Sample records for distinct surface properties

  1. Constraining the physical properties of compositionally distinctive surfaces on Mars from overlapping THEMIS observations

    NASA Astrophysics Data System (ADS)

    Ahern, A.; Rogers, D.

    2017-12-01

    Better constraints on the physical properties (e.g. grain size, rock abundance, cohesion, porosity and amount of induration) of Martian surface materials can lead to greater understanding of outcrop origin (e.g. via sedimentary, effusive volcanic, pyroclastic processes). Many outcrop surfaces on Mars likely contain near-surface (<3 cm) vertical heterogeneity in physical properties due to thin sediment cover, induration, and physical weathering, that can obscure measurement of the bulk thermal conductivity of the outcrop materials just below. Fortunately, vertical heterogeneity within near-surface materials can result in unique, and possibly predictable, diurnal and seasonal temperature patterns. The KRC thermal model has been utilized in a number of previous studies to predict thermal inertia of surface materials on Mars. Here we use KRC to model surface temperatures from overlapping Mars Odyssey THEMIS surface temperature observations that span multiple seasons and local times, in order to constrain both the nature of vertical heterogeneity and the underlying outcrop thermal inertia for various spectrally distinctive outcrops on Mars. We utilize spectral observations from TES and CRISM to constrain the particle size of the uppermost surface. For this presentation, we will focus specifically on chloride-bearing units in Terra Sirenum and Meridiani Planum, as well as mafic and feldspathic bedrock locations with distinct spectral properties, yet uncertain origins, in Noachis Terra and Nili Fossae. We find that many of these surfaces exhibit variations in apparent thermal inertia with season and local time that are consistent with low thermal inertia materials overlying higher thermal inertia substrates. Work is ongoing to compare surface temperature measurements with modeled two-layer scenarios in order to constrain the top layer thickness and bottom layer thermal inertia. The information will be used to better interpret the origins of these distinctive outcrops.

  2. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  3. The Miniature Radio Frequency Instruments (Mini-RF) Global Observations of Earth's Moon

    NASA Technical Reports Server (NTRS)

    Cahill, Joshua T. S.; Thomson, B. J.; Patterson, G. Wesley; Bussey, D. Benjamin J.; Neish, Catherine D.; Lopez, Norberto R.; Turner, F. Scott; Aldridge, T.; McAdam, M.; Meyer, H. M.; hide

    2014-01-01

    Radar provides a unique means to analyze the surface and subsurface physical properties of geologic deposits, including their wavelength-scale roughness, the relative depth of the deposits, and some limited compositional information. The NASA Lunar Reconnaissance Orbiter's (LRO) Miniature Radio Frequency (Mini-RF) instrument has enabled these analyses on the Moon at a global scale. Mini-RF has accumulated 67% coverage of the lunar surface in S-band (12.6 cm) radar with a resolution of 30 m/pixel. Here we present new Mini-RF global orthorectified uncontrolled S-band maps of the Moon and use them for analysis of lunar surface physical properties. Reported here are readily apparent global- and regional-scale differences in lunar surface physical properties that suggest three distinct terranes, namely: a (1) Nearside Radar Dark Region; (2) Orientale basin and continuous ejecta; and the (3) Highlands Radar Bright Region. Integrating these observations with new data from LRO's Diviner Radiometer rock abundance maps, as well Clementine and Lunar Prospector derived compositional values show multiple distinct lunar surface terranes and sub-terranes based upon both physical and compositional surface properties. Previous geochemical investigations of the Moon suggested its crust is best divided into three to four basic crustal provinces or terranes (Feldspathic Highlands Terrane (-An and -Outer), Procellarum KREEP Terrane, and South Pole Aitken Terrane) that are distinct from one another. However, integration of these geochemical data sets with new geophysical data sets allows us to refine these terranes. The result shows a more complex view of these same crustal provinces and provides valuable scientific and hazard perspectives for future targeted human and robotic exploration.

  4. Stripe-patterned thermo-responsive cell culture dish for cell separation without cell labeling.

    PubMed

    Kumashiro, Yoshikazu; Ishihara, Jun; Umemoto, Terumasa; Itoga, Kazuyoshi; Kobayashi, Jun; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-02-11

    A stripe-patterned thermo-responsive surface is prepared to enable cell separation without labeling. The thermo-responsive surface containing a 3 μm striped pattern exhibits various cell adhesion and detachment properties. A mixture of three cell types is separated on the patterned surface based on their distinct cell-adhesion properties, and the composition of the cells is analyzed by flow cytometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  6. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  7. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    PubMed

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  8. Thiolated poly(ɛ-caprolactone) macroligand with vacant coordination sites on gold substrate: Synthesis and surface characterization

    NASA Astrophysics Data System (ADS)

    Farah, Abdiaziz A.; Zheng, Susan H.; Morin, Sylvie; Bensebaa, Farid; Pietro, William J.

    2007-04-01

    Surface-confined telechelic poly(ɛ-caprolactone) macroligand with two distinct functional groups per polymeric chain has been synthesized and characterized. The molecular microstructure of the macroligand with regard to the properties of the end-capped functionalities and with those on surface substrate has been studied by solution and surface analytical methods (i.e., X-ray photoelectron spectroscopy (XPS), grazing angle reflectance-Fourier transform IR spectroscopy (GA-FTIR), water contact angle measurements, and atomic force microscopy (AFM)) to elucidate the structure and properties of such multifunctional polymer on gold (1 1 1) substrate.

  9. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  10. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    NASA Astrophysics Data System (ADS)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  11. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    PubMed

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  12. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire.

    PubMed

    Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon

    2017-01-01

    Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.

  13. Current characterization methods for cellulose nanomaterials.

    PubMed

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  14. Ocean surface partitioning strategies using ocean colour remote Sensing: A review

    NASA Astrophysics Data System (ADS)

    Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.

    2017-06-01

    The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and applications of ocean surface partitioning using OCRS.

  15. One-step Maskless Fabrication and Optical Characterization of Silicon Surfaces with Antireflective Properties and a White Color Appearance

    PubMed Central

    Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.

    2016-01-01

    We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703

  16. Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Marangos, Orestes; Misra, Anil

    2018-02-01

    Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3-6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.

  17. Universal properties of materials with the Dirac dispersion relation of low-energy excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protogenov, A. P., E-mail: alprot@appl.sci-nnov.ru; Chulkov, E. V.

    2015-12-15

    The N-terminal scheme is considered for studying the contribution of edge states to the response of a two-dimensional topological insulator. A universal distribution of the nonlocal resistance between terminals is determined in the ballistic transport approach. The calculated responses are identical to experimentally observed values. The spectral properties of surface electronic states in Weyl semimetals are also studied. The density of surface states is accurately determined. The universal behavior of these characteristics is a distinctive feature of the considered Dirac materials which can be used in practical applications.

  18. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Ji, Huiqiang; Shen, Junling; Xu, Yonghao; Liu, Xiaolian; Fu, Ziyi

    2018-04-01

    The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the temperature and vacuum varied. The differences in PL response when temperature varies are attributed to carrier transfer from the SQDs to the surface trap states. The obvious distinctions in PL response when vacuum varies are attributed to the SQDs intrinsic surface trap states inhibited by the water molecules. This research provides necessary information for device application of SQDs as surface-sensitivity sensors.

  19. Experimental study on surface properties of the PMMA used in high power spark gaps

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  20. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the skin normal. This research was supported in part by a GAANN Fellowship from the Department of Education.« less

  1. Spatially resolved resistance of NiO nanostructures under humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Christopher B; Ievlev, Anton; Collins, Liam F

    2016-01-01

    The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5more » G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.« less

  2. Probing the Sulfur-Modified Capping Layer of Gold Nanoparticles Using Surface Enhanced Raman Spectroscopy (SERS) Effects.

    PubMed

    Prado, Adilson R; Souza, Danilo Oliveira de; Oliveira, Jairo P; Pereira, Rayssa H A; Guimarães, Marco C C; Nogueira, Breno V; Dixini, Pedro V; Ribeiro, Moisés R N; Pontes, Maria J

    2017-12-01

    Gold nanoparticles (AuNP) exhibit particular plasmonic properties when stimulated by visible light, which makes them a promising tool to many applications in sensor technology and biomedical applications, especially when associated to sulfur-based compounds. Sulfur species form a great variety of self-assembled structures that cap AuNP and this interaction rules the optical and plasmonic properties of the system. Here, we report the behavior of citrate-stabilized gold nanospheres in two distinct sulfur colloidal solutions, namely, thiocyanate and sulfide ionic solutions. Citrate-capped gold nanospheres were characterized using ultraviolet-visible (UV-Vis) absorption, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). In the presence of sulfur species, we have observed the formation of NP clusters and chain-like structures, giving rise to surface-enhanced effects. Surface-enhanced Raman spectroscopy (SERS) pointed to a modification in citrate vibrational modes, which suggests substitution of citrate by either thiocyanate or sulfide ions with distinct dynamics, as showed by in situ fluorescence. Moreover, we report the emergence of surface-enhanced infrared absorption (SEIRA) effect, which corroborates SERS conclusions. Further, SEIRA shows a great potential as a tool for specification of sulfur compounds in colloidal solutions, which is particularly useful when dealing with sensor technology.

  3. Utility of Thermal Infrared Satellite Data For Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Xian, G.; Crane, M.; Granneman, B.

    2006-12-01

    Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.

  4. Structural properties of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta

    2018-04-01

    The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in contrast to the typical spherical TiO2.

  5. Water at surfaces with tunable surface chemistries

    NASA Astrophysics Data System (ADS)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  6. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution

    NASA Astrophysics Data System (ADS)

    Fan, Tao; Hu, Ruimin; Zhao, Zhenyun; Liu, Yiping; Lu, Ming

    2017-04-01

    A simple and economical micro-dissolved process of embedding titanium dioxide (TiO2) nanoparticles into surface zone of cotton fabrics was developed. TiO2 was coated on cotton fabrics in 7% wt NaOH/12% wt urea aqueous solution at low temperature. Photocatalytic efficiency of cotton fabrics treated with TiO2 nanoparticles was studied upon measuring the photocatalytic decoloration of Rhodamine B (RhB) under ultraviolet irradiation. Self-cleaning property of cotton fabric coated with TiO2 was evaluated with color depth of samples (K/S value). The treated fabrics were characterized using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FITR), tensile strength, stiffness and whiteness. The results indicated, TiO2 nanoparticles could be embedded on the surface layer of cotton fabrics throuth surface micro-dissolve method. Treated cotton fabrics possessed distinct photocatalytic efficiency and self-cleaning properties. Tensile strength and whiteness of modified cotton fabrics appeared moderately increasement.

  7. Properties of the Products Formed by the Activity of Serum Opacity Factor against Human Plasma High Density Lipoproteins

    PubMed Central

    Pownall, Henry J.; Courtney, Harry S.; Gillard, Baiba K.; Massey, John B.

    2010-01-01

    Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of ~100,000 plasma high density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Although the surface microviscosity of HDL is higher than that of CERM, they have similar total microviscosities because cholesterol partitions into the neutral lipid core. Because of its unique surface properties apo E preferentially associates with the CERM. In contrast, the composition and properties of neo HDL make it a potential acceptor of cellular cholesterol and its esterification. Thus, neo HDL and CERM are possible vehicles for improving cholesterol transport to the liver. PMID:18838065

  8. Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite

    NASA Astrophysics Data System (ADS)

    Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav

    2016-05-01

    TiO2(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO2(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO2(Eu). In investigated TiO2(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  9. In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone

    NASA Astrophysics Data System (ADS)

    Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.

    2016-12-01

    Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.

  10. Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging.

    PubMed

    Flower, Verity J B; Kahn, Ralph A

    2017-10-28

    Volcanic systems are comprised of a complex combination of ongoing eruptive activity and secondary hazards, such as remobilized ash plumes. Similarities in the visual characteristics of remobilized and erupted plumes, as imaged by satellite-based remote sensing, complicate the accurate classification of these events. The stereo imaging capabilities of the Multi-angle Imaging SpectroRadiometer (MISR) were used to determine the altitude and distribution of suspended particles. Remobilized ash shows distinct dispersion, with particles distributed within ~1.5 km of the surface. Particle transport is consistently constrained by local topography, limiting dispersion pathways downwind. The MISR Research Aerosol (RA) retrieval algorithm was used to assess plume particle microphysical properties. Remobilized ash plumes displayed a dominance of large particles with consistent absorption and angularity properties, distinct from emitted plumes. The combination of vertical distribution, topographic control, and particle microphysical properties makes it possible to distinguish remobilized ash flows from eruptive plumes, globally.

  11. Analysis of CD44-Hyaluronan Interactions in an Artificial Membrane System

    PubMed Central

    Wolny, Patricia M.; Banerji, Suneale; Gounou, Céline; Brisson, Alain R.; Day, Anthony J.; Jackson, David G.; Richter, Ralf P.

    2010-01-01

    CD44 is a major cell surface receptor for the large polydisperse glycosaminoglycan hyaluronan (HA). Binding of the long and flexible HA chains is thought to be stabilized by the multivalent nature of the sugar molecule. In addition, high and low molecular weight forms of HA provoke distinct proinflammatory and anti-inflammatory effects upon binding to CD44 and can deliver either proliferative or antiproliferative signals in appropriate cell types. Despite the importance of such interactions, however, neither the stoichiometry of multivalent HA binding at the cell surface nor the molecular basis for functional distinction between different HA size categories is understood. Here we report on the design of a supported lipid bilayer system that permits quantitative analysis of multivalent binding through presentation of CD44 in a stable, natively oriented manner and at controlled density. Using this system in combination with biophysical techniques, we show that the amount of HA binding to bilayers that are densely coated with CD44 increases as a function of HA size, with half-maximal saturation at ∼30 kDa. Moreover, reversible binding was confined to the smaller HA species (molecular weight of ≤10 kDa), whereas the interaction was essentially irreversible with larger polymers. The amount of bound HA decreased with decreasing receptor surface density, but the stability of binding was not affected. From a physico-chemical perspective, the binding properties of HA share many similarities with the typical behavior of a flexible polymer as it adsorbs onto a homogeneously attractive surface. These findings provide new insight into the multivalent nature of CD44-HA interactions and suggest a molecular basis for the distinct biological properties of different size fractions of hyaluronan. PMID:20663884

  12. Bioinspired Functionalized Melanin Nanovariants with a Range of Properties Provide Effective Color Matched Photoprotection in Skin.

    PubMed

    Vij, Manika; Grover, Ritika; Gotherwal, Vishvabandhu; Wani, Naiem Ahmad; Joshi, Prashant; Gautam, Hemlata; Sharma, Kanupriya; Chandna, Sudhir; Gokhale, Rajesh S; Rai, Rajkishor; Ganguli, Munia; Natarajan, Vivek T

    2016-09-12

    Melanin and related polydopamine hold great promise; however, restricted fine-tunabilility limits their usefulness in biocompatible applications. In the present study, by taking a biomimetic approach, we synthesize peptide-derived melanin with a range of physicochemical properties. Characterization of these melanin polymers indicates that they exist as nanorange materials with distinct size distribution, shapes, and surface charges. These variants demonstrate similar absorption spectra but have different optical properties that correlate with particle size. Our approach enables incorporation of chemical groups to create functionalized polyvalent organic nanomaterials and enables customization of melanin. Further, we establish that these synthetic variants are efficiently taken up by the skin keratinocytes, display appreciable photoprotection with minimal cytotoxicity, and thereby function as effective color matched photoprotective agents. In effect we demonstrate that an array of functionalized melanins with distinct properties could be synthesized using bioinspired green chemistry, and these are of immense utility in generating customized melanin/polydopamine like materials.

  13. Closed loop control of the induction heating process using miniature magnetic sensors

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  14. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  15. Reflection spectra and magnetochemistry of iron oxides and natural surfaces

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1978-01-01

    The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.

  16. Variation of Desert Soil Hydraulic Properties with Pedogenic Maturity

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Perkins, K. S.; Mirus, B. B.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.

    2006-12-01

    Older alluvial desert soils exhibit greater pedogenic maturity, having more distinct desert pavements, vesicular (Av) horizons, and more pronounced stratification from processes such as illuviation and salt accumulation. These and related effects strongly influence the soil hydraulic properties. Older soils have been observed to have lower saturated hydraulic conductivity, and possibly greater capacity to retain water, but the quantitative effect of specific pedogenic features on the soil water retention or unsaturated hydraulic conductivity (K) curves is poorly known. With field infiltration/redistribution experiments on three different-aged soils developed within alluvial wash deposits in the Mojave National Preserve, we evaluated effective hydraulic properties over a scale of several m horizontally and to 1.5 m depth. We then correlated these properties with pedogenic features. The selected soils are (1) recently deposited sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored subsurface water content and matric pressure using surface electrical resistance imaging, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of these data using an inverse modeling technique gives the water retention and K properties needed for predictive modeling. Some properties show a consistent trend with soil age. Progressively more developed surface and near-surface features such as desert pavement and Av horizons are the likely cause of an observed consistent decline of infiltration capacity with soil age. Other properties, such as vertical flow retardation by layer contrasts, appear to have a more complicated soil-age dependence. The wash deposits display distinct depositional layering that has a retarding effect on vertical flow, an effect that may be less pronounced in the older Holocene soil, where the original depositional structure has a relatively modest influence. Anisotropy at the scale of centimeters is of major importance in the Pleistocene soil, with developed horizons that tend to hold water within about 0.5 m of the surface for a longer duration than in the two younger soils. Correlation of these and related pedogenic features with soil hydraulic properties is a first step toward the estimation of effective hydraulic properties of widely varying Mojave Desert soils, as needed for large-scale evaluation of soil moisture dynamics in relation to ecological habitat quality.

  17. A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen

    2000-01-01

    A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.

  18. Surface tension, surface energy, and chemical potential due to their difference.

    PubMed

    Hui, C-Y; Jagota, A

    2013-09-10

    It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.

  19. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  20. Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-02-01

    Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.

  1. Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite

    NASA Astrophysics Data System (ADS)

    Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Larsen, L. Scott

    The focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces.

  2. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  3. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and pore waters adjacent to an oil well in a southern California salt marsh.

    PubMed

    Bowen, Jennifer C; Clark, Catherine D; Keller, Jason K; De Bruyn, Warren J

    2017-01-15

    Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Imaging of electrical response of NiO x under controlled environment with sub-25-nm resolution

    DOE PAGES

    Jacobs, Christopher B.; Ievlev, Anton V.; Collins, Liam F.; ...

    2016-07-19

    The spatially resolved electrical response of rf-sputtered polycrystalline NiO x films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy at 0%, 50%, and 80% relative humidity with sub 25nm resolution. The surface potential of NiO x decreased by about 180 mV and resistance decreased in a nonlinear fashion by about 2 G when relative humidity was increased from 0% to 80%. The dimensionality of surface features obtained through autocorrelation analysis of topological, surfacemore » potential and resistance maps increased linearly with increased relative humidity as water was adsorbed onto the film surface. Spatially resolved surface potential and resistance of the NiO x films were found to be heterogeneous, with distinct features that grew in size from about 60 nm to 175 nm between 0% and 80% RH levels, respectively. Here, we find that the changes in the heterogeneous character of the NiO films are consistent through the topological, surface potential, and resistance measurements, suggesting that the nanoscale surface potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO x film.« less

  5. The origin of magnemite on Mars

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    An explanation for the magnetic properties of Martian surface material is discussed, specifically that the surface particles were composed primarily of smectite clay (nontronite) pigmented throughout by a red magnetic phase. The thermal treatment of nontronite in air, for long periods at 700 deg C or short periods at 900 deg C, results in destruction of the nontronite structure, a distinct reddening in color, and a spectacular increase in magnetic susceptibility and saturation magnetization (up to 4.4 Am squared/kg). Magnetic property measurements suggest that the magnetism is due to the presence of ultrafine particles of alpha or gamma Fe2O3; the precise identify was not resolved. Thermally treated nontronite has chemical, color and magnetic properties akin to those found by Viking on Mars. These results favor an origin for the fine grained Martian surface material by repeated impacts into an Fe-rich smectite-charged regolith, the smectite having resulted from hydrothermal alteration of volcanic or impact generated glass, the magnetic phase having resulted from the pressure or thermal shocked nontronite.

  6. Metallic MoN layer and its application as anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoxuan; Ma, Jiachen; Lei, Ming; Quhe, Ruge

    2018-04-01

    Recently, two-dimensional (2D) metallic MoN was manufactured successfully in experiment. Its intrinsic properties remain to be explored theoretically, in depth. The intrinsic properties of a MoN monolayer are investigated by first-principles calculations. The distinct geometric properties of the outermost Mo and N surfaces are discovered. We predict an extremely high work function of 6.3 eV of the N surface, which indicates the great value of the 2D MoN for application in the semiconductor industry. We further explore the potential of 2D MoN as anode material for lithium-ion batteries. It is found that the adsorption energy of a single Li atom on an MoN surface can be as low as -4.04 eV. The small diffusion barriers (0.41 eV) and high theoretical maximum capacity (406 mAh · g-1 with the inclusion of multilayer adsorption) all imply an outstanding lithium-ion battery performance by 2D MoN.

  7. Effects of surface characteristics on the plantar shape of feet and subjects' perceived sensations.

    PubMed

    Witana, Channa P; Goonetilleke, Ravindra S; Xiong, Shuping; Au, Emily Y L

    2009-03-01

    Orthotics and other types of shoe inserts are primarily designed to reduce injury and improve comfort. The interaction between the plantar surface of the foot and the load-bearing surface contributes to foot and surface deformations and hence to perceived comfort, discomfort or pain. The plantar shapes of 16 participants' feet were captured when standing on three support surfaces that had different cushioning properties in the mid-foot region. Foot shape deformations were quantified using 3D laser scans. A questionnaire was used to evaluate the participant's perceptions of perceived shape and perceived feeling. The results showed that the structure in the mid-foot could change shape, independent of the rear-foot and forefoot regions. Participants were capable of identifying the shape changes with distinct preferences towards certain shapes. The cushioning properties of the mid-foot materials also have a direct influence on perceived feelings. This research has strong implications for the design and material selection of orthotics, insoles and footwear.

  8. Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations

    NASA Technical Reports Server (NTRS)

    Seze, Genevieve; Rossow, William B.

    1991-01-01

    The spatial and temporal stability of the distributions of satellite-measured visible and infrared radiances, caused by variations in clouds and surfaces, are investigated using bidimensional and monodimensional histograms and time-composite images. Similar analysis of the histograms of the original and time-composite images provides separation of the contributions of the space and time variations to the total variations. The variability of both the surfaces and clouds is found to be larger at scales much larger than the minimum resolved by satellite imagery. This study shows that the shapes of these histograms are distinctive characteristics of the different climate regimes and that particular attributes of these histograms can be related to several general, though not universal, properties of clouds and surface variations at regional and synoptic scales. There are also significant exceptions to these relationships in particular climate regimes. The characteristics of these radiance histograms provide a stable well defined descriptor of the cloud and surface properties.

  9. Standoff spectroscopy using a conditioned target

    DOEpatents

    Van Neste, Charles W [Kingston, TN; Morales-Rodriguez, Marissa E [Knoxville, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN

    2011-12-20

    A system and method are disclosed for standoff spectroscopy of molecules (e.g. from a residue) on a surface from a distance. A source emits radiation that modifies or conditions the residue, such as through photodecomposition. A spectral generating source measures a spectrum of the residue before and after the residue is exposed to the radiation from that source. The two spectra are compared to produce a distinct identification of the residues on the surface or identify certain properties of the residue.

  10. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms

    PubMed Central

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina

    2016-01-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain, B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms. PMID:26873313

  11. The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense.

    PubMed

    Siuti, Piro; Green, Calvin; Edwards, Amanda Nicole; Doktycz, Mitchel J; Alexandre, Gladys

    2011-10-01

    The Azospirillum brasilense chemotaxis-like Che1 signal transduction pathway was recently shown to modulate changes in adhesive cell surface properties that, in turn, affect cell-to-cell aggregation and flocculation behaviors rather than flagellar-mediated chemotaxis. Attachment to surfaces and root colonization may be functions related to flocculation. Here, the conditions under which A. brasilense wild-type Sp7 and che1 mutant strains attach to abiotic and biotic surfaces were examined using in vitro attachment and biofilm assays combined with atomic force microscopy and confocal microscopy. The nitrogen source available for growth is found to be a major modulator of surface attachment by A. brasilense and could be promoted in vitro by lectins, suggesting that it depends on interaction with surface-exposed residues within the extracellular matrix of cells. However, Che1-dependent signaling is shown to contribute indirectly to surface attachment, indicating that distinct mechanisms are likely underlying flocculation and attachment to surfaces in A. brasilense. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Photon-induced selenium migration in TiSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioi, David B.; Gosztola, David J.; Wiederrecht, Gary P.

    2017-02-20

    TiSe 2 is a member of the transition metal dichalcogenide family of layered van der Waals materials which exhibits some distinct electronic and optical properties. Here, we perform Raman spectroscopy and microscopy studies on single crystal TiSe 2 to investigate thermal and photon-induced defects associated with diffusion of selenium to the surface. Additional phonon peaks near 250 cm -1 are observed in the laser- irradiated regions that are consistent with formation of amorphous and nanocrys- talline selenium on the surface. Temperature dependent studies of the threshold temperature and laser intensity necessary to initiate selenium migration to the surface show anmore » activation barrier for the process of 1.55 eV. The impact of these results on the properties of strongly correlated electron states in TiSe 2 are discussed« less

  13. Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces.

    PubMed

    Zeiger, Adam S; Hinton, Benjamin; Van Vliet, Krystyn J

    2013-07-01

    There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  15. Distinct Subglacial Drainage Patterns Revealed in High-Resolution Mapping of Basal Radar Reflectivity across Greenland

    NASA Astrophysics Data System (ADS)

    Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Palmer, S. J.; Bell, R. E.

    2016-12-01

    Subglacial water beneath the Greenland Ice Sheet is linked to changes in sliding rate in both theoretical and field-based studies. These can lead to massive, widespread speed-ups or, conversely, very little response from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine how shifts in drainage occur and what controls them. By combining NASA IceBridge radar-sounding and ice-sheet modeling, we identified distinct subglacial drainage patterns across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and the Petermann-Humboldt glacier system as a northern example. In southern Greenland at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply and is strongly controlled by bed topography and properties. In the winter, water is stored on bedrock ridges but is absent in deep sediment-filled troughs. In the summer, water drains to the deep troughs that focus this water, flooding the bed to intensify sliding. Conversely, the subglacial drainage systems in northern Greenland are distinctly different. Beneath Petermann and Humboldt, subglacial water is present throughout the year and primarily fed by basal melt in the upstream reaches. In Petermann, this basal water is focused by the deep topography along the main ice trunk. These drainage networks are continuous up to 180 km from the glacier terminus, and likely facilitate the onset of fast flow. In contrast, in Humboldt the flat topography and the lack of water focusing produce more broadly distributed networks rather than locally focused systems. In Humboldt, onset of fast flow develops much closer to the ice edge where surface meltwater may contribute to the subglacial water budget. Our results provide insights into the relationship between surface melt, basal topography and properties over a wide range of controlling parameters. Local conditions often determine the degree to which subglacial systems focus and play an important role in determining individual catchment responses to surface melt.

  16. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    PubMed

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  17. Evolution of magnetism of Cr nanoclusters on a Au(111) surface

    NASA Astrophysics Data System (ADS)

    Gotsis, Harry; Kioussis, Nicholas; Papaconstantopoulos, Dimitri

    2004-03-01

    Advances in low-temperature scanning tunneling microscopy under ultrahigh vacuum have provided new opportunities for investigating the magnetic structures of nanoclusters adsorbed on surfaces. Recent STM studies of Cr trimers on the Au(111) surface suggest a switching between two distinct electronic states. We have carried out ab initio electronic structure calculations to investigate the structural, electronic and magnetic properties of isolated Cr atoms, Cr dimers and trimers in different geometry. We will present results for the evolution of magnetic behavior including noncollinear magnetism and provide insight in the connection between magnetism and geometry.

  18. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    PubMed

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  19. Impact of Substratum Surface on Microbial Community Structure and Treatment Performance in Biological Aerated Filters

    PubMed Central

    Kim, Lavane; Pagaling, Eulyn; Zuo, Yi Y.

    2014-01-01

    The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes. PMID:24141134

  20. Single molecule force spectroscopy reveals the adhesion mechanism of hydrophobins

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Li, Bing; Qin, Meng; Wang, Wei

    Hydrophobins are a special class of amphiphilic proteins produced by filamentous fungi. They show outstanding interfacial self-assembly and adhesion properties, which are critical to their biological function. Such feature also inspires their broad applications in bio-engineering, surface modification, and nanotechnology. However, the biophysical properties of hydrophobins are not well understood. We combined atomic force microscopy based single molecule force spectroscopy and protein engineering to directly quantify the adhesion strength of a hydorphobin (HFB1) to various surfaces in both the monomer and oligomer states to reveal the molecular determinant of the adhesion strength of hydrophobins. We found that the monomer HFB1 showed distinct adhesion properties towards hydrophobic and hydrophilic surfaces. The adhesion to hydrophobic surfaces (i.e. graphite and gold) was significantly higher than that to the hydrophilic ones (e.g. mica and silicon). However, when self-assembled monolayers were formed, the adhesion strengths to various surfaces were similar and were ubiquitously stronger than the monomer cases. We hypothesized that the interactions among hydrophobins in the monolayer played significant roles for the enhance adhesion strengths. Extracting any single hydrophobin monomers from the surface required the break of interactions not only with the surface but also with the neighboring units. We proposed that such a mechanism may be widely explored in nature for many biofilms for surface adhesion. May also inspire the design of novel adhesives.

  1. Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics

    PubMed Central

    Wang, Yuxiang; Baba, Yoshichika; Lumpkin, Ellen A.

    2016-01-01

    Distinct patterns in neuronal firing are observed between classes of cutaneous afferents. Such differences may be attributed to end-organ morphology, distinct ion-channel complements, and skin microstructure, among other factors. Even for just the slowly adapting type I afferent, the skin's mechanics for a particular specimen might impact the afferent's firing properties, especially given the thickness and elasticity of skin can change dramatically over just days. Here, we show computationally that the skin can reliably convey indentation magnitude, rate, and spatial geometry to the locations of tactile receptors even amid changes in skin's structure. Using finite element analysis and neural dynamics models, we considered the skin properties of six mice that span a representative cohort. Modeling the propagation of the surface stimulus to the interior of the skin demonstrated that there can be large variance in stresses and strains near the locations of tactile receptors, which can lead to large variance in static firing rate. However, variance is significantly reduced when the stimulus tip is controlled by surface pressure and compressive stress is measured near the end organs. This particular transformation affords the least variability in predicted firing rates compared with others derived from displacement, force, strain energy density, or compressive strain. Amid changing skin mechanics, stimulus control by surface pressure may be more naturalistic and optimal and underlie how animals actively explore the tactile environment. PMID:27098029

  2. Microstructure, magnetic and magnetocaloric properties in Ni42.9Co6.9Mn38.3Sn11.9 alloy ribbons

    NASA Astrophysics Data System (ADS)

    Ma, S. C.; Ge, Q.; Yang, S.; Liu, K.; Han, X. Q.; Yu, K.; Song, Y.; Zhang, Z. S.; Jiang, Q. Z.; Chen, C. C.; Liu, R. H.; Zhong, Z. C.

    2018-05-01

    The microstructure, magnetic and magnetocaloric properties are investigated in the melt-spun and annealed Ni42.9Co6.9Mn38.3Sn11.9 ribbons. The columnar grains grow perpendicular to ribbon surfaces. After annealing, the grain size increases greatly. Meanwhile, the parent phase is suppressed and therefore L10 martensite predominates, indicating obvious shift of martensitic transformation to high temperature. More interestingly, the martensite variants are distinctly observed on the fractured cross-section of annealed ribbons, not just on the free surface in general. The significant enhancement of magnetic entropy change and effective refrigerant capacities with relatively smaller thermal hysteresis make annealed ribbons potential candidate in magnetic refrigeration around room temperature.

  3. The Tricky Business of Identifying Rocks on Mars

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2002-05-01

    The Mars Global Surveyor mission carries a remote-sensing gizmo called the Thermal Emission Spectrometer (TES). TES detects heat waves flowing from the surface of the Red Planet. The TES team, led by Phil Christensen (Arizona State University), identified two large regions on Mars that have distinctive spectral properties. Using mathematical mixing calculations based on the thermal emission spectra of numerous materials, the TES team reported in papers led by Josh Bandfield and Victoria Hamilton that the two regions had mineral abundances similar to basalt (Surface Type 1) and andesite (Surface Type 2), two common volcanic rock types on Earth. Andesite has more silicon than does basalt, giving rise to a distinctive mineralogy. Scientists had mixed reactions to the possibility of andesite on Mars, greeting the news with fascination, consternation, or skepticism. One question raised is how uniquely the spectra of Surface Type 2 matches andesite. Michael Wyatt and Harry Y. McSween (University of Tennessee) have taken another look at the TES spectra by using a larger collection of aqueous alteration (weathering) products in the spectral mixing calculations. They show that weathered basalt also matches the spectral properties of Surface Type 2. Wyatt and McSween also note that Type 2 regions are generally confined to a large, low region that is the site of a purported Martian ocean that sloshed around billions of years ago. They suggest that basalts like those in Surface Type 1 were altered in the ancient Martian sea. Independent data are needed to test the andesite vs. altered-basalt hypotheses. For now, we may have to be satisfied with at least two working hypotheses and a lively debate.

  4. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan

    The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glassmore » transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.« less

  6. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    NASA Astrophysics Data System (ADS)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  7. Soil-geomorphic significance of land surface characteristics in an arid mountain range, Mojave Desert, USA

    USGS Publications Warehouse

    Hirmas, D.R.; Graham, R.C.; Kendrick, K.J.

    2011-01-01

    Mountains comprise an extensive and visually prominent portion of the landscape in the Mojave Desert, California. Landform surface properties influence the role these mountains have in geomorphic processes such as dust flux and surface hydrology across the region. The primary goal of this study was to describe and quantify land surface properties of arid-mountain landforms as a step toward unraveling the role these properties have in soil-geomorphic processes. As part of a larger soil-geomorphic study, four major landform types were identified within the southern Fry Mountains in the southwestern Mojave Desert on the basis of topography and landscape position: mountaintop, mountainflank, mountainflat (intra-range low-relief surface), and mountainbase. A suite of rock, vegetation, and morphometric land surface characteristic variables was measured at each of 65 locations across the study area, which included an associated piedmont and playa. Our findings show that despite the variation within types, landforms have distinct land surface properties that likely control soil-geomorphic processes. We hypothesize that surface expression influences a feedback process at this site where water transports sediment to low lying areas on the landscape and wind carries dust and soluble salts to the mountains where they are washed between rocks, incorporated into the soil, and retained as relatively long-term storage. Recent land-based video and satellite photographs of the dust cloud emanating from the Sierra Cucapá Mountains in response to the 7.2-magnitude earthquake near Mexicali, Mexico, support the hypothesis that these landforms are massive repositories of dust.

  8. The influence of surface coating on the properties of water-soluble CdSe and CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Coto-García, Ana María; Fernández-Argüelles, María T.; Costa-Fernández, José M.; Sanz-Medel, Alfredo; Valledor, Marta; Campo, Juan C.; Ferrero, Francisco J.

    2013-01-01

    It is well-known that ligands coating the surface of luminescent semiconductor nanocrystals (quantum dots [QDs]) play an important role in the preparation, stability and physical properties of the colloidal QDs in both organic and aqueous media. Here we report on the synthesis and characterization of core (CdSe QDs) and core-shell structured QDs (CdSe/ZnS QDs), both of them stabilized in aqueous medium through different mechanisms of modification of their surface chemistry. The approaches evaluated for QDs transfer to aqueous media were ligand exchange and polymer coating. Experiments were performed using two typical thioalkyl acids as ligands, namely mercaptoacetic acid (QDs-MAA) and 2-mercaptoethanesulphonic acid (QDs-MES), and an amphiphilic polymer (PQDs) based on poly(maleic anhydride) functional groups. The effects of pH (buffer solution), illumination and the presence of ions in the QD environment on the spectroscopic properties of the different synthesized QDs are reported. The stability of the prepared QDs has been comparatively evaluated aimed to elucidate which surface chemistry provides the suitable properties to be employed as fluorescence labels in distinct types of applications. The experimental results and conclusions will be useful for the development of sensitive sensors or assays adopting QDs as fluorescence labels.

  9. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-10-01

    Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.

  10. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    PubMed Central

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  11. Sources of sound in fluid flows

    NASA Technical Reports Server (NTRS)

    Williams, J. E. F.

    1974-01-01

    Some features of a flow that produce acoustic radiation, particularly when the flow is turbulent and interacting with solid surfaces such as turbine or compressor blades are discussed. Early theoretical ideas on the subject are reviewed and are shown to be inadequate at high Mach number. Some recent theoretical developments that form the basis of a description of sound generation by supersonic flows interacting with surfaces are described. At high frequencies the problem is treated as one of describing the surface-induced diffraction field of adjacent aerodynamic quadrupole sources. This approach has given rise to distinctly new features of the problem that seem to have bearing on the radiating properties of relatively large aerodynamic surfaces.

  12. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  13. Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons

    NASA Astrophysics Data System (ADS)

    Korobkin, D.; Urzhumov, Y. A.; Neuner, B., III; Zorman, C.; Zhang, Z.; Mayergoyz, I. D.; Shvets, G.

    2007-09-01

    We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity ɛeff(ω) of the perforated film. The value of ɛeff(ω) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify ɛeff(ω) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources.

  14. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    NASA Astrophysics Data System (ADS)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  15. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.

    PubMed

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

    2013-08-09

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  16. Modality exclusivity norms for 400 nouns: the relationship between perceptual experience and surface word form.

    PubMed

    Lynott, Dermot; Connell, Louise

    2013-06-01

    We present modality exclusivity norms for 400 randomly selected noun concepts, for which participants provided perceptual strength ratings across five sensory modalities (i.e., hearing, taste, touch, smell, and vision). A comparison with previous norms showed that noun concepts are more multimodal than adjective concepts, as nouns tend to subsume multiple adjectival property concepts (e.g., perceptual experience of the concept baby involves auditory, haptic, olfactory, and visual properties, and hence leads to multimodal perceptual strength). To show the value of these norms, we then used them to test a prediction of the sound symbolism hypothesis: Analysis revealed a systematic relationship between strength of perceptual experience in the referent concept and surface word form, such that distinctive perceptual experience tends to attract distinctive lexical labels. In other words, modality-specific norms of perceptual strength are useful for exploring not just the nature of grounded concepts, but also the nature of form-meaning relationships. These norms will be of benefit to those interested in the representational nature of concepts, the roles of perceptual information in word processing and in grounded cognition more generally, and the relationship between form and meaning in language development and evolution.

  17. Determination of secondary electron emission characteristics of lunar soil samples

    NASA Technical Reports Server (NTRS)

    Gold, T.; Baron, R. L.; Bilson, E.

    1979-01-01

    A procedure is described for the determination of the 'apparent crossover voltage', i.e. the value of the primary (bombarding) electron energy at which an insulating sample surface changes the average sign of its charge. This apparent crossover point is characteristic of the secondary emission properties of insulating powders such as the lunar soil samples. Lunar core samples from well-defined, distinct soil layers are found to differ significantly in their secondary emission properties. This observation supports the suggestion that soil layers were deposited by an electrostatic transport process.

  18. Composition and structure of pyrophoric nickel catalysts according to X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Osadchaya, T. Yu.; Afineevskii, A. V.; Prozorov, D. A.; Kochetkov, S. P.; Rumyantsev, R. N.; Lukin, M. V.

    2017-01-01

    The properties of a nickel catalyst obtained by treatment of nickel-aluminum alloy with sodium hydroxide in the presence of H2O2 and additionally stabilized with increased pressure were studied. Additional stabilization decreased the catalyst activity by 25%, but gave a more distinct picture for an XRD analysis of the active catalyst surface and decreased the time of deactivation of the dehydrated catalyst with air oxygen. The catalyst stabilization was explained by the displacement of water, decrease in the pore size, and surface inhomogeneity.

  19. Complex formation between chlorophyll a and cytochrome c: surface properties at the air-water interface. Absorbance, fluorescence and fluorescence-lifetime in Langmuir-Blodgett films.

    PubMed

    Lamarche, F; Picard, G; Téchy, F; Aghion, J; Leblanc, R M

    1991-04-23

    The binding of cytochrome c to an insoluble monolayer of chlorophyll a was studied. Surface pressure (II), surface potential (delta V) and [14C]cytochrome c surface-concentration (gamma) isotherms were measured versus molecular area (sigma) in mixed films. Compared to the successive-addition method, this procedure allows the formation of homogeneous mixed films. The cytochrome c is incorporated into a chlorophyll a monolayer, compressed at a surface pressure of 20 mN.m-1. On expansion, the quantity of protein incorporated into the monolayer gradually increases. Subsequent compression-expansion cycles result in similar isotherms, distinct from that measured during the first expansion. All surface properties measured, but more specifically the surface radioactivity of [14C]cytochrome c, indicate the irreversibility of protein incorporation into the chlorophyll a monolayer. In fact, surface properties of the binary film are completely different from the properties of either of the pure components. As a result, calculated values of surface potentials for mixed films using the additivity law deviate from experimentally measured potentials. The absorption and fluorescence spectra of mixed films transferred onto a solid substrate by the Langmuir-Blodgett technique, indicate a dilution effect of chlorophyll a by cytochrome c. However, the dilution effect cannot be detected by the fluorescence lifetimes of pure chlorophyll a and mixed chlorophyll a-cytochrome c films, both shorter than 0.2 ns. This provides support for the existence of an energy-transfer mechanism between chlorophyll a monomer and chlorophyll a aggregates which could serve as an energy trap. The role of the protein could be related to that of the matrix.

  20. Osseointegration mechanisms: a proteomic approach.

    PubMed

    Araújo-Gomes, N; Romero-Gavilán, F; García-Arnáez, I; Martínez-Ramos, C; Sánchez-Pérez, A M; Azkargorta, M; Elortza, F; de Llano, J J Martín; Gurruchaga, M; Goñi, I; Suay, J

    2018-05-01

    The prime objectives in the development of biomaterials for dental applications are to improve the quality of osseointegration and to short the time needed to achieve it. Design of implants nowadays involves changes in the surface characteristics to obtain a good cellular response. Incorporating osteoinductive elements is one way to achieve the best regeneration possible post-implantation. This study examined the osteointegrative potential of two distinct biomaterials: sandblasted acid-etched titanium and a silica sol-gel hybrid coating, 70% MTMOS-30% TEOS. In vitro, in vivo, and proteomic characterisations of the two materials were conducted. Enhanced expression levels of ALP and IL-6 in the MC3T3-E1 cells cultured with coated discs, suggest that growing cells on such surfaces may increase mineralisation levels. 70M30T-coated implants showed improved bone growth in vivo compared to uncoated titanium. Complete osseointegration was achieved on both. However, coated implants displayed osteoinductive properties, while uncoated implants demonstrated osteoconductive characteristics. Coagulation-related proteins attached predominantly to SAE-Ti surface. Surface properties of the material might drive the regenerative process of the affected tissue. Analysis of the proteins on the coated dental implant showed that few proteins specifically attached to its surface, possibly indicating that its osteoinductive properties depend on the silicon delivery from the implant.

  1. Influence of surface morphology on adsorption of potassium stearate molecules on diamond-like carbon substrate: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang

    2018-05-01

    Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.

  2. Imaging Mercury's Polar Deposits during MESSENGER's Low-altitude Campaign.

    PubMed

    Chabot, Nancy L; Ernst, Carolyn M; Paige, David A; Nair, Hari; Denevi, Brett W; Blewett, David T; Murchie, Scott L; Deutsch, Ariel N; Head, James W; Solomon, Sean C

    2016-09-28

    Images obtained during MESSENGER's low-altitude campaign in the final year of the mission provide the highest-spatial-resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low-reflectance surfaces with well-defined boundaries. Additionally, brightness variations across the deposits correlate with variations in the biannual maximum surface temperature across the permanently shadowed regions, supporting the conclusion that multiple volatile organic compounds are contained in Mercury's polar deposits, in addition to water ice. A recent large impact event or ongoing bombardment by micrometeoroids could deliver water as well as many volatile organic compounds to Mercury. Either scenario is consistent with the distinctive reflectance properties and well-defined boundaries of Mercury's polar deposits and the presence of volatiles in all available cold traps.

  3. Global Inventory and Characterization of Pyroclastic Deposits on Mercury: New Insights into Pyroclastic Activity from MESSENGER Orbital Data

    NASA Technical Reports Server (NTRS)

    Goudge, Timothy A.; Head, James W.; Kerber, Laura; Blewett, David T.; Denevi, Brett W.; Domingue, Deborah L.; Gillis-Davis, Jeffrey J.; Gwinner, Klaus; Helbert, Joern; Holsclaw, Gregory M.; hide

    2014-01-01

    We present new observations of pyroclastic deposits on the surface of Mercury from data acquired during the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. The global analysis of pyroclastic deposits brings the total number of such identified features from 40 to 51. Some 90% of pyroclastic deposits are found within impact craters. The locations of most pyroclastic deposits appear to be unrelated to regional smooth plains deposits, except some deposits cluster around the margins of smooth plains, similar to the relation between many lunar pyroclastic deposits and lunar maria. A survey of the degradation state of the impact craters that host pyroclastic deposits suggests that pyroclastic activity occurred on Mercury over a prolonged interval. Measurements of surface reflectance by MESSENGER indicate that the pyroclastic deposits are spectrally distinct from their surrounding terrain, with higher reflectance values, redder (i.e., steeper) spectral slopes, and a downturn at wavelengths shorter than approximately 400nm (i.e., in the near-ultraviolet region of the spectrum). Three possible causes for these distinctive characteristics include differences in transition metal content, physical properties (e.g., grain size), or degree of space weathering from average surface material on Mercury. The strength of the near-ultraviolet downturn varies among spectra of pyroclastic deposits and is correlated with reflectance at visible wavelengths. We suggest that this interdeposit variability in reflectance spectra is the result of either variable amounts of mixing of the pyroclastic deposits with underlying material or inherent differences in chemical and physical properties among pyroclastic deposits.

  4. Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes

    PubMed Central

    den Otter, W. K.; Shkulipa, S. A.

    2007-01-01

    The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168

  5. On the dissolution properties of GaAs in Ga

    NASA Technical Reports Server (NTRS)

    Davidson, M. C.; Moynahan, A. H.

    1977-01-01

    The dissolution of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

  6. Isotropic and anisotropic strain-induced self-assembled oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Gibert, Marta; Abellan, Patricia; Benedetti, Alessandro; Sandiumenge, Felip; Puig, Teresa; Obradors, Xavier

    2009-03-01

    The apparition of new functionalities based on size- and shape-dependent properties requires strategies for the formation of well-defined structures at nanometric scale. We present a bottom-up low-cost chemically-derived methodology based on the control of strain and surface energies anisotropies in CeO2/LAO system to tune the lateral aspect ratio, orientation and kinetics of interfacial oxide nanostructures. Self-organized uniform square-based nanopyramids form under isotropic strain [1]. In contrast, highly elongated nanostructures (long/short axis ˜20) grow induced by biaxial anisotropic strain and anisotropic surface energies. Island's distinct crystallographic orientation is the clue of their differentiated shape, and also influences their distinct evolution. The kinetically-limited coarsening of isotropic nanodots contrasts with the ultrafast kinetics of anisotropic islands. Experimental analyses are based on AFM, TEM, XRD and RHEED, and simulations based on a thermodynamic model enables us to confirm the equilibrium shape of each sort of island's shape in relation to its misfit strain and surface characteristics. [1] Gibert, M. et al., Adv.Materials 19 (22), 3937 (2007).

  7. Variable-focus microscopy and UV surface dissolution imaging as complementary techniques in intrinsic dissolution rate determination.

    PubMed

    Ward, Adam; Walton, Karl; Box, Karl; Østergaard, Jesper; Gillie, Lisa J; Conway, Barbara R; Asare-Addo, Kofi

    2017-09-15

    This work reports a novel approach to the assessment of the surface properties of compacts used in Surface Dissolution Imaging (SDI). SDI is useful for determining intrinsic dissolution rate (IDR), an important parameter in early stage drug development. Surface topography, post-compaction and post-SDI run, have been measured using a non-contact, optical, three-dimensional microscope based on focus variation, the Alicona Infinite Focus Microscope, with the aim of correlating the IDRs to the surface properties. Ibuprofen (IBU) was used as a model poorly-soluble drug. DSC and XRD were used to monitor possible polymorphic changes that may have occurred post-compaction and post-SDI run. IBUs IDR decreased from 0.033mg/min/cm 2 to 0.022mg/min/cm 2 from 10 to 20min, respectively, during the experiment. XRD and DSC showed no form changes during the SDI run. The surface topography images showed that a distinct imprint was embossed on the surfaces of some compacts which could affect IDRs. Surface parameter values were associated with the SDI experiments which showed strong correlations with the IDR values. The variable-focus microscope can be used as a complimentary tool in the determination of IDR values from the SDI. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.

    2018-03-01

    Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.

  9. Recent studies of the optical properties of dust and cloud particles in the Mars atmosphere and the interannual frequency of global dust storms

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Muhleman, D. O.

    1991-01-01

    The results of research with two distinctly separate sets of observations yield new information on the optical properties of particulate scatterers in the Mars atmosphere, and on the interannual variability of the abundance of such scatterers in the Mars atmosphere. The first set of observations were taken by the IRTM (Infrared Thermal Mapper) instrument onboard the Viking Orbiters, during the period 1976 to 1980. Several hundred emission phase function (EPF) sequences were obtained over the Viking mission, in which the IRTM visual brightness channel observed the same area of surface/atmosphere as the spacecraft passed overhead. The 1 to 2 percent accuracy of calibration and the phase-angle coverage that characterizes these data make them ideally suited to determining both the optical depths and optical properties of dust and cloud scatterers in the Mars atmosphere versus latitude, longitude, seasons (L sub s), and surface elevation over the extended period of Viking observations. The EPF data were analyzed with a multiple scattering radiative transfer code to determine dust single scattering albedos which are distinctly higher than indicated by the Viking Lander observations. The second set of observations regard ground-based observations of the 1.3 to 2.6 mm rotational transitions of CO in the Martian atmosphere. The low-to-mid latitude average of the atmospheric temperature profile (0 to 70 km altitude) were derived from a number of such observations over the 1980 to 1990 period.

  10. Surface morphology of a modified ballistic deposition model.

    PubMed

    Banerjee, Kasturi; Shamanna, J; Ray, Subhankar

    2014-08-01

    The surface and bulk properties of a modified ballistic deposition model are investigated. The deposition rule interpolates between nearest- and next-nearest-neighbor ballistic deposition and the random deposition models. The stickiness of the depositing particle is controlled by a parameter and the type of interparticle force. Two such forces are considered: Coulomb and van der Waals type. The interface width shows three distinct growth regions before eventual saturation. The rate of growth depends more strongly on the stickiness parameter than on the type of interparticle force. However, the porosity of the deposits is strongly influenced by the interparticle force.

  11. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, Amanda N; Siuti, Piro; Bible, Amber

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain.more » Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.« less

  12. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria.

    PubMed

    Onfelt, Björn; Nedvetzki, Shlomo; Benninger, Richard K P; Purbhoo, Marco A; Sowinski, Stefanie; Hume, Alistair N; Seabra, Miguel C; Neil, Mark A A; French, Paul M W; Davis, Daniel M

    2006-12-15

    We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.

  13. The nucleus of Comet Borrelly: A study of morphology and surface brightness

    USGS Publications Warehouse

    Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.

    2004-01-01

    Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.

  14. Catalytic Chemistry on Oxide Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus onmore » demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.« less

  15. Comparative Mineralogy, Microstructure and Compositional Trends in the Sub-Micron Size Fractions of Mare and Highland Lunar Soils

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Christoffersen, R.; Noble, S. K.; Keller, L. P.

    2012-01-01

    The morphology, mineralogy, chemical composition and optical properties of lunar soils show distinct correlations as a function of grain size and origin [1,2,3]. In the <20 m size fraction, there is an increased correlation between lunar surface properties observed through remote sensing techniques and those attributed to space weathering phenomenae [1,2]. Despite the establishment of recognizable trends in lunar grains <20 in size [1,2,3], the size fraction < 10 m is characterized as a collective population of grains without subdivision. This investigation focuses specifically on grains in the <1 m diameter size fraction for both highland and mare derived soils. The properties of these materials provide the focus for many aspects of lunar research including the nature of space weathering on surface properties, electrostatic grain transport [4,5] and dusty plasmas [5]. In this study, we have used analytical transmission and scanning transmission electron microscopy (S/TEM) to characterize the mineralogy type, microstructure and major element compositions of grains in this important size range in lunar soils.

  16. Shaping electrocatalysis through tailored nanomaterials

    DOE PAGES

    Kang, Yijin; Yang, Peidong; Markovic, Nenad M.; ...

    2016-09-21

    Electrocatalysis is a subclass of heterogeneous catalysis that is aimed towards increase of the electrochemical reaction rates that are taking place at the surface of electrodes. Real-world electrocatalysts are usually based on precious metals in the form of nanoparticles due to their high surface-to-volume ratio, which enables better utilization of employed materials. Ability to tailor nanostructure of an electrocatalyst is critical in order to tune their electrocatalytic properties. Over the last decade, that has mainly been achieved through implementation of fundamental studies performed on well-defined extended surfaces with distinct single crystalline and polycrystalline structures. Based on these studies, it hasmore » been demonstrated that performance of an electrocatalyst could be significantly changed through the control of size, composition, morphology and architecture of employed nanomaterials. Here, this review outlines the following steps in the process of rational development of an efficient electrocatalyst: 1) electrochemical properties of well-defined surfaces, 2) synthesis and characterization of different classes of electrocatalysts, and 3) correlation between physical properties (size, shape, composition and morphology) and electrochemical behavior (adsorption, electrocatalytic activity and durability) of electrocatalyst. In addition, this is a brief summary of the novel research platforms in the development of functional nano materials for energy conversion and storage applications such as fuel cells electrolyzers and batteries.« less

  17. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returnsmore » Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.« less

  18. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)

    PubMed Central

    Tesch, Julia; Leicht, Philipp; Blumenschein, Felix; Gragnaniello, Luca; Fonin, Mikhail; Marsoner Steinkasserer, Lukas Eugen; Paulus, Beate; Voloshina, Elena; Dedkov, Yuriy

    2016-01-01

    We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface. The analysis of graphene-related scattering on single nanoflakes yields a linear dispersion relation E(k), with a slight p-doping for graphene/Au(111) and a larger n-doping for graphene/Ag(111). The obtained experimental data (doping level, band dispersions around EF, and Fermi velocity) are very well reproduced within DFT-D2/D3 approaches, which provide a detailed insight into the site-specific interaction between graphene and the underlying substrate. PMID:27002297

  19. Synergistic Effects Between Phosphonium-Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives

    DOE PAGES

    Qu, Jun; Barnhill, William C.; Luo, Huimin; ...

    2015-07-14

    Unique synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) are discovered when used together as lubricant additives, resulting in significant friction and wear reduction along with distinct tribofilm composition and mechanical properties. The synergism is attributed to the 30-70× higher-than-nominal concentrations of hypothetical new compounds (via anion exchange between IL and ZDDP) on the fluid surface/interface.

  20. Shear thickening regimes of dense non-Brownian suspensions.

    PubMed

    Ness, Christopher; Sun, Jin

    2016-01-21

    We propose a unifying rheological framework for dense suspensions of non-Brownian spheres, predicting the onsets of particle friction and particle inertia as distinct shear thickening mechanisms, while capturing quasistatic and soft particle rheology at high volume fractions and shear rates respectively. Discrete element method simulations that take suitable account of hydrodynamic and particle-contact interactions corroborate the model predictions, demonstrating both mechanisms of shear thickening, and showing that they can occur concurrently with carefully selected particle surface properties under certain flow conditions. Microstructural transitions associated with frictional shear thickening are presented. We find very distinctive divergences of both microstructural and dynamic variables with respect to volume fraction in the thickened and non-thickened states.

  1. Nanoporous Metallic Networks: Fabrication, Optical Properties, and Applications.

    PubMed

    Ron, Racheli; Haleva, Emir; Salomon, Adi

    2018-05-17

    Nanoporous metallic networks are a group of porous materials made of solid metals with suboptical wavelength sizes of both particles and voids. They are characterized by unique optical properties, as well as high surface area and permeability of guest materials. As such, they attract a great focus as novel materials for photonics, catalysis, sensing, and renewable energy. Their properties together with the ability for scaling-up evoke an increased interest also in the industrial field. Here, fabrication techniques of large-scale metallic networks are discussed, and their interesting optical properties as well as their applications are considered. In particular, the focus is on disordered systems, which may facilitate the fabrication technique, yet, endow the three-dimensional (3D) network with distinct optical properties. These metallic networks bridge the nanoworld into the macroscopic world, and therefore pave the way to the fabrication of innovative materials with unique optoelectronic properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  3. Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael

    2014-01-01

    Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.

  4. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans.

    PubMed

    Huggett, Megan J; Nedved, Brian T; Hadfield, Michael G

    2009-01-01

    Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.

  5. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    NASA Astrophysics Data System (ADS)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  6. Distinctive receptor binding properties of the surface glycoprotein of a natural feline leukemia virus isolate with unusual disease spectrum.

    PubMed

    Bolin, Lisa L; Chandhasin, Chandtip; Lobelle-Rich, Patricia A; Albritton, Lorraine M; Levy, Laura S

    2011-05-13

    Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  7. Surface operators in 5d gauge theories and duality relations

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.

    2018-05-01

    We study half-BPS surface operators in 5d N = 1 gauge theories compactified on a circle. Using localization methods and the twisted chiral ring relations of coupled 3d/5d quiver gauge theories, we calculate the twisted chiral superpotential that governs the infrared properties of these surface operators. We make a detailed analysis of the localization integrand, and by comparing with the results from the twisted chiral ring equations, we obtain constraints on the 3d and 5d Chern-Simons levels so that the instanton partition function does not depend on the choice of integration contour. For these values of the Chern-Simons couplings, we comment on how the distinct quiver theories that realize the same surface operator are related to each other by Aharony-Seiberg dualities.

  8. Characterising the biophysical properties of normal and hyperkeratotic foot skin.

    PubMed

    Hashmi, Farina; Nester, Christopher; Wright, Ciaran; Newton, Veronica; Lam, Sharon

    2015-01-01

    Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. Ninety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification. Calluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p < 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion. This study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions.

  9. Differences in mechanical and structural properties of surface and aerial petioles of the aquatic plant Nymphaea odorata subsp. tuberosa (Nymphaeaceae).

    PubMed

    Etnier, Shelley A; Villani, Philip J

    2007-07-01

    Lily pads (Nymphaea odorata) exhibit heterophylly where a single plant may have leaves that are submerged, floating, or above (aerial) the surface of the water. Lily pads are placed in a unique situation because each leaf form is exposed to a distinctly different set of mechanical demands. While surface petioles may be loaded in tension under conditions of wind or waves, aerial petioles are loaded in compression because they must support the weight of the lamina. Using standard techniques, we compared the mechanical and morphological properties of both surface and aerial leaf petioles. Structural stiffness (EI) and the second moment of area (I) were higher in aerial petioles, although we detected no differences in other mechanical values (elastic modulus [E], extension ratio, and breaking strength). Morphologically, aerial petioles had a thicker rind, with increased collenchyma tissue and sclereid cell frequency. Aerial petioles also had a larger cross-sectional area and were more elliptical. Thus, subtle changes in the distribution of materials, rather than differences in their makeup, differentiate petiole forms. We suggest that the growth of aerial petioles may be an adaptive response to shading, allowing aerial leaves to rise above a crowded water surface.

  10. Protein adsorption and cell adhesion controlled by the surface chemistry of binary perfluoroalkyl/oligo(ethylene glycol) self-assembled monolayers.

    PubMed

    Li, Shanshan; Yang, Dingyun; Tu, Haiyang; Deng, Hongtao; Du, Dan; Zhang, Aidong

    2013-07-15

    This work reports a study of protein adsorption and cell adhesion on binary self-assembled monolayers (SAMs) of alkanethiols with terminal perfluoroalkyl (PFA) and oligo(ethylene glycol) (OEG) chains in varying ratios. The surface chemistry of the SAMs was characterized by contact angle measurement, grazing angle infrared spectroscopy (GIR), X-ray photoelectron spectroscopy, and the effect on protein adsorption was investigated by surface plasmon resonance, GIR, and immunosorbent assay. Hela cell adhesion on these surfaces was also studied by fluorescence microscopy. Results reveal that, compared to OEG, PFA tended to be a higher fraction of the composition in SAM than in the assembly solution. More interestingly, the nearly 38% PFA SAM had a strong antifouling property whereas the 74% PFA SAM showed a high adsorption capacity to protein and cell. The binary PFA/OEG SAMs were favorable for maintaining the fibrinogen conformation, hence its high activity. The findings may have important implications for constructing PFA-containing surfaces with the distinct properties that is highly resistant or highly favorable toward protein adsorption and cell adhesion. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Probing softness of the parietal pleural surface at the micron scale

    PubMed Central

    Kim, Jae Hun; Butler, James P.; Loring, Stephen H.

    2011-01-01

    The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 µm and 5 µm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38–0.95 kPa, lower than the values measured using flat-ended cylinders > 100 µm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345–2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 µm vs. 5 µm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure. PMID:21820660

  12. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.

    PubMed

    Thein-Han, W W; Shah, J; Misra, R D K

    2009-09-01

    A potential approach to achieving the objective of favorably modulating the biological response of implantable biopolymers combined with good mechanical properties is to consider compounding the biopolymer with a bioactive nanocrystalline ceramic biomimetic material with high surface area. The processing of silicone rubber (SR)-nanohydroxyapatite (nHA) composite involved uniform dispersion of nHA via shear mixing and ultrasonication, followed by compounding at sub-ambient temperature, and high-pressure solidification when the final curing reaction occurs. The high-pressure solidification approach enabled the elastomer to retain the high elongation of SR even in the presence of the reinforcement material, nHA. The biological response of the nanostructured composite in terms of initial cell attachment, cell viability and proliferation was consistently greater on SR-5wt.% nHA composite surface compared to pure SR. Furthermore, in the nanocomposite, cell spreading, morphology and density were distinctly different from that of pure SR. Pre-osteoblasts grown on SR-nHA were well spread, flat, large in size with a rough cell surface, and appeared as a group. In contrast, these features were less pronounced in SR (e.g. smooth cell surface, not well spread). Interestingly, an immunofluorescence study illustrated distinct fibronectin expression level, and stronger vinculin focal adhesion contacts associated with abundant actin stress fibers in pre-osteoblasts grown on the nanocomposite compared to SR, implying enhanced cell-substrate interaction. This finding was consistent with the total protein content and SDS-PAGE analysis. The study leads us to believe that further increase in nHA content in the SR matrix beyond 5wt.% will encourage even greater cellular response. The integration of cellular and molecular biology with materials science and engineering described herein provides a direction for the development of a new generation of nanostructured materials.

  13. Smart Cameras for Remote Science Survey

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Abbey, William; Allwood, Abigail; Bekker, Dmitriy; Bornstein, Benjamin; Cabrol, Nathalie A.; Castano, Rebecca; Estlin, Tara; Fuchs, Thomas; Wagstaff, Kiri L.

    2012-01-01

    Communication with remote exploration spacecraft is often intermittent and bandwidth is highly constrained. Future missions could use onboard science data understanding to prioritize downlink of critical features [1], draft summary maps of visited terrain [2], or identify targets of opportunity for followup measurements [3]. We describe a generic approach to classify geologic surfaces for autonomous science operations, suitable for parallelized implementations in FPGA hardware. We map these surfaces with texture channels - distinctive numerical signatures that differentiate properties such as roughness, pavement coatings, regolith characteristics, sedimentary fabrics and differential outcrop weathering. This work describes our basic image analysis approach and reports an initial performance evaluation using surface images from the Mars Exploration Rovers. Future work will incorporate these methods into camera hardware for real-time processing.

  14. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  15. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction

    PubMed Central

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  16. Current collection from an unmagnetized plasma: A tutorial

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.

    1990-01-01

    The current collected by a body in an unmagnetized plasma depends in general on: (1) the properties of the plasma; (2) the properties of the body; and (3) the properties of any neutral species that are present. The important plasma properties are the velocity distributions of the plasma particles at a location remote from the body (at infinity), and the Debye length which determines the importance of plasma space charge effects. The important body properties are its surface characteristics, namely the conductivity and secondary yield coefficients. The neutral species affect the current through collisions which impede the flow of current and possibly through ionization of the neutrals which can enhance the current. The technique for calculating the current collected by a body in a plasma is reviewed with special attention given to the distinction between orbit limited and space charge limited regimes, the asymptotic variation of the potential with distance from a body, and the concept of a sheath.

  17. Underwater superoleophobicity, anti-oil and ultra-broadband enhanced absorption of metallic surfaces produced by a femtosecond laser inspired by fish and chameleons

    NASA Astrophysics Data System (ADS)

    Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.

    2016-11-01

    Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.

  18. Direct surface analysis coupled to high-resolution mass spectrometry reveals heterogeneous composition of the cuticle of Hibiscus trionum petals.

    PubMed

    Giorio, Chiara; Moyroud, Edwige; Glover, Beverley J; Skelton, Paul C; Kalberer, Markus

    2015-10-06

    Plant cuticle, which is the outermost layer covering the aerial parts of all plants including petals and leaves, can present a wide range of patterns that, combined with cell shape, can generate unique physical, mechanical, or optical properties. For example, arrays of regularly spaced nanoridges have been found on the dark (anthocyanin-rich) portion at the base of the petals of Hibiscus trionum. Those ridges act as a diffraction grating, producing an iridescent effect. Because the surface of the distal white region of the petals is smooth and noniridescent, a selective chemical characterization of the surface of the petals on different portions (i.e., ridged vs smooth) is needed to understand whether distinct cuticular patterns correlate with distinct chemical compositions of the cuticle. In the present study, a rapid screening method has been developed for the direct surface analysis of Hibiscus trionum petals using liquid extraction surface analysis (LESA) coupled with high-resolution mass spectrometry. The optimized method was used to characterize a wide range of plant metabolites and cuticle monomers on the upper (adaxial) surface of the petals on both the white/smooth and anthocyanic/ridged regions, and on the lower (abaxial) surface, which is entirely smooth. The main components detected on the surface of the petals are low-molecular-weight organic acids, sugars, and flavonoids. The ridged portion on the upper surface of the petal is enriched in long-chain fatty acids, which are constituents of the wax fraction of the cuticle. These compounds were not detected on the white/smooth region of the upper petal surface or on the smooth lower surface.

  19. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes.

    PubMed

    Qu, Zhenyuan; Xu, Hong; Gu, Hongchen

    2015-07-15

    Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.

  20. Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator

    NASA Astrophysics Data System (ADS)

    Gray, Miles D.; Choi, Young-Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2016-01-01

    The spatio-temporal evolution of a magnetically driven arc in a rail plasma flow actuator has been characterized with high-speed imaging, electrical measurements, and spectroscopy. The arc draws a peak current of ~1 kA. High-speed framing cameras were used to observe the complex arc propagation phenomenon. In particular, the anode and cathode roots were observed to have different modes of transit, which resulted in distinct types of electrode degradation on the anode and cathode surfaces. Observations of the arc electrical properties and induced magnetic fields are used to explain the transit mechanism of the arc. Emission spectroscopy revealed the arc temperature and species composition as a function of transit distance of the arc. The results obtained offer significant insights into the electromagnetic properties of the arc-rail system as well as arc-surface interaction phenomena in a propagating arc.

  1. Controlled electron doping into metallic atomic wires: Si(111)4×1-In

    NASA Astrophysics Data System (ADS)

    Morikawa, Harumo; Hwang, C. C.; Yeom, Han Woong

    2010-02-01

    We demonstrate the controllable electron doping into metallic atomic wires, indium wires self-assembled on the Si(111) surface, which feature one-dimensional (1D) band structure and temperature-driven metal-insulator transition. The electron filling of 1D metallic bands is systematically increased by alkali-metal adsorption, which, in turn, tunes the macroscopic property, that is, suppresses the metal-insulator transition. On the other hand, the dopant atoms induce a local lattice distortion without a band-gap opening, leading to a microscopic phase separation on the surface. The distinct bifunctional, electronic and structural, roles of dopants in different length scales are thus disclosed.

  2. Atmospheric effects on radiation measurements

    NASA Technical Reports Server (NTRS)

    Jurica, G. M.

    1973-01-01

    Two essentially distinct regions of the electromagnetic spectrum are discussed: (1) the scattering region in which the radiation energy is provided by the incident solar flux; and (2) the infrared region in which emission by the earth's surface and atmospheric gases supply radiative energy. In each of these spectral regions the atmosphere performs its dual function with respect to a remote sensing measurement of surface properties. The atmosphere acts both as a filter and as a noise generator removing and obscuring sought after information. Nevertheless, with proper application of concepts such as have been considered, it will be possible to remove these unwanted atmospheric effects and to improve identification techniques being developed.

  3. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  4. Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG)3)2.

    PubMed

    Tatsubo, Daiki; Suyama, Keitaro; Miyazaki, Masaya; Maeda, Iori; Nose, Takeru

    2018-03-13

    Elastin-like peptides (ELPs) are distinct, repetitive, hydrophobic sequences, such as (VPGVG) n , that exhibit coacervation, the property of reversible, temperature-dependent self-association and dissociation. ELPs can be found in elastin and have been developed as new scaffold biomaterials. However, the detailed relationship between their amino acid sequences and coacervation properties remains obscure because of the structural flexibility of ELPs. In this study, we synthesized a novel, dimeric ELP analogue (H-C(WPGVG) 3 -NH 2 ) 2 , henceforth abbreviated (CW3)2, and analyzed its self-assembly properties and structural factors as indicators of coacervation. Turbidity measurements showed that (CW3)2 demonstrated coacervation at a concentration much lower than that of its monomeric form and another ELP. In addition, the coacervate held water-soluble dye molecules. Thus, potent and distinct coacervation was obtained with a remarkably short sequence of (CW3)2. Furthermore, fluorescence microscopy, dynamic light scattering, and optical microscopy revealed that the coacervation of (CW3)2 was a stepwise process. The structural factors of (CW3)2 were analyzed by molecular dynamics simulations and circular dichroism spectroscopy. These measurements indicated that helical structures primarily consisting of proline and glycine became more disordered at high temperatures with concurrent, significant exposure of their hydrophobic surfaces. This extreme change in the hydrophobic surface contributes to the potent coacervation observed for (CW3)2. These results provide important insights into more efficient applications of ELPs and their analogues, as well as the coacervation mechanisms of ELP and elastin.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaltenegger, L.; Sasselov, D.; Rugheimer, S., E-mail: kaltenegger@mpia.de

    Planets composed of large quantities of water that reside in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water-planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable candidates for habitable zone water-planets. We use these planets as test cases for discussing those differences in detail. We generate atmospheric spectral models and find that potentially habitablemore » water-planets show a distinctive spectral fingerprint in transit depending on their position in the habitable zone.« less

  6. Distinct evolutions of Weyl fermion quasiparticles and Fermi arcs with bulk band topology in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Autes, Gabriel; Matt, Christian; Lv, Baiqing; Bisti, Federico; Strocov, Vladimir; Gawryluk, Dariusz; Pomjakushina, Ekaterina; Conder, Kazimierz; Plumb, Nicholas; Radovic, Milan; Qian, Tian; Yazyev, Oleg; Mesot, Joel; Ding, Hong; Shi, Ming

    By performing ARPES and first-principle calculations, we demonstrate that Weyl fermions quasiparticles in bulk and Fermi arc on surface show distinct evolutions with the bulk band topology in transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two non-trivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (NbP), Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magneto-transport properties observed in TaAs, TaP and NbP, where the Fermi arc states are similar. The Sino-Swiss Science and Technology Cooperation (No. IZLCZ2138954), NCCR-MARVEL funded by the Swiss National Science Foundation.

  7. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  8. Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(D,L-lactic acid- ran-glycolic acid) (PLGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung

    2015-08-26

    Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid- ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including themore » Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.« less

  9. Copoly(Imide Siloxane) Abhesive Materials with Varied Siloxane Oligomer Length

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2010-01-01

    Incorporation of PDMS moieties into a polyimide matrix lowered the surface energy resulting in enhanced adhesive interactions. Polyimide siloxane materials were generated using amine-terminated PDMS oligomers of different lengths to study changes in surface migration behavior, phase segregation, mechanical, thermal, and optical properties. These materials were characterized using contact angle goniometry, tensile testing, and differential scanning calorimetry. The surface migration behavior of the PDMS component depended upon the siloxane molecular weight as indicated by distinct relationships between PDMS chain length and advancing water contact angles. Similar correlations were observed for percent elongation values obtained from tensile testing, while the addition of PDMS reduced the modulus. High fidelity topographical modification via laser ablation patterning further reduced the polyimide siloxane surface energy. Initial particulate adhesion testing experiments demonstrated that polyimide siloxane materials exhibited greater abhesive interactions relative to their respective homopolyimides.

  10. Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator

    DOE PAGES

    Neupane, Madhab; Xu, Su-Yang; Sankar, R.; ...

    2015-08-20

    Here we report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI), Pb 1more » $${-}$$xSnxSe, as a function of various material parameters including composition x, temperature T , and crystal structure. Our spectroscopic data demonstrate the electronic ground-state condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states’ response to circularly polarized light. Our results show that each material parameter can tune the system between the trivial and topological phase in a distinct way, unlike that seen in Bi 2Se 3 and related compounds, leading to a rich topological phase diagram. Our systematic studies of the TCI Pb 1$${-}$$xSnxSe are a valuable materials guide to realize new topological phenomena.« less

  11. Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO2.

    PubMed

    Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh

    2017-12-14

    Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.

  12. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    PubMed Central

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer. PMID:23759735

  13. Application of Surface Analysis Methods to Nanomaterials: Summaryof ISO/TC 201 Technical Report: ISO 14187:2011 -Surface Chemical Analysis- Characterization of Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.

    ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that aremore » in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.« less

  14. Surface modification of NiTi by plasma based ion implantation for application in harsh environments

    NASA Astrophysics Data System (ADS)

    Oliveira, R. M.; Fernandes, B. B.; Carreri, F. C.; Gonçalves, J. A. N.; Ueda, M.; Silva, M. M. N. F.; Silva, M. M.; Pichon, L.; Camargo, E. N.; Otubo, J.

    2012-12-01

    The substitution of conventional components for NiTi in distinct devices such as actuators, valves, connectors, stents, orthodontic arc-wires, e.g., usually demands some kind of treatment to be performed on the surface of the alloy. A typical case is of biomaterials made of NiTi, in which the main drawback is the Ni out-diffusion, an issue that has been satisfactorily addressed by plasma based ion implantation (PBII). Even though PBII can tailor selective surface properties of diverse materials, usually, only thin modified layers are attained. When NiTi alloys are to be used in the harsh space environment, as is the case of devices designed to remotely release the solar panels and antenna arrays of satellites, e.g., superior mechanical and tribological properties are demanded. For this case the thickness of the modified layer must be larger than the one commonly achieved by conventional PBII. In this paper, new nitrogen PBII set up was used to treat samples of NiTi in moderate temperature of 450 °C, with negative voltage pulses of 7 kV/250 Hz/20 μs, in a process lasting 1 h. A rich nitrogen atomic concentration of 85 at.% was achieved on the near surface and nitrogen diffused at least for 11 μm depth. Tribological properties as well as corrosion resistance were evaluated.

  15. Black Sea thermohaline properties: Long‐term trends and variations

    PubMed Central

    Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.

    2017-01-01

    Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833

  16. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    DOE PAGES

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; ...

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to themore » interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.« less

  17. Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior

    NASA Astrophysics Data System (ADS)

    Jia, Huimin; He, Weiwei; Zhang, Beibei; Yao, Lei; Yang, Xiaokai; Zheng, Zhi

    2018-05-01

    A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate 2D ordered BiOX (X = CI, Br, I) nanosheet array films on FTO substrates at room temperature. The formation of BiOX films were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The semiconductor surface states determine the type of semiconductor. Although BiOCI, BiOBr and BiOI belong to the bismuth oxyhalide semiconductor family and possess similar crystal and electronic structures, they show different conductivity types due to their respective surface states. Mott-Schottky curve results demonstrate that the BiOCl and BiOI nanosheet arrays display n-type semiconductor properties, while the BiOBr films exhibit p-type semiconductor properties. Assisted by surface photovoltage (SPV) and transient photovoltage (TPV) techniques, the photoinduced charge transfer dynamics on the surface/interface of the BiOX/FTO nanosheet films were systematically and comparatively investigated. As revealed by the results, both the separation and transfer dynamics of the photo-induced carrier are influenced by film thickness.

  18. In Situ Air Temperature and Humidity Measurements Over Diverse Land Covers in Greenbelt, Maryland, November 2013-November 2015

    NASA Technical Reports Server (NTRS)

    Carroll, Mark L.; Brown, Molly E.; Wooten, Margaret R.; Donham, Joel E.; Hubbard, Alfred B.; Ridenhour, William B.

    2016-01-01

    As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al.,2016) and can be found by following this link: http:daac.ornl.govcgi-bindsviewer.pl?ds_id1319.

  19. Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Virk, Naunidh; Autès, Gabriel; Yazyev, Oleg V.

    2018-04-01

    We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3 . Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2 π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.

  20. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  1. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  2. Evolution of morphological and optical properties of self-assembled Ag nanostructures on c-plane sapphire (0001) by the precise control of deposition amount

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Li, Ming-Yu; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Lee, Jihoon

    2016-12-01

    Silver (Ag) nanoparticles (NPs) have been widely adapted in various optoelectronic and sensing applications due to the size, shape and density dependent tunable properties. In this work, the systematic control of the size, configuration and density of self-assembled Ag nanostructures on c-plane sapphire (0001) is demonstrated through the solid state dewetting process by the variation of deposition amount (DA) at two distinctive temperature of 400 °C and 650 °C. The corresponding morphological evolution of Ag nanostructures is systematically discussed based on the diffusion, Volmer-Weber and coalescence growth model. In specific, at the relatively lower temperature of 400 °C, the Ag nanostructures evolve in three distinctive regimes based on the DA control: i.e. the dome-shaped Ag NPs between 2 and 14 nm (regime I), the irregular nano-mounds (NMs) between 20 and 40 nm (regime II), and the coalescence of Ag NMs into a layer between 60 and 200 nm (regime III). Meanwhile, at the relatively higher temperature of 650 °C, due to growth regime shift induced by the enhanced surface diffusion based on the increased thermal energy, the connected Ag NMs are resulted even at higher DAs and evolve along with the gradually increased DAs. The evolution of optical properties such as average reflectivity, plasmonic absorption band and the reflectance maxima (peaks) very sensitively respond to the evolution of size, shape and spacing of Ag nanostructures and discussed based on the surface plasmon, reflection and scattering. Specifically, the dome-shaped configuration exhibits strong absorption in the NIR region and weak absorption in visible region while the elongated NMs show the enhanced absorption in visible region. Furthermore, the Raman spectra (A 1g vibrational mode) of the Ag nanostructures demonstrate the strong correlation with the evolution of size, density and surface coverage of the nanostructures.

  3. Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect.

    PubMed

    Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun

    2017-02-01

    The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies.

    PubMed

    Scharner, Juergen; Lu, Hui-Chun; Fraternali, Franca; Ellis, Juliet A; Zammit, Peter S

    2014-06-01

    Mutations in A-type nuclear lamins cause laminopathies. However, genotype-phenotype correlations using the 340 missense mutations within the LMNA gene are unclear: partially due to the limited availability of three-dimensional structure. The immunoglobulin (Ig)-like fold domain has been solved, and using bioinformatics tools (including Polyphen-2, Fold X, Parameter OPtimized Surfaces, and PocketPicker) we characterized 56 missense mutations for position, surface exposure, change in charge and effect on Ig-like fold stability. We find that 21 of the 27 mutations associated with a skeletal muscle phenotype are distributed throughout the Ig-like fold, are nonsurface exposed and predicted to disrupt overall stability of the Ig-like fold domain. Intriguingly, the remaining 6 mutations clustered, had higher surface exposure, and did not affect stability. The majority of 9 lipodystrophy or 10 premature aging syndrome mutations also did not disrupt Ig-like fold domain stability and were surface exposed and clustered in distinct regions that overlap predicted binding pockets. Although buried, the 10 cardiac mutations had no other consistent properties. Finally, most lipodystrophy and premature aging mutations resulted in a -1 net charge change, whereas skeletal muscle mutations caused no consistent net charge changes. Since premature aging, lipodystrophy and the subset of 6 skeletal muscle mutations cluster tightly in distinct, charged regions, they likely affect lamin A/C -protein/DNA/RNA interactions: providing a consistent genotype-phenotype relationship for mutations in this domain. Thus, this subgroup of skeletal muscle laminopathies that we term the 'Skeletal muscle cluster', may have a distinct pathological mechanism. These novel associations refine the ability to predict clinical features caused by certain LMNA missense mutations. © 2013 Wiley Periodicals, Inc.

  5. The dynamical control of subduction parameters on surface topography

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  6. Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.

    PubMed

    Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T

    2013-08-06

    The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.

  7. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    PubMed Central

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  8. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  9. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties.

    PubMed

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W

    2016-03-09

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  10. Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions.

    PubMed

    Wang, Kai; Luo, Ying

    2013-07-08

    As one important category of biological molecules on the cell surface and in the extracellular matrix (ECM), glycosaminoglycans (GAGs) have been widely studied for biomedical applications. With the understanding that the biological functions of GAGs are driven by the complex dynamics of physiological and pathological processes, methodologies are desired to allow the elucidation of cell-GAG interactions with molecular level precision. In this study, a microtiter plate-based system was devised through a new surface modification strategy involving polydopamine (PDA) and GAG molecules functionalized with hydrazide chemical groups. A small library of GAGs including hyaluronic acid (with different molecular weights), heparin, and chondroitin sulfate was successfully immobilized via defined binding sites onto the microtiter plate surface under facile aqueous conditions. The methodology then allowed parallel studies of the GAG-modified surfaces in a high-throughput format. The results show that immobilized GAGs possess distinct properties to mediate protein adsorption, cell adhesion, and inflammatory responses, with each property showing dependence on the type and molecular weight of specific GAG molecules. The PDA-assisted immobilization of hydrazide-functionalized GAGs allows biomimetic attachment of GAG molecules and retains their bioactivity, providing a new methodology to systematically probe fundamental cell-GAG interactions to modulate the bioactivity and biocompatibility of biomaterials.

  11. The Contribution of Object Shape and Surface Properties to Object Ensemble Representation in Anterior-medial Ventral Visual Cortex.

    PubMed

    Cant, Jonathan S; Xu, Yaoda

    2017-02-01

    Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.

  12. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  13. Flexible strategy for immobilizing redox-active compounds using in situ generation of diazonium salts. Investigations of the blocking and catalytic properties of the layers.

    PubMed

    Noël, Jean-Marc; Sjöberg, Béatrice; Marsac, Rémi; Zigah, Dodzi; Bergamini, Jean-François; Wang, Aifang; Rigaut, Stéphane; Hapiot, Philippe; Lagrost, Corinne

    2009-11-03

    A versatile two-step method is developed to covalently immobilize redox-active molecules onto carbon surfaces. First, a robust anchoring platform is grafted onto surfaces by electrochemical reduction of aryl diazonium salts in situ generated. Depending on the nature of the layer termini, -COOH or -NH(2), a further chemical coupling involving ferrocenemethylamine or ferrocene carboxylic acid derivatives leads to the covalent binding of ferrocene centers. The chemical strategy using acyl chloride activation is efficient and flexible, since it can be applied either to surface-reactive end groups or to reactive species in solution. Cyclic voltammetry analyses point to the covalent binding of ferrocene units restricted to the upper layers of the underlying aryl films, while AFM measurements show a lost of compactness of the layers after the chemical attachment of ferrocene centers. The preparation conditions of the anchoring layers were found to determine the interfacial properties of the resulted ferrocenyl-modified electrodes. The ferrocene units promoted effective redox mediation providing that the free redox probes are adequately chosen (i.e., vs size/formal potential) and the underlying layers exhibit strong blocking properties. For anchoring films with weaker blocking effect, the coexistence of two distinct phenomena, redox mediation and ET at pinholes could be evidenced.

  14. Surface patterning of nanoparticles with polymer patches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less

  15. Surface patterning of nanoparticles with polymer patches

    DOE PAGES

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; ...

    2016-08-24

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less

  16. Surface patterning of nanoparticles with polymer patches

    NASA Astrophysics Data System (ADS)

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; Klinkova, Anna; Larin, Egor M.; Querejeta-Fernández, Ana; Han, Lili; Xin, Huolin L.; Gang, Oleg; Zhulina, Ekaterina B.; Rubinstein, Michael; Kumacheva, Eugenia

    2016-10-01

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

  17. Peak effect versus skating in high-temperature nanofriction

    NASA Astrophysics Data System (ADS)

    Zykova-Timan, T.; Ceresoli, D.; Tosatti, E.

    2007-03-01

    The physics of sliding nanofriction at high temperature near the substrate melting point, TM, is so far unexplored. We conducted simulations of hard tips sliding on a prototype non-melting surface, NaCl(100), revealing two distinct and opposite phenomena for ploughing and for grazing friction in this regime. We found a frictional drop close to TM for deep ploughing and wear, but on the contrary a frictional rise for grazing, wearless sliding. For both phenomena, we obtain a fresh microscopic understanding, relating the former to `skating' through a local liquid cloud, and the latter to linear response properties of the free substrate surface. We argue that both phenomena occur more generally on surfaces other than NaCl and should be pursued experimentally. Most metals, in particular those possessing one or more close-packed non-melting surfaces, such as Pb, Al or Au(111), are likely to behave similarly.

  18. Observation of organ-pipe acoustic excitations in supported thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Sooryakumar, R.; Every, A. G.; Manghnani, M. H.

    2001-08-01

    Brillouin light scattering from supported silicon oxynitride films reveal an extended series of acoustic excitations occurring at regular frequency intervals when the mode wave vector is perpendicular to the film surface. These periodic peaks are identified as distinct standing wave excitations that, similar to harmonics of an open-ended organ pipe, occur due to the boundary conditions imposed by the free surface and substrate-film interface. The surface ripple and volume elasto-optic scattering mechanisms contribute to the scattering cross sections and lead to dramatic interference effects at low frequencies where the surface corrugations play a dominant role. The transformation of these standing wave excitations to modes with finite in-plane wave vectors is also investigated. The results are discussed in the framework of a Green's-function formalism that reproduces the experimental features and illustrate the importance of the standing modes in evaluating the longitudinal elastic properties of the films.

  19. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  20. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.

    PubMed

    Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M

    2018-05-08

    Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.

  1. Spectroscopic Visualization of Inversion and Time-Reversal Symmetry Breaking Weyl Semi-metals

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim

    A defining property of a topological material is the existence of surface bands that cannot be realized but as the termination of a topological bulk. In a Weyl semi-metal these surface states are in the form of Fermi-arcs. Their open-contour Fermi-surface curves between pairs of surface projections of bulk Weyl cones. Such Dirac-like bulk bands, as opposed to the gapped bulk of topological insulators, land a unique opportunity to examine the deep notion of bulk to surface correspondence. We study the intricate properties both of inversion symmetry broken and of time-reversal symmetry broken Weyl semimetals using scanning tunneling spectroscopy. We visualize the Fermi arc states on the surface of the non-centrosymmetric Weyl semi-metal TaAs. Using the distinct structure and spatial distribution of the wavefunctions associated with the different topological and trivial bands we detect the scattering processes that involve Fermi arcs. Each of these imaged scattering processes entails information on the unique nature of Fermi arcs and their correspondence to the topological bulk. We further visualize the magnetic response of the candidate magnetic Weyl semimetal GdPtBi in which the magnetic order parameter is coupled to the topological classification. European Research Council (ERC-StG no. 678702, TOPO-NW\\x9D), the Israel Science Foundation (ISF), and the United States-Israel Binational Science Foundation (BSF).

  2. Satellite remote sensing of primary production

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Sellers, P. J.

    1986-01-01

    Leaf structure and function are shown to result in distinctive variations in the absorption and reflection of solar radiation from plant canopies. The leaf properties that determine the radiation-interception characteristics of plant canopies are directly linked to photosynthesis, stomatal resistance and evapotranspiration and can be inferred from measurements of reflected solar energy. The effects of off-nadir viewing and atmospheric constituents, coupled with the need to measure changing surface conditions, emphasize the need for multitemporal measurements of reflected radiation if primary production is to be estimated.

  3. Nanocarbon surfaces for biomedicine

    PubMed Central

    Reina, Giacomo; Tamburri, Emanuela; Orlanducci, Silvia; Gay, Stefano; Matassa, Roberto; Guglielmotti, Valeria; Lavecchia, Teresa; Letizia Terranova, Maria; Rossi, Marco

    2014-01-01

    The distinctive physicochemical, mechanical and electrical properties of carbon nanostructures are currently gaining the interest of researchers working in bioengineering and biomedical fields. Carbon nanotubes, carbon dendrimers, graphenic platelets and nanodiamonds are deeply studied aiming at their application in several areas of biology and medicine.   Here we provide a summary of the carbon nanomaterials prepared in our labs and of the fabrication techniques used to produce several biomedical utilities, from scaffolds for tissue growth to cargos for drug delivery and to biosensors. PMID:24646883

  4. Space Weathering: Laboratory Analyses and In-Situ Instrumentation

    NASA Technical Reports Server (NTRS)

    Bentley, M. S.; Ball, A. J.; Dyar, M. D.; Pieters, C. M.; Wright, I. P.; Zarnecki, J. C.

    2005-01-01

    Space weathering is now understood to be a key modifier of visible and near infrared reflectance spectra of airless bodies. Believed to be caused by vapour recondensation after either ion sputtering or impact vaporization, space weathering has been successfully simulated in the laboratory over the past few years. The optical changes caused by space weathering have been attributed to the accumulation of sub-microscopic iron on regolith grain surfaces. Such fine-grained metallic iron has distinctive magnetic properties that can be used to study it.

  5. Mineral Ecology: Surface Specific Colonization and Geochemical Drivers of Biofilm Accumulation, Composition, and Phylogeny

    PubMed Central

    Jones, Aaron A.; Bennett, Philip C.

    2017-01-01

    This study tests the hypothesis that surface composition influences microbial community structure and growth of biofilms. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the phylogenetic and taxonomic variability in microbial communities as a function of surface type (carbonate, silicate, aluminosilicate), media pH, and carbon and phosphate availability. Using high-throughput pyrosequencing, we found that surface type significantly controlled ~70–90% of the variance in phylogenetic diversity regardless of environmental pressures. Consistent patterns also emerged in the taxonomy of specific guilds (sulfur-oxidizers/reducers, Gram-positives, acidophiles) due to variations in media chemistry. Media phosphate availability was a key property associated with variation in phylogeny and taxonomy of whole reactors and was negatively correlated with biofilm accumulation and α-diversity (species richness and evenness). However, mineral-bound phosphate limitations were correlated with less biofilm. Carbon added to the media was correlated with a significant increase in biofilm accumulation and overall α-diversity. Additionally, planktonic communities were phylogenetically distant from those in biofilms. All treatments harbored structurally (taxonomically and phylogenetically) distinct microbial communities. Selective advantages within each treatment encouraged growth and revealed the presence of hundreds of additional operational taxonomix units (OTU), representing distinct consortiums of microorganisms. Ultimately, these results provide evidence that mineral/rock composition significantly influences microbial community structure, diversity, membership, phylogenetic variability, and biofilm growth in subsurface communities. PMID:28400754

  6. Symmetry enriched U(1) quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Zou, Liujun; Wang, Chong; Senthil, T.

    2018-05-01

    We classify and characterize three-dimensional U (1 ) quantum spin liquids [deconfined U (1 ) gauge theories] with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic excitations (which we assume are gapped). We first discuss in great detail the case with time-reversal and SO(3 ) spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some of these states possess fractional response to an external SO (3 ) gauge field, due to which we dub them "fractional topological paramagnets." We identify 11 other anomalous states that can be grouped into three anomaly classes. The classification is further refined by weakly coupling these quantum spin liquids to bosonic symmetry protected topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such U (1 ) quantum spin liquids. After this warm-up, we provide a general framework to classify symmetry enriched U (1 ) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U (1 ) quantum spin liquids with time-reversal and Z2 symmetries in detail. Based on the properties of the bulk excitations, we find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U (1 ) quantum spin liquids with this symmetry. Finally, we briefly discuss the classification of U (1 ) quantum spin liquids enriched by some other symmetries.

  7. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties

    PubMed Central

    Nguyen, Leonard T.; Vogel, Hans J.

    2016-01-01

    Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein’s α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties. PMID:27554435

  8. Mesothelium of the Murine Allantois Exhibits Distinct Regional Properties

    PubMed Central

    Daane, Jacob M.; Enders, Allen C.; Downs, Karen M.

    2011-01-01

    The rodent allantois is thought to be unique amongst mammals in not having an endodermal component. Here, we have investigated the mesothelium, or outer surface, of murine umbilical precursor tissue, the allantois (~7.25–8.5 days postcoitum, dpc) to discover whether it exhibits the properties of an epithelium. A combination of morphology, challenge with biotinylated dextran amines (BDAs), and immunohistochemistry revealed that the mesothelium of the mouse allantois exhibits distinct regional properties. By headfold stages (~7.75–8.0 dpc), distal mesothelium was generally squamous in shape, and highly permeable to BDA challenge, whereas ventral proximal mesothelium, referred to as “ventral cuboidal mesothelium” (VCM) for the characteristic cuboidal shape of its cells, was relatively impermeable. Although “dorsal cuboidal mesothelium” (DCM) resembled the VCM in cell shape, its permeability to BDA was intermediate between the other two regions. Results of immunostaining for Zonula Occludens-1 (ZO-1) and Epithelial-cadherin (E-cadherin), together with transmission electron microscopy (TEM), suggested that impermeability in the VCM may be due to greater cellular contact area between cells and close packing rather than to maturity of tight junctions, the latter of which, by comparison with the visceral yolk sac, appeared to be rare or absent from the allantoic surface. Both VCM and DCM exhibited an ultrastructure more favorable for protein synthesis than did the distal squamous mesothelium; however, at most stages, VCM exhibited robust afadin (AF-6), whereas the DCM uniquely contained alpha-4-integrin. These observations demonstrate that the allantoic mesothelium is not a conventional epithelium but possesses regional ultrastructural, functional and molecular differences that may play important roles in the correct deployment of the umbilical cord and its associated vascular, hematopoietic, and other cell types. PMID:21284019

  9. Laser surface alloying of coins for authenticity

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Watkins, Kenneth G.; Steen, William M.; Hatherley, P. G.

    1997-08-01

    This paper presents an exploratory investigation on verifying the feasibility of using a laser surface alloying technique to produce designs in the surface of coinage blanks. The specific aim of the work concerns the production of design features in coins that are difficult to produce by other techniques and which hence act as a barrier to forgery and features which permit automatic recognition in vending machines, particularly as a means of establishing the authenticity of the coins. Coins in many countries today are commonly manufactured from metal composites, where one substrate metal or alloy is coated with another by a process of electrodeposition or by mechanical bonding. The technique here described entails the use of a high power CO2 laser to bring about localized melting of the two layers. Visible distinction between alloyed and unalloyed regions or difference in other physical properties such as conductivity or magnetic properties can be obtained. The work also involved a fundamental study of the influence of the thermal properties of the materials on the CO2 laser alloying process. It was found that the thermal properties such as thermal conductivity of the substrate materials and the difference of the melting points between the coating layer and the substrate materials played an important role in the process. Laser control variables required for localized alloying for different substrate and coatings types were determined. The influence of both thermal properties and laser control variables on alloy type and alloy depth were investigated. Initial work on coin validation showed promising results of an automatic recognition of laser treated coins.

  10. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio.

    PubMed

    Hong, Yongsuk; Brown, Derick G

    2006-07-01

    Potentiometric titration has been conducted to systematically examine the acid-base properties of the cell surfaces of Escherichia coli K-12 and Bacillus brevis as a function of growth phase, nitrogen source (ammonium or nitrate), and carbon to nitrogen (C:N) ratio of the growth substrate. The two bacterial species revealed four distinct proton binding sites, with pK(a) values in the range of 3.08-4.05 (pK(1)), 4.62-5.57 (pK(2)), 6.47-7.30 (pK(3)), and 9.68-10.89 (pK(4)) corresponding to phosphoric/carboxylic, carboxylic, phosphoric, and hydroxyl/amine groups, respectively. Two general observations in the data are that for B. brevis the first site concentration (N(1)), corresponding to phosphoric/carboxylic groups (pK(1)), varied as a function of nitrogen source, while for E. coli the fourth site concentration (N(4)), corresponding to hydroxyl/amine groups (pK(4)), varied as a function of C:N ratio. Correspondingly, it was found that N(1) was the highest of the four site concentrations for B. brevis and N(4) was the highest for E. coli. The concentrations of the remaining sites showed little variation. Finally, comparison between the titration data and a number of cell surface compositional studies in the literature indicates one distinct difference between the two bacteria is that pK(4) of the Gram-negative E. coli can be attributed to hydroxyl groups while that of the Gram-positive B. brevis can be attributed to amine groups.

  11. Characterization of two polymorphs of salmeterol xinafoate crystallized from supercritical fluids.

    PubMed

    Tong, H H; Shekunov, B Y; York, P; Chow, A H

    2001-06-01

    To characterize two polymorphs of salmeterol xinafoate (SX-I and SX-II) produced by supercritical fluid crystallization. SX-I and SX-II were crystallized as fine powders using Solution Enhanced Dispersion by Supercritical Fluids (SEDS). The two polymorphs and a reference micronized SX sample (MSX) were characterized using powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), aqueous solubility (and dissolution) determination at 5-40 degrees C, BET adsorption analysis, and inverse gas chromatography (IGC). Compared with SX-I, SX-II exhibited a lower enthalpy of fusion, a higher equilibrium solubility, a higher intrinsic dissolution rate, a lower enthalpy of solution (based on van't Hoff solubility plots), and a different FTIR spectrum (reflecting differences in intermolecular hydrogen bonding). Solubility ratio plot yielded a transition temperature (-99 degrees C) below the melting points of both polymorphs. MSX showed essentially the same crystal form as SX-I (confirmed by PXRD and FTIR), but a distinctly different thermal behaviour. Mild trituration of SX-I afforded a similar DSC profile to MSX while prolonged grinding of SX-I gave rise to an endotherm at -109 degrees C, corresponding to solid-solid transition of SX-I to SX-II. Surface analysis of MSX, SX-I, and SX-II by IGC revealed significant differences in surface free energy in terms of both dispersive (nonpolar) interactions and specific (polar) acid-base properties. The SEDS-processed SX-I and SX-II display high polymorphic purity and distinctly different physical and surface properties. The polymorphs are related enantiotropically with SX-I being the thermodynamically stable form at room temperature.

  12. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    PubMed Central

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  13. The "Sticky Patch" Model of Crystallization and Modification of Proteins for Enhanced Crystallizability.

    PubMed

    Derewenda, Zygmunt S; Godzik, Adam

    2017-01-01

    Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e., crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure, and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular "sticky patch" model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer "sticky patches" which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the "sticky patch" model. We discuss state-of-the-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis.

  14. Thin metal nanostructures: synthesis, properties and applications

    PubMed Central

    Fan, Zhanxi; Huang, Xiao; Tan, Chaoliang

    2015-01-01

    Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. In this minireview, we review the recent progress in the synthesis and applications of thin metal nanostructures with a focus on metal nanoplates and nanosheets. First of all, various methods for the synthesis of metal nanoplates and nanosheets are summarized. After a brief introduction of their properties, some applications of metal nanoplates and nanosheets, such as catalysis, surface enhanced Raman scattering (SERS), sensing and near-infrared photothermal therapy are described. PMID:28553459

  15. Adhesive barnacle peptides exhibit a steric-driven design rule to enhance adhesion between asymmetric surfaces.

    PubMed

    Raman, Sangeetha; Malms, Lukas; Utzig, Thomas; Shrestha, Buddha Ratna; Stock, Philipp; Krishnan, Shankar; Valtiner, Markus

    2017-04-01

    Barnacles exhibit superior underwater adhesion simply through sequencing of the 21 proteinogenic amino acids, without post processing or using special amino acids. Here, we measure and discuss the molecular interaction of two distinct and recurring short peptide sequences (Bp1 and Bp2) inspired from the surface binding 19kDa protein from the barnacle attachment interface. Using self-assembled monolayer (SAMs) of known physical and chemical properties on molecularly smooth gold substrates in 5mM NaCl at pH 7.3, (1) the adsorption mechanisms of the barnacle inspired peptides are explored using quartz crystal microbalance, and (2) adhesion mediating properties are measured using the surface force apparatus. The hydrophobic Bp1 peptide with a cysteine residue adsorbs irreversibly onto Au surfaces due to thiol bond formation, while on hydrophobic CH 3 SAM surface, the interactions are hydrophobic in nature. Interestingly, Bp2 that contains both hydrophobic and protonated amine units exhibits asymmetric bridging with an exceptionally high adhesion energy up to 100mJ/m 2 between mica and both gold and CH 3 SAM. Surprisingly on hydrophilic surfaces such as COOH- or OH-SAMs both peptides fail to show any interactions, implying the necessity of surface charge to promote bridging. Our results provide insights into the molecular aspects of manipulating and utilizing barnacle-mediated peptides to promote or inhibit underwater adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGES

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  17. Denaturation of proteins near polar surfaces

    NASA Astrophysics Data System (ADS)

    Starzyk, Anna; Cieplak, Marek

    2011-12-01

    All-atom molecular dynamics simulations for proteins placed near a model mica surface indicate existence of two types of evolution. One type leads to the surface-induced unfolding and the other just to a deformation. The two behaviors are characterized by distinct properties of the radius of gyration and of a novel distortion parameter that distinguishes between elongated, globular, and planar shapes. They also differ in the nature of their single site diffusion and two-site distance fluctuations. The four proteins chosen for the studies, the tryptophan cage, protein G, hydrophobin and lyzozyme, are small to allow for a fair determination of the forces generated by the surface as the effects of finite cutoffs in the Coulombic interactions are thus minimized. When the net charge on the surface is set to zero artificially, infliction of deformation is seen to persists but no unfolding takes place. Unfolding may also be prevented by a cluster of disulfide bonds, as we observe in simulations of hydrophobin.

  18. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material.

    PubMed

    Adhikari, Prashanta Dhoj; Jeon, Seunghan; Cha, Myoung-Jun; Jung, Dae Sung; Kim, Yooseok; Park, Chong-Yun

    2014-02-01

    We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT-G). Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT-G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT-G structure and p-n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT-G hybrids with the present technique could provide an efficient, novel route to device fabrication.

  19. Piezoelectricity of green carp scales

    NASA Astrophysics Data System (ADS)

    Jiang, H. Y.; Yen, F.; Huang, C. W.; Mei, R. B.; Chen, L.

    2017-04-01

    Piezoelectricity takes part in multiple important functions and processes in biomaterials often vital to the survival of organisms. Here, we investigate the piezoelectric properties of fish scales of green carp by directly examining their morphology at nanometer levels. Two types of regions are found to comprise the scales, a smooth one and a rough one. The smooth region is comprised of a ridge and trough pattern and the rough region characterized by a flat base with an elevated mosaic of crescents. Piezoelectricity is found on the ridges and base regions of the scales. From clear distinctions between the composition of the inner and outer surfaces of the scales, we identify the piezoelectricity to originate from the presence of hydroxyapatite which only exists on the surface of the fish scales. Our findings reveal a different mechanism of how green carp are sensitive to their surroundings and should be helpful to studies related to the electromechanical properties of marine life and the development of bio-inspired materials.

  20. Adhesion and Atomic Structures of Gold on Ceria Nanostructures:The Role of Surface Structure and Oxidation State of Ceria Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuyuan; Wu, Zili; Wen, Jianguo

    2015-01-01

    Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorodmore » support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.« less

  1. Characteristic variations in reflectance of surface soils

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)

    1982-01-01

    Surface soil samples from a wide range of naturally occurring soils were obtained for the purpose of studying the characteristic variations in soil reflectance as these variations relate to other soil properties and soil classification. A total 485 soil samples from the U.S. and Brazil representing 30 suborders of the 10 orders of 'Soil Taxonomy' was examined. The spectral bidirectional reflectance factor was measured on uniformly moist soils over the 0.52 to 2.32 micron wavelength range with a spectroradiometer adapted for indoor use. Five distinct soil spectral reflectance curve forms were identified according to curve shape, the presence or absence of absorption bands, and the predominance of soil organic matter and iron oxide composition. These curve forms were further characterized according to generically homogeneous soil properties in a manner similar to the subdivisions at the suborder level of 'Soil Taxonomy'. Results indicate that spectroradiometric measurements of soil spectral bidirectional reflectance factor can be used to characterize soil reflectance in terms that are meaningful to soil classification, genesis, and survey.

  2. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Barpaga, Dushyant; Zheng, Jian

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which ledmore » to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.« less

  3. Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats.

    PubMed

    Buntin, Nirunya; de Vos, Willem M; Hongpattarakere, Tipparat

    2017-10-01

    The adhesion ability to mucin varied greatly among 18 Lactobacillus plantarum isolates depending on their isolation habitats. Such ability remained at high level even though they were sequentially exposed to the gastrointestinal (GI) stresses. The majority of L. plantarum isolated from shrimp intestine and about half of food isolates exhibited adhesion ability (51.06-55.04%) about the same as the well-known adhesive L. plantarum 299v. Interestingly, five infant isolates of CIF17A2, CIF17A4, CIF17A5, CIF17AN2, and CIF17AN8 exhibited extremely high adhesion ranging from 62.69 to 72.06%. Such highly adhesive property correlating to distinctively high cell surface hydrophobicity was significantly weaken after pretreatment with LiCl and guanidine-HCl confirming the entailment of protein moiety. Regarding the draft genome information, all molecular structures of major cell wall-anchored proteins involved in the adhesion based on L. plantarum WCSF1, including lp_0964, lp_1643, lp_3114, lp_2486, lp_3127, and lp_3059 orthologues were detected in all isolates. Exceptionally, the gene-trait matching between yeast agglutination assay and the relevant mannose-specific adhesin (lp_1229) encoding gene confirmed the Msa absence in five infant isolates expressed distinctively high adhesion. Interestingly, the predicted flagellin encoding genes (fliC) firstly revealed in lp_1643, lp_2486, and lp_3114 orthologues may potentially contribute to such highly adhesive property of these isolates.

  4. Tuning the magnetism of the top-layer FeAs on BaFe2As2 (001): First-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Bing-Jing; Liu, Kai; Lu, Zhong-Yi

    2018-04-01

    Magnetism may play an important role in inducing the superconductivity in iron-based superconductors. As a prototypical system, the surface of BaFe2As2 provides a good platform for studying related magnetic properties. We have designed systematic first-principles calculations to clarify the surface magnetism of BaFe2As2 (001), which previously has received little attention in comparison with surface structures and electronic states. We find that the surface environment has an important influence on the magnetic properties of the top-layer FeAs. For As-terminated surfaces, the magnetic ground state of the top-layer FeAs is in the staggered dimer antiferromagnetic (AFM) order, distinct from that of the bulk, while for Ba-terminated surfaces the collinear (single-stripe) AFM order is the most stable, the same as that in the bulk. When a certain coverage of Ba or K atoms is deposited onto the As-terminated surface, the calculated energy differences among different AFM orders for the top-layer FeAs on BaFe2As2 (001) can be much reduced, indicating enhanced spin fluctuations. To compare our results with available scanning tunneling microscopy (STM) measurements, we have simulated the STM images of several structural/magnetic terminations. Astonishingly, when the top-layer FeAs is in the staggered dimer AFM order, a stripe pattern appears in the simulated STM image even when the surface Ba atoms adopt a √{2 }×√{2 } structure, while a √{2 }×√{2 } square pattern comes out for the 1 ×1 full As termination. Our results suggest: (i) the magnetic state at the BaFe2As2 (001) surface can be quite different from that in the bulk; (ii) the magnetic properties of the top-layer FeAs can be tuned effectively by surface doping, which may likely induce superconductivity at the surface layer; (iii) both the surface termination and the AFM order in the top-layer FeAs can affect the STM image of BaFe2As2 (001), which needs to be taken into account when identifying the surface termination.

  5. Fate of Eight Different Polymers under Uncontrolled Composting Conditions: Relationships Between Deterioration, Biofilm Formation, and the Material Surface Properties.

    PubMed

    Mercier, Anne; Gravouil, Kevin; Aucher, Willy; Brosset-Vincent, Sandra; Kadri, Linette; Colas, Jenny; Bouchon, Didier; Ferreira, Thierry

    2017-02-21

    With the ever-increasing volume of polymer wastes and their associated detrimental impacts on the environment, the plastic life cycle has drawn increasing attention. Here, eight commercial polymers selected from biodegradable to environmentally persistent materials, all formulated under a credit card format, were incubated in an outdoor compost to evaluate their fate over time and to profile the microbial communities colonizing their surfaces. After 450 days in compost, the samples were all colonized by multispecies biofilms, these latest displaying different amounts of adhered microbial biomass and significantly distinct bacterial and fungal community compositions depending on the substrate. Interestingly, colonization experiments on the eight polymers revealed a large core of shared microbial taxa, predominantly composed of microorganisms previously reported from environments contaminated with petroleum hydrocarbons or plastics debris. These observations suggest that biofilms may contribute to the alteration process of all the polymers studied. Actually, four substrates, independently of their assignment to a polymer group, displayed a significant deterioration, which might be attributed to biologically mediated mechanisms. Relevantly, the deterioration appears strongly associated with the formation of a high-cell density biofilm onto the polymer surfaces. The analysis of various surface properties revealed that roughness and hydrophilicity are likely prominent parameters for driving the biological interactions with the polymers.

  6. In situ air temperature and humidity measurements over diverse land covers in Greenbelt, Maryland, November 2013-November 2015

    NASA Astrophysics Data System (ADS)

    Carroll, Mark L.; Brown, Molly E.; Wooten, Margaret R.; Donham, Joel E.; Hubbard, Alfred B.; Ridenhour, William B.

    2016-09-01

    As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al., 2016) and can be found by following this link: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319.

  7. Multimetallic nanosheets: synthesis and applications in fuel cells.

    PubMed

    Zeb Gul Sial, Muhammad Aurang; Ud Din, Muhammad Aizaz; Wang, Xun

    2018-04-03

    Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.

  8. Surface Treatment on Physical Properties and Biocompatibility of Orthodontic Power Chains

    PubMed Central

    Cheng, H. C.; Chen, M. S.; Peng, B. Y.; Lin, W. T.; Wang, Y. H.

    2017-01-01

    The conventional orthodontic power chain, often composed of polymer materials, has drawbacks such as a reduction of elasticity owing to water absorption as well as surface discoloration and staining resulting from food or beverages consumed by the patient. The goal of this study was to develop a surface treatment (nanoimprinting) for orthodontic power chains and to alleviate their shortcomings. A concave template (anodic alumina) was manufactured by anodization process using pure aluminum substrate by employing the nanoimprinting process. Convex nanopillars were fabricated on the surface of orthodontic power chains, resulting in surface treatment. Distinct parameters of the nanoimprinting process (e.g., imprinting temperature, imprinting pressure, imprinting time, and demolding temperature) were used to fabricate nanopillars on the surface of orthodontic power chains. The results of this study showed that the contact angle of the power chains became larger after surface treatment. In addition, the power chains changed from hydrophilic to hydrophobic. The power chain before surface treatment without water absorption had a water absorption rate of approximately 4%, whereas a modified chain had a water absorption rate of approximately 2%–4%. Furthermore, the color adhesion of the orthodontic power chains after surface modification was less than that before surface modification. PMID:28540299

  9. Structures, Not Strings: Linguistics as Part of the Cognitive Sciences.

    PubMed

    Everaert, Martin B H; Huybregts, Marinus A C; Chomsky, Noam; Berwick, Robert C; Bolhuis, Johan J

    2015-12-01

    There are many questions one can ask about human language: its distinctive properties, neural representation, characteristic uses including use in communicative contexts, variation, growth in the individual, and origin. Every such inquiry is guided by some concept of what 'language' is. Sharpening the core question--what is language?--and paying close attention to the basic property of the language faculty and its biological foundations makes it clear how linguistics is firmly positioned within the cognitive sciences. Here we will show how recent developments in generative grammar, taking language as a computational cognitive mechanism seriously, allow us to address issues left unexplained in the increasingly popular surface-oriented approaches to language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Vacuum ultraviolet trimming of oxygenated functional groups from oxidized self-assembled hexadecyl monolayers in an evacuated environment

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed I. A.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki

    2017-09-01

    Vacuum ultraviolet light irradiation in dry air generates active oxygen species, which have powerful oxidation abilities. These active oxygen species (O) can oxidize the alkyl moieties of polymers, and generate new oxygenated groups such as OH, CHO and COOH groups. Reducing the oxygen content in the exposure environment decreases the rate of oxidation processes. In this study, we examined the influences of the 172 nm VUV irradiation in a high vacuum (HV, < 10-3 Pa) environment on the chemical constituents, surface properties and morphological structure of well-defined VUV/(O)-modified hexadecyl (HD-) self-assembled monolayer (SAM) prepared on hydrogen-terminated silicon (H-Si) substrate. After VUV light irradiation in a HV environment (HV-VUV), the chemical constituents and surface properties were changed in two distinct stages. At short irradiation time (the first stage), the Csbnd O and COO groups decreased rapidly, while the Cdbnd O groups slightly changed. The dissociation of nonderivatizable groups (such as ether (Csbnd Osbnd C) and ester (Csbnd COOsbnd C) groups) compensated the dissociated OH, CHO, Csbnd COsbnd C and COOH groups. With further irradiation (the second stage), the quantities of the oxygenated groups slightly decreased. The carbon skeleton (Csbnd C) of SAM was scarcely dissociated during the HV-VUV treatment. These chemical changes affected the surface properties, such as wettability and morphology.

  11. Variation of Electric Properties Between Surface Permanent Magnet and Interior Permanent Magnet Motor

    NASA Astrophysics Data System (ADS)

    Woo, Byung-Chul; Hong, Do-Kwan; Lee, Ji-Young

    The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.

  12. Preparation and Characterization of Mesoporous Nickel derived from Liquid crystalline Template and Evaluation of its Electro catalytic activity towards Methanol Oxidation

    NASA Astrophysics Data System (ADS)

    Mohanapriya, S.; Renuka devi, R.; Raj, V.

    2018-02-01

    Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.

  13. Properties of various plasma surface treatments for low-temperature Au–Au bonding

    NASA Astrophysics Data System (ADS)

    Yamamoto, Michitaka; Higurashi, Eiji; Suga, Tadatomo; Sawada, Renshi; Itoh, Toshihiro

    2018-04-01

    Atmospheric-pressure (AP) plasma treatment using three different types of gases (an argon-hydrogen mixed gas, an argon-oxygen mixed gas, and a nitrogen gas) and low-pressure (LP) plasma treatment using an argon gas were compared for Au–Au bonding with thin films and stud bumps at low temperature (25 or 150 °C) in ambient air. The argon-hydrogen gas mixture AP plasma treatment and argon LP plasma treatment were found to distinctly increase the shear bond strength for both samples at both temperatures. From X-ray photoelectron spectroscopy (XPS) analysis, the removal of organic contaminants on Au surfaces without the formation of hydroxyl groups and gold oxide is considered effective in increasing the Au–Au bonding strength at low temperature.

  14. Mapping hydration dynamics around a protein surface

    PubMed Central

    Zhang, Luyuan; Wang, Lijuan; Kao, Ya-Ting; Qiu, Weihong; Yang, Yi; Okobiah, Oghaghare; Zhong, Dongping

    2007-01-01

    Protein surface hydration is fundamental to its structure and activity. We report here the direct mapping of global hydration dynamics around a protein in its native and molten globular states, using a tryptophan scan by site-specific mutations. With 16 tryptophan mutants and in 29 different positions and states, we observed two robust, distinct water dynamics in the hydration layer on a few (≈1–8 ps) and tens to hundreds of picoseconds (≈20–200 ps), representing the initial local relaxation and subsequent collective network restructuring, respectively. Both time scales are strongly correlated with protein's structural and chemical properties. These results reveal the intimate relationship between hydration dynamics and protein fluctuations and such biologically relevant water–protein interactions fluctuate on picosecond time scales. PMID:18003912

  15. Energy-selective SESD imaging utilizing a CMA. [Scanning Electron Stimulated Desorption with Cylindrical Mirror Analyzer

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Soria, F.; Poppa, H.

    1980-01-01

    A particularly simple conversion of a scanning Auger system for ESD ion energy distributions and scanning ESD has been developed. This approach combines the advantages of the small spot-size electron guns and mapping systems developed for SAM with the capability of ESD for the detection of hydrogen. Our intended use for the device is detection and mapping of surface concentrations of hydrogen on metals. The characteristics of SESD are illustrated with the preliminary results of an investigation into the ESD properties of hydrogenic adsorbates on Nb. It is shown that the ESDIED exhibit distinct differences indicative of the surface preparation, and that the ESD ion angular distributions have an effect on the observed contrast relationships in SESD.

  16. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE PAGES

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; ...

    2018-01-09

    Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less

  17. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.

    Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less

  18. Blowing bubbles in Lennard-Jonesium along the saturation curve.

    PubMed

    Ashbaugh, Henry S

    2009-05-28

    Extensive molecular simulations of the Lennard-Jones fluid have been performed to determine its liquid-vapor coexistence properties and solvent contact densities with cavities up to ten times the diameter of the solvent from the triple point to the critical point. These simulations are analyzed using a revised scaled-particle theory [H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006)] to evaluate the thermodynamics of cavity solvation and curvature dependent interfacial properties along the saturation curve. While the thermodynamic signatures of cavity solvation are distinct from those in water, exhibiting a chemical potential dominated by a large temperature independent enthalpy, the solvent dewets cavities of increasing size similar with water near coexistence. The interfacial tension for forming a liquid-wall interface is found to be consistently greater than the liquid-vapor surface tension of the Lennard-Jones fluid by up to 10% and potentially reflects the suppression of high amplitude fluctuations at the cavity surface. The first-order curvature correction for the surface tension is negative and appears to diverge to negative infinity at temperatures approaching the critical point. Our results point to the success of the revised scaled-particle theory at bridging molecular and macroscopic descriptions of cavity solvation.

  19. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    PubMed

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  20. Tuning the structure of thermosensitive gold nanoparticle monolayers.

    PubMed

    Rezende, Camila A; Shan, Jun; Lee, Lay-Theng; Zalczer, Gilbert; Tenhu, Heikki

    2009-07-23

    Gold nanoparticles grafted with poly(N-isopropylacrylamide) (PNIPAM) are rendered amphiphilic and thermosensitive. When spread on the surface of water, they form stable Langmuir monolayers that exhibit surface plasmon resonance. Using Langmuir balance and contrast-matched neutron reflectivity, the detailed structural properties of these nanocomposite monolayers are revealed. At low surface coverage, the gold nanoparticles are anchored to the interface by an adsorbed PNIPAM layer that forms a thin and compact pancake structure. Upon isothermal compression (T=20 degrees C), the adsorbed layer thickens with partial desorption of polymer chains to form brush structures. Two distinct polymer conformations thus coexist: an adsorbed conformation that assures stability of the monolayer, and brush structures that dangle in the subphase. An increase in temperature to 30 degrees C results in contractions of both adsorbed and brush layers with a concomitant decrease in interparticle distance, indicating vertical as well as lateral contractions of the graft polymer layer. The reversibility of this thermal response is also shown by the contraction-expansion of the polymer layers in heating-cooling cycles. The structure of the monolayer can thus be tuned by compression and reversibly by temperature. These compression and thermally induced conformational changes are discussed in relation to optical properties.

  1. Observed Spatial and Temporal Variability of Subglacial Discharge-Driven Plumes in Greenland's Outlet Glacial Fjords

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Carroll, D.; Nash, J. D.; Shroyer, E.; Mickett, J.; Stearns, L. A.; Fried, M.; Bartholomaus, T.; Catania, G. A.

    2015-12-01

    Hydrographic and velocity observations in Greenland's outlet glacier fjords have revealed, unsurprisingly, a rich set of dynamics over a range of spatial and temporal scales. Through teasing apart the distinct processes that control circulation within these fjords, we are likely to better understand the impact of fjord circulation on modulating outlet glacier dynamics, and thus, changes in Greenland Ice Sheet mass balance. Here, we report on data from the summers of 2013-2015 in two neighboring fjords in the Uummannaq Bay region of west Greenland: Kangerlussuup Sermia (KS) and Rink Isbræ (RI). We find strong subglacial discharge driven plumes in both systems that evolve on synoptic and seasonal time scales, without the complicating presence of other circulation processes. The plumes both modify fjord water properties and respond to differences in ambient water properties, supporting the notion that a feedback exists between subglacial discharge plume circulation and water mass properties. This feedback between subglacial discharge and water properties potentially influences submarine melt rates at the glacier termini. Observed plume properties, including the vertical structure of velocity, and temperature and salinity anomalies, are compared favorably to model estimates. In KS, we find a near-surface intensified plume with high sediment content that slows and widens as it evolves downstream. In contrast, the plume in RI is entirely subsurface, ranging from 100-300 m depth at its core during summer, although it shows similar temperature, salinity, and optical backscatter signals to the KS plume. Importantly, the distinct vertical plume structures imprint on the overall water mass properties found in each fjord, raising the minimum temperatures by up to 1-2°C in the case of RI.

  2. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  3. Neuromuscular strategies for the transitions between level and hill surfaces during walking

    PubMed Central

    Gottschall, Jinger S.; Nichols, T. Richard

    2011-01-01

    Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127

  4. Isoelectric point is an inadequate descriptor of MS2, Phi X 174 and PRD1 phages adhesion on abiotic surfaces.

    PubMed

    Dika, Christelle; Duval, Jérôme F L; Francius, Gregory; Perrin, Aline; Gantzer, Christophe

    2015-05-15

    MS2, Phi X 174 and PRD1 bacteriophages are commonly used as surrogates to evaluate pathogenic virus behavior in natural aquatic media. The interfacial properties of these model soft bioparticles are herein discussed in connection with their propensities to adhere onto abiotic surfaces that differ in terms of surface charges and hydrophobicities. The phages considered in this work exhibit distinct multilayered surface structures and their electrostatic charges are evaluated from the dependence of their electrophoretic mobilities on electrolyte concentration at neutral pH on the basis of electrokinetic theory for soft (bio)particles. The charges of the viruses probed by electrokinetics vary according to the sequence Phi X 174⩽PRD1≪MS2, where '<' stands for 'less charged than'. The hydrophobic/hydrophilic balances of the phages are further derived from their adhesions onto model hydrophobic and hydrophilic self-assembled mono-layers. The corresponding results lead to the following hydrophobicity sequence Phi X 174≪MS2

  5. Dynamical Scaling Implications of Ferrari, Prähofer, and Spohn's Remarkable Spatial Scaling Results for Facet-Edge Fluctuations

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Pimpinelli, Alberto

    2014-06-01

    Spurred by theoretical predictions from Ferrari et al. (Phys Rev E 69:035102(R), 2004), we rederived and extended their result heuristically. With experimental colleagues we used STM line scans to corroborate their prediction that the fluctuations of the step bounding a facet exhibit scaling properties distinct from those of isolated steps or steps on vicinal surfaces. The correlation functions was shown to go as , decidedly different from the behavior for fluctuations of isolated steps.

  6. NANOPARTICLES AND THEIR APPLICATIONS IN CELL AND MOLECULAR BIOLOGY

    PubMed Central

    Wang, Edina C.; Wang, Andrew Z.

    2013-01-01

    Nanoparticles can be engineered with distinctive compositions, sizes, shapes, and surface chemistries to enable novel techniques in a wide range of biological applications. The unique properties of nanoparticles and their behavior in biological milieu also enable exciting and integrative approaches to studying fundamental biological questions. This review will provide an overview of various types of nanoparticles and concepts of targeting nanoparticles. We will also discuss the advantages and recent applications of using nanoparticles as tools for drug delivery, imaging, sensing, and for the understanding of basic biological processes. PMID:24104563

  7. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  8. Topology of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Peake, D. J.

    1981-01-01

    Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.

  9. Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFe O3

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Smita; Shyam, Priyank; Bag, Rabindranath; Shirolkar, Mandar M.; Kumar, Jitender; Kaur, Harleen; Singh, Surjeet; Awasthi, A. M.; Kulkarni, Sulabha

    2017-07-01

    In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFe O3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant.

  10. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    PubMed

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Nanogeochemistry: Size-dependent mineral-fluid interface chemistry

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2012-12-01

    Nanostructures and nanometer mineral phases, both widely present in geologic materials, can potentially affect many geochemical processes. It is known that at nanometer scales a material tends to exhibit chemical properties distinct from the corresponding bulk phase. Understanding of this size-dependent property change will help us to bridge the existing knowledge gap between the molecular level understanding and the macro-scale laboratory/field observations of a geochemical process. In this presentation, I will review of the recent progresses in nanoscience and provide a perspective on how these progresses can potentially impact geochemical studies. My presentation will be focused the following areas: (1) the characterization of nanostructures in natural systems, (2) the study of fluids and chemical species in nanoconfinement, (3) the effects of nanopores on geochemical reaction and mass transfers, and (4) the use nanostructured materials for environmental management. I will demonstrate that the nanopore confinement can significantly modify geochemical reactions in porous geologic media. As the pore size is reduced to a few nanometers, the difference between surface acidity constants of a mineral (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. This effect causes preferential enrichment of trace elements in nanopores. I will then discuss the implications of this emergent nanometer-scale property to radionuclide transport and carbon dioxide storage in geologic media. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  12. Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility.

    PubMed

    Pandiyaraj, K N; Kumar, A Arun; Ramkumar, M C; Sachdev, A; Gopinath, P; Cools, Pieter; De Geyter, N; Morent, R; Deshmukh, R R; Hegde, P; Han, C; Nadagouda, M N

    2016-05-01

    The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface of modified PP films exhibited nano structured morphology, as confirmed by SEM, TEM and AFM. The physico-chemical changes have improved the hydrophilicity of the PP films. The in-vitro analysis clearly confirms that the TiOx coated PP films performs as good as the standard tissue culture plates and also are unlikely to impact the bacterial cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures.

    PubMed

    Chen, Xianfeng; Weber, Irene; Harrison, Robert W

    2008-09-25

    Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (

  14. Field emission study of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Xin

    Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.

  15. 3D Finite Element Modelling of Cutting Forces in Drilling Fibre Metal Laminates and Experimental Hole Quality Analysis

    NASA Astrophysics Data System (ADS)

    Giasin, Khaled; Ayvar-Soberanis, Sabino; French, Toby; Phadnis, Vaibhav

    2017-02-01

    Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin ( 2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process.

  16. Structural features of biomass in a hybrid MBBR reactor.

    PubMed

    Xiao, G Y; Ganczarczyk, J

    2006-03-01

    The structural features of biomass present in the hybrid MBBR (Moving Bed Biofilm Reactor) aeration tank were studied in two subsequent periods, which differed in hydraulic and substrate loads. The physical characteristics of attached-growth biomass, such as, biofilm thickness, density, porosity, inner and surface fractal dimensions, and those of suspended-growth biomass, such as, floc size distribution, density, porosity, inner and surface fractal dimensions, were investigated in each study period and then compared. The results indicated that biofilm always had a higher density, geometric porosity, and a larger boundary fractal dimension than flocs. Both types of biomass were found to exhibit at least two distinct Sierpinski fractal dimensions, indicating two major different pore space populations. With the increasing wastewater flow, both types of biomass were found to shift their structural properties to larger values, except porosity and surface roughness, which decreased. Floc density and biomass Sierpinski fractals were not affected much by the system loadings.

  17. Distinct lobes of Limulus ventral photoreceptors. I. Functional and anatomical properties of lobes revealed by removal of glial cells

    PubMed Central

    1982-01-01

    Removing the glial cells that encase Limulus ventral photoreceptors allows direct observation of the cell surface. Light microscopy of denuded photoreceptors reveals a subdivision of the cell body into lobes. Often one lobe, but sometimes several, is relatively clear and translucent (the R lobes). The lobe adjacent to the axon (the A lobe) has a textured appearance. Scanning electron microscopy shows that microvilli cover the surface of R lobes and are absent from the surface of A lobes. When a dim spot of light is incident on the R lobe, the probability of evoking a single photon response is two to three orders of magnitude higher than when the same spot is incident on the A lobe. We conclude that the sensitivity of the cell to light is principally a function of the R lobe. PMID:7175490

  18. Space Weathering on 4 Vesta: Processes and Products

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Blewett, D. T.; Gaffey, M.; Mittlefehldt, D. W.; De Sanctis, M. C.; Reddy, V.; Nathues, A.; Denevi, B. W.; Li, J. Y.; McCord, T. B.; hide

    2012-01-01

    The bulk properties of Vesta have previously been linked directly to the howardite, eucrite, and diogenite (HED) meteorites through remote mineral characterization of its surface from Earth-based spectroscopy [e.g., 1]. A long-standing enigma has been why does Vesta s surface appear to have suffered so little alteration from the space environment, whereas materials exposed on the Moon and some S-type asteroids are significantly changed (grains develop rims containing nano-phase opaques [e.g. 2]). The Dawn spacecraft is well suited to address this issue and is half through its extended mapping phase of this remarkable proto-planet [3]. On a local scale Dawn sees evidence of recent exposures at craters, but distinctive surface materials blend into background at older craters. The presence of space weathering processes are thus evident at Vesta, but the character and form are controlled by the unique environment and geologic history of this small body.

  19. Understanding the role of Si doping on surface charge and optical properties: Photoluminescence study of intrinsic and Si-doped InN nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Mi, Z.; Kibria, M. G.; Li, Q.; Wang, G. T.

    2012-06-01

    In the present work, the photoluminescence (PL) characteristics of intrinsic and Si-doped InN nanowires are studied in detail. For intrinsic InN nanowires, the emission is due to band-to-band carrier recombination with the peak energy at ˜0.64 eV (at 300 K) and may involve free-exciton emission at low temperatures. The PL spectra exhibit a strong dependence on optical excitation power and temperature, which can be well characterized by the presence of very low residual electron density and the absence or a negligible level of surface electron accumulation. In comparison, the emission of Si-doped InN nanowires is characterized by the presence of two distinct peaks located at ˜0.65 and ˜0.73-0.75 eV (at 300 K). Detailed studies further suggest that these low-energy and high-energy peaks can be ascribed to band-to-band carrier recombination in the relatively low-doped nanowire bulk region and Mahan exciton emission in the high-doped nanowire near-surface region, respectively; this is a natural consequence of dopant surface segregation. The resulting surface electron accumulation and Fermi-level pinning, due to the enhanced surface doping, are confirmed by angle-resolved x-ray photoelectron spectroscopy measurements on Si-doped InN nanowires, which is in direct contrast to the absence or a negligible level of surface electron accumulation in intrinsic InN nanowires. This work elucidates the role of charge-carrier concentration and distribution on the optical properties of InN nanowires.

  20. The ‘Sticky Patch’ Model of Crystallization and Modification of Proteins for Enhanced Crystallizability

    PubMed Central

    Derewenda, Zygmunt S.; Godzik, Adam

    2017-01-01

    Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e. crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular ‘sticky patch’ model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer ‘sticky patches’ which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the ‘sticky patch’ model. We discuss state-of-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design of variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis. PMID:28573570

  1. A Numerical Characterization of the Gravito-Electrostatic Sheath Equilibrium Structure in Solar Plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar

    This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.

  2. Wax Layers on Cosmos bipinnatus Petals Contribute Unequally to Total Petal Water Resistance1[OPEN

    PubMed Central

    Buschhaus, Christopher; Hager, Dana; Jetter, Reinhard

    2015-01-01

    Cuticular waxes coat all primary aboveground plant organs as a crucial adaptation to life on land. Accordingly, the properties of waxes have been studied in much detail, albeit with a strong focus on leaf and fruit waxes. Flowers have life histories and functions largely different from those of other organs, and it remains to be seen whether flower waxes have compositions and physiological properties differing from those on other organs. This work provides a detailed characterization of the petal waxes, using Cosmos bipinnatus as a model, and compares them with leaf and stem waxes. The abaxial petal surface is relatively flat, whereas the adaxial side consists of conical epidermis cells, rendering it approximately 3.8 times larger than the projected petal area. The petal wax was found to contain unusually high concentrations of C22 and C24 fatty acids and primary alcohols, much shorter than those in leaf and stem waxes. Detailed analyses revealed distinct differences between waxes on the adaxial and abaxial petal sides and between epicuticular and intracuticular waxes. Transpiration resistances equaled 3 × 104 and 1.5 × 104 s m−1 for the adaxial and abaxial surfaces, respectively. Petal surfaces of C. bipinnatus thus impose relatively weak water transport barriers compared with typical leaf cuticles. Approximately two-thirds of the abaxial surface water barrier was found to reside in the epicuticular wax layer of the petal and only one-third in the intracuticular wax. Altogether, the flower waxes of this species had properties greatly differing from those on vegetative organs. PMID:25413359

  3. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    NASA Astrophysics Data System (ADS)

    Uemura, Eiichiro; Yoshioka, Yasuo; Hirai, Toshiro; Handa, Takayuki; Nagano, Kazuya; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2016-06-01

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10-1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  4. Bacterial biogeography influenced by shelf-basin exchange in the Arctic surface sediment at the Chukchi Borderland.

    PubMed

    Han, Dukki; Nam, Seung-Il; Ha, Ho Kyung; Kim, Hyoungjun; Sadowsky, Michael J; Lee, Yoo Kyung; Hur, Hor-Gil

    2016-02-01

    It has been known that continental shelves around the Arctic Ocean play a major role in the ventilation of the deep basins as a consequence of shelf-basin exchange. In the present study, we found that bacterial assemblage of the surface sediment was different from that of seawater while seawater harboured local bacterial assemblages in response to the Arctic hydrography. This finding suggests that the Arctic seafloor sediments may have distinctive bacterial biogeography. Moreover, the distribution of bacterial assemblages and physicochemical properties in surface sediments changed gradually from the Arctic continental shelf to deep-sea basin. Based on the results, bacterial biogeography in the Arctic seafloor sediments may be influenced by winnowing and re-deposition of surface sediments through the sediment gravity flow. The present study offers a deeper understanding of shelf convection and its role for the construction of bacterial assemblages in the Arctic Ocean. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  6. Distinct Thermophysical and Interfacial Properties Associated with Low Molecular Weight Cyclic Polystyrene in Bulk and Confined States: Tg and Fragility

    NASA Astrophysics Data System (ADS)

    Zhang, Lanhe; Elupula, Ravinder; Grayson, Scott; Torkelson, John

    Cyclic or ring polymers represent an exciting class of topologically distinctive polymers. The influence of ``end-to-end'' tethering and the unusual conformational properties associated with cyclic topologies have led to polymer dynamics significantly different from the linear counterpart. Bulk cyclic polystyrene (c-PS) exhibits very weak Tg- and fragility-molecular weight (MW) dependences compared to linear PS. In stark contrast to the substantial Tg-confinement effects in linear PS, a nearly completely suppressed confinement effect is discovered in low MW c-PS. The cyclic topology strongly restricts polymer-substrate interactions. Therefore, the near elimination of the Tg-confinement effect in c-PS originates mainly from a very weak perturbation to Tg near the free surface. Upon nanoscale confinement, linear PS films have been shown to have significantly reduced fragility compared to bulk. Despite having similar bulk fragility as high MW linear PS, low MW c-PS films show major suppression in fragility reduction with decreasing thickness. Due to a lack of chain ends, properties associated with the ring structure are not prone to be perturbed by either MW reduction or confinement. This result indicates a strong correlation between the susceptibility of fragility perturbation and the susceptibility of Tg perturbation, caused by chain topology and/or by confinement. This work was supported by The Dow Chemical Company, a McCormick School of Engineering Fellowship, and the NSF.

  7. Effect of placements (horizontal with vertical) on gas-solid flow and particle impact erosion in gate valve

    NASA Astrophysics Data System (ADS)

    Lin, Zhe; Zhu, Linhang; Cui, Baoling; Li, Yi; Ruan, Xiaodong

    2014-12-01

    Gate valve has various placements in the practical usages. Due to the effect of gravity, particle trajectories and erosions are distinct between placements. Thus in this study, gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method. The structure of a gate valve and a simplified structure are investigated. The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow. The results show that for all investigated open degrees and Stokes numbers (St), there are little difference of gas flow properties and flow coefficients between two placements. It is also found that the trajectories of particles for two placements are mostly identical when St « 1, making the erosion independent of placement. With the increase of St, the distinction of trajectories between placements becomes more obvious, leading to an increasing difference of the erosion distributions. Besides, the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250μm.

  8. Processing vertical size disparities in distinct depth planes.

    PubMed

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.

  9. Distinct Iron-binding Ligands in the Upper Water Column at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Bundy, R.; Boiteau, R.; Repeta, D.

    2016-02-01

    The distribution and chemical properties of iron-binding organic ligands at station ALOHA were examined using a combination of solid phase extraction (SPE) followed by high pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). HPLC-ICPMS ligand measurements were complemented by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) analysis using salicylaldoxime as the added ligand. By HPLC-ICPMS, we find enhanced concentrations of distinct naturally-occurring polar iron-binding ligands present at the surface and in the chlorophyll maximum. Lower concentrations were found in the subsurface, where a suite of non-polar ligands was detected. Siderophores were present at the deepest depths sampled at station ALOHA, down to 400m. Incubation studies provided evidence for the production of iron-binding ligands associated with nutrient amended phytoplankton growth in surface waters, and as a result of microbial particle remineralization in the subsurface water column. Ligands classes identified via SPE were then compared to CLE-ACSV ligand measurements, as well as the conditional stability constants measured from model polar and non-polar siderophores, yielding insight to the sources of iron-binding ligands throughout the water column at station ALOHA.

  10. Interfaces at equilibrium: A guide to fundamentals.

    PubMed

    Marmur, Abraham

    2017-06-01

    The fundamentals of the thermodynamics of interfaces are reviewed and concisely presented. The discussion starts with a short review of the elements of bulk thermodynamics that are also relevant to interfaces. It continues with the interfacial thermodynamics of two-phase systems, including the definition of interfacial tension and adsorption. Finally, the interfacial thermodynamics of three-phase (wetting) systems is discussed, including the topic of non-wettable surfaces. A clear distinction is made between equilibrium conditions, in terms of minimizing energies (internal, Gibbs or Helmholtz), and equilibrium indicators, in terms of measurable, intrinsic properties (temperature, chemical potential, pressure). It is emphasized that the equilibrium indicators are the same whatever energy is minimized, if the boundary conditions are properly chosen. Also, to avoid a common confusion, a distinction is made between systems of constant volume and systems with drops of constant volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mechanism of interactions between CMC binder and Si single crystal facets.

    PubMed

    Vogl, U S; Das, P K; Weber, A Z; Winter, M; Kostecki, R; Lux, S F

    2014-09-02

    Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes.

  12. Statistical survey of day-side magnetospheric current flow using Cluster observations: magnetopause

    NASA Astrophysics Data System (ADS)

    Liebert, Evelyn; Nabert, Christian; Perschke, Christopher; Fornaçon, Karl-Heinz; Glassmeier, Karl-Heinz

    2017-05-01

    We present a statistical survey of current structures observed by the Cluster spacecraft at high-latitude day-side magnetopause encounters in the close vicinity of the polar cusps. Making use of the curlometer technique and the fluxgate magnetometer data, we calculate the 3-D current densities and investigate the magnetopause current direction, location, and magnitude during varying solar wind conditions. We find that the orientation of the day-side current structures is in accordance with existing magnetopause current models. Based on the ambient plasma properties, we distinguish five different transition regions at the magnetopause surface and observe distinctive current properties for each region. Additionally, we find that the location of currents varies with respect to the onset of the changes in the plasma environment during magnetopause crossings.

  13. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.

  14. Polaron-mediated surface reconstruction in the reduced Rutile TiO2 (110) surface

    NASA Astrophysics Data System (ADS)

    Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Diebold, Ulrike; Franchini, Cesare

    The role of polarons is of key importance for the understanding of the fundamental properties and functionalities of TiO2. We use density functional theory with an on-site Coulomb interaction and molecular dynamics to study the formation and dynamics of small polarons in the reduced rutile (110) surface. We show that excess electrons donated by oxygen-vacancies (VO) form mobile small polarons that hop easily in subsurface and surface Ti-sites. The polaron formation becomes more favorable by increasing the VO concentration level (up to 20%) due to the progressively lower energy cost needed to distort the lattice. However, at higher VO concentration the shortening of the averaged polaron-polaron distance leads to an increased Coulomb repulsion among the trapped charges at the Ti-sites, which weakens this trend. This instability is overtaken by means of a structural 1 × 2 surface reconstruction, characterized by a distinctively more favorable polaron distribution. The calculations are validated by a direct comparison with experimental AFM and STM data. Our study identifies a fundamentally novel mechanism to drive surface reconstructions and resolves a long standing issue on the origin of the reconstruction in rutile (110) surface.

  15. Photocatalytic degradation of clofibric acid, carbamazepine and iomeprol using conglomerated TiO2 and activated carbon in aqueous suspension.

    PubMed

    Ziegmann, Markus; Frimmel, Fritz H

    2010-01-01

    The combination of powdered activated carbon (PAC) and TiO(2) has been tested for synergistic/antagonistic effects in the photocatalytic degradation of carbamazepine, clofibric acid and iomeprol. Synergistic effects are thought to be caused by rapid adsorption on the PAC surface followed by diffusion to the TiO(2) surface and photocatalytic degradation. The Freundlich constant K(F) was used for comparing the sorption properties of the three substances and it was found that K(F) for clofibric acid was 3 times lower than for carbamazepine and iomeprol, regardless of the kind of PAC used. A PAC with a distinct tendency to form conglomerates was selected so that a high percentage of the PAC surface was in direct proximity to the TiO(2) surface. The photocatalytic degradation of the pharmaceutically active compounds studied followed pseudo-first order kinetics. Synergistic effects only occurred for clofibric acid (factor 1.5) and an inverse relationship between adsorption affinity and synergistic effects was found. High affinity of the target substances to the PAC surface seemed to be counterproductive for the photocatalytic degradation.

  16. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  17. Free surfaces recast superconductivity in few-monolayer MgB2: Combined first-principles and ARPES demonstration.

    PubMed

    Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C

    2017-10-31

    Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.

  18. Unmasking the Secrets of Mercury

    NASA Image and Video Library

    2015-04-16

    The MASCS instrument onboard NASA MESSENGER spacecraft was designed to study both the exosphere and surface of Mercury. To learn more about the minerals and surface processes on Mercury, the Visual and Infrared Spectrometer (VIRS) portion of MASCS has been diligently collecting single tracks of spectral surface measurements since MESSENGER entered orbit. The track coverage is now extensive enough that the spectral properties of both broad terrains and small, distinct features such as pyroclastic vents and fresh craters can be studied. To accentuate the geological context of the spectral measurements, the MASCS data have been overlain on the MDIS monochrome mosaic. Click on the image to explore the colorful diversity of surface materials in more detail! Instrument: Mercury Atmosphere and Surface Composition Spectrometer (MASCS) Map Projection: Orthographic VIRS Color Composite Wavelengths: 575 nm as red, 415 nm/750 nm as green, 310 nm/390 nm as blue Center Latitude (All Globes): 0° Center Longitude (Top Left Globe): 270° E Center Longitude (Top Right Globe): 0° E Center Longitude (Bottom Left Globe): 90° E Center Longitude (Bottom Right Globe): 180° E http://photojournal.jpl.nasa.gov/catalog/PIA19419

  19. Morphology of size-selected Ptn clusters on CeO2(111)

    NASA Astrophysics Data System (ADS)

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-01

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO2(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Ptn (n = 5-13) clusters on a CeO2(111) surface using scanning tunneling microscopy at room temperature. Ptn clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Ptn clusters on the CeO2(111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO2(111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Ptn clusters on a CeO2(111) surface.

  20. Morphology of size-selected Ptn clusters on CeO2(111).

    PubMed

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-21

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO 2 (111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt n (n = 5-13) clusters on a CeO 2 (111) surface using scanning tunneling microscopy at room temperature. Pt n clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Pt n clusters on the CeO 2 (111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO 2 (111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Pt n clusters on a CeO 2 (111) surface.

  1. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    PubMed

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Tuning the characteristics of surface plasmon polariton nanolasers by tailoring the dispersion relation

    NASA Astrophysics Data System (ADS)

    Lu, Tien-Chang; Chou, Yu-Hsun; Hong, Kuo-Bin; Chung, Yi-Cheng; Lin, Tzy-Rong; Arakelian, S. M.; Alodjants, A. P.

    2017-08-01

    Nanolasers with ultra-compact footprint are able to provide high intensity coherent light, which have various potential applications in high capacity signal processing, biosensing, and sub-wavelength imaging. Among various nanolasers, those lasers with cavities surrounded with metals have shown to have superior light emission properties due to the surface plasmon effect providing better field confinement capability and allowing exotic light-matter interaction. In this talk, we report robust ultraviolet ZnO nanolaser by using silver (Ag) [1] and aluminum (Al) [2] to strongly shrink the mode volume. The nanolasers operated at room temperature and even high temperature (353K) shows several distinct features including an extremely small mode volume, large Purcell factor and group index. Comparison of characteristics between Ag- and Al-based will also be made.

  3. Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar.

    PubMed

    Feng, Mingyu; Zhang, Weihua; Wu, Xueyong; Jia, Yanming; Jiang, Chixiao; Wei, Hang; Qiu, Rongliang; Tsang, Daniel C W

    2018-06-01

    After the application of sludge derived biochar (SDBC) for soil stabilization, it is subjected to continuous leaching that may change its surface properties and metal(loid) immobilization performance. This study simulated the continuous leaching through the fresh SDBC sample in columns with unsaturated and saturated zones under flushing with 0.01M NaNO 3 solution (pH5.5) and acidic solution (pH adjusted to 3.2 by HNO 3 :H 2 SO 4 =1:2), respectively. The resultant changes were assessed in terms of the SDBC surface characteristics and metal(loid) sorption capacities. Continuous leaching was found to gradually decrease the density of basic functional groups and increase the density of carboxyl groups as well as cation exchange capacity on the SDBC surface. It was attributed to the surface acidification and oxidation process by the leaching process, yet it occurred to a lesser extent than the atmospheric exposure. Continuous leaching increased Pb(II), Cr(VI), and As(III) sorption capacity of the SDBC, probably because the increase in carboxyl groups promoted inner-sphere complexation and Fe oxidation as revealed by spectroscopic analysis. It was noteworthy that the SDBC in the unsaturated and saturated zones under continuous leaching displayed distinctive effects on metal(loid) sorption capacity than the atmospheric exposure. Future investigations are needed for understanding the fate and interactions of the SDBC under varying redox conditions and intermittent leaching process. Copyright © 2017. Published by Elsevier B.V.

  4. Evolution of the FUV Surface Properties of 67P/Churyumov-Gerasimenko through its 2015 Perihelion Passage

    NASA Astrophysics Data System (ADS)

    Feaga, Lori M.; Holt, Carrie E.; Steffl, Andrew; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feldman, Paul D.; Noonan, John; Parker, Joel Wm; Schindhelm, Eric; Stern, S. Alan; Weaver, Harold A.

    2016-10-01

    Alice, NASA's lightweight and low-power far-ultraviolet (FUV) imaging spectrograph onboard ESA's comet orbiting spacecraft Rosetta (Stern et al. 2007, Space Sci. Rev. 128, 507), has just completed its characterization of the nucleus and coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (C-G). With a spectral range from 700-2050 Å, Alice was able to monitor the sunlit surface of C-G in order to establish if there was variability in the FUV reflectivity across the nucleus, determine if there were distinct spectral features associated with various morphological regions, and infer compositional makeup of the comet. Using spatially resolved pre-perihelion data, the FUV phase dependence, albedo, and spectral slope were derived for the nucleus (Feaga et al. 2015, A&A 583, A27) and were consistent with a homogeneous layer of dust covering the northern hemisphere. During the increase in activity around perihelion and change of seasons on the comet, the Rosetta suite of instruments has shown evidence of surface changes, mass movement of material, and transient patches of ice. The FUV properties of the nucleus throughout the perihelion passage inside of 3 AU, including observations during a zero phase flyby and its associated opposition surge and a search for exposed water ice on the surface, will be presented here and compared to the early pre-perihelion characteristics.

  5. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    PubMed

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  6. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    PubMed

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  7. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE PAGES

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng; ...

    2017-10-24

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  8. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  9. Number of perceptually distinct surface colors in natural scenes.

    PubMed

    Marín-Franch, Iván; Foster, David H

    2010-09-30

    The ability to perceptually identify distinct surfaces in natural scenes by virtue of their color depends not only on the relative frequency of surface colors but also on the probabilistic nature of observer judgments. Previous methods of estimating the number of discriminable surface colors, whether based on theoretical color gamuts or recorded from real scenes, have taken a deterministic approach. Thus, a three-dimensional representation of the gamut of colors is divided into elementary cells or points which are spaced at one discrimination-threshold unit intervals and which are then counted. In this study, information-theoretic methods were used to take into account both differing surface-color frequencies and observer response uncertainty. Spectral radiances were calculated from 50 hyperspectral images of natural scenes and were represented in a perceptually almost uniform color space. The average number of perceptually distinct surface colors was estimated as 7.3 × 10(3), much smaller than that based on counting methods. This number is also much smaller than the number of distinct points in a scene that are, in principle, available for reliable identification under illuminant changes, suggesting that color constancy, or the lack of it, does not generally determine the limit on the use of color for surface identification.

  10. Plasmonics of magnetic and topological graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Temnov, Vasily V.

    2018-02-01

    Graphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.

  11. Characterization of the particulate emissions from the BP Deepwater Horizon surface oil burns.

    PubMed

    Gullett, Brian K; Hays, Michael D; Tabor, Dennis; Wal, Randy Vander

    2016-06-15

    Sampling of the smoke plumes from the BP Deepwater Horizon surface oil burns led to the unintentional collection of soot particles on the sail of an instrument-bearing, tethered aerostat. This first-ever plume sampling from oil burned at an actual spill provided an opportunistic sample from which to characterize the particles' chemical properties for polycyclic aromatic hydrocarbons (PAHs), organic carbon, elemental carbon, metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) and physical properties for size and nanostructure. Thermal-optical analyses indicated that the particulate matter was 93% carbon with 82% being refractory elemental carbon. PAHs accounted for roughly 68μg/g of the PM filter mass and 5mg/kg oil burned, much lower than earlier laboratory based studies. Microscopy indicated that the soot is distinct from more common soot by its aggregate size, primary particle size, and nanostructure. PM-bound metals were largely unremarkable but PCDD/PCDF formation was observed, contrary to other's findings. Levels of lighter PCDD/PCDF and PAH compounds were reduced compared to historical samples, possibly due to volatilization or photo-oxidation. Published by Elsevier Ltd.

  12. Electrical properties of dispersions of graphene in mineral oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, O. R., E-mail: othon.monteiro@bakerhughes.com

    2014-02-03

    Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1 wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (σ(ω)) and permittivity (ε(ω)) were also measured. The conductivity of dispersions with particle contents much greater than themore » percolation threshold remains constant and equal to the DC conductivity at low frequencies ω with and followed a power-law σ(ω)∝ ω{sup s} dependence at very high frequencies with s≈0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.« less

  13. Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lungu, G. A.; Costescu, R. M.; Husanu, M. A.

    2011-10-03

    Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism.more » Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.« less

  14. Dry particle coating of polymer particles for tailor-made product properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blümel, C., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Dielesen, A., E-mail: karl-ernst.wirth@fau.de

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratiomore » and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.« less

  15. Hydroxylation of organic polymer surface: method and application.

    PubMed

    Yang, Peng; Yang, Wantai

    2014-03-26

    It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties. Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.

  16. Some Curious Properties and Loci Problems Associated with Cubics and Other Polynomials

    ERIC Educational Resources Information Center

    de Alwis, Amal

    2012-01-01

    The article begins with a well-known property regarding tangent lines to a cubic polynomial that has distinct, real zeros. We were then able to generalize this property to any polynomial with distinct, real zeros. We also considered a certain family of cubics with two fixed zeros and one variable zero, and explored the loci of centroids of…

  17. Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility.

    PubMed

    Neu, T R; Verkerke, G J; Herrmann, I F; Schutte, H K; Van der Mei, H C; Busscher, H J

    1994-05-01

    Silicone rubber voice prostheses are implants which are inserted in a non-sterile environment and therefore become quickly colonized by micro-organisms. The micro-organisms exist on the medical grade silicone rubber as mixed biofilms of bacteria and yeasts. A total of 79 bacterial and 39 yeast strains were isolated from these biofilms by soft ultrasonic treatment. Gram-positive/catalase-negative and Gram-positive/catalase-positive cocci represented the dominant bacterial strains. The yeasts were mainly Candida species. Further characterization of cell surface properties such as hydrophobicity by microbial adhesion to hexadecane and electrophoretic mobility showed a distinct difference when the bacterial strains were compared with the yeasts. The bacterial hydrophobicities ranged from 0 to 100% adhesion to hexadecane, whereas the yeast strains, especially the Candida albicans strains, all had markedly hydrophilic cell surfaces. A comparison of the electrophoretic mobilities showed also differences between bacteria and yeast. The values for the bacteria were found to be between -2.5 to -0.5 (10(-8) m2 V-1 s-1), whereas for the yeasts electrophoretic mobilities were more positive. Based on the adhesive properties of the isolated micro-organisms, strategies can now be developed to modify the properties of the silicone rubber to reduce biofilm formation on such prostheses.

  18. Dynamic regulation of hepatic lipid droplet properties by diet.

    PubMed

    Crunk, Amanda E; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; Maclean, Paul S; Ladinsky, Mark; Bales, Elise S; Cain, Shannon; Orlicky, David J; McManaman, James L

    2013-01-01

    Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.

  19. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    PubMed Central

    Davis, Claire

    2014-01-01

    The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations) and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing). The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets. PMID:24526883

  20. Dynamic Regulation of Hepatic Lipid Droplet Properties by Diet

    PubMed Central

    Crunk, Amanda E.; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; MacLean, Paul S.; Ladinsky, Mark; Bales, Elise S.; Cain, Shannon; Orlicky, David J.; McManaman, James L.

    2013-01-01

    Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands. PMID:23874434

  1. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    PubMed

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  2. Combining Theory and Experiment for Multitechnique Characterization of Activated CO 2 on Transition Metal Carbide (001) Surfaces

    DOE PAGES

    Kunkel, Christian; Viñes, Francesc; Ramírez, Pedro J.; ...

    2018-01-15

    Early transition metal carbides (TMC; TM = Ti, Zr, Hf, V, Nb, Ta, Mo) with face-centered cubic crystallographic structure have emerged as promising materials for CO 2 capture and activation. Density functional theory (DFT) calculations using the Perdew–Burke–Ernzerhof exchange–correlation functional evidence charge transfer from the TMC surface to CO 2 on the two possible adsorption sites, namely, MMC and TopC, and the electronic structure and binding strength differences are discussed. Further, the suitability of multiple experimental techniques with respect to (1) adsorbed CO2 recognition and (2) MMC/TopC adsorption distinction is assessed from extensive DFT simulations. Results show that ultraviolet photoemissionmore » spectroscopies (UPS), work function changes, core level X-ray photoemission spectroscopy (XPS), and changes in linear optical properties could well allow for adsorbed CO2 detection. Only infrared (IR) spectra and scanning tunnelling microscopy (STM) seem to additionally allow for MMC/TopC adsorption site distinction. These findings are confirmed with experimental XPS measurements, demonstrating CO 2 binding on single crystal (001) surfaces of TiC, ZrC, and VC. The experiments also help resolving ambiguities for VC, where CO 2 activation was unexpected due to low adsorption energy, but could be related to kinetic trapping involving a desorption barrier. With a wealth of data reported and direct experimental evidence provided, this study aims to motivate further basic surface science experiments on an interesting case of CO 2 activating materials, allowing also for a benchmark of employed theoretical models.« less

  3. Combining Theory and Experiment for Multitechnique Characterization of Activated CO 2 on Transition Metal Carbide (001) Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunkel, Christian; Viñes, Francesc; Ramírez, Pedro J.

    Early transition metal carbides (TMC; TM = Ti, Zr, Hf, V, Nb, Ta, Mo) with face-centered cubic crystallographic structure have emerged as promising materials for CO 2 capture and activation. Density functional theory (DFT) calculations using the Perdew–Burke–Ernzerhof exchange–correlation functional evidence charge transfer from the TMC surface to CO 2 on the two possible adsorption sites, namely, MMC and TopC, and the electronic structure and binding strength differences are discussed. Further, the suitability of multiple experimental techniques with respect to (1) adsorbed CO2 recognition and (2) MMC/TopC adsorption distinction is assessed from extensive DFT simulations. Results show that ultraviolet photoemissionmore » spectroscopies (UPS), work function changes, core level X-ray photoemission spectroscopy (XPS), and changes in linear optical properties could well allow for adsorbed CO2 detection. Only infrared (IR) spectra and scanning tunnelling microscopy (STM) seem to additionally allow for MMC/TopC adsorption site distinction. These findings are confirmed with experimental XPS measurements, demonstrating CO 2 binding on single crystal (001) surfaces of TiC, ZrC, and VC. The experiments also help resolving ambiguities for VC, where CO 2 activation was unexpected due to low adsorption energy, but could be related to kinetic trapping involving a desorption barrier. With a wealth of data reported and direct experimental evidence provided, this study aims to motivate further basic surface science experiments on an interesting case of CO 2 activating materials, allowing also for a benchmark of employed theoretical models.« less

  4. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters

    PubMed Central

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity—ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts—varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification. PMID:24553472

  5. 2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces

    NASA Astrophysics Data System (ADS)

    Mutta, Geeta Rani; Carapezzi, Stefania

    2018-07-01

    The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.

  6. Coherent Acoustic Vibration of Metal Nanoshells

    NASA Astrophysics Data System (ADS)

    Guillon, C.; Langot, P.; Del Fatti, N.; Vallée, F.; Kirakosyan, A. S.; Shahbazyan, T. V.; Cardinal, T.; Treguer, M.

    2007-01-01

    Using time-resolved pump-probe spectroscopy we have performed the first investigation of the vibrational modes of gold nanoshells. The fundamental isotropic mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger and the period is longer than in a gold nanoparticle of the same overall size, in agreement with theoretical calculations. This distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.

  7. Measurements of the interaction of wave groups with shorter wind-generated waves

    NASA Technical Reports Server (NTRS)

    Chu, Jacob S.; Long, Steven R.; Phillips, O. M.

    1992-01-01

    Fields of statistically steady wind-generated waves produced in a wind wave facility were perturbed by the injection of groups of longer, mechanically generated waves with various slopes. The time histories of the surface displacements were measured at four fetches in ensembles consisting of 100 realizations of each set of experimental conditions; the data were stored and analyzed digitally. Four distinct stages in the overall interaction are identified and characterized. The properties of the wave energy front are documented, and a preliminary discussion is given of the dynamic processes involved in its formation.

  8. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary; Crutcher, E. R.

    1992-01-01

    Results of measurements on silverized teflon, heat shrink tubing and nylon tie downs on the wire harness clamps, silvered hex nuts, and contamination deposits are presented. We interpret the results in terms of our microenvironments exposure model and locations on the Long Duration Exposure Facility (LDEF). Distinct changes in the surface properties of FEP were observed as a function of UV exposure. Significant differences in outgassing characteristics were detected for hardware on the interior row 3 relative to identical hardware on the interior row 3 relative to identical hardware on nearby rows. The implications for in service performance are reviewed.

  9. A Survey of Stellar Populations in Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Pandya, Viraj; Brodie, Jean; Glaccum, Bill; van Dokkum, Pieter; Alabi, Busola; Cohen, Yotam; Danieli, Shany; Abraham, Bob; Martinez-Delgado, David; Greco, Johnny; Greene, Jenny

    2018-05-01

    Ultra-diffuse galaxies (UDGs) are a recently identified, mysterious class of galaxies with luminosities like dwarfs, but sizes like giants. Quiescent UDGs are found in all environments from cluster to isolated, and intensive study has revealed three very distinctive sub-types: low surface brightness dwarfs, 'failed galaxies', and low-dark-matter UDGs. Following up on our recent, successful Spitzer pilot work to characterize the stellar populations (ages and metallicities) of UDGs, we propose a survey of 25 UDGs with a range of optical properties and environments, in order to understand the formation histories of different the different UDG sub-types.

  10. Josephson junctions of candidate topological crystalline insulator Pb1-xSnxTe

    NASA Astrophysics Data System (ADS)

    Snyder, Rodney; Trimble, Christie; Taylor, Patrick; Williams, James

    Incorporating superconducting ordering through proximity effects in topological states of matter offers potential routes to novel excitations with properties beyond that of simple electrons. Topological crystalline insulators TCI offer alternative routes to topological states of matter with surface states of distinct character to those in more common 3d topological insulators. We report on the fabrication Josephson junctions using MBE-grown candidate TCI material Pb-doped SnTe as weak links and characterize the departures from conventional junctions using combined DC and RF techniques. Opportunities to create junction weak links from materials possessing electronic interactions will be discussed.

  11. Photometric properties of Titan's surface from Cassini VIMS: Relevance to titan's hemispherical albedo dichotomy and surface stability

    USGS Publications Warehouse

    Nelson, R.M.; Brown, R.H.; Hapke, B.W.; Smythe, W.D.; Kamp, L.; Boryta, M.D.; Leader, F.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 ??m ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of ??=0.1 is considered these numbers increase to 0.089-0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14-65?? compared to the same high brightness class for the hemisphere encompassing 122-156?? longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units. We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out. Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out. We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out. The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties. ?? 2006 Elsevier Ltd. All rights reserved.

  12. Using lake sediments from Buarvatnet to reconstruct multiple episodic events found at Folgefonn Peninsula, Norway

    NASA Astrophysics Data System (ADS)

    Roethe, T.; Bakke, J.; Støren, E.

    2016-12-01

    Here we present work in progress from Buarvatnet at the Folgefonn Peninsula, located on the west coast of Norway. Earlier work from Buarvatnet indicated several distinct spikes in the Silica count rates, detected by the ITRAX surface XRF-scanner. However, the process behind these distinct spikes was not understood. The arrival of high-resolution and innovative instruments at EARTHLAB, in particular the computed tomography (CT) scanner and grain Morphometer, have the potential to get a process-based understanding of these distinct layers and unravel the frequency and timing of such events. Multiple sediment cores were retrieved using a modified piston corer and a Uwitech corer from Buarvatnet. The sediments have been analysed using a multi-proxy approach and the analyses included magnetic properties, loss-on-ignition, dry bulk density, grain size/shape, geochemical analysis (XRF scanning) and CT-scanning. Accurate age-control will be achieved through 210Pb dating of the top-most sediments and 14C dating of terrestrial macrofossils. The lithostratigraphy of the 3.6 m long master sediment core from Buarvatnet is divided into three distinct units. The lower most unit ( 87 cm) is massive with fine-grained greyish sediments, most likely representing the deglaciation of the area. A 224 cm long unit is found above, characterised as dark brown gyttja with multiple thin layers (sub-mm to cm thick) of fine grained sediments. Also in this unit is two distinct sub-units showing a finer upwards sequence. At top, a gradual transition from dark brown gyttja to grey fine-grained sediments is found in the upper-most 19 cm of the sediment core. In total 16 distinct layers is found in the gyttja sequence, including the two sub-units, based on the lithostratigraphy and the prelimnary results from the magnetic, physical and geochemical properties. A preliminary hypothesis is that these distinct layers are due to outburst floods from a glacier-dammed lake upstream from Buarvatnet. In such a scenario, a bedrock threshold dams the meltwater from the retreating glacier and an outburst flood is triggered when the glacier calves or advances into the lake. Understanding the processes behind the multiple events is therefore important in order to highlight the potential hazards in rapid outburst floods in a warming world.

  13. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy.

    PubMed

    Gong, Xiangjun; Hua, Li; Wu, Chi; Ngai, To

    2013-03-01

    We present a novel microrheometer by incorporating magnetic tweezers in the total internal reflection microscopy (TIRM) that enables measuring of viscoelastic properties of materials near solid surface. An evanescent wave generated by a solid∕liquid interface in the TIRM is used as the incident light source in the microrheometer. When a probe particle (of a few micrometers diameter) moves near the interface, it can interact with the evanescent field and reflect its position with respect to the interface by the scattered light intensity. The exponential distance dependence of the evanescent field, on the one hand, makes this technique extremely sensitive to small changes from z-fluctuations of the probe (with a resolution of several nanometers), and on the other, it does not require imaging of the probe with high lateral resolution. Another distinct advantage is the high sensitivity in determining the z position of the probe in the absence of any labeling. The incorporated magnetic tweezers enable us to effectively manipulate the distance of the embedded particle from the interface either by a constant or an oscillatory force. The force ramp is easy to implement through a coil current ramp. In this way, the local viscous and elastic properties of a given system under different confinements can therefore be measured by resolving the near-surface particle motion. To test the feasibility of applying this microrheology to soft materials, we measured the viscoelastic properties of sucrose and poly(ethylene glycol) solutions and compared the results to bulk rheometry. In addition, we applied this technique in monitoring the structure and properties of deformable microgel particles near the flat surface.

  14. Land use and surface process domains on alpine hillslopes

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias

    2015-04-01

    Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental quality, services and hazards.

  15. Fabrication of nanochannels on polyimide films using dynamic plowing lithography

    NASA Astrophysics Data System (ADS)

    Stoica, Iuliana; Barzic, Andreea Irina; Hulubei, Camelia

    2017-12-01

    Three distinct polyimide films were analyzed from the point of view of their morphology in order to determine if their surface features can be adapted for applications where surface anisotropy is mandatory. Channels of nanometric dimensions were created on surface of the specimens by using a less common atomic force microscopy (AFM) method, namely Dynamic Plowing Lithography (DPL). The changes generated by DPL procedure were monitored through the surface texture and other functional parameters, denoting the surface orientation degree and also bearing and fluid retention properties. The results revealed that in the same nanolithography conditions, the diamine and dianhydride moieties have affected the characteristics of the nanochannels. This was explained based on the aliphatic/aromatic nature of the monomers and the backbone flexibility. The reported data are of great importance in designing custom nanostructures with enhanced anisotropy on surface of polyimide films for liquid crystal orientation or guided cell growth purposes. At the end, to track the effect of the nanolithography process on the tip sharpness, degradation and contamination, the blind tip reconstruction was performed on AFM probe, before and after lithography experiments, using TGT1 test grating AFM image.

  16. Wax layers on Cosmos bipinnatus petals contribute unequally to total petal water resistance.

    PubMed

    Buschhaus, Christopher; Hager, Dana; Jetter, Reinhard

    2015-01-01

    Cuticular waxes coat all primary aboveground plant organs as a crucial adaptation to life on land. Accordingly, the properties of waxes have been studied in much detail, albeit with a strong focus on leaf and fruit waxes. Flowers have life histories and functions largely different from those of other organs, and it remains to be seen whether flower waxes have compositions and physiological properties differing from those on other organs. This work provides a detailed characterization of the petal waxes, using Cosmos bipinnatus as a model, and compares them with leaf and stem waxes. The abaxial petal surface is relatively flat, whereas the adaxial side consists of conical epidermis cells, rendering it approximately 3.8 times larger than the projected petal area. The petal wax was found to contain unusually high concentrations of C(22) and C(24) fatty acids and primary alcohols, much shorter than those in leaf and stem waxes. Detailed analyses revealed distinct differences between waxes on the adaxial and abaxial petal sides and between epicuticular and intracuticular waxes. Transpiration resistances equaled 3 × 10(4) and 1.5 × 10(4) s m(-1) for the adaxial and abaxial surfaces, respectively. Petal surfaces of C. bipinnatus thus impose relatively weak water transport barriers compared with typical leaf cuticles. Approximately two-thirds of the abaxial surface water barrier was found to reside in the epicuticular wax layer of the petal and only one-third in the intracuticular wax. Altogether, the flower waxes of this species had properties greatly differing from those on vegetative organs. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.

  18. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult

    PubMed Central

    Pfaltzgraff, Elise R.; Shelton, Elaine L.; Galindo, Cristi L.; Nelms, Brian L.; Hooper, Christopher W.; Poole, Stanley D.; Labosky, Patricia A.; Bader, David M.; Reese, Jeff

    2014-01-01

    Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression. PMID:24508561

  19. Mechanism and energetics of O and O{sub 2} adsorption on polar and non-polar ZnO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2016-05-14

    Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O{sub 2} molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn–ZnO) and O-terminated (O–ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn–ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O{sub 2} adsorption. We attribute this to themore » fact that on Zn–ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn–ZnO surfaces, O{sub 2} dissociatively adsorbs to form O adatoms. By contrast, on O–ZnO surfaces, the O-rich conditions required for O or O{sub 2} adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O{sub 2} adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.« less

  20. Electromechanical and Elastic Probing of Bacteria in Cell Culture Medium

    PubMed Central

    Thompson, G.L.; Reukov, V.V.; Nikiforov, M.P.; Jesse, S.; Kalinin, S.V.; Vertegel, A.A.

    2012-01-01

    Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of different types of bacteria in pure water. Here, the BEPFM method is performed for the first time in physiologically-relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria are demonstrated in DPBS. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media. PMID:22641388

  1. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    NASA Technical Reports Server (NTRS)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  2. Electromechanical and elastic probing of bacteria in a cell culture medium

    NASA Astrophysics Data System (ADS)

    Thompson, G. L.; Reukov, V. V.; Nikiforov, M. P.; Jesse, S.; Kalinin, S. V.; Vertegel, A. A.

    2012-06-01

    Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of bacteria of different types in pure water. Here, the BEPFM method is performed for the first time on physiologically relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria in DPBS are demonstrated. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media.

  3. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    NASA Astrophysics Data System (ADS)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under optimal experimental conditions, the antibacterial activities of these sophisticated surfaces had two distinct mechanisms: 1) reducing bacterial attachment and 2) eradicating adherent bacteria. The excellent antibacterial and anti-biofilm properties of these modified surfaces were initially tested in stationary cultures and later confirmed through a microfluidic cultivation system, which mimicked the in-vivo conditions of implanted catheters. Information gathered, suggests the graft polymerization of negatively charged monomers may be utilized to permanently prevent biofouling on inserted biomaterials, as well as implanted medical devices.

  4. Light-induced negative differential resistance in gate-controlled graphene-silicon photodiode

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Guo, Hongwei; Li, Wei; Wan, Xia; Bodepudi, Srikrishna Chanakya; Shehzad, Khurram; Xu, Yang

    2018-05-01

    In this letter, we investigated light-induced negative differential resistance (L-NDR) effects in a hybrid photodiode formed by a graphene-silicon (GS) junction and a neighboring graphene-oxide-Si (GOS) capacitor. We observed two distinct L-NDR effects originating from the gate-dependent surface recombination and the potential-well-induced confinement of photo-carriers in the GOS region. We verified this by studying the gate-controlled GS diode, which can distinguish the photocurrent from the GS region with that from the GOS region (gate). A large peak-to-valley ratio of up to 12.1 has been obtained for the L-NDR due to gate-dependent surface recombination. Such strong L-NDR effect provides an opportunity to further engineer the optoelectronic properties of GS junctions along with exploring its potential applications in photodetectors, photo-memories, and position sensitive devices.

  5. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-10-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding.

  6. Titan: Preliminary results on surface properties and photometry from VIMS observations of the early flybys

    USGS Publications Warehouse

    Buratti, B.J.; Sotin, Christophe; Brown, R.H.; Hicks, M.D.; Clark, R.N.; Mosher, J.A.; McCord, T.B.; Jaumann, R.; Baines, K.H.; Nicholson, P.D.; Momary, T.; Simonelli, D.P.; Sicardy, B.

    2006-01-01

    Cassini observations of the surface of Titan offer unprecedented views of its surface through atmospheric windows in the 1-5 ??m region. Images obtained in windows for which the haze opacity is low can be used to derive quantitative photometric parameters such as albedo and albedo distribution, and physical properties such as roughness and particle characteristics. Images from the early Titan flybys, particularly T0, Ta, and T5 have been analyzed to create albedo maps in the 2.01 and 2.73 ??m windows. We find the average normal reflectance at these two wavelengths to be 0.15??0.02 and 0.035??0.003, respectively. Titan's surface is bifurcated into two albedo regimes, particularly at 2.01 ??m. Analysis of these two regimes to understand the physical character of the surface was accomplished with a macroscopic roughness model. We find that the two types of surface have substantially different roughness, with the low-albedo surface exhibiting mean slope angles of ???18??, and the high-albedo terrain having a much more substantial roughness with a mean slope angle of ???34??. A single-scattering phase function approximated by a one-term Henyey-Greenstein equation was also fit to each unit. Titan's surface is back-scattering (g???0.3-0.4), and does not exhibit substantially different backscattering behavior between the two terrains. Our results suggest that two distinct geophysical domains exist on Titan: a bright region cut by deep drainage channels and a relatively smooth surface. The two terrains are covered by a film or a coating of particles perhaps precipitated from the satellite's haze layer and transported by eolian processes. Our results are preliminary: more accurate values for the surface albedo and physical parameters will be derived as more data is gathered by the Cassini spacecraft and as a more complete radiative transfer model is developed from both Cassini orbiter and Huygens Lander measurements. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Materials design principles of ancient fish armour

    NASA Astrophysics Data System (ADS)

    Bruet, Benjamin J. F.; Song, Juha; Boyce, Mary C.; Ortiz, Christine

    2008-09-01

    Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the `living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

  8. Materials design principles of ancient fish armour.

    PubMed

    Bruet, Benjamin J F; Song, Juha; Boyce, Mary C; Ortiz, Christine

    2008-09-01

    Knowledge of the structure-property-function relationships of dermal scales of armoured fish could enable pathways to improved bioinspired human body armour, and may provide clues to the evolutionary origins of mineralized tissues. Here, we present a multiscale experimental and computational approach that reveals the materials design principles present within individual ganoid scales from the 'living fossil' Polypterus senegalus. This fish belongs to the ancient family Polypteridae, which first appeared 96 million years ago during the Cretaceous period and still retains many of their characteristics. The mechanistic origins of penetration resistance (approximating a biting attack) were investigated and found to include the juxtaposition of multiple distinct reinforcing composite layers that each undergo their own unique deformation mechanisms, a unique spatial functional form of mechanical properties with regions of differing levels of gradation within and between material layers, and layers with an undetectable gradation, load-dependent effective material properties, circumferential surface cracking, orthogonal microcracking in laminated sublayers and geometrically corrugated junctions between layers.

  9. Astronomy in Denver: Spatial distributions of dust properties via far-IR broadband map with HerPlaNS

    NASA Astrophysics Data System (ADS)

    Asano, Kentaro; Ueta, Toshiya; Ladjal, Djazia; Exter, Katrina; Otsuka, Masaaki; HerPlaNS Consortium

    2018-06-01

    We present the results of our analyses on dust properties in all of Galactic planetary nebulae based on 5-band broadband images in the far-IR taken with the Herschel Space Observatory.By fitting surface brightness distributions of dust thermal emission at 70, 160, 250, 350 and 500 microns with a single-temperature modified black body function, we derive spatially resolved maps of the dust emissivity power-law index (beta) and dust temperature (Td), as well as the column density.We find that circumstellar dust grains in PNe occupy a specific region in the beta-Td space, which is distinct from that occupied by dust grains in the Interstellar Matter (ISM) and star forming regions (SFRs). Unlike those in the ISM and SFRs, dust grains in PNe exhibit little variation in beta while a large spread in Td, suggesting rather homogeneous dust properties.This work is part of the Herschel Planetary Nebula Survey Plus (HerPlaNS+) supported by the NASA Astrophysics Data Analysis Program.

  10. Funnel for localizing biological cell placement and arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soscia, David; Benett, William J.; Mukerjee, Erik V.

    2018-03-06

    The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less

  11. Atomic force microscopy for two-dimensional materials: A tutorial review

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Huang, Junxiang; Wang, Yongwei; Liu, Rui; Huai, Xiulan; Jiang, Jingjing; Anfuso, Chantelle

    2018-01-01

    Low dimensional materials exhibit distinct properties compared to their bulk counterparts. A plethora of examples have been demonstrated in two-dimensional (2-D) materials, including graphene and transition metal dichalcogenides (TMDCs). These novel and intriguing properties at the nano-, molecular- and even monatomic scales have triggered tremendous interest and research, from fundamental studies to practical applications and even device fabrication. The unique behaviors of 2-D materials result from the special structure-property relationships that exist between surface topographical variations and mechanical responses, electronic structures, optical characteristics, and electrochemical properties. These relationships are generally convoluted and sensitive to ambient and external perturbations. Characterizing these systems thus requires techniques capable of providing multidimensional information under controlled environments, such as atomic force microscopy (AFM). Today, AFM plays a key role in exploring the basic principles underlying the functionality of 2-D materials. In this tutorial review, we provide a brief introduction to some of the unique properties of 2-D materials, followed by a summary of the basic principles of AFM and the various AFM modes most appropriate for studying these systems. Following that, we will focus on five important properties of 2-D materials and their characterization in more detail, including recent literature examples. These properties include nanomechanics, nanoelectromechanics, nanoelectrics, nanospectroscopy, and nanoelectrochemistry.

  12. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    PubMed

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  13. Shellac/nanoparticles dispersions as protective materials for wood

    NASA Astrophysics Data System (ADS)

    Weththimuni, Maduka L.; Capsoni, Doretta; Malagodi, Marco; Milanese, Chiara; Licchelli, Maurizio

    2016-12-01

    Wood is a natural material that finds numerous and widespread applications, but is subject to different decay processes. Surface coating is the most common method used to protect wood against deterioration and to improve and stabilize its distinctive appearance. Shellac is a natural resin that has been widely used as a protective material for wooden artefacts (e.g. furniture, musical instruments), due to its excellent properties. Nevertheless, diffusion of shellac-based varnishes has significantly declined during the last decades, because of some limitations such as the softness of the coating, photo-degradation, and sensitivity to alcoholic solvents and to pH variations. In the present study, different inorganic nanoparticles were dispersed into dewaxed natural shellac and the resulting materials were investigated even after application on wood specimens in order to assess variations of the coating properties. Analyses performed by a variety of experimental techniques have shown that dispersed nanoparticles do not significantly affect some distinctive and desirable features of the shellac varnish such as chromatic aspect, film-forming ability, water repellence, and adhesion. On the other hand, the obtained results suggested that some weak points of the coating, such as low hardness and poor resistance to UV-induced ageing, can be improved by adding ZrO2 and ZnO nanoparticles, respectively.

  14. Growth mechanisms of multiscale, mound-like surface structures on titanium by femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Peng, Edwin; Bell, Ryan; Zuhlke, Craig A.; Wang, Meiyu; Alexander, Dennis R.; Gogos, George; Shield, Jeffrey E.

    2017-10-01

    Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or super-hydrophobicity/-hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained α-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material.

  15. Late diagenetic indicators of buried oil and gas

    USGS Publications Warehouse

    Donovan, Terrence J.; Dalziel, Mary C.

    1977-01-01

    At least three hydrocarbon seepage mechanisms are interpreted to operate over oil and gas fields. These are: (1) effusion ofh ydrocarbons through inadequate caprocks and along faults and fractures, (2) low-molecular-weight hydrocarbons dissolved in water moving vertically through capping shales as a result of a hydrodynamic or chemical potential drive, and (3) diffusion of gases dissolved in water. Combinations of these mechanisms may also occur. Seeping hydrocarbons are oxidized near the earth's surface, and the resulting carbon dioxide reacts with water producing bicarbonate ions, which combine with calcium and magnesium dissolved in ground waters to yield isotopically distinctive pore-filling carbonate cements and surface rocks. The passage of hydrocarbons and associated compounds such as hydrogen sulfide through surface rocks causes a reducing environment and consequent reduction, mobilization, and loss of iron from iron-bearing minerals commonly resulting in a discoloration. Other metals such as manganese are also mobilized and redistributed. These changes in the physical and chemical properties of surface rocks correlate with the subsurface distribution of petroleum, and potentially can be detected from both airborne and spaceborne platforms.

  16. Sinuous Flow in Cutting of Metals

    NASA Astrophysics Data System (ADS)

    Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan

    2017-11-01

    Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.

  17. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn; Rippa, Massimo

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example,more » a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.« less

  18. A combined surface/volume scattering retracking algorithm for ice sheet satellite altimetry

    NASA Technical Reports Server (NTRS)

    Davis, Curt H.

    1992-01-01

    An algorithm that is based upon a combined surface-volume scattering model is developed. It can be used to retrack individual altimeter waveforms over ice sheets. An iterative least-squares procedure is used to fit the combined model to the return waveforms. The retracking algorithm comprises two distinct sections. The first generates initial model parameter estimates from a filtered altimeter waveform. The second uses the initial estimates, the theoretical model, and the waveform data to generate corrected parameter estimates. This retracking algorithm can be used to assess the accuracy of elevations produced from current retracking algorithms when subsurface volume scattering is present. This is extremely important so that repeated altimeter elevation measurements can be used to accurately detect changes in the mass balance of the ice sheets. By analyzing the distribution of the model parameters over large portions of the ice sheet, regional and seasonal variations in the near-surface properties of the snowpack can be quantified.

  19. Multifunctional Nano-engineered Polymer Surfaces with Enhanced Mechanical Resistance and Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Hernández, Jaime J.; Monclús, Miguel A.; Navarro-Baena, Iván; Viela, Felipe; Molina-Aldareguia, Jon M.; Rodríguez, Isabel

    2017-03-01

    This paper presents a multifunctional polymer surface that provides superhydrophobicity and self-cleaning functions together with an enhancement in mechanical and electrical performance. These functionalities are produced by nanoimprinting high aspect ratio pillar arrays on polymeric matrix incorporating functional reinforcing elements. Two distinct matrix-filler systems are investigated specifically, Carbon Nanotube reinforced Polystyrene (CNT-PS) and Reduced Graphene Oxide reinforced Polyvinylidene Difluoride (RGO-PVDF). Mechanical characterization of the topographies by quantitative nanoindentation and nanoscratch tests are performed to evidence a considerable increase in stiffness, Young’s modulus and critical failure load with respect to the pristine polymers. The improvement on the mechanical properties is rationalized in terms of effective dispersion and penetration of the fillers into the imprinted structures as determined by confocal Raman and SEM studies. In addition, an increase in the degree of crystallization for the PVDF-RGO imprinted nanocomposite possibly accounts for the larger enhancement observed. Improvement of the mechanical ruggedness of functional textured surfaces with appropriate fillers will enable the implementation of multifunctional nanotextured materials in real applications.

  20. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  1. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  2. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  3. Collagenous microstructure of the glenoid labrum and biceps anchor

    PubMed Central

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-01-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair. PMID:18429974

  4. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  5. The spatial organisation of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis.

    PubMed

    Aicher, Wilhelm K; Rolauffs, Bernd

    2014-04-01

    Chondrocytes display within the articular cartilage depth-dependent variations of their many properties that are comparable to the depth-dependent changes of the properties of the surrounding extracellular matrix. However, not much is known about the spatial organisation of the chondrocytes throughout the tissue. Recent studies revealed that human chondrocytes display distinct spatial patterns of organisation within the articular surface, and each joint surface is dominated in a typical way by one of four basic spatial patterns. The resulting complex spatial organisations correlate with the specific diarthrodial joint type, suggesting an association of the chondrocyte organisation within the joint surface with the occurring biomechanical forces. In response to focal osteoarthritis (OA), the superficial chondrocytes experience a destruction of their spatial organisation within the OA lesion, but they also undergo a defined remodelling process distant from the OA lesion in the remaining, intact cartilage surface. One of the biological insights that can be derived from this spatial remodelling process is that the chondrocytes are able to respond in a generalised and coordinated fashion to distant focal OA. The spatial characteristics of this process are tremendously different from the cellular aggregations typical for OA lesions, suggesting differences in the underlying mechanisms. Here we summarise the available information on the spatial organisation of chondrocytes and its potential roles in cartilage functioning. The spatial organisation could be used to diagnose early OA onset before manifest OA results in tissue destruction and clinical symptoms. With further development, this concept may become clinically suitable for the diagnosis of preclinical OA.

  6. The glass-liquid transition of water on hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2008-09-01

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF6] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF6]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF6] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  7. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    PubMed

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  8. Nanoscale morphology and optical property evolution of Pt nanostructures on GaN (0 0 0 1) by the systematic control of annealing temperature and duration with various Pt thickness

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-06-01

    By the controlled fabrication of Pt nanostructures, various surface morphology dependent electronic, catalytic and optical properties can be exploited for a wide range of applications. In this paper, the evolution of Pt nanostructures on GaN (0 0 0 1) by the solid-state dewetting of Pt thin films is investigated. Controlling the annealing temperature, time and film thickness allows us to fabricate distinct size, density and configurations of Pt nanostructures. For 10 nm Pt thickness, tiny voids and Pt hillocks up to 550 °C, extensive void expansion and Pt nanostructure evolution between 600 °C-750 °C and finally Pt nanostructures assisted nanoholes penetration on GaN surface above 800 °C are demonstrated. Furthermore, comparatively elongated Pt nanostructures and NHs are resulted with 20 nm Pt thickness and voids growth and connected Pt nanostructure are formed by annealing duration control. The transformation of Pt films to nanostructures is governed by the surface diffusion, Rayleigh instability, Volmer-Weber growth and energy minimization mechanism whereas NHs penetration is commenced by the decomposition of GaN, Pt-Ga alloying and nitrogen desorption at high temperature. In addition, the optical characteristic of Pt nanostructures on GaN (0 0 0 1) by reflectance, photoluminescence (PL) and Raman spectroscopy demonstrate the surface morphology dependent spectral response.

  9. Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit

    The surface atomic structure of metallic nanoparticles (NPs) plays a key role in shaping their physicochemical properties and response to external stimuli. Not surprisingly, current research increasingly focuses on exploiting its prime characteristics, including the amount, location, coordination, and electronic configuration of distinct surface atomic species, as tunable parameters for improving the functionality of metallic NPs in practical applications. The effort requires clear understanding of the extent to which changes in each of these characteristics would contribute to achieving the targeted functionality. This, in the first place, requires good knowledge of the actual surface of metallic NPs at atomic level.more » Through a case study on Au–Pd nanoalloy catalysts of industrial and environmental importance, we demonstrate that the surface atomic structure of metallic NPs can be determined in good detail by resonant high-energy X-ray diffraction (HE-XRD). Furthermore, using our experimental surface structure and CO oxidation activity data, we shed new light on the elusive origin of the remarkable catalytic synergy between surface Au and Pd atoms in the nanoalloys. In particular, we show that it arises from the formation of a specific “skin” on top of the nanoalloys that involves as many unlike, i.e., Au–Pd and Pd–Au, atomic pairs as possible given the overall chemical composition of the NPs. Moreover, unlike atoms from the “skin” interact strongly, including both changing their size and electronic structure in inverse proportions. That is, Au atoms shrink and acquire a partial positive charge of 5d-character whereas Pd atoms expand and become somewhat 4d-electron deficient. Accordingly, the reactivity of Au increases whereas Pd atoms become less reactive, as compared to atoms at the surface of pure Au and Pd NPs, respectively. Ultimately, this renders Au–Pd alloy NPs superb catalysts for CO oxidation reaction over a broad range of alloy compositions. Our findings are corroborated by DFT calculations based on a refined version of d-band center theory on the catalytic properties of late transition metals and alloys. Here, we discuss opportunities for improving the accuracy of current theory on surface-controlled properties of metallic NPs through augmenting the theory with surface structure data obtained by resonant XRD.« less

  10. Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts

    DOE PAGES

    Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit; ...

    2017-03-23

    The surface atomic structure of metallic nanoparticles (NPs) plays a key role in shaping their physicochemical properties and response to external stimuli. Not surprisingly, current research increasingly focuses on exploiting its prime characteristics, including the amount, location, coordination, and electronic configuration of distinct surface atomic species, as tunable parameters for improving the functionality of metallic NPs in practical applications. The effort requires clear understanding of the extent to which changes in each of these characteristics would contribute to achieving the targeted functionality. This, in the first place, requires good knowledge of the actual surface of metallic NPs at atomic level.more » Through a case study on Au–Pd nanoalloy catalysts of industrial and environmental importance, we demonstrate that the surface atomic structure of metallic NPs can be determined in good detail by resonant high-energy X-ray diffraction (HE-XRD). Furthermore, using our experimental surface structure and CO oxidation activity data, we shed new light on the elusive origin of the remarkable catalytic synergy between surface Au and Pd atoms in the nanoalloys. In particular, we show that it arises from the formation of a specific “skin” on top of the nanoalloys that involves as many unlike, i.e., Au–Pd and Pd–Au, atomic pairs as possible given the overall chemical composition of the NPs. Moreover, unlike atoms from the “skin” interact strongly, including both changing their size and electronic structure in inverse proportions. That is, Au atoms shrink and acquire a partial positive charge of 5d-character whereas Pd atoms expand and become somewhat 4d-electron deficient. Accordingly, the reactivity of Au increases whereas Pd atoms become less reactive, as compared to atoms at the surface of pure Au and Pd NPs, respectively. Ultimately, this renders Au–Pd alloy NPs superb catalysts for CO oxidation reaction over a broad range of alloy compositions. Our findings are corroborated by DFT calculations based on a refined version of d-band center theory on the catalytic properties of late transition metals and alloys. Here, we discuss opportunities for improving the accuracy of current theory on surface-controlled properties of metallic NPs through augmenting the theory with surface structure data obtained by resonant XRD.« less

  11. Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry.

    PubMed

    Reis, Monica; McDonald, David; Nicholson, Lindsay; Godthardt, Kathrin; Knobel, Sebastian; Dickinson, Anne M; Filby, Andrew; Wang, Xiao-Nong

    2018-03-02

    Mesenchymal stromal cells (MSCs) are a promising cell source to develop cell therapy for many diseases. Human platelet lysate (PLT) is increasingly used as an alternative to foetal calf serum (FCS) for clinical-scale MSC production. To date, the global surface protein expression of PLT-expended MSCs (MSC-PLT) is not known. To investigate this, paired MSC-PLT and MSC-FCS were analysed in parallel using high-throughput flow cytometry for the expression of 356 cell surface proteins. MSC-PLT showed differential surface protein expression compared to their MSC-FCS counterpart. Higher percentage of positive cells was observed in MSC-PLT for 48 surface proteins, of which 13 were significantly enriched on MSC-PLT. This finding was validated using multiparameter flow cytometry and further confirmed by quantitative staining intensity analysis. The enriched surface proteins are relevant to increased proliferation and migration capacity, as well as enhanced chondrogenic and osteogenic differentiation properties. In silico network analysis revealed that these enriched surface proteins are involved in three distinct networks that are associated with inflammatory responses, carbohydrate metabolism and cellular motility. This is the first study reporting differential cell surface protein expression between MSC-PLT and MSC-FSC. Further studies are required to uncover the impact of those enriched proteins on biological functions of MSC-PLT.

  12. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contentsmore » were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.« less

  13. Validation of Spectral Unmixing Results from Informed Non-Negative Matrix Factorization (INMF) of Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2017-12-01

    Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS).

  14. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    NASA Astrophysics Data System (ADS)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  15. Dissolution of cinnabar (HgS) in the presence of natural organic matter

    USGS Publications Warehouse

    Waples, J.S.; Nagy, K.L.; Aiken, G.R.; Ryan, J.N.

    2005-01-01

    Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 ?? 10-13 to 7.16 ?? 10-12 mol Hg (mg C)-1 m-2 s-1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface. Copyright ?? 2005 Elsevier Ltd.

  16. Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios

    NASA Astrophysics Data System (ADS)

    Liu, Yuxia; Alessi, D. S.; Owttrim, G. W.; Kenney, J. P. L.; Zhou, Qixing; Lalonde, S. V.; Konhauser, K. O.

    2016-08-01

    The distribution of many trace metals in the oceans is controlled by biological uptake. Recently, Liu et al. (2015) demonstrated the propensity for a marine cyanobacterium to adsorb cadmium from seawater, suggesting that cell surface reactivity might also play an important role in the cycling of metals in the oceans. However, it remains unclear how variations in cyanobacterial growth rates and nutrient supply might affect the chemical properties of their cellular surfaces. In this study we used potentiometric titrations and Fourier Transform Infrared (FT-IR) spectrometry to profile the key metabolic changes and surface chemical responses of a Synechococcus strain, PCC 7002, during different growth regimes. This included testing various nitrogen (N) to phosphorous (P) ratios (both nitrogen and phosphorous dependent), nitrogen sources (nitrate, ammonium and urea) and growth stages (exponential, stationary, and death phase). FT-IR spectroscopy showed that varying the growth substrates on which Synechococcus cells were cultured resulted in differences in either the type or abundance of cellular exudates produced or a change in the cell wall components. Potentiometric titration data were modeled using three distinct proton binding sites, with resulting pKa values for cells of the various growth conditions in the ranges of 4.96-5.51 (pKa1), 6.67-7.42 (pKa2) and 8.13-9.95 (pKa3). According to previous spectroscopic studies, these pKa ranges are consistent with carboxyl, phosphoryl, and amine groups, respectively. Comparisons between the titration data (for the cell surface) and FT-IR spectra (for the average cellular changes) generally indicate (1) that the nitrogen source is a greater determinant of ligand concentration than growth phase, and (2) that phosphorus limitation has a greater impact on Synechococcus cellular and extracellular properties than does nitrogen limitation. Taken together, these techniques indicate that nutritional quality during cell growth can noticeably influence the expression of cell surface ligands and their measurable densities. Given that cell surface charge ultimately affects metal adsorption, our results suggest that the cycling of metals by Synechococcus cells in the oceans may vary regionally.

  17. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  18. Modifying surface properties of KIT-6 zeolite with Ni and V for enhancing catalytic CO methanation

    NASA Astrophysics Data System (ADS)

    Cao, Hong-Xia; Zhang, Jun; Guo, Cheng-Long; Chen, Jingguang G.; Ren, Xiang-Kun

    2017-12-01

    The surface of the KIT-6 zeolite was modified with different amounts of Ni and V to promote the catalytic properties for CO methanation. A series of xNi-yV/KIT-6 with various Ni and V contents were prepared by the incipient-wetness impregnation method. The modified surfaces were characterized using N2 adsorption-desorption, Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), Fourier transformed infrared spectroscopy (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The characterization results illustrated that the modification of V species was able to significantly promote low-temperature catalytic performance below 350 °C compared to that of unmodified Ni/KIT-6, which was likely due to an increase in the H2 uptake accompanied by enhanced CO dissociation derived from stronger electron transfer from V species to Ni0. Correspondingly, the xNi-yV/KIT-6 catalysts exhibited a distinct enhancement in CO conversion, CH4 selectivity and CH4 yield over unmodified Ni/KIT-6. Among all catalysts, 20Ni-2V/KIT-6 showed the best catalytic performance, corresponding to nearly 100% CO conversion and 85% CH4 yield at a low temperature of 300 °C. Furthermore, 20Ni-2V/KIT-6 presented enhanced coking-resistant and anti-sintering properties during a 60h-lifetime test at 500 °C and 1 atm with a high weight hourly space velocity (WHSV) of 60000 ml/g/h.

  19. Size control and catalytic activity of bio-supported palladium nanoparticles.

    PubMed

    Søbjerg, Lina Sveidal; Lindhardt, Anders T; Skrydstrup, Troels; Finster, Kai; Meyer, Rikke Louise

    2011-07-01

    The development of nanoparticles has greatly improved the catalytic properties of metals due to the higher surface to volume ratio of smaller particles. The production of nanoparticles is most commonly based on abiotic processes, but in the search for alternative protocols, bacterial cells have been identified as excellent scaffolds of nanoparticle nucleation, and bacteria have been successfully employed to recover and regenerate platinum group metals from industrial waste. We report on the formation of bio-supported palladium (Pd) nanoparticles on the surface of two bacterial species with distinctly different surfaces: the gram positive Staphylococcus sciuri and the gram negative Cupriavidus necator. We investigated how the type of bacterium and the amount of biomass affected the size and catalytic properties of the nanoparticles formed. By increasing the biomass:Pd ratio, we could produce bio-supported Pd nanoparticles smaller than 10nm in diameter, whereas lower biomass:Pd ratios resulted in particles ranging from few to hundreds of nm. The bio-supported Pd nanoparticle catalytic properties were investigated towards the Suzuki-Miyaura cross coupling reaction and hydrogenation reactions. Surprisingly, the smallest nanoparticles obtained at the highest biomass:Pd ratio showed no reactivity towards the test reactions. The lack of reactivity appears to be caused by thiol groups, which poison the catalyst by binding strongly to Pd. Different treatments intended to liberate particles from the biomass, such as burning or rinsing in acetone, did not re-establish their catalytic activity. Sulphur-free biomaterials should therefore be explored as more suitable scaffolds for Pd(0) nanoparticle formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Contrasting Inherent Optical Properties and Carbon Metabolism Between Five Northeastern (USA) Estuary-plume Systems

    NASA Technical Reports Server (NTRS)

    Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.

    2004-01-01

    We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.

  1. Comparative surface energetic study of Matrigel® and collagen I interactions with endothelial cells.

    PubMed

    Hill, Michael J; Sarkar, Debanjan

    2017-07-01

    Understanding of the surface energetic aspects of the spontaneously deposited proteins on biomaterial surfaces and how this influences cell adhesion and differentiation is an area of regenerative medicine that has not received adequate attention. Current controversies surround the role of the biomaterial substratum surface chemistry, the range of influence of said substratum, and the effects of different surface energy components of the protein interface. Endothelial cells (ECs) are a highly important cell type for regenerative medicine applications, such as tissue engineering, and In-vivo they interact with collagen I based stromal tissue and basement membranes producing different behavioral outcomes. The surface energetic properties of these tissue types and how they control EC behavior is not well known. In this work we studied the surface energetic properties of collagen I and Matrigel ® on various previously characterized substratum polyurethanes (PU) via contact angle analysis and examined the subsequent EC network forming characteristics. A combinatorial surface energy approach was utilized that compared Zisman's critical surface tension, Kaelble's numerical method, and van Oss-Good-Chaudhury theory (vOGCT). We found that the unique, rapid network forming characteristics of ECs on Matrigel ® could be attributed to the apolar or monopolar basic interfacial characteristics according to Zisman/Kaelble or vOGCT, respectively. We also found a lack of significant substratum influence on EC network forming characteristics for Matrigel ® but collagen I showed a distinct influence where more apolar PU substrata tended to produce higher Lewis acid character collagen I interfaces which led to a greater interaction with ECs. Collagen I interfaces on more polar PU substrata lacked Lewis acid character and led to similar EC network characteristics as Matrigel ® . We hypothesized that bipolar character of the protein film favored cell-substratum over cell-cell adhesive interactions which resulted in less rapidly forming but more stable networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact surfaces are set to a priori values. The inversion is tasked with calculating the geometry of the contact surfaces instead of some piecewise distribution of properties in a mesh. Again, no coupling measure is required and joint inversion is simplified. Both of these inverse problems involve high nonlinearity and discontinuous or non-obtainable derivatives. They can also involve the existence of multiple minima. Hence, one can not apply the standard descent-based local minimization methods used to solve typical minimum-structure inversions. Instead, we are applying Pareto multi-objective global optimization (PMOGO) methods, which generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. While there are definite advantages to PMOGO joint inversion approaches, the methods come with significantly increased computational requirements. We are researching various strategies to ameliorate these computational issues including parallelization and problem dimension reduction.

  3. Hilbert-Huang spectral analysis for characterizing the intrinsic time-scales of variability in decennial time-series of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2016-04-01

    An analysis of the variability of the surface solar irradiance (SSI) at different local time-scales is presented in this study. Since geophysical signals, such as long-term measurements of the SSI, are often produced by the non-linear interaction of deterministic physical processes that may also be under the influence of non-stationary external forcings, the Hilbert-Huang transform (HHT), an adaptive, noise-assisted, data-driven technique, is employed to extract locally - in time and in space - the embedded intrinsic scales at which a signal oscillates. The transform consists of two distinct steps. First, by means of the Empirical Mode Decomposition (EMD), the time-series is "de-constructed" into a finite number - often small - of zero-mean components that have distinct temporal scales of variability, termed hereinafter the Intrinsic Mode Functions (IMFs). The signal model of the components is an amplitude modulation - frequency modulation (AM - FM) one, and can also be thought of as an extension of a Fourier series having both time varying amplitude and frequency. Following the decomposition, Hilbert spectral analysis is then employed on the IMFs, yielding a time-frequency-energy representation that portrays changes in the spectral contents of the original data, with respect to time. As measurements of surface solar irradiance may possibly be contaminated by the manifestation of different type of stochastic processes (i.e. noise), the identification of real, physical processes from this background of random fluctuations is of interest. To this end, an adaptive background noise null hypothesis is assumed, based on the robust statistical properties of the EMD when applied to time-series of different classes of noise (e.g. white, red or fractional Gaussian). Since the algorithm acts as an efficient constant-Q dyadic, "wavelet-like", filter bank, the different noise inputs are decomposed into components having the same spectral shape, but that are translated to the next lower octave in the spectral domain. Thus, when the sampling step is increased, the spectral shape of IMFs cannot remain at its original position, due to the new lower Nyquist frequency, and is instead pushed toward the lower scaled frequency. Based on these features, the identification of potential signals within the data should become possible without any prior knowledge of the background noises. When applying the above outlined procedure to decennial time-series of surface solar irradiance, only the component that has an annual time-scale of variability is shown to have statistical properties that diverge from those of noise. Nevertheless, the noise-like components are not completely devoid of information, as it is found that their AM components have a non-null rank correlation coefficient with the annual mode, i.e. the background noise intensity seems to be modulated by the seasonal cycle. The findings have possible implications on the modelling and forecast of the surface solar irradiance, by discriminating its deterministic from its quasi-stochastic constituents, at distinct local time-scales.

  4. Revealing Anisotropic Spinel Formation on Pristine Li- and Mn-Rich Layered Oxide Surface and Its Impact on Cathode Performance

    DOE PAGES

    Kuppan, Saravanan; Shukla, Alpesh Khushalchand; Membreno, Daniel; ...

    2017-01-06

    Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium-ion batteries. Through the use of carefully prepared Li 1.2Ni 0.13Mn 0.54Co 0.13O 2 crystal samples with six distinct morphologies, surface transition-metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth-profiled core-level spectroscopy, namely, X-ray absorption spectroscopy, electron energy loss spectroscopy, and atomic-resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well-definedmore » model system of battery materials. Here, we report the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition-metal reduction. Finally, the intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.« less

  5. Development of PEGylated KMnF3 nanoparticles as a T1-weighted contrast agent: chemical synthesis, in vivo brain MR imaging, and accounting for high relaxivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Jun; Song, Xiao-Xia; Tang, Qun

    2013-05-01

    Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility.Magnetic nanoparticles consisting of manganese-based T1-weighted contrast agents have rapidly achieved clinical application, however low proton relaxivity impedes further development. In this report, by analyzing nanoparticles' surface oxidation states we propose the possible reason for the low r1 relaxivity of common MnO nanoparticles and develop PEGylated fluoroperovskite KMnF3 nanoparticles as new T1-weighted contrast agents, which exhibit the highest longitudinal relaxivity (r1 = 23.15 mM-1 s-1) among all the reported manganese-based T1-weighted contrast agents. We, for the first time, illustrate a typical example showing that the surface oxidation states of metal ions exposed on the nanoparticles' surfaces are able to influence not only the optical, magnetic, electronic or catalytic properties but also water proton longitudinal relaxivity when applied as an MRI contrast agent. Cytotoxicity tests demonstrate that the PEGylated KMnF3 nanoparticles are free from toxicity. Further in vivo MRI experiments distinctively depict fine anatomical features in brain imaging at a low dose of 5 mg of Mn per kg and possible removal from the kidneys due to their small size and biocompatibility. Electronic supplementary information (ESI) available: Experimental procedure for two types of MnO nanoparticles, T1-weighted mapping. See DOI: 10.1039/c3nr00721a

  6. A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property

    PubMed Central

    Liang, Xiaobo; Liu, Bing; Zhu, Fan; Scannapieco, Frank A.; Haase, Elaine M.; Matthews, Steve; Wu, Hui

    2016-01-01

    Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase. PMID:27492581

  7. Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and field-mapping.

    PubMed

    Yang, A P; Du, L P; Meng, F F; Yuan, X C

    2018-05-17

    Electromagnetic fields at near-field exhibit distinctive properties with respect to their free-space counterparts. In particular, an optical transverse spin appearing in a confined electromagnetic field provides the foundation for many intriguing physical effects and applications. We present a transverse spin coupling configuration where plasmonic nanoparticles are employed to couple the transverse spin in a focused beam to that of a surface plasmon polariton. The plasmonic resonance of nanoparticles on a metal film plays a significant role in transverse spin coupling. We demonstrate in experiments that Ag and Au nanoparticles yield distinct imaging patterns when scanned over a focused field, because of their different plasmonic responses to the transverse and longitudinal electric fields. Such resonance-dependent spin-coupling enables the identification of nanoparticles using a focused field, as well as electric field mapping of a specific field component of a focused beam using a plasmonic nanoparticle. These interesting findings regarding the transverse spin coupling with a plasmonic nanoparticle may find valuable applications in near-field and nano-optics.

  8. Evolution of the Corrosion Morphology on AZ31B Tracked Electrochemically and by In Situ Microscopy in Chloride-Containing Media

    NASA Astrophysics Data System (ADS)

    Melia, M. A.; Cain, T. W.; Briglia, B. F.; Scully, J. R.; Fitz-Gerald, J. M.

    2017-11-01

    The evolution of open-circuit corrosion morphology as a function of immersion time for Mg alloy AZ31B in 0.6-M NaCl solution was investigated. Real-time optical microscopy accompanied by simultaneous electrochemical characterization was used to characterize the filiform corrosion (FFC) of AZ31B. Specifically, the behavior of propagating corrosion filaments on the metal surface was observed, and correlations among polarization resistance, filament propagation rates, open-circuit potential, and active coverage of local corrosion sites were revealed. Three distinct stages of corrosion were observed in 0.6-M NaCl. An initial passive region, during which a slow potential rise occurred (termed stage I), a second FFC region (termed stage II) with shallow penetrating, distinct filaments, and a final FFC region (termed stage III) with deeper penetrating filaments, aligned to form a linear front. The electrochemical properties of each stage are discussed, providing insights into the penetration rates and corrosion model.

  9. Polarized targeting of a shaker-like (A-type) K(+)-channel in the polarized epithelial cell line MDCK.

    PubMed

    Le Maout, S; Sewing, S; Coudrier, E; Elalouf, J M; Pongs, O; Merot, J

    1996-01-01

    Functional Kv 1-4 channels were stably expressed in filter-grown MDCK cells which form a polarized epithelium with two distinct plasma membrane domains: a basolateral and an apical cell surface. The Shaker-related Kv 1-4 channels mediated in MDCK cells fast transient (A-type) voltage-activated outward currents having similar properties to the ones reported for Kv 1-4 in the Xenopus oocytes expression system. Immunoblot analysis with specific anti-Kv 1-4 antibodies showed that two Kv 1-4 protein forms are expressed in MDCK cells which most likely represent the glycosylated and non-glycosylated Kv 1-4 protein, respectively. Using immunocytochemistry and confocal microscopy we showed that the Kv 1-4 channels are specifically localized in the basolateral membranes of MDCK cells. Thus, the MDCK cells may provide an important model system to analyse the polarized transport of ion channels such as Kv 1-4, which are distinctly expressed in the mammalian central nervous system.

  10. Universal Coatings Based on Zwitterionic-Dopamine Copolymer Microgels.

    PubMed

    Vatankhah-Varnosfaderani, Mohammad; Hu, Xiaobo; Li, Qiaoxi; Adelnia, Hossein; Ina, Maria; Sheiko, Sergei S

    2018-06-05

    Multifunctional coatings that adhere to chemically distinct substrates are vital in many industries, including automotive, aerospace, shipbuilding, construction, petrochemical, biomedical, and pharmaceutical. We design well-defined, nearly monodisperse microgels that integrate hydrophobic dopamine methacrylamide monomers and hydrophilic zwitterionic monomers. The dopamine functionalities operate as both intraparticle cross-linkers and interfacial binders, respectively providing mechanical strength of the coatings and their strong adhesion to different substrates. In tandem, the zwitterionic moieties enable surface hydration to empower antifouling and antifogging properties. Drop-casting of microgel suspensions in ambient as well as humid environments facilitates rapid film formation and tunable roughness through regulation of cross-linking density and deposition conditions.

  11. Nanoscale stiffness of individual dendritic molecules and their aggregates

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Shulha, Hennady; Zhai, Xiaowen

    2003-02-01

    We demonstrate that carefully designed micromapping of the surface stiffness with nanoscale resolution could reveal quantitative data on the elastic properties of compliant, dendritic organic molecules with nanoparticulate dimensions below 3 nm. Much higher elastic modulus was observed for individual, fourth generation dendritic molecules due to their more shape persistent conformation. Large, reversible, elastic deformation is a distinct characteristic of the nanomechanical response observed for individual dendritic molecules. Such a "rubbery" response could be an indication of spatial constraints imposed on vitrification of dendritic molecules tethered to the functionalized interface. Surprisingly, an increased stiffness was also found for the third generation dendritic molecules within long aggregates.

  12. 11.12 – Tools and techniques: gravitational method

    USGS Publications Warehouse

    Phillips, Jeffrey

    2015-01-01

    The gravitational method is used to investigate density variations within the subsurface at depths of several meters to tens of meters, as in depth-to-bedrock investigations, or at depths of several kilometers, as in sedimentary basin thickness investigations. This chapter covers fundamental relations, densities of Earth materials, instruments, field procedures, data reduction, filtering, forward modeling, inversion, and field examples. The focus is on near-surface investigations as distinct from the solid Earth studies found elsewhere in this treatise. The gravitational method is often used in conjunction with other geophysical methods, such as the magnetic method or the seismic method, which target similar physical properties at similar depths.

  13. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarillo-Herrero, Pablo

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulkmore » carriers in most TI compounds as well as degradation during device fabrication.« less

  14. Optical properties of BaTiO3 nanoparticles and silver nanoprisms in polymer host matrices

    NASA Astrophysics Data System (ADS)

    Requena, Sebastian

    Nanocomposites are materials comprised of a host matrix, such as glass or polymer, with embedded nanoparticles. Embedding nanoparticles into the host makes it possible to create materials with properties that are distinctly unique from those of their host and nanoparticle constituents. Nanocomposites can have superior mechanical, thermal, and optical properties compared to their host materials. We characterized the photoluminescent properties of BaTiO3 polymer nanocomposites and the effects of chemically modifying the nanoparticles surface on said properties. BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at ˜3.0 eV and multiple bands centered at ˜2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the ˜3.0 eV emission at low-temperature. On the other hand, polymer coating of the functionalized nanoparticles significantly enhances ˜3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at ˜2.5 eV. Chemical modification of the surface with 3APTS and PMMA presents a pathway to tune and control the photoluminescent properties of BTO nanoparticles. We also present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at ˜520 nm and the other with a dipole resonance at ˜650 nm, placed in different media. The silver nanoprisms were embedded in a polyvinyl alcohol (PVA) polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon stretching. Additionally, there is a weaker linear dichroism in the region associated with out-of-plane modes, which vanish in the extinction spectrum of the stretched nanocomposite film. Our results show that these silver nanoprisms are promising as key components in wavelength-specific depolarizers and depolarization-based assays.

  15. A investigation on unixial and quasi-biaxial tensile mechanical properties of aging HTPB propellant under dynamic loading at low temperature

    NASA Astrophysics Data System (ADS)

    Duan, Leiguang; Wang, Guang; Zhang, Guoxing; Sun, Xinya; Shang, Hehao

    2018-06-01

    In order to study the uniaxial and quasi-biaxial mechanical properties of aging solid propellants under low temperature and high strain rate, stress-strain curves and tensile fracture surfaces of HTPB propellant were obtained in a wide range of temperature (-30,25 °C) and strain rates (0.4,4.0 and 14.29 s-1), respectively, by means of uniaxial and biaxial tensile tests and electron microscopy scanning on the fracture cross section. The results indicate that the quasi-biaxial tensile mechanical properties of aging HTPB propellant is same as the uniaxial tensile mechanical properties influenced distinctly by temperature and strain rate. With decreasing temperature and increasing strain rate, the mechanical properties gradually strengthen. The damage for HTPB propellant changes from "dehumidification" to grain fracture. The initial elastic modulus E and maximum tensile stress σ of the uniaxial and biaxial tensile increase gradually with decreasing temperature and increasing strain rate, and well present linear-log function relation with strain rate. The ratio of quasi-biaxial and uniaxial stretching under different loading conditions was obtained so that the researchers could predict the quasi-biaxial tensile mechanical properties of the propellant based on the uniaxial test data.

  16. Characterization of a Louisiana Bay Bottom

    NASA Astrophysics Data System (ADS)

    Freeman, A. M.; Roberts, H. H.

    2016-02-01

    This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.

  17. Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces

    DOE PAGES

    Feng, Guang; Zhao, Wei; Cummings, Peter T.; ...

    2016-03-29

    Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presencemore » of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.« less

  18. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes

    NASA Astrophysics Data System (ADS)

    Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.

    2016-08-01

    The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.

  19. Spatial Variability in Enceladus' Plume Material Properties across Tiger Stripes: Observed Correlations and Implications

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Hedman, M. M.; Clark, R. N.; Postberg, F.

    2016-12-01

    The plume material emerging from Enceladus' south-pole has contributions from many sources distributed along four distinct fissures designated as Alexandria, Cairo, Baghdad and Damascus. In principle, the properties of the material escaping into the plume would depend upon the conditions within these individual fissures. Therefore, the particles emitted from different sources could have different properties. Indeed, observations made by the Visual and Infrared Mapping Spectrometer (VIMS) and Cosmic Dust Analyzer (CDA) instruments indicate differences in the water-ice grain sizes and abundance of organic-rich particles along the various fissures. These differences can be detected in both the plume surface deposits around the fissures [e.g. Brown et al., 2006; Jaumann et al, 2008] as well as in the active plume eruptions [Postberg et al., 2011; Dhingra et al., 2015, 2016]. Furthermore, these variations may represent systematic trends in particle size and organic content across the south polar terrain. We are analyzing these spatial correlations between different parameters and what they mean for the sub-surface environment in the active south polar terrain of Enceladus. Brown et al. (2006) Science, 311, 1425-1428Dhingra at al. (2015) 46th Lunar Planet. Sci. Conf., Abst#1648Dhingra et al. (2016) Icarus, under reviewJaumann et al. (2008) Icarus, 193, 407-419Postberg et al. (2011) Nature, 474, 620-622

  20. Understanding the dimensional and mechanical properties of coastal Langmuir Circulations

    NASA Astrophysics Data System (ADS)

    Shrestha, Kalyan; Kuehl, Joseph; Anderson, William

    2017-11-01

    Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.

  1. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors.

    PubMed

    Irkhin, P; Najafov, H; Podzorov, V

    2015-10-19

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of "gauge effect" in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors.

  2. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  3. tRNA acceptor stem and anticodon bases form independent codes related to protein folding

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2015-01-01

    Aminoacyl-tRNA synthetases recognize tRNA anticodon and 3′ acceptor stem bases. Synthetase Urzymes acylate cognate tRNAs even without anticodon-binding domains, in keeping with the possibility that acceptor stem recognition preceded anticodon recognition. Representing tRNA identity elements with two bits per base, we show that the anticodon encodes the hydrophobicity of each amino acid side-chain as represented by its water-to-cyclohexane distribution coefficient, and this relationship holds true over the entire temperature range of liquid water. The acceptor stem codes preferentially for the surface area or size of each side-chain, as represented by its vapor-to-cyclohexane distribution coefficient. These orthogonal experimental properties are both necessary to account satisfactorily for the exposed surface area of amino acids in folded proteins. Moreover, the acceptor stem codes correctly for β-branched and carboxylic acid side-chains, whereas the anticodon codes for a wider range of such properties, but not for size or β-branching. These and other results suggest that genetic coding of 3D protein structures evolved in distinct stages, based initially on the size of the amino acid and later on its compatibility with globular folding in water. PMID:26034281

  4. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    PubMed Central

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-01-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained. PMID:27922060

  5. Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency.

    PubMed

    Vaidya, Manushka V; Collins, Christopher M; Sodickson, Daniel K; Brown, Ryan; Wiggins, Graham C; Lattanzi, Riccardo

    2016-02-01

    In high field MRI, the spatial distribution of the radiofrequency magnetic ( B 1 ) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B 1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B 1 spatial distributions for surface coils and can provide guidance for RF engineers.

  6. Flocculation, heavy metals (Cu, Pb, Zn) and the sand-mud transition on the Adriatic continental shelf, Italy

    USGS Publications Warehouse

    George, D.A.; Hill, P.S.; Milligan, T.G.

    2007-01-01

    Across a limited depth range (5-10 m) on many continental shelves, the dominant sediment size changes from sand to mud. This important boundary, called the sand-mud transition (SMT), separates distinct benthic habitats, causes a significant change in acoustic backscatter, represents a key facies change, and delimits more surface-reactive mud from less surface-reactive sand. With the goal of improving dynamical understanding of the SMT, surficial sediments were characterized across two SMTs on the Adriatic continental shelf of Italy. Geometric mean diameter, specific surface area (SSA), mud fraction (<63 ??m) and heavy metal concentrations were all measured. The SMT related to the Tronto River is identified between 15 and 20 m water depth while the SMT associated with the Pescara River varies between 15 and 25 m water depth. The sediment properties correlate with a new, process-based sedimentological parameter that quantifies the fraction of the sediment in the seabed that was delivered as flocs. These correlations suggest that floc dynamics exert strong influence over sediment textural properties and metal concentrations. Relative constancy in the depth of the SMT along this portion of the margin and its lack of evolution over a period during which sediment input to the margin has dramatically decreased suggest that on the Adriatic continental shelf energy is the dominant control on the depth of the SMT. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Surfactants in the management of rhinopathologies

    PubMed Central

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  8. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system.

    PubMed

    Inostroza-Brito, Karla E; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H; Monge-Marcet, Amàlia; Ferreira, Daniela S; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S; Mata, Alvaro

    2015-11-01

    Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.

  9. Bulk properties of solution-synthesized chevron-like graphene nanoribbons.

    PubMed

    Vo, Timothy H; Shekhirev, Mikhail; Lipatov, Alexey; Korlacki, Rafal A; Sinitskii, Alexander

    2014-01-01

    Graphene nanoribbons (GNRs) have received a great deal of attention due to their promise for electronic and optoelectronic applications. Several recent studies have focused on the synthesis of GNRs by the bottom-up approaches that could yield very narrow GNRs with atomically precise edges. One type of GNRs that has received a considerable attention is the chevron-like GNR with a very distinct periodic structure. Surface-assisted and solution-based synthetic approaches for the chevron-like GNRs have been developed, but their electronic properties have not been reported yet. In this work, we synthesized chevron-like GNRs in bulk by a solution-based method, characterized them by a number of spectroscopic techniques and measured their bulk conductivity. We demonstrate that solution-synthesized chevron-like GNRs are electrically conductive in bulk, which makes them a potentially promising material for applications in organic electronics and photovoltaics.

  10. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system

    NASA Astrophysics Data System (ADS)

    Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro

    2015-11-01

    Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.

  11. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    NASA Astrophysics Data System (ADS)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  12. PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells.

    PubMed

    Prauzner-Bechcicki, Szymon; Raczkowska, Joanna; Madej, Ewelina; Pabijan, Joanna; Lukes, Jaroslav; Sepitka, Josef; Rysz, Jakub; Awsiuk, Kamil; Bernasik, Andrzej; Budkowski, Andrzej; Lekka, Małgorzata

    2015-01-01

    A deep understanding of the interaction between cancerous cells and surfaces is particularly important for the design of lab-on-chip devices involving the use of polydimethylsiloxane (PDMS). In our studies, the effect of PDMS substrate stiffness on mechanical properties of cancerous cells was investigated in conditions where the PDMS substrate is not covered with any of extracellular matrix proteins. Two human prostate cancer (Du145 and PC-3) and two melanoma (WM115 and WM266-4) cell lines were cultured on two groups of PDMS substrates that were characterized by distinct stiffness, i.e. 0.75 ± 0.06 MPa and 2.92 ± 0.12 MPa. The results showed the strong effect on cellular behavior and morphology. The detailed analysis of chemical and physical properties of substrates revealed that cellular behavior occurs only due to substrate elasticity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.

    PubMed

    Barakat, Nasser A M; Woo, Kee-Do; Kanjwal, Muzafar A; Choi, Kyung Eun; Khil, Myung Seob; Kim, Hak Yong

    2008-10-21

    In the present study, silver metal nanofibers have been successfully prepared by using the electrospinning technique. Silver nanofibers have been produced by electrospinning a sol-gel consisting of poly(vinyl alcohol) and silver nitrate. The dried nanofiber mats have been calcined at 850 degrees C in an argon atmosphere. The produced nanofibers do have distinct plasmon resonance compared with the reported silver nanoparticles. Contrary to the introduced shapes of silver nanoparticles, the nanofibers have a blue-shifted plasmon resonance at 330 nm. Moreover, the optical properties study indicated that the synthesized nanofibers have two band gap energies of 0.75 and 2.34 eV. An investigation of the electrical conductivity behavior of the obtained nanofibers shows thermal hystersis. These privileged physical features greatly widen the applications of the prepared nanofibers in various fields.

  14. Magnetotransport properties of a few-layer graphene-ferromagnetic metal junctions in vertical spin valve devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entani, Shiro, E-mail: entani.shiro@jaea.go.jp; Naramoto, Hiroshi; Sakai, Seiji

    2015-05-07

    Magnetotransport properties were studied for the vertical spin valve devices with two junctions of permalloy electrodes and a few-layer graphene interlayer. The graphene layer was directly grown on the bottom electrode by chemical vapor deposition. X-ray photoelectron spectroscopy showed that the permalloy surface fully covered with a few-layer graphene is kept free from oxidation and contamination even after dispensing and removing photoresist. This enabled fabrication of the current perpendicular to plane spin valve devices with a well-defined interface between graphene and permalloy. Spin-dependent electron transport measurements revealed a distinct spin valve effect in the devices. The magnetotransport ratio was 0.8%more » at room temperature and increased to 1.75% at 50 K. Linear current-voltage characteristics and resistance increase with temperature indicated that ohmic contacts are realized at the relevant interfaces.« less

  15. Porphyrins at interfaces

    NASA Astrophysics Data System (ADS)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  16. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  17. Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.

  18. Electrochemical DNA hybridization sensors based on conducting polymers.

    PubMed

    Rahman, Md Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-02-05

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  19. Property content guides children's memory for social learning episodes.

    PubMed

    Riggs, Anne E; Kalish, Charles W; Alibali, Martha W

    2014-05-01

    How do children's interpretations of the generality of learning episodes affect what they encode? In the present studies, we investigated the hypothesis that children encode distinct aspects of learning episodes containing generalizable and non-generalizable properties. Two studies with preschool (N=50) and young school-aged children (N=49) reveal that their encoding is contingent on the generalizability of the property they are learning. Children remembered generalizable properties (e.g., morphological or normative properties) more than non-generalizable properties (e.g., historical events or preferences). Conversely, they remembered category exemplars associated with non-generalizable properties more than category exemplars associated with generalizable properties. The findings highlight the utility of remembering distinct aspects of social learning episodes for children's future generalization. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Investigations of the Electronic, Vibrational and Structural Properties of Single and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Lui, Chun Hung

    Single and few-layer graphene (SLG and FLG) have stimulated great scientific interest because of their distinctive properties and potential for novel applications. In this dissertation, we investigate the mechanical, electronic and vibrational properties of these remarkable materials by various techniques, including atomic-force microscopy (AFM) and Raman, infrared (IR), and ultrafast optical spectroscopy. With respect to its mechanical properties, SLG is known to be capable of undergoing significant mechanical deformation. We have applied AFM to investigate how the morphology of SLG is influenced by the substrate on which it is deposited. We have found that SLG is strongly affected by the morphology of the underlying supporting surface. In particular, SLG deposited on atomically flat surfaces of mica substrates exhibits an ultraflat morphology, with height variation essentially indistinguishable from that observed for the surface of cleaved graphite. One of the most distinctive aspects of SLG is its spectrum of electronic excitations, with its characteristic linear energy-momentum dispersion relation. We have examined the dynamics of the corresponding Dirac fermions by optical emission spectroscopy. By analyzing the spectra of light emission induced in the spectral visible range by 30-femtosecond laser pulses, we find that the charge carriers in graphene cool by the emission of strongly coupled optical phonons in a few 10's of femtoseconds and thermalize among themselves even more rapidly. The charge carriers and the strongly coupled optical phonons are thus essentially in thermal equilibrium with one another on the picosecond time scale, but can be driven strongly out of equilibrium with the other phonons in the system. Temperatures exceeding 3000 K are achieved for the subsystem of the charge carriers and optical phonons under femtosecond laser excitation. While SLG exhibits remarkable physical properties, its few-layer counterparts are also of great interest. In particular, FLG can exist in various crystallographic stacking sequences, which strongly influence the material's electronic properties. We have developed an accurate and convenient method of characterizing stacking order in FLG using the lineshape of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and rhombohedral (ABC) stacking in trilayer and tetralayer graphene. We find that 15% of exfoliated graphene trilayers and tetralayers are comprised of micrometer-sized domains of rhombohedral stacking, rather than of usual Bernal stacking. The accurate identification of stacking domains in FLG allows us to investigate the influence of stacking order on the material's electronic properties. In particular, we have studied by means of IR spectroscopy the possibility of opening a band gap by the application of a strong perpendicular electric field in trilayer graphene. We observe an electrically tunable band gap exceeding 100 meV in ABC trilayers, while no band gap is found for ABA trilayers. We have also studied the influence of layer thickness and stacking order on the Raman response of the out-of-plane vibrations in FLG. We observe a Raman combination mode that involves the layer-breathing vibrations in FLG. This Raman mode is absent in SLG and exhibits a lineshape that depends sensitively on both the material's layer thickness and stacking sequence.

  1. Transfer of Fas (CD95) protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    PubMed Central

    Sawai, H.; Domae, N.

    2010-01-01

    Mouse monoclonal anti-Fas (CD95) antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11. PMID:20353915

  2. On the merging of optical and SAR satellite imagery for surface water mapping applications

    NASA Astrophysics Data System (ADS)

    Markert, Kel N.; Chishtie, Farrukh; Anderson, Eric R.; Saah, David; Griffin, Robert E.

    2018-06-01

    Optical and Synthetic Aperture Radar (SAR) imagery from satellite platforms provide a means to discretely map surface water; however, the application of the two data sources in tandem has been inhibited by inconsistent data availability, the distinct physical properties that optical and SAR instruments sense, and dissimilar data delivery platforms. In this paper, we describe a preliminary methodology for merging optical and SAR data into a common data space. We apply our approach over a portion of the Mekong Basin, a region with highly variable surface water cover and persistent cloud cover, for surface water applications requiring dense time series analysis. The methods include the derivation of a representative index from both sensors that transforms data from disparate physical units (reflectance and backscatter) to a comparable dimensionless space applying a consistent water extraction approach to both datasets. The merging of optical and SAR data allows for increased observations in cloud prone regions that can be used to gain additional insight into surface water dynamics or flood mapping applications. This preliminary methodology shows promise for a common optical-SAR water extraction; however, data ranges and thresholding values can vary depending on data source, yielding classification errors in the resulting surface water maps. We discuss some potential future approaches to address these inconsistencies.

  3. a Cost-Effective Method for Crack Detection and Measurement on Concrete Surface

    NASA Astrophysics Data System (ADS)

    Sarker, M. M.; Ali, T. A.; Abdelfatah, A.; Yehia, S.; Elaksher, A.

    2017-11-01

    Crack detection and measurement in the surface of concrete structures is currently carried out manually or through Non-Destructive Testing (NDT) such as imaging or scanning. The recent developments in depth (stereo) cameras have presented an opportunity for cost-effective, reliable crack detection and measurement. This study aimed at evaluating the feasibility of the new inexpensive depth camera (ZED) for crack detection and measurement. This depth camera with its lightweight and portable nature produces a 3D data file of the imaged surface. The ZED camera was utilized to image a concrete surface and the 3D file was processed to detect and analyse cracks. This article describes the outcome of the experiment carried out with the ZED camera as well as the processing tools used for crack detection and analysis. Crack properties that were also of interest were length, orientation, and width. The use of the ZED camera allowed for distinction between surface and concrete cracks. The ZED high-resolution capability and point cloud capture technology helped in generating a dense 3D data in low-lighting conditions. The results showed the ability of the ZED camera to capture the crack depth changes between surface (render) cracks, and crack that form in the concrete itself.

  4. Accuracy and speed of material categorization in real-world images.

    PubMed

    Sharan, Lavanya; Rosenholtz, Ruth; Adelson, Edward H

    2014-08-13

    It is easy to visually distinguish a ceramic knife from one made of steel, a leather jacket from one made of denim, and a plush toy from one made of plastic. Most studies of material appearance have focused on the estimation of specific material properties such as albedo or surface gloss, and as a consequence, almost nothing is known about how we recognize material categories like leather or plastic. We have studied judgments of high-level material categories with a diverse set of real-world photographs, and we have shown (Sharan, 2009) that observers can categorize materials reliably and quickly. Performance on our tasks cannot be explained by simple differences in color, surface shape, or texture. Nor can the results be explained by observers merely performing shape-based object recognition. Rather, we argue that fast and accurate material categorization is a distinct, basic ability of the visual system. © 2014 ARVO.

  5. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  6. Computational modeling of in vitro biological responses on polymethacrylate surfaces

    PubMed Central

    Ghosh, Jayeeta; Lewitus, Dan Y; Chandra, Prafulla; Joy, Abraham; Bushman, Jared; Knight, Doyle; Kohn, Joachim

    2011-01-01

    The objective of this research was to examine the capabilities of QSPR (Quantitative Structure Property Relationship) modeling to predict specific biological responses (fibrinogen adsorption, cell attachment and cell proliferation index) on thin films of different polymethacrylates. Using 33 commercially available monomers it is theoretically possible to construct a library of over 40,000 distinct polymer compositions. A subset of these polymers were synthesized and solvent cast surfaces were prepared in 96 well plates for the measurement of fibrinogen adsorption. NIH 3T3 cell attachment and proliferation index were measured on spin coated thin films of these polymers. Based on the experimental results of these polymers, separate models were built for homo-, co-, and terpolymers in the library with good correlation between experiment and predicted values. The ability to predict biological responses by simple QSPR models for large numbers of polymers has important implications in designing biomaterials for specific biological or medical applications. PMID:21779132

  7. Phenol adsorption by activated carbon produced from spent coffee grounds.

    PubMed

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.

  8. Unveiling Extreme Anisotropy in Elastic Structured Media

    NASA Astrophysics Data System (ADS)

    Lefebvre, G.; Antonakakis, T.; Achaoui, Y.; Craster, R. V.; Guenneau, S.; Sebbah, P.

    2017-06-01

    Periodic structures can be engineered to exhibit unique properties observed at symmetry points, such as zero group velocity, Dirac cones, and saddle points; identifying these and the nature of the associated modes from a direct reading of the dispersion surfaces is not straightforward, especially in three dimensions or at high frequencies when several dispersion surfaces fold back in the Brillouin zone. A recently proposed asymptotic high-frequency homogenization theory is applied to a challenging time-domain experiment with elastic waves in a pinned metallic plate. The prediction of a narrow high-frequency spectral region where the effective medium tensor dramatically switches from positive definite to indefinite is confirmed experimentally; a small frequency shift of the pulse carrier results in two distinct types of highly anisotropic modes. The underlying effective equation mirrors this behavior with a change in form from elliptic to hyperbolic exemplifying the high degree of wave control available and the importance of a simple and effective predictive model.

  9. Accuracy and speed of material categorization in real-world images

    PubMed Central

    Sharan, Lavanya; Rosenholtz, Ruth; Adelson, Edward H.

    2014-01-01

    It is easy to visually distinguish a ceramic knife from one made of steel, a leather jacket from one made of denim, and a plush toy from one made of plastic. Most studies of material appearance have focused on the estimation of specific material properties such as albedo or surface gloss, and as a consequence, almost nothing is known about how we recognize material categories like leather or plastic. We have studied judgments of high-level material categories with a diverse set of real-world photographs, and we have shown (Sharan, 2009) that observers can categorize materials reliably and quickly. Performance on our tasks cannot be explained by simple differences in color, surface shape, or texture. Nor can the results be explained by observers merely performing shape-based object recognition. Rather, we argue that fast and accurate material categorization is a distinct, basic ability of the visual system. PMID:25122216

  10. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Zhang, Baile

    2016-11-01

    Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.

  11. Genus Ranges of Chord Diagrams

    PubMed Central

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-01-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges. PMID:26478650

  12. Genus Ranges of Chord Diagrams.

    PubMed

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-04-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.

  13. Three-dimensional graphdiyne as a topological nodal-line semimetal

    NASA Astrophysics Data System (ADS)

    Nomura, Takafumi; Habe, Tetsuro; Sakamoto, Ryota; Koshino, Mikito

    2018-05-01

    We study the electronic band structure of three-dimensional ABC-stacked (rhombohedral) graphdiyne, which is a new planar carbon allotrope recently fabricated. Using first-principles calculation, we show that the system is a nodal-line semimetal, in which the conduction band and valence band cross at a closed ring in the momentum space. We derive the minimum tight-binding model and the low-energy effective Hamiltonian in a 4 ×4 matrix form. The nodal line is protected by a nontrivial winding number, and it ensures the existence of the topological surface state in a finite-thickness slab. The Fermi surface of the doped system exhibits a peculiar, self-intersecting hourglass structure, which is quite different from the torus or pipe shape in the previously proposed nodal semimetals. Despite its simple configuration, three-dimensional graphdiyne offers unique electronic properties distinct from any other carbon allotropes.

  14. Fe 2O 3-Au hybrid nanoparticles for sensing applications via sers analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona Hunyadi; Searles, Emily

    2017-06-25

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctionalmore » iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.« less

  15. Low-power, high-uniform, and forming-free resistive memory based on Mg-deficient amorphous MgO film with rough surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu

    2018-03-01

    Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.

  16. Spontaneous recovery of superhydrophobicity on nanotextured surfaces

    PubMed Central

    Prakash, Suruchi; Xi, Erte; Patel, Amish J.

    2016-01-01

    Rough or textured hydrophobic surfaces are dubbed “superhydrophobic” due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion of water for the hydrophobic surface texture, so that a water droplet in the superhydrophobic “Cassie state” contacts only the tips of the rough surface. However, superhydrophobicity is remarkably fragile and can break down due to the wetting of the surface texture to yield the “Wenzel state” under various conditions, such as elevated pressures or droplet impact. Moreover, due to large energetic barriers that impede the reverse transition (dewetting), this breakdown in superhydrophobicity is widely believed to be irreversible. Using molecular simulations in conjunction with enhanced sampling techniques, here we show that on surfaces with nanoscale texture, water density fluctuations can lead to a reduction in the free energetic barriers to dewetting by circumventing the classical dewetting pathways. In particular, the fluctuation-mediated dewetting pathway involves a number of transitions between distinct dewetted morphologies, with each transition lowering the resistance to dewetting. Importantly, an understanding of the mechanistic pathways to dewetting and their dependence on pressure allows us to augment the surface texture design, so that the barriers to dewetting are eliminated altogether and the Wenzel state becomes unstable at ambient conditions. Such robust surfaces, which defy classical expectations and can spontaneously recover their superhydrophobicity, could have widespread importance, from underwater operation to phase-change heat transfer applications. PMID:27140619

  17. A chemical equilibrium model for metal adsorption onto bacterial surfaces

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.

    1997-08-01

    This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.

  18. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; Jakosky, B.M.; Mellon, M.T.; Pearl, J.C.; Conrath, B.J.; Smith, M.D.; Clancy, R.T.; Kuzmin, R.O.; Roush, T.; Mehall, G.L.; Gorelick, N.; Bender, K.; Murray, K.; Dason, S.; Greene, E.; Silverman, S.; Greenfield, M.

    2001-01-01

    The Thermal Emission Spectrometer (TES) investigation on Mars Global Surveyor (MGS) is aimed at determining (1) the composition of surface minerals, rocks, and ices; (2) the temperature and dynamics of the atmosphere; (3) the properties of the atmospheric aerosols and clouds; (4) the nature of the polar regions; and (5) the thermophysical properties of the surface materials. These objectives are met using an infrared (5.8- to 50-??m) interferometric spectrometer, along with broadband thermal (5.1-to 150-??m) and visible/near-IR (0.3- to 2.9-??m) radiometers. The MGS TES instrument weighs 14.47 kg, consumes 10.6 W when operating, and is 23.6 ?? 35.5 ?? 40.0 cm in size. The TES data are calibrated to a 1-?? precision of 2.5-6 ?? 10-8 W cm-2 sr-1/cm-1, 1.6 ?? 10-6 W cm-2 sr-1, and ???0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively. These instrument subsections are calibrated to an absolute accuracy of ???4 ?? 10-8 W cm-2 sr-1/cm-1 (0.5 K at 280 K), 1-2%, and ???1-2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-??m) carbonates exposed at the surface at a detection limit of ???10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above a detection limit of 7sim;10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of ???15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified low-inertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock. Copyright 2001 by the American Geophysical Union.

  19. Nanoparticles-cell association predicted by protein corona fingerprints

    NASA Astrophysics Data System (ADS)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells. Electronic supplementary information (ESI) available: Table S1. Cell viability (%) and cell association of the different nanoparticles used. Table S2. Total number of identified proteins on the different nanoparticles used. Tables S3-S18. Top 25 most abundant corona proteins identified in the protein corona of nanoparticles NP2-NP16 following 1 hour incubation with HP. Table S19. List of descriptors used. Table S20. Potential targets of protein corona fingerprints with its own interaction score (mentha) and the expression median value in Hela cells. Fig. S1 and S2. Effect of exposure to human plasma on size and zeta potential of NPs. Fig. S3. Predictive modeling of nanoparticle-cell association. See DOI: 10.1039/c6nr03898k

  20. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

    PubMed Central

    Yang, Lili; Yang, Yong; Ma, Yunfeng; Li, Shuai; Wei, Yuquan; Huang, Zhengren; Long, Nguyen Viet

    2017-01-01

    Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF) of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions). Finally, we present an overview of ZnO nanostructures for the versatile SERS application. PMID:29156600

  1. Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer.

    PubMed

    Liu, Xiang-Yang; Zhang, Ya-Hui; Fang, Wei-Hai; Cui, Ganglong

    2018-06-28

    Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.

  2. Multiple conformations of the cytidine repressor DNA-binding domain coalesce to one upon recognition of a specific DNA surface.

    PubMed

    Moody, Colleen L; Tretyachenko-Ladokhina, Vira; Laue, Thomas M; Senear, Donald F; Cocco, Melanie J

    2011-08-09

    The cytidine repressor (CytR) is a member of the LacR family of bacterial repressors with distinct functional features. The Escherichia coli CytR regulon comprises nine operons whose palindromic operators vary in both sequence and, most significantly, spacing between the recognition half-sites. This suggests a strong likelihood that protein folding would be coupled to DNA binding as a mechanism to accommodate the variety of different operator architectures to which CytR is targeted. Such coupling is a common feature of sequence-specific DNA-binding proteins, including the LacR family repressors; however, there are no significant structural rearrangements upon DNA binding within the three-helix DNA-binding domains (DBDs) studied to date. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the CytR DBD free in solution and to determine the high-resolution structure of a CytR DBD monomer bound specifically to one DNA half-site of the uridine phosphorylase (udp) operator. We find that the free DBD populates multiple distinct conformations distinguished by up to four sets of NMR peaks per residue. This structural heterogeneity is previously unknown in the LacR family. These stable structures coalesce into a single, more stable udp-bound form that features a three-helix bundle containing a canonical helix-turn-helix motif. However, this structure differs from all other LacR family members whose structures are known with regard to the packing of the helices and consequently their relative orientations. Aspects of CytR activity are unique among repressors; we identify here structural properties that are also distinct and that might underlie the different functional properties. © 2011 American Chemical Society

  3. Anti-inflammatory drugs and prediction of new structures by comparative analysis.

    PubMed

    Bartzatt, Ronald

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of agents important for their analgesic, anti-inflammatory, and antipyretic properties. This study presents several approaches to predict and elucidate new molecular structures of NSAIDs based on 36 known and proven anti-inflammatory compounds. Based on 36 known NSAIDs the mean value of Log P is found to be 3.338 (standard deviation= 1.237), mean value of polar surface area is 63.176 Angstroms2 (standard deviation = 20.951 A2), and the mean value of molecular weight is 292.665 (standard deviation = 55.627). Nine molecular properties are determined for these 36 NSAID agents, including Log P, number of -OH and -NHn, violations of Rule of 5, number of rotatable bonds, and number of oxygens and nitrogens. Statistical analysis of these nine molecular properties provides numerical parameters to conform to in the design of novel NSAID drug candidates. Multiple regression analysis is accomplished using these properties of 36 agents followed with examples of predicted molecular weight based on minimum and maximum property values. Hierarchical cluster analysis indicated that licofelone, tolfenamic acid, meclofenamic acid, droxicam, and aspirin are substantially distinct from all remaining NSAIDs. Analysis of similarity (ANOSIM) produced R = 0.4947, which indicates low to moderate level of dissimilarity between these 36 NSAIDs. Non-hierarchical K-means cluster analysis separated the 36 NSAIDs into four groups having members of greatest similarity. Likewise, discriminant analysis divided the 36 agents into two groups indicating the greatest level of distinction (discrimination) based on nine properties. These two multivariate methods together provide investigators a means to compare and elucidate novel drug designs to 36 proven compounds and ascertain to which of those are most analogous in pharmacodynamics. In addition, artificial neural network modeling is demonstrated as an approach to predict numerous molecular properties of new drug designs that is based on neural training from 36 proven NSAIDs. Comprehensive and effective approaches are presented in this study for the design of new NSAID type agents which are so very important for inhibition of COX-2 and COX-1 isoenzymes.

  4. Light driven mesoscale assembly of a coordination polymeric gelator into flowers and stars with distinct properties.

    PubMed

    Mukhopadhyay, Rahul Dev; Praveen, Vakayil K; Hazra, Arpan; Maji, Tapas Kumar; Ajayaghosh, Ayyappanpillai

    2015-11-13

    Control over the self-assembly process of porous organic-inorganic hybrids often leads to unprecedented polymorphism and properties. Herein we demonstrate how light can be a powerful tool to intervene in the kinetically controlled mesoscale self-assembly of a coordination polymeric gelator. Ultraviolet light induced coordination modulation via photoisomerisation of an azobenzene based dicarboxylate linker followed by aggregation mediated crystal growth resulted in two distinct morphological forms (flowers and stars), which show subtle differences in their physical properties.

  5. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity.

    PubMed

    Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven

    2011-06-01

    The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance. © 2011 American Chemical Society

  6. A first principles investigation of electron transfer between Fe(II) and U(VI) on insulating Al- vs. semiconducting Fe-oxide surfaces via the proximity effect

    NASA Astrophysics Data System (ADS)

    Taylor, S. D.; Marcano, M. C.; Becker, U.

    2017-01-01

    This study investigates how the intrinsic chemical and electronic properties of mineral surfaces and their associated electron transfer (ET) pathways influence the reduction of U(VI) by surface-associated Fe(II). Density functional theory (DFT), including the Hubbard U correction to the exchange-correlation functional, was used to investigate sorption/redox reactions and ET mechanisms between Fe(II) and U(VI) coadsorbed on isostructural, periodic (0 0 1) surfaces of the insulator corundum (α-Al2O3) vs. the semiconductor hematite (α-Fe2O3). Furthermore, the coadsorbed Fe(II) and U(VI) ions are spatially separated from one another on the surfaces (⩾5.9 Å) to observe whether electronic-coupling through the semiconducting hematite surface facilitates ET between the adsorbates, a phenomenon known as the proximity effect. The calculations show that the different chemical and electronic properties between the isostructural corundum and hematite (0 0 1) surfaces lead to considerably different ET mechanisms between Fe(II) and U(VI). ET on the insulating corundum (0 0 1) surface is limited by the adsorbates' structural configuration. When Fe(II) and U(VI) are spatially separated and do not directly interact with one another (e.g. via an inner-sphere complex), U(VI) reduction by Fe(II) cannot occur as there is no physical pathway enabling ET between the adsorbates. In contrast to the insulating corundum (0 0 1) surface, the hematite (0 0 1) surface can potentially participate in ET reactions due to the high number of electron acceptor sites from the Fe d-states near the Fermi level at the hematite surface. The adsorption of Fe(II) also introduces d-states near the Fermi level as well as shifts unoccupied d-states of the Fe cations at the hematite surface to lower energies, making the surface more conductive. In turn, electronic coupling through the surface can link the spatially separated adsorbates to one another and provide distinct ET pathways for an electron from Fe(II) to travel through the hematite surface and reach U(VI). The progression and extent of ET occurring on the semiconducting hematite (0 0 1) surface via the proximity effect depends on the electronic properties of the surface. ET between the spatially separated U(VI) and Fe(II) occurs most readily when orbitals between the Fe and U adsorbates overlap with those of neighboring O and Fe ions at the hematite surface, as shown by calculations without the Hubbard U correction. Analyses of the spins densities confirm that the U and Fe adsorbates were reduced and oxidized, respectively, (acquiring 0.33 μB and 0.11-0.20 μB, respectively), while Fe cations at the hematite surface were reduced (losing ⩽0.6 μB). If electrons are highly localized, the amount of orbital mixing and electronic coupling through the hematite surface decreases and in turn leads to a lower degree of spin transfer, as predicted by calculations with the Hubbard U correction. Thus, the proximity effect is a potential mechanism on semiconducting surfaces facilitating surface-mediated redox reactions, although its significance varies depending on the electronic properties and subsequent charge-carrying ability of the surface. These results provide insight into ET pathways and mechanisms on insulating Al- and semiconducting Fe oxide surfaces influencing the reduction U(VI) by Fe(II) that may subsequently limit uranium's transport in the subsurface.

  7. 0.7-2.5 μm Spectra of Hilda Asteroids

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.; Emery, Joshua P.

    2017-09-01

    The Hilda asteroids are primitive bodies in resonance with Jupiter whose origin and physical properties are not well understood. Current models posit that these asteroids formed in the outer solar system and were scattered along with the Jupiter Trojans into their present-day positions during a chaotic episode of dynamical restructuring. In order to explore the surface composition of these enigmatic objects in comparison with an analogous study of Trojans, we present new near-infrared spectra (0.7-2.5 μm) of 25 Hilda asteroids. No discernible absorption features are apparent in the data. Synthesizing the bimodalities in optical color and infrared reflectivity reported in previous studies, we classify 26 of the 28 Hildas in our spectral sample into the so-called less-red and red sub-populations and find that the two sub-populations have distinct average spectral shapes. Combining our results with visible spectra, we find that Trojans and Hildas possess similar overall spectral shapes, suggesting that the two minor body populations share a common progenitor population. A more detailed examination reveals that while the red Trojans and Hildas have nearly identical spectra, less-red Hildas are systematically bluer in the visible and redder in the near-infrared than less-red Trojans, indicating a putative broad, shallow absorption feature between 0.5 and 1.0 μm. We argue that the less-red and red objects found in both Hildas and Trojans represent two distinct surface chemistries and attribute the small discrepancy between less-red Hildas and Trojans to the difference in surface temperatures between the two regions.

  8. 0.7–2.5 μ m Spectra of Hilda Asteroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ian; Brown, Michael E.; Emery, Joshua P., E-mail: iwong@caltech.edu

    The Hilda asteroids are primitive bodies in resonance with Jupiter whose origin and physical properties are not well understood. Current models posit that these asteroids formed in the outer solar system and were scattered along with the Jupiter Trojans into their present-day positions during a chaotic episode of dynamical restructuring. In order to explore the surface composition of these enigmatic objects in comparison with an analogous study of Trojans, we present new near-infrared spectra (0.7–2.5 μ m) of 25 Hilda asteroids. No discernible absorption features are apparent in the data. Synthesizing the bimodalities in optical color and infrared reflectivity reportedmore » in previous studies, we classify 26 of the 28 Hildas in our spectral sample into the so-called less-red and red sub-populations and find that the two sub-populations have distinct average spectral shapes. Combining our results with visible spectra, we find that Trojans and Hildas possess similar overall spectral shapes, suggesting that the two minor body populations share a common progenitor population. A more detailed examination reveals that while the red Trojans and Hildas have nearly identical spectra, less-red Hildas are systematically bluer in the visible and redder in the near-infrared than less-red Trojans, indicating a putative broad, shallow absorption feature between 0.5 and 1.0  μ m. We argue that the less-red and red objects found in both Hildas and Trojans represent two distinct surface chemistries and attribute the small discrepancy between less-red Hildas and Trojans to the difference in surface temperatures between the two regions.« less

  9. Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors.

    PubMed

    Anderson, David Ebo; Balapangu, Srinivasan; Fleischer, Heidimarie N A; Viade, Ruth A; Krampa, Francis D; Kanyong, Prosper; Awandare, Gordon A; Tiburu, Elvis K

    2017-08-08

    Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N₂ adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C to range from 1.92 nm to 2.45 nm and 0.012 cm³/g to 0.061 cm³/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m²/g, 67 m²/g and 113 m²/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m²/g, 0.762 cm³/g and 4.92 nm, 389 m²/g, 0.837 cm³/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites' molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature and pH, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications.

  10. Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors

    PubMed Central

    Anderson, David Ebo; Balapangu, Srinivasan; Fleischer, Heidimarie N. A.; Viade, Ruth A.; Awandare, Gordon A.; Tiburu, Elvis K.

    2017-01-01

    Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N2 adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C to range from 1.92 nm to 2.45 nm and 0.012 cm3/g to 0.061 cm3/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m2/g, 67 m2/g and 113 m2/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m2/g, 0.762 cm3/g and 4.92 nm, 389 m2/g, 0.837 cm3/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites’ molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature and pH, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications. PMID:28786961

  11. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.

    PubMed

    Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O

    2016-10-15

    Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.

  12. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.

    PubMed

    Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly

    2017-01-01

    Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.

  13. RABA Members Act in Distinct Steps of Subcellular Trafficking of the FLAGELLIN SENSING2 Receptor[W

    PubMed Central

    Choi, Seung-won; Tamaki, Takayuki; Ebine, Kazuo; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko

    2013-01-01

    Cell surface proteins play critical roles in the perception of environmental stimuli at the plasma membrane (PM) and ensuing signal transduction. Intracellular localization of such proteins must be strictly regulated, which requires elaborate integration of exocytic and endocytic trafficking pathways. Subcellular localization of Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a receptor that recognizes bacterial flagellin, also depends on membrane trafficking. However, our understanding about the mechanisms involved is still limited. In this study, we visualized ligand-induced endocytosis of FLS2 using green fluorescent protein (GFP)-tagged FLS2 expressed in Nicotiana benthamiana. Upon treatment with the flg22 peptide, internalized FLS2-GFP from the PM was transported to a compartment with properties intermediate between the trans-Golgi network (TGN) and the multivesicular endosome. This compartment gradually discarded the TGN characteristics as it continued along the trafficking pathway. We further found that FLS2 endocytosis involves distinct RABA/RAB11 subgroups at different steps. Moreover, we demonstrated that transport of de novo–synthesized FLS2 to the PM also involves a distinct RABA/RAB11 subgroup. Our results demonstrate the complex regulatory system for properly localizing FLS2 and functional differentiation in RABA members in endo- and exocytosis. PMID:23532067

  14. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing

    PubMed Central

    Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly

    2017-01-01

    Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities. PMID:28403171

  15. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths

    PubMed Central

    Zhang, Dawei; Giese, Melissa L.; Prukop, Stacy L.; Grunlan, Melissa A.

    2012-01-01

    Thermoresponsive shape memory polymers (SMPs) are stimuli-responsive materials that return to their permanent shape from a temporary shape in response to heating. The design of new SMPs which obtain a broader range of properties including mechanical behavior is critical to realize their potential in biomedical as well as industrial and aerospace applications. To tailor the properties of SMPs, “AB networks” comprised of two distinct polymer components have been investigated but are overwhelmingly limited to those in which both components are organic. In this present work, we prepared inorganic-organic SMPs comprised of inorganic polydimethyl-siloxane (PDMS) segments of varying lengths and organic poly(ε-caprolactone) (PCL) segments. PDMS has a particularly low Tg (−125 °C) which makes it a particularly effective soft segment to tailor the mechanical properties of PCL-based SMPs. The SMPs were prepared via the rapid photocure of solutions of diacrylated PCL40-block-PDMSm-block-PCL40 macromers (m = 20, 37, 66 and 130). The resulting inorganic-organic SMP networks exhibited excellent shape fixity and recovery. By changing the PDMS segment length, the thermal, mechanical, and surface properties were systematically altered. PMID:22904597

  16. Titan Haze

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation and seasonal change in the stratosphere. The book chapter associated with this talk will also present new material on thermal-infrared data analysis and on new developments in laboratory work and haze microphysical modeling.

  17. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Choudhary, R. J.; Singh, V. N.; Tomar, M.; Gupta, Vinay; Kumar, Ashok

    2015-08-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr0.52Ti0.48)0.60(Fe0.67W0.33).40]O3]0.80-[CoFe2O4]0.20 (PZTFW-CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4-350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (˜0.4-0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (TB). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite.

  18. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    PubMed Central

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  19. Modification of graphene oxide with amphiphilic double-crystalline block copolymer polyethylene-b-poly(ethylene oxide) with assistance of supercritical CO2 and its further functionalization.

    PubMed

    Zheng, Xiaoli; Xu, Qun; He, Linghao; Yu, Ning; Wang, Shanshan; Chen, Zhimin; Fu, JianWei

    2011-05-19

    Graphene oxide (GO) sheets were noncovalently modified with an amphiphilic double-crystalline block copolymer, polyethylene-b-poly(ethylene oxide) (PE-b-PEO) with assistance of supercritical CO(2) (SC CO(2)) in this work. The resulting PE-b-PEO/GO nanohybrids were characterized by transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. Distinct morphologies of PE-b-PEO decorating on the surface of GO were obtained in different solvent systems and at different SC CO(2) pressures. We found that the solvent system and the SC CO(2) have significant influence on the crystallization, aggregation, or assembly behaviors of PE-b-PEO molecular chains on the GO sheets. The formation mechanism of the distinct nanohybrid structures is attributed to a relevant easy heteronucleation and the limited crystal growth of the block polymer on the surface of GO. The resulting modified GO sheets could find a broad spectrum of applications not only in producing graphene-based nanocomposites but also being used as a template to fabricate multifunctional structures due to the unique properties of PE-b-PEO. As a proof-of-concept, we further decorated the GO sheets with the as-prepared Au nanoparticles (Au NPs) and CdTe nanoparticles (CdTe NPs) with PE-b-PEO as the interlinker. Using the thiol-terminated PE-b-PEO as an interlinker, Au NPs can be densely assembled on the surface of GO via robust Au-S bonds. Furthermore, the photoluminescence quenching of CdTe NPs was more notable for PE-b-PEO/GO-CdTe hybrid compared to the GO-CdTe hybrid, suggesting that the electron transfer from the CdTe NPs to the GO sheets was enhanced with the PE-b-PEO interlinker. The availability of these affordable graphene-based multifunctional structures and their fundamental properties will open up new opportunities for nanoscience and nanotechnology and accelerate their applications. © 2011 American Chemical Society

  20. Heterofunctional nanosheet controlling cell adhesion properties by collagen coating.

    PubMed

    Niwa, Daisuke; Fujie, Toshinori; Lang, Thorsten; Goda, Nobuhito; Takeoka, Shinji

    2012-08-01

    Recently, biomaterials have been widely used in a variety of medical applications. We previously reported that a poly-l-lactic acid (PLLA) nanosheet shows anti-adhesive properties and constitutes a useful biomaterial for preventing unwanted wound adhesion in surgical operations. In this article, we examine whether the PLLA nanosheet can be specifically modified with biomacromolecules on one surface only. Such an approach would endow each side of the nanosheet with discrete functions, that is anti-adhesive and pro-healing properties. We fabricated two distinct PLLA nanosheets: (i) collagen cast on the surface of a PLLA nanosheet (Col-Cast-PLLA) and (ii) collagen spin-coated on the nanosheet (Col-Spin-PLLA). In the Col-Spin-PLLA nanosheet, the collagen layer had a thickness of 5-10 nm on the PLLA surface and displayed increased hydrophilicity compared to both PLLA and Col-Cast-PLLA nanosheets. In addition, atomic force microscopy showed disorganized collagen fibril formation on the PLLA layer when covered using the spin-coating method, while apparent bundle formations of collagen were formed in the Col-Cast-PLLA nanosheet. The Col-Spin-PLLA nanosheet provided a microenvironment for cells to adhere and spread. By contrast, the Col-Cast-PLLA nanosheet displayed reduced cell adhesion compared to the Col-Spin-PLLA nanosheet. Consistent with these findings, immunocytochemical analysis clearly showed fine networks of actin filaments in cells cultured on the Col-Spin-PLLA, but not the Col-Cast-PLLA nanosheet. Therefore, the Col-Spin-PLLA nanosheet was shown to be more suitable for acting as a scaffold. In conclusion, we have succeeded in developing a heterofunctional nanosheet comprising a collagen modified side, which has the ability to rapidly adhere cells, and an unmodified side, which acts as an adhesion barrier, by using a spin-coating technique.

  1. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  2. Enhancing the Bioactivity of Yttria-Stabilized Tetragonal Zirconia Ceramics via Grain-Boundary Activation.

    PubMed

    Ke, Jinhuan; He, Fupo; Ye, Jiandong

    2017-05-17

    Yttria-stabilized tetragonal zirconia (Y-TZP) has been proposed as a potential dental implant because of its good biocompatibility, excellent mechanical properties, and distinctive aesthetic effect. However, Y-TZP cannot form chemical bonds with bone tissue because of its biological inertness, which affects the reliability and long-term efficacy of Y-TZP implants. In this study, to improve the bioactivity of Y-TZP ceramics while maintaining their good mechanical performance, Y-TZP was modified by grain-boundary activation via the infiltration of a bioactive glass (BG) sol into the surface layers of Y-TZP ceramics under different negative pressures (atmospheric pressure, -0.05 kPa, and -0.1 kPa), followed by gelling and sintering. The in vitro bioactivity, mechanical properties, and cell behavior of the Y-TZP with improved bioactivity were systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), electron probe microanalysis (EPMA), and Raman spectroscopy. The results of the bioactivity test conducted by immersing Y-TZP in simulated body fluid (SBF) showed that a bonelike apatite layer was produced on the entire surface. The mechanical properties of the modified Y-TZP decreased as the negative pressure in the BG-infiltration process increased relative to those of the Y-TZP blank group. However, the samples infiltrated with the BG sol under -0.05 kPa and atmospheric pressure still retained good mechanical performance. The cell-culture results revealed that the bioactive surface modification of Y-TZP could promote cell adhesion and differentiation. The present work demonstrates that the bioactivity of Y-TZP can be enhanced by grain-boundary activation, and the bioactive Y-TZP is expected to be a potential candidate for use as a dental implant material.

  3. New insights into the properties of pubescent surfaces: peach fruit as a model.

    PubMed

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; Del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-08-01

    The surface of peach (Prunus persica 'Calrico') is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context.

  4. New Insights into the Properties of Pubescent Surfaces: Peach Fruit as a Model1[OA

    PubMed Central

    Fernández, Victoria; Khayet, Mohamed; Montero-Prado, Pablo; Heredia-Guerrero, José Alejandro; Liakopoulos, Georgios; Karabourniotis, George; del Río, Víctor; Domínguez, Eva; Tacchini, Ignacio; Nerín, Cristina; Val, Jesús; Heredia, Antonio

    2011-01-01

    The surface of peach (Prunus persica ‘Calrico’) is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context. PMID:21685175

  5. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer

    PubMed Central

    Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-01-01

    Abstract The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air–sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s−1 in the tunnel and ≤4.1 m s−1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. PMID:28369320

  6. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    PubMed

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  7. Luminance-based specular gloss characterization.

    PubMed

    Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter

    2011-06-01

    Gloss is a feature of visual appearance that arises from the directionally selective reflection of light incident on a surface. Especially when a distinct reflected image is perceptible, the luminance distribution of the illumination scene above the sample can strongly influence the gloss perception. For this reason, industrial glossmeters do not provide a satisfactory gloss estimation of high-gloss surfaces. In this study, the influence of the conditions of illumination on specular gloss perception was examined through a magnitude estimation experiment in which 10 observers took part. A light booth with two light sources was utilized: the mirror image of only one source being visible in reflection by the observer. The luminance of both the reflected image and the adjacent sample surface could be independently varied by separate adjustment of the intensity of the two light sources. A psychophysical scaling function was derived, relating the visual gloss estimations to the measured luminance of both the reflected image and the off-specular sample background. The generalization error of the model was estimated through a validation experiment performed by 10 other observers. In result, a metric including both surface and illumination properties is provided. Based on this metric, improved gloss evaluation methods and instruments could be developed.

  8. Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces

    PubMed Central

    Szyndler, Megan W.; Haynes, Kenneth F.; Potter, Michael F.; Corn, Robert M.; Loudon, Catherine

    2013-01-01

    Resurgence in bed bug infestations and widespread pesticide resistance have greatly renewed interest in the development of more sustainable, environmentally friendly methods to manage bed bugs. Historically, in Eastern Europe, bed bugs were entrapped by leaves from bean plants, which were then destroyed; this purely physical entrapment was related to microscopic hooked hairs (trichomes) on the leaf surfaces. Using scanning electron microscopy and videography, we documented the capture mechanism: the physical impaling of bed bug feet (tarsi) by these trichomes. This is distinct from a Velcro-like mechanism of non-piercing entanglement, which only momentarily holds the bug without sustained capture. Struggling, trapped bed bugs are impaled by trichomes on several legs and are unable to free themselves. Only specific, mechanically vulnerable locations on the bug tarsi are pierced by the trichomes, which are located at effective heights and orientations for bed bug entrapment despite a lack of any evolutionary association. Using bean leaves as templates, we microfabricated surfaces indistinguishable in geometry from the real leaves, including the trichomes, using polymers with material properties similar to plant cell walls. These synthetic surfaces snag the bed bugs temporarily but do not hinder their locomotion as effectively as real leaves. PMID:23576783

  9. The 2√{3}×2√{3}R30 surface reconstruction of alkali/Si(1 1 1):B semiconducting surfaces

    NASA Astrophysics Data System (ADS)

    Tournier-Colletta, C.; Chaput, L.; Tejeda, A.; Cardenas, L. A.; Kierren, B.; Malterre, D.; Fagot-Revurat, Y.; Fèvre, P. Le; Bertran, F.; Taleb-Ibrahimi, A.

    2013-02-01

    The surface structure of alkali doped Si(1 1 1):B ultra-thin films has been studied by low-energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM). A comparative study of K/Si(1 1 1)-3 × 1 and K/Si(1 1 1):B-2√{3}×2√{3}R30 interfaces allowed us to determine the saturation coverage to be 0.5 monolayer in the later case. The 2√{3}-surface reconstruction is shown to be a common property of pure K, Rb, Cs materials and K0.4Rb0.6 alloys but progressively disappears if Rb is replaced by Ca. Taking into account the existence of two distinct boron sites in the ratio 1/3 as seen from B-1s core levels spectra, LAPW-DFT calculations have been carried out in order to optimize the atomic structure. As a result, alkali adatoms are shown to form trimers leading to a large modulation of the Sisbnd B bonds accompanied by an inhomogeneous doping of the dangling bonds in agreement with voltage dependent STM images.

  10. Fabrication and characterization of iron oxide dextran composite layers

    NASA Astrophysics Data System (ADS)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  11. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  12. Transformation twinning of Ni-Mn-Ga characterized with temperature-controlled atomic force microscopy.

    PubMed

    Reinhold, Matthew; Watson, Chad; Knowlton, William B; Müllner, Peter

    2010-06-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni-Mn-Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni-Mn-Ga single crystal. Experiments were performed in the martensite phase at 25 degrees C and in the austenite phase at 55 degrees C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 degrees C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 degrees C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys.

  13. Transformation twinning of Ni–Mn–Ga characterized with temperature-controlled atomic force microscopy

    PubMed Central

    Reinhold, Matthew; Watson, Chad; Knowlton, William B.; Müllner, Peter

    2010-01-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni–Mn–Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni–Mn–Ga single crystal. Experiments were performed in the martensite phase at 25 °C and in the austenite phase at 55 °C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 °C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 °C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys. PMID:20589105

  14. Surface morphology and nanomechanical properties of tribological antiwear films derived from zinc dialkyl dithiophosphate compounds

    NASA Astrophysics Data System (ADS)

    Aktary, Mirwais

    The protection of mechanical equipment from wear is of significant economic interest. It has been estimated that up to half of a percent of the gross domestic product of industrialized countries goes to replacing mechanical components that have lost compliance due to wear. Antiwear additives are key ingredients in lubrication oils that assist in protecting components from wear during high loads. These agents form sacrificial films on metal parts that limit the adhesion between the contacting surfaces and reduce the wear rate considerably. One of the most common classes of compounds employed as an antiwear agent is zinc dialkyldithiophosphates (ZDDP). This work will explore the formation, structure, and mechanical properties of ZDDP derived antiwear films on the nanoscale. These studies are important because the macroscopic performance of antiwear coatings is dictated by their nanoscale surface properties. As a first study, scanning force microscopy (SFM) is employed to track the formation of films formed from the thermooxidative decomposition of ZDDP on gold substrates. The SFM analysis is correlated with infrared spectroscopy to relate surface structure to chemical composition. The morphology and mechanical strength of ZDDP tribofilms formed at the interface of sliding stainless steel contacts is also investigated. The tribofilms evolve morphologically with contact time and are characterized by distinct segregated islands at low times that transforms to a full film at longer times. The nanomechanical properties of the tribofilms are evaluated by nanoindentation analysis. It is found that the films are mechanically softer than the underlying steel substrate. SFM and nanoindentation analyses reveal that calcium sulphonate detergents promote the formation of ZDDP tribofilms and impart to them greater mechanical stability. By contrast succinimide dispersants reduce the capacity of ZDDP to form effective antiwear films. The first application of SFM and nanoindentation to the study of automotive engine components obtained directly from vehicles is demonstrated. The wear zone on a rocker arm bridge from a diesel engine is shown to contain a tribofilm at the periphery of contact where the contact load is less. SFM images also reveal wear damage at the center of the wear zone where the contact load is expected to be higher.

  15. Characterization of activated cyclic olefin copolymer: effects of ethylene/norbornene content on the physiochemical properties.

    PubMed

    O'Neil, Colleen E; Taylor, Scott; Ratnayake, Kumuditha; Pullagurla, Swathi; Singh, Varshni; Soper, Steven A

    2016-11-28

    The ethylene/norbornene content within cyclic olefin copolymer (COC) is well known to affect the chemical and physical properties of the copolymer, such as the glass transition temperature (T g ) and transparency. However, no work has been reported evaluating the effects of the ethylene/norbornene content on the surface properties of COC following UV/O 3 or O 2 plasma activation. Activation with either O 2 plasma or UV/O 3 is often used to assist in thermal assembly of fluidic devices, increasing the wettability of the surfaces, or generating functional scaffolds for the attachment of biological elements. Thus, we investigated differences in the physiochemical surface properties of various ethylene/norbornene compositions of COC following activation using analytical techniques such as water contact angle (WCA), ATR-FTIR, XPS, TOF-SIMS, UV-VIS, AFM and a colorimetric assay utilizing Toluidine Blue O (TBO). Results showed that increased norbornene content led to the generation of more oxygen containing functionalities such as alcohols, ketones, aldehydes and carboxyl groups when activated with either UV/O 3 or O 2 plasma. Specifically, COC with ∼60% norbornene content showed a significantly higher -COOH functional group density when compared to COC with a 50% norbornene content and COC with a 35% norbornene content following UV/O 3 or O 2 plasma activation. Furthermore, COC with large norbornene contents showed a smaller average RMS roughness (0.65 nm) when compared to COC containing low norbornene contents (0.95 nm) following activation making this substrate especially suited for nanofluidic applications, which require smooth surfaces to minimize effects arising from dielectrophoretic trapping or non-specific adsorption. Although all COC substrates showed >90% transparency at wavelengths >475 nm, COC possessing high norbornene contents showed significantly less transparency at wavelengths below 475 nm following activation, making optical detection in this region difficult. Our data showed distinct physiochemical differences in activated COC that was dependent upon the ethylene/norbornene content of the thermoplastic and thus, careful selection of the particular COC grade must be considered for micro- and nanofluidics.

  16. Inorganic Janus particles for biomedical applications

    PubMed Central

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Tenzer, Stefan; Storck, Wiebke; Fischer, Karl; Strand, Dennis; Laquai, Frédéric

    2014-01-01

    Summary Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum. PMID:25551063

  17. Meso-Scale Wetting of Paper Towels

    NASA Astrophysics Data System (ADS)

    Abedsoltan, Hossein

    In this study, a new experimental approach is proposed to investigate the absorption properties of some selected retail paper towels. The samples were selected from two important manufacturing processes, conventional wet pressing (CWP) considered value products, and through air drying (TAD) considered as high or premium products. The tested liquids were water, decane, dodecane, and tetradecane with the total volumes in micro-liter range. The method involves the point source injection of liquid with different volumetric flowrates, in the nano-liter per second range. The local site for injection was chosen arbitrarily on the sample surface. The absorption process was monitored and recorded as the liquid advances, with two distinct imaging system methods, infrared imaging and optical imaging. The microscopic images were analyzed to calculate the wetted regions during the absorption test, and the absorption diagrams were generated. These absorption diagrams were dissected to illustrate the absorption phenomenon, and the absorption properties of the samples. The local (regional) absorption rates were computed for Mardi Gras and Bounty Basic as the representative samples for CWP and TAD, respectively in order to be compared with the absorption capacity property of these two samples. Then, the absorption capacity property was chosen as an index factor to compare the absorption properties of all the tested paper towels.

  18. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    NASA Astrophysics Data System (ADS)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  19. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert.

    PubMed

    Cámara, Beatriz; Suzuki, Shino; Nealson, Kenneth H; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; de los Ríos, Asunción

    2014-12-01

    This study explores the photosynthetic microbial colonization of rhyolitic ignimbrites in Lomas de Tilocalar, a hyper-arid region of the Atacama Desert, Chile. Colonization appeared in the form of a green layer a few millimeters beneath the ignimbrite surface. Some ignimbrite rocks revealed two distinct micromorphological areas of identical mineralogical and chemical composition but different textural properties. According to texture, colonization patterns varied in terms of the extension and depth of colonization. The diversity of photosynthetic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) of the 23S rRNA gene and by generating clone libraries of the 16S rRNA gene. We observed a low diversity of photosynthetic microorganisms colonizing the ignimbrite microhabitat. Most rRNA gene sequences recovered greatly resembled those of Chroococcidiopsis hypolith clones from arid deserts. These results point to highly restrictive conditions of the hyper-arid Atacama Desert conditioning the diversity of cyanobacteria, and suggest that microbial colonization and composition patterns might be determined by the microscale physico-chemical properties of the ignimbrite rocks. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  20. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.

    PubMed

    Francois, Jean Marie

    2016-01-01

    The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.

  1. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    NASA Astrophysics Data System (ADS)

    Robert, C. G.; Ayob, A.; Zaki, M. F. Muhammad; Razali, M. E.; Lew, E. V.; Hong, P. Y.

    2018-03-01

    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  2. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe

    NASA Astrophysics Data System (ADS)

    Schultze, Markus; Rockel, Burkhardt

    2017-08-01

    This study compares the direct and semi-direct aerosol effects of different annual cycles of tropospheric aerosol loads for Europe from 1950 to 2009 using the regional climate model COSMO-CLM, which is laterally forced by reanalysis data and run using prescribed, climatological aerosol optical properties. These properties differ with respect to the analysis strategy and the time window, and are then used for the same multi-decadal period. Five simulations with different aerosol loads and one control simulation without any tropospheric aerosols are integrated and compared. Two common limitations of our simulation strategy, to fully assess direct and semi-direct aerosol effects, are the applied observed sea surface temperatures and sea ice conditions, and the lack of short-term variations in the aerosol load. Nevertheless, the impact of different aerosol climatologies on common regional climate model simulations can be assessed. The results of all aerosol-including simulations show a distinct reduction in solar irradiance at the surface compared with that in the control simulation. This reduction is strongest in the summer season and is balanced primarily by a weakening of turbulent heat fluxes and to a lesser extent by a decrease in longwave emissions. Consequently, the seasonal mean surface cooling is modest. The temperature profile responses are characterized by a shallow near-surface cooling and a dominant warming up to the mid-troposphere caused by aerosol absorption. The resulting stabilization of stratification leads to reduced cloud cover and less precipitation. A decrease in cloud water and ice content over Central Europe in summer possibly reinforce aerosol absorption and thus strengthen the vertical warming. The resulting radiative forcings are positive. The robustness of the results was demonstrated by performing a simulation with very strong aerosol forcing, which lead to qualitatively similar results. A distinct added value over the default aerosol setup of Tanré et al. (1984) was found in the simulations with more recent aerosol data sets for solar irradiance. The improvements are largest under low cloud conditions, while overestimated cloud cover in all setups causes a common underestimation of low and medium values of solar irradiance. In addition, the prevalent cold bias in the COSMO-CLM is reduced in winter and spring when using updated aerosol data. Our results emphasize the importance of semi-direct aerosol effects, especially over Central Europe in terms of changes in turbulent fluxes and changes in cloud properties. We also suggest to replace the default Tanré et al. (1984) aerosol climatology with more recent and realistic data sets. Thereby, a better model performance in comparison to observations can be achieved, or the masking of model shortcomings due to a too strong direct aerosol forcing thus far is prevented.

  3. Curvature-induced microswarming and clustering of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac; Glotzer, Sharon

    Non-equilibrium active matter systems exhibit many unique phenomena, such as motility-induced phase separation and swarming. However, little is known about how these behaviors depend on the geometry of the environment. To answer this question, we use Brownian dynamics simulations to study the effects of Gaussian curvature on self-propelled particles by confining them to the surface of a sphere. We find that a modest amount of curvature promotes phase separation by altering the shape of a cluster's boundary. Alternatively, particles on surfaces of high curvature experience reduced phase separation and instead form microswarms, where particles share a common orbit. We show that this novel flocking behavior is distinct from other previously studied examples, in that it is not explicitly incorporated into our model through Vicsek-like alignment rules nor torques. Rather, we find that microswarms emerge solely due to the geometric link between orientation and velocity, a property exclusive to surfaces with non-zero Gaussian curvature. These findings reveal the important role of local environment on the global emergent behavior of non-equilibrium systems. Center for Bio-Inspired Engineering (DOE Award # DE-SC0000989).

  4. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    NASA Astrophysics Data System (ADS)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  5. Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro

    PubMed Central

    Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.

    2012-01-01

    Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042

  6. Fractography of poly(methyl methacrylates).

    PubMed

    Kusy, R P; Turner, D T

    1975-07-01

    For convenience in clinical manipulation, it is the practice to fabricate PMMA protheses from mixtures of powder and monomer. When the monomer is subsequently polymerized an unusual 2-phase polymeric material results in which grains of PMMA are dispersed in a matrix of the same polymer. The mechanical properties of the 2-phase materials are inferior in certain respects relative to 1-phase polymers. The purpose of the present work is to evaluate the failure of 2-phase materials by microscopical examination of their fracture surfaces. A granular microstructure was clearly distinguishable and a distinction made between materials which fail exclusively by transgranular fracture and others which additionally exhibit intergranular fracture. In order to interpret markings observed on the fracture surfaces of the complex 2-phase systems a study was made of the influence of molecular weight on the fractography of 1-phase PMMA. Molecular weight was reduced by degradation of samples by exposure to gamma-rays. The spacing of periodic rib markings on fracture surfaces was found to decrease with molecular weight and this relationship used to provide an estimate of the molecular weight of polymer in the matrix of 2-phase materials.

  7. Characterization of two types of osteoclasts from human peripheral blood monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuasa, Kimitaka; Mori, Kouki; Ishikawa, Hitoshi

    2007-05-04

    The two osteoclastogenesis pathways, receptor activator nuclear factor (NF)-{kappa}B ligand (RANKL)-mediated and fusion regulatory protein-1 (FRP-1)-mediated osteoclastogenesis, have recently been reported. There were significant differences in differentiation and activation mechanisms between the two pathways. When monocytes were cultured with FRP-1 without adding M-CSF, essential for the RANKL system, TRAP-positive polykaryocyte formation occurred. FRP-1-mediated osteoclasts formed larger pits on mineralized calcium phosphate plates than RANKL+M-CSF-mediated osteoclasts did. Lacunae on dentin surfaces induced by FRP-1-mediated osteoclasts were inclined to be single and isolated. However, osteoclasts induced by RANKL+M-CSF made many connected pits on dentin surfaces as if they crawled on there. Interestingly,more » FRP-1 osteoclastogenesis was enhanced by M-CSF/IL-1{alpha}, while chemotactic behavior to the dentin slices was not effected. There were differences in pH and concentration of HCO3- at culture endpoint and in adherent feature to dentin surfaces. Our findings indicate there are two types of osteoclasts with distinct properties.« less

  8. Exploring the Effects of Atmospheric Forcings on Evaporation: Experimental Integration of the Atmospheric Boundary Layer and Shallow Subsurface

    PubMed Central

    Smits, Kathleen; Eagen, Victoria; Trautz, Andrew

    2015-01-01

    Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages. PMID:26131928

  9. Organic field-effect transistors: a combined study on short-channel effects and the influence of substrate pre-treatment on ambient stability

    NASA Astrophysics Data System (ADS)

    Klug, A.; Meingast, A.; Wurzinger, G.; Blümel, A.; Schmoltner, K.; Scherf, U.; List, E. J. W.

    2011-10-01

    For high-performance low-cost applications based on organic field-effect transistors (OFETs) and corresponding sensors essential properties of the applied semiconducting materials include solution-processability, high field-effect mobility, compatibility with adjacent layers and stability with respect to ambient conditions. In this combined study regioregular poly(3-hexylthiophene)- and pentacene-based bottom-gate bottom-contact OFETs with various channel lengths are thoroughly investigated with respect to short-channel effects and the implications of dielectric surface modification with hexamethyldisilazane (HMDS) on device performance. In addition, the influences of oxygen, moisture and HMDStreatment on the ambient stability of the devices are evaluated in detail. While OFETs without surface modification exhibited the expected degradation behavior upon air exposure mainly due to oxygen/moisture-induced doping or charge-carrier trapping, the stability of the investigated semiconductors was found to be distinctly increased when the substrate surface was hydrophobized. The presented results thoroughly summarize important issues which have to be considered when selecting semiconducting materials for high-performance OFETs and OFET-based sensors.

  10. Effect of template post-annealing on Y(Dy)BaCuO nucleation on CeO2 buffered metallic tapes

    NASA Astrophysics Data System (ADS)

    Hu, Xuefeng; Zhong, Yun; Zhong, Huaxiao; Fan, Feng; Sang, Lina; Li, Mengyao; Fang, Qiang; Zheng, Jiahui; Song, Haoyu; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2017-08-01

    Substrate engineering is very significant in the synthesis of the high-temperature superconductor (HTS) coated conductor. Here we design and synthesize several distinct and stable Cerium oxide (CeO2) surface reconstructions which are used to grow epitaxial films of the HTS YBa2Cu3O7-δ (YBCO). To identify the influence of annealing and post-annealing surroundings on the nature of nucleation centers, including Ar/5%H2, humid Ar/5%H2 and O2 in high temperature annealing process, we study the well-controlled structure, surface morphology, crystal constants and surface redox processes of the ceria buffers by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FE-SEM), respectively. The ceria film post-annealed under humid Ar/5%H2 gas shows the best buffer layer properties. Furthermore, the film absorbs more oxygen ions, which appears to contribute to oxygenation of superconductor film. The film is well-suited for ceria model studies as well as a perfect substitute for CeO2 bulk material.

  11. Study of submonolayer films of Au/Cu(100) and Pd/Cu(100) using positron annihilation induced auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.D.

    1992-01-01

    Positron Annihilation induced Auger Electron Spectroscopy (PAES), electron induced Auger Electron Spectroscopy (EAES), and Low Energy Electron Diffraction (LEED) have been used to study the surface composition, surface alloying and overlayer formation of ultrathin films of Au and Pd on Cu(100). This is the first systematic application of PAES to the study of the surface properties of ultrathin layers of metals on metal substrates. Temperature induced changes in the top layer surface compositions in Au/Cu(100) and Pd/Cu(100) are directly observed using PAES, while EAES spectra indicate only minor changes. The surface alloying of the Au/Cu(100) and Pd/Cu(100) systems are demonstratedmore » using PAES in conjunction with LEED. The PAES intensity measurements also provide evidence for positron trapping at surface defects such as steps, kinks and isolated adatoms. The PAES intensity was found to be strongly dependent on surface effects introduced by ion sputtering. The surface defect dependence of the PAES intensity is interpreted in terms of the surface atomic diffusion and positron trapping at surface defects in Au/Cu(100) and Pd/Cu(100). In both systems the shapes of the PAES intensity versus coverage curves for submonolayer coverages at 173K are quite distinct indicating differences in overlayer growth and diffusion behavior of Au and Pd adatoms on the Cu(100) surface. PAES intensities for both Au and Pd are saturated at 1 monolayer demonstrating the extreme surface selectivity of PAES.« less

  12. In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers

    PubMed Central

    Breitwieser, Andreas; Iturri, Jagoba; Toca-Herrera, Jose-Luis; Sleytr, Uwe B.; Pum, Dietmar

    2017-01-01

    The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers. PMID:28216572

  13. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    DOE PAGES

    Paulauskas, I. E.; Jellison, G. E.; Boatner, L. A.; ...

    2011-01-01

    The photoelectrochemical stability and surface-alteration characteristics of doped and undoped n-type ZnO single-crystal photoanode electrodes were investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak depended on time and the NaOH concentration in the electrolyte, but were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with themore » significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. ZnO doping methods were found to be effective in increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.« less

  14. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Henegar, A. J., , Dr.; Gougousi, T., , Prof.

    2016-12-01

    In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al2O3 and TiO2, using H2O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al2O3 ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO2 and the native oxides continues well after the surface has been covered with 2 nm of TiO2. This difference is traced to the superior properties of Al2O3 as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to lower native oxide stability as well as an initial diffusion path formation by the indium oxides.

  15. Coherent acoustic vibrations of metal nanoshells

    NASA Astrophysics Data System (ADS)

    Kirakosyan, A. S.; Shahbazyan, T. V.; Guillon, C.; Langot, P.; Del Fatti, N.; Vallee, F.; Cardinal, T.; Treguer, M.

    2007-03-01

    We study vibrational modes of gold nanoshells grown on dielectric core by means of time-resolved pump-probe spectroscopy. The fundamental breathing mode launched by a femtosecond pump pulse manifests itself in a pronounced time-domain modulation of the differential transmission probed at the frequency of the nanoshell surface plasmon resonance. The modulation amplitude is significantly stronger while the period is longer than in a gold nanoparticle of the same overall size. A theoretical model describing breathing mode frequency and damping for a nanoshell in a medium is developed. A distinct acoustical signature of nanoshells provides a new and efficient method for identifying these versatile nanostructures and for studying their mechanical and structural properties.

  16. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  17. Long-range spin-singlet proximity effect for a Josephson system with a single-crystal ferromagnet due to its band-structure features

    NASA Astrophysics Data System (ADS)

    Avdeev, M. V.; Proshin, Yu. N.

    2018-03-01

    A possible explanation for the long-range proximity effect observed in single-crystalline cobalt nanowires sandwiched between two tungsten superconducting electrodes [Nat. Phys. 6, 389 (2010), 10.1038/nphys1621] is proposed. The theoretical model uses properties of a ferromagnet band structure. Specifically, to connect the exchange field with the momentum of quasiparticles the distinction between the effective masses in majority and minority spin subbands and the Fermi-surface anisotropy are considered. The derived Eilenberger-like equations allowed us to obtain a renormalized exchange interaction that is completely compensated for some crystallographic directions under certain conditions. The proposed theoretical model is compared with previous approaches.

  18. Complex conductivity of organic-rich shales

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.; Torres-Verdin, C.

    2013-12-01

    We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The components of the formation factor and connectivity (tortuosity) tensors Fij and Tij (affecting the bulk and surface conductivity, respectively) are correlated as Fij=TijΦ. Both conductivity and connectivity tensors share the same eigenvectors; the anisotropy ratio is equivalent in TI media. At high pore water salinity, surface and quadrature conductivity share the same bulk tortuosity; when surface conductivity dominates (low salinity), conductivity is controlled by the surface conductance, and the tortuosity of electrical current along mineral surfaces usually higher than that of the pore water. We developed two distinct SIP measurement protocols to obtain the tensor: (1) azimuthal sampling and inversion of phasor potentials through the full-field solution of the Laplace equation; (2) direct measurement of complex conductivity eigenvalues by polarized, single-component stimulus current. Experiments also include unsaturated and saturated measurements with three brines of known salinity and pH, at log-distributed frequencies ranging 1 mHz to 45 kHz. Both azimuthal spectra and eigenvalue spectra validate the theoretical model and illustrate the effectiveness of the protocols themselves. We obtain the textural tensors and invert key parameters including Archie exponents and CEC, and characterize the relaxation phenomena associated with kerogen content and maturity for multiphase fluid systems.

  19. Using Airborne Radar Stratigraphy to Model Surface Accumulation Anomaly and Basal Control over Deformed Basal Ice in Greenland

    NASA Astrophysics Data System (ADS)

    Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.

    2013-12-01

    Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.

  20. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  1. Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity.

    PubMed

    Ulusoy, Mehriban; Jonczyk, Rebecca; Walter, Johanna-Gabriela; Springer, Sergej; Lavrentieva, Antonina; Stahl, Frank; Green, Mark; Scheper, Thomas

    2016-02-17

    Ligands used on the surface of colloidal nanoparticles (NPs) have a significant impact on physiochemical properties of NPs and their interaction in biological environments. In this study, we report a one-pot aqueous synthesis of 3-mercaptopropionic acid (MPA)-functionalized CdTe/CdS/ZnS quantum dots (Qdots) in the presence of thiol-terminated methoxy polyethylene glycol (mPEG) molecules as a surface coordinating ligand. The resulting mPEG-Qdots were characterized by using ζ potential, FTIR, thermogravimetric (TG) analysis, and microscale thermophoresis (MST) studies. We investigated the effect of mPEG molecules and their grafting density on the Qdots photophysical properties, colloidal stability, protein binding affinity, and in vitro cellular toxicity. Moreover, cellular binding features of the resulting Qdots were examined by using three-dimensional (3D) tumor-like spheroids, and the results were discussed in detail. Promisingly, mPEG ligands were found to increase colloidal stability of Qdots, reduce adsorption of proteins to the Qdot surface, and mitigate Qdot-induced side effects to a great extent. Flow cytometry and confocal microscopy studies revealed that PEGylated Qdots exhibited distinctive cellular interactions with respect to their mPEG grafting density. As a result, mPEG molecules demonstrated a minimal effect on the ZnS shell deposition and the Qdot fluorescence efficiency at a low mPEG density, whereas they showed pronounced effect on Qdot colloidal stability, protein binding affinity, cytotoxicity, and nonspecific binding at a higher mPEG grafting amount.

  2. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films.

    PubMed

    Rodrigues, Raul T; Morais, Paulo V; Nordi, Cristina S F; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2018-03-06

    Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.

  3. Distinct ice patterns on solid surfaces with various wettabilities

    PubMed Central

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045

  4. Distinct ice patterns on solid surfaces with various wettabilities.

    PubMed

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-10-24

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.

  5. Osteoselection supported by phase separated polymer blend films.

    PubMed

    Gulsuner, Hilal Unal; Gengec, Nevin Atalay; Kilinc, Murat; Erbil, H Yildirim; Tekinay, Ayse B

    2015-01-01

    The instability of implants after placement inside the body is one of the main obstacles to clinically succeed in periodontal and orthopedic applications. Adherence of fibroblasts instead of osteoblasts to implant surfaces usually results in formation of scar tissue and loss of the implant. Thus, selective bioadhesivity of osteoblasts is a desired characteristic for implant materials. In this study, we developed osteoselective and biofriendly polymeric thin films fabricated with a simple phase separation method using either homopolymers or various blends of homopolymers and copolymers. As adhesive and proliferative features of cells are highly dependent on the physicochemical properties of the surfaces, substrates with distinct chemical heterogeneity, wettability, and surface topography were developed and assessed for their osteoselective characteristics. Surface characterizations of the fabricated polymer thin films were performed with optical microscopy and SEM, their wettabilities were determined by contact angle measurements, and their surface roughness was measured by profilometry. Long-term adhesion behaviors of cells to polymer thin films were determined by F-actin staining of Saos-2 osteoblasts, and human gingival fibroblasts, HGFs, and their morphologies were observed by SEM imaging. The biocompatibility of the surfaces was also examined through cell viability assay. Our results showed that heterogeneous polypropylene polyethylene/polystyrene surfaces can govern Saos-2 and HGF attachment and organization. Selective adhesion of Saos-2 osteoblasts and inhibited adhesion of HGF cells were achieved on micro-structured and hydrophobic surfaces. This work paves the way for better control of cellular behaviors for adjustment of cell material interactions. © 2014 Wiley Periodicals, Inc.

  6. Hydrothermal replacement of biogenic and abiogenic aragonite by Mg-carbonates - Relation between textural control on effective element fluxes and resulting carbonate phase

    NASA Astrophysics Data System (ADS)

    Jonas, Laura; Müller, Thomas; Dohmen, Ralf; Immenhauser, Adrian; Putlitz, Benita

    2017-01-01

    Dolomitization, i.e., the secondary replacement of calcite or aragonite (CaCO3) by dolomite (CaMg[CO3]2), is one of the most volumetrically important carbonate diagenetic processes. It occurs under near surface and shallow burial conditions and can significantly modify rock properties through changes in porosity and permeability. Dolomitization fronts are directly coupled to fluid pathways, which may be related to the initial porosity/permeability of the precursor limestone, an existing fault network or secondary porosity/permeability created through the replacement reaction. In this study, the textural control on the replacement of biogenic and abiogenic aragonite by Mg-carbonates, that are typical precursor phases in the dolomitization process, was experimentally studied under hydrothermal conditions. Aragonite samples with different textural and microstructural properties exhibiting a compact (inorganic aragonite single crystal), an intermediate (bivalve shell of Arctica islandica) and open porous structure (skeleton of coral Porites sp.) were reacted with a solution of 0.9 M MgCl2 and 0.015 M SrCl2 at 200 °C. The replacement of aragonite by a Ca-bearing magnesite and a Mg-Ca carbonate of non-stoichiometric dolomitic composition takes place via a dissolution-precipitation process and leads to the formation of a porous reaction front that progressively replaces the aragonite precursor. The reaction leads to the development of porosity within the reaction front and distinctive microstructures such as gaps and cavities at the reaction interface. The newly formed reaction rim consists of chemically distinct phases separated by sharp boundaries. It was found that the number of phases and their chemical variation decreases with increasing initial porosity and reactive surface area. This observation is explained by variations in effective element fluxes that result in differential chemical gradients in the fluid within the pore space of the reaction rim. Observed reaction rates are highest for the replacement of the initially highly porous coral and lowest for the compact structure of a single aragonite crystal. Therefore, the reaction progress equally depends on effective element fluxes between the fluid at the reaction interface and the bulk solution surrounding the test material as well as the reactive surface area. This study demonstrates that the textural and microstructural properties of the parent material have a significant influence on the chemical composition of the product phase. Moreover, our data highlight the importance of effective fluid-mediated element exchange between the fluid at the reaction interface and the bulk solution controlled by the local microstructure.

  7. Tick-Borne Transmission of Two Genetically Distinct Anaplasma marginale Strains following Superinfection of the Mammalian Reservoir Host

    USDA-ARS?s Scientific Manuscript database

    Strain superinfection affects the dynamics of epidemiological spread of pathogens through a host population. Superinfection has recently been shown to occur for genetically distinct strains of the tick-borne pathogen Anaplasma marginale that encode distinctly different surface protein variants. Supe...

  8. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore.

    PubMed

    Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.

  9. Properties of carbonate rocks related to SO2 reactivity

    USGS Publications Warehouse

    Borgwardt, R.H.; Harvey, R.D.

    1972-01-01

    Petrographic examination and grain size-distribution measurements were made on 11 specimens representing a broad spectrum of limestones and dolomites. The SO2 reaction kinetics of calcines prepared from each rock type were determined at 980??C. Stones of various geological types yield calcines of distinctly different physical structures that show correspondingly large differences in both rate of reaction and capacity for SO2 sorption. Pore size and particle size together determine the extent to which the interiors of individual particles react. Particles smaller than 0.01 cm with pores larger than 0.1 ?? react throughout their internal pore structure at a rate directly proportional to the BET surface. The rate decays exponentially as sulfation proceeds until the pores are filled with reaction product. The ultimate capacity of small particles is determined by the pore volume available for product accumulation, which is generally equivalent to about 50% conversion of the CaO in limestones. Variations in effectiveness of carbonate rocks for flue gas desulfurization are explained by the physical properties of their calcines, which are related to the crystal structure of the original rock. The high reaction rates achieved in the limestone injection process apparently result from the large surface area existing for short periods immediately following the dissociation of CaCO3.

  10. Relationships of soil, grass, and bedrock over the Kaweah serpentine melange through spectral mixture analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1991-01-01

    A linear mixing model is used to model the spectral variability of an AVIRIS scene from the western foothills of the Sierra Nevada and calibrate these radiance data to reflectance. Five spectral endmembers from the AVIRIS data, plus an ideal 'shade' endmember were required to model the continuum reflectance of each pixel in the image. Three of the endmembers were interpreted to model the surface constituents green vegetation, dry grass, and illumination. These are the main transient surface constituents that are expected to change with shifts in land use or climatic influences and viewing conditions ('shade' only). The spectral distinction between the other three endmembers is very small, yet the spatial distributions are coherent and interpretable. These distributions cross anthropogenic and vegetation boundaries and are best interpreted as different soil types. Comparison of the fraction images to the bedrock geology maps indicates that substrate composition must be a factor contributing to the spectral properties of these endmembers. Detailed examination of the reflectance spectra of the three soil endmembers reveals that differences in the amount of ferric and ferrous iron and/or organic constituents in the soils is largely responsible for the differences in spectral properties of these endmembers.

  11. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells.

    PubMed

    Chirilă, Adrian; Reinhard, Patrick; Pianezzi, Fabian; Bloesch, Patrick; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Keller, Debora; Gretener, Christina; Hagendorfer, Harald; Jaeger, Dominik; Erni, Rolf; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-12-01

    Thin-film photovoltaic devices based on chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber layers show excellent light-to-power conversion efficiencies exceeding 20%. This high performance level requires a small amount of alkaline metals incorporated into the CIGS layer, naturally provided by soda lime glass substrates used for processing of champion devices. The use of flexible substrates requires distinct incorporation of the alkaline metals, and so far mainly Na was believed to be the most favourable element, whereas other alkaline metals have resulted in significantly inferior device performance. Here we present a new sequential post-deposition treatment of the CIGS layer with sodium and potassium fluoride that enables fabrication of flexible photovoltaic devices with a remarkable conversion efficiency due to modified interface properties and mitigation of optical losses in the CdS buffer layer. The described treatment leads to a significant depletion of Cu and Ga concentrations in the CIGS near-surface region and enables a significant thickness reduction of the CdS buffer layer without the commonly observed losses in photovoltaic parameters. Ion exchange processes, well known in other research areas, are proposed as underlying mechanisms responsible for the changes in chemical composition of the deposited CIGS layer and interface properties of the heterojunction.

  12. Elucidating doping driven microstructure evolution and optical properties of lead sulfide thin films grown from a chemical bath

    NASA Astrophysics Data System (ADS)

    Mohanty, Bhaskar Chandra; Bector, Keerti; Laha, Ranjit

    2018-03-01

    Doping driven remarkable microstructural evolution of PbS thin films grown by a single-step chemical bath deposition process at 60 °C is reported. The undoped films were discontinuous with octahedral-shaped crystallites after 30 min of deposition, whereas Cu doping led to a distinctly different surface microstructure characterized by densely packed elongated crystallites. A mechanism, based on the time sequence study of microstructural evolution of the films, and detailed XRD and Raman measurements, has been proposed to explain the contrasting microstructure of the doped films. The incorporation of Cu forms an interface layer, which is devoid of Pb. The excess Cu ions in this interface layer at the initial stages of film growth strongly interact and selectively stabilize the charged {111} faces containing either Pb or S compared to the uncharged {100} faces that contain both Pb and S. This interaction interferes with the natural growth habit resulting in the observed surface features of the doped films. Concurrently, the Cu-doping potentially changed the optical properties of the films: A significant widening of the bandgap from 1.52 eV to 1.74 eV for increase in Cu concentration from 0 to 20% was observed, making it a highly potential absorber layer in thin film solar cells.

  13. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors

    PubMed Central

    Irkhin, P.; Najafov, H.; Podzorov, V.

    2015-01-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of “gauge effect” in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors. PMID:26478121

  14. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery.

    PubMed

    Parodi, Alessandro; Molinaro, Roberto; Sushnitha, Manuela; Evangelopoulos, Michael; Martinez, Jonathan O; Arrighetti, Noemi; Corbo, Claudia; Tasciotti, Ennio

    2017-12-01

    The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles. Copyright © 2017. Published by Elsevier Ltd.

  15. Distinguishing internal property from external property in kidney transplantation.

    PubMed

    Prasad, G V Ramesh

    2016-08-01

    What determines the ownership of human body parts? In this paper, I argue that this question can be informed by an exploration of the cognitive distinction between property external to the human body such as houses, cars or land, and internal property such as organs that are located within anatomical body confines. Each type of property has distinct brain representations and possibly different effects on the sense of self. This distinction may help explain the divergence in post-donation outcomes seen in different kidney donor populations. Poor outcomes in some types of kidney donors may be due not only to a failure in their proper selection by standard medical testing or post-donation care but may also be a manifestation of differing effects on sense of self resulting from transfer of their internal property. Because a kidney is internal property, a hypothesis worth exploring is that those who experience good outcomes post-donation experience dopaminergic activation and a feeling of reward, while those experiencing bad outcomes are instead overcoming cortisol or adrenergic-based stress or fear responses without a corresponding feeling of reward, disrupting of their sense of self. Discussions about the rules for internal property transfer must be based not only on values and laws designed to govern external property but also on cognitive science-based facts, values and judgments that discussions of external property do not presently accommodate. Any future system of rules for governing organ distribution requires a framework different from that of external property to prevent harm to living kidney donors. © 2016 John Wiley & Sons, Ltd.

  16. Spin-polarized surface resonances accompanying topological surface state formation

    PubMed Central

    Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra

    2016-01-01

    Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428

  17. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae.

    PubMed

    Zhang, Shuai; Deng, Rui; Lin, Daohui; Wu, Fengchang

    Engineered nanoparticles are increasingly discharged into the environment. After discharge, these nanoparticles can interact with co-existing organic contaminants, resulting in a phenomena referred to as 'joint toxicity'. This study evaluated joint toxicities of TiO 2 nanoparticles (TiO 2 NPs) with four different (atrazine, hexachlorobenzene, pentachlorobenzene, and 3,3',4,4'-tetrachlorobiphenyl) organochlorine contaminants (OCs) toward algae (Chlorella pyrenoidosa). The potential mechanisms underlying the joint toxicity were discussed, including TiO 2 NPs-OC interactions, effects of TiO 2 NPs and OCs on biophysicochemical properties of algae and effects of TiO 2 NPs and OCs on each other's bioaccumulation in algae. The results indicate that coexposure led to a synergistic effect on the joint toxicity for TiO 2 NPs-atrazine, antagonistic effect for TiO 2 NPs-hexachlorobenzene and TiO 2 NPs-3,3',4,4'-tetrachlorobiphenyl, and an additive effect for TiO 2 NPs-pentachlorobenzene. There was nearly no adsorption of OCs by TiO 2 NPs, and the physicochemical properties of TiO 2 NPs were largely unaltered by the presence of OCs. However, both OCs and NPs affected the biophysicochemical properties of algal cells and thereby influenced the cell surface binding and/or internalization. TiO 2 NPs significantly increased the bioaccumulation of each OC. However, with the exception of atrazine, the bioaccumulation of TiO 2 NPs decreased when used with each OC. The distinct joint toxicity outcomes were a result of the balance between the increased toxicities of OCs (increased bioaccumulations) and the altered toxicity of TiO 2 NPs (bioaccumulation can either increase or decrease). These results can significantly improve our understanding of the potential environmental risks associated with NPs.

  18. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    PubMed

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

  19. Lithographic performance and dissolution behavior of novolac resins for various developer surfactant systems

    NASA Astrophysics Data System (ADS)

    Flores, Gary E.; Loftus, James E.

    1992-06-01

    The use of surfactants in today's society ranges over a wide variety of technologies, from soaps and detergents to house paints and electronic materials. In the semiconductor industry, surfactants are commonly used as coating additives in photoresists, as additives in wet chemical etchants, as additives in developer solutions, and in other areas where surface activity is desirable. In most applications, the mechanisms of surfactant chemistry are well established, yet there has been only a limited amount of published literature pertaining to characterizing the behavior of surfactants in developer systems for photoresists. This project explores the application of surfactants in an aqueous tetramethyl ammonium hydroxide (TMAH) based developer for two optical resists, one incorporating a 2,1,4- diazonaphthoquinone (DNQ) sensitizer, while the other incorporates a 2,1,5-DNQ sensitizer. In addition, each optical resist is based on different positive novolac resins with distinct structural properties. This feature aids in illustrating the improtance of matching the developer surfactant with the photoresist resin structure. Four distinct non-ionic surfactants with well published physical and chemical properties are examined. Properties of the surfactants explored include differences in structure, surfactant concentration, various degrees of hydrophilic versus lipophilic content (known as the HLB, or hydrophilic - lipophilic balance), and the differences in reported critical micelle concentration (CMC). Previous research investigated the performance characteristics of the 2,1,5-DNQ for these four surfactants. This investigation is an extension of the previous project by next considering a significantly different photoresist. A discussion of potential mechanisms of the solubilization and wetting effects is utilized to promote an understanding of surfactant effects in resist/developer systems. Also, because of the extensive characterization involved in screening surfactants, a recommended selection and screening scheme is proposed.

  20. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    NASA Astrophysics Data System (ADS)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  1. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.

    PubMed

    Traba, Christian; Liang, Jun F

    2011-08-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.

  2. Well-Known Distinctive Signatures of Quantum Phase Transition in Shape Coexistence Configuration of Nuclei

    NASA Astrophysics Data System (ADS)

    Majarshin, A. Jalili; Sabri, H.

    2018-03-01

    It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.

  3. A novel partitioning method for block-structured adaptive meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtainmore » the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.« less

  4. Well-Known Distinctive Signatures of Quantum Phase Transition in Shape Coexistence Configuration of Nuclei

    NASA Astrophysics Data System (ADS)

    Majarshin, A. Jalili; Sabri, H.

    2018-06-01

    It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.

  5. A novel partitioning method for block-structured adaptive meshes

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  6. Cosmic dust particle densities - Evidence for two populations of stony micrometeorites

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1991-01-01

    The existence of two populations of stony micrometeorites of distinctly different densities would result in significantly different orbital evolution properties for particles from each group. The densities inferred from deceleration of meteors in the earth's atmosphere suggest a substantial amount of the meteoric material has densities of 1 g/cu cm or less (Verniani, 1973). However, measurements of microcraters on lunar rock surfaces led Brownlee et al. (1973) to the conclusion that most micrometeoroids impacting the moon had densities in the 2-4 g/cu cm range, and low-density micrometeoroids were rare. The recovery of stony micrometeorites from the earth's stratosphere after atmospheric deceleration provides the opportunity to resolve the discrepancies. Here, the densities of 12 stony micrometeorites are determined, using synchrotron X-ray fluorescence to infer the particle mass and optical microscope measurements of the volumes. The particles fall into two distinct density groups, with mean values of 0.6 and 1.9 g/cu cm. The factor of 3 difference in the mean densities between the two populations implies differences in the orbital evolution time scales.

  7. Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactor.

    PubMed

    Picanço, A P; Vallero, M V; Gianotti, E P; Zaiat, M; Blundi, C E

    2001-01-01

    This paper reports on the influence of the material porosity on the anaerobic biomass adhesion on four different inert matrices: polyurethane foam, PVC, refractory brick and special ceramic. The biofilm development was performed in a fixed-bed anaerobic reactor containing all the support materials and fed with a synthetic wastewater containing protein, lipids and carbohydrates. The data obtained from microscopic analysis and kinetic assays indicated that the material porosity has a crucial importance in the retention of the anaerobic biomass. The polyurethane foam particles and the special ceramic were found to present better retentive properties than the PVC and the refractory brick. The large specific surface area, directly related to material porosity, is fundamental to provide a large amount of attached biomass. However, different supports can provide specific conditions for the adherence of distinct microorganism types. The microbiological exams revealed a distinction in the support colonization. A predominance of methanogenic archaeas resembling Methanosaeta was observed both in the refractory brick and the special ceramic. Methanosarcina-like microorganisms were predominant in the PVC and the polyurethane foam matrices.

  8. Immunotherapy Targets in Pediatric Cancer

    PubMed Central

    Orentas, Rimas J.; Lee, Daniel W.; Mackall, Crystal

    2011-01-01

    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer. PMID:22645714

  9. Petrochemical constraints on lateral transport during lunar basin formation

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Taylor, G. J.

    1981-01-01

    Lunar ANT petrochemistry correlates with longitude, allowing the sampled region of the moon to be divided into three geochemical provinces: western (Apollo 12 and 14), near-eastern (Apollo 11, 15, 16 and 17) and far-eastern (Luna 16, 20 and 24). A western ANT rock has a far greater Eu anomaly for a given Sm content than does a near-eastern ANT rock, which is in turn has a somewhat greater Eu anomaly than does a far-eastern ANT rock. Distinct differences are also observed in Sc/Sm and Ti/Sm ratios (western ANT rocks have lower ratios) and in the abundances of alkali-rich anorthosites (five of the six known anorthosites from the west are approximately four times richer in Na and K than are ferroan anorthosites, whereas none of the 40 known anorthosites from the near east is alkali-rich). The existence of this distinct correlation of ANT geochemical properties with longitude implies that even during the first few hundred m.y. of lunar history basin-forming impacts were not capable of efficiently redistributing material laterally across the lunar surface.

  10. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Yilmaz, Turgut; Hines, William; Sun, Fu-Chang; Pletikosić, Ivo; Budnick, Joseph; Valla, Tonica; Sinkovic, Boris

    2017-06-01

    In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi2Se3 films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  11. Properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water and its impact on interannual spiciness anomalies

    NASA Astrophysics Data System (ADS)

    Katsura, Shota

    2018-03-01

    The properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water (ESTMW), their interannual variability, and impact on spiciness anomalies in the upper permanent pycnocline were investigated using Argo profiling float data in 2005-2015. The core temperature and salinity of ESTMWs were horizontally compensated to a constant density, and core potential density concentrates in a range of 24.5-25.2 kg m-3 with two distinct peaks. ESTMWs showed different spatial distribution and persistence for its core potential density. Denser ESTMWs with a potential density of 24.9-25.2 kg m-3 were formed in winter mixed layer depth maximum centered at 30°N, 140°W and lighter ESTMWs of 24.5-24.9 kg m-3 were formed south and east of it. After formation through shoaling of the winter mixed layer, the former persisted until the following autumn and a small part of it subducted in winter, while the latter dissipated in summer. The formation region of ESTMW corresponded to the summer sea surface density maximum resulting from its poleward sea surface salinity front. Sea surface density maximum maintains weak stratification during summer, preconditioning the deepening of the winter mixed layer and hence the formation of ESTMWs. A relationship between the ESTMW formation region and the summer sea surface density maximum was also found in the North Atlantic and the South Pacific, implying the importance of sea surface salinity fronts and the associated summer sea surface density maximum to ESTMW formation. Interannual variations of ESTMW reflected that of the winter mixed layer in its formation region, and the thickness of ESTMW was related to the Pacific decadal oscillation. ESTMW contributed to the occurrence of spice injection and affected spiciness anomalies in the upper permanent pycnocline through its formation and dissipation.

  12. Dedicated Low Latitude Diurnal CO2 Frost Observation Campaigns by the Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Kass, D. M.; Kleinboehl, A.; Hayne, P. O.; Heavens, N. G.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.

    2017-12-01

    In December 2016 (Ls≈280, MY33) and July 2017 (Ls≈30, MY34), the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) conducted two distinct observation campaigns. The first one aimed at 1) confirming the presence of low latitude diurnal CO2 frost on Mars, and 2) refining the estimated mass of carbon dioxide condensed at the surface, whereas the second campaign was designed to 3) search for temporally and spatially varying spectral characteristics indicative of frost properties (i.e., crystal size, contamination, etc.) and relationship to the regolith. To meet these goals, MCS acquired thermal infrared observations of the surface and atmosphere at variable local times (≈1.70-3.80 h Local True Solar Time) and in the 10°-50°N latitude band where very low thermal inertia material (<< 100 Jm-2K-1s-0.5) is present. Atmospherically corrected surface brightness temperatures were retrieved in a wavelength region around 32 μm (MCS channel B1) as well as at 12 μm, 16 μm and 22 μm (MCS channels A4, A1, A5) where possible. A preliminary analysis of the data suggests a good general agreement between these new observations and earlier predictions in terms of frost distribution and spectral properties. In addition, pre-frost deposition surface cooling rates are found to be consistent with those predicted by numerical models (i.e., 1-2K per hour). Finally, we observe buffered surface temperatures near the local frost point, indicating a surface emissivity ≈1. (i.e., optically thin frost layers, or dust contaminated frost, or slab-like ice) and no discernable frost metamorphism. We will present a detailed analysis of these new and unique observations, and elaborate on the potential relationship between the regolith and this recurring frost cycle.

  13. Nanoparticles in practice for molecular-imaging applications: An overview.

    PubMed

    Padmanabhan, Parasuraman; Kumar, Ajay; Kumar, Sundramurthy; Chaudhary, Ravi Kumar; Gulyás, Balázs

    2016-09-01

    Nanoparticles (NPs) are playing a progressively more significant role in multimodal and multifunctional molecular imaging. The agents like Superparamagnetic iron oxide (SPIO), manganese oxide (MnO), gold NPs/nanorods and quantum dots (QDs) possess specific properties like paramagnetism, superparamagnetism, surface plasmon resonance (SPR) and photoluminescence respectively. These specific properties make them able for single/multi-modal and single/multi-functional molecular imaging. NPs generally have nanomolar or micromolar sensitivity range and can be detected via imaging instrumentation. The distinctive characteristics of these NPs make them suitable for imaging, therapy and delivery of drugs. Multifunctional nanoparticles (MNPs) can be produced through either modification of shell or surface or by attaching an affinity ligand to the nanoparticles. They are utilized for targeted imaging by magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), photo acoustic imaging (PAI), two photon or fluorescent imaging and ultra sound etc. Toxicity factor of NPs is also a very important concern and toxic effect should be eliminated. First generation NPs have been designed, developed and tested in living subjects and few of them are already in clinical use. In near future, molecular imaging will get advanced with multimodality and multifunctionality to detect diseases like cancer, neurodegenerative diseases, cardiac diseases, inflammation, stroke, atherosclerosis and many others in their early stages. In the current review, we discussed single/multifunctional nanoparticles along with molecular imaging modalities. The present article intends to reveal recent avenues for nanomaterials in multimodal and multifunctional molecular imaging through a review of pertinent literatures. The topic emphasises on the distinctive characteristics of nanomaterial which makes them, suitable for biomedical imaging, therapy and delivery of drugs. This review is more informative of indicative technologies which will be helpful in a way to plan, understand and lead the nanotechnology related work. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Temperature and acidity effects on WO{sub 3} nanostructures and gas-sensing properties of WO{sub 3} nanoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Huili; Liu, Zhifang; Yang, Jiaqin

    2014-09-15

    Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{submore » 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.« less

  15. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice

    PubMed Central

    Percopo, Caroline M.; Brenner, Todd A.; Ma, Michelle; Kraemer, Laura S.; Hakeem, Reem M. A.; Lee, James J.; Rosenberg, Helene F.

    2017-01-01

    Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45+CD11c−SiglecF+Gr1hi). SiglecF+Gr1hi eosinophils, distinct from the canonical SiglecF+Gr1− eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX−/− and MBP-1−/−) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1+ neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF+Gr1hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G+. Although indistinguishable from the more-numerous SiglecF+Gr1− eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF+Gr1hi eosinophil population (at 3.9 and 4.8 pg/106 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/106 cells). Interestingly, bone marrow-derived (SiglecF+), cultured eosinophils include a more substantial Gr1+ subpopulation (∼50%); Gr1+ bmEos includes primarily a single Ly6C+ and a smaller, double-positive (Ly6C+Ly6G+) population. Taken together, our findings characterize a distinct SiglecF+Gr1hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF+Gr1hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments. PMID:27531929

  16. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice.

    PubMed

    Percopo, Caroline M; Brenner, Todd A; Ma, Michelle; Kraemer, Laura S; Hakeem, Reem M A; Lee, James J; Rosenberg, Helene F

    2017-01-01

    Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45 + CD11c - SiglecF + Gr1 hi ). SiglecF + Gr1 hi eosinophils, distinct from the canonical SiglecF + Gr1 - eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX -/- and MBP-1 -/- ) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1 + neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF + Gr1 hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G + Although indistinguishable from the more-numerous SiglecF + Gr1 - eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF + Gr1 hi eosinophil population (at 3.9 and 4.8 pg/10 6 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/10 6 cells). Interestingly, bone marrow-derived (SiglecF + ), cultured eosinophils include a more substantial Gr1 + subpopulation (∼50%); Gr1 + bmEos includes primarily a single Ly6C + and a smaller, double-positive (Ly6C + Ly6G + ) population. Taken together, our findings characterize a distinct SiglecF + Gr1 hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF + Gr1 hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments. © Society for Leukocyte Biology.

  17. Dual Imprinted Polymer Thin Films via Pattern Directed Self-Organization.

    PubMed

    Grolman, Danielle; Bandyopadhyay, Diya; Al-Enizi, Abdullah; Elzatahry, Ahmed; Karim, Alamgir

    2017-06-21

    Synthetic topographically patterned films and coatings are typically contoured on one side, yet many of nature's surfaces have distinct textures on different surfaces of the same object. Common examples are the top and bottom sides of the butterfly wing or lotus leaf, onion shells, and the inside versus outside of the stem of a flower. Inspired by nature, we create dual (top and bottom) channel patterned polymer films. To this end, we first develop a novel fabrication method to create ceramic line channel relief structures by converting the oligomeric residue of stamped poly(dimethylsiloxane) (PDMS) nanopatterns on silicon substrates to glass (SiOx, silica) by ultraviolet-ozone (UVO) exposure. These silica patterned substrates are flow coated with polystyrene (PS) films and confined within an identically patterned top confining soft PDMS elastomer film. Annealing of the sandwich structures drives the PS to rapidly mold fill the top PDMS pattern in conjunction with a dewetting tendency of the PS on the silica pattern. Varying the film thickness h, from less than to greater than the pattern height, and varying the relative angle between the top-down and bottom-up patterned confinement surfaces create interesting uniform and nonuniform digitized defects in PS channel patterns, as also a defect-free channel regime. Our dual patterned polymer channels provide a novel fabrication route to topographically imprinted Moiré patterns (whose applications range from security encrypting holograms to sensitive strain gauges), and their basic laser light diffractions properties are illustrated and compared to graphical simulations and 2D-FFT of real-space AFM channel patterns. While traditional "geometrical" and "fringe" Moiré patterns function by superposition of two misaligned optical patterned transmittance gratings, our topographic pattern gratings are quite distinct and may allow for more unique holographic optical characteristics with further development.

  18. Distinct Reward Properties are Encoded via Corticostriatal Interactions

    PubMed Central

    Smith, David V.; Rigney, Anastasia E.; Delgado, Mauricio R.

    2016-01-01

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nucleus accumbens, a subregion of the striatum. Striatal responses to informative, but not affective, reward properties predicted subsequent utilization of information for obtaining monetary reward. We hypothesized that activation of the striatum may be necessary but not sufficient to encode distinct reward properties. To investigate this possibility, we examined whether affective and informative reward properties were differentially encoded in corticostriatal interactions. Strikingly, we found that the striatum exhibited dissociable connectivity patterns with the ventrolateral prefrontal cortex, with increasing connectivity for affective reward properties and decreasing connectivity for informative reward properties. Our results demonstrate that affective and informative reward properties are encoded via corticostriatal interactions. These findings highlight how corticostriatal systems contribute to reward processing, potentially advancing models linking striatal activation to behavior. PMID:26831208

  19. Distinct Reward Properties are Encoded via Corticostriatal Interactions.

    PubMed

    Smith, David V; Rigney, Anastasia E; Delgado, Mauricio R

    2016-02-02

    The striatum serves as a critical brain region for reward processing. Yet, understanding the link between striatum and reward presents a challenge because rewards are composed of multiple properties. Notably, affective properties modulate emotion while informative properties help obtain future rewards. We approached this problem by emphasizing affective and informative reward properties within two independent guessing games. We found that both reward properties evoked activation within the nucleus accumbens, a subregion of the striatum. Striatal responses to informative, but not affective, reward properties predicted subsequent utilization of information for obtaining monetary reward. We hypothesized that activation of the striatum may be necessary but not sufficient to encode distinct reward properties. To investigate this possibility, we examined whether affective and informative reward properties were differentially encoded in corticostriatal interactions. Strikingly, we found that the striatum exhibited dissociable connectivity patterns with the ventrolateral prefrontal cortex, with increasing connectivity for affective reward properties and decreasing connectivity for informative reward properties. Our results demonstrate that affective and informative reward properties are encoded via corticostriatal interactions. These findings highlight how corticostriatal systems contribute to reward processing, potentially advancing models linking striatal activation to behavior.

  20. Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses.

    PubMed

    Svitova, Tatyana F; Lin, Meng C

    2013-12-01

    To explore interfacial behaviors and effects of temperature and dilatation on dynamic properties of multilayered human tear lipids extracted from silicone hydrogel (SiH) lenses worn by asymptomatic Asian and white subjects. Interfacial properties of lipids extracted from Focus N&D lenses worn by 14 subjects continuously for 1 month were studied. The lipids were deposited on an air bubble immersed in a model tear electrolyte (MTE) solution to form 100 ± 20-nm-thick films. Surface pressure was recorded during slow expansion/contraction cycles to evaluate compressibility and hysteresis of lipid films. Films were also subjected to fast step-strain dilatations at temperatures of 22 to 45°C for their viscoelastic property assessment. Isocycles for Asian and white lipids were similar at low surface pressures but had distinctly different compressibility and hysteresis at dynamic pressures exceeding 30 mN/m. Rheological parameters of reconstituted lipids were also dissimilar between Asian and white. The elastic modulus E∞ for white lipids was 1.5 times higher than that for Asian lipids, whereas relaxation time (t) was on average 1.3 times higher for Asian. No significant changes were observed in rheological properties of both Asian and white lipids when temperature increased from 22.0 to 36.5°C. However, for white lipids, E∞ reduced considerably at temperatures higher than 42.0°C, whereas t remained unchanged. For Asian lipids, both E∞ and t started to decline as temperature increased to 38°C and higher. Higher elastic modulus of white lipids and elasticity threshold at certain deformations indicate stronger structure and intermolecular interactions as compared with more viscous Asian lipids. The differences in interfacial behaviors between Asian and white lipids may be associated with the differences in their chemical compositions.

  1. Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films.

    PubMed

    Lian, Qing; Chen, Mu; Mokhtar, Muhamad Z; Wu, Shanglin; Zhu, Mingning; Whittaker, Eric; O'Brien, Paul; Saunders, Brian R

    2018-05-07

    Blends of semiconducting nanocrystals and conjugated polymers continue to attract major research interest because of their potential applications in optoelectronic devices, such as solar cells, photodetectors and light-emitting diodes. In this study we investigate the surface structure, morphological and optoelectronic properties of multilayer films constructed from ZnO nanocrystals (NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV). The effects of layer number and ZnO concentration (C ZnO ) used on the multilayer film properties are investigated. An optimised solvent blend enabled well-controlled layers to be sequentially spin coated and the construction of multilayer films containing six ZnO NC (Z) and MDMO-PPV (M) layers (denoted as (ZM) 6 ). Contact angle data showed a strong dependence on C ZnO and indicated distinct differences in the coverage of MDMO-PPV by the ZnO NCs. UV-visible spectroscopy showed that the MDMO-PPV absorption increased linearly with the number of layers in the films and demonstrates highly tuneable light absorption. Photoluminescence spectra showed reversible quenching as well as a surprising red-shift of the MDMO-PPV emission peak. Solar cells were constructed to probe vertical photo-generated charge transport. The measurements showed that (ZM) 6 devices prepared using C ZnO = 14.0 mg mL -1 had a remarkably high open circuit voltage of ∼800 mV. The device power conversion efficiency was similar to that of a control bilayer device prepared using a much thicker MDMO-PPV layer. The results of this study provide insight into the structure-optoelectronic property relationships of new semiconducting multilayer films which should also apply to other semiconducting NC/polymer combinations.

  2. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China.

    PubMed

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Xu, Shujing

    2014-01-01

    Increasing urbanization and industrialization over the world has caused many social and environmental problems, one of which drawing particular concern is the soil pollution and its ecological degradation. In this study, the efficiency of magnetic methods for detecting and discriminating contaminates in the arid and semi-arid regions of northwestern China was investigated. Topsoil samples from six typical cities (i.e. Karamay, Urumqi, Lanzhou, Yinchuan, Shizuishan and Wuhai) were collected and a systematic analysis of their magnetic properties was conducted. Results indicate that the topsoil samples from the six cities were all dominated by coarse low-coercivity magnetite. In addition, the average magnetite contents in the soils from Urumqi and Lanzhou were shown to be much higher than those from Karamay, Yinchuan, Shizuishan and Wuhai, and they also have relatively higher χlf and χfd% when compared with cities in eastern China. Moreover, specific and distinctive soil pollution signals were identified at each sampling site using the combined various magnetic data, reflecting distinct sources. Industrial and traffic-derived pollution was dominant in Urumqi and Lanzhou, in Yinchuan industrial progress was observed to be important with some places affected by vehicle emission, while Karamay, Shizuishan and Wuhai were relatively clean. The magnetic properties of these latter three cities are significantly affected by both anthropogenic pollution and local parent materials from the nearby Gobi desert. The differences in magnetic properties of topsoil samples affected by mixed industrial and simplex traffic emissions are not obvious, but significant differences exist in samples affected by simplex industrial/vehicle emissions and domestic pollution. The combined magnetic analyses thus provide a sensitive and powerful tool for classifying samples according to likely sources, and may even provide a valuable diagnostic tool for discriminating among different cities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    PubMed

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  4. The Effects of Terrain Properties on Determining Crater Model Ages of Lunar Surfaces

    NASA Astrophysics Data System (ADS)

    Kirchoff, M. R.; Marchi, S.

    2017-12-01

    Analyzing crater size-frequency distributions (SFDs) and using them to determine model ages of surfaces is an important technique for understanding the Moon's geologic history and evolution. Small craters with diameters (D) < 1 km are frequently used, especially given the very high resolution imaging now available from Lunar Reconnaissance Orbiter Narrow and Wide Angle Cameras (LROC-NAC/WAC) and the Selene Terrain Camera. However, for these diameters, final crater sizes and shapes are affected by the properties of the terrains on which they are formed [1], which alters crater SFD shapes [2]. We use the Model Production Function (MPF; [2]), which includes terrain properties in computing crater production functions, to explore how incorporating terrain properties affects the estimation of crater model ages. First, crater SFDs are compiled utilizing LROC-WAC/NAC images to measure craters with diameters from 10 m up to 20 km (size of largest crater measured depends on the terrain). A nested technique is used to obtain this wide diameter range: D ≥ 0.5 km craters are measured in the largest area, D = 0.09-0.5 km craters are measured in a smaller area within the largest area, and D = 0.01-0.1 km craters are measured in the smallest area located in both of the larger areas. Then, we quantitatively fit the crater SFD with distinct MPFs that use broadly different terrain properties. Terrain properties are varied through coarsely altering the parameters in the crater scaling law [1] that represent material type (consolidated, unconsolidated, porous), material tensile strength, and material density (for further details see [2]). We also discuss the effect of changing terrain properties with depth (i.e., layering). Finally, fits are used to compute the D = 1 km crater model ages for the terrains. We discuss the new constraints on how terrain properties affect crater model ages from our analyses of a variety of lunar terrains from highlands to mare and impact melt to continuous ejecta deposits. References: [1] Holsapple, K. A & Housen, K. R., Icarus 187, 345-356, 2007. [2] Marchi, S., et al., AJ 137, 4936-4948, 2009.

  5. Molecular dynamics simulations reveal the assembly mechanism of polysaccharides in marine aerosols.

    PubMed

    Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans

    2014-12-21

    The high Arctic marine environment has recently detected polymer gels in atmospheric aerosol particles and cloud water originating from the surface microlayer of the open leads within the pack ice area. These polysaccharide molecules are water insoluble but water solvated, highly surface-active and highly hydrated (99% water). In order to add to the understanding and to complement missing laboratory characterization of marine polymer gels we have in this work performed an atomistic study of the assembly process and interfacial properties of polysaccharides. Our study reveals a number of salient features of the microscopic process behind polysaccharide assembly into nanogels. With three- and four-repeating units the polysaccharides assemble into a cluster in 50 ns. The aggregates grow quicker by absorbing one or two polymers each time, depending on the unit length and the type of inter-bridging cation. Although both the hydrophobic and hydrophilic domains are contracted, the latter dominates distinctly upon the contraction of solvent accessible surface areas. The establishment of inter-chain hydrogen-bonds is the key to the assembly while ionic bridges can further promote aggregation. During the assembly of the more bent four-unit polymers, intra-chain hydrogen bonds are significantly diminished by Ca(2+). Meanwhile, the percentage of Ca(2+) acting as an ionic bridge is more eminent, highlighting the significance of Ca(2+) ions for longer-chain polysaccharides. The aggregates are able to enhance surface tension more in the presence of Ca(2+) than in the presence of Na(+) owing to their more compact structure. These conclusions all demonstrate that studies of the present kind provide insight into the self-assembly process and interfacial properties of marine gels. We hope this understanding will keep up the interest in the complex and the fascinating relationship between marine microbiology, atmospheric aerosols, clouds and climate.

  6. Effect of Annealing Temperature on Morphological and Optical Transition of Silver Nanoparticles on c-Plane Sapphire.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Lee, Jihoon

    2018-05-01

    As a promising candidate for the improved performance, silver nanoparticles (Ag NPs) have been successfully adapted in various applications such as photovoltaics, light emitting diodes (LEDs), sensors and catalysis by taking the advantage of their controllable plasmonic properties. In this paper, the control on the morphologies and optical properties of Ag NPs on c-plane sapphire (0001) is demonstrated by the systematic control of annealing temperature (between 200 and 950 °C) with 20 and 6 nm thick Ag films through the solid state dewetting. With the relatively thicker film of 20 nm, various configuration and size of Ag NPs are fabricated such as irregular, round dome-shaped and tiny Ag NPs depending on the annealing temperature. In a shrill contrast, the 6 nm Ag set exhibits a sharp distinction with the formation of densely packed small NPs and ultra-highly dense tiny Ag NPs due to the higher dewetting rate. While, the surface diffusion assumes the main driving force in the evolution process of Ag NP morphologies up to 550 °C, the sublimation of Ag atoms has played a significant role on top on the surface diffusion between 600 and 950 °C. The reflectance spectra of Ag NPs exhibit the quadrupolar resonance and dipolar resonance peaks, and the evolution of peaks, shift and average reflectance were discussed based on the Ag NPs size and surface coverage. In particular, the dipolar resonance peak in the reflectance spectra red shifts from ~475 to ~570 nm due to the size increment of Ag NPs (38.31 to 74.68 nm). The wide surface coverage of Ag NPs exhibits the highest average reflectance (~27%) and the lowest Raman intensity.

  7. Effect of mineral surface properties (alumina, kaolinite) on the sorptive fractionation mechanisms of soil fulvic acids: Molecular-scale ESI-MS studies

    NASA Astrophysics Data System (ADS)

    Fleury, Guillaume; Del Nero, Mirella; Barillon, Rémi

    2017-01-01

    We addressed the effects of mineral surface properties (kaolinite versus Al-oxide) on the sorption-driven fractionation of a soil fulvic acid (FA) at acidic pH, mainly by means of ESI(-)-FTMS analysis of initial and supernatant solutions of FA sorption batch experiments. The MS data provided clear molecular-scale evidence of distinct mechanisms and molecular parameters controlling the FA fractionation upon its sorption on clay and oxide surfaces, respectively. Identification of sorbing and not-sorbing FA compounds in kaolinite-solution systems revealed a weak fractionation among members of sbnd CO2 series of aliphatics or not-condensed aromatics (NCAs) at pH 3.8, and almost no sorption of poorly-oxygenated polycyclic aromatic compounds (PACs) and NCAs. This first molecular-scale description of a FA fractionation in a clay-solution system suggests that H-bonding with low affinity sites (aluminol/silanol) on the basal planes of the clay particles is the main mechanism of sorption. Due to the predominance of such weak and poorly-selective mechanism, the sorption of aliphatic and NCA molecules bearing oxygenated functionalities was prevented at pH 5, due to dissolved Al competing successfully for their coordination. In contrast, a strong FA fractionation was observed onto alumina, with a preferential retention of PACs and highly-oxygenated aliphatics and NCAs. The major part of the poorly oxygenated aliphatics was left in solution. The sorption degree of NCAs and aliphatics was strongly correlated with molecular acidity. For PACs and poorly-oxygenated NCAs, the sorption was driven by reactions of surface ligand exchange (for the most oxygenated compounds) or by hydrophobic interactions (for the least oxygenated compounds).

  8. New Type of the Interface Evolution in the Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Herrmann, M.

    2003-01-01

    We performed systematic theoretical and numerical studies of the nonlinear large-scale coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densities. Our simulations modeled the interface dynamics for compressible and viscous uids. For a two-fluid system we observed that in the nonlinear regime of the instability the bubble velocity decays and its surface attens, and the attening is accompanied by slight oscillations. We found the theoretical solution for the system of conservation laws, describing the principal influence of the density ratio on the motion of the nonlinear bubble. The solution has no adjustable parameters, and shows that the attening of the bubble front is a distinct property universal for all values of the density ratio. This property follows from the fact that the RM bubbles decelerate. The theoretical and numerical results validate each other, describe the new type of the bubble front evolution in RMI, and identify the bubble curvature as important and sensitive diagnostic parameter.

  9. Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates.

    PubMed

    Rodrigues, Daniel C; de Souza, Michele L; Souza, Klester S; dos Santos, Diego P; Andrade, Gustavo F S; Temperini, Marcia L A

    2015-09-07

    The SERS enhancement factor (SERS-EF) is one of the most important parameters that characterizes the ability of a given substrate to enhance the Raman signal for SERS applications. The comparison of SERS intensities and SERS-EF values across different substrates is a common practice to unravel the performance of a given substrate. In this study, it is shown that such a comparison may lack significance if we compare substrates of very distinct nature and optical properties. It is specifically shown that the SERS-EF values for static substrates (e.g. immobilized metallic nanostructures) cannot be compared to those of dynamic ones (e.g. colloidal metal nanoparticle solutions), and that the optical properties for the latter show strong dependence on the metal-molecule interaction dynamics. The most representative experimental results concerning the dynamic substrates have been supported by generalized Mie theory simulations, which are tools used to describe the substrate complexity and the microscopic information not usually taken into account.

  10. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials.

    PubMed

    Vanselous, Heather; Stingel, Ashley M; Petersen, Poul B

    2017-02-16

    Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge transfer. Ultrafast nonlinear spectroscopic techniques such as 2D infrared (2D IR) spectroscopy are powerful tools for understanding molecular dynamics in complex bulk systems. Here, we build on technical advancements in 2D IR and heterodyne-detected sum frequency generation (SFG) spectroscopy to study a CO 2 reduction catalyst on nanostructured TiO 2 with interferometric 2D SFG spectroscopy. Our method combines phase-stable heterodyne detection employing an external local oscillator with a broad-band pump pulse pair to provide the first high spectral and temporal resolution 2D SFG spectra of a transparent material. We determine the overall molecular orientation of the catalyst and find that there is a static structural heterogeneity reflective of different local environments at the surface.

  11. Optical properties of titanium-di-oxide (TiO2) prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Rahman, Kazi Hasibur; Biswas, Sayari; Kar, Asit Kumar

    2018-05-01

    Research on titanate and its derived TiO2 nanostructures with large specific surface area have received great attention due to their enhanced efficiency in photocatalysis, DSSC etc. Here, in this communication TiO2 powder has been prepared by hydrothermal method at 180 °C. In this work we have shown the changes in optical properties of the powder with two different sintering temperatures ‒ 500 °C and 800 °C. The as prepared powder was also studied. FESEM images show spherical particles for the as prepared samples which look more like agglomeration after sintering. Band gaps of the prepared samples were calculated from UV-Vis spectroscopy which lies in the range 2.85 eV ‒ 3.13 eV. The photoluminescence (PL) spectra of the prepared samples were recorded at room temperature in the range of 300‒700 nm. It shows two distinct peaks at 412 nm and 425 nm.

  12. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  13. Densimetry for the Quantification of Sorption Phenomena on Nonporous Media Near the Dew Point of Fluid Mixtures.

    PubMed

    Richter, Markus; McLinden, Mark O

    2017-07-21

    Phase equilibria of fluid mixtures are important in numerous industrial applications and are, thus, a major focus of thermophysical property research. Improved data, particularly along the dew line, are needed to improve model predictions. Here we present experimental results utilizing highly accurate densimetry to quantify the effects of sorption and capillary condensation, which exert a distorting influence on measured properties near the dew line. We investigate the (pressure, density, temperature, composition) behaviour of binary (CH 4  + C 3 H 8 ) and (Ar + CO 2 ) mixtures over the temperature range from (248.15 to 273.15) K starting at low pressures and increasing in pressure towards the dew point along isotherms. Three distinct regions are observed: (1) minor sorption effects in micropores at low pressures; (2) capillary condensation followed by wetting in macro-scale surface scratches beginning approximately 2% below the dew-point pressure; (3) bulk condensation. We hypothesize that the true dew point lies within the second region.

  14. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    NASA Astrophysics Data System (ADS)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  15. Theory of Phase Separation and Polarization for Pure Ionic Liquids.

    PubMed

    Gavish, Nir; Yochelis, Arik

    2016-04-07

    Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: the electrode/RTIL interface is believed to be a product of both polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. Introduction of a distinct Cahn-Hilliard-Poisson type mean-field framework for pure molten salts (i.e., in the absence of any neutral component), allows a systematic coupling between morphological evolution and the electrokinetic phenomena, such as transient currents. Specifically, linear analysis shows that spatially periodic patterns form via a finite wavenumber instability and numerical simulations demonstrate that while labyrinthine type patterns develop in the bulk, lamellar structures are favored near charged surfaces. The results demonstrate a qualitative phenomenology that is observed empirically and thus, provide a physically consistent methodology to incorporate phase separation properties into an electrochemical framework.

  16. Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks

    NASA Astrophysics Data System (ADS)

    Golvano-Escobal, Irati; Gonzalez-Rosillo, Juan Carlos; Domingo, Neus; Illa, Xavi; López-Barberá, José Francisco; Fornell, Jordina; Solsona, Pau; Aballe, Lucia; Foerster, Michael; Suriñach, Santiago; Baró, Maria Dolors; Puig, Teresa; Pané, Salvador; Nogués, Josep; Pellicer, Eva; Sort, Jordi

    2016-07-01

    Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks that are commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes.

  17. Nanotechnology for dental implants.

    PubMed

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  18. Comparison of Grammar in Neurodevelopmental Disorders: The Case of Binding in Williams Syndrome and Autism with and without Language Impairment

    ERIC Educational Resources Information Center

    Perovic, Alexandra; Modyanova, Nadya; Wexler, Ken

    2013-01-01

    This study investigates whether distinct neurodevelopmental disorders show distinct patterns of impairments in particular grammatical abilities and the relation of those grammatical patterns to general language delays and intellectual disabilities. We studied two disorders (autism and Williams syndrome [WS]) and two distinct properties (Principle…

  19. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    USGS Publications Warehouse

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an average temperature rate change of 1% following a variation of 0.04 AU in the solar distance.

  20. A Gem of a Find

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    NASA's Mars Reconnaissance Orbiter has revealed Martian rocks containing a hydrated mineral similar to opal. The rocks are light-toned and appear cream-colored in this false-color image taken by the High Resolution Imaging Science Experiment (HiRISE) camera. Images acquired by the orbiter reveal that different layers of rock have different properties and chemistry. The opal minerals are located in distinct beds of rock outside of the large Valles Marineris canyon system and are also found in rocks within the canyon. The presence of opal in these relatively young rocks tells scientists that water, possibly as rivers and small ponds, interacted with the surface as recently as two billion years ago, one billion years later than scientists had expected. The discovery of this new category of minerals spread across large regions of Mars suggests that liquid water played an important role in shaping the planet's surface and possibly hosting life.

Top