamentous microstructures have elemental compositions consistent with the meteorite matrix, but are often encased within carbon-rich electron transparent sheath-like structures infilled with magnesium sulfate. This is consistent with the taphonomic modes of fossilization of cyanobacteria and sulphur bacteria, since the life habits and processes of these microorganisms frequently result in distinctive chemical biosignatures associated with the properties of their cell-walls, trichomes, and the extracellular polymeric substances (EPS) of the sheath. In this paper the evidence for biogenicity presented includes detailed morphological and morphometric data consistent with known characteristics of uniseriate and multiseriate cyanobacteria. Evidence for indigeneity includes the embedded nature of the fossils and elemental compositions inconsistent with modern biocontaminants.

  19. An approach for utilizing clinical statements in HL7 RIM to evaluate eligibility criteria.

    PubMed

    Bache, Richard; Daniel, Christel; James, Julie; Hussain, Sajjad; McGilchrist, Mark; Delaney, Brendan; Taweel, Adel

    2014-01-01

    The HL7 RIM (Reference Information Model) is a commonly used standard for the exchange of clinical data and can be employed for integrating the patient care and clinical research domains. Yet it is not sufficiently well specified to ensure a canonical representation of structured clinical data when used for the automated evaluation of eligibility criteria from a clinical trial protocol. We present an approach to further constrain the RIM to create a common information model to hold clinical data. In order to demonstrate our approach, we identified 132 distinct data elements from 10 rich clinical trails. We then defined a taxonomy to (i) identify the types of data elements that would need to be stored and (ii) define the types of predicate that would be used to evaluate them. This informed the definition of a pattern used to represent the data, which was shown to be sufficient for storing and evaluating the clinical statements required by the trials.

  20. Serial grouping of 2D-image regions with object-based attention in humans.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-06-13

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.

  1. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    PubMed

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  3. A convergent functional architecture of the insula emerges across imaging modalities.

    PubMed

    Kelly, Clare; Toro, Roberto; Di Martino, Adriana; Cox, Christine L; Bellec, Pierre; Castellanos, F Xavier; Milham, Michael P

    2012-07-16

    Empirical evidence increasingly supports the hypothesis that patterns of intrinsic functional connectivity (iFC) are sculpted by a history of evoked coactivation within distinct neuronal networks. This, together with evidence of strong correspondence among the networks defined by iFC and those delineated using a variety of other neuroimaging techniques, suggests a fundamental brain architecture detectable across multiple functional and structural imaging modalities. Here, we leverage this insight to examine the functional organization of the human insula. We parcellated the insula on the basis of three distinct neuroimaging modalities - task-evoked coactivation, intrinsic (i.e., task-independent) functional connectivity, and gray matter structural covariance. Clustering of these three different covariance-based measures revealed a convergent elemental organization of the insula that likely reflects a fundamental brain architecture governing both brain structure and function at multiple spatial scales. While not constrained to be hierarchical, our parcellation revealed a pseudo-hierarchical, multiscale organization that was consistent with previous clustering and meta-analytic studies of the insula. Finally, meta-analytic examination of the cognitive and behavioral domains associated with each of the insular clusters obtained elucidated the broad functional dissociations likely underlying the topography observed. To facilitate future investigations of insula function across healthy and pathological states, the insular parcels have been made freely available for download via http://fcon_1000.projects.nitrc.org, along with the analytic scripts used to perform the parcellations. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Cooperative interactions between hippocampal and striatal systems support flexible navigation

    PubMed Central

    Brown, Thackery I; Ross, Robert S; Tobyne, Sean M; Stern, Chantal E

    2012-01-01

    Research in animals and humans has demonstrated that the hippocampus is critical for retrieving distinct representations of overlapping sequences of information. There is recent evidence that the caudate nucleus and orbitofrontal cortex are also involved in disambiguation of overlapping spatial representations. The hippocampus and caudate are functionally distinct regions, but both have anatomical links with the orbitofrontal cortex. The present study used an fMRI-based functional connectivity analysis in humans to examine the functional relationship between the hippocampus, caudate, and orbitofrontal cortex when participants use contextual information to navigate well-learned spatial routes which share common elements. Participants were trained outside the scanner to navigate virtual mazes from a first-person perspective. Overlapping condition mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping condition mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required contextual information identifying the current navigational route to guide the appropriate response for a given trial. Results revealed greater functional connectivity between the hippocampus, caudate, and orbitofrontal cortex for overlapping mazes compared to non-overlapping mazes. The current findings suggest that the hippocampus and caudate interact with prefrontal structures cooperatively for successful contextually-dependent navigation. PMID:22266411

  5. Electronegativity and the Bond Triangle

    ERIC Educational Resources Information Center

    Meek, Terry L.; Garner, Leah D.

    2005-01-01

    The usefulness of the bond triangle for categorizing compounds of the main-group elements may be extended by the use of weighted average electronegativities to allow distinction between compounds of the same elements with different stoichiometries. In such cases a higher valency for the central atom leads to greater covalent character and the…

  6. Processing structure in language and music: a case for shared reliance on cognitive control.

    PubMed

    Slevc, L Robert; Okada, Brooke M

    2015-06-01

    The relationship between structural processing in music and language has received increasing interest in the past several years, spurred by the influential Shared Syntactic Integration Resource Hypothesis (SSIRH; Patel, Nature Neuroscience, 6, 674-681, 2003). According to this resource-sharing framework, music and language rely on separable syntactic representations but recruit shared cognitive resources to integrate these representations into evolving structures. The SSIRH is supported by findings of interactions between structural manipulations in music and language. However, other recent evidence suggests that such interactions also can arise with nonstructural manipulations, and some recent neuroimaging studies report largely nonoverlapping neural regions involved in processing musical and linguistic structure. These conflicting results raise the question of exactly what shared (and distinct) resources underlie musical and linguistic structural processing. This paper suggests that one shared resource is prefrontal cortical mechanisms of cognitive control, which are recruited to detect and resolve conflict that occurs when expectations are violated and interpretations must be revised. By this account, musical processing involves not just the incremental processing and integration of musical elements as they occur, but also the incremental generation of musical predictions and expectations, which must sometimes be overridden and revised in light of evolving musical input.

  7. Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula

    PubMed Central

    Gardères, Johan; Bedoux, Gilles; Koutsouveli, Vasiliki; Crequer, Sterenn; Desriac, Florie; Le Pennec, Gaël

    2015-01-01

    Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it. PMID:26262625

  8. Structure and mechanical behavior of bird beaks

    NASA Astrophysics Data System (ADS)

    Seki, Yasuaki

    The structure and mechanical behavior of Toco toucan (Ramphastos toco) and Wreathed hornbill (Rhyticeros undulatus) beaks were examined. The structure of Toco toucan and Wreathed hornbill beak was found to be a sandwich composite with an exterior of keratin and a fibrous bony network of closed cells made of trabeculae. A distinctive feature of the hornbill beak is its casque formed from cornified keratin layers. The casque is believed to have an acoustic function due to the complex internal structure. The toucan and hornbill beaks have a hollow region that extends from proximal to mid-section. The rhamphotheca is comprised of super-posed polygonal scales (45 mum diameter and 1 mum thickness) fixed by some organic adhesive. The branched intermediate filaments embedded in keratin matrix were discovered by transmission electron microscopy (TEM). The diameter of intermediate laments was ~10 nm. The orientation of intermediate filaments was examined with TEM tomography and the branched filaments were homogeneously distributed. The closed-cell foam is comprised of the fibrous structure of bony struts with an edge connectivity of three or four and the cells are sealed off by the thin membranes. The volumetric structure of bird beak foam was reproduced by computed tomography for finite element modeling.

  9. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event.

    PubMed

    Kasen, Daniel; Metzger, Brian; Barnes, Jennifer; Quataert, Eliot; Ramirez-Ruiz, Enrico

    2017-11-02

    The cosmic origin of elements heavier than iron has long been uncertain. Theoretical modelling shows that the matter that is expelled in the violent merger of two neutron stars can assemble into heavy elements such as gold and platinum in a process known as rapid neutron capture (r-process) nucleosynthesis. The radioactive decay of isotopes of the heavy elements is predicted to power a distinctive thermal glow (a 'kilonova'). The discovery of an electromagnetic counterpart to the gravitational-wave source GW170817 represents the first opportunity to detect and scrutinize a sample of freshly synthesized r-process elements. Here we report models that predict the electromagnetic emission of kilonovae in detail and enable the mass, velocity and composition of ejecta to be derived from observations. We compare the models to the optical and infrared radiation associated with the GW170817 event to argue that the observed source is a kilonova. We infer the presence of two distinct components of ejecta, one composed primarily of light (atomic mass number less than 140) and one of heavy (atomic mass number greater than 140) r-process elements. The ejected mass and a merger rate inferred from GW170817 imply that such mergers are a dominant mode of r-process production in the Universe.

  10. A pseudo-elastic effective material property representation of the costal cartilage for use in finite element models of the whole human body.

    PubMed

    Forman, Jason L; de Dios, Eduardo del Pozo; Kent, Richard W

    2010-12-01

    Injury-predictive finite element (FE) models of the chest must reproduce the structural coupling behavior of the costal cartilage accurately. Gross heterogeneities (the perichondrium and calcifications) may cause models developed based on local material properties to erroneously predict the structural behavior of cartilage segments. This study sought to determine the pseudo-elastic effective material properties required to reproduce the structural behavior of the costal cartilage under loading similar to what might occur in a frontal automobile collision. Twenty-eight segments of cadaveric costal cartilage were subjected to cantilever-like, dynamic loading. Three limited-mesh FE models were then developed for each specimen, having element sizes of 10 mm (typical of current whole-body FE models), 3 mm, and 2 mm. The cartilage was represented as a homogeneous, isotropic, linear elastic material. The elastic moduli of the cartilage models were optimized to fit the anterior-posterior (x-axis) force versus displacement responses observed in the experiments. For a subset of specimens, additional model validation tests were performed under a second boundary condition. The pseudo-elastic effective moduli ranged from 4.8 to 49 MPa, with an average and standard deviation of 22 ± 13.6 MPa. The models were limited in their ability to reproduce the lateral (y-axis) force responses observed in the experiments. The prediction of the x-axis and y-axis forces in the second boundary condition varied. Neither the effective moduli nor the model fit were significantly affected (Student's t-test, p < 0.05) by the model mesh density. The average pseudo-elastic effective moduli were significantly (p < 0.05) greater than local costal cartilage modulus values reported in the literature. These results are consistent with the presence of stiffening heterogeneities within the costal cartilage structure. These effective modulus values may provide guidance for the representation of the costal cartilage in whole-body FE models where these heterogeneities cannot be modeled distinctly.

  11. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.

    PubMed

    Ealo, Joao L; Camacho, Jorge J; Fritsch, Carlos

    2009-04-01

    In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multielement array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/-1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface.

  12. Electron capture to the continuum manifestation in fully differential cross sections for ion impact single ionization

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.

    2018-04-01

    We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.

  13. Spinodal decomposition of the gamma-phase upon quenching in the Ti-Al-Nb ternary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Ebrahimi, Fereshteh

    2010-01-01

    The {gamma}-TiAl with L1{sub 0} crystal structure shows extensive solubility for Nb at elevated temperatures. Recently (Rios et al., Acta materialia 2009; 57:6243), we have demonstrated that the high-Nb {gamma}-TiAl phase becomes unstable upon rapid cooling into a nano-scale two-phase microstructure. In this paper, using detailed compositional and microstructural analyses, we have demonstrated that this phase goes through a spinodal decomposition that results in the compositionally distinct phases identified as a lower-Nb {gamma}-phase and the h-phase, which is rich in Nb and forms by the ordering of this element in the {gamma}-phase.

  14. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guu, Tom S.Y.; Liu, Zheng; Ye, Qiaozhen

    Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-{angstrom} structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt {beta}-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsidmore » protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications.« less

  15. Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics.

    PubMed

    Sun, Yajing; Shuai, Zhigang; Wang, Dong

    2018-05-23

    Few-layered arsenic-phosphorus alloys, AsxP(1-x), with a puckered structure have been recently synthesized and demonstrated with fully tunable band gaps and optical properties. It is predicted that the carrier mobility of monolayer AsP compounds is even higher than that of black phosphorene (b-P). The anisotropic and orthogonal electrical and thermal transport properties of the puckered group VA elements make them intriguing materials for thermoelectric applications. Herein, we investigated the thermal transport properties of AsP based on first-principles molecular dynamics and the Boltzmann transport equation. We reveal that monolayer AsP with three different chemical structures possesses thermal conductivities lower than b-P, but with increased anisotropy. Further, these structures behave profoundly different on heat conduction. This can be attributed to the distinct low-frequency optical modes associated with their bonding nature. Our results highlight the impact of atomic arrangement on the thermal conductivity of AsP, and the structure-property relationship established may guide the fabrication of thermoelectric materials via the engineered alloying method.

  16. Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfei; Liu, Ting-Wei; Semperlotti, Fabio

    2018-05-01

    We report on the design and experimental validation of a two-dimensional phononic elastic waveguide exhibiting topological valley-Hall edge states. The lattice structure of the waveguide is inspired by diatomic graphene, and it is imprinted in an initially flat plate by means of geometric indentations. The indentations are distributed according to a hexagonal lattice structure which guarantees the existence of Dirac dispersion at the boundary of the Brillouin zone. Starting from this basic material, domain walls capable of supporting edge states can be obtained by contrasting waveguides having broken space-inversion symmetry (SIS) achieved by using local resonant elements. Our theoretical study shows that such material maps into the acoustic analog of the quantum valley-Hall effect, while numerical and experimental results confirm the existence of protected edge states traveling along the walls of topologically distinct domains.

  17. Tibrogargan and Coastal Plains rhabdoviruses: genomic characterization, evolution of novel genes and seroprevalence in Australian livestock.

    PubMed

    Gubala, Aneta; Davis, Steven; Weir, Richard; Melville, Lorna; Cowled, Chris; Boyle, David

    2011-09-01

    Tibrogargan virus (TIBV) and Coastal Plains virus (CPV) were isolated from cattle in Australia and TIBV has also been isolated from the biting midge Culicoides brevitarsis. Complete genomic sequencing revealed that the viruses share a novel genome structure within the family Rhabdoviridae, each virus containing two additional putative genes between the matrix protein (M) and glycoprotein (G) genes and one between the G and viral RNA polymerase (L) genes. The predicted novel protein products are highly diverged at the sequence level but demonstrate clear conservation of secondary structure elements, suggesting conservation of biological functions. Phylogenetic analyses showed that TIBV and CPV form an independent group within the 'dimarhabdovirus supergroup'. Although no disease has been observed in association with these viruses, antibodies were detected at high prevalence in cattle and buffalo in northern Australia, indicating the need for disease monitoring and further study of this distinctive group of viruses.

  18. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  19. Nonlinear mechanics of a ring structure subjected to multi-pairs of evenly distributed equal radial forces

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Sun, F.; Li, Z. Y.; Taxis, L.; Pugno, N.

    2017-10-01

    Combining the elastica theory, finite element (FE) analysis, and a geometrical topological experiment, we studied the mechanical behavior of a ring subjected to multi-pairs of evenly distributed equal radial forces by looking at its seven distinct states. The results showed that the theoretical predictions of the ring deformation and strain energy matched the FE results very well, and that the ring deformations were comparable to the topological experiment. Moreover, no matter whether the ring was compressed or tensioned by N-pairs of forces, the ring always tended to be regular polygons with 2 N sides as the force increased, and a proper compressive force deformed the ring into exquisite flower-like patterns. The present study solves a basic mechanical problem of a ring subjected to lateral forces, which can be useful for studying the relevant mechanical behavior of ring structures from the nano- to the macro-scale.

  20. A novel metal-organic coordination polymer with unprecedented floor-like structural configuration consisting of two kinds of independent building blocks of triple- and double-stranded braids

    NASA Astrophysics Data System (ADS)

    Che, Yun-Xia; Luo, Feng; Zheng, Ji-Min

    2007-02-01

    This paper presents a novel and distinctive metal-organic compound, {[Cd 4(bet) 4Cl 6(H 2O) 4][Cd 2Cl 6]} n (bet=(CH 3) 3NCH 2CO 2, namely betaine) 1, assembled from two independent building blocks of triple- and double-stranded braids, and characterized by an unprecedented floor-like structural configuration. Furthermore, IR, element analysis, and TG-DTA were employed to characterize it. Compound 1 belongs to triclinic system, space group P-1, a = 6.704(2) Å, b = 9.338(3) Å, c = 20.056(7) Å, α = 101.409(5)°, β = 96.650(5)°, γ = 93.148(5)°, V = 1218.5(7) Å 3, Z = 1, R1 = 0.0340, ωR2 = 0.1017.

  1. Synthesis of nanocrystalline CdS thin film by SILAR and their characterization

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.

    2015-01-01

    Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.

  2. Tumor heterogeneity and progression: conceptual foundations for modeling.

    PubMed

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  3. The development of individuation in autism

    PubMed Central

    O'Hearn, Kirsten; Franconeri, Steven; Wright, Catherine; Minshew, Nancy; Luna, Beatriz

    2012-01-01

    Evidence suggests that people with autism use holistic information differently than typical adults. The current studies examine this possibility by investigating how core visual processes that contribute to holistic processing – individuation and element grouping – develop in participants with autism and typically developing (TD) participants matched for age, IQ and gender. Individuation refers to the ability to `see' up to 4 elements simultaneously; grouping these elements can change the number of elements that are rapidly apprehended. We examined these core processes using two well-established paradigms, rapid enumeration and multiple object tracking (MOT). In both tasks, a performance limit of about 4 elements in adulthood is thought to reflect individuation capacity. Participants with autism has a smaller individuation capacity than TD controls, regardless of whether they were enumerating static elements or tracking moving ones. To manipulate holistic information and individuation performance, we grouped the elements into a design or had elements move together. Participants with autism were affected to a similar degree as TD participants by the holistic information, whether the manipulation helped or hurt performance, consistent with evidence that some types of gestalt/grouping information are processed typically in autism. There was substantial development in autism from childhood to adolescence, but not from adolescence to adulthood, a pattern distinct from TD participants. These results provide important information about core visual processes in autism, as well as insight into the architecture of vision (e.g., individuation appears distinct from visual strengths in autism, such as visual search, despite similarities). PMID:22963232

  4. Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.

    PubMed

    Otaki, Joji M

    2012-09-01

    To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.

  5. A dynamic melting model for the origin of Apollo 15 olivine-normative and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Vetter, Scott K.; Shervais, John W.

    1993-01-01

    Early studies of mare basalts from the Apollo 15 site established that two distinct groups are represented: the olivine-normative basalts (ONB) and the quartz-normative basalts (QNB). The ONB and QNB suites are distinguished petrographically by their phenocryst assemblages (the ONB's are olivine-phyric, the QNB's are generally pyroxene-phyric) and chemically by their major element compositions: the QNB's are higher in SiO2 and MgO/FeO, and lower in FeO and TiO2 than ONB's with similar MgO contents. Experimental data show that the QNB suite is derived from a more magnesian, olivine-normative parent magma, a conclusion which is supported by the recent discovery of high-SiO2 olivine-normative basalt clasts in breccia 15498. The high-SiO2 ONB's fall on olivine control lines with primitive QNB's, and least-squares mixing calculations are consistent with the high-SiO2 ONB's being parental to the more evolved QNB suite. These high-SiO2 ONB's are included as part of the 'QNB suite'. Our major element modeling results also are consistent with the conclusions of earlier studies which showed that the ONB and QNB suites cannot be related to one another by low pressure crystal fractionation. The combination of high Mg#, high SiO2, and low TiO2 in the QNB suite precludes a relationship to the ONB suite by simple removal of liquidus minerals (olivine and pigeonite). Despite these significant differences in petrography and major element composition, both groups have nearly identical trace element concentrations and chondrite-normalized abundance patterns. The major question to be addressed by any petrogenetic model for Apollo 15 mare basalts is how to form mare basalt suites with distinctly different major element characteristics but nearly identical trace element compositions. The similarity in trace element concentrations imply compositionally similar source regions and similar percent melting, but these conclusions are not easily reconciled with the observed differences in major element compositions, which require sources with distinct mineralogies or large differences in percent melt.

  6. Trace Element Study of H Chondrites: Evidence for Meteoroid Streams.

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen Frederic

    1993-01-01

    Multivariate statistical analyses, both linear discriminant analysis and logistic regression, of the volatile trace elemental concentrations in H4-6 chondrites reveal compositionally distinguishable subpopulations. Observed difference in volatile trace element composition between Antarctic and non-Antarctic H4-6 chondrites (Lipschutz and Samuels, 1991) can be explained by a compositionaily distinct subpopulation found in Victoria Land, Antarctica. This population of H4-6 chondrites is compositionally distinct from non-Antarctic H4-6 chondrites and from Antarctic H4 -6 chondrites from Queen Maud Land. Comparisons of Queen Maud Land H4-6 chondrites with non-Antarctic H4-6 chondrites do not give reason to believe that these two populations are distinguishable from each other on the basis of the ten volatile trace element concentrations measured. ANOVA indicates that these differences are not the result of trivial causes such as weathering and analytical bias. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. Given the differences in terrestrial age between Victoria Land, Queen Maud Land, and modern H4-6 chondrite falls, these results are consistent with a variation in H4-6 chondrite flux on a 300 ky timescale. This conclusion requires the existence of co-orbital meteoroid streams. Statistical analyses of the volatile trace elemental concentrations in non-Antarctic modern falls of H4-6 chondrites also demonstrate that a group of 13 H4-6 chondrites, Cluster 1, selected exclusively for their distinct fall parameters (Dodd, 1992) is compositionally distinguishable from a control group of 45 non-Antarctic modern H4-6 chondrites on the basis of the ten volatile trace element concentrations measured. Model-independent randomization-simulations based on both linear discriminant analysis and logistic regression verify these results. While ANOVA identifies two possible causes for this difference, analytical bias and group classification, a test validation experiment verifies that group classification is the more significant cause of compositional difference between Cluster 1 and non-Cluster 1 modern H4-6 chondrite falls. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. This suggests that these meteorites are fragments of a co-orbital meteorite stream derived from a single parent body.

  7. Hydrothermal replacement of biogenic and abiogenic aragonite by Mg-carbonates - Relation between textural control on effective element fluxes and resulting carbonate phase

    NASA Astrophysics Data System (ADS)

    Jonas, Laura; Müller, Thomas; Dohmen, Ralf; Immenhauser, Adrian; Putlitz, Benita

    2017-01-01

    Dolomitization, i.e., the secondary replacement of calcite or aragonite (CaCO3) by dolomite (CaMg[CO3]2), is one of the most volumetrically important carbonate diagenetic processes. It occurs under near surface and shallow burial conditions and can significantly modify rock properties through changes in porosity and permeability. Dolomitization fronts are directly coupled to fluid pathways, which may be related to the initial porosity/permeability of the precursor limestone, an existing fault network or secondary porosity/permeability created through the replacement reaction. In this study, the textural control on the replacement of biogenic and abiogenic aragonite by Mg-carbonates, that are typical precursor phases in the dolomitization process, was experimentally studied under hydrothermal conditions. Aragonite samples with different textural and microstructural properties exhibiting a compact (inorganic aragonite single crystal), an intermediate (bivalve shell of Arctica islandica) and open porous structure (skeleton of coral Porites sp.) were reacted with a solution of 0.9 M MgCl2 and 0.015 M SrCl2 at 200 °C. The replacement of aragonite by a Ca-bearing magnesite and a Mg-Ca carbonate of non-stoichiometric dolomitic composition takes place via a dissolution-precipitation process and leads to the formation of a porous reaction front that progressively replaces the aragonite precursor. The reaction leads to the development of porosity within the reaction front and distinctive microstructures such as gaps and cavities at the reaction interface. The newly formed reaction rim consists of chemically distinct phases separated by sharp boundaries. It was found that the number of phases and their chemical variation decreases with increasing initial porosity and reactive surface area. This observation is explained by variations in effective element fluxes that result in differential chemical gradients in the fluid within the pore space of the reaction rim. Observed reaction rates are highest for the replacement of the initially highly porous coral and lowest for the compact structure of a single aragonite crystal. Therefore, the reaction progress equally depends on effective element fluxes between the fluid at the reaction interface and the bulk solution surrounding the test material as well as the reactive surface area. This study demonstrates that the textural and microstructural properties of the parent material have a significant influence on the chemical composition of the product phase. Moreover, our data highlight the importance of effective fluid-mediated element exchange between the fluid at the reaction interface and the bulk solution controlled by the local microstructure.

  8. SXT/R391 integrative and conjugative elements in Proteus species reveal abundant genetic diversity and multidrug resistance

    PubMed Central

    Li, Xinyue; Du, Yu; Du, Pengcheng; Dai, Hang; Fang, Yujie; Li, Zhenpeng; Lv, Na; Zhu, Baoli; Kan, Biao; Wang, Duochun

    2016-01-01

    SXT/R391 integrative and conjugative elements (ICEs) are self-transmissible mobile genetic elements that are found in most members of Enterobacteriaceae. Here, we determined fifteen SXT/R391 ICEs carried by Proteus isolates from food (4.2%) and diarrhoea patients (17.3%). BLASTn searches against GenBank showed that the fifteen SXT/R391 ICEs were closely related to that from different Enterobacteriaceae species, including Proteus mirabilis. Using core gene phylogenetic analysis, the fifteen SXT/R391 ICEs were grouped into six distinct clusters, including a dominant cluster and three clusters that have not been previously reported in Proteus isolates. The SXT/R391 ICEs shared a common structure with a set of conserved genes, five hotspots and two variable regions, which contained more foreign genes, including drug-resistance genes. Notably, a class A β-lactamase gene was identified in nine SXT/R391 ICEs. Collectively, the ICE-carrying isolates carried resistance genes for 20 tested drugs. Six isolates were resistant to chloramphenicol, kanamycin, streptomycin, trimethoprim-sulfamethoxazole, sulfisoxazole and tetracycline, which are drug resistances commonly encoded by ICEs. Our results demonstrate abundant genetic diversity and multidrug resistance of the SXT/R391 ICEs carried by Proteus isolates, which may have significance for public health. It is therefore necessary to continuously monitor the antimicrobial resistance and related mobile elements among Proteus isolates. PMID:27892525

  9. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

    PubMed

    Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M

    2016-01-01

    During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.

  10. Scientific Change as AN Evolutionary, Information Process: its Structural, Conceptual and Cultural Elements.

    NASA Astrophysics Data System (ADS)

    Al-Bustany, Fatin Khalil Ismail

    1989-09-01

    My aim in this dissertation is to develop an evolutionary conception of science based on recent studies in evolution theory, the thermodynamics of non-equilibrium and information theory, as exemplified in the works of Prigogine, Jantsch, Wicken and Gatlin. The nature of scientific change is of interest to philosophers and historians of science. Some construe it after a revolutionary model (e.g. Kuhn), others adopt an evolutionary view (e.g. Toulmin). It appears to me that it is possible to construct an evolutionary model encompassing the revolutionary mode as well. The following strategies are employed: (1) A distinction is made between two types of growth: one represents gradual change, the other designates radical transformations, and two principles underlying the process of change, one of conservation, the other of innovation. (2) Science in general, and scientific theories in particular, are looked upon as dissipative structures. These are characterised by openness, irreversibility and self-organisation. In terms of these, one may identify a state of "normal" growth and another of violent fluctuations leading to a new order (revolutionary phase). These fluctuations are generated by the flow of information coming from the observable world. The chief merits of this evolutionary model of the development of science lie in the emphasis it puts on the relation of science to its environment, in the description of scientific change as a process of interaction between internal and external elements (structural, conceptual, and cultural), in the enhancement of our understanding progress and rationality in science, and in the post Neo -Darwinian conception of evolution, stressing self-organisation, the innovativeness of the evolutionary process and the trend toward complexification. These features are also manifested in the process of discovery, which is a fundamental part of the scientific enterprise. In addition, a distinction is made between two types of discovery which serves as a criterion for delineating various episodes in the development of science. The evolutionary model further displays a complementarity mode of description on several levels: between science and its milieu, stability and instability, discovery and confirmation.

  11. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

    PubMed

    Froelich, Daniel R; Mullendore, Daniel L; Jensen, Kåre H; Ross-Elliott, Tim J; Anstead, James A; Thompson, Gary A; Pélissier, Hélène C; Knoblauch, Michael

    2011-12-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.

  12. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation[W

    PubMed Central

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre H.; Ross-Elliott, Tim J.; Anstead, James A.; Thompson, Gary A.; Pélissier, Hélène C.; Knoblauch, Michael

    2011-01-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)–yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed. PMID:22198148

  13. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.

    1981-01-01

    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.

  14. Structural Insight into the Clostridium difficile Ethanolamine Utilisation Microcompartment

    PubMed Central

    Faulds-Pain, Alexandra; Lewis, Richard J.; Marles-Wright, Jon

    2012-01-01

    Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen. PMID:23144756

  15. NanoSIMS Sheds Light on the Origin and Significance of Early Archean Organic Microstructures from the Pilbara of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Meibom, Anders; Mostefaoui, Smail; Selo, Madeleine; Walter, Malcolm, R.; Sugitani, Kenichiro; Allwood, Abigail; Gibson, Everett K.

    2008-01-01

    NanoSIMS was used to characterize sub-micron scale morphology and elemental composition (C, N, S, Si, O) of organic microstructures in Early Archean (3 - 3.4 Ga) charts from the Pilbara of Western Australia. Three categories of structures were analyzed: small spheroids in clusters; spindle-shaped remains; and large spheroids. All are relatively poorly preserved and occur within the chert matrix of the samples. Carbonaceous material in a secondary hydrothermal vein also was analyzed, as an example of non-indigenous organic matter. Comparisons were made of NanoSIMS characteristics of the Archean samples and those from well-preserved, biogenic microfossils in the 0.8 Ga Bitter Springs Formation. The comparisons show that the Pilbara microstructures are generally distinct from material in the hydrothermal vein but similar in morphology and elemental composition to the Bitter Springs microfossils. In addition, the Pilbara structures exhibit a spatial relationship to silicon and oxygen that seemingly reflects silica nucleation on organic surfaces; this argues that the organic frameworks of the Archean structures were present in the sediment during crystallization of the silica matrix. The structures are thus interpreted as being indigenous to the enclosing sediment. While these results are suggestive of Early Archean biogenicity and are consistent with a growing body of data suggesting that life on Earth was well established by 3 to 3.4 Ga, work is continuing to determine the N/C and 13C ratios of individual forms, and this should provide additional insight into the derivation and significance of these ancient organic remains.

  16. A dihydropyridine receptor alpha1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor.

    PubMed

    Cui, Yanfang; Tae, Han-Shen; Norris, Nicole C; Karunasekara, Yamuna; Pouliquin, Pierre; Board, Philip G; Dulhunty, Angela F; Casarotto, Marco G

    2009-03-01

    The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.

  17. Developmental Dyslexia: The Visual Attention Span Deficit Hypothesis

    ERIC Educational Resources Information Center

    Bosse, Marie-Line; Tainturier, Marie Josephe; Valdois, Sylviane

    2007-01-01

    The visual attention (VA) span is defined as the amount of distinct visual elements which can be processed in parallel in a multi-element array. Both recent empirical data and theoretical accounts suggest that a VA span deficit might contribute to developmental dyslexia, independently of a phonological disorder. In this study, this hypothesis was…

  18. Three-Dimensional Constraints on Human Cognition as Expressed in Human Language

    ERIC Educational Resources Information Center

    Adam, Christopher C.

    2015-01-01

    Those advocating the existence of a distinct language instinct generally claim that human language is not reliant on general human cognition. However, limitations on recursive patterns in human language are universally attested, from the micro-level elements of phonology, throughout the mid-level elements of morphology and syntax, and up to the…

  19. Similar bowtie structures and distinct largest strong components are identified in the transcriptional regulatory networks of Arabidopsis thaliana during photomorphogenesis and heat shock.

    PubMed

    Luo, Shitao; Zhang, Fengming; Ruan, Yingfei; Li, Jie; Zhang, Zheng; Sun, Yan; Deng, Shixiong; Peng, Rui

    2018-06-01

    Photomorphogenesis and heat shock are critical biological processes of plants. A recent research constructed the transcriptional regulatory networks (TRNs) of Arabidopsis thaliana during these processes using DNase-seq. In this study, by strong decomposition, we revealed that each of these TRNs can be represented as a similar bowtie structure with only one non-trivial and distinct strong component. We further identified distinct patterns of variation of a few light-related genes in these bowtie structures during photomorphogenesis. These results suggest that bowtie structure may be a common property of TRNs of plants, and distinct variation patterns of genes in bowtie structures of TRNs during biological processes may reflect distinct functions. Overall, our study provides an insight into the molecular mechanisms underlying photomorphogenesis and heat shock, and emphasizes the necessity to investigate the strong connectivity structures while studying TRNs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. [Experimental study and correction of the absorption and enhancement effect between Ti, V and Fe].

    PubMed

    Tuo, Xian-Guo; Mu, Ke-Liang; Li, Zhe; Wang, Hong-Hui; Luo, Hui; Yang, Jian-Bo

    2009-11-01

    The absorption and enhancement effects in X-ray fluorescence analysis for Ti, V and Fe elements were studied in the present paper. Three bogus duality systems of Ti-V/Ti-Fe/V-Fe samples were confected and measured by X-ray fluorescence analysis technique using HPGe semiconductor detector, and the relation curve between unitary coefficient (R(K)) of element count rate and element content (W(K)) were obtained after the experiment. Having analyzed the degree of absorption and enhancement effect between every two elements, the authors get the result, and that is the absorption and enhancement effect between Ti and V is relatively distinctness, while it's not so distinctness in Ti-Fe and V-Fe. After that, a mathematics correction method of exponential fitting was used to fit the R(K)-W(K) curve and get a function equation of X-ray fluorescence count rate and content. Three groups of Ti-V duality samples were used to test the fitting method and the relative errors of Ti and V were less than 0.2% as compared to the actual results.

  1. Magma feeding system of Kutcharo and Mashu calderas, Hokkaido, Japan: Evidence of a common basaltic magma evolving into two distinct rock series

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Itoh, J.; Nguyen, H.

    2009-12-01

    Kutcharo and its adjacent Mashu volcanoes are located in NE Hokkaido, about 150 km west of the Kurile trench. The latest major activity of Kutcharo was 35 thousand years ago (termed KP I) produced about 50 km3 D.R.E, Mashu meanwhile became active after KP I. To understand the magma feeding system of adjoining but distinct Kutcharo (medium-K) and Mashu (low-K) volcanoes, we examined major and trace element, and Sr, Nd, and Pb isotopic compositions of whole rocks. We also studied phenocryst chemical zoning and chemical compositions of melt inclusions in phenocryst. The chemical results of melt inclusions show no distinction between medium- and low-K as being recognized in bulk rock chemistry of the volcanoes. Instead, the results form a smooth trend between low-K rock series and high-K rhyolitic melt end-member (as high as 5 wt. % K2O). There is no significant difference Sr, Nd and Pb isotopes between basalt and rhyolite suggesting genetic relationship. Moreover, the trace element distribution patterns show enrichment increasing gradually from the basalt to rhyolite via andesite indicating fractional crystallization evolution. Chemical zoning in plagioclase phenocryst in KP I (An 80-40) suggest that basaltic magma injected repeatedly into a voluminous felsic magma chamber of Kutcharo volcano. Chemical compositions of olivine phenocryst show that Kutcharo (Fo 86) was hotter as compared to Mashu (Fo 75). Application of MELTS program (Ghiorso and Sack, 1995) on composition of the basaltic melt end-member suggests that crystallization or subsequent re-melting of the basalt may produce medium- to high-K rhyolite melt, and mixing of the rhyolite with basalt may form the observed medium-K Kutcharo and low-K Mashu rock series. It is estimated that total volume of the basaltic magma supplied intermittently beneath the volcanoes was several folds to 10 times larger than the erupted rhyolite magma. And that the basalt injection may be more intensive beneath Kutcharo, leading to the formation of a thermal structure that has a peak at Kutcharo and lowers gradually toward Mashu. The thermal structure may explain the observed difference in erupted volumes and rock series between two volcanoes. This research project has been conducted under the research contract with Nuclear and Industrial Safety Agency (NISA).

  2. Mesogondolella and Jinogondolella (Conodonta): Multielement definition of the taxa that bracket the basal Guadalupian (Middle Permian Series) GSSP

    USGS Publications Warehouse

    Lambert, L.L.; Wardlaw, B.R.; Henderson, C.M.

    2007-01-01

    Multielement definitions are presented here for Mesogondolella and Jinogondolella based on species that bracket the basal Guadalupian (Middle Permian Series) GSSP. Distinctive apparatus characters that appear with the first Jinogondolella include several details of P2 element dimorphism and process bifurcation in S3 elements. The sequential expression of these multielement characters is traced through M. idahoensis, M. lamberti, and J. nankingensis. The resulting multielement definition of Jinogondolella serves to distinguish it from all other closely related genera. Mesogondolella lamberti is recognized as a distinct species, and J. serrata is formally designated a junior synonym of J. nankingensis. ?? 2007 Nanjing Institute of Geology and Palaeontology, CAS.

  3. Chemistry of Apollo 11 low-K mare basalts

    NASA Technical Reports Server (NTRS)

    Rhodes, J. M.; Blanchard, D. P.

    1980-01-01

    A reexamination of the bulk major and trace element geochemistry of Apollo 11 low-K mare basalts is presented. New analyses are given for seven previously unanalyzed samples (10003, 10020, 10044, 10047, 10050, 10058, and 10062) and for two low-K basalts (10029 and 10092) and one high-K basalt (10071) for which comprehensive compositional data were previously lacking. The data show that three distinct magma types have been sampled, as proposed by Beaty and Albee (1978), and that these magma types are unrelated by near-surface crystal fractionation. Each magma type is characterized by distinctive magmaphile element ratios, which enable previously unclassified samples (10050 and 10062) to be assigned to an appropriate magma type.

  4. Cytoplasmic segregation and cytoskeletal organization in the electric catfish giant electromotoneuron with special reference to the axon hillock region.

    PubMed

    Braun, N; Schikorski, T; Zimmermann, H

    1993-02-01

    The cytoplasm of the highly polarized nerve cell is permanently segregated into domains with differing organellar composition. The mechanisms maintaining this segregation are largely unknown. In order to elucidate the potential role of cytoskeletal elements in this process we compared the cytoplasmic segregation within the giant electromotoneuron of the electric catfish (Malapterurus electricus) with the distribution of binding sites for antibodies against elements of the cytoskeleton. Most prominent cytoplasmic segregations include the formation of a subplasmalemmal cortical structure free of Nissl bodies and Golgi cisternae, the separation within the soma of domains containing rough endoplasmic reticulum and filament-rich domains, and the soma-axon transition. The cytoplasmic transition at the axon hillock forms a distinct borderline where Nissl bodies, Golgi cisternae and the bulk of lysosomes abruptly terminate and are excluded from the axoplasm. Synaptic vesicles and mitochondria are free to pass compartmental borders. Tropomyosin, spectrin, and alpha-actinin reveal a rather homogeneous immunofluorescence throughout the neuron. In contrast, neurofilament protein and tubulin display a distinctly increased immunofluorescence in the subplasmalemmal cortical layer, in dendrites as well as in the axon. The increase in immunofluorescence at the axon hillock exactly depicts the small transition zone from the somatic cytoplasm rich in Nissl bodies, Golgi cisternae and lysosomes to the differently structured axoplasm. The picture is similar for beta-tubulin, tyrosinylated and detyrosinylated alpha-tubulin. Detyrosinylated tubulin (glu-tubulin, which is contained in microtubules of increased stability) shows the most prominent enrichment in the axon. The distribution of myosin is comparable to that of neurofilament protein but there is less difference in immunofluorescence between the domains. Our results would be compatible with a role of microtubules together with (the closely associated) neurofilaments in the segregation of neuronal cytoplasmic domains. Active transport as well as stable binding to the somatic cytoskeleton might counteract a homogeneous cytoplasmic distribution of the various classes of organelles by diffusion.

  5. Thermal stability and structural changes in bacterial toxins responsible for food poisoning

    PubMed Central

    Regenthal, Paulina; Hansen, Jesper S.; André, Ingemar

    2017-01-01

    The staphylococcal enterotoxins (SEs) are secreted by the bacteria Staphylococcus aureus and are the most common causative agent in staphylococcal food poisoning. The staphylococcal enterotoxin A (SEA) has been associated with large staphylococcal food poisoning outbreaks, but newer identified SEs, like staphylococcal enterotoxin H (SEH) has recently been shown to be present at similar levels as SEA in food poisoning outbreaks. Thus, we set out to investigate the thermo-stability of the three-dimensional structures of SEA, SEH and staphylococcal enterotoxin E (SEE), since heat inactivation is a common method to inactivate toxins during food processing. Interestingly, the investigated toxins behaved distinctly different upon heating. SEA and SEE were more stable at slightly acidic pH values, while SEH adopted an extremely stable structure at neutral pH, with almost no effects on secondary structural elements upon heating to 95°C, and with reversible formation of tertiary structure upon subsequent cooling to room temperature. Taken together, the data suggests that the family of staphylococcal enterotoxins have different ability to withstand heat, and thus the exact profile of heat inactivation for all SEs causing food poisoning needs to be considered to improve food safety. PMID:28207867

  6. On the role of general system theory for functional neuroimaging.

    PubMed

    Stephan, Klaas Enno

    2004-12-01

    One of the most important goals of neuroscience is to establish precise structure-function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure-function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure-function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples.

  7. Multiscale Pores in TBCs for Lower Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun

    2017-08-01

    The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.

  8. Tectonic setting and hydrocarbon habitat of external Carpathian basins in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dicea, O.; Morariu, D.C.

    1993-09-01

    During the Alpine evolution of Romania, two distinct depositional areas evolved in the external zones of the Carpathians: the Paleogene flysch and Neogene Molasse basin of the eastern Carpathians, and the Paleogene and Neogene Molasse basin of the southern Carpathians. Both basins were compressionally deformed during the Neogene, giving rise to the development of a succession of nappes and thrust sheets. The internal elements of the external Carpathians corresponding to the Tarcau and marginal folds nappes and the external elements forming the sub-carpathian nappe and foredeep were thrusted over significant distances onto the European platform. Intense exploration of the externalmore » Carpathian thrustbelt has led to the discovery of more than 100 oil and gas pools. Reservoirs are provided by Oligocene, Burdigalian, Sarmatian, and Pliocene clastic rocks. A prolific hydrocarbon charge is derived from regionally distributed Oligocene oil source rocks. Traps are mainly of the structural type and involve faulted anticlines, [open quotes]scale folds,[close quotes] and compressional structures modified by salt; stratigraphic pinch-out and unconformity related traps play a secondary role. On the basis of selected examples, the development and distribution of hydrocarbon pools will be discussed in terms of thrust kinematics and the structure of different platform blocks. The philosophy of past exploration activities will be reviewed, and both success cases and failures will be discussed. Remaining oil and gas plays, aimed at shallow as well as at deep objectives, will be highlighted.« less

  9. Tissue-Specific Chromatin Modifications at a Multigene Locus Generate Asymmetric Transcriptional Interactions

    PubMed Central

    Yoo, Eung Jae; Cajiao, Isabela; Kim, Jeong-Seon; Kimura, Atsushi P.; Zhang, Aiwen; Cooke, Nancy E.; Liebhaber, Stephen A.

    2006-01-01

    Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitarycell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome. PMID:16847312

  10. Tailorable chiroptical activity of metallic nanospiral arrays.

    PubMed

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-28

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.

  11. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms

    PubMed Central

    Horikoshi, Momoko; Pasquali, Lorenzo; Wiltshire, Steven; Huyghe, Jeroen R.; Mahajan, Anubha; Asimit, Jennifer L.; Ferreira, Teresa; Locke, Adam E.; Robertson, Neil R.; Wang, Xu; Sim, Xueling; Fujita, Hayato; Hara, Kazuo; Young, Robin; Zhang, Weihua; Choi, Sungkyoung; Chen, Han; Kaur, Ismeet; Takeuchi, Fumihiko; Fontanillas, Pierre; Thuillier, Dorothée; Yengo, Loic; Below, Jennifer E.; Tam, Claudia H.T.; Wu, Ying; Abecasis, Gonçalo; Altshuler, David; Bell, Graeme I.; Blangero, John; Burtt, Noél P.; Duggirala, Ravindranath; Florez, Jose C.; Hanis, Craig L.; Seielstad, Mark; Atzmon, Gil; Chan, Juliana C.N.; Ma, Ronald C.W.; Froguel, Philippe; Wilson, James G.; Bharadwaj, Dwaipayan; Dupuis, Josee; Meigs, James B.; Cho, Yoon Shin; Park, Taesung; Kooner, Jaspal S.; Chambers, John C.; Saleheen, Danish; Kadowaki, Takashi; Tai, E. Shyong; Mohlke, Karen L.; Cox, Nancy J.; Ferrer, Jorge; Zeggini, Eleftheria; Kato, Norihiro; Teo, Yik Ying; Boehnke, Michael; McCarthy, Mark I.; Morris, Andrew P.

    2016-01-01

    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci. PMID:26911676

  12. Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution.

    PubMed

    Wei, Wei; Davis, Robert E; Jomantiene, Rasa; Zhao, Yan

    2008-08-19

    Mobile genetic elements have impacted biological evolution across all studied organisms, but evidence for a role in evolutionary emergence of an entire phylogenetic clade has not been forthcoming. We suggest that mobile element predation played a formative role in emergence of the phytoplasma clade. Phytoplasmas are cell wall-less bacteria that cause numerous diseases in plants. Phylogenetic analyses indicate that these transkingdom parasites descended from Gram-positive walled bacteria, but events giving rise to the first phytoplasma have remained unknown. Previously we discovered a unique feature of phytoplasmal genome architecture, genes clustered in sequence-variable mosaics (SVMs), and suggested that such structures formed through recurrent, targeted attacks by mobile elements. In the present study, we discovered that cryptic prophage remnants, originating from phages in the order Caudovirales, formed SVMs and comprised exceptionally large percentages of the chromosomes of 'Candidatus Phytoplasma asteris'-related strains OYM and AYWB, occupying nearly all major nonsyntenic sections, and accounting for most of the size difference between the two genomes. The clustered phage remnants formed genomic islands exhibiting distinct DNA physical signatures, such as dinucleotide relative abundance and codon position GC values. Phytoplasma strain-specific genes identified as phage morons were located in hypervariable regions within individual SVMs, indicating that prophage remnants played important roles in generating phytoplasma genetic diversity. Because no SVM-like structures could be identified in genomes of ancestral relatives including Acholeplasma spp., we hypothesize that ancient phage attacks leading to SVM formation occurred after divergence of phytoplasmas from acholeplasmas, triggering evolution of the phytoplasma clade.

  13. Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors▿

    PubMed Central

    Baesman, Shaun M.; Bullen, Thomas D.; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S.; Beveridge, Terry J.; Oremland, Ronald S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [ɛ] = −0.4 to −1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (∼10-nm diameter by 200-nm length), which cluster together, forming larger (∼1,000-nm) rosettes composed of numerous individual shards (∼100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

  14. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    USGS Publications Warehouse

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  15. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud turbidites reflect uniform, steady flow characteristics and a depositional sorting mechanism for silt-clay separation; whereas disorganized turbidites reflect an unsteady flow type, either as a short-lived surge or as a mud-contaminated mid-flow. Fine-grained carbonate turbidites show certain distinctive characteristics linked to the different dynamic behaviour of fine carbonate material. Hemiturbidites are the result of long-distance transport and an upward buoyancy mechanism during deposition.

  16. The mechanics of fault-bend folding and tear-fault systems in the Niger Delta

    NASA Astrophysics Data System (ADS)

    Benesh, Nathan Philip

    This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new map-based structural restoration techniques, we find that the tear faults have distinct displacement patterns that distinguish them from conventional strike-slip faults and reflect their roles in accommodating displacement gradients within the fold-and-thrust belt.

  17. When brain neuroscience meets hydrology: timeseries analysis methods for capturing structural and functional aspects of hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Ali, G.; Rinderer, M.

    2016-12-01

    In hydrology, several connectivity definitions exist that hinder intercomparison between different studies. Yet, consensus exists on the distinction between structural connectivity (i.e., physical adjacency of landscape elements that is thought to influence material transfer) and functional or effective connectivity (i.e., interaction or causality between spatial adjacency characteristics and temporally varying factors, leading to the connected flow of material). While hydrologists have succeeded in deriving measures of structural connectivity (SC), the quantification of functional (FC) or effective connectivity (EC) is elusive. Here we borrowed timeseries analysis methods from brain neuroscience to quantify EC and FC among groundwater (n = 34) and stream discharge (n = 1) monitoring sites in a 20-ha Swiss catchment where topography is assumed to be a major driver of connectivity. Influence maps created from elevation data were used to assess SC. FC was assessed by cross-correlation, total and partial mutual information and EC quantified via total and partial entropy, Granger causality and a phase slope index. Results show that generally, a fair percentage of structural connections were also expressed as functional or effective connections. Some FC and EC measures had clear advantages over others, for instance in terms of making a distinction between Darcian fluxes of water and pressure wave-driven processes. False-positive estimations, i.e., the detection of FC and EC despite the absence of SC, were also encountered and used to invalidate the applicability of some brain-connectivity measures in a hydrological context. While our goal was not to identify the best measure of FC or EC, our study showed that the application of brain neuroscience methods for assessing FC and EC in hydrology was possible as long as SC measures were used as constraints for (or prior beliefs about) the establishment of FC and EC.

  18. Regulatory effects of cotranscriptional RNA structure formation and transitions.

    PubMed

    Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2016-09-01

    RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  19. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  20. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  1. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    DOE PAGES

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.; ...

    2014-11-20

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The boundmore » CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.« less

  2. Fission yeast RNA triphosphatase reads an Spt5 CTD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doamekpor, Selom K.; Schwer, Beate; Sanchez, Ana M.

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The boundmore » CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an “Spt5 CTD code” in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on–off switch that is read by diverse CTD receptors, each in its own distinctive manner.« less

  3. DNA transposon-based gene vehicles - scenes from an evolutionary drive

    PubMed Central

    2013-01-01

    DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation. PMID:24320156

  4. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications.

    PubMed

    Christensen, S; Pont-Kingdon, G; Carroll, D

    2000-01-01

    In the genome of the South African frog, Xenopus laevis, there are two complex families of transposable elements, Tx1 and Tx2, that have identical overall structures, but distinct sequences. In each family there are approximately 1500 copies of an apparent DNA-based element (Tx1D and Tx2D). Roughly 10% of these elements in each family are interrupted by a non-LTR retrotransposon (Tx1L and Tx2L). Each retrotransposon is flanked by a 23-bp target duplication of a specific D element sequence. In earlier work, we showed that the endonuclease domain (Tx1L EN) located in the second open reading frame (ORF2) of Tx1L encodes a protein that makes a single-strand cut precisely at the expected site within its target sequence, supporting the idea that Tx1L is a site-specific retrotransposon. In this study, we express the endonuclease domain of Tx2L (Tx2L EN) and compare the target preferences of the two enzymes. Each endonuclease shows some preference for its cognate target, on the order of 5-fold over the non-cognate target. The observed discrimination is not sufficient, however, to explain the observation that no cross-occupancy is observed - that is, L elements of one family have never been found within D elements of the other family. Possible sources of additional specificity are discussed. We also compare two hypotheses regarding the genome duplication event that led to the contemporary pseudotetraploid character of Xenopus laevis in light of the Tx1L and Tx2L data.

  5. Characterisation of a DNA sequence element that directs Dictyostelium stalk cell-specific gene expression.

    PubMed

    Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J

    2000-12-01

    The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.

  6. Disentangling the effects of promised and delivered inducements: relational and transactional contract elements and the mediating role of trust.

    PubMed

    Montes, Samantha D; Irving, P Gregory

    2008-11-01

    Psychological contracts contain both relational and transactional elements, each of which is associated with unique characteristics. In the present research, the authors drew on these distinct qualities to develop and test hypotheses regarding differential employee reactions to underfulfillment, fulfillment, and overfulfillment of relational and transactional promises. Further, the authors extended their test of the theoretical distinctions between relational and transactional contracts by assessing the relevance of trust as a key underlying mechanism of relational and transactional psychological contract breach effects. Participants in this 3-wave longitudinal study included 342 full-time temporary employees. In support of existing theoretical distinctions, results indicated that employees reacted differently to varying levels of fulfillment of their relational and transactional contracts and that trust is a more central mechanism of relational, as opposed to transactional, psychological contract breach effects. These findings underscore L.S. Lambert, J. R. Edwards, and D. M. Cable's (2003) recent recommendation that the traditional conceptualization and study of psychological contract breach requires expansion.

  7. Distinct Element Modeling of the Large Block Test

    NASA Astrophysics Data System (ADS)

    Carlson, S. R.; Blair, S. C.; Wagoner, J. L.

    2001-12-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada as a potential nuclear waste repository site. As part of this effort, the Large Block, a 3m x 3m x 4.5m rectangular prism of Topopah Spring tuff, was excavated at Fran Ridge near Yucca Mountain. The Large Block was heated to a peak temperature of 145\\deg C along a horizontal plane 2.75m below the top of the block over a period of about one-year. Displacements were measured in three orthogonal directions with an array of six Multiple Point Borehole Extensometers (MPBX) and were numerically simulated in three dimensions with 3DEC, a distinct element code. The distinct element method was chosen to incorporate discrete fractures in the simulations. The model domain was extended 23m below the ground surface and, in the subsurface, 23m outward from each vertical face so that fixed displacement boundary conditions could be applied well away from the heated portion of the block. A single continuum model and three distinct element models, incorporating six to twenty eight mapped fractures, were tested. Two thermal expansion coefficients were tested for the six-fracture model: a higher value taken from laboratory measurements and a lower value from an earlier field test. The MPBX data show that the largest displacements occurred in the upper portion of the block despite the higher temperatures near the center. The continuum model was found to under-predict the MPBX displacements except in the east west direction near the base of the block. The high thermal expansion model over-predicted the MPBX displacements except in the north south direction near the top of the block. The highly fractured model under-predicted most of the MPBX displacements and poorly simulated the cool-down portion of the test. Although no model provided the single best fit to all of the MPBX data, the six and seven fracture models consistently provided good fits and in most cases showed much improvement over the other three models. Both provided particularly good fits to the east west displacements in the upper portion of the block throughout the entire test. This exercise demonstrates that distinct element models can surpass continuum models in their ability to simulate fractured rock mass deformation, but care needs to be taken in the selection of fractures incorporated in the models. *This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  8. The Curious Case of Orthographic Distinctiveness: Disruption of Categorical Processing

    ERIC Educational Resources Information Center

    McDaniel, Mark A.; Cahill, Michael J.; Bugg, Julie M.

    2016-01-01

    How does orthographic distinctiveness affect recall of structured (categorized) word lists? On one theory, enhanced item-specific information (e.g., more distinct encoding) in concert with robust relational information (e.g., categorical information) optimally supports free recall. This predicts that for categorically structured lists,…

  9. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus

    PubMed Central

    Smith, Emily M.; Lajoie, Bryan R.; Jain, Gaurav; Dekker, Job

    2016-01-01

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519

  10. Nano characterization of gunshot residues from Brazilian ammunition.

    PubMed

    Melo, Lis G A; Martiny, Andrea; Pinto, André L

    2014-07-01

    Gunshot residues (GSR) from a total of nine different caliber ammunitions produced in Brazil were analyzed and characterized by transmission (TEM) and scanning electron microscopy (SEM). GSR particles are composed of spherical particles of several micrometers of diameter containing distinct amounts of lead, barium and antimony, along with other organic and inorganic elements arising from the primer, gunpowder, the gun and the bullet itself. This study was carried out to obtain additional information on the properties of GSR nanoparticles originated from different types of regular ammunition produced in Brazil by CBC. Besides the SEM, we have used a TEM, exploring its high magnification capability and ability to explore internal structure and chemical composition of submicron particles. We observed that CBC ammunition generated smaller particles than usually reported for other ammunitions and that the three component particles are not a majority. TEM analysis revealed that GSR are partially composed of sub-micron particles as well. The electron diffraction pattern from these particles confirmed them to be mainly composed of lead oxides crystalline nanoparticles that may be agglomerated into larger particles. Energy dispersive X-ray spectroscopy revealed that most of them were composed of two elements, especially PbSb. Ba was not a common element found in the nanoparticles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Hermes Transposon Distribution and Structure in Musca domestica

    PubMed Central

    Subramanian, Ramanand A.; Cathcart, Laura A.; Krafsur, Elliot S.; Atkinson, Peter W.

    2009-01-01

    Hermes are hAT transposons from Musca domestica that are very closely related to the hobo transposons from Drosophila melanogaster and are useful as gene vectors in a wide variety of organisms including insects, planaria, and yeast. hobo elements show distinct length variations in a rapidly evolving region of the transposase-coding region as a result of expansions and contractions of a simple repeat sequence encoding 3 amino acids threonine, proline, and glutamic acid (TPE). These variations in length may influence the function of the protein and the movement of hobo transposons in natural populations. Here, we determine the distribution of Hermes in populations of M. domestica as well as whether Hermes transposase has undergone similar sequence expansions and contractions during its evolution in this species. Hermes transposons were found in all M. domestica individuals sampled from 14 populations collected from 4 continents. All individuals with Hermes transposons had evidence for the presence of intact transposase open reading frames, and little sequence variation was observed among Hermes elements. A systematic analysis of the TPE-homologous region of the Hermes transposase-coding region revealed no evidence for length variation. The simple sequence repeat found in hobo elements is a feature of this transposon that evolved since the divergence of hobo and Hermes. PMID:19366812

  12. Environmental Xenobiotics and the Antihormones Cyproterone Acetate and Spironolactone Use the Nuclear Hormone Pregnenolone X Receptor to Activate the CYP3A23 Hormone Response Element

    PubMed Central

    SCHUETZ, ERIN G.; BRIMER, CYNTHIA; SCHUETZ, JOHN D.

    2013-01-01

    The pregnenolone X receptor (PXR), a new member of the nuclear hormone receptor superfamily, was recently demonstrated to mediate glucocorticoid agonist and antagonist activation of a hormone response element spaced by three nucleotides (DR-3) within the rat CYP3A23 promoter. Because many other steroids and xenobiotics can up-regulate CYP3A23 expression, we determined whether some of these other regulators used PXR to activate the CYP3A23 DR-3. Transient cotransfection of LLC-PK1 cells with (CYP3A23)2-tk-CAT and mouse PXR demonstrated that the organochlorine pesticides transnonachlor and chlordane and the nonplanar polychlorinated biphenyls (PCBs) each induced the CYP3A23 DR-3 element, and this activation required PXR. Additionally, this study found that PXR is activated to induce (CYP3A23)2-tk-CAT by antihormones of several steroid classes including the antimineralocorticoid spironolactone and the antiandrogen cyproterone acetate. These studies reveal that PXR is involved in the induction of CYP3A23 by pharmacologically and structurally distinct steroids and xenobiotics. Moreover, PXR-mediated PCB activation of the (CYP3A23)2-tk-CAT may serve as a rapid assay for effects of nonplanar PCBs. PMID:9855641

  13. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

    PubMed

    Glinsky, Gennadi V

    2018-03-01

    Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both regulatory complexity and functional precision of GRNs by creating predominantly a single gene (or a set of functionally linked genes) per regulatory domain structures. Collectively, present analyses reveal critical evolutionary contributions of transposable elements and distal enhancers to creation of thousands primate- and human-specific elements of a chromatin folding code, which defines the 3D context of interphase chromatin both restricting and facilitating biological functions of GRNs.

  14. Crustal structure of Central Sicily

    NASA Astrophysics Data System (ADS)

    Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo

    2018-01-01

    We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.

  15. Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)

    PubMed Central

    2013-01-01

    Background Long terminal repeats (LTRs, consisting of U3-R-U5 portions) are important elements of retroviruses and related retrotransposons. They are difficult to analyse due to their variability. The aim was to obtain a more comprehensive view of structure, diversity and phylogeny of LTRs than hitherto possible. Results Hidden Markov models (HMM) were created for 11 clades of LTRs belonging to Retroviridae (class III retroviruses), animal Metaviridae (Gypsy/Ty3) elements and plant Pseudoviridae (Copia/Ty1) elements, complementing our work with Orthoretrovirus HMMs. The great variation in LTR length of plant Metaviridae and the few divergent animal Pseudoviridae prevented building HMMs from both of these groups. Animal Metaviridae LTRs had the same conserved motifs as retroviral LTRs, confirming that the two groups are closely related. The conserved motifs were the short inverted repeats (SIRs), integrase recognition signals (5´TGTTRNR…YNYAACA 3´); the polyadenylation signal or AATAAA motif; a GT-rich stretch downstream of the polyadenylation signal; and a less conserved AT-rich stretch corresponding to the core promoter element, the TATA box. Plant Pseudoviridae LTRs differed slightly in having a conserved TATA-box, TATATA, but no conserved polyadenylation signal, plus a much shorter R region. The sensitivity of the HMMs for detection in genomic sequences was around 50% for most models, at a relatively high specificity, suitable for genome screening. The HMMs yielded consensus sequences, which were aligned by creating an HMM model (a ‘Superviterbi’ alignment). This yielded a phylogenetic tree that was compared with a Pol-based tree. Both LTR and Pol trees supported monophyly of retroviruses. In both, Pseudoviridae was ancestral to all other LTR retrotransposons. However, the LTR trees showed the chromovirus portion of Metaviridae clustering together with Pseudoviridae, dividing Metaviridae into two portions with distinct phylogeny. Conclusion The HMMs clearly demonstrated a unitary conserved structure of LTRs, supporting that they arose once during evolution. We attempted to follow the evolution of LTRs by tracing their functional foundations, that is, acquisition of RNAse H, a combined promoter/ polyadenylation site, integrase, hairpin priming and the primer binding site (PBS). Available information did not support a simple evolutionary chain of events. PMID:23369192

  16. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an extensive array of complex molecules has been predicted. Reactions involving heavy elements dominate the structure of the ionspheres of the terrestrial planets and the satellites Titan and Triton.

  17. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond.

    PubMed

    Fujii, Shinya; Hashimoto, Yuichi

    2017-04-01

    Application of silyl functionalities is one of the most promising strategies among various 'elements chemistry' approaches for the development of novel and distinctive drug candidates. Replacement of one or more carbon atoms of various biologically active compounds with silicon (so-called sila-substitution) has been intensively studied for decades, and is often effective for alteration of activity profile and improvement of metabolic profile. In addition to simple C/Si exchange, several novel approaches for utilizing silicon in medicinal chemistry have been suggested in recent years, focusing on the intrinsic differences between silicon and carbon. Sila-substitution offers great potential for enlarging the chemical space of medicinal chemistry, and provides many options for structural development of drug candidates.

  18. Service Learning: A Vehicle for Building Health Equity and Eliminating Health Disparities

    PubMed Central

    Sabo, Samantha; de Zapien, Jill; Teufel-Shone, Nicolette; Rosales, Cecilia; Bergsma, Lynda

    2015-01-01

    Service learning (SL) is a form of community-centered experiential education that places emerging health professionals in community-generated service projects and provides structured opportunities for reflection on the broader social, economic, and political contexts of health. We describe the elements and impact of five distinct week-long intensive SL courses focused on the context of urban, rural, border, and indigenous health contexts. Students involved in these SL courses demonstrated a commitment to community-engaged scholarship and practice in both their student and professional lives. SL is directly in line with the core public health value of social justice and serves as a venue to strengthen community–campus partnerships in addressing health disparities through sustained collaboration and action in vulnerable communities. PMID:25706014

  19. A PILOT SEARCH FOR EVIDENCE OF EXTRASOLAR EARTH-ANALOG PLATE TECTONICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jura, M.; Klein, B.; Xu, S.

    Relative to calcium, both strontium and barium are markedly enriched in Earth's continental crust compared to the basaltic crusts of other differentiated rocky bodies within the solar system. Here, we both re-examine available archived Keck spectra to place upper bounds on n(Ba)/n(Ca) and revisit published results for n(Sr)/n(Ca) in two white dwarfs that have accreted rocky planetesimals. We find that at most only a small fraction of the pollution is from crustal material that has experienced the distinctive elemental enhancements induced by Earth-analog plate tectonics. In view of the intense theoretical interest in the physical structure of extrasolar rocky planets,more » this search should be extended to additional targets.« less

  20. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase

    PubMed Central

    Matthes, Dirk; Gapsys, Vytautas; Brennecke, Julian T.; de Groot, Bert L.

    2016-01-01

    The formation of well-defined filamentous amyloid structures involves a polydisperse collection of oligomeric states for which relatively little is known in terms of structural organization. Here we use extensive, unbiased explicit solvent molecular dynamics (MD) simulations to investigate the structural and dynamical features of oligomeric aggregates formed by a number of highly amyloidogenic peptides at atomistic resolution on the μs time scale. A consensus approach has been adopted to analyse the simulations in multiple force fields, yielding an in-depth characterization of pre-fibrillar oligomers and their global and local structure properties. A collision cross section analysis revealed structurally heterogeneous aggregate ensembles for the individual oligomeric states that lack a single defined quaternary structure during the pre-nucleation phase. To gain insight into the conformational space sampled in early aggregates, we probed their substructure and found emerging β-sheet subunit layers and a multitude of ordered intermolecular β-structure motifs with growing aggregate size. Among those, anti-parallel out-of-register β-strands compatible with toxic β-barrel oligomers were particularly prevalent already in smaller aggregates and formed prior to ordered fibrillar structure elements. Notably, also distinct fibril-like conformations emerged in the oligomeric state and underscore the notion that pre-nucleated oligomers serve as a critical intermediate step on-pathway to fibrils. PMID:27616019

  1. Parvovirus-Derived Endogenous Viral Elements in Two South American Rodent Genomes

    PubMed Central

    2014-01-01

    We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver. PMID:25078696

  2. Conceptual structure and the procedural affordances of rational numbers: relational reasoning with fractions and decimals.

    PubMed

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2015-02-01

    The standard number system includes several distinct types of notations, which differ conceptually and afford different procedures. Among notations for rational numbers, the bipartite format of fractions (a/b) enables them to represent 2-dimensional relations between sets of discrete (i.e., countable) elements (e.g., red marbles/all marbles). In contrast, the format of decimals is inherently 1-dimensional, expressing a continuous-valued magnitude (i.e., proportion) but not a 2-dimensional relation between sets of countable elements. Experiment 1 showed that college students indeed view these 2-number notations as conceptually distinct. In a task that did not involve mathematical calculations, participants showed a strong preference to represent partitioned displays of discrete objects with fractions and partitioned displays of continuous masses with decimals. Experiment 2 provided evidence that people are better able to identify and evaluate ratio relationships using fractions than decimals, especially for discrete (or discretized) quantities. Experiments 3 and 4 found a similar pattern of performance for a more complex analogical reasoning task. When solving relational reasoning problems based on discrete or discretized quantities, fractions yielded greater accuracy than decimals; in contrast, when quantities were continuous, accuracy was lower for both symbolic notations. Whereas previous research has established that decimals are more effective than fractions in supporting magnitude comparisons, the present study reveals that fractions are relatively advantageous in supporting relational reasoning with discrete (or discretized) concepts. These findings provide an explanation for the effectiveness of natural frequency formats in supporting some types of reasoning, and have implications for teaching of rational numbers.

  3. Distinguishing treatment from research: a functional approach

    PubMed Central

    Lewens, T

    2006-01-01

    The best way to distinguish treatment from research is by their functions. This mode of distinction fits well with the basic ethical work that needs to be carried out. The distinction needs to serve as an ethical flag, highlighting areas in which the goals of doctors and patients are more likely than usual to diverge. The distinction also allows us to illuminate and understand some otherwise puzzling elements of debates on research ethics: it shows the peculiarity of exclusive conceptions of the distinction between research and treatment; it allows us to frame questions about therapeutic obligations in the research context, and it allows us to consider whether there may be research obligations in the therapeutic context. PMID:16816045

  4. Effects of depuration on the element concentration in bivalves: Comparison between sympatric Ruditapes decussatus and Ruditapes philippinarum

    NASA Astrophysics Data System (ADS)

    Freitas, R.; Ramos Pinto, L.; Sampaio, M.; Costa, A.; Silva, M.; Rodrigues, A. M.; Quintino, V.; Figueira, E.

    2012-09-01

    Organisms living in coastal ecosystems are frequently subjected to anthropogenic pressures such as metals. Metals, especially those not required for metabolic activity (e.g. mercury, lead and cadmium) can be toxic even at quite low concentrations not only to organisms that accumulate them, but also to their consumers. Throughout the world, Ruditapes decussatus and Ruditapes philippinarum have been successfully commercialised for human consumption and for monitoring environmental conditions such as contamination. These two clam species share similar habitats and requirements, successfully competing both in the natural environment and in aquaculture farms. Because differences in metal accumulation may exist between R. decussatus and R. philippinarum, different risks to public health may overcome as well as distinct ecological implications. The effect of depuration on the metal burden and biochemical status of both clams species may also diverge and since the information available is subjective and scarce, the aims of the present study were to: 1) assess the total metal accumulation and intracellular partitioning, at natural conditions, in the two clam species collected at the same site; 2) evaluate the effect of depuration as a mean of reducing the levels of distinct elements, assessing also the effect of depuration time (2 and 7 days); 3) investigate the efficiency of depuration by biochemical status of the two bivalve species, evaluating changes in lipid peroxidation and activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and of glutathione S-transferase (GST). Metal chelation by metallothioneins (MTs) was also determined. The results obtained showed that concentration of elements in clams was low, presenting very similar concentration levels for all elements. The present work further demonstrated that the total element concentration decreased in the shorter depuration period (2 days) and that R. decussatus and R. philippinarum partitioned elements preferentially in the insoluble fraction. The percentage of elements in the soluble fraction was lower in the longer depuration period, reducing the dietary bioavailability of elements and thus the health risk to consumers of depurated bivalves. In general, LPO, CAT, SOD and GSTs showed a decreased from environmental to depuration conditions, revealing that depuration reduces the oxidative stress that organisms were subjected in the environment. The lower MTs production observed in the longer depuration period, although no significantly different from the remaining periods, may be explained by the distinct metal allocation between both soluble and insoluble fractions.

  5. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  6. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeming; Opperman, Laura; Wickens, Marvin

    2010-08-19

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short regionmore » of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.« less

  7. Atomic resolution mechanistic studies of ribocil: A highly selective unnatural ligand mimic of the E. coli FMN riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, John A.; Xiao, Li; Fischmann, Thierry O.

    2016-08-02

    Bacterial riboswitches are non-coding RNA structural elements that direct gene expression in numerous metabolic pathways. The key regulatory roles of riboswitches, and the urgent need for new classes of antibiotics to treat multi-drug resistant bacteria, has led to efforts to develop small-molecules that mimic natural riboswitch ligands to inhibit metabolic pathways and bacterial growth. Recently, we reported the results of a phenotypic screen targeting the riboflavin biosynthesis pathway in the Gram-negative bacteria Escherichia coli that led to the identification of ribocil, a small molecule inhibitor of the flavin mononucleotide (FMN) riboswitch controlling expression of this biosynthetic pathway. Although ribocil ismore » structurally distinct from FMN, ribocil functions as a potent and highly selective synthetic mimic of the natural ligand to repress riboswitch-mediated ribB gene expression and inhibit bacterial growth both in vitro and in vivo. Herein, we expand our analysis of ribocil; including mode of binding in the FMN binding pocket of the riboswitch, mechanisms of resistance and structure-activity relationship guided efforts to generate more potent analogs.« less

  8. Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda).

    PubMed

    Fabritius, Helge; Walther, Paul; Ziegler, Andreas

    2005-05-01

    Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in large deposits within the first four anterior sternites. In Porcellio scaber the deposits consist of three structurally distinct layers consisting of amorphous CaCO3 (ACC) and an organic matrix that consists of concentric and radial elements. It is thought that the organic matrix plays a role in the structural organization of deposits and in the stabilization of ACC, which is unstable in vitro. In this paper, we present a thorough analysis of the ultrastructure of the organic matrix in the CaCO3 deposits using high-resolution field-emission scanning electron microscopy. The spherules and the homogeneous layer contain an elaborate organic matrix with similar structural organization consisting of concentric reticules and radial strands. The decalcification experiments reveal an inhomogeneous solubility of ACC within the spherules probably caused by variations in the stabilizing properties of matrix components. The transition between the three layers can be explained by changes in the number of spherule nucleation sites.

  9. Structure and Distribution of Centromeric Retrotransposons at Diploid and Allotetraploid Coffea Centromeric and Pericentromeric Regions

    PubMed Central

    de Castro Nunes, Renata; Orozco-Arias, Simon; Crouzillat, Dominique; Mueller, Lukas A.; Strickler, Suzy R.; Descombes, Patrick; Fournier, Coralie; Moine, Deborah; de Kochko, Alexandre; Yuyama, Priscila M.; Vanzela, André L. L.; Guyot, Romain

    2018-01-01

    Centromeric regions of plants are generally composed of large array of satellites from a specific lineage of Gypsy LTR-retrotransposons, called Centromeric Retrotransposons. Repeated sequences interact with a specific H3 histone, playing a crucial function on kinetochore formation. To study the structure and composition of centromeric regions in the genus Coffea, we annotated and classified Centromeric Retrotransposons sequences from the allotetraploid C. arabica genome and its two diploid ancestors: Coffea canephora and C. eugenioides. Ten distinct CRC (Centromeric Retrotransposons in Coffea) families were found. The sequence mapping and FISH experiments of CRC Reverse Transcriptase domains in C. canephora, C. eugenioides, and C. arabica clearly indicate a strong and specific targeting mainly onto proximal chromosome regions, which can be associated also with heterochromatin. PacBio genome sequence analyses of putative centromeric regions on C. arabica and C. canephora chromosomes showed an exceptional density of one family of CRC elements, and the complete absence of satellite arrays, contrasting with usual structure of plant centromeres. Altogether, our data suggest a specific centromere organization in Coffea, contrasting with other plant genomes. PMID:29497436

  10. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  11. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  12. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  13. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  14. 47 CFR 51.509 - Rate structure standards for specific elements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Rate structure standards for specific elements... SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.509 Rate structure standards for specific elements. In addition to the general rules set forth in § 51.507, rates for specific elements shall comply...

  15. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    PubMed

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  16. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A

    1995-08-17

    Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.

  17. Targeted gene insertion for molecular medicine.

    PubMed

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  18. On the methodology of Engineering Geodesy

    NASA Astrophysics Data System (ADS)

    Brunner, Fritz K.

    2007-09-01

    Textbooks on geodetic surveying usually describe a very small number of principles which should provide the foundation of geodetic surveying. Here, the author argues that an applied field, such as engineering geodesy, has a methodology as foundation rather than a few principles. Ten methodological elements (ME) are identified: (1) Point discretisation of natural surfaces and objects, (2) distinction between coordinate and observation domain, (3) definition of reference systems, (4) specification of unknown parameters and desired precisions, (5) geodetic network and observation design, (6) quality control of equipment, (7) quality control of measurements, (8) establishment of measurement models, (9) establishment of parameter estimation models, (10) quality control of results. Each ME consists of a suite of theoretical developments, geodetic techniques and calculation procedures, which will be discussed. This paper is to be considered a first attempt at identifying the specific elements of the methodology of engineering geodesy. A better understanding of this methodology could lead to an increased objectivity, to a transformation of subjective practical experiences into objective working methods, and consequently to a new structure for teaching this rather diverse subject.

  19. Supplementary motor area as key structure for domain-general sequence processing: A unified account.

    PubMed

    Cona, Giorgia; Semenza, Carlo

    2017-01-01

    The Supplementary Motor Area (SMA) is considered as an anatomically and functionally heterogeneous region and is implicated in several functions. We propose that SMA plays a crucial role in domain-general sequence processes, contributing to the integration of sequential elements into higher-order representations regardless of the nature of such elements (e.g., motor, temporal, spatial, numerical, linguistic, etc.). This review emphasizes the domain-general involvement of the SMA, as this region has been found to support sequence operations in a variety of cognitive domains that, albeit different, share an inherent sequence processing. These include action, time and spatial processing, numerical cognition, music and language processing, and working memory. In this light, we reviewed and synthesized recent neuroimaging, stimulation and electrophysiological studies in order to compare and reconcile the distinct sources of data by proposing a unifying account for the role of the SMA. We also discussed the differential contribution of the pre-SMA and SMA-proper in sequence operations, and possible neural mechanisms by which such operations are executed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Allele frequencies of variants in ultra conserved elements identify selective pressure on transcription factor binding.

    PubMed

    Silla, Toomas; Kepp, Katrin; Tai, E Shyong; Goh, Liang; Davila, Sonia; Catela Ivkovic, Tina; Calin, George A; Voorhoeve, P Mathijs

    2014-01-01

    Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF<0.5%) of which 75% is not present in dbSNP137. UCEs association studies for complex human traits can use this information to model expected background variation and thus necessary power for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.

  1. Serial grouping of 2D-image regions with object-based attention in humans

    PubMed Central

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188

  2. Removing but not adding elements of a context affects generalization of instrumental responses.

    PubMed

    Bernal-Gamboa, Rodolfo; Nieto, Javier; Uengoer, Metin

    2018-01-05

    Three experiments with rats investigated whether adding or removing elements of a context affects generalization of instrumental behavior. Each of the experiments used a free operant procedure. In Experiments 1 and 2, rats were trained to press a lever for food in a distinctive context. Then, transfer of lever pressing was tested in a context created either by adding an element to the context of initial acquisition or by removing one of the acquisition context's elements. In Experiment 3, a similar generalization test was conducted after rats received acquisition and extinction within the same context. For Experiments 1 and 2, we observed that removing elements from the acquisition context disrupted acquisition performance, whereas the addition of elements to the context did not. Experiment 3 revealed that removing elements from but not adding elements to the original context improved extinction performance. Our results are consistent with an elemental view of context representation.

  3. Thermodynamic and structural insights into CSL-DNA complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, David R.; Kovall, Rhett A.

    The Notch pathway is an intercellular signaling mechanism that plays important roles in cell fates decisions throughout the developing and adult organism. Extracellular complexation of Notch receptors with ligands ultimately results in changes in gene expression, which is regulated by the nuclear effector of the pathway, CSL (C-promoter binding factor 1 (CBF-1), suppressor of hairless (Su(H)), lin-12 and glp-1 (Lag-1)). CSL is a DNA binding protein that is involved in both repression and activation of transcription from genes that are responsive to Notch signaling. One well-characterized Notch target gene is hairy and enhancer of split-1 (HES-1), which is regulated bymore » a promoter element consisting of two CSL binding sites oriented in a head-to-head arrangement. Although previous studies have identified in vivo and consensus binding sites for CSL, and crystal structures of these complexes have been determined, to date, a quantitative description of the energetics that underlie CSL-DNA binding is unknown. Here, we provide a thermodynamic and structural analysis of the interaction between CSL and the two individual sites that comprise the HES-1 promoter element. Our comprehensive studies that analyze binding as a function of temperature, salt, and pH reveal moderate, but distinct, differences in the affinities of CSL for the two HES-1 binding sites. Similarly, our structural results indicate that overall CSL binds both DNA sites in a similar manner; however, minor changes are observed in both the conformation of CSL and DNA. Taken together, our results provide a quantitative and biophysical basis for understanding how CSL interacts with DNA sites in vivo.« less

  4. Structural gene (prME) chimeras of St Louis encephalitis virus and West Nile virus exhibit altered in vitro cytopathic and growth phenotypes

    PubMed Central

    Maharaj, Payal D.; Anishchenko, Michael; Langevin, Stanley A.; Fang, Ying; Reisen, William K.

    2012-01-01

    Despite utilizing the same avian hosts and mosquito vectors, St Louis encephalitis virus (SLEV) and West Nile virus (WNV) display dissimilar vector-infectivity and vertebrate-pathogenic phenotypes. SLEV exhibits a low oral infection threshold for Culex mosquito vectors and is avirulent in avian hosts, producing low-magnitude viraemias. In contrast, WNV is less orally infective to mosquitoes and elicits high-magnitude viraemias in a wide range of avian species. In order to identify the genetic determinants of these different phenotypes and to assess the utility of mosquito and vertebrate cell lines for recapitulating in vivo differences observed between these viruses, reciprocal WNV and SLEV pre-membrane and envelope protein (prME) chimeric viruses were generated and growth of these mutant viruses was characterized in mammalian (Vero), avian (duck) and mosquito [Aedes (C6/36) and Culex (CT)] cells. In both vertebrate lines, WNV grew to 100-fold higher titres than SLEV, and growth and cytopathogenicity phenotypes, determined by chimeric phenotypes, were modulated by genetic elements outside the prME gene region. Both chimeras exhibited distinctive growth patterns from those of SLEV in C6/36 cells, indicating the role of both structural and non-structural gene regions for growth in this cell line. In contrast, growth of chimeric viruses was indistinguishable from that of virus containing homologous prME genes in CT cells, indicating that structural genetic elements could specifically dictate growth differences of these viruses in relevant vectors. These data provide genetic insight into divergent enzootic maintenance strategies that could also be useful for the assessment of emergence mechanisms of closely related flaviviruses. PMID:21940408

  5. Synthesis and structural characterization of dinuclear Cd2+, Hg2+ and Fe2+ complexes with neutral bi and tetradentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Behvandi, Fatemeh; Safaeiyan, Forough; Sarkarzadeh, Afsoon; Bruno, Giuseppe; Amiri Rudbari, Hadi

    2015-02-01

    Four new complexes of [Hg2Cl4(bpp)]n (1), [Hg2Cl4(tdmpp)] (2), [Cd2I4(tdmpp)] (3) and [Fe2Cl4(tdmpp)] (4) were prepared by using the neutral N-donor ligands 1,3-bis(3,5-dimethyl-1-pyrazolyl)propane (bpp) and 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane (tdmpp) with different flexibility and appropriate metal salts of Cd(II), Hg(II) and Fe(II) ions. These compounds were characterized by the infrared spectroscopy, elemental analysis and X-ray crystallography. Flexible ligands and non-covalent Csbnd H⋯Cl hydrogen bonds play a major role in the crystal packing of compounds 1, 2 and 4. In the two-dimensional non-covalent structure of 1, there are two distinctly different coordination modes for the mercury atoms. One mercury atom has pseudo-trigonal bipyramidal geometry and the other adopts a distorted tetrahedral environment. In the dinuclear structures of 2 and 4 the neutral molecules are linked together by the Csbnd H⋯Cl hydrogen bonds, forming an infinite one-dimensional zigzag chain structure. Compounds 2-4 are isostructural with each other.

  6. Computer-Assisted Inverse Design of Inorganic Electrides

    NASA Astrophysics Data System (ADS)

    Zhang, Yunwei; Wang, Hui; Wang, Yanchao; Zhang, Lijun; Ma, Yanming

    2017-01-01

    Electrides are intrinsic electron-rich materials enabling applications as excellent electron emitters, superior catalysts, and strong reducing agents. There are a number of organic electrides; however, their instability at room temperature and sensitivity to moisture are bottlenecks for their practical uses. Known inorganic electrides are rare, but they appear to have greater thermal stability at ambient conditions and are thus better characterized for application. Here, we develop a computer-assisted inverse-design method for searching for a large variety of inorganic electrides unbiased by any known electride structures. It uses the intrinsic property of interstitial electron localization of electrides as the global variable function for swarm intelligence structure searches. We construct two rules of thumb on the design of inorganic electrides pointing to electron-rich ionic systems and low electronegativity of the cationic elements involved. By screening 99 such binary compounds through large-scale computer simulations, we identify 24 stable and 65 metastable new inorganic electrides that show distinct three-, two-, and zero-dimensional conductive properties, among which 18 are existing compounds that have not been pointed to as electrides. Our work reveals the rich abundance of inorganic electrides by providing 33 hitherto unexpected structure prototypes of electrides, of which 19 are not in the known structure databases.

  7. High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.

    2015-03-01

    Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. Themore » composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd 2O 3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.« less

  8. Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors

    NASA Astrophysics Data System (ADS)

    Westafer, Ryan S.

    The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.

  9. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties

    DOE PAGES

    Kirka, M. M.; Unocic, K. A.; Raghavan, N.; ...

    2016-02-12

    During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is the microstructure gradient and associated tensile property gradient that are common to all EBM Inconel 718 builds. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) and is comprised of a cored dendritic structure that includesmore » carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of δ needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with δ networks having precipitated within the grain interiors. Mechanically at both 20°C and 650° C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.« less

  10. Structural Studies on Cytosolic Domain of Magnesium Transporter MgtE from Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragumani, S.; Sauder, J; Burley, S

    2009-01-01

    Magnesium (Mg{sup 2+}) is an essential element for growth and maintenance of living cells. It acts as a cofactor for many enzymes and is also essential for stability of the plasma membrane. There are two distinct classes of magnesium transporters identified in bacteria that convey Mg{sup 2+} from periplasm to cytoplasm [ATPase-dependent (MgtA and MgtB) and constitutively active (CorA and MgtE)]. Previously published work on Mg{sup 2+} transporters yielded structures of full length MgtE from Thermus thermophilus, determined at 3.5 {angstrom} resolution, and its cytoplasmic domain with and without bond Mg{sup 2+} determined at 2.3 and 3.9 {angstrom} resolution, respectively.more » Here, they report the crystal structure of the Mg{sup 2+} bound form of the cytosolic portion of MgtE (residues 6-262) from Enterococcus faecalis at 2.2 {angstrom} resolution. The present structure and magnesium bound cytosolic domain structure from T. thermophilus (PDB ID: 2YVY) are structurally similar. Three magnesium binding sites are common to both MgtE full length and the present structure. Their work revealed an additional Mg{sup 2+} binding site in the E. faecalis structure. In this report, they discuss the functional significance of Mg{sup 2+} binding sites in the cytosolic domains of MgtE transporters.« less

  11. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities andmore » differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.« less

  12. Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure

    NASA Astrophysics Data System (ADS)

    Nazri, N. A.; Sani, M. S. M.

    2017-10-01

    Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.

  13. A Discordant Melody of Sameness.

    ERIC Educational Resources Information Center

    Carroll, William J.

    2003-01-01

    Explores why, in meeting the competition from public and proprietary institutions, small liberal arts colleges should avoid their current homogenization and focus on core, distinctive elements of excellence. (EV)

  14. An ambiguity principle for assigning protein structural domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object-in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our "multipartitioning" approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules.

  15. Structural features of diverse Pin-II proteinase inhibitor genes from Capsicum annuum.

    PubMed

    Mahajan, Neha S; Dewangan, Veena; Lomate, Purushottam R; Joshi, Rakesh S; Mishra, Manasi; Gupta, Vidya S; Giri, Ashok P

    2015-02-01

    The proteinase inhibitor (PI) genes from Capsicum annuum were characterized with respect to their UTR, introns and promoter elements. The occurrence of PIs with circularly permuted domain organization was evident. Several potato inhibitor II (Pin-II) type proteinase inhibitor (PI) genes have been analyzed from Capsicum annuum (L.) with respect to their differential expression during plant defense response. However, complete gene characterization of any of these C. annuum PIs (CanPIs) has not been carried out so far. Complete gene architectures of a previously identified CanPI-7 (Beads-on-string, Type A) and a member of newly isolated Bracelet type B, CanPI-69 are reported in this study. The 5' UTR (untranslated region), 3'UTR, and intronic sequences of both the CanPI genes were obtained. The genomic sequence of CanPI-7 exhibited, exon 1 (49 base pair, bp) and exon 2 (740 bp) interrupted by a 294-bp long type I intron. We noted the occurrence of three multi-domain PIs (CanPI-69, 70, 71) with circularly permuted domain organization. CanPI-69 was found to possess exon 1 (49 bp), exon 2 (551 bp) and a 584-bp long type I intron. The upstream sequence analysis of CanPI-7 and CanPI-69 predicted various transcription factor-binding sites including TATA and CAAT boxes, hormone-responsive elements (ABRELATERD1, DOFCOREZM, ERELEE4), and a defense-responsive element (WRKY71OS). Binding of transcription factors such as zinc finger motif MADS-box and MYB to the promoter regions was confirmed using electrophoretic mobility shift assay followed by mass spectrometric identification. The 3' UTR analysis for 25 CanPI genes revealed unique/distinct 3' UTR sequence for each gene. Structures of three domain CanPIs of type A and B were predicted and further analyzed for their attributes. This investigation of CanPI gene architecture will enable the better understanding of the genetic elements present in CanPIs.

  16. Search for a meteoritic component at the Beaverhead impact structure, Montana

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Kay, Robert W.

    1992-01-01

    The Beaverhead impact structure, in southwestern Montana, was identified recently by the presence of shatter cones and impactites in outcrops of Proterozoic sandstones of the Belt Supergroup. The cones occur over an area greater than 100 sq km. Because the geologic and tectonic history of this region is long and complex, the outline of the original impact crater is no longer identifiable. The extent of the area over which shatter cones occur suggests, however, that the feature may have been at least 60 km in diameter. The absence of shatter cones in younger sedimentary units suggests that the impact event occurred in late Precambrian or early Paleozoic time. We have collected samples of shocked sandstone from the so-called 'Main Site' of dark-matrix breccias, and of impact breccias and melts from the south end of Island Butte. The melts, occurring often as veins through brecciated sandstone, exhibit a distinctive fluidal texture, a greenish color, and a cryptocrystalline matrix, with small inclusions of deformed sandstone. Samples of the same type, along with country rock, were analyzed previously for major- and trace-element abundances. It was found that, although the major-element composition as relatively uniform, trace-element composition showed variations between the melt material and the adjacent sandstone. These variations were attributed to extensive weathering and hydrothermal alteration. In a more specific search for a possible meteoritic signature in the breccia and the melt material we have conducted a new series of trace-element analyses on powders of our own samples by thermal neutron activation analysis. Our results indicate that Ir abundances in the breccia, the melts, and the adjacent sandstone clasts are no greater than about 0.1 ppb, suggesting no Ir enrichment of the breccia or the melts relative to the country rock. However, both the breccia and the melt material exhibit notable enrichments in Cr (8- and 10-fold), in U (9- and 5-fold), and in the heavy REE's (1.5- and 3-fold), respectively.

  17. Indicator-based model to assess vulnerability to landslides in urban areas. Case study of Husi city (Eastern Romania)

    NASA Astrophysics Data System (ADS)

    Grozavu, Adrian; Ciprian Margarint, Mihai; Catalin Stanga, Iulian

    2013-04-01

    In the last three or four decades, vulnerability evolved from physical fragility meanings to a more complex concept, being a key element of risk assessment. In landslide risk assessment, there are a large series of studies regarding landslide hazard, but far fewer researches focusing on vulnerability measurement. Furthermore, there is still no unitary understanding on the methodological framework, neither any internationally agreed standard for landslide vulnerability measurements. The omnipresent common element is the existence of elements at risk, but while some approaches are limited to exposure, other focus on the degree of losses (human injuries, material damages and monetary losses, structural dysfunctions etc.). These losses are differently assessed using both absolute and relative values on qualitative or quantitative scales and they are differently integrated to provide a final vulnerability value. This study aims to assess vulnerability to landslides at local level using an indicator-based model applied to urban areas and tested for Husi town (Eastern Romania). The study region is characterized by permeable and impermeable alternating sedimentary rocks, monoclinal geological structure and hilly relief with impressive cuestas, continental temperate climate, and precipitation of about 500 mm/year, rising to 700 m and even more in some rainy years. The town is a middle size one (25000 inhabitants) and it had an ascending evolution in the last centuries, followed by an increasing human pressure on lands. Methodologically, the first step was to assess the landslide susceptibility and to identify in this way those regions within which any asset would be exposed to landslide hazards. Landslide susceptibility was assessed using the logistic regression approach, taking into account several quantitative and qualitative factors (elements of geology, morphometry, rainfall, land use etc.). The spatial background consisted in the Digital Elevation Model and all derived maps (slope, aspect, shading), realized based on the topographical plans and maps (1:1000, 1:5000). The second step was to realize the spatial inventory of elements at risk (vector format), based on the General Urban Plan (1:5000), the orthorectified aerial images (2009, resolution: 0.5 meters) and field investigations. All elements have been classified using attribute databases: residential buildings (single or multiple dwellings), other buildings according to their functionality, main and secondary roads, special transport network etc. Data about population have been added in order to assess the intrinsic value of each element and the number of potentially affected peoples. The study also took into account issues as preparedness and preventive measures (risk prevention plans, reinforcing structures, draining wells etc.), coping ability (network geometry and connectivity, emergency services accessibility) and recovering capacity (e.g. the existence of insurance policies). According to their importance and functionality, a distinct rank (ri … rn) was assigned to each element at risk (i1…in) showing the level of vulnerability. The rank values were assigned mainly on the expert knowledge and they range from 1 (limited damages, no affected people) to 5 (several households and people affected, dysfunctions in the urban system). The vulnerability index (Vi) was obtained combining the rank with the role of vulnerability factors (Fi), according to their degree of influence: the number of people that would be affected, the potential material and economic damages, the relationship with the neighboring exposed elements, the existence of the preventing, coping and recovering measures etc. Thus, the general equation of vulnerability has the form of weighted geometric mean: Vi=ri•Fi = ri•(w1F1 • w2F2 • … • wmFm). It must be noted that the weighting coefficients (wi) have subunitary or supraunitary value according to their role in diminishing or increasing the vulnerability level. The general vulnerability index (GVI) was obtained through a final transformation that was done to limit the spread of variation between zero (minimum vulnerability) and one (maximum vulnerability): GVIi = Vi/Vmax. In this form, the elements at risk are individually inventoried and spatialized in vector format as points, lines, polygons, each one having its own vulnerability value, but the results can be used only at the precise local level (both by practitioners and decision makers). To allow a more profound interpretation, the general vulnerability index was spatialized in two distinct ways: (1) creating a raster with a standard pixel size (e.g. 20 x 20 m, 50 x 50 m) and calculating the average vulnerability of the exposed elements in each pixel; (2) choosing a interpolation method (e.g. krigging) that would allow to integrate the spatial autocorrelation of the elements at risk and to obtain an output raster at the same resolution with the susceptibility map and a further risk assessment.

  18. Characterizing the distinct structural changes associated with self-reported knee injury among individuals with incident knee osteoarthritis: Data from the osteoarthritis initiative.

    PubMed

    Davis, Julie E; Harkey, Matthew S; Ward, Robert J; Mackay, James W; Lu, Bing; Price, Lori Lyn; Eaton, Charles B; Barbe, Mary F; Lo, Grace H; McAlindon, Timothy E; Driban, Jeffrey B

    2018-04-01

    We aimed to characterize the agreement between distinct structural changes on magnetic resonance (MR) imaging and self-reported injury in the 12 months leading to incident common or accelerated knee osteoarthritis (KOA). We conducted a descriptive study using data from baseline and the first 4 annual visits of the Osteoarthritis Initiative. Knees had no radiographic KOA at baseline (Kellgren-Lawrence [KL]<2). We classified two groups: (1) accelerated KOA: a knee developed advanced-stage KOA (KL = 3 or 4) within 48 months and (2) common KOA: a knee increased in radiographic severity (excluding those with accelerated KOA). Adults were 1:1 matched based on sex. The index visit was when a person met the accelerated or common KOA criteria. We limited our sample to people with MR images and self-reported injury data at index visit and year prior. Among 226 people, we found fair agreement between self-reported injuries and distinct structural changes (kappa = 0.24 to 0.31). Most distinct structural changes were medial meniscal pathology. No distinct structural changes (e.g., root or radial tears) appeared to differ between adults who reported or did not report an injury; except, all subchondral fractures occurred in adults who developed accelerated KOA and reported an injury. While there is fair agreement between self-reported knee injuries and distinct structural changes, there is some discordance. Self-reported injury may represent a different construct from distinct structural changes that occur after joint trauma. Clin. Anat. 31:330-334, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Mechanical response of silk crystalline units from force-distribution analysis.

    PubMed

    Xiao, Senbo; Stacklies, Wolfram; Cetinkaya, Murat; Markert, Bernd; Gräter, Frauke

    2009-05-20

    The outstanding mechanical toughness of silk fibers is thought to be caused by embedded crystalline units acting as cross links of silk proteins in the fiber. Here, we examine the robustness of these highly ordered beta-sheet structures by molecular dynamics simulations and finite element analysis. Structural parameters and stress-strain relationships of four different models, from spider and Bombyx mori silk peptides, in antiparallel and parallel arrangement, were determined and found to be in good agreement with x-ray diffraction data. Rupture forces exceed those of any previously examined globular protein many times over, with spider silk (poly-alanine) slightly outperforming Bombyx mori silk ((Gly-Ala)(n)). All-atom force distribution analysis reveals both intrasheet hydrogen-bonding and intersheet side-chain interactions to contribute to stability to similar extent. In combination with finite element analysis of simplified beta-sheet skeletons, we could ascribe the distinct force distribution pattern of the antiparallel and parallel silk crystalline units to the difference in hydrogen-bond geometry, featuring an in-line or zigzag arrangement, respectively. Hydrogen-bond strength was higher in antiparallel models, and ultimately resulted in higher stiffness of the crystal, compensating the effect of the mechanically disadvantageous in-line hydrogen-bond geometry. Atomistic and coarse-grained force distribution patterns can thus explain differences in mechanical response of silk crystals, opening up the road to predict full fiber mechanics.

  20. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously published preliminary linear analysis, it is demonstrated in the present paper that neglecting nonlinear effects for the structure and loads of interest can lead to appreciable loss in analysis fidelity.

  1. NREM Arousal Parasomnias and Their Distinction from Nocturnal Frontal Lobe Epilepsy: A Video EEG Analysis

    PubMed Central

    Derry, Christopher P.; Harvey, A. Simon; Walker, Matthew C.; Duncan, John S.; Berkovic, Samuel F.

    2009-01-01

    Study Objectives. To describe the semiological features of NREM arousal parasomnias in detail and identify features that can be used to reliably distinguish parasomnias from nocturnal frontal lobe epilepsy (NFLE). Design. Systematic semiologial evaluation of parasomnias and NFLE seizures recorded on video-EEG monitoring. Patients. 120 events (57 parasomnias, 63 NFLE seizures) from 44 subjects (14 males). Interventions. The presence or absence of 68 elemental clinical features was determined in parasomnias and NFLE seizures. Qualitative analysis of behavior patterns and ictal EEG was undertaken. Statistical analysis was undertaken using established techniques. Results. Elemental clinical features strongly favoring parasomnias included: interactive behavior, failure to wake after event, and indistinct offset (all P < 0.001). Cluster analysis confirmed differences in both the frequency and combination of elemental features in parasomnias and NFLE. A diagnostic decision tree generated from these data correctly classified 94% of events. While sleep stage at onset was discriminatory (82% of seizures occurred during stage 1 or 2 sleep, with 100% of parasomnias occurring from stage 3 or 4 sleep), ictal EEG features were less useful. Video analysis of parasomnias identified three principal behavioral patterns: arousal behavior (92% of events); non-agitated motor behavior (72%); distressed emotional behavior (51%). Conclusions Our results broadly support the concept of confusion arousals, somnambulism and night terrors as prototypical behavior patterns of NREM parasomnias, but as a hierarchical continuum rather than distinct entities. Our observations provide an evidence base to assist in the clinical diagnosis of NREM parasomnias, and their distinction from NFLE seizures, on semiological grounds. Citation: Derry CP; Harvey AS; Walker MC; Duncan JS; Berkovic SF. NREM arousal parasomnias and their distinction from nocturnal frontal lobe epilepsy: a video EEG analysis. SLEEP 2009;32(12):1637-1644. PMID:20041600

  2. Application of Foldcore Sandwich Structures in Helicopter Subfloor Energy Absorption Structure

    NASA Astrophysics Data System (ADS)

    Zhou, H. Z.; Wang, Z. J.

    2017-10-01

    The intersection element is an important part of the helicopter subfloor structure. The numerical simulation model of the intersection element is established and the crush simulation is conducted. The simulation results agree well with the experiment results. In order to improve the buffering capacity and energy-absorbing capacity, the intersection element is redesigned. The skin and the floor in the intersection element are replaced with foldcore sandwich structures. The new intersection element is studied using the same simulation method as the typical intersection element. The analysis result shows that foldcore can improve the buffering capacity and the energy-absorbing capacity, and reduce the structure mass.

  3. The r-Stirling Numbers.

    DTIC Science & Technology

    1982-12-01

    partitions, the restriction being that the first r elements must be in distinct cycles and respectively distinct subsets. The combinatorial and algebraic ...symmetric functions The Stirling numbers of the first kind, ("], for ixed n, are the elementary symmetric functions or the numbers 1,...,n (see, e.g., [4 or...5J). The r-Stirling numbers of the Iirst kind are the elementary symmetric runctions or the numbers r,... ,n. --- -4i: ? - , , .i

  4. Isotopically distinct reservoirs in the solar nebula: Isotope anomalies in Vigarano meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.; Davis, A. M.; Macpherson, G. J.

    1994-01-01

    The isotopic compositions of Mg, Ca, Ti, Cr, Zn, Sr, Ba, Nd, and Sm were measured in four relatively unaltered refractory inclusions from the Vigarano carbonaceous chondrite meteorite. Three of the inclusions (USNM 1623-2, 1623-3, and 1623-8) show similar Mg, Ca, Ti, and Cr isotopic compositions to those found in most inclusions in the Allende carbonaceous chondrite. This indicates that these Vigarano inclusions sampled the same isotopic reservoirs as the majority of the Allende inclusions that isotope signatures in the latter were not significantly modified by the secondary alteration that permeates most Allende inclusions. In contrast, inclusion 1623-5 has large deficits in Mg-26, Ca-48, and Ti-50 and small but distinct Cr-54, Zn-66, Sr-84, Ba-135, Ba-137, and Sm-144 anomalies. The magnitudes of these unusual anomalies in the refractory elements are within analytical uncertainty of those found in the Allende 'FUN" inclusion C1, yet 1623-5 has a very different bulk chemical composition from C1. The fact that 1623-5 and C1 have identical isotopic anomalies yet have significantly distinct major and trace element contents provide convincing evidence for the presence of isotopically distinct reservoirs in the early solar system.

  5. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble

    PubMed Central

    Fisher, Kaitlin M.; Haglund, Ellinor; Noel, Jeffrey K.; Hailey, Kendra L.; Onuchic, José N.; Jennings, Patricia A.

    2015-01-01

    Interleukin-33 (IL-33) is currently the focus of multiple investigations into targeting pernicious inflammatory disorders. This mediator of inflammation plays a prevalent role in chronic disorders such as asthma, rheumatoid arthritis, and progressive heart disease. In order to better understand the possible link between the folding free energy landscape and functional regions in IL-33, a combined experimental and theoretical approach was applied. IL-33 is a pseudo- symmetrical protein composed of three distinct structural elements that complicate the folding mechanism due to competition for nucleation on the dominant folding route. Trefoil 1 constitutes the majority of the binding interface with the receptor whereas Trefoils 2 and 3 provide the stable scaffold to anchor Trefoil 1. We identified that IL-33 folds with a three-state mechanism, leading to a rollover in the refolding arm of its chevron plots in strongly native conditions. In addition, there is a second slower refolding phase that exhibits the same rollover suggesting similar limitations in folding along parallel routes. Characterization of the intermediate state and the rate limiting steps required for folding suggests that the rollover is attributable to a moving transition state, shifting from a post- to pre-intermediate transition state as you move from strongly native conditions to the midpoint of the transition. On a structural level, we found that initially, all independent Trefoil units fold equally well until a QCA of 0.35 when Trefoil 1 will backtrack in order to allow Trefoils 2 and 3 to fold in the intermediate state, creating a stable scaffold for Trefoil 1 to fold onto during the final folding transition. The formation of this intermediate state and subsequent moving transition state is a result of balancing the difficulty in folding the functionally important Trefoil 1 onto the remainder of the protein. Taken together our results indicate that the functional element of the protein is geometrically frustrated, requiring the more stable elements to fold first, acting as a scaffold for docking of the functional element to allow productive folding to the native state. PMID:26630011

  6. Inverse gravity modeling for depth varying density structures through genetic algorithm, triangulated facet representation, and switching routines

    NASA Astrophysics Data System (ADS)

    King, Thomas Steven

    A hybrid gravity modeling method is developed to investigate the structure of sedimentary mass bodies. The method incorporates as constraints surficial basement/sediment contacts and topography of a mass target with a quadratically varying density distribution. The inverse modeling utilizes a genetic algorithm (GA) to scan a wide range of the solution space to determine initial models and the Marquardt-Levenberg (ML) nonlinear inversion to determine final models that meet pre-assigned misfit criteria, thus providing an estimate of model variability and uncertainty. The surface modeling technique modifies Delaunay triangulation by allowing individual facets to be manually constructed and non-convex boundaries to be incorporated into the triangulation scheme. The sedimentary body is represented by a set of uneven prisms and edge elements, comprised of tetrahedrons, capped by polyhedrons. Each underlying prism and edge element's top surface is located by determining its point of tangency with the overlying terrain. The remaining overlying mass is gravitationally evaluated and subtracted from the observation points. Inversion then proceeds in the usual sense, but on an irregular tiered surface with each element's density defined relative to their top surface. Efficiency is particularly important due to the large number of facets evaluated for surface representations and the many repeated element evaluations of the stochastic GA. The gravitation of prisms, triangular faceted polygons, and tetrahedrons can be formulated in different ways, either mathematically or by physical approximations, each having distinct characteristics, such as evaluation time, accuracy over various spatial ranges, and computational singularities. A decision tree or switching routine is constructed for each element by combining these characteristics into a single cohesive package that optimizes the computation for accuracy and speed while avoiding singularities. The GA incorporates a subspace technique and parameter dependency to maintain model smoothness during development, thus minimizing creating nonphysical models. The stochastic GA explores the solution space, producing a broad range of unbiased initial models, while the ML inversion is deterministic and thus quickly converges to the final model. The combination allows many solution models to be determined from the same observed data.

  7. Geochemical Comparison of Four Cores from the Manson Impact Structure

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.

    1996-01-01

    Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately 35% shale and siltstone (Proterozoic "Red Clastics"), 23% granite, 40% hornblende-biotite gneiss, and a small component (less than 2%) of mafic-dike rocks.

  8. The essential elements of health impact assessment and healthy public policy: a qualitative study of practitioner perspectives.

    PubMed

    Harris, Patrick John; Kemp, Lynn Amanda; Sainsbury, Peter

    2012-01-01

    This study uses critical realist methodology to identify the essential and contingent elements of Health Impact Assessment (HIA) and Healthy Public Policy (HPP) as operationalised by practitioners. Data collection-qualitative interviews and a workshop were conducted with HIA and HPP practitioners working in differing contexts. Critical realist analytical questions identified the essential elements of HIA and HPP, the relationship between them, and the influences of public policy and other contingencies on the practice of both. Nine interviews were conducted with purposively sampled participants working in Europe, USA and Australasia. 17 self-selected participants who worked in Europe, South East Asia and Australasia attended the workshop. The results clarify that HIA and HPP are different but mutually supporting. HIA has four characteristics: assessing a policy proposal to predict population health and equity impacts, a structured process for stakeholder dialogue, making recommendations and flexibly adapting to the policy process. HPP has four characteristics: concern with a broad definition of health, designing policy to improve people's health and reduce health inequities, intersectoral collaboration and influencing the policy cycle from inception to completion. HIA brings to HPP prediction about a policy's broad health impacts, and a structured space for intersectoral engagement, but is one approach within a broader suite of HPP activities. Five features of public policy and seven contingent influences on HIA and HPP practice are identified. This study clarifies the core attributes of HIA and HPP as separate yet overlapping while subject to wider influences. This provides the necessary common language to describe the application of both and avoid conflated expectations of either. The findings present the conceptual importance of public policy and the institutional role of public health as distinct and important influences on the practice of HIA and HPP.

  9. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.

  10. Mutually Exclusive Splicing of the Insect Dscam Pre-mRNA Directed by Competing Intronic RNA Secondary Structures

    PubMed Central

    Graveley, Brenton R.

    2008-01-01

    Summary Drosophila Dscam encodes 38,016 distinct axon guidance receptors through the mutually exclusive alternative splicing of 95 variable exons. Importantly, known mechanisms that ensure the mutually exclusive splicing of pairs of exons cannot explain this phenomenon in Dscam. I have identified two classes of conserved elements in the Dscam exon 6 cluster, which contains 48 alternative exons—the docking site, located in the intron downstream of constitutive exon 5, and the selector sequences, which are located upstream of each exon 6 variant. Strikingly, each selector sequence is complementary to a portion of the docking site, and this pairing juxtaposes one, and only one, alternative exon to the upstream constitutive exon. The mutually exclusive nature of the docking site:selector sequence interactions suggests that the formation of these competing RNA structures is a central component of the mechanism guaranteeing that only one exon 6 variant is included in each Dscam mRNA. PMID:16213213

  11. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.

    PubMed

    Mann, Charlie-Ray; Sturges, Thomas J; Weick, Guillaume; Barnes, William L; Mariani, Eros

    2018-06-06

    Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light-matter interaction. The metasurfaces simultaneously exhibit two distinct species of massless Dirac polaritons, namely type-I and type-II. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to qualitatively different polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserving the lattice structure-a unique scenario which has no analog in real or artificial graphene systems. Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale.

  12. SRB-2: a promiscuous rainbow aptamer for live-cell RNA imaging.

    PubMed

    Sunbul, Murat; Jäschke, Andres

    2018-06-21

    The SRB-2 aptamer originally selected against sulforhodamine B is shown here to promiscuously bind to various dyes with different colors. Binding of SRB-2 to these dyes results in either fluorescence increase or decrease, making them attractive for fluorescence microscopy and biological assays. By systematically varying fluorophore structural elements and measuring dissociation constants, the principles of fluorophore recognition by SRB-2 were analyzed. The obtained structure-activity relationships allowed us to rationally design a novel, bright, orange fluorescent turn-on probe (TMR-DN) with low background fluorescence, enabling no-wash live-cell RNA imaging. This new probe improved the signal-to-background ratio of fluorescence images by one order of magnitude over best previously known probe for this aptamer. The utility of TMR-DN is demonstrated by imaging ribosomal and messenger RNAs, allowing the observation of distinct localization patterns in bacteria and mammalian cells. The SRB-2 / TMR-DN system is found to be orthogonal to the Spinach/DFHBI and MG/Malachite green aptamer/dye systems.

  13. Sharing the floodplain: Mediated modeling for environmental management

    USGS Publications Warehouse

    Metcalf, S.S.; Wheeler, E.; BenDor, T.K.; Lubinski, S.J.; Hannon, B.M.

    2010-01-01

    Complex ecosystems, such as the Upper Mississippi River (UMR), present major management challenges. Such systems often provide a range of ecosystem services that are differentially valued by stakeholders representing distinct interests (e.g., agriculture, conservation, navigation) or institutions (e.g., federal and state agencies). When no single entity has the knowledge or authority to resolve conflicts over shared resource use, stakeholders may struggle to jointly understand the scope of the problem and to reach reasonable compromises. This paper explores mediated modeling as a group consensus building process for understanding relationships between ecological, economic and cultural well-being in the UMR floodplain. We describe a workshop structure used to engage UMR stakeholders that may be extended to resource use conflicts in other complex ecosystems. We provide recommendations for improving on these participatory methods in structuring future efforts. In conclusion, we suggest that tools which facilitate collaborative learning, such as mediated modeling, need to be incorporated at an institutional level as a vital element of integrated ecosystem management. ?? 2008 Elsevier Ltd.

  14. A polyoxometalate-encapsulating cationic metal-organic framework as a heterogeneous catalyst for desulfurization.

    PubMed

    Hao, Xiu-Li; Ma, Yuan-Yuan; Zang, Hong-Ying; Wang, Yong-Hui; Li, Yang-Guang; Wang, En-Bo

    2015-02-23

    A new cationic triazole-based metal-organic framework encapsulating Keggin-type polyoxometalates, with the molecular formula [Co(BBPTZ)3][HPMo12O40]⋅24 H2O [compound 1; BBPTZ = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl] is hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. The structure of compound 1 contains a non-interpenetrated 3D CdSO4 (cds)-type framework with two types of channels that are interconnected with each other; straight channels that are occupied by the Keggin-type POM anions, and wavelike channels that contain lattice water molecules. The catalytic activity of compound 1 in the oxidative desulfurization reaction indicates that it is not only an effective and size-selective heterogeneous catalyst, but it also exhibits distinct structural stability in the catalytic reaction system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Combined scanning transmission X-ray and electron microscopy for the characterization of bacterial endospores.

    PubMed

    Jamroskovic, Jan; Shao, Paul P; Suvorova, Elena; Barak, Imrich; Bernier-Latmani, Rizlan

    2014-09-01

    Endospores (also referred to as bacterial spores) are bacterial structures formed by several bacterial species of the phylum Firmicutes. Spores form as a response to environmental stress. These structures exhibit remarkable resistance to harsh environmental conditions such as exposure to heat, desiccation, and chemical oxidants. The spores include several layers of protein and peptidoglycan that surround a core harboring DNA as well as high concentrations of calcium and dipicolinic acid (DPA). A combination of scanning transmission X-ray microscopy, scanning transmission electron microscopy, and energy dispersive spectroscopy was used for the direct quantitative characterization of bacterial spores. The concentration and localization of DPA, Ca(2+) , and other elements were determined and compared for the core and cortex of spores from two distinct genera: Bacillus subtilis and Desulfotomaculum reducens. This micro-spectroscopic approach is uniquely suited for the direct study of individual bacterial spores, while classical molecular and biochemical methods access only bulk characteristics. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Structural Evolution of Q-Carbon and Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish

    2018-04-01

    This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp 3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp 3 content. The phenomenon of solid-liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp 3 content of DLC thin films was modeled based on perturbation theory.

  17. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals

    DOE PAGES

    Ye, Xingchen; Zhu, Chenhui; Ercius, Peter; ...

    2015-12-02

    Multicomponent nanocrystal superlattices represent an interesting class of material that derives emergent properties from mesoscale structure, yet their programmability can be limited by the alkyl-chain-based ligands decorating the surfaces of the constituent nanocrystals. Polymeric ligands offer distinct advantages, as they allow for more precise tuning of the effective size and ‘interaction softness’ through changes to the polymer’s molecular weight, chemical nature, architecture, persistence length and surrounding solvent. Here we show the formation of 10 different binary nanocrystal superlattices (BNSLs) with both two- and three-dimensional order through independent adjustment of the core size of spherical nanocrystals and the molecular weight ofmore » densely grafted polystyrene ligands. These polymer-brush-based ligands introduce new energetic contributions to the interparticle potential that stabilizes various BNSL phases across a range of length scales and interparticle spacings. In conclusion, our study opens the door for nanocrystals to become modular elements in the design of functional particle brush solids with controlled nanoscale interfaces and mesostructures.« less

  18. Cytoskeleton-mediated templating of complex cellulose-scaffolded extracellular structure and its association with oikosins in the urochordate Oikopleura.

    PubMed

    Sagane, Yoshimasa; Hosp, Julia; Zech, Karin; Thompson, Eric M

    2011-05-01

    Oriented cellulose deposition is critical to plant patterning and models suggest microtubules constrain cellulose synthase movements through the plasma membrane. Though widespread in plants, urochordates are the only animals that synthesize cellulose. We characterized the distinctive cellulose microfibril scaffold of the larvacean house and its interaction with house structural proteins (oikosins). Targeted disruption of cytoskeletal elements, secretory pathways, and plasma membrane organization, suggested a working model for templating extracellular cellulose microfibrils from animal cells that shows both convergence and differences to plant models. Specialized cortical F-actin arrays template microfibril orientation and glycosylphosphatidylinositol-anchored proteins in lipid rafts may act as scaffolding proteins in microfibril elongation. Microtubules deliver and maintain cellulose synthase complexes to specific cell membrane sites rather than orienting their movement through the membrane. Oikosins are incorporated into house compartments directly above their corresponding cellular field of expression and interact with the cellulose scaffold to a variable extent.

  19. Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants.

    PubMed

    Li, Shu-Fen; Su, Ting; Cheng, Guang-Qian; Wang, Bing-Xiao; Li, Xu; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-10-24

    Chromosome evolution is a fundamental aspect of evolutionary biology. The evolution of chromosome size, structure and shape, number, and the change in DNA composition suggest the high plasticity of nuclear genomes at the chromosomal level. Repetitive DNA sequences, which represent a conspicuous fraction of every eukaryotic genome, particularly in plants, are found to be tightly linked with plant chromosome evolution. Different classes of repetitive sequences have distinct distribution patterns on the chromosomes. Mounting evidence shows that repetitive sequences may play multiple generative roles in shaping the chromosome karyotypes in plants. Furthermore, recent development in our understanding of the repetitive sequences and plant chromosome evolution has elucidated the involvement of a spectrum of epigenetic modification. In this review, we focused on the recent evidence relating to the distribution pattern of repetitive sequences in plant chromosomes and highlighted their potential relevance to chromosome evolution in plants. We also discussed the possible connections between evolution and epigenetic alterations in chromosome structure and repatterning, such as heterochromatin formation, centromere function, and epigenetic-associated transposable element inactivation.

  20. Effect of welding on creep damage evolution in P91B steel

    NASA Astrophysics Data System (ADS)

    Baral, J.; Swaminathan, J.; Chakrabarti, D.; Ghosh, R. N.

    2017-07-01

    Study of creep behavior of base metal (without weld) and welded specimens of P91B steel over a range of temperatures (600-650 °C) and stresses (50-180 MPa) showed similar values of minimum creep-rates for both specimens at higher stress regime (>100 MPa) whilst, significantly higher creep rates in the case of welded specimens at lower stress regime. Considering that welded specimen is comprised of two distinct structural regimes, i.e. weld affected zone and base metal, a method has been proposed for estimating the material parameters describing creep behavior of those regimes. Stress-strain distribution across welded specimen predicted from finite element analysis based on material parameters revealed preferential accumulation of stress and creep strain at the interface between weld zone and base metal. This is in-line with the experimental finding that creep rupture preferentially occurs at inter-critical heat affected zone in welded specimens owing to ferrite-martensite structure with coarse Cr23C6 particles.

  1. Self-Alining, Latching Joint For Folding Structural Elements

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Wallsom, R. E.

    1982-01-01

    Structural column elements assembled quickly and easily with aid of new center joint. Joint alines column elements automatically and fastens them together securely. Tapered half columns are stacked like paper cups, unfolded, and connected to other similar elements to form truss structures.

  2. Advances and trends in structures and dynamics; Proceedings of the Symposium, Washington, DC, October 22-25, 1984

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Editor); Hayduk, R. J. (Editor)

    1985-01-01

    Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.

  3. Identification of cis-acting regulatory elements in the human oxytocin gene promoter.

    PubMed

    Richard, S; Zingg, H H

    1991-12-01

    The expression of hormone-inducible genes is determined by the interaction of trans-acting factors with hormone-inducible elements and elements mediating basal and cell-specific expression. We have shown earlier that the gene encoding the hypothalamic nonapeptide oxytocin (OT) is under the control of an estrogen response element (ERE). The present study was aimed at identifying cis-acting elements mediating basal expression of the OT gene. A construct containing sequences -381 to +36 of the human OT gene was linked to a reporter gene and transiently transfected into a series of neuronal and nonneuronal cell lines. Expression of this construct was cell specific: it was highest in the neuroblastoma-derived cell line, Neuro-2a, and lowest in NIH 3T3 and JEG-3 cells. By 5' deletion analysis, we determined that a segment from -49 to +36 was capable of mediating cells-pecific promoter activity. Within this segment, we identified three proximal promoter elements (PPE-1, PPE-2, and PPE-3) that are each required for promoter activity. Most notably, mutation of a conserved purine-rich element (GAGAGA) contained within PPE-2 leads to a 10-fold decrease in promoter strength. Gel mobility shift analysis with three different double-stranded oligonucleotides demonstrated that each proximal promoter element binds distinct nuclear factors. In each case, only the homologous oligonucleotide, but neither of the oligonucleotides corresponding to adjacent elements, was able to act as a competitor. Thus, a different set of factors appears to bind independently to each element. By reinserting the homologous ERE or a heterologous glucocorticoid response element upstream of intact or altered proximal promoter segments we determined that removal or mutation of proximal promoter elements decreases basal expression, but does not abrogate the hormone responsiveness of the promoter. In conclusion, these results indicate that an important component of the transcriptional activity of the OT promoter resides in a small region extending only 50 bases upstream of the cap site and that this activity is the result of a cooperative interaction of at least three distinct proximal promoter elements.

  4. Structural characterization of a novel full-length transcript promoter from Horseradish Latent Virus (HRLV) and its transcriptional regulation by multiple stress responsive transcription factors.

    PubMed

    Khan, Ahamed; Shrestha, Ankita; Bhuyan, Kashyap; Maiti, Indu B; Dey, Nrisingha

    2018-01-01

    The promoter fragment described in this study can be employed for strong transgene expression under both biotic and abiotic stress conditions. Plant-infecting Caulimoviruses have evolved multiple regulatory mechanisms to address various environmental stimuli during the course of evolution. One such mechanism involves the retention of discrete stress responsive cis-elements which are required for their survival and host-specificity. Here we describe the characterization of a novel Caulimoviral promoter isolated from Horseradish Latent Virus (HRLV) and its regulation by multiple stress responsive Transcription factors (TFs) namely DREB1, AREB1 and TGA1a. The activity of full length transcript (Flt-) promoter from HRLV (- 677 to + 283) was investigated in both transient and transgenic assays where we identified H12 (- 427 to + 73) as the highest expressing fragment having ~ 2.5-fold stronger activity than the CaMV35S promoter. The H12 promoter was highly active and near-constitutive in the vegetative and reproductive parts of both Tobacco and Arabidopsis transgenic plants. Interestingly, H12 contains a distinct cluster of cis-elements like dehydration-responsive element (DRE-core; GCCGAC), an ABA-responsive element (ABRE; ACGTGTC) and as-1 element (TGACG) which are known to be induced by cold, drought and pathogen/SA respectively. The specific binding of DREB1, AREB1 and TGA1a to DRE, ABRE and as-1 elements respectively were confirmed by the gel-binding assays using H12 promoter-specific probes. Detailed mutational analysis of the H12 promoter suggested that the presence of DRE-core and as-1 element was indispensable for its activity which was further confirmed by the transactivation assays. Our studies imply that H12 could be a valuable genetic tool for regulated transgene expression under diverse environmental conditions.

  5. Geochemical modeling of orogenic gold deposit using PCANN hybrid method in the Alut, Kurdistan province, Iran

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Mohammadjafar; Nasseri, Aynur

    2018-03-01

    In this paper stream sediments based geochemical exploration program with the aim of delineating potentially promising areas by a comprehensive stepwise optimization approach from univariate statistics, PCA, ANN, and fusion method PCANN were under taken for an orogenic gold deposit located in the Alut, Kurdistan province, NW of Iran. At first the data were preprocessed and then PCA were applied to determine the maximum variability directions of elements in the area. Subsequently the artificial neural network (ANN) was used for quick estimation of elemental concentration, as well as discriminating anomalous populations and intelligent determination of internal structure among the data. However, both the methods revealed constraints for modeling. To overcome the deficiency and shortcoming of each individual method a new methodology is presented by integration of both "PCA & ANN" referred as PCANN method. For integrating purpose, the detected PCs pertinent to ore mineralization selected and intruded to neural network structure, as a result different MLPs with various algorithms and structures were produced. The resulting PCANN maps suggest that the gold mineralization and its pathfinder elements (Au, Mo, W, Bi, Sb, Cu, Pb, Ag & As) are associated with metamorphic host rocks intruded by granite bodies in the Alut area. In addition, more concealed and distinct Au anomalies with higher intensity were detected, confirming the privileges of the method in evaluating susceptibility of the area in delineating new hidden potential zones. The proposed method demonstrates simpler network architecture, easy computational implementation, faster training speed, as well as no need to consider any primary assumption about the behavior of data and their probability distribution type, with more satisfactory predicting performance for generating gold potential map of the area. Comparing the results of three methods (PCA, ANN and PCANN), representing the higher efficiency and more reliability of PCANN with lesser training time, simple structure, and correlate components while avoiding the duplicate entry of data to network. This study also suggests that in many similar cases integrated methods have capability to fix bugs more effectively and successfully in exploration programs.

  6. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Baudelet, Matthieu; Yu, Jin; Bossu, Myriam; Jovelet, Julien; Wolf, Jean-Pierre; Amodeo, Tanguy; Fréjafon, Emeric; Laloi, Patrick

    2006-10-01

    Using femtosecond laser-induced breakdown spectroscopy, the authors have analyzed five different species of bacterium. Line emissions from six trace mineral elements, Na, Mg, P, K, Ca, and Fe, have been clearly detected. Their intensities correspond to relative concentrations of these elements contained in the analyzed samples. The authors demonstrate that the concentration profile of trace elements allows unambiguous discrimination of different bacteria. Quantitative differentiation has been made by representing bacteria in a six-dimension hyperspace with each of its axis representing a detected trace element. In such hyperspace, representative points of different species of bacterium are gathered in different and distinct volumes.

  7. Prompt and delayed NAA techniques for the characterization of specimen bank materials.

    PubMed

    Rossbach, M; Stoeppler, M; Byrne, A R

    1993-11-01

    The combined application of instrumental-, radiochemical- and prompt gamma neutron activation analysis to two spruce shoot materials from the German Environmental Specimen Bank (ESB) resulted in information on 50 elements, covering more than 50% of the total mass. Comparison of the element concentrations in the 'fingerprint' mode clearly indicated a different status of heavy metal pollution at the two distinct collecting sites.

  8. Identification of helix capping and β-turn motifs from NMR chemical shifts

    PubMed Central

    Shen, Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13Cβ chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed that attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures. PMID:22314702

  9. X-ray structure of the dopamine transporter in complex with tricyclic antidepressant

    PubMed Central

    Penmatsa, Aravind; Wang, Kevin H.; Gouaux, Eric

    2013-01-01

    Antidepressants targeting Na+/Cl−-coupled neurotransmitter uptake define a major therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter (dDAT) at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between TMs1/6 and 3/8, blocking the transporter from binding substrate and from isomerizing to an inward facing conformation. While the overall structure of dDAT is similar to that of its prokaryotic relative LeuT, there are multiple distinctions that include a kink in TM12 halfway across the membrane bilayer, a latch-like C-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by TMs 1a, 5 and 7. Taken together, the dDAT structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and illuminates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of mechanism and regulation of neurotransmitter uptake at chemical synapses. PMID:24037379

  10. Influence of 5-N-carboxamide modifications on the thermodynamic stability of oligonucleotides

    PubMed Central

    Wolk, Steven K.; Shoemaker, Richard K.; Mayfield, Wes S.; Mestdagh, Andrew L.; Janjic, Nebojsa

    2015-01-01

    We have recently shown that the incorporation of modified nucleotides such as 5-N-carboxamide-deoxyuridines into random nucleic acid libraries improves success rates in SELEX experiments and facilitates the identification of ligands with slow off-rates. Here we report the impact of these modifications on the thermodynamic stability of both duplexes and intramolecular ‘single-stranded’ structures. Within duplexes, large, hydrophobic naphthyl groups were destabilizing relative to the all natural DNA duplex, while the hydrophilic groups exhibited somewhat improved duplex stability. All of the significant changes in stability were driven by opposing contributions from the enthalpic and entropic terms. In contrast, both benzyl and naphthyl modifications stabilized intramolecular single-stranded structures relative to their natural DNA analogs, consistent with the notion that intramolecular folding allows formation of novel, stabilizing hydrophobic interactions. Imino proton NMR data provided evidence that elements of the folded structure form at temperatures well below the Tm, with a melting transition that is distinctly less cooperative when compared to duplex DNA. Although there are no data to suggest that the unmodified DNA sequences fold into structures similar to their modified analogs, this still represents clear evidence that these modifications impart thermodynamic stability to the folded structure not achievable with unmodified DNA. PMID:26438535

  11. Regional surficial geochemistry of the northern Great Basin

    USGS Publications Warehouse

    Ludington, S.; Folger, H.; Kotlyar, B.; Mossotti, V.G.; Coombs, M.J.; Hildenbrand, T.G.

    2006-01-01

    The regional distribution of arsenic and 20 other elements in stream-sediment samples in northern Nevada and southeastern Oregon was studied in order to gain new insights about the geologic framework and patterns of hydrothermal mineralization in the area. Data were used from 10,261 samples that were originally collected during the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program in the 1970s. The data are available as U.S. Geological Survey Open-File Report 02-0227. The data were analyzed using traditional dot maps and interpolation between data points to construct high-resolution raster images, which were correlated with geographic and geologic information using a geographic information system (GIS). Wavelength filters were also used to deconvolute the geochemical images into various textural components, in order to study features with dimensions of a few kilometers to dimensions of hundreds of kilometers. The distribution of arsenic, antimony, gold, and silver is different from distributions of the other elements in that they show a distinctive high background in the southeast part of the area, generally in areas underlain by the pre-Mesozoic craton. Arsenic is an extremely mobile element and can be used to delineate structures that served as conduits for the circulation of metal-bearing fluids. It was used to delineate large crustal structures and is particularly good for delineation of the Battle Mountain-Eureka mineral trend and the Steens lineament, which corresponds to a post-Miocene fault zone. Arsenic distribution patterns also delineated the Black Rock structural boundary, northwest of which the basement apparently consists entirely of Miocene and younger crust. Arsenic is also useful to locate district-sized hydrothermal systems an d clusters of systems. Most important types of hydrothermal mineral deposit in the northern Great Basin appear to be strongly associated with arsenic; this is less so for low-sulfidation epithermal deposits. In addition to individual elements, the distribution of factor scores that resulted from principal component studies of the data was used. The strongest factor is characterized by Fe, Ti, V, Cu, Ni, and Zn and is used to map the distribution of distinctive basalts that are high in Cu, Ni, and Zn and that appear to be related to the Steens Basalt. The other important factor is related to hydrothermal precious metal mineralization and is characterized by Sb, Ag, As, Pb, Au, and Zn. The map of the distribution of this factor is similar in appearance to the one for arsenic, and we used wavelength filters to remove regional variations in the background for this factor score. The resulting residual map shows a very strong association with the most significant precious metal deposits and districts in the region. This residual map also shows a number of areas that are not associated with known mineral deposits, illustrating the utility of the method as a regional exploration tool. A number of these prospective areas are distant from known significant mineral deposits. The deconvolution of the spatial wavelength structure of geochemical maps, combined with the use of large regional geochemical data sets and GIS, permits new possibilities for the use of stream-sediment geochemistry in the study of large-scale crustal features as well as the isolation of mineral-district scale anomalies. ?? 2006 Society of Economic Geologists, Inc.

  12. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  13. Granulite-facies rocks in the Whatley Mill gneiss, Pine Mountain basement massif, Eastern Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniell, N.; Salpas, P.A.

    1993-03-01

    The Pine Mountain basement massif is a granulite terrane exposed in a tectonic window through the Inner Piedmont of western Georgia and eastern Alabama. Investigations of the westernmost extent of the massif, the Whatley Mill Gneiss, have revealed four distinct lithologies: (1) an augen gneiss, the type lithology; (2) mylonite that develops in the shear zones cutting the unit; (3) a phaneritic rock showing weak to no foliation; (4) enclaves of biotite gneiss within the weakly-foliated rock. Additionally, the weakly-foliated rock comprises two distinct phases which are in sharp contact along curved and undulating boundaries: phase 1 is a coarser-grainedmore » rock; phase 2 is a finer-grained rock of the same mineralogy as phase 1 except it contains rare hypersthene. This first recorded observation of hypersthene unequivocally confirms the granulite-facies origin of the unit. Major and trace element compositions of the phase 1 rock are identical to those of the augen gneiss. The phase 2 rock, has a distinct composition with higher SiO[sub 2] and lower incompatible trace elements than the phase 1 rock. The enclaves display a range in major elements but higher incompatible elements than the other lithologies. Geochemical and petrologic relationships leads one to interpret: (1) the weakly-foliated rock retains many of its primary igneous features including its two phases and enclaves; (2) the two phases of the weakly-foliated rock arose as a result of injection of one magma (phase 2) into a cooler, crystal mush solidifying from another magma (phase 1); (3) the enclaves represent either autoliths of xenoliths; (4) the augen gneiss arose by isochemical deformation of the phase 1 rock.« less

  14. The Design Process of Physical Security as Applied to a U.S. Border Point of Entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.G.

    1998-10-26

    This paper describes the design process of physical security as applied to a U.S. Border Port of Entry (PoE). Included in this paper are descriptions of the elements that compose U.S. border security. The physical security design will describe the various elements that make up the process as well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry and exit of illegal contraband will be emphasized.

  15. Parvovirus-derived endogenous viral elements in two South American rodent genomes.

    PubMed

    Arriagada, Gloria; Gifford, Robert J

    2014-10-01

    We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  17. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

    PubMed

    Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2016-01-07

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Characterization and distribution of repetitive elements in association with genes in the human genome.

    PubMed

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene-associated repetitive elements in the human genome. Our data showed distinct genes associated with different kinds of repetitive element and implied such combination may shape the function of these genes. Aside from the conventional view of these elements in genome evolution, results from this study offer a systemic review to facilitate exploitation of these elements in genome function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Density functional theory calculations for armchair stanene nanoribbons with fluorine and sulfur functionalization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lang, X. Y.; Jiang, Q.

    2018-07-01

    A systematic density functional theory calculation has been carried out to study the effect of edge terminating of F and S elements with different edge natures on the structure and electronic properties of armchair stanene nanoribbons (ASnNRs). Moreover, the corresponding size (ribbon width Na) dependence on these properties is also considered. The energy gap was found to be oscillated as a function of Na and could be classified into three distinct groups of 3m, 3m + 1 and 3m + 2. In addition, the energy gaps of ASnNRs saturated by S atoms differ from that did by F and H atoms in vibration trends as well VBM and CBM changes, where the energy gap is a direct energy gap with a moderate size.

  20. Responses of phytoplankton community to the input of different aerosols in the East China Sea

    NASA Astrophysics Data System (ADS)

    Meng, X.; Chen, Y.; Wang, B.; Ma, Q. W.; Wang, F. J.

    2016-07-01

    Atmospheric deposition can affect marine phytoplankton by supplying macronutrients and trace elements. We conducted mesocosm experiments by adding aerosols with different composition (dominated by mineral dust, biomass burning and high Cu, and secondary aerosol, respectively) to the surface seawater of the East China Sea. Chlorophyll a concentrations were found to be the highest and lowest after adding aerosols containing the highest Fe and dissolved inorganic nitrogen (DIN), respectively. The relative abundance of Haptophyceae increased significantly after adding mineral dust, whereas diatom, Dinophyceae and Cryptophyceae reached the maximum accompanied with the highest DIN. Our results suggest that Fe may be more important than DIN in promoting primary productivity in the sampled seawater. The input of mineral dust and anthropogenic aerosols may result in distinct changes of phytoplankton community structure.

  1. Glaciers and ice sheets as a biome.

    PubMed

    Anesio, Alexandre M; Laybourn-Parry, Johanna

    2012-04-01

    The tundra is the coldest biome described in typical geography and biology textbooks. Within the cryosphere, there are large expanses of ice in the Antarctic, Arctic and alpine regions that are not regarded as being part of any biome. During the summer, there is significant melt on the surface of glaciers, ice caps and ice shelves, at which point microbial communities become active and play an important role in the cycling of carbon and other elements within the cryosphere. In this review, we suggest that it is time to recognise the cryosphere as one of the biomes of Earth. The cryospheric biome encompasses extreme environments and is typified by truncated food webs dominated by viruses, bacteria, protozoa and algae with distinct biogeographical structures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  3. Auditing emergency management programmes: Measuring leading indicators of programme performance.

    PubMed

    Tomsic, Heather

    Emergency Management Programmes benefit from review and measurement against established criteria. By measuring current vs required programme elements for their actual currency, completeness and effectiveness, the resulting timely reports of achievements and documentation of identified gaps can effectively be used to rationally support prioritised improvement. Audits, with their detailed, triangulated and objectively weighted processes, are the ultimate approach in terms of programme content measurement. Although Emergency Management is often presented as a wholly separate operational mechanism, distinct and functionally different from the organisation's usual management structure, this characterisation is only completely accurate while managing an emergency itself. Otherwise, an organisation's Emergency Management Programme is embedded within that organisation and dependent upon it. Therefore, the organisation's culture and structure of management, accountability and measurement must be engaged for the programme to exist, much less improve. A wise and successful Emergency Management Coordinator does not let the separate and distinct nature of managing an emergency obscure their realisation of the need for an organisation to understand and manage all of the other programme components as part of its regular business practices. This includes its measurement. Not all organisations are sufficiently large or capable of supporting the use of an audit. This paper proposes that alternate, less formal, yet effective mechanisms can be explored, as long as they reflect and support organisational management norms, including a process of relatively informal measurement focused on the organisation's own perception of key Emergency Management Programme performance indicators.

  4. Molecular Probe Dynamics Reveals Suppression of Ice-Like Regions in Strongly Confined Supercooled Water

    PubMed Central

    Banerjee, Debamalya; Bhat, Shrivalli N.; Bhat, Subray V.; Leporini, Dino

    2012-01-01

    The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448–11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed. PMID:23049747

  5. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms.

    PubMed

    Horikoshi, Momoko; Pasquali, Lorenzo; Wiltshire, Steven; Huyghe, Jeroen R; Mahajan, Anubha; Asimit, Jennifer L; Ferreira, Teresa; Locke, Adam E; Robertson, Neil R; Wang, Xu; Sim, Xueling; Fujita, Hayato; Hara, Kazuo; Young, Robin; Zhang, Weihua; Choi, Sungkyoung; Chen, Han; Kaur, Ismeet; Takeuchi, Fumihiko; Fontanillas, Pierre; Thuillier, Dorothée; Yengo, Loic; Below, Jennifer E; Tam, Claudia H T; Wu, Ying; Abecasis, Gonçalo; Altshuler, David; Bell, Graeme I; Blangero, John; Burtt, Noél P; Duggirala, Ravindranath; Florez, Jose C; Hanis, Craig L; Seielstad, Mark; Atzmon, Gil; Chan, Juliana C N; Ma, Ronald C W; Froguel, Philippe; Wilson, James G; Bharadwaj, Dwaipayan; Dupuis, Josee; Meigs, James B; Cho, Yoon Shin; Park, Taesung; Kooner, Jaspal S; Chambers, John C; Saleheen, Danish; Kadowaki, Takashi; Tai, E Shyong; Mohlke, Karen L; Cox, Nancy J; Ferrer, Jorge; Zeggini, Eleftheria; Kato, Norihiro; Teo, Yik Ying; Boehnke, Michael; McCarthy, Mark I; Morris, Andrew P

    2016-05-15

    To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci. © The Author 2016. Published by Oxford University Press.

  6. Structurally Complex Organization of Repetitive DNAs in the Genome of Cobia (Rachycentron canadum).

    PubMed

    Costa, Gideão W W F; Cioffi, Marcelo de B; Bertollo, Luiz A C; Molina, Wagner F

    2015-06-01

    Repetitive DNAs comprise the largest fraction of the eukaryotic genome. They include microsatellites or simple sequence repeats (SSRs), which play an important role in the chromosome differentiation among fishes. Rachycentron canadum is the only representative of the family Rachycentridae. This species has been focused on several multidisciplinary studies in view of its important potential for marine fish farming. In the present study, distinct classes of repetitive DNAs, with emphasis on SSRs, were mapped in the chromosomes of this species to improve the knowledge of its genome organization. Microsatellites exhibited a diversified distribution, both dispersed in euchromatin and clustered in the heterochromatin. The multilocus location of SSRs strengthened the heterochromatin heterogeneity in this species, as suggested by some previous studies. The colocalization of SSRs with retrotransposons and transposons pointed to a close evolutionary relationship between these repetitive sequences. A number of heterochromatic regions highlighted a greater complex organization than previously supposed, harboring a diversity of repetitive elements. In this sense, there was also evidence of colocalization of active genetic regions and different classes of repetitive DNAs in a common heterochromatic region, which offers a potential opportunity for further researches regarding the interaction of these distinct fractions in fish genomes.

  7. The production of food: from quantity to quality.

    PubMed

    McInerney, John

    2002-05-01

    The present paper presents a non-technical overview of contemporary developments in food supply, as seen from the standpoint of economic adjustment. The historical concerns over availability and price of food have now passed in the UK, and agriculture is no longer dominantly driven by the supply-side forces of new farming technology and the stimulus of support policies. As a now demand-driven sector of the economy, it is the developing diversity of consumer food preferences that will increasingly determine the adjustment path of agricultural production. Those demands seek distinctive elements of food value, many of which are entirely created and delivered by industries beyond the farm gate. However, many of the quality characteristics of food that consumers increasingly seek are associated explicitly with what takes place on farms and how crop and livestock husbandry is conducted. In responding to these demand preferences many farmers will shift from being merely raw material producers to becoming genuine producers of food, or capturing more of the final value of the products consumed. As a result a dual structure within farming will develop, with a 'quality agriculture' becoming increasingly differentiated from a 'commodity agriculture' as two distinct strategies for farm business survival.

  8. TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy

    PubMed Central

    Grada, Zakaria; Hegde, Meenakshi; Byrd, Tiara; Shaffer, Donald R; Ghazi, Alexia; Brawley, Vita S; Corder, Amanda; Schönfeld, Kurt; Koch, Joachim; Dotti, Gianpietro; Heslop, Helen E; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Ahmed, Nabil

    2013-01-01

    Targeted T cells are emerging as effective non-toxic therapies for cancer. Multiple elements, however, contribute to the overall pathogenesis of cancer through both distinct and redundant mechanisms. Hence, targeting multiple cancer-specific markers simultaneously could result in better therapeutic efficacy. We created a functional chimeric antigen receptor—the TanCAR, a novel artificial molecule that mediates bispecific activation and targeting of T cells. We demonstrate the feasibility of cumulative integration of structure and docking simulation data using computational tools to interrogate the design and predict the functionality of such a complex bispecific molecule. Our prototype TanCAR induced distinct T cell reactivity against each of two tumor restricted antigens, and produced synergistic enhancement of effector functions when both antigens were simultaneously encountered. Furthermore, the TanCAR preserved the cytolytic ability of T cells upon loss of one of the target molecules and better controlled established experimental tumors by recognition of both targets in an animal disease model. This proof-of-concept approach can be used to increase the specificity of effector cells for malignant versus normal target cells, to offset antigen escape or to allow for targeting the tumor and its microenvironment. PMID:23839099

  9. The not so universal tree of life or the place of viruses in the living world

    PubMed Central

    Brüssow, Harald

    2009-01-01

    Darwin provided a great unifying theory for biology; its visual expression is the universal tree of life. The tree concept is challenged by the occurrence of horizontal gene transfer and—as summarized in this review—by the omission of viruses. Microbial ecologists have demonstrated that viruses are the most numerous biological entities on earth, outnumbering cells by a factor of 10. Viral genomics have revealed an unexpected size and distinctness of the viral DNA sequence space. Comparative genomics has shown elements of vertical evolution in some groups of viruses. Furthermore, structural biology has demonstrated links between viruses infecting the three domains of life pointing to a very ancient origin of viruses. However, presently viruses do not find a place on the universal tree of life, which is thus only a tree of cellular life. In view of the polythetic nature of current life definitions, viruses cannot be dismissed as non-living material. On earth we have therefore at least two large DNA sequence spaces, one represented by capsid-encoding viruses and another by ribosome-encoding cells. Despite their probable distinct evolutionary origin, both spheres were and are connected by intensive two-way gene transfers. PMID:19571246

  10. Six-Message Electromechanical Display System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2007-01-01

    A proposed electromechanical display system would be capable of presenting as many as six distinct messages. In the proposed system, each display element would include a cylinder having a regular hexagonal cross section.

  11. Flavivirus RNA cap methyltransferase: structure, function, and inhibition.

    PubMed

    Liu, Lihui; Dong, Hongping; Chen, Hui; Zhang, Jing; Ling, Hua; Li, Zhong; Shi, Pei-Yong; Li, Hongmin

    2010-08-01

    Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5' terminal cap 1 structure (m(7)GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m(7)GpppA → m(7)GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2'-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2'-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.

  12. Biomechanical comparison of two different collar structured implants supporting 3-unit fixed partial denture: a 3-D FEM study.

    PubMed

    Meriç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; Ozden, Ahmet Utku

    2012-01-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone as well as in the fixture-abutment complex, in the framework and in the veneering material of 3-unit fixed partial denture (FPD). The 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the system composed of 3-unit FPD supported by two different dental implant systems with two distinct collar geometries; microthread collar structure (MCS) and non-microthread collar structure (NMCS). In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal, forces were utilized to simulate the multidirectional chewing forces. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, in the framework and veneering material, were simulated as a body and investigated separately. In the cortical bone lower stress values were found in the MCS model, when compared with NMCS. In the cancellous bone, lower stress values were observed in the NMCS model when compared with MCS. In the implant-abutment complex, highest von Mises stress values were noted in the NMCS model; however, in the framework and veneering material, highest stress values were calculated in MCS model. MCS implants when compared with NMCS implants supporting 3-unit FPDs decrease the stress values in the cortical bone and implant-abutment complex. The results of the present study will be evaluated as a base for our ongoing FEA studies focused on stress distribution around the microthread and non-microthread collar geometries with various prosthesis design.

  13. Analysis of random structure-acoustic interaction problems using coupled boundary element and finite element methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Pates, Carl S., III

    1994-01-01

    A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.

  14. Structural barriers and facilitators in HIV prevention: a review of international research.

    PubMed

    Parker, R G; Easton, D; Klein, C H

    2000-06-01

    This article provides an overview of a growing body of international research focusing on the structural and environmental factors that shape the spread of the HIV/AIDS epidemic, and create barriers and facilitators in relation to HIV-prevention programs. OVERVIEW OF STRUCTURAL-FACTORS LITERATURE: Most of the research on structural and environmental factors can be grouped into a small number of analytically distinct but interconnected categories: economic (under)development and poverty; mobility, including migration, seasonal work, and social disruption due to war and political instability; and gender inequalities. An additional focus in research on structural and environmental factors has been on the effects of particular governmental and intergovernmental policies in increasing or diminishing HIV vulnerability and transmission. A smaller subset of the research on structural factors describes and/or evaluates specific interventions in detail. Approaches that have received significant attention include targeted interventions developed for heterosexual women, female commercial sex workers, male truck drivers, and men who have sex with men. The structural and environmental factors literature offers important insights and reveals a number of productive intervention strategies that might be explored in both resource-rich and -poor settings. However, new methodologies are required to document and evaluate the effects of the structural interventions, which by their very nature involve large-scale elements that cannot be easily controlled by experimental or quasi-experimental research designs. Innovative, interdisciplinary approaches are needed that can move beyond the limited successes of traditional behavioral interventions and explicitly attempt to achieve broader social and structural change.

  15. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  16. Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes

    PubMed Central

    Suzuki, Yasutsugu; Frangeul, Lionel; Dickson, Laura B.; Blanc, Hervé; Verdier, Yann; Vinh, Joelle

    2017-01-01

    ABSTRACT Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo. The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs. IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and antiviral defense. Because mosquitoes also have EVEs in their genomes, characterizing these EVEs is a prerequisite for their potential use to manipulate the mosquito antiviral response. In the study described here, we focused on EVEs related to the Flavivirus genus, to which dengue and Zika viruses belong, in individual Aedes mosquitoes from geographically distinct areas. We show the existence in vivo of flaviviral EVEs previously identified in mosquito cell lines, and we detected new ones. We show that EVEs have evolved differently in each mosquito population. They produce transcripts and small RNAs but not proteins, suggesting a function at the RNA level. Our study uncovers the diverse repertoire of flaviviral EVEs in Aedes mosquito populations and contributes to an understanding of their role in the host antiviral system. PMID:28539440

  17. Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes.

    PubMed

    Suzuki, Yasutsugu; Frangeul, Lionel; Dickson, Laura B; Blanc, Hervé; Verdier, Yann; Vinh, Joelle; Lambrechts, Louis; Saleh, Maria-Carla

    2017-08-01

    Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs. IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and antiviral defense. Because mosquitoes also have EVEs in their genomes, characterizing these EVEs is a prerequisite for their potential use to manipulate the mosquito antiviral response. In the study described here, we focused on EVEs related to the Flavivirus genus, to which dengue and Zika viruses belong, in individual Aedes mosquitoes from geographically distinct areas. We show the existence in vivo of flaviviral EVEs previously identified in mosquito cell lines, and we detected new ones. We show that EVEs have evolved differently in each mosquito population. They produce transcripts and small RNAs but not proteins, suggesting a function at the RNA level. Our study uncovers the diverse repertoire of flaviviral EVEs in Aedes mosquito populations and contributes to an understanding of their role in the host antiviral system. Copyright © 2017 Suzuki et al.

  18. Cup Cylindrical Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  19. On volatile element trends in gas-rich meteorites

    NASA Technical Reports Server (NTRS)

    Bart, G.; Lipschutz, M. E.

    1979-01-01

    Ten volatile elements (and non-volatile Co) in co-existing light and dark portions of 5 gas-rich chondrites were studied. Patterns of distinct but non-uniform enrichment by dark admixing material are revealed. The dark admixing material is enriched in Cs; Bi and Tl covary in it. It is compositionally unique from known types of primitive materials and is apparently not derived by secondary processes from such materials.

  20. The profile of repeat-associated histone lysine methylation states in the mouse epigenome

    PubMed Central

    Martens, Joost H A; O'Sullivan, Roderick J; Braunschweig, Ulrich; Opravil, Susanne; Radolf, Martin; Steinlein, Peter; Jenuwein, Thomas

    2005-01-01

    Histone lysine methylation has been shown to index silenced chromatin regions at, for example, pericentric heterochromatin or of the inactive X chromosome. Here, we examined the distribution of repressive histone lysine methylation states over the entire family of DNA repeats in the mouse genome. Using chromatin immunoprecipitation in a cluster analysis representing repetitive elements, our data demonstrate the selective enrichment of distinct H3-K9, H3-K27 and H4-K20 methylation marks across tandem repeats (e.g. major and minor satellites), DNA transposons, retrotransposons, long interspersed nucleotide elements and short interspersed nucleotide elements. Tandem repeats, but not the other repetitive elements, give rise to double-stranded (ds) RNAs that are further elevated in embryonic stem (ES) cells lacking the H3-K9-specific Suv39h histone methyltransferases. Importantly, although H3-K9 tri- and H4-K20 trimethylation appear stable at the satellite repeats, many of the other repeat-associated repressive marks vary in chromatin of differentiated ES cells or of embryonic trophoblasts and fibroblasts. Our data define a profile of repressive histone lysine methylation states for the repetitive complement of four distinct mouse epigenomes and suggest tandem repeats and dsRNA as primary triggers for more stable chromatin imprints. PMID:15678104

  1. Requirement for ErbB2/ErbB signaling in developing cartilage and bone.

    PubMed

    Fisher, Melanie C; Clinton, Gail M; Maihle, Nita J; Dealy, Caroline N

    2007-08-01

    During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.

  2. Psychophysical evidence for the number sense.

    PubMed

    Burr, David C; Anobile, Giovanni; Arrighi, Roberto

    2017-02-19

    It is now clear that most animals, including humans, possess an ability to rapidly estimate number. Some have questioned whether this ability arises from dedicated numerosity mechanisms, or is derived indirectly from judgements of density or other attributes. We describe a series of psychophysical experiments, largely using adaptation techniques, which demonstrate clearly the existence of a number sense in humans. The number sense is truly general, extending over space, time and sensory modality, and is closely linked with action. We further show that when multiple cues are present, numerosity emerges as the natural dimension for discrimination. However, when element density increases past a certain level, the elements become too crowded to parse, and the scene is perceived as a texture rather than array of elements. The two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws, and show different dependencies on eccentricity, luminance levels and effects of perceptual grouping. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills.This article is part of the discussion meeting issue 'The origins of numerical abilities'. © 2017 The Authors.

  3. Psychophysical evidence for the number sense

    PubMed Central

    2018-01-01

    It is now clear that most animals, including humans, possess an ability to rapidly estimate number. Some have questioned whether this ability arises from dedicated numerosity mechanisms, or is derived indirectly from judgements of density or other attributes. We describe a series of psychophysical experiments, largely using adaptation techniques, which demonstrate clearly the existence of a number sense in humans. The number sense is truly general, extending over space, time and sensory modality, and is closely linked with action. We further show that when multiple cues are present, numerosity emerges as the natural dimension for discrimination. However, when element density increases past a certain level, the elements become too crowded to parse, and the scene is perceived as a texture rather than array of elements. The two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws, and show different dependencies on eccentricity, luminance levels and effects of perceptual grouping. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills. This article is part of the discussion meeting issue ‘The origins of numerical abilities’. PMID:29292350

  4. An interactive graphics system to facilitate finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Burk, R. C.; Held, F. H.

    1973-01-01

    The characteristics of an interactive graphics systems to facilitate the finite element method of structural analysis are described. The finite element model analysis consists of three phases: (1) preprocessing (model generation), (2) problem solution, and (3) postprocessing (interpretation of results). The advantages of interactive graphics to finite element structural analysis are defined.

  5. Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform

    PubMed Central

    Nemati, Mahdieh; Santos, Abel

    2018-01-01

    Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL−1)−1 and 0.14 mg mL−1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures. PMID:29415436

  6. Finite element analysis of structural engineering problems using a viscoplastic model incorporating two back stresses

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    1993-01-01

    The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.

  7. Discontinuum-Equivalent Continuum Analysis of the Stability of Tunnels in a Deep Coal Mine Using the Distinct Element Method

    NASA Astrophysics Data System (ADS)

    Shreedharan, Srisharan; Kulatilake, Pinnaduwa H. S. W.

    2016-05-01

    An imperative task for successful underground mining is to ensure the stability of underground structures. This is more so for deep excavations which may be under significantly high stresses. In this manuscript, we present stability studies on two tunnels, a horseshoe-shaped and an inverted arch-shaped tunnel, in a deep coal mine in China, performed using the 3DEC distinct element code. The rock mass mechanical property values for the tunnel shapes have been estimated through a back-analysis procedure using available field deformation data. The back-analysis has been carried out through a pseudo-time dependent support installation routine which incorporates the effect of time through a stress-relaxation mechanism. The back-analysis indicates that the rock mass cohesion, tensile strength, uniaxial compressive strength, and elastic modulus values are about 35-45 % of the corresponding intact rock property values. Additionally, the importance of incorporating stress relaxation before support installation has been illustrated through the increased support factor of safety and reduced grout failures. The calibrated models have been analyzed for different supported and unsupported cases to estimate the significance and adequacy of the current supports being used in the mine and to suggest a possible optimization. The effects of supports have been demonstrated using deformations and yield zones around the tunnels, and average factors of safety and grout failures of the supports. The use of longer supports and floor bolting has provided greater stability for the rock masses around the tunnels. Finally, a comparison between the two differently shaped tunnels establishes that the inverted arch tunnel may be more efficient in reducing roof sag and floor heave for the existing geo-mining conditions.

  8. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin

    PubMed Central

    Zhuang, Tiandi; Chen, Qiuyan; Cho, Min-Kyu; Vishnivetskiy, Sergey A.; Iverson, Tina M.; Gurevich, Vsevolod V.; Sanders, Charles R.

    2013-01-01

    Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (KD > 150 μM), its affinity for P-Rh (KD ∼80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (KD of ∼50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins. PMID:23277586

  9. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin.

    PubMed

    Zhuang, Tiandi; Chen, Qiuyan; Cho, Min-Kyu; Vishnivetskiy, Sergey A; Iverson, Tina M; Gurevich, Vsevolod V; Sanders, Charles R

    2013-01-15

    Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (K(D) > 150 μM), its affinity for P-Rh (K(D) ~80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (K(D) of~50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins.

  10. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Application of New Partition Coefficients to Modeling Plagioclase

    NASA Technical Reports Server (NTRS)

    Fagan, A. L.; Neal, C. R.; Rapp, J. F.; Draper, D. S.; Lapen, T. J.

    2017-01-01

    Previously, studies that determined the partition coefficient for an element, i, between plagioclase and the residual basaltic melt (Di plag) have been conducted using experimental conditions dissimilar from the Moon, and thus these values are not ideal for modeling plagioclase fractionation in a lunar system. However, recent work [1] has determined partition coefficients for plagioclase at lunar oxygen fugacities, and resulted in plagioclase with Anorthite contents =An90; these are significantly more calcic than plagioclase in previous studies, and the An content has a profound effect on partition coefficient values [2,3]. Plagioclase D-values, which are dependent on the An content of the crystal [e.g., 2-6], can be determined using published experimental data and the correlative An contents. Here, we examine new experimental data from [1] to ascertain their effect on the calculation of equilibrium liquids from Apollo 16 sample 60635,2. This sample is a coarse grained, subophitic impact melt composed of 55% plagioclase laths with An94.4-98.7 [7,8], distinctly more calcic than of previous partition coefficient studies (e.g., [3-6, 9-10]). Sample 60635,2 is notable as having several plagioclase trace element analyses containing a negative Europium anomaly (-Eu) in the rare-earth element (REE) profile, rather than the typical positive Eu anomaly (+Eu) [7-8] (Fig. 1). The expected +Eu is due to the similarity in size and charge with Ca2+, thereby allowing Eu2+ to be easily taken up by the plagioclase crystal structure, in contrast to the remaining REE3+. Some 60635,2 plagioclase crystals only have +Eu REE profiles, some only have -Eu REE profiles, and some +Eu and -Eu analyses in different areas on a single crystal [7, 8]. Moreover, there does not seem to be any core-rim association with the +Eu or -Eu analyses, nor does there appear to be a correlation between the size, shape, or location of a particular crystal within the sample and the sign of its Eu anomaly, which suggests a complex evolution. In order to investigate this sample further, we can calculate the equilibrium liquids, but with An contents distinct from previous experimental studies, we must calculate the appropriate partition coefficients for each trace element analysis.

  12. Orbital construction support equipment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Approximately 200 separate construction steps were defined for the three solar power satellite (SPS) concepts. Detailed construction scenarios were developed which describe the specific tasks to be accomplished, and identify general equipment requirements. The scenarios were used to perform a functional analysis, which resulted in the definition of 100 distinct SPS elements. These elements are the components, parts, subsystems, or assemblies upon which construction activities take place. The major SPS elements for each configuration are shown. For those elements, 300 functional requirements were identified in seven generic processes. Cumulatively, these processes encompass all functions required during SPS construction/assembly. Individually each process is defined such that it includes a specific type of activity. Each SPS element may involve activities relating to any or all of the generic processes. The processes are listed, and examples of the requirements defined for a typical element are given.

  13. Structural diversity of three Cu(II) compounds based on a new tripodal zwitterionic ligand: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Zhao, Jing-Song; Feng, Jing; Zhang, Xiao-Feng; Xu, Jian; Du, Lin; Xie, Ming-Jin; Zhao, Qi-Hua

    2018-03-01

    An exploration of reactions of 1,1‧,1″-(benzene-1,3,5-triyltris(methylene))tris(4-carboxypyridinium)-tribromide (H3LBr3) with Cu(II) salt under different pH conditions has led to the formation of three complexes, [Cu(HL)2(H2O)3]·4(ClO4)·3H2O (1), [Cu2(HL)(μ3-OH)(μ2-H2O)(H2O)2]·4(ClO4)·6H2O (2), and [Cu3(L)2Cl6(H2O)4]·4H2O (3). Single-crystal X-ray analyses revealed that complex 1 displays a discrete mononuclear structure with the ligand in a bowl-shaped configuration. Complex 2 possesses a tetranuclear 1D beaded chain structure. While complex 3 features a discrete trinuclear 'H-type' structure with the ligand in a chair-like configuration. The distinct compositions and structures of 1-3 are mainly ascribed to the different pH values of the reaction solution, the influences of anions, as well as the configurations which the zwitterion ligands adopt. The magnetic properties of 2, and the photoluminescence properties of 2, and 3 have been investigated. Moreover, powder X-ray diffraction, infrared spectroscopy, and elemental analysis were also performed.

  14. The occurrence of trace elements in bed sediment collected from areas of varying land use and potential effects on stream macroinvertebrates in the conterminous western United States, Alaska, and Hawaii, 1992-2000

    USGS Publications Warehouse

    Paul, Angela P.; Paretti, Nicholas V.; MacCoy, Dorene E.; Brasher, Anne M.D.

    2012-01-01

    As part of the National Water-Quality Assessment Program of the U.S. Geological Survey, this study examines the occurrence of nine trace elements in bed sediment of varying mineralogy and land use and assesses the possible effects of these trace elements on aquatic-macroinvertebrate community structure. Samples of bed sediment and macroinvertebrates were collected from 154 streams at sites representative of undeveloped, agricultural, urban, mined, or mixed land-use areas and 12 intermediate-scale ecoregions within the conterminous western United States, Alaska, and Hawaii from 1992 to 2000. The nine trace elements evaluated during this study—arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn)—were selected on the basis of potential ecologic significance and availability of sediment-quality guidelines. At most sites, the occurrence of these trace elements in bed sediment was at concentrations consistent with natural geochemical abundance, and the lowest concentrations were in bed-sediment samples collected from streams in undeveloped and agricultural areas. With the exception of Zn at sampling sites influenced by historic mining-related activities, median concentrations of all nine trace elements in bed sediment collected from sites representative of the five general land-use areas were below concentrations predicted to be harmful to aquatic macroinvertebrates. The highest concentrations of As, Cd, Pb, and Zn were in bed sediment collected from mined areas. Median concentrations of Cu and Ni in bed sediment were similarly enriched in areas of mining, urban, and mixed land use. Concentrations of Cr and Ni appear to originate largely from geologic sources, especially in the western coastal states (California, Oregon, and Washington), Alaska, and Hawaii. In these areas, naturally high concentrations of Cr and Ni can exceed concentrations that may adversely affect aquatic macroinvertebrates. Generally, Hg concentrations were below the sediment-quality guideline for this trace element but appeared elevated in urbanized areas and at sites contaminated by historic mining practices. Lastly, although there was no distinctive pattern in Se concentrations with land use, median bed-sediment concentrations were slightly elevated in urbanized areas.Macroinvertebrate community structure was influenced by topographic, geologic, climatic, and in-stream characteristics. To account for inherent distribution patterns resulting from these influences, samples of macroinvertebrates were stratified by ecoregion to assess the influence of trace elements on community structure. Cumulative toxic units (CTUs) were used to evaluate gradients in trace-element concentrations in mixture. Correlation analyses among the trace elements under different land-use conditions indicate that trace-element mixtures vary among bed sediment and can have a marked influence on CTU composition. Macroinvertebrate response to bed-sediment trace-element exposure was evident only at the most highly contaminated sites, notably at sites classified as contaminated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as a result of historic mining activities. Results of this study agree with the findings of other studies evaluating trace-element exposure to in-stream macroinvertebrate community structure in that generally lower richness metrics and taxa dominance occur in streams where high trace-element enrichment occurs; however, not all streams in all areas have the same characterizing taxa. In the mountain and xeric ecosystems, the mayfly, Baetis sp.; the Diptera, Simulium sp.; caddisflies in the family Hydropsychiidae; midges in the family Orthocladiinae; and the worms belonging to Turbellaria and Naididae all demonstrated resilience to trace-element exposure and, in some cases, possible changes in physical habitat within stream ecosystems. The taxa characteristics within the Ozark Highland ecoregion were different than other ecoregions as evidenced by generally more diverse mayfly populations. In addition, Baetis sp. was common and dominated many of the mayfly populations found in the Rocky Mountain streams within the Mountain Southern Rockies and Mountain Northern Rockies ecoregions; however, within the Ozark Highland ecoregion, Tricorythodes sp. appeared to be more common than Baetis sp.

  15. Beyond self-esteem: influence of multiple motives on identity construction.

    PubMed

    Vignoles, Vivian L; Regalia, Camillo; Manzi, Claudia; Golledge, Jen; Scabini, Eugenia

    2006-02-01

    Diverse theories suggest that people are motivated to maintain or enhance feelings of self-esteem, continuity, distinctiveness, belonging, efficacy, and meaning in their identities. Four studies tested the influence of these motives on identity construction, by using a multilevel regression design. Participants perceived as more central those identity elements that provided a greater sense of self-esteem, continuity, distinctiveness, and meaning; this was found for individual, relational, and group levels of identity, among various populations, and by using a prospective design. Motives for belonging and efficacy influenced identity definition indirectly through their direct influences on identity enactment and through their contributions to self-esteem. Participants were happiest about those identity elements that best satisfied motives for self-esteem and efficacy. These findings point to the need for an integrated theory of identity motivation. Copyright 2006 APA, all rights reserved.

  16. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands.

    PubMed

    Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R

    2014-01-01

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies.

  17. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands

    PubMed Central

    Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R

    2014-01-01

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies. PMID:25495506

  18. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-guo; Jahn, Bor-ming; Li, Xian-hua; Zhang, Ru-yuan; Li, Qiu-li; Yang, Ya-nan; Wang, Jun; Liu, Tong; Hu, Pei-yuan; Tang, Suo-han

    2017-06-01

    Zircon is probably the most important mineral used in the dating formation of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks. The origin of zircon, i.e., magmatic or metamorphic, is commonly assessed by its external morphology, internal structure, mineral inclusions, Th/U ratios and trace element composition. In this study, we present an unusual case of metamorphic zircon from the Qiangtang eclogite, north-central Tibet. The zircon grains contain numerous eclogite-facies mineral inclusions, including omphacite, phengite, garnet and rutile; hence, they are clearly of metamorphic origin. However, they display features similar to common magmatic zircon, including euhedral crystal habit, high Th/U ratios and enriched heavy rare earth elements pattern. We suggest that these zircon grains formed from a different reservoir from that for garnet where no trace elements was present and trace element equilibrium between zircon and garnet was achieved. U-Pb dating of zircon gave an age of 232-237 Ma for the eclogite, and that of rutile yielded a slightly younger age of ca. 217 Ma. These ages are consistent with the reported Lu-Hf mineral isochron and phengite Ar-Ar ages. The zircon U-Pb and mineral Lu-Hf isochron ages are interpreted as the time of the peak eclogite-facies metamorphism, whereas the rutile U-Pb and phengite Ar-Ar ages represent the time of exhumation to the middle crust. Thus, the distinction between metamorphic and magmatic zircons cannot be made using only Th/U ratios and heavy REE compositions for HP-UHP metamorphic rocks of oceanic derivation.

  19. Identity salience and the influence of differential activation of the social self-schema on advertising response.

    PubMed

    Forehand, Mark R; Deshpandé, Rohit; Reed, Americus

    2002-12-01

    The authors examined how identity primes and social distinctiveness influence identity salience (i.e., the activation of a social identity within an individual's social self-schema) and subsequent responses to targeted advertising. Across 2 studies, individuals who were exposed to an identity prime (an ad element that directs attention to the individual's social identity) and who were socially distinctive (minorities in the immediate social context) expressed systematically different evaluations of spokespersons and the advertisements that featured them. Specifically, Asian (Caucasian) participants responded most positively (negatively) to Asian spokespeople and Asian-targeted advertising when the participants were both primed and socially distinctive. No main effects of identity primes or social distinctiveness were found. The implications of these findings for identity theory, advertising practice, and intervention communications are discussed.

  20. Stress-induced injuries and trace element concentrations in vascular leaf plants from an urban environment (Palermo, Italy).

    PubMed

    Alaimo, Maria Grazia; Colombo, Paolo; Firetto, Anna; Trapani, Salvatore; Vizzì, Daniela; Melati, M Rita

    2003-01-01

    We examined leaf injuries and measured trace element concentrations in vascular plants from an urban ecosystem with distinct stress valences (the city of Palermo), and compared them with samples of the same species from sites where the stress potential is lower. Urban pollution influences macro-, micro- and toxic element concentrations in leaves. Therefore these leaves can be used as markers of the chemical and biological effects of atmospheric pollution. We studied the trace element content in the leaves of two species, oleander and oak, both fairly tolerant plants and good indicators and bio-monitors of pollution contaminants. Samples were collected at various sites in different periods.

Top