Sample records for distinctive expression patterns

  1. 76 FR 43993 - Notice of Availability for Exclusive, Non-Exclusive, or Partially-Exclusive Licensing of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Agents by Measuring Distinct Pattern in the Levels of Expression of Specific Genes AGENCY: Department of... Measuring Distinct Pattern in the Levels of Expression of Specific Genes,'' issued November 13, 2001. The... determining a difference in the detected amount of protein/gene expression between exposed and unexposed...

  2. Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize.

    PubMed

    Selinger, D A; Chandler, V L

    1999-12-21

    The b locus encodes a transcription factor that regulates the expression of genes that produce purple anthocyanin pigment. Different b alleles are expressed in distinct tissues, causing tissue-specific anthocyanin production. Understanding how phenotypic diversity is produced and maintained at the b locus should provide models for how other regulatory genes, including those that influence morphological traits and development, evolve. We have investigated how different levels and patterns of pigmentation have evolved by determining the phenotypic and evolutionary relationships between 18 alleles that represent the diversity of b alleles in Zea mays. Although most of these alleles have few phenotypic differences, five alleles have very distinct tissue-specific patterns of pigmentation. Superimposing the phenotypes on the molecular phylogeny reveals that the alleles with strong and distinctive patterns of expression are closely related to alleles with weak expression, implying that the distinctive patterns have arisen recently. We have identified apparent insertions in three of the five phenotypically distinct alleles, and the fourth has unique upstream restriction fragment length polymorphisms relative to closely related alleles. The insertion in B-Peru has been shown to be responsible for its unique expression and, in the other two alleles, the presence of the insertion correlates with the phenotype. These results suggest that major changes in gene expression are probably the result of large-scale changes in DNA sequence and/or structure most likely mediated by transposable elements.

  3. Comprehensive Expression Map of Transcription Regulators in the Adult Zebrafish Telencephalon Reveals Distinct Neurogenic Niches

    PubMed Central

    Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe

    2015-01-01

    The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. J. Comp. Neurol. 523:1202–1221, 2015. © 2015 Wiley Periodicals, Inc. PMID:25556858

  4. Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches.

    PubMed

    Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe

    2015-06-01

    The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. © 2015 Wiley Periodicals, Inc.

  5. Origin of heterogeneous spiking patterns from continuously distributed ion channel densities: a computational study in spinal dorsal horn neurons.

    PubMed

    Balachandar, Arjun; Prescott, Steven A

    2018-05-01

    Distinct spiking patterns may arise from qualitative differences in ion channel expression (i.e. when different neurons express distinct ion channels) and/or when quantitative differences in expression levels qualitatively alter the spike generation process. We hypothesized that spiking patterns in neurons of the superficial dorsal horn (SDH) of spinal cord reflect both mechanisms. We reproduced SDH neuron spiking patterns by varying densities of K V 1- and A-type potassium conductances. Plotting the spiking patterns that emerge from different density combinations revealed spiking-pattern regions separated by boundaries (bifurcations). This map suggests that certain spiking pattern combinations occur when the distribution of potassium channel densities straddle boundaries, whereas other spiking patterns reflect distinct patterns of ion channel expression. The former mechanism may explain why certain spiking patterns co-occur in genetically identified neuron types. We also present algorithms to predict spiking pattern proportions from ion channel density distributions, and vice versa. Neurons are often classified by spiking pattern. Yet, some neurons exhibit distinct patterns under subtly different test conditions, which suggests that they operate near an abrupt transition, or bifurcation. A set of such neurons may exhibit heterogeneous spiking patterns not because of qualitative differences in which ion channels they express, but rather because quantitative differences in expression levels cause neurons to operate on opposite sides of a bifurcation. Neurons in the spinal dorsal horn, for example, respond to somatic current injection with patterns that include tonic, single, gap, delayed and reluctant spiking. It is unclear whether these patterns reflect five cell populations (defined by distinct ion channel expression patterns), heterogeneity within a single population, or some combination thereof. We reproduced all five spiking patterns in a computational model by varying the densities of a low-threshold (K V 1-type) potassium conductance and an inactivating (A-type) potassium conductance and found that single, gap, delayed and reluctant spiking arise when the joint probability distribution of those channel densities spans two intersecting bifurcations that divide the parameter space into quadrants, each associated with a different spiking pattern. Tonic spiking likely arises from a separate distribution of potassium channel densities. These results argue in favour of two cell populations, one characterized by tonic spiking and the other by heterogeneous spiking patterns. We present algorithms to predict spiking pattern proportions based on ion channel density distributions and, conversely, to estimate ion channel density distributions based on spiking pattern proportions. The implications for classifying cells based on spiking pattern are discussed. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  6. Function does not follow form in gene regulatory circuits.

    PubMed

    Payne, Joshua L; Wagner, Andreas

    2015-08-20

    Gene regulatory circuits are to the cell what arithmetic logic units are to the chip: fundamental components of information processing that map an input onto an output. Gene regulatory circuits come in many different forms, distinct structural configurations that determine who regulates whom. Studies that have focused on the gene expression patterns (functions) of circuits with a given structure (form) have examined just a few structures or gene expression patterns. Here, we use a computational model to exhaustively characterize the gene expression patterns of nearly 17 million three-gene circuits in order to systematically explore the relationship between circuit form and function. Three main conclusions emerge. First, function does not follow form. A circuit of any one structure can have between twelve and nearly thirty thousand distinct gene expression patterns. Second, and conversely, form does not follow function. Most gene expression patterns can be realized by more than one circuit structure. And third, multifunctionality severely constrains circuit form. The number of circuit structures able to drive multiple gene expression patterns decreases rapidly with the number of these patterns. These results indicate that it is generally not possible to infer circuit function from circuit form, or vice versa.

  7. TimesVector: a vectorized clustering approach to the analysis of time series transcriptome data from multiple phenotypes.

    PubMed

    Jung, Inuk; Jo, Kyuri; Kang, Hyejin; Ahn, Hongryul; Yu, Youngjae; Kim, Sun

    2017-12-01

    Identifying biologically meaningful gene expression patterns from time series gene expression data is important to understand the underlying biological mechanisms. To identify significantly perturbed gene sets between different phenotypes, analysis of time series transcriptome data requires consideration of time and sample dimensions. Thus, the analysis of such time series data seeks to search gene sets that exhibit similar or different expression patterns between two or more sample conditions, constituting the three-dimensional data, i.e. gene-time-condition. Computational complexity for analyzing such data is very high, compared to the already difficult NP-hard two dimensional biclustering algorithms. Because of this challenge, traditional time series clustering algorithms are designed to capture co-expressed genes with similar expression pattern in two sample conditions. We present a triclustering algorithm, TimesVector, specifically designed for clustering three-dimensional time series data to capture distinctively similar or different gene expression patterns between two or more sample conditions. TimesVector identifies clusters with distinctive expression patterns in three steps: (i) dimension reduction and clustering of time-condition concatenated vectors, (ii) post-processing clusters for detecting similar and distinct expression patterns and (iii) rescuing genes from unclassified clusters. Using four sets of time series gene expression data, generated by both microarray and high throughput sequencing platforms, we demonstrated that TimesVector successfully detected biologically meaningful clusters of high quality. TimesVector improved the clustering quality compared to existing triclustering tools and only TimesVector detected clusters with differential expression patterns across conditions successfully. The TimesVector software is available at http://biohealth.snu.ac.kr/software/TimesVector/. sunkim.bioinfo@snu.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways is a secondary benefit to identifying differential GPCR expression patterns in medulloblastoma tumors. PMID:24252460

  9. Expression of the Diabetes-Associated Gene TCF7L2 in Adult Mouse Brain

    PubMed Central

    LEE, SYANN; LEE, CHARLOTTE E.; ELIAS, CAROL F.; ELMQUIST, JOEL K.

    2014-01-01

    Polymorphisms of the gene TCF7L2 (transcription factor 7-like 2) are strongly associated with the development and progression of type 2 diabetes. TCF7L2 is important in the development of peripheral organs such as adipocytes, pancreas, and the intestine. However, very little is known about its expression elsewhere. In this study we used in situ hybridization histochemistry to show that TCF7L2 has a unique expression pattern in the mouse brain. TCF7L2 is expressed in two distinct populations. First, it is highly ex pressed in thalamic and tectal structures. Additionally, TCF7L2 mRNA is expressed at moderate to low levels in specific cells of the hypothalamus, preoptic nucleus, and circumventricular organs. Collectively, these patterns of expression suggest that TCF7L2 has distinct functions within the brain, with a general role in the development and maintenance of thalamic and midbrain neurons, and then a distinct role in autonomic homeostasis. PMID:19845015

  10. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    DTIC Science & Technology

    2011-11-16

    protein A (Rpa2), the minichromosome maintenance complex component genes which encode helicases, DNA ligase (Lig1), DNA polymerase e ( Pole and Pole2...and DNA polymerase d ( Pold1 and Pold2 ) are all up-regulated as a result of exposure to chromium (Figure 6), suggesting that there is an increase in...Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line Matthew G

  11. High temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast

    PubMed Central

    Kuang, Zheng; Cai, Ling; Zhang, Xuekui; Ji, Hongkai; Tu, Benjamin P.; Boeke, Jef D.

    2014-01-01

    Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles associated with major oscillations of gene expression. How such fluctuations are linked to changes in chromatin status is not well understood. Here we examine the correlated genome-wide transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal resolution, revealing a “just-in-time supply chain” by which components from specific cellular processes such as ribosome biogenesis become available in a highly coordinated manner. We identify distinct chromatin and splicing patterns associated with different gene categories and determine the relative timing of chromatin modifications to maximal transcription. There is unexpected variation in the chromatin modification and expression relationship, with histone acetylation peaks occurring with varying timing and “sharpness” relative to RNA expression both within and between cycle phases. Chromatin modifier occupancy reveals subtly distinct spatial and temporal patterns compared to the modifications themselves. PMID:25173176

  12. Tools for neuroanatomy and neurogenetics in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, Barret D.; Jenett, Arnim; Hammonds, Ann S.

    2008-08-11

    We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayedmore » for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.« less

  13. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors

    PubMed Central

    Mitsiades, Nicholas; Sung, Clifford C.; Schultz, Nikolaus; Danila, Daniel C.; He, Bin; Eedunuri, Vijay Kumar; Fleisher, Martin; Sander, Chris; Sawyers, Charles L.; Scher, Howard I.

    2012-01-01

    Androgen receptor (AR) signaling persists in castration-resistant prostate carcinomas (CRPCs), due to several mechanisms that include increased AR expression and intratumoral androgen metabolism. We investigated the mechanisms underlying aberrant expression of transcripts involved in androgen metabolism in CRPC. We compared gene expression profiles and DNA copy number alteration (CNA) data from 29 normal prostate tissue samples, 127 primary prostate carcinomas (PCas) and 19 metastatic PCas. Steroidogenic enzyme transcripts were evaluated by qRT-PCR in PCa cell lines and circulating tumor cells (CTCs) from CRPC patients. Metastatic PCas expressed higher transcript levels for AR and several steroidogenic enzymes, including SRD5A1, SRD5A3, and AKR1C3, while expression of SRD5A2, CYP3A4, CYP3A5 and CYP3A7 was decreased. This aberrant expression was rarely associated with CNAs. Instead, our data suggest distinct patterns of coordinated aberrant enzyme expression. Inhibition of AR activity by itself stimulated AKR1C3 expression. The aberrant expression of the steroidogenic enzyme transcripts were detected in CTCs from CRPC patients. In conclusion, our findings identify substantial interpatient heterogeneity and distinct patterns of dysregulated expression of enzymes involved in intratumoral androgen metabolism in PCa. These steroidogenic enzymes represent targets for complete suppression of systemic and intratumoral androgen levels, an objective that is supported by the clinical efficacy of the CYP17 inhibitor abiraterone. A comprehensive AR axis targeting approach via simultaneous, frontline enzymatic blockade and/or transcriptional repression of several steroidogenic enzymes, in combination with GnRH analogs and potent anti-androgens, would represent a powerful future strategy for PCa management. PMID:22971343

  14. Distinct Transcript Isoforms of the Atypical Chemokine Receptor 1 (ACKR1) / Duffy Antigen Receptor for Chemokines (DARC) Gene Are Expressed in Lymphoblasts and Altered Isoform Levels Are Associated with Genetic Ancestry and the Duffy-Null Allele

    PubMed Central

    Davis, Melissa B.; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M.; Ford, DeJuana; Howerth, Elizabeth W.; Monteil, Michele

    2015-01-01

    The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357

  15. Regulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain.

    PubMed

    Hauptmann, G; Gerster, T

    2000-03-01

    To shed light on the organization of the rostral embryonic brain of a lower vertebrate, we have directly compared the expression patterns of dlx, fgf, hh, hlx, otx, pax, POU, winged helix and wnt gene family members in the fore- and midbrain of the zebrafish. We show that the analyzed genes are expressed in distinct transverse and longitudinal domains and share expression boundaries at stereotypic positions within the fore- and midbrain. Some of these shared expression boundaries coincide with morphological landmarks like the pathways of primary axon tracts. We identified a series of eight transverse diencephalic domains suggestive of neuromeric subdivisions within the rostral brain. In addition, we identified four molecularly distinct longitudinal subdivisions and provide evidence for a strong bending of the longitudinal rostral brain axis at the cephalic flexure. Our data suggest a strong conservation of early forebrain organization between lower and higher vertebrates.

  16. Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila Robo receptors.

    PubMed

    Spitzweck, Bettina; Brankatschk, Marko; Dickson, Barry J

    2010-02-05

    The orthogonal array of axon pathways in the Drosophila CNS is constructed in part under the control of three Robo family axon guidance receptors: Robo1, Robo2 and Robo3. Each of these receptors is responsible for a distinct set of guidance decisions. To determine the molecular basis for these functional specializations, we used homologous recombination to create a series of 9 "robo swap" alleles: expressing each of the three Robo receptors from each of the three robo loci. We demonstrate that the lateral positioning of longitudinal axon pathways relies primarily on differences in gene regulation, not distinct combinations of Robo proteins as previously thought. In contrast, specific features of the Robo1 and Robo2 proteins contribute to their distinct functions in commissure formation. These specializations allow Robo1 to prevent crossing and Robo2 to promote crossing. These data demonstrate how diversification of expression and structure within a single family of guidance receptors can shape complex patterns of neuronal wiring. 2010 Elsevier Inc. All rights reserved.

  17. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature

    NASA Astrophysics Data System (ADS)

    Dai, Guohao; Kaazempur-Mofrad, Mohammad R.; Natarajan, Sripriya; Zhang, Yuzhi; Vaughn, Saran; Blackman, Brett R.; Kamm, Roger D.; García-Cardeña, Guillermo; Gimbrone, Michael A., Jr.

    2004-10-01

    Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-B transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.

  18. Tissue-specific NETs alter genome organization and regulation even in a heterologous system.

    PubMed

    de Las Heras, Jose I; Zuleger, Nikolaj; Batrakou, Dzmitry G; Czapiewski, Rafal; Kerr, Alastair R W; Schirmer, Eric C

    2017-01-02

    Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.

  19. The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression.

    PubMed

    Munch, David; Gupta, Vikas; Bachmann, Asger; Busch, Wolfgang; Kelly, Simon; Mun, Terry; Andersen, Stig Uggerhøj

    2018-02-01

    Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape ( Brassica napus ) and the model plant Arabidopsis ( Arabidopsis thaliana ), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops. © 2018 American Society of Plant Biologists. All Rights Reserved.

  20. What is shared, what is different? Core relational themes and expressive displays of eight positive emotions.

    PubMed

    Campos, Belinda; Shiota, Michelle N; Keltner, Dacher; Gonzaga, Gian C; Goetz, Jennifer L

    2013-01-01

    Understanding positive emotions' shared and differentiating features can yield valuable insight into the structure of positive emotion space and identify emotion states, or aspects of emotion states, that are most relevant for particular psychological processes and outcomes. We report two studies that examined core relational themes (Study 1) and expressive displays (Study 2) for eight positive emotion constructs--amusement, awe, contentment, gratitude, interest, joy, love, and pride. Across studies, all eight emotions shared one quality: high positive valence. Distinctive core relational theme and expressive display patterns were found for four emotions--amusement, awe, interest, and pride. Gratitude was associated with a distinct core relational theme but not an expressive display. Joy and love were each associated with a distinct expressive display but their core relational themes also characterised pride and gratitude, respectively. Contentment was associated with a distinct expressive display but not a core relational theme. The implications of this work for the study of positive emotion are discussed.

  1. A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer's disease progression.

    PubMed

    Ray, Sumanta; Hossain, Sk Md Mosaddek; Khatun, Lutfunnesa; Mukhopadhyay, Anirban

    2017-12-20

    Alzheimer's disease (AD) is a chronic neuro-degenerative disruption of the brain which involves in large scale transcriptomic variation. The disease does not impact every regions of the brain at the same time, instead it progresses slowly involving somewhat sequential interaction with different regions. Analysis of the expression patterns of the genes in different regions of the brain influenced in AD surely contribute for a enhanced comprehension of AD pathogenesis and shed light on the early characterization of the disease. Here, we have proposed a framework to identify perturbation and preservation characteristics of gene expression patterns across six distinct regions of the brain ("EC", "HIP", "PC", "MTG", "SFG", and "VCX") affected in AD. Co-expression modules were discovered considering a couple of regions at once. These are then analyzed to know the preservation and perturbation characteristics. Different module preservation statistics and a rank aggregation mechanism have been adopted to detect the changes of expression patterns across brain regions. Gene ontology (GO) and pathway based analysis were also carried out to know the biological meaning of preserved and perturbed modules. In this article, we have extensively studied the preservation patterns of co-expressed modules in six distinct brain regions affected in AD. Some modules are emerged as the most preserved while some others are detected as perturbed between a pair of brain regions. Further investigation on the topological properties of preserved and non-preserved modules reveals a substantial association amongst "betweenness centrality" and "degree" of the involved genes. Our findings may render a deeper realization of the preservation characteristics of gene expression patterns in discrete brain regions affected by AD.

  2. Transcription factors define the neuroanatomical organization of the medullary reticular formation

    PubMed Central

    Gray, Paul A.

    2013-01-01

    The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic. PMID:23717265

  3. Transcription factors define the neuroanatomical organization of the medullary reticular formation.

    PubMed

    Gray, Paul A

    2013-01-01

    The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic.

  4. Data-Driven Asthma Endotypes Defined from Blood Biomarker and Gene Expression Data

    PubMed Central

    George, Barbara Jane; Reif, David M.; Gallagher, Jane E.; Williams-DeVane, ClarLynda R.; Heidenfelder, Brooke L.; Hudgens, Edward E.; Jones, Wendell; Neas, Lucas; Hubal, Elaine A. Cohen; Edwards, Stephen W.

    2015-01-01

    The diagnosis and treatment of childhood asthma is complicated by its mechanistically distinct subtypes (endotypes) driven by genetic susceptibility and modulating environmental factors. Clinical biomarkers and blood gene expression were collected from a stratified, cross-sectional study of asthmatic and non-asthmatic children from Detroit, MI. This study describes four distinct asthma endotypes identified via a purely data-driven method. Our method was specifically designed to integrate blood gene expression and clinical biomarkers in a way that provides new mechanistic insights regarding the different asthma endotypes. For example, we describe metabolic syndrome-induced systemic inflammation as an associated factor in three of the four asthma endotypes. Context provided by the clinical biomarker data was essential in interpreting gene expression patterns and identifying putative endotypes, which emphasizes the importance of integrated approaches when studying complex disease etiologies. These synthesized patterns of gene expression and clinical markers from our research may lead to development of novel serum-based biomarker panels. PMID:25643280

  5. Expression and regulation of Sef, a novel signaling inhibitor of receptor tyrosine kinases-mediated signaling in the nervous system.

    PubMed

    Grothe, Claudia; Claus, Peter; Haastert, Kirsten; Lutwak, Ela; Ron, Dina

    2008-01-01

    Fibroblast growth factors (FGFs) signal via four distinct high affinity cell surface tyrosine kinase receptors, termed FGFR1-FGFR4 (FGFR-FGF-receptor). Recently, a new modulator of the FGF signaling pathway, the transmembrane protein 'similar expression to FGF genes' (Sef), has been identified in zebrafish and subsequently in mammals. Sef from mouse and human inhibits FGF mitogenic activity. In the present study, we analyzed the expression of Sef in distinct rat brain areas, in the spinal cord and in peripheral nerves and spinal ganglia using semi-quantitative RT-PCR. Furthermore, we studied the cellular expression pattern of Sef in intact spinal ganglia and sciatic nerves and, in addition, after crush lesion, using in situ hybridization and immunohistochemistry. Sef transcripts were expressed in all brain areas evaluated and in the spinal cord. A neuronal expression was found in both intact and injured spinal ganglia. Intact sciatic nerves, however, showed little or no Sef expression. Seven days after injury, high Sef expression was concentrated to the crush site, and Schwann cells seemed to be the source of Sef. The labeling pattern of up-regulated Sef was complementary to the patterns of FGF-2 and FGFR1-3, which were localized proximal and distal to the crush site. These results suggest an involvement of Sef during the nerve regeneration process, possibly by fine-tuning the effects of FGF signaling.

  6. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways.

    PubMed

    Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P

    2017-07-01

    Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.

  7. MicroRNA networks in mouse lung organogenesis.

    PubMed

    Dong, Jie; Jiang, Guoqian; Asmann, Yan W; Tomaszek, Sandra; Jen, Jin; Kislinger, Thomas; Wigle, Dennis A

    2010-05-26

    MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.

  8. Common patterns and disease-related signatures in tuberculosis and sarcoidosis.

    PubMed

    Maertzdorf, Jeroen; Weiner, January; Mollenkopf, Hans-Joachim; Bauer, Torsten; Prasse, Antje; Müller-Quernheim, Joachim; Kaufmann, Stefan H E

    2012-05-15

    In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.

  9. Roles for Msx and Dlx homeoproteins in vertebrate development.

    PubMed

    Bendall, A J; Abate-Shen, C

    2000-04-18

    This review provides a comparative analysis of the expression patterns, functions, and biochemical properties of Msx and Dlx homeobox genes. These comprise multi-gene families that are closely related with respect to sequence features as well as expression patterns during vertebrate development. Thus, members of the Msx and Dlx families are expressed in overlapping, but distinct, patterns and display complementary or antagonistic functions, depending upon the context. A common theme shared among Msx and Dlx genes is that they are required during early, middle, and late phases of development where their differential expression mediates patterning, morphogenesis, and histogenesis of tissues in which they are expressed. With respect to their biochemical properties, Msx proteins function as transcriptional repressors, while Dlx proteins are transcriptional activators. Moreover, their ability to oppose each other's transcriptional actions implies a mechanism underlying their complementary or antagonistic functions during development.

  10. Differential Induction of Immunogenic Cell Death and Interferon Expression in Cancer Cells by Structured ssRNAs.

    PubMed

    Lee, Jaewoo; Lee, Youngju; Xu, Li; White, Rebekah; Sullenger, Bruce A

    2017-06-07

    Activation of the RNA-sensing pattern recognition receptor (PRR) in cancer cells leads to cell death and cytokine expression. This cancer cell death releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce anti-tumor immunity. However, these cytokines and DAMPs also cause adverse inflammatory and thrombotic complications that can limit the overall therapeutic benefits of PRR-targeting anti-cancer therapies. To overcome this problem, we generated and evaluated two novel and distinct ssRNA molecules (immunogenic cell-killing RNA [ICR]2 and ICR4). ICR2 and ICR4 differentially stimulated cell death and PRR signaling pathways and induced different patterns of cytokine expression in cancer and innate immune cells. Interestingly, DAMPs released from ICR2- and ICR4-treated cancer cells had distinct patterns of stimulation of innate immune receptors and coagulation. Finally, ICR2 and ICR4 inhibited in vivo tumor growth as effectively as poly(I:C). ICR2 and ICR4 are potential therapeutic agents that differentially induce cell death, immune stimulation, and coagulation when introduced into tumors. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  11. Sex and strategy use matters for pattern separation, adult neurogenesis, and immediate early gene expression in the hippocampus.

    PubMed

    Yagi, Shunya; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-01-01

    Adult neurogenesis in the dentate gyrus (DG) plays a crucial role for pattern separation, and there are sex differences in the regulation of neurogenesis. Although sex differences, favoring males, in spatial navigation have been reported, it is not known whether there are sex differences in pattern separation. The current study was designed to determine whether there are sex differences in the ability for separating similar or distinct patterns, learning strategy choice, adult neurogenesis, and immediate early gene (IEG) expression in the DG in response to pattern separation training. Male and female Sprague-Dawley rats received a single injection of the DNA synthesis marker, bromodeoxyuridine (BrdU), and were tested for the ability of separating spatial patterns in a spatial pattern separation version of delayed nonmatching to place task using the eight-arm radial arm maze. Twenty-seven days following BrdU injection, rats received a probe trial to determine whether they were idiothetic or spatial strategy users. We found that male spatial strategy users outperformed female spatial strategy users only when separating similar, but not distinct, patterns. Furthermore, male spatial strategy users had greater neurogenesis in response to pattern separation training than all other groups. Interestingly, neurogenesis was positively correlated with performance on similar pattern trials during pattern separation in female spatial strategy users but negatively correlated with performance in male idiothetic strategy users. These results suggest that the survival of new neurons may play an important positive role for pattern separation of similar patterns in females. Furthermore, we found sex and strategy differences in IEG expression in the CA1 and CA3 regions in response to pattern separation. These findings emphasize the importance of studying biological sex on hippocampal function and neural plasticity. © 2015 Wiley Periodicals, Inc.

  12. Pericentromeric Effects Shape the Patterns of Divergence, Retention, and Expression of Duplicated Genes in the Paleopolyploid Soybean[C][W

    PubMed Central

    Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Song, Qijian; Cannon, Steven B.; Cregan, Perry; Ma, Jianxin

    2012-01-01

    The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions—the cold spots for meiotic recombination in soybean—showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes. PMID:22227891

  13. Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods.

    PubMed

    Chang, Dan; Duda, Thomas F

    2014-06-05

    Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.

  14. The Intersection of the Extrinsic Hedgehog and WNT/Wingless Signals with the Intrinsic Hox Code Underpins Branching Pattern and Tube Shape Diversity in the Drosophila Airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Saigo, Kaoru; Samakovlis, Christos

    2015-01-01

    The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. PMID:25615601

  15. Different CHD chromatin remodelers are required for expression of distinct gene sets and specific stages during development of Dictyostelium discoideum

    PubMed Central

    Platt, James L.; Rogers, Benjamin J.; Rogers, Kelley C.; Harwood, Adrian J.; Kimmel, Alan R.

    2013-01-01

    Control of chromatin structure is crucial for multicellular development and regulation of cell differentiation. The CHD (chromodomain-helicase-DNA binding) protein family is one of the major ATP-dependent, chromatin remodeling factors that regulate nucleosome positioning and access of transcription factors and RNA polymerase to the eukaryotic genome. There are three mammalian CHD subfamilies and their impaired functions are associated with several human diseases. Here, we identify three CHD orthologs (ChdA, ChdB and ChdC) in Dictyostelium discoideum. These CHDs are expressed throughout development, but with unique patterns. Null mutants lacking each CHD have distinct phenotypes that reflect their expression patterns and suggest functional specificity. Accordingly, using genome-wide (RNA-seq) transcriptome profiling for each null strain, we show that the different CHDs regulate distinct gene sets during both growth and development. ChdC is an apparent ortholog of the mammalian Class III CHD group that is associated with the human CHARGE syndrome, and GO analyses of aberrant gene expression in chdC nulls suggest defects in both cell-autonomous and non-autonomous signaling, which have been confirmed through analyses of chdC nulls developed in pure populations or with low levels of wild-type cells. This study provides novel insight into the broad function of CHDs in the regulation development and disease, through chromatin-mediated changes in directed gene expression. PMID:24301467

  16. Expression of hypoxia-induced factor-1 alpha in early-stage and in metastatic oral squamous cell carcinoma.

    PubMed

    Ribeiro, Maisa; Teixeira, Sarah R; Azevedo, Monarko N; Fraga, Ailton C; Gontijo, Antônio Pm; Vêncio, Eneida F

    2017-04-01

    To investigate hypoxia-induced factor-1 alpha expression in distinct oral squamous cell carcinoma subtypes and topographies and correlate with clinicopathological data. Hypoxia-induced factor-1 alpha expression was assessed by immunohistochemistry in 93 cases of OSCC. Clinical and histopathological data were reviewed from medical records. Hypoxia-induced factor-1 alpha status was distinct according to tumor location, subtype and topography affect. In superficial oral squamous cell carcinomas, most tumor cells overexpressed hypoxia-induced factor-1 alpha, whereas hypoxia-induced factor-1 alpha was restricted to the intratumoral region in conventional squamous cell carcinomas. All basaloid squamous cell carcinomas exhibited downregulation of hypoxia-induced factor-1 alpha. Interestingly, metastatic lymph nodes (91.7%, p = 0.001) and the intratumoral regions of corresponding primary tumors (58.3%, p = 0.142) showed hypoxia-induced factor-1 alpha-positive tumor cells. Overall survival was poor in patients with metastatic lymph nodes. Hypoxia-induced factor-1 alpha has distinct expression patterns in different oral squamous cell carcinoma subtypes and topographies, suggesting that low oxygen tension promotes the growth pattern of superficial and conventional squamous cell carcinoma, but not basaloid squamous cell carcinoma. Indeed, a hypoxic environment may facilitate regional metastasis, making it a useful diagnostic and prognostic marker in primary tumors.

  17. Self-Injurious Behavior in Correctional and Noncorrectional Psychiatric Patients.

    ERIC Educational Resources Information Center

    Hillbrand, Marc

    1993-01-01

    Examined prevalence and selected correlates of self-injurious behavior (SIB) among inmates (n=23) referred for treatment to maximum-security forensic hospital, non-SIB inmates (n=23), and noncorrections SIB patients (n=30). Found two distinct patterns of SIB: pattern consistent with conceptualization of SIB as expression of generalized behavioral…

  18. The Morphosyntax of Discontinuous Exponence

    ERIC Educational Resources Information Center

    Campbell, Amy Melissa

    2012-01-01

    This thesis offers a systematic treatment of discontinuous exponence, a pattern of inflection in which a single feature or a set of features bundled in syntax is expressed by multiple, distinct morphemes. This pattern is interesting and theoretically relevant because it represents a deviation from the expected one-to-one relationship between…

  19. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  20. Degos' disease: a distinctive pattern of disease, chiefly of lupus erythematosus, and not a specific disease per se.

    PubMed

    Ball, Elizabeth; Newburger, Amy; Ackerman, A Bernard

    2003-08-01

    Degos' disease, known confusingly as malignant strophic papularis, is an uncommon condition of unknown cause characterized by distinctive infarctive lesions in the skin, gastrointestinal tract, and central nervous system; the lesions at the two latter sites often result in death. We deem Degos' disease to be analogous to lupus erythematosus in the sense that each is fundamentally a systemic pathologic process involving several organs, among them the skin, but, moreover, we regard Degos' disease, in most instances, to be an actual manifestation of lupus erythematosus. Histopathologically, the findings in sections of tissue of skin lesions of Degos' disease are indistinguishable from those of one expression of cutaneous lupus erythematosus; immunopathologically, some patients with morphologic findings stereotypical of Degos' disease display signs characteristic of lupus erythematosus. For these reasons, we consider Degos' disease to be a distinctive pattern of disease, rather than a specific disease per se, just as are erythema multiforme, erythema nodosum, leukocytoclastic vasculitis, Sweet's syndrome, and pyoderma gangrenosum, to name but five of scores of them. The singular pattern that is designated Degos' disease usually is an expression of lupus erythematosus, but, episodically, of conditions like dermatomyositis and rheumatoid arthritis.

  1. Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer

    PubMed Central

    Sääf, Annika M.; Halbleib, Jennifer M.; Chen, Xin; Yuen, Siu Tsan; Leung, Suet Yi

    2007-01-01

    Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2. PMID:17699589

  2. Rheumatic Heart Disease and Myxomatous Degeneration: Differences and Similarities of Valve Damage Resulting from Autoimmune Reactions and Matrix Disorganization.

    PubMed

    Martins, Carlo de Oliveira; Demarchi, Lea; Ferreira, Frederico Moraes; Pomerantzeff, Pablo Maria Alberto; Brandao, Carlos; Sampaio, Roney Orismar; Spina, Guilherme Sobreira; Kalil, Jorge; Cunha-Neto, Edecio; Guilherme, Luiza

    2017-01-01

    Autoimmune inflammatory reactions leading to rheumatic fever (RF) and rheumatic heart disease (RHD) result from untreated Streptococcus pyogenes throat infections in individuals who exhibit genetic susceptibility. Immune effector mechanisms have been described that lead to heart tissue damage culminating in mitral and aortic valve dysfunctions. In myxomatous valve degeneration (MXD), the mitral valve is also damaged due to non-inflammatory mechanisms. Both diseases are characterized by structural valve disarray and a previous proteomic analysis of them has disclosed a distinct profile of matrix/structural proteins differentially expressed. Given their relevance in organizing valve tissue, we quantitatively evaluated the expression of vimentin, collagen VI, lumican, and vitronectin as well as performed immunohistochemical analysis of their distribution in valve tissue lesions of patients in both diseases. We identified abundant expression of two isoforms of vimentin (45 kDa, 42 kDa) with reduced expression of the full-size protein (54 kDa) in RHD valves. We also found increased vitronectin expression, reduced collagen VI expression and similar lumican expression between RHD and MXD valves. Immunohistochemical analysis indicated disrupted patterns of these proteins in myxomatous degeneration valves and disorganized distribution in rheumatic heart disease valves that correlated with clinical manifestations such as valve regurgitation or stenosis. Confocal microscopy analysis revealed a diverse pattern of distribution of collagen VI and lumican into RHD and MXD valves. Altogether, these results demonstrated distinct patterns of altered valve expression and tissue distribution/organization of structural/matrix proteins that play important pathophysiological roles in both valve diseases.

  3. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.

    PubMed

    Souer, Erik; Rebocho, Alexandra B; Bliek, Mattijs; Kusters, Elske; de Bruin, Robert A M; Koes, Ronald

    2008-08-01

    Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns.

  4. Distinctive expression pattern of OCT4 variants in different types of breast cancer.

    PubMed

    Soheili, Saamaaneh; Asadi, Malek Hossein; Farsinejad, Alireza

    2017-01-01

    OCT4 is a key regulator of self-renewal and pluripotency in embryonic stem cells which can potentially encode three spliced variants designated OCT4A, OCT4B and OCT4B1. Based on cancer stem cell concept, it is suggested that the stemness factors misexpressed in cancer cells and potentially is involved in tumorigenesis. Accordingly, in this study, we investigated the potential expression of OCT4 variants in breast cancer tissues. A total of 94 tumoral and peritumoral breast specimens were evaluated with respect to the expression of OCT4 variants using quantitative RT-PCR and immunohistochemical (IHC) analysis. We detected the expression of OCT4 variants in breast tumor tissues with no or very low levels of expression in peritumoral samples of the same patients. While OCT4B was highly expressed in lobular type of breast cancer, OCT4A and OCTB1 variants are highly expressed in low grade (I and II) ductal tumors. Furthermore, the results of this study revealed a considerable association between the expression level of OCT4 variants and the expression of ER, PR, Her2 and P53 factors. All data demonstrated a distinctive expression pattern of OCT4 spliced variants in different types of breast cancer and provide further evidence for the involvement of embryonic genes in carcinogenesis.

  5. Expression patterns of protein C inhibitor in mouse development.

    PubMed

    Wagenaar, Gerry T M; Uhrin, Pavel; Weipoltshammer, Klara; Almeder, Marlene; Hiemstra, Pieter S; Geiger, Margarethe; Meijers, Joost C M; Schöfer, Christian

    2010-02-01

    Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis.

  6. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  7. SCARLESS SKIN WOUND HEALING IN FOXN1 DEFICIENT (NUDE) MICE IS ASSOCIATED WITH DISTINCTIVE MATRIX METALLOPROTEINASE EXPRESSION

    PubMed Central

    Gawronska-Kozak, Barbara

    2011-01-01

    Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2,-3,-8,-9,-10,-12,-13,-14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of type I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing. PMID:21539913

  8. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.

    PubMed

    Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R

    1999-08-01

    The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.

  9. A framework for analyzing the relationship between gene expression and morphological, topological, and dynamical patterns in neuronal networks.

    PubMed

    de Arruda, Henrique Ferraz; Comin, Cesar Henrique; Miazaki, Mauro; Viana, Matheus Palhares; Costa, Luciano da Fontoura

    2015-04-30

    A key point in developmental biology is to understand how gene expression influences the morphological and dynamical patterns that are observed in living beings. In this work we propose a methodology capable of addressing this problem that is based on estimating the mutual information and Pearson correlation between the intensity of gene expression and measurements of several morphological properties of the cells. A similar approach is applied in order to identify effects of gene expression over the system dynamics. Neuronal networks were artificially grown over a lattice by considering a reference model used to generate artificial neurons. The input parameters of the artificial neurons were determined according to two distinct patterns of gene expression and the dynamical response was assessed by considering the integrate-and-fire model. As far as single gene dependence is concerned, we found that the interaction between the gene expression and the network topology, as well as between the former and the dynamics response, is strongly affected by the gene expression pattern. In addition, we observed a high correlation between the gene expression and some topological measurements of the neuronal network for particular patterns of gene expression. To our best understanding, there are no similar analyses to compare with. A proper understanding of gene expression influence requires jointly studying the morphology, topology, and dynamics of neurons. The proposed framework represents a first step towards predicting gene expression patterns from morphology and connectivity. Copyright © 2015. Published by Elsevier B.V.

  10. Confocal imaging of butterfly tissue.

    PubMed

    Brunetti, Craig R

    2014-01-01

    To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.

  11. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis

    PubMed Central

    2013-01-01

    Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691

  12. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns.

    PubMed

    Kirschner, Doris B; vom Baur, Elmar; Thibault, Christelle; Sanders, Steven L; Gangloff, Yann-Gaël; Davidson, Irwin; Weil, P Anthony; Tora, Làszlò

    2002-05-01

    The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.

  13. Neutrophils Express Distinct RNA Receptors in a Non-canonical Way*

    PubMed Central

    Berger, Michael; Hsieh, Chin-Yuan; Bakele, Martina; Marcos, Veronica; Rieber, Nikolaus; Kormann, Michael; Mays, Lauren; Hofer, Laura; Neth, Olaf; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; von Schweinitz, Dietrich; Kappler, Roland; Hector, Andreas; Weber, Alexander; Hartl, Dominik

    2012-01-01

    RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics. PMID:22532562

  14. Differential Expression of MicroRNA and Predicted Targets in Pulmonary Sarcoidosis

    PubMed Central

    Crouser, Elliott D.; Julian, Mark W.; Crawford, Melissa; Shao, Guohong; Yu, Lianbo; Planck, Stephen R.; Rosenbaum, James T.; Nana-Sinkam, S. Patrick

    2014-01-01

    Background Recent studies show that various inflammatory diseases are regulated at the level of RNA translation by small non-coding RNAs, termed microRNAs (miRNAs). We sought to determine whether sarcoidosis tissues harbor a distinct pattern of miRNA expression and then considered their potential molecular targets. Methods and Results Genome-wide microarray analysis of miRNA expression in lung tissue and peripheral blood mononuclear cells (PBMCs) was performed and differentially expressed (DE)-miRNAs were then validated by real-time PCR. A distinct pattern of DE-miRNA expression was identified in both lung tissue and PBMCs of sarcoidosis patients. A subgroup of DE-miRNAs common to lung and lymph node tissues were predicted to target transforming growth factor (TGFβ)-regulated pathways. Likewise, the DE-miRNAs identified in PBMCs of sarcoidosis patients were predicted to target the TGFβ-regulated “wingless and integrase-1” (WNT) pathway. Conclusions This study is the first to profile miRNAs in sarcoidosis tissues and to consider their possible roles in disease pathogenesis. Our results suggest that miRNA regulate TGFβ and related WNT pathways in sarcoidosis tissues, pathways previously incriminated in the pathogenesis of sarcoidosis. PMID:22209793

  15. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (N study1 = 75; N study2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  16. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru

    2007-06-29

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics inmore » their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.« less

  17. Genome-Wide Analysis of bZIP-Encoding Genes in Maize

    PubMed Central

    Wei, Kaifa; Chen, Juan; Wang, Yanmei; Chen, Yanhui; Chen, Shaoxiang; Lin, Yina; Pan, Si; Zhong, Xiaojun; Xie, Daoxin

    2012-01-01

    In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis. PMID:23103471

  18. Differential effects of natural rewards and pain on vesicular glutamate transporter expression in the nucleus accumbens.

    PubMed

    Tukey, David S; Lee, Michelle; Xu, Duo; Eberle, Sarah E; Goffer, Yossef; Manders, Toby R; Ziff, Edward B; Wang, Jing

    2013-07-09

    Pain and natural rewards such as food elicit different behavioral effects. Both pain and rewards, however, have been shown to alter synaptic activities in the nucleus accumbens (NAc), a key component of the brain reward system. Mechanisms by which external stimuli regulate plasticity at NAc synapses are largely unexplored. Medium spiny neurons (MSNs) from the NAc receive excitatory glutamatergic inputs and modulatory dopaminergic and cholinergic inputs from a variety of cortical and subcortical structures. Glutamate inputs to the NAc arise primarily from prefrontal cortex, thalamus, amygdala, and hippocampus, and different glutamate projections provide distinct synaptic and ultimately behavioral functions. The family of vesicular glutamate transporters (VGLUTs 1-3) plays a key role in the uploading of glutamate into synaptic vesicles. VGLUT1-3 isoforms have distinct expression patterns in the brain, but the effects of external stimuli on their expression patterns have not been studied. In this study, we use a sucrose self-administration paradigm for natural rewards, and spared nerve injury (SNI) model for chronic pain. We examine the levels of VGLUTs (1-3) in synaptoneurosomes of the NAc in these two behavioral models. We find that chronic pain leads to a decrease of VGLUT1, likely reflecting decreased projections from the cortex. Pain also decreases VGLUT3 levels, likely representing a decrease in projections from GABAergic, serotonergic, and/or cholinergic interneurons. In contrast, chronic consumption of sucrose increases VGLUT3 in the NAc, possibly reflecting an increase from these interneuron projections. Our study shows that natural rewards and pain have distinct effects on the VGLUT expression pattern in the NAc, indicating that glutamate inputs to the NAc are differentially modulated by rewards and pain.

  19. Site-Specific Expression of Polycomb-Group Genes Encoding the HPC-HPH/PRC1 Complex in Clinically Defined Primary Nodal and Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259

  20. The G protein-coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer.

    PubMed

    Samartzis, Eleftherios P; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment.

  1. The G Protein-Coupled Estrogen Receptor (GPER) Is Expressed in Two Different Subcellular Localizations Reflecting Distinct Tumor Properties in Breast Cancer

    PubMed Central

    Samartzis, Eleftherios P.; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    Introduction The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. Methods The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. Results A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Conclusion Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment. PMID:24421881

  2. Regulation of Human Skin Pigmentation in situ by Repetitive UV Exposure – Molecular Characterization of Responses to UVA and/or UVB

    PubMed Central

    Choi, Wonseon; Miyamura, Yoshinori; Wolber, Rainer; Smuda, Christoph; Reinhold, William; Liu, Hongfang; Kolbe, Ludger; Hearing, Vincent J.

    2012-01-01

    Ultraviolet (UV) radiation is a major environmental factor that affects pigmentation in human skin and can eventually result in various types of UV-induced skin cancers. The effects of various wavelengths of UV on melanocytes and other types of skin cells in culture have been studied but little is known about gene expression patterns in situ following in situe exposure of human skin to different types of UV (UVA and/or UVB). Paracrine factors expressed by keratinocytes and/or fibroblasts that affect skin pigmentation might be regulated differently by UV, as might their corresponding receptors expressed on melanocytes. To test the hypothesis that different mechanisms are involved in the pigmentary responses of the skin to different types of UV, we used immunohistochemical and whole human genome microarray analyses to characterize human skin in situ to examine how melanocyte-specific proteins and paracrine melanogenic factors are regulated by repetitive exposure to different types of UV compared with unexposed skin as a control. The results show that gene expression patterns induced by UVA or UVB are distinct, UVB eliciting dramatic increases in a large number of genes involved in pigmentation as well as in other cellular functions, while UVA had little or no effect on those. The expression patterns characterize the distinct responses of the skin to UVA or UVB, and identify several potential previously unidentified factors involved in UV-induced responses of human skin. PMID:20147966

  3. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Enc1 expression in the chick telencephalon at intermediate and late stages of development.

    PubMed

    García-Calero, Elena; Puelles, Luis

    2009-12-10

    In this work we studied the regional expression pattern of the Enc1 gene in the chick embryo telencephalon at intermediate and late stages of development, bearing on architectonic groupings and boundaries of current interest. In general, the Enc1 signal shows a markedly heterogeneous areal pattern of expression throughout the telencephalon; this corroborates data on new pallial and subpallial structures defined recently in the stereotaxic chick brain atlas of Puelles et al. (2007. The chick brain in stereotaxic coodinates. San Diego, CA: Academic Press). For example: a periventricular/central domain is Enc1-negative in the ventral pallium or nidopallium; core and shell nuclei appear in the mesopallium; the redefined caudodorsolateral area shows a characteristic pattern; the limits of the densocellular hyperpallium in the dorsal pallium are illuminated; and the postulated entorhinal cortex area is distinct at the posterior telencephalic pole. Interestingly, Enc1 transcripts are distinctly present in the piriform cortex at the surface of the ventral pallium throughout its longitudinal extent, as well as in the most rostral part of the lateral pallium, implying a layout of this cortex more similar to the situation in mammals than was assumed previously. Separate corticoid superficial strata are labeled by the Enc1 probe in the lateral and dorsal pallial regions. In the subpallium, the expression of Enc1 agrees with the new radial subdivisions defined by Puelles et al. (2007).

  5. Distinction of Invasive Carcinoma Derived From Intraductal Papillary Mucinous Neoplasms From Concomitant Ductal Adenocarcinoma of the Pancreas Using Molecular Biomarkers.

    PubMed

    Tamura, Koji; Ohtsuka, Takao; Date, Kenjiro; Fujimoto, Takaaki; Matsunaga, Taketo; Kimura, Hideyo; Watanabe, Yusuke; Miyazaki, Tetsuyuki; Ohuchida, Kenoki; Takahata, Shunichi; Ishigami, Kousei; Oda, Yoshinao; Mizumoto, Kazuhiro; Nakamura, Masafumi; Tanaka, Masao

    2016-07-01

    To clarify the usefulness of molecular biomarkers for distinguishing invasive carcinoma derived from intraductal papillary mucinous neoplasms (IPMNs [Inv-IPMN]) from concomitant pancreatic ductal adenocarcinoma (PDAC). Data from 19 patients with resected concomitant PDAC were retrospectively reviewed. KRAS/GNAS mutations and immunohistochemical (IHC) expression of p53 and p16/CDKN2A were assessed in both IPMN and distinct PDAC. As controls, KRAS/GNAS mutations and IHC labeling were assessed between invasive and noninvasive components in 1 lesion of 22 independent patients. KRAS/GNAS mutation status of invasive and noninvasive components in Inv-IPMN was consistent in 18 (86%) of 21 patients. Conversely, mutational patterns in IPMN and distinct PDAC in the same pancreas differed from each other in 17 (89%) of 19. There were 10 (53%) and 8 (42%) of 19 patients who showed the same p53 and p16/CDKN2A staining between concomitant PDAC and distinct IPMN. In the Inv-IPMN cohort, 19 (86%) of 22 patients showed the same IHC expression pattern between the noninvasive and invasive components. It may be possible to distinguish Inv-IPMN from concomitant PDAC by assessing these molecular biomarkers. More precise distinction of Inv-IPMN and concomitant PDAC will lead to adequate recognition of the natural history of IPMNs and hence optimal management.

  6. Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    PubMed Central

    Kim, Hee-Jung; Joo, Hye Joon; Kim, Yung Hee; Ahn, Soyeon; Chang, Jun; Hwang, Kyu-Baek; Lee, Dong-Hee; Lee, Kong-Joo

    2011-01-01

    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins. PMID:21738571

  7. Sex-Specific Selection and Sex-Biased Gene Expression in Humans and Flies.

    PubMed

    Cheng, Changde; Kirkpatrick, Mark

    2016-09-01

    Sexual dimorphism results from sex-biased gene expression, which evolves when selection acts differently on males and females. While there is an intimate connection between sex-biased gene expression and sex-specific selection, few empirical studies have studied this relationship directly. Here we compare the two on a genome-wide scale in humans and flies. We find a distinctive "Twin Peaks" pattern in humans that relates the strength of sex-specific selection, quantified by genetic divergence between male and female adults at autosomal loci, to the degree of sex-biased expression. Genes with intermediate degrees of sex-biased expression show evidence of ongoing sex-specific selection, while genes with either little or completely sex-biased expression do not. This pattern apparently results from differential viability selection in males and females acting in the current generation. The Twin Peaks pattern is also found in Drosophila using a different measure of sex-specific selection acting on fertility. We develop a simple model that successfully recapitulates the Twin Peaks. Our results suggest that many genes with intermediate sex-biased expression experience ongoing sex-specific selection in humans and flies.

  8. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling

    PubMed Central

    Square, Tyler; Jandzik, David; Cattell, Maria; Hansen, Andrew; Medeiros, Daniel Meulemans

    2016-01-01

    Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates. PMID:27677704

  9. Toll-like receptor expression and function differ between splenic marginal zone B cell lymphoma and splenic diffuse red pulp B cell lymphoma

    PubMed Central

    Verney, Aurélie; Traverse-Glehen, Alexandra; Callet-Bauchu, Evelyne; Jallades, Laurent; Magaud, Jean-Pierre; Salles, Gilles; Genestier, Laurent; Baseggio, Lucile

    2018-01-01

    In splenic marginal zone lymphoma (SMZL), specific and functional Toll-like Receptor (TLR) patterns have been recently described, suggesting their involvement in tumoral proliferation. Splenic diffuse red pulp lymphoma with villous lymphocytes (SDRPL) is close to but distinct from SMZL, justifying here the comparison of TLR patterns and functionality in both entities. Distinct TLR profiles were observed in both lymphoma subtypes. SDRPL B cells showed higher expression of TLR7 and to a lesser degree TLR9, in comparison to SMZL B cells. In both entities, TLR7 and TLR9 pathways appeared functional, as shown by IL-6 production upon TLR7 and TLR9 agonists stimulations. Interestingly, circulating SDRPL, but not SMZL B cells, constitutively expressed CD86. In addition, stimulation with both TLR7 and TLR9 agonists significantly increased CD80 expression in circulating SDRPL but not SMZL B cells. Finally, TLR7 and TLR9 stimulations had no impact on proliferation and apoptosis of SMZL or SDRPL B cells. In conclusion, SMZL and SDRPL may derive from different splenic memory B cells with specific immunological features that can be used as diagnosis markers in the peripheral blood.

  10. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    PubMed

    Esteves, Francisco F; Springhorn, Alexander; Kague, Erika; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-09-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  11. BMPs Regulate msx Gene Expression in the Dorsal Neuroectoderm of Drosophila and Vertebrates by Distinct Mechanisms

    PubMed Central

    Esteves, Francisco F.; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-01-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of “neural identity” gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages. PMID:25210771

  12. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

    PubMed

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-04-01

    DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.

  13. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  14. A combinatorial code for pattern formation in Drosophila oogenesis.

    PubMed

    Yakoby, Nir; Bristow, Christopher A; Gong, Danielle; Schafer, Xenia; Lembong, Jessica; Zartman, Jeremiah J; Halfon, Marc S; Schüpbach, Trudi; Shvartsman, Stanislav Y

    2008-11-01

    Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.

  15. Characterization of basal gene expression trends over a diurnal cycle in Xiphophorus maculatus skin, brain and liver.

    PubMed

    Lu, Yuan; Reyes, Jose; Walter, Sean; Gonzalez, Trevor; Medrano, Geraldo; Boswell, Mikki; Boswell, William; Savage, Markita; Walter, Ronald

    2018-06-01

    Evolutionarily conserved diurnal circadian mechanisms maintain oscillating patterns of gene expression based on the day-night cycle. Xiphophorus fish have been used to evaluate transcriptional responses after exposure to various light sources and it was determined that each source incites distinct genetic responses in skin tissue. However, basal expression levels of genes that show oscillating expression patterns in day-night cycle, may affect the outcomes of such experiments, since basal gene expression levels at each point in the circadian path may influence the profile of identified light responsive genes. Lack of knowledge regarding diurnal fluctuations in basal gene expression patterns may confound the understanding of genetic responses to external stimuli (e.g., light) since the dynamic nature of gene expression implies animals subjected to stimuli at different times may be at very different stages within the continuum of genetic homeostasis. We assessed basal gene expression changes over a 24-hour period in 200 select Xiphophorus gene targets known to transcriptionally respond to various types of light exposure. We identified 22 genes in skin, 36 genes in brain and 28 genes in liver that exhibit basal oscillation of expression patterns. These genes, including known circadian regulators, produced the expected expression patterns over a 24-hour cycle when compared to circadian regulatory genes identified in other species, especially human and other vertebrate animal models. Our results suggest the regulatory network governing diurnal oscillating gene expression is similar between Xiphophorus and other vertebrates for the three Xiphophorus organs tested. In addition, we were able to categorize light responsive gene sets in Xiphophorus that do, and do not, exhibit circadian based oscillating expression patterns. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity.

    PubMed

    Logan, C; Wingate, R J; McKay, I J; Lumsden, A

    1998-07-15

    Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.

  17. The evolution of aryl hydrocarbon signaling proteins: diversity of ARNT isoforms among fish species.

    PubMed

    Powell, W H; Hahn, M E

    2000-01-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) mediates aryl hydrocarbon signaling and toxicity by dimerizing with the ligand-activated aryl hydrocarbon receptor (AHR), forming a complex that binds specific DNA elements and alters transcription of target genes. Two genes encode different forms of ARNT in rodents: ARNT1, which is widely expressed, and ARNT2, which exhibits a very restricted expression pattern. In an effort to characterize aryl hydrocarbon signaling mechanisms in fishes, we previously isolated an ARNT cDNA from Fundulus heteroclitus and discovered that this species expresses ARNT2 ubiquitously. This situation differs not only from mammals, but also from rainbow trout, which expresses a divergent ARNT gene that we hypothesized was peculiar to salmonids (rtARNTa/b). In this communication, we examine the ARNT sequences of multiple fish species, including a newly isolated cDNA from scup (Stenotomus chrysops). Our phylogenetic analysis demonstrates that zebrafish ARNT, like the Fundulus protein, is an ARNT2. Contrary to expectations, the scup ARNT is closely related to the rainbow trout protein, demonstrating that the existence of this ARNT isoform predates the divergence of salmonids from the other teleosts. Thus, different species of fish express distinct and highly conserved isoforms of ARNT. The number, type, and expression pattern of ARNT proteins may contribute to interspecies differences in aryl hydrocarbon toxicity, possibly through distinct interactions with additional PAS-family proteins.

  18. Three urocortins in medaka: identification and spatial expression in the central nervous system.

    PubMed

    Hosono, K; Yamashita, J; Kikuchi, Y; Hiraki-Kajiyama, T; Okubo, K

    2017-05-01

    The urocortin (UCN) group of neuropeptides includes urocortin 1/sauvagine/urotensin 1 (UTS1), urocortin 2 (UCN2) and urocortin 3 (UCN3). In recent years, evidence has accumulated showing that UCNs play pivotal roles in mediating stress response and anxiety in mammals. Evidence has also emerged regarding the evolutionary conservation of UCNs in vertebrates, but very little information is available about UCNs in non-mammalian vertebrates. Indeed, at present, there are no reports of the empirical identification of ucn2 in non-mammalian vertebrates or of the distribution of ucn2 and ucn3 expression in the adult central nervous system (CNS) of these animals. To gain insight into the evolutionary nature of UCNs in vertebrates, we cloned uts1, ucn2 and ucn3 in a teleost fish, medaka and examined the spatial expression of these genes in the adult brain and spinal cord. Although all known UCN2 genes except those in rodents have been reported to likely lack the necessary structural features to produce a functional pre-pro-protein, all three UCN genes in medaka, including ucn2, displayed all of these features, suggesting their functionality. The three UCN genes exhibited distinct spatial expression patterns in the medaka brain: uts1 was primarily expressed in broad regions of the dorsal telencephalon, ucn2 was expressed in restricted regions of the thalamus and brainstem and ucn3 was expressed in discrete nuclei throughout many regions of the brain. We also found that these genes were all expressed throughout the medaka spinal cord, each with a distinct spatial pattern. Given that many of these regions have been implicated in stress responses and anxiety, the three UCNs may serve distinct physiological roles in the medaka CNS, including those involved in stress and anxiety, as shown in the mammalian CNS. © 2017 British Society for Neuroendocrinology.

  19. PROSPECT: Profiling of Resistance Patterns Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification

    DTIC Science & Technology

    2011-06-01

    8w DC in patients treated with erlotinib, but not sorafenib, indicating that it is not merely a prognostic signature; D) Both the 5-gene signature...disease-free, progression-free, and overall survival will vary across prognostically distinct groups. 3. Specific molecular signatures in primary tumors...therapeutic strategies at relapse. Specific Aims: Aim 1: To define characteristic TTF/gene expression profiles of prognostically distinct

  20. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  1. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination

    PubMed Central

    Voegele, Antje; Linkies, Ada; Müller, Kerstin; Leubner-Metzger, Gerhard

    2011-01-01

    Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly. PMID:21778177

  2. Developmental origin of lung macrophage diversity

    PubMed Central

    Tan, Serena Y. S.; Krasnow, Mark A.

    2016-01-01

    Macrophages are specialized phagocytic cells, present in all tissues, which engulf and digest pathogens, infected and dying cells, and debris, and can recruit and regulate other immune cells and the inflammatory response and aid in tissue repair. Macrophage subpopulations play distinct roles in these processes and in disease, and are typically recognized by differences in marker expression, immune function, or tissue of residency. Although macrophage subpopulations in the brain have been found to have distinct developmental origins, the extent to which development contributes to macrophage diversity between tissues and within tissues is not well understood. Here, we investigate the development and maintenance of mouse lung macrophages by marker expression patterns, genetic lineage tracing and parabiosis. We show that macrophages populate the lung in three developmental waves, each giving rise to a distinct lineage. These lineages express different markers, reside in different locations, renew in different ways, and show little or no interconversion. Thus, development contributes significantly to lung macrophage diversity and targets each lineage to a different anatomical domain. PMID:26952982

  3. Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis.

    PubMed

    Hewezi, Tarek; Piya, Sarbottam; Richard, Geoffrey; Rice, J Hollis

    2014-09-01

    Plant-parasitic cyst nematodes induce the formation of a multinucleated feeding site in the infected root, termed the syncytium. Recent studies point to key roles of the phytohormone auxin in the regulation of gene expression and establishment of the syncytium. Nevertheless, information about the spatiotemporal expression patterns of the transcription factors that mediate auxin transcriptional responses during syncytium formation is limited. Here, we provide a gene expression map of 22 auxin response factors (ARFs) during the initiation, formation and maintenance stages of the syncytium induced by the cyst nematode Heterodera schachtii in Arabidopsis. We observed distinct and overlapping expression patterns of ARFs throughout syncytium development phases. We identified a set of ARFs whose expression is predominantly located inside the developing syncytium, whereas others are expressed in the neighbouring cells, presumably to initiate specific transcriptional programmes required for their incorporation within the developing syncytium. Our analyses also point to a role of certain ARFs in determining the maximum size of the syncytium. In addition, several ARFs were found to be highly expressed in fully developed syncytia, suggesting a role in maintaining the functional phenotype of mature syncytia. The dynamic distribution and overlapping expression patterns of various ARFs seem to be essential characteristics of ARF activity during syncytium development. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  4. Heterogeneity in Kv2 Channel Expression Shapes Action Potential Characteristics and Firing Patterns in CA1 versus CA2 Hippocampal Pyramidal Neurons

    PubMed Central

    Chevaleyre, Vivien; Murray, Karl D.; Piskorowski, Rebecca A.

    2017-01-01

    Abstract The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function. PMID:28856240

  5. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  6. The many faces of REST oversee epigenetic programming of neuronal genes.

    PubMed

    Ballas, Nurit; Mandel, Gail

    2005-10-01

    Nervous system development relies on a complex signaling network to engineer the orderly transitions that lead to the acquisition of a neural cell fate. Progression from the non-neuronal pluripotent stem cell to a restricted neural lineage is characterized by distinct patterns of gene expression, particularly the restriction of neuronal gene expression to neurons. Concurrently, cells outside the nervous system acquire and maintain a non-neuronal fate that permanently excludes expression of neuronal genes. Studies of the transcriptional repressor REST, which regulates a large network of neuronal genes, provide a paradigm for elucidating the link between epigenetic mechanisms and neurogenesis. REST orchestrates a set of epigenetic modifications that are distinct between non-neuronal cells that give rise to neurons and those that are destined to remain as nervous system outsiders.

  7. Differential expression of miR-31 between inflammatory bowel disease and microscopic colitis.

    PubMed

    Zhang, Chen; Zhao, Zijin; Osman, Hany; Watson, Rao; Nalbantoglu, Ilke; Lin, Jingmei

    2014-01-01

    Idiopathic inflammatory bowel disease (IBD) and microscopic colitis (MC) are distinct entities. However, patients with intermittent episodes of IBD and MC that are encountered in a clinical setting puzzle clinicians and pathologists. This study examined whether microRNA assisted in the classification of IBD and MC. Small RNA was extracted from formalin-fixed, paraffin-embedded (FFPE) colon tissue and qRT-PCR was performed from cohorts of normal control (n=38), ulcerative colitis (n=36), Crohns disease (n=26), collagenous colitis (n=36), lymphocytic colitis (n=30), and patients with intermittent features of IBD and MC (n=6). Differential expression of miR-31 distinguished IBD (ulcerative colitis and Crohns disease) from MC (collagenous colitis and lymphocytic colitis), confirming the specificity of miR-31 expression in IBD (P=0.00001). In addition, expression of miR-31 was increased in collagenous colitis compared to that of lymphocytic colitis (P=0.010). Among 6 patients with alternating episodes of IBD and MC, one patient had matching miR-31 expression in different phases (lymphocytic colitis to ulcerative colitis, and then back to collagenous colitis). The other 5 patients had MC-like expression patterns in both MC and IBD episodes. In summary, IBD and MC have distinct miR-31 expression pattern. Therefore, miR-31 might be used as a biomarker to distinguish between IBD and MC in FFPE colonic tissue. In addition, miR-31 is differentially expressed in colonic tissue between lymphocytic colitis and collagenous colitis, suggesting them of separate disease processes. Finally, patients with alternating IBD and MC episodes represent a diverse group. Among them, the majority demonstrates MC-like miR-31 expression pattern in MC phases, which seems unlikely to support the speculation of MC as an inactive form of IBD. Although the mechanisms deserve further investigation, microRNA is a potentially useful biomarker to differentiate IBD and MC.

  8. Distinctive expression patterns of glycoprotein non-metastatic B and folliculin in renal tumors in patients with Birt–Hogg–Dubé syndrome

    PubMed Central

    Furuya, Mitsuko; Hong, Seung-Beom; Tanaka, Reiko; Kuroda, Naoto; Nagashima, Yoji; Nagahama, Kiyotaka; Suyama, Takahito; Yao, Masahiro; Nakatani, Yukio

    2015-01-01

    Birt–Hogg–Dubé syndrome (BHD) is an inherited disorder associated with a germline mutation of the folliculin gene (FLCN). The affected families have a high risk for developing multiple renal cell carcinomas (RCC). Diagnostic markers that distinguish between FLCN-related RCC and sporadic RCC have not been investigated, and many patients with undiagnosed BHD fail to receive proper medical care. We investigated the histopathology of 27 RCCs obtained from 18 BHD patients who were diagnosed by genetic testing. Possible somatic mutations of RCC lesions were investigated by DNA sequencing. Western blotting and immunohistochemical staining were used to compare the expression levels of FLCN and glycoprotein non-metastatic B (GPNMB) between FLCN-related RCCs and sporadic renal tumors (n = 62). The expression of GPNMB was also evaluated by quantitative RT-PCR. Histopathological analysis revealed that the most frequent histological type was chromophobe RCC (n = 12), followed by hybrid oncocytic/chromophobe tumor (n = 6). Somatic mutation analysis revealed small intragenic mutations in six cases and loss of heterozygosity in two cases. Western blot and immunostaining analyses revealed that FLCN-related RCCs showed overexpression of GPNMB and underexpression of FLCN, whereas sporadic tumors showed inverted patterns. GPNMB mRNA in FLCN-related RCCs was 23-fold more abundant than in sporadic tumors. The distinctive expression patterns of GPNMB and FLCN might identify patients with RCCs who need further work-up for BHD. PMID:25594584

  9. Activation patterns in superficial layers of neocortex change between experiences independent of behavior, environment, or the hippocampus.

    PubMed

    Takehara-Nishiuchi, Kaori; Insel, Nathan; Hoang, Lan T; Wagner, Zachary; Olson, Kathy; Chawla, Monica K; Burke, Sara N; Barnes, Carol A

    2013-09-01

    Previous work suggests that activation patterns of neurons in superficial layers of the neocortex are more sensitive to spatial context than activation patterns in deep cortical layers. A possible source of this laminar difference is the distribution of contextual information to the superficial cortical layers carried by hippocampal efferents that travel through the entorhinal cortex and subiculum. To evaluate the role that the hippocampus plays in determining context sensitivity in superficial cortical layers, behavior-induced expression of the immediate early gene Arc was examined in hippocampus-lesioned and control rats after exposing them to 2 distinct contexts. Contrary to expectations, hippocampal lesions had no observable effect on Arc expression in any neocortical layer relative to controls. Furthermore, another group of intact animals was exposed to the same environment twice, to determine the reliability of Arc-expression patterns across identical contextual and behavioral episodes. Although this condition included no difference in external input between 2 epochs, the significant layer differences in Arc expression still remained. Thus, laminar differences in activation or plasticity patterns are not likely to arise from hippocampal sources or differences in external inputs, but are more likely to be an intrinsic property of the neocortex.

  10. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints

    PubMed Central

    2012-01-01

    Background The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa) formed ten clusters of orthologous groups (COG) with genes from the monocot sorghum (Sorghum bicolor) and dicot Arabidopsis (Arabidopsis thaliana). The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. Results The most apparent pattern observed was the occurrence of spatially conserved ‘core modules’ among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS) classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic) or organ-associated signals, which may be functioning as ‘regulatory fine-tuners’ and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. Conclusions Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in conjunction with lineage-specific or species-specific regulatory fine-tuners. This synergy may be critical for finer-scale spatio-temporal regulation, hence unique expression profiles of homologous transcription factors from different species with distinct zones of ecological adaptation such as rice, sorghum and Arabidopsis. The patterns revealed from these comparisons set the stage for further empirical validation by functional genomics. PMID:22992304

  11. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response.

    PubMed Central

    Heppner, K. J.; Matrisian, L. M.; Jensen, R. A.; Rodgers, W. H.

    1996-01-01

    Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8686751

  12. Three-Dimensional Gene Map of Cancer Cell Types: Structural Entropy Minimisation Principle for Defining Tumour Subtypes

    PubMed Central

    Li, Angsheng; Yin, Xianchen; Pan, Yicheng

    2016-01-01

    In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724

  13. Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution

    PubMed Central

    Abellán, Antonio; Sentandreu, Vicente

    2017-01-01

    Abstract The comparison of gene expression patterns in the embryonic brain of mouse and chicken is being essential for understanding pallial organization. However, the scarcity of gene expression data in reptiles, crucial for understanding evolution, makes it difficult to identify homologues of pallial divisions in different amniotes. We cloned and analyzed the expression of the genes Emx1, Lhx2, Lhx9, and Tbr1 in the embryonic telencephalon of the lacertid lizard Psammodromus algirus. The comparative expression patterns of these genes, critical for pallial development, are better understood when using a recently proposed six‐part model of pallial divisions. The lizard medial pallium, expressing all genes, includes the medial and dorsomedial cortices, and the majority of the dorsal cortex, except the region of the lateral cortical superposition. The latter is rich in Lhx9 expression, being excluded as a candidate of dorsal or lateral pallia, and may belong to a distinct dorsolateral pallium, which extends from rostral to caudal levels. Thus, the neocortex homolog cannot be found in the classical reptilian dorsal cortex, but perhaps in a small Emx1‐expressing/Lhx9‐negative area at the front of the telencephalon, resembling the avian hyperpallium. The ventral pallium, expressing Lhx9, but not Emx1, gives rise to the dorsal ventricular ridge and appears comparable to the avian nidopallium. We also identified a distinct ventrocaudal pallial sector comparable to the avian arcopallium and to part of the mammalian pallial amygdala. These data open new venues for understanding the organization and evolution of the pallium. PMID:28891227

  14. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region

    PubMed Central

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-01-01

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis. PMID:26556349

  15. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region.

    PubMed

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-11-05

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis.

  16. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted frommore » a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.« less

  17. Breast cancer lung metastasis: Molecular biology and therapeutic implications.

    PubMed

    Jin, Liting; Han, Bingchen; Siegel, Emily; Cui, Yukun; Giuliano, Armando; Cui, Xiaojiang

    2018-03-26

    Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided into different subtypes based on gene expression profiles, and different breast cancer subtypes show preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic strategies for treating breast cancer lung metastasis.

  18. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions.

    PubMed

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-11-26

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field.

  19. Expression of the Fanconi anemia group A gene (Fanca) during mouse embryogenesis.

    PubMed

    Abu-Issa, R; Eichele, G; Youssoufian, H

    1999-07-15

    About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fanca expression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.

  20. Sex-Specific Selection and Sex-Biased Gene Expression in Humans and Flies

    PubMed Central

    Kirkpatrick, Mark

    2016-01-01

    Sexual dimorphism results from sex-biased gene expression, which evolves when selection acts differently on males and females. While there is an intimate connection between sex-biased gene expression and sex-specific selection, few empirical studies have studied this relationship directly. Here we compare the two on a genome-wide scale in humans and flies. We find a distinctive “Twin Peaks” pattern in humans that relates the strength of sex-specific selection, quantified by genetic divergence between male and female adults at autosomal loci, to the degree of sex-biased expression. Genes with intermediate degrees of sex-biased expression show evidence of ongoing sex-specific selection, while genes with either little or completely sex-biased expression do not. This pattern apparently results from differential viability selection in males and females acting in the current generation. The Twin Peaks pattern is also found in Drosophila using a different measure of sex-specific selection acting on fertility. We develop a simple model that successfully recapitulates the Twin Peaks. Our results suggest that many genes with intermediate sex-biased expression experience ongoing sex-specific selection in humans and flies. PMID:27658217

  1. HLA-C expression pattern is spatially different between psoriasis and eczema skin lesions.

    PubMed

    Carlén, Lina; Sakuraba, Kazuko; Ståhle, Mona; Sánchez, Fabio

    2007-02-01

    Interactions between genetic and environmental factors underlie the immune dysregulation and keratinocyte abnormalities that characterize psoriasis. Among known psoriasis susceptibility loci (PSORS), PSORS1 on chromosome 6 has the strongest association to disease. Altered expression of some PSORS1 candidate genes has been reported but little is known about HLA-C expression in psoriasis. This study compared expression of major histocompatibility complex class Ia and HLA-C in psoriasis, allergic contact eczema, and normal skin. Although HLA-C was abundant in protein extracts from both eczema and psoriasis, a consistent and intriguing difference in the expression pattern was observed; strong immunoreactivity in the basal cell layer, polarized towards the basement membrane in psoriasis, whereas in eczema lesions HLA-C immunostaining was present mostly in suprabasal cells. Inflammatory cells in the dermis were strongly stained in both diseases. Normal skin epithelium showed less intense but similar HLA-C staining as eczema lesions. HLA class Ia expression overall resembled that of HLA-C in all samples. The distinct HLA-C expression patterns in psoriasis and eczema suggest a functional role in the specific psoriasis immune response and not only a general feature of inflammation.

  2. Combined DNA methylation and gene expression profiling in gastrointestinal stromal tumors reveals hypomethylation of SPP1 as an independent prognostic factor.

    PubMed

    Haller, Florian; Zhang, Jitao David; Moskalev, Evgeny A; Braun, Alexander; Otto, Claudia; Geddert, Helene; Riazalhosseini, Yasser; Ward, Aoife; Balwierz, Aleksandra; Schaefer, Inga-Marie; Cameron, Silke; Ghadimi, B Michael; Agaimy, Abbas; Fletcher, Jonathan A; Hoheisel, Jörg; Hartmann, Arndt; Werner, Martin; Wiemann, Stefan; Sahin, Ozgür

    2015-03-01

    Gastrointestinal stromal tumors (GISTs) have distinct gene expression patterns according to localization, genotype and aggressiveness. DNA methylation at CpG dinucleotides is an important mechanism for regulation of gene expression. We performed targeted DNA methylation analysis of 1.505 CpG loci in 807 cancer-related genes in a cohort of 76 GISTs, combined with genome-wide mRNA expression analysis in 22 GISTs, to identify signatures associated with clinicopathological parameters and prognosis. Principal component analysis revealed distinct DNA methylation patterns associated with anatomical localization, genotype, mitotic counts and clinical follow-up. Methylation of a single CpG dinucleotide in the non-CpG island promoter of SPP1 was significantly correlated with shorter disease-free survival. Hypomethylation of this CpG was an independent prognostic parameter in a multivariate analysis compared to anatomical localization, genotype, tumor size and mitotic counts in a cohort of 141 GISTs with clinical follow-up. The epigenetic regulation of SPP1 was confirmed in vitro, and the functional impact of SPP1 protein on tumorigenesis-related signaling pathways was demonstrated. In summary, SPP1 promoter methylation is a novel and independent prognostic parameter in GISTs, and might be helpful in estimating the aggressiveness of GISTs from the intermediate-risk category. © 2014 UICC.

  3. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance.

    PubMed

    Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang

    2011-11-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits.

  4. Immunoglobulin M myeloma: evaluation of molecular features and cytokine expression.

    PubMed

    Konduri, Kartik; Sahota, Surinder S; Babbage, Gavin; Tong, Alex W; Kumar, Padmasini; Newman, Joseph T; Stone, Marvin J

    2005-03-01

    Immunoglobulin (Ig) M myeloma is a distinct entity with features of multiple myeloma (MM) and Waldenstrom's macroglobulinemia (WM). The malignant cells in IgM myeloma have a distinctive chromosomal translocation that differentiates them from WM. These cells are postgerminal-center in origin with isotype-switch transcripts. They appear to be arrested at a point of maturation between that of WM and MM. Preliminary data indicate that a pattern of osteoclast-activating factor and osteoprotegerin expression similar to that observed in classic MM is present in IgM myeloma. Additional studies on patients with this rare tumor may provide further insight into the pathogenesis of bone disease in plasma cell dyscrasias.

  5. Characterization of distinct classes of differential gene expression in osteoblast cultures from non-syndromic craniosynostosis bone.

    PubMed

    Rojas-Peña, Monica L; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D; Williams, Joseph; Gibson, Greg

    2014-01-01

    Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention.

  6. Characterization of Distinct Classes of Differential Gene Expression in Osteoblast Cultures from Non-Syndromic Craniosynostosis Bone

    PubMed Central

    Rojas-Peña, Monica L.; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D.; Williams, Joseph; Gibson, Greg

    2014-01-01

    Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention. PMID:25184005

  7. Ecological and evolutionary drivers of the elevational gradient of diversity.

    PubMed

    Laiolo, Paola; Pato, Joaquina; Obeso, José Ramón

    2018-05-02

    Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon-specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity-elevation relationships. © 2018 John Wiley & Sons Ltd/CNRS.

  8. New insights into plant glycoside hydrolase family 32 in Agave species

    PubMed Central

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D.; Damián Santos, Maura L.; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895

  9. New insights into plant glycoside hydrolase family 32 in Agave species.

    PubMed

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

  10. Regulatory logic of pan-neuronal gene expression in C. elegans

    PubMed Central

    Stefanakis, Nikolaos; Carrera, Ines; Hobert, Oliver

    2015-01-01

    While neuronal cell types display an astounding degree of phenotypic diversity, most if not all neuron types share a core panel of terminal features. However, little is known about how pan-neuronal expression patterns are genetically programmed. Through an extensive analysis of the cis-regulatory control regions of a battery of pan-neuronal C.elegans genes, including genes involved in synaptic vesicle biology and neuropeptide signaling, we define a common organizational principle in the regulation of pan-neuronal genes in the form of a surprisingly complex array of seemingly redundant, parallel-acting cis-regulatory modules that direct expression to broad, overlapping domains throughout the nervous system. These parallel-acting cis-regulatory modules are responsive to a multitude of distinct trans-acting factors. Neuronal gene expression programs therefore fall into two fundamentally distinct classes. Neuron type-specific genes are generally controlled by discrete and non-redundantly acting regulatory inputs, while pan-neuronal gene expression is controlled by diverse, coincident and seemingly redundant regulatory inputs. PMID:26291158

  11. Dissociating maternal responses to sad and happy facial expressions of their own child: An fMRI study.

    PubMed

    Kluczniok, Dorothea; Hindi Attar, Catherine; Stein, Jenny; Poppinga, Sina; Fydrich, Thomas; Jaite, Charlotte; Kappel, Viola; Brunner, Romuald; Herpertz, Sabine C; Boedeker, Katja; Bermpohl, Felix

    2017-01-01

    Maternal sensitive behavior depends on recognizing one's own child's affective states. The present study investigated distinct and overlapping neural responses of mothers to sad and happy facial expressions of their own child (in comparison to facial expressions of an unfamiliar child). We used functional MRI to measure dissociable and overlapping activation patterns in 27 healthy mothers in response to happy, neutral and sad facial expressions of their own school-aged child and a gender- and age-matched unfamiliar child. To investigate differential activation to sad compared to happy faces of one's own child, we used interaction contrasts. During the scan, mothers had to indicate the affect of the presented face. After scanning, they were asked to rate the perceived emotional arousal and valence levels for each face using a 7-point Likert-scale (adapted SAM version). While viewing their own child's sad faces, mothers showed activation in the amygdala and anterior cingulate cortex whereas happy facial expressions of the own child elicited activation in the hippocampus. Conjoint activation in response to one's own child happy and sad expressions was found in the insula and the superior temporal gyrus. Maternal brain activations differed depending on the child's affective state. Sad faces of the own child activated areas commonly associated with a threat detection network, whereas happy faces activated reward related brain areas. Overlapping activation was found in empathy related networks. These distinct neural activation patterns might facilitate sensitive maternal behavior.

  12. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  13. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    PubMed

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  14. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  15. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors.

    PubMed Central

    Kliewer, S A; Forman, B M; Blumberg, B; Ong, E S; Borgmeyer, U; Mangelsdorf, D J; Umesono, K; Evans, R M

    1994-01-01

    To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in mammals, we have cloned and characterized two PPAR alpha-related cDNAs (designated PPAR gamma and -delta, respectively) from mouse. The three PPAR isoforms display widely divergent patterns of expression during embryogenesis and in the adult. Surprisingly, PPAR gamma and -delta are not activated by pirinixic acid (Wy 14,643), a potent peroxisome proliferator and activator of PPAR alpha. However, PPAR gamma and -delta are activated by the structurally distinct peroxisome proliferator LY-171883 and linoleic acid, respectively, indicating that each of the isoforms can act as a regulated activator of transcription. These data suggest that tissue-specific responsiveness to peroxisome proliferators, including certain fatty acids, is in part a consequence of differential expression of multiple, pharmacologically distinct PPAR isoforms. Images PMID:8041794

  16. EXPRESSION PATTERNS OF ESTROGEN RECEPTORS IN THE CENTRAL AUDITORY SYSTEM CHANGE IN PREPUBERTAL AND AGED MICE

    PubMed Central

    Charitidi, K.; Frisina, R. D.; Vasilyeva, O. N.; Zhu, X.; Canlon, B.

    2011-01-01

    Estrogens are important in the development, maintenance and physiology of the CNS. Several studies have shown their effects on the processing of hearing in both males and females, and these effects, in part, are thought to result from regulation of the transcription of genes via their classical estrogen receptor (ER) pathway. In order to understand the spatiotemporal changes that occur with age, we have studied the expression of ERs in the central auditory pathway in prepubertal and aged CBA mice with immunohistochemistry. In prepubertal mice a clear dichotomy was noted between the expression of ERα and ERβ. ERβ-positive neurons were found in the metencephalon whereas the majority of ERα was found in mesencephalon, diencephalon or the telencephalon. In the aged animals a different pattern of ER expression was found in terms of location and overall intensity. These age-induced changes in the expression pattern were generally not uniform, suggesting that region-specific mechanisms regulate the ERs’ age-related expression. Neither the prepubertal nor the aged animals showed sex differences in any auditory structure. Our results demonstrate different age-dependent spatial and temporal changes in the pattern of expression of ERα and ERβ, suggesting that each ER type may be involved in distinct roles across the central auditory pathway in different periods of maturation. PMID:20736049

  17. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    PubMed Central

    Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. PMID:22457638

  18. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    PubMed

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.

  19. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system

    PubMed Central

    Balaram, Pooja; Hackett, Troy A.; Kaas, Jon H.

    2013-01-01

    Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). PMID:23524295

  20. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system.

    PubMed

    Balaram, Pooja; Hackett, Troy A; Kaas, Jon H

    2013-05-01

    Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease.

    PubMed

    Zhang, Xiuming; Mormino, Elizabeth C; Sun, Nanbo; Sperling, Reisa A; Sabuncu, Mert R; Yeo, B T Thomas

    2016-10-18

    We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.

  2. A microcosm of musical expression: II. Quantitative analysis of pianists' dynamics in the initial measures of Chopin's Etude in E major.

    PubMed

    Repp, B H

    1999-03-01

    Patterns of expressive dynamics were measured in bars 1-5 of 115 commercially recorded performances of Chopin's Etude in E major, op. 10, No. 3. The grand average pattern (or dynamic profile) was representative of many performances and highly similar to the average dynamic profile of a group of advanced student performances, which suggests a widely shared central norm of expressive dynamics. The individual dynamic profiles were subjected to principal components analysis, which yielded Varimax-rotated components, each representing a different, nonstandard dynamic profile associated with a small subset of performances. Most performances had dynamic patterns resembling a mixture of several components, and no clustering of of performances into distinct groups was apparent. Some weak relationships of dynamic profiles with sociocultural variables were found, most notably a tendency of female pianists to exhibit a greater dynamic range in the melody. Within the melody, there were no significant relationships between expressive timing [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998)] and expressive dynamics. These two important dimensions seemed to be controlled independently at this local level and thus offer the artist many degrees of freedom in giving a melody expressive shape.

  3. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities.

    PubMed

    Skoulidis, Ferdinandos; Byers, Lauren A; Diao, Lixia; Papadimitrakopoulou, Vassiliki A; Tong, Pan; Izzo, Julie; Behrens, Carmen; Kadara, Humam; Parra, Edwin R; Canales, Jaime Rodriguez; Zhang, Jianjun; Giri, Uma; Gudikote, Jayanthi; Cortez, Maria A; Yang, Chao; Fan, Youhong; Peyton, Michael; Girard, Luc; Coombes, Kevin R; Toniatti, Carlo; Heffernan, Timothy P; Choi, Murim; Frampton, Garrett M; Miller, Vincent; Weinstein, John N; Herbst, Roy S; Wong, Kwok-Kin; Zhang, Jianhua; Sharma, Padmanee; Mills, Gordon B; Hong, Waun K; Minna, John D; Allison, James P; Futreal, Andrew; Wang, Jing; Wistuba, Ignacio I; Heymach, John V

    2015-08-01

    The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma are poorly characterized. We performed an integrative analysis of genomic, transcriptomic, and proteomic data from early-stage and chemorefractory lung adenocarcinoma and identified three robust subsets of KRAS-mutant lung adenocarcinoma dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP), and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further revealed biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules, and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant lung adenocarcinoma with distinct biology and therapeutic vulnerabilities. Co-occurring genetic alterations in STK11/LKB1, TP53, and CDKN2A/B-the latter coupled with low TTF1 expression-define three major subgroups of KRAS-mutant lung adenocarcinoma with distinct biology, patterns of immune-system engagement, and therapeutic vulnerabilities. ©2015 American Association for Cancer Research.

  4. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis).

    PubMed

    Xu, Yuantao; Wu, Guizhi; Hao, Baohai; Chen, Lingling; Deng, Xiuxin; Xu, Qiang

    2015-11-23

    With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange.

  5. Express saccades in distinct populations: east, west, and in-between.

    PubMed

    Knox, Paul C; Wolohan, Felicity D A; Helmy, Mai S

    2017-12-01

    Express saccades are low latency (80-130 ms), visually guided saccades. While their occurrence is encouraged by the use of gap tasks (the fixation target is extinguished 200 ms prior to the saccade target appearing) and suppressed by the use of overlap tasks (the fixation target remains present when the saccade target appears), there are some healthy, adult participants, "express saccade makers" (ESMs), who persist in generating high proportions (> 30%) of express saccades in overlap conditions. These participants are encountered much more frequently in Chinese participant groups than amongst the Caucasian participants tested to date. What is not known is whether this high number of ESMs is only a feature of Chinese participant groups. More broadly, there are few comparative studies of saccade behaviour across large participant groups drawn from different populations. We, therefore, tested an independent group of 70 healthy adult Egyptian participants, using the same equipment and procedures as employed in the previous studies. Each participant was exposed to two blocks of 200 gap, and two blocks of 200 overlap trials, with block order counterbalanced. Results from the Schwartz Value Survey were used to confirm that this group of participants was culturally distinct from the Chinese and Caucasian (white British) groups tested previously. Fourteen percent (10/70) of this new group were ESMs, and the pattern of latency distribution in these ESMs was identical to that identified in the other participant groups, with a prominent peak in the express latency range in overlap conditions. Overall, we identified three modes in the distribution of saccade latency in overlap conditions, the timing of which (express peak at 110 ms, subsequent peaks at 160 and 210 ms) were strikingly consistent with our previous observations. That these behavioural patterns of saccade latency are observed consistently in large participant groups, drawn from geographically, ethnically, and culturally distinct populations, suggests that they relate to the underlying architecture of the saccade system.

  6. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development.

    PubMed

    Morona, Ruth; González, Agustín

    2013-01-01

    The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. Copyright © 2012 Wiley Periodicals, Inc.

  7. Teenage goals and self-efficacy beliefs as precursors of adult career and family outcomes

    PubMed Central

    Lee, Bora; Vondracek, Fred W.

    2014-01-01

    The present study identified and examined patterns of goal importance and self-efficacy beliefs in mid- and late adolescence as predictors of work and family outcomes in adulthood. A pattern approach was applied to appropriately identify relationships among work- and family-related goal importance and self-efficacy beliefs. Using a sample of 995 individuals, five distinct patterns of work-family goal importance and self-efficacy beliefs emerged. Individuals who assigned comparable importance to work and family goals and expressed corresponding self-efficacy beliefs in adolescence were more likely to achieve career and family outcomes in adulthood than individuals who expressed a strong preference for one domain over the other. The results supported the idea that work and family can be coordinated for mutual benefit. Furthermore, findings from the pattern approach provided an integrative view of work-family motivation and goal achievement complementing findings from traditional methods such as regression analysis. PMID:25242815

  8. Teenage goals and self-efficacy beliefs as precursors of adult career and family outcomes.

    PubMed

    Lee, Bora; Vondracek, Fred W

    2014-10-01

    The present study identified and examined patterns of goal importance and self-efficacy beliefs in mid- and late adolescence as predictors of work and family outcomes in adulthood. A pattern approach was applied to appropriately identify relationships among work- and family-related goal importance and self-efficacy beliefs. Using a sample of 995 individuals, five distinct patterns of work-family goal importance and self-efficacy beliefs emerged. Individuals who assigned comparable importance to work and family goals and expressed corresponding self-efficacy beliefs in adolescence were more likely to achieve career and family outcomes in adulthood than individuals who expressed a strong preference for one domain over the other. The results supported the idea that work and family can be coordinated for mutual benefit. Furthermore, findings from the pattern approach provided an integrative view of work-family motivation and goal achievement complementing findings from traditional methods such as regression analysis.

  9. Protein expression of MMP-2 and MT1-MMP in actinic keratosis, squamous cell carcinoma of the skin, and basal cell carcinoma.

    PubMed

    de Oliveira Poswar, Fabiano; de Carvalho Fraga, Carlos Alberto; Gomes, Emisael Stênio Batista; Farias, Lucyana Conceição; Souza, Linton Wallis Figueiredo; Santos, Sérgio Henrique Souza; Gomez, Ricardo Santiago; de-Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2015-02-01

    Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are 2 skin neoplasms with distinct potentials to invasion and metastasis. Actinic keratosis (AK) is a precursor lesion of SCC. Immunohistochemistry was performed to evaluate the expression of MMP-2 and MT1-MMP in samples of BCC (n = 29), SCC (n = 12), and AK (n = 13). The ratio of positive cells to total cells was used to quantify the staining. Statistical significance was considered under the level P < .05. We found a higher expression of MMP-2 in tumor stroma and parenchyma of SCC as compared to BCC. The expression of this protein was also similar between SCC and its precursor actinic keratosis, and it was higher in the stroma of high-risk BCC when compared to low-risk BCC. MT1-MMP, which is an activator of MMP-2, was similarly expressed in all groups. Our results suggest that MMP-2 expression may contribute to the distinct invasive patterns seen in SCC and BCC. © The Author(s) 2014.

  10. Frontal electroencephalographic correlates of individual differences in emotion expression in infants: a brain systems perspective on emotion.

    PubMed

    Dawson, G

    1994-01-01

    Emotion expressions can be characterized by both the type of emotion displayed and the intensity with which the emotion is expressed. Individual differences in these two aspects of emotion appear to vary independently and may perhaps account for distinct dimensions of temperament, personality, and vulnerability to psychopathology. We reviewed several sets of data gathered in our laboratory that indicate that these two dimensions of emotion expression are associated with distinct and independent patterns of frontal EEG activity in infants. Specifically, whereas the type of emotion expression was found to be associated with asymmetries in frontal EEG activity, the intensity of emotion expression was found to be associated with generalized activation of both the right and the left frontal regions. Moreover, we reviewed and provided evidence that measures of asymmetrical frontal activity are better predictors of individual differences in the tendency to express certain emotions, such as distress and sadness, whereas measures of generalized frontal activity are better predictors of individual differences in emotional reactivity and emotion intensity. The neuroanatomical bases of emotion were discussed with special reference to the role of the frontal lobe in emotion regulation. It was hypothesized that the frontal activation asymmetries that have been found to accompany emotion expressions reflect specific regulation strategies. The left frontal region is specialized for regulation strategies involving action schemes that serve to maintain continuity and stability of the organism-environment relation and of ongoing motor schemes, such as those involved in language and the expression of happiness and interest. In contrast, the right frontal region appears to be specialized for regulation strategies that involve processing novel stimuli that disrupt ongoing activity, such as might occur during the expression of fear, disgust, and distress. Furthermore, it was proposed that individual differences in patterns of frontal EEG asymmetries during emotion may be related to socialization influences rather than solely innate factors. It was speculated that the pattern of generalized frontal lobe activation that accompanies the experience of intense emotions may reflect, in part, the relatively diffuse influence of subcortical structures on the cortex and may serve to increase the infant's general readiness to receive and respond to significant external stimuli.

  11. Cellular pattern formation by SCRAMBLED, a leucine-rich repeat receptor-like kinase in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2008-02-01

    The appropriate specification of distinct cell types is important for generating the proper tissues and bodies of multicellular organisms. In the root epidermis of Arabidopsis, cell fate determination is accomplished by a transcriptional regulatory circuit that is influenced by positional signaling. A leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), has been shown to be responsible for the position-dependent aspect of this epidermal pattern. In a recent report, we find that SCM affects the transcriptional regulatory network by down-regulating the WEREWOLF (WER) MYB gene expression in a set of epidermal cells located in a specific position. We also find that SCM and the SCM-related SRF1 and SRF3 are not required for embryonic epidermal patterning and that SRF1 and SRF3 do not act redundantly with SCM. This suggests that distinct positional signaling mechanisms exist for embryonic and post-embryonic epidermal patterning. In this addendum, we discuss the implications of our recent findings and extend our working model for epidermal cell pattering.

  12. Cellular pattern formation by SCRAMBLED, a leucine-rich repeat receptor-like kinase in Arabidopsis

    PubMed Central

    Kwak, Su-Hwan

    2008-01-01

    The appropriate specification of distinct cell types is important for generating the proper tissues and bodies of multicellular organisms. In the root epidermis of Arabidopsis, cell fate determination is accomplished by a transcriptional regulatory circuit that is influenced by positional signaling. A leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), has been shown to be responsible for the position-dependent aspect of this epidermal pattern. In a recent report, we find that SCM affects the transcriptional regulatory network by down-regulating the WEREWOLF (WER) MYB gene expression in a set of epidermal cells located in a specific position. We also find that SCM and the SCM-related SRF1 and SRF3 are not required for embryonic epidermal patterning and that SRF1 and SRF3 do not act redundantly with SCM. This suggests that distinct positional signaling mechanisms exist for embryonic and post-embryonic epidermal patterning. In this addendum, we discuss the implications of our recent findings and extend our working model for epidermal cell pattering. PMID:19704725

  13. ERK/MAPK Regulates Hippocampal Histone Phosphorylation Following Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Levenson, Jonathan M.; Sweatt, J. David; Chwang, Wilson B.; O'Riordan, Kenneth J.

    2006-01-01

    Long-term memory formation is regulated by many distinct molecular mechanisms that control gene expression. An emerging model for effecting a stable, coordinated pattern of gene transcription involves epigenetic tagging through modifications of histones or DNA. In this study, we investigated the regulation of histone phosphorylation in the…

  14. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance*

    PubMed Central

    Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang

    2011-01-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits. PMID:22042659

  15. Distinct epigenetic signatures elucidate enhancer-gene relationships that delineate CIMP and non-CIMP colorectal cancers.

    PubMed

    Chong, Allen; Teo, Jing Xian; Ban, Kenneth H K

    2016-05-10

    Epigenetic changes, like DNA methylation, affect gene expression and in colorectal cancer (CRC), a distinct phenotype called the CpG island methylator phenotype ("CIMP") has significantly higher levels of DNA methylation at so-called "Type C loci" within the genome. We postulate that enhancer-gene pairs are coordinately controlled through DNA methylation in order to regulate the expression of key genes/biomarkers for a particular phenotype.Firstly, we found 24 experimentally-validated enhancers (VISTA enhancer browser) that contained statistically significant (FDR-adjusted q-value of <0.01) differentially methylated regions (DMRs) (1000bp) in a study of CIMP versus non-CIMP CRCs. Of these, the methylation of 2 enhancers, 1702 and 1944, were found to be very well correlated with the methylation of the genes Wnt3A and IGDCC3, respectively, in two separate and independent datasets.We show for the first time that there are indeed distinct and dynamic changes in the methylation pattern of specific enhancer-gene pairs in CRCs. Such a coordinated epigenetic event could be indicative of an interaction between (1) enhancer 1702 and Wnt3A and (2) enhancer 1944 and IGDCC3. Moreover, our study shows that the methylation patterns of these 2 enhancer-gene pairs can potentially be used as biomarkers to delineate CIMP from non-CIMP CRCs.

  16. ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

    PubMed

    Sander, Jil; Schultze, Joachim L; Yosef, Nir

    2017-03-01

    Perturbations in the environment lead to distinctive gene expression changes within a cell. Observed over time, those variations can be characterized by single impulse-like progression patterns. ImpulseDE is an R package suited to capture these patterns in high throughput time series datasets. By fitting a representative impulse model to each gene, it reports differentially expressed genes across time points from a single or between two time courses from two experiments. To optimize running time, the code uses clustering and multi-threading. By applying ImpulseDE , we demonstrate its power to represent underlying biology of gene expression in microarray and RNA-Seq data. ImpulseDE is available on Bioconductor ( https://bioconductor.org/packages/ImpulseDE/ ). niryosef@berkeley.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes

    PubMed Central

    Arikawa, Kentaro; Iwanaga, Tomoyuki; Wakakuwa, Motohiro; Kinoshita, Michiyo

    2017-01-01

    Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved. PMID:29238294

  18. Onset of Tlx-3 expression in the chick cerebellar cortex correlates with the morphological development of fissures and delineates a posterior transverse boundary.

    PubMed

    Logan, Cairine; Millar, Cassie; Bharadia, Vinay; Rouleau, Katherine

    2002-06-24

    Recent studies have shown that the mammalian cerebellar cortex can be subdivided into a reproducible array of zones and stripes. In particular, discontinuous patterns of gene expression together with mutational analysis suggest that there are at least four distinct transverse zones along the rostrocaudal axis in mouse: the anterior zone (lobules I-V), the central zone (lobules VI and VII), the posterior zone (lobules VIII and IX), and the nodular zone (lobule X). Here we show that the divergent homeobox-containing transcription factor, Tlx- 3 (also known as Hox11L2 or Rnx) is transiently expressed in external granule cells in a distinct transverse domain of the developing chick cerebellar cortex. Expression is first detected at Hamburger and Hamilton (HH) stage 35. Interestingly, Tlx-3 mRNA expression is initially confined to, and coincident with, the morphological development of fissures. Slightly later, at HH stage 38, expression extends throughout the developing external granular layer (EGL) of lobules I-IXab. Notably, no Tlx-3 expression was detected in lobules IXc and X at any developmental time point examined. Expression is noticeably stronger in nonproliferating cells located in the deep layer of the EGL. Tlx-3 expression is downregulated as granule cells migrate inward to form the internal granule layer and is undetectable shortly after birth. These results suggest that Tlx-3 is expressed as granule cells become postmitotic and suggest that Tlx-3 may play a role in the differentiation of distinct neuronal populations in the cerebellum. Copyright 2002 Wiley-Liss, Inc.

  19. Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish.

    PubMed

    Zhang, Dapeng; Xiong, Huiling; Mennigen, Jan A; Popesku, Jason T; Marlatt, Vicki L; Martyniuk, Christopher J; Crump, Kate; Cossins, Andrew R; Xia, Xuhua; Trudeau, Vance L

    2009-06-05

    Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A) gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development.

  20. Defining Global Neuroendocrine Gene Expression Patterns Associated with Reproductive Seasonality in Fish

    PubMed Central

    Mennigen, Jan A.; Popesku, Jason T.; Marlatt, Vicki L.; Martyniuk, Christopher J.; Crump, Kate; Cossins, Andrew R.; Xia, Xuhua; Trudeau, Vance L.

    2009-01-01

    Background Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. Methodology/Principal Findings In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABAA gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Conclusions/Significance Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development. PMID:19503831

  1. New displays and new emotions: a commentary on Rozin and Cohen (2003).

    PubMed

    Keltner, Dacher; Shiota, Michelle N

    2003-03-01

    In this article, the authors elaborate on 3 ideas advanced in P. Rozin and A. B. Cohen's (2003) innovative study of facial expression. Taking a cue from their discovery of new expressive behaviors (e.g., the narrowed eyebrows), the authors review recent studies showing that emotions are conveyed in more channels than usually studied, including posture, gaze patterns, voice, and touch. Building on their claim that confusion has a distinct display, the authors review evidence showing distinct displays for 3 self-conscious emotions (embarrassment, shame, and pride), 5 positive emotions (amusement, desire, happiness, love, interest), and sympathy and compassion. Finally, the authors offer a functional definition of emotion to integrate these findings on "new" displays and emotions.

  2. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.

    PubMed

    Sopeña-Torres, Sara; Jordá, Lucía; Sánchez-Rodríguez, Clara; Miedes, Eva; Escudero, Viviana; Swami, Sanjay; López, Gemma; Piślewska-Bednarek, Mariola; Lassowskat, Ines; Lee, Justin; Gu, Yangnan; Haigis, Sabine; Alexander, Danny; Pattathil, Sivakumar; Muñoz-Barrios, Antonio; Bednarek, Pawel; Somerville, Shauna; Schulze-Lefert, Paul; Hahn, Michael G; Scheel, Dierk; Molina, Antonio

    2018-04-01

    Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones. © 2018 Universidad Politécnica de Madrid (UPM) New Phytologist © 2018 New Phytologist Trust.

  3. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    PubMed Central

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  4. Differential expression of decorin and biglycan genes during mouse tooth development

    NASA Technical Reports Server (NTRS)

    Matsuura, T.; Duarte, W. R.; Cheng, H.; Uzawa, K.; Yamauchi, M.

    2001-01-01

    Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.

  5. Patterning of somatosympathetic reflexes

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Yates, B. J.

    1999-01-01

    In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.

  6. Differences in MYB expression and gene abnormalities further confirm that salivary cribriform basal cell tumors and adenoid cystic carcinoma are two distinct tumor entities.

    PubMed

    Tian, Zhen; Li, Lei; Zhang, Chun-Ye; Gu, Ting; Li, Jiang

    2016-10-01

    In practices, some cases of salivary basal cell tumors that consist mainly of cribriform growth pattern are difficult to differentiate from adenoid cystic carcinoma (AdCC). Identification of reliable molecular biomarkers for the differential diagnosis between them is required. Twenty-two cases of cribriform salivary basal cell tumors (at least 10% cribriform pattern present in each tumor) comprising 18 cases of basal cell adenoma (BCA) and four cases of basal cell adenocarcinoma (BcAC) were collected between 1985 and 2008. Twenty cases of cribriform AdCC were retrieved from our archives. MYB protein expression and gene abnormalities were detected in all cases by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) analyses, respectively. Neither MYB protein nor split genes were detected in any of the cases of cribriform basal cell tumors, while 55% (11/20) of cases of cribriform AdCC had MYB protein expression. High MYB expression was detected in 81.8% (9/11) cases, while low expression was found in the remaining cases. FISH analysis indicated that nine AdCC tumors with high MYB protein expression were split gene-positive, while MYB gene splitting was not detected in the 11 cases with low or absent MYB protein expression. The molecular changes in AdCC differ from those associated with cribriform basal cell tumors, which further confirms that cribriform basal cell tumors and AdCC are two distinct tumor entities. Simultaneous detection of MYB protein expression and the associated molecular changes could be beneficial in differentiating salivary cribriform basal cell tumors from AdCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors

    PubMed Central

    2018-01-01

    ABSTRACT Long-germ insects, such as the fruit fly Drosophila melanogaster, pattern their segments simultaneously, whereas short-germ insects, such as the beetle Tribolium castaneum, pattern their segments sequentially, from anterior to posterior. Although the two modes of segmentation at first appear quite distinct, much of this difference might simply reflect developmental heterochrony. We now show here that, in both Drosophila and Tribolium, segment patterning occurs within a common framework of sequential Caudal, Dichaete and Odd-paired expression. In Drosophila, these transcription factors are expressed like simple timers within the blastoderm, whereas in Tribolium they form wavefronts that sweep from anterior to posterior across the germband. In Drosophila, all three are known to regulate pair-rule gene expression and influence the temporal progression of segmentation. We propose that these regulatory roles are conserved in short-germ embryos, and that therefore the changing expression profiles of these genes across insects provide a mechanistic explanation for observed differences in the timing of segmentation. In support of this hypothesis, we demonstrate that Odd-paired is essential for segmentation in Tribolium, contrary to previous reports. PMID:29724758

  8. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  9. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks

    PubMed Central

    2013-01-01

    Background A co-ordinated tissue-independent gene expression profile associated with growth is present in rodent models and this is hypothesised to extend to all mammals. Growth in humans has similarities to other mammals but the return to active long bone growth in the pubertal growth spurt is a distinctly human growth event. The aim of this study was to describe gene expression and biological pathways associated with stages of growth in children and to assess tissue-independent expression patterns in relation to human growth. Results We conducted gene expression analysis on a library of datasets from normal children with age annotation, collated from the NCBI Gene Expression Omnibus (GEO) and EBI Arrayexpress databases. A primary data set was generated using cells of lymphoid origin from normal children; the expression of 688 genes (ANOVA false discovery rate modified p-value, q < 0.1) was associated with age, and subsets of these genes formed clusters that correlated with the phases of growth – infancy, childhood, puberty and final height. Network analysis on these clusters identified evolutionarily conserved growth pathways (NOTCH, VEGF, TGFB, WNT and glucocorticoid receptor – Hyper-geometric test, q < 0.05). The greatest degree of network ‘connectivity’ and hence functional significance was present in infancy (Wilcoxon test, p < 0.05), which then decreased through to adulthood. These observations were confirmed in a separate validation data set from lymphoid tissue. Similar biological pathways were observed to be associated with development-related gene expression in other tissues (conjunctival epithelia, temporal lobe brain tissue and bone marrow) suggesting the existence of a tissue-independent genetic program for human growth and maturation. Conclusions Similar evolutionarily conserved pathways have been associated with gene expression and child growth in multiple tissues. These expression profiles associate with the developmental phases of growth including the return to active long bone growth in puberty, a distinctly human event. These observations also have direct medical relevance to pathological changes that induce disease in children. Taking into account development-dependent gene expression profiles for normal children will be key to the appropriate selection of genes and pathways as potential biomarkers of disease or as drug targets. PMID:23941278

  10. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    PubMed

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  11. Identification of a Functionally Distinct Truncated BDNF mRNA Splice Variant and Protein in Trachemys scripta elegans

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634

  12. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs.

    PubMed

    Carlsbecker, Annelie; Sundström, Jens F; Englund, Marie; Uddenberg, Daniel; Izquierdo, Liz; Kvarnheden, Anders; Vergara-Silva, Francisco; Engström, Peter

    2013-10-01

    Reproductive organs in seed plants are morphologically divergent and their evolutionary history is often unclear. The mechanisms controlling their development have been extensively studied in angiosperms but are poorly understood in conifers and other gymnosperms. Here, we address the molecular control of seed cone development in Norway spruce, Picea abies. We present expression analyses of five novel MADS-box genes in comparison with previously identified MADS and LEAFY genes at distinct developmental stages. In addition, we have characterized the homeotic transformation from vegetative shoot to female cone and associated changes in regulatory gene expression patterns occurring in the acrocona mutant. The analyses identified genes active at the onset of ovuliferous and ovule development and identified expression patterns marking distinct domains of the ovuliferous scale. The reproductive transformation in acrocona involves the activation of all tested genes normally active in early cone development, except for an AGAMOUS-LIKE6/SEPALLATA (AGL6/SEP) homologue. This absence may be functionally associated with the nondeterminate development of the acrocona ovule-bearing scales. Our morphological and gene expression analyses give support to the hypothesis that the modern cone is a complex structure, and the ovuliferous scale the result of reductions and compactions of an ovule-bearing axillary short shoot in cones of Paleozoic conifers. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. b-FGF induces corneal blood and lymphatic vessel growth in a spatially distinct pattern.

    PubMed

    Hajrasouliha, Amir R; Sadrai, Zahra; Chauhan, Sunil K; Dana, Reza

    2012-07-01

    To study the spatial variances in ligand expression and angiogenic effect in response to the inflammatory response induced by basic fibroblast growth factor (b-FGF). b-FGF micropellets (80 ng) were implanted in the temporal side of the cornea of Balb/c mice. On days 1, 3, and 7, blood (heme-) and lymphangiogenesis were observed by immunofluorescence staining of corneal flat mounts with LYVE-1 and CD31 to identify lymphatic and blood vessels, respectively. A second group of corneas were harvested for quantitative real-time polymerase chain reaction. Each cornea was divided into 2 different areas: (1) pre-pellet area and (2) opposite-pellet area. Expression of vascular endothelial growth factor (VEGF) ligands was evaluated using real-time polymerase chain reaction in each respective zone. Blood vessels grew into the cornea from the pre-pellet area, whereas corneal lymphatic vessels grew from the opposite-pellet area toward the center of the cornea. VEGF-A was upregulated in the pre-pellet, whereas VEGF-D expression was mostly observed in the opposite-pellet area. VEGF-C level increased simultaneously in both areas. A single inducing factor, that is, b-FGF, may simultaneously provoke hemangiogenesis and lymphangiogenesis in different locations of the cornea through differential expression of VEGF ligands. This distinctive spatial pattern should be considered while evaluating the corneal predilection for inflammation beyond that which is directly visible by slit lamp examination.

  14. The Profile of Heparanase Expression Distinguishes Differentiated Thyroid Carcinoma from Benign Neoplasms

    PubMed Central

    Matos, Leandro Luongo; Suarez, Eloah Rabello; Theodoro, Thérèse Rachell; Trufelli, Damila Cristina; Melo, Carina Mucciolo; Garcia, Larissa Ferraz; Oliveira, Olivia Capela Grimaldi; Matos, Maria Graciela Luongo; Kanda, Jossi Ledo; Nader, Helena Bonciani; Martins, João Roberto Maciel; Pinhal, Maria Aparecida Silva

    2015-01-01

    Introduction The search for a specific marker that could help to distinguish between differentiated thyroid carcinoma and benign lesions remains elusive in clinical practice. Heparanase (HPSE) is an endo-beta-glucoronidase implicated in the process of tumor invasion, and the heparanase-2 (HPSE2) modulates HPSE activity. The aim of this study was to evaluate the role of heparanases in the development and differential diagnosis of follicular pattern thyroid lesions. Methods HPSE and HPSE2 expression by qRT-PCR, immunohistochemistry evaluation, western blot analysis and HPSE enzymatic activity were evaluated. Results The expression of heparanases by qRT-PCR showed an increase of HPSE2 in thyroid carcinoma (P = 0.001). HPSE activity was found to be higher in the malignant neoplasms than in the benign tumors (P<0.0001). On Western blot analysis, HPSE2 isoforms were detected only in malignant tumors. The immunohistochemical assay allowed us to establish a distinct pattern for malignant and benign tumors. Carcinomas showed a typical combination of positive labeling for neoplastic cells and negative immunostaining in colloid, when compared to benign tumors (P<0.0001). The proposed diagnostic test presents sensitivity and negative predictive value of around 100%, showing itself to be an accurate test for distinguishing between malignant and benign lesions. Conclusions This study shows, for the first time, a distinct profile of HPSE expression in thyroid carcinoma suggesting its role in carcinogenesis. PMID:26488476

  15. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    PubMed Central

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  16. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  17. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  18. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling

    PubMed Central

    Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987

  19. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.

    PubMed

    Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.

  20. Protein expression patterns of cell cycle regulators in operable breast cancer.

    PubMed

    Zagouri, Flora; Kotoula, Vassiliki; Kouvatseas, George; Sotiropoulou, Maria; Koletsa, Triantafyllia; Gavressea, Theofani; Valavanis, Christos; Trihia, Helen; Bobos, Mattheos; Lazaridis, Georgios; Koutras, Angelos; Pentheroudakis, George; Skarlos, Pantelis; Bafaloukos, Dimitrios; Arnogiannaki, Niki; Chrisafi, Sofia; Christodoulou, Christos; Papakostas, Pavlos; Aravantinos, Gerasimos; Kosmidis, Paris; Karanikiotis, Charisios; Zografos, George; Papadimitriou, Christos; Fountzilas, George

    2017-01-01

    To evaluate the prognostic role of elaborate molecular clusters encompassing cyclin D1, cyclin E1, p21, p27 and p53 in the context of various breast cancer subtypes. Cyclin E1, cyclin D1, p53, p21 and p27 were evaluated with immunohistochemistry in 1077 formalin-fixed paraffin-embedded tissues from breast cancer patients who had been treated within clinical trials. Jaccard distances were computed for the markers and the resulted matrix was used for conducting unsupervised hierarchical clustering, in order to identify distinct groups correlating with prognosis. Luminal B and triple-negative (TNBC) tumors presented with the highest and lowest levels of cyclin D1 expression, respectively. By contrast, TNBC frequently expressed Cyclin E1, whereas ER-positive tumors did not. Absence of Cyclin D1 predicted for worse OS, while absence of Cyclin E1 for poorer DFS. The expression patterns of all examined proteins yielded 3 distinct clusters; (1) Cyclin D1 and/or E1 positive with moderate p21 expression; (2) Cyclin D1 and/or E1, and p27 positive, p53 protein negative; and, (3) Cyclin D1 or E1 positive, p53 positive, p21 and p27 negative or moderately positive. The 5-year DFS rates for clusters 1, 2 and 3 were 70.0%, 79.1%, 67.4% and OS 88.4%, 90.4%, 78.9%, respectively. It seems that the expression of cell cycle regulators in the absence of p53 protein is associated with favorable prognosis in operable breast cancer.

  1. Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satinsky, Brandon M.; Smith, Christa B.; Sharma, Shalabh

    Analysis of metatranscriptomic and metagenomic datasets from the lower reaches of the Amazon River between Obidos and the river mouth revealed microbial transcript and gene pools dominated by Actinobacteria, Thaumarchaeota, Bacteroidetes, Acidobacteria, Betaproteobacteria, and Planctomycetes. Three mainstem stations spanning a 625 km reach had similar gene expression patterns (transcripts gene copy-1) across a diverse suite of element cycling genes, but two tributary-influenced stations at the mouth of the Tapajos River and near the Tocantins River at Belem had distinct transcriptome composition and expression ratios, particularly for genes encoding light-related energy capture (higher) and iron acquisition and ammonia oxidation (lower). Environmentalmore » parameters that were useful predictors of gene expression ratios included concentrations of lignin phenols, suspended sediments, nitrate, phosphate, and particulate organic carbon and nitrogen. Similar to the gene expression data, these chemical properties reflected highly homogeneous mainstem stations punctuated by distinct tributary- influenced stations at Tapajos and Belem. Although heterotrophic processes were expected to dominate in the lower Amazon, transcripts from photosynthetic bacteria were abundant in tributary-influenced regions, and transcripts from Thaumarcheota taxa genetically capable of chemosynthetic ammonia oxidation accounted for up to 21% of the transcriptome at others. Based on regressions of transcript numbers against gene numbers, expression ratios of Thaumarchaeota populations were largely unchanged within the mainstem, suggesting a relatively minor role for gene regulation. These quantitative gene and transcript inventories detail a diverse array of energy acquisition strategies and metabolic capabilities for bacteria and archaea populations of the world’s largest river system.« less

  2. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production.

    PubMed

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain

    2010-11-24

    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  3. Distinctive pattern of expression of spermatogenic molecular markers in testes of azoospermic men with non-mosaic Klinefelter syndrome.

    PubMed

    Kleiman, Sandra E; Yogev, Leah; Lehavi, Ofer; Yavetz, Haim; Hauser, Ron

    2016-06-01

    Mature sperm cells can be found in testicular specimens extracted from azoospermic men with non-mosaic Klinefelter syndrome (KS). The present study evaluates the expression of various known molecular markers of spermatogenesis in a population of men with KS and assesses the ability of those markers to predict spermatogenesis. Two groups of men with non-obstructive azoospermia who underwent testicular sperm-retrieval procedures were included in the study: 31 had non-mosaic KS (KS group) and 91 had normal karyotype (NK group). Each group was subdivided into mixed atrophy (containing some mature sperm cells) or Sertoli cell only syndrome according to testicular histology and cytology observations. Semi-quantitative histological morphometric analysis (interstitial hyperplasia and hyalinization, tubules with cells and abnormal thickness of the basement membrane) and expression of spermatogenetic markers (DAZ, RBM, BOLL, and CDY1) were evaluated and compared among those subgroups. Clear differences in the histological morphometry and spermatogenetic marker expression were noted between the KS and NK groups. There was a significant difference in the expression of spermatogenetic markers between the subgroups of the NK group (as expected), while no difference could be discerned between the two subgroups in the KS group. We conclude that molecular spermatogenetic markers have a pattern of expression in men with KS that is distinctively different from that of men with NK, and that it precludes and limits their use for predicting spermatogenesis in the former. It is suggested that this difference might be due to the specific highly abnormal histological morphometric parameters in KS specimens.

  4. Dissociating maternal responses to sad and happy facial expressions of their own child: An fMRI study

    PubMed Central

    Hindi Attar, Catherine; Stein, Jenny; Poppinga, Sina; Fydrich, Thomas; Jaite, Charlotte; Kappel, Viola; Brunner, Romuald; Herpertz, Sabine C.; Boedeker, Katja; Bermpohl, Felix

    2017-01-01

    Background Maternal sensitive behavior depends on recognizing one’s own child’s affective states. The present study investigated distinct and overlapping neural responses of mothers to sad and happy facial expressions of their own child (in comparison to facial expressions of an unfamiliar child). Methods We used functional MRI to measure dissociable and overlapping activation patterns in 27 healthy mothers in response to happy, neutral and sad facial expressions of their own school-aged child and a gender- and age-matched unfamiliar child. To investigate differential activation to sad compared to happy faces of one’s own child, we used interaction contrasts. During the scan, mothers had to indicate the affect of the presented face. After scanning, they were asked to rate the perceived emotional arousal and valence levels for each face using a 7-point Likert-scale (adapted SAM version). Results While viewing their own child’s sad faces, mothers showed activation in the amygdala and anterior cingulate cortex whereas happy facial expressions of the own child elicited activation in the hippocampus. Conjoint activation in response to one’s own child happy and sad expressions was found in the insula and the superior temporal gyrus. Conclusions Maternal brain activations differed depending on the child’s affective state. Sad faces of the own child activated areas commonly associated with a threat detection network, whereas happy faces activated reward related brain areas. Overlapping activation was found in empathy related networks. These distinct neural activation patterns might facilitate sensitive maternal behavior. PMID:28806742

  5. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  6. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias

    PubMed Central

    Calin, George Adrian; Liu, Chang-Gong; Sevignani, Cinzia; Ferracin, Manuela; Felli, Nadia; Dumitru, Calin Dan; Shimizu, Masayoshi; Cimmino, Amelia; Zupo, Simona; Dono, Mariella; Dell'Aquila, Marie L.; Alder, Hansjuerg; Rassenti, Laura; Kipps, Thomas J.; Bullrich, Florencia; Negrini, Massimo; Croce, Carlo M.

    2004-01-01

    Little is known about the expression levels or function of micro-RNAs (miRNAs) in normal and neoplastic cells, although it is becoming clear that miRNAs play important roles in the regulation of gene expression during development [Ambros, V. (2003) Cell 113, 673–676; McManus, M. T. (2003) Semin. Cancer Biol. 13, 253–258]. We now report the genomewide expression profiling of miRNAs in human B cell chronic lymphocytic leukemia (CLL) by using a microarray containing hundreds of human precursor and mature miRNA oligonucleotide probes. This approach allowed us to identify significant differences in miRNome expression between CLL samples and normal CD5+ B cells; data were confirmed by Northern blot analyses and real-time RT-PCR. At least two distinct clusters of CLL samples can be identified that were associated with the presence or absence of Zap-70 expression, a predictor of early disease progression. Two miRNA signatures were associated with the presence or absence of mutations in the expressed Ig variableregion genes or with deletions at 13q14, respectively. These data suggest that miRNA expression patterns have relevance to the biological and clinical behavior of this leukemia. PMID:15284443

  7. Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes

    PubMed Central

    Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E

    2011-01-01

    Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex- chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences. PMID:14583743

  8. Three-Dimensional Constraints on Human Cognition as Expressed in Human Language

    ERIC Educational Resources Information Center

    Adam, Christopher C.

    2015-01-01

    Those advocating the existence of a distinct language instinct generally claim that human language is not reliant on general human cognition. However, limitations on recursive patterns in human language are universally attested, from the micro-level elements of phonology, throughout the mid-level elements of morphology and syntax, and up to the…

  9. Genome-Wide Methylome Analyses Reveal Novel Epigenetic Regulation Patterns in Schizophrenia and Bipolar Disorder

    PubMed Central

    Li, Yongsheng; Camarillo, Cynthia; Xu, Juan; Arana, Tania Bedard; Xiao, Yun; Zhao, Zheng; Chen, Hong; Ramirez, Mercedes; Zavala, Juan; Escamilla, Michael A.; Armas, Regina; Mendoza, Ricardo; Ontiveros, Alfonso; Nicolini, Humberto; Jerez Magaña, Alvaro Antonio; Rubin, Lewis P.; Li, Xia; Xu, Chun

    2015-01-01

    Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3′-UTRs and 5′-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3′-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders. PMID:25734057

  10. Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation

    PubMed Central

    Xu, Yiliang; Sun, Yuhui; Ye, Haihong; Zhu, Li; Liu, Jianghong; Wu, Xiaofeng; Wang, Le; He, Tingting; Shen, Yan; Wu, Jane Y; Xu, Qi

    2015-01-01

    Genetic variations in the human dysbindin-1 gene (DTNBP1) have been associated with schizophrenia. As a result of alternative splicing, the human DTNBP1 gene generates at least three distinct protein isoforms, dysbindin-1A, -1B and -1C. Significant effort has focused on dysbindin-1A, an important player in multiple steps of neurodevelopment. However, the other isoforms, dysbindin-1B and dysbindin-1C have not been well characterized. Nor have been associated with human diseases. Here we report an increase in expression of DTNBP1b mRNA in patients with paranoid schizophrenia as compared with healthy controls. A single-nucleotide polymorphism located in intron 9, rs117610176, has been identified and associated with paranoid schizophrenia, and its C allele leads to an increase of DTNBP1b mRNA splicing. Our data show that different dysbindin splicing isoforms exhibit distinct subcellular distribution, suggesting their distinct functional activities. Dysbindin-1B forms aggresomes at the perinuclear region, whereas dysbindin-1A and -1C proteins exhibit diffused patterns in the cytoplasm. Dysbindin-1A interacts with dysbindin-1B, getting recruited to the aggresome structure when co-expressed with dysbindin-1B. Moreover, cortical neurons over-expressing dysbindin-1B show reduction in neurite outgrowth, suggesting that dysbindin-1B may interfere with dysbindin-1A function in a dominant-negative manner. Taken together, our study uncovers a previously unknown association of DTNBP1b expression with schizophrenia in addition to its distinct biochemical and functional properties. PMID:27462430

  11. Unique Transcriptome Patterns of the White and Grey Matter Corroborate Structural and Functional Heterogeneity in the Human Frontal Lobe

    PubMed Central

    Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael

    2013-01-01

    The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939

  12. Comparative proteomic analysis of Cronobacter sakazakii isolates with different virulences.

    PubMed

    Du, Xin-jun; Han, Ran; Li, Ping; Wang, Shuo

    2015-10-14

    Cronobacter is a genus of widespread, opportunistic, foodborne pathogens that can result in serious illnesses in at-risk infants because of their immature immunity and high dependence on powdered formula, which is one of the foods most often contaminated by this pathogen. However, limited information is available regarding the pathogenesis and the specific virulence factors of this species. In this study, the virulences of 42 Cronobacter sakazakii isolates were analyzed by infecting neonatal SD rats. A comparison of the typing patterns of the isolates enabled groups with close relationships but that exhibited distinct pathogenesis to be identified. Among these groups, 2 strains belonging to the same group but showing distinct virulences were selected, and 2-DE was applied to identify differentially expressed proteins, focusing on virulence-related proteins. A total of 111 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), and 89 were successfully identified. Further analysis suggested that at least 11 of these proteins may be involved in the pathogenesis of this pathogen. Real-time PCR was carried out to further confirm the differential expression pattern of the genes, and the results indicated that the mRNA expression levels were consistent with the protein expression levels. The virulence factors and pathogenesis of Cronobacter are largely unknown. In combination with animal toxicological experiments and subtyping results of C. sakazakii, comparative proteomics analysis was performed to comprehensively evaluate the differentially expressed proteins of two isolates that exhibited distinct virulence but were closely related. These procedures made it possible to identify the virulence-related of factors of Cronobacter. Among the 89 total identified proteins, at least 11 show virulence-related potential. This work provides comprehensive candidates for the further investigation of the pathogenesis of Cronobacter. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head.

    PubMed

    Adachi, Noritaka; Takechi, Masaki; Hirai, Tamami; Kuratani, Shigeru

    2012-01-01

    The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes. © 2012 Wiley Periodicals, Inc.

  14. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    PubMed

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Differential Expression of Secretory Aspartyl Proteinase Genes (SAP1-10) in Oral Candida albicans Isolates with Distinct Karyotypes

    PubMed Central

    Tavanti, Arianna; Pardini, Giacomo; Campa, Daniele; Davini, Paola; Lupetti, Antonella; Senesi, Sonia

    2004-01-01

    Two karyotypes of oral Candida albicans isolates, named b and c, constituted >80% of a collection from healthy carriers (22 b and 16 c isolates) and oral candidiasis patients who were either infected (31 b and 16 c isolates) or uninfected (13 b and 38 c isolates) with human immunodeficiency virus (HIV). The prevalence of the b and c karyotypes within HIV-positive and HIV-negative patients, respectively, who were suffering from oral candidiasis (P ≤ 0.0001) suggested that these two types possessed different virulence potentials. Since C. albicans proteinases (Saps) are virulence factors in oral candidiasis, we evaluated whether the b and c karyotypes secreted different levels of Saps and expressed different patterns of Sap-encoding genes (SAP1-10). We found that the mean value of Sap activity was significantly lower (P = 0.003) in the commensal type than in the infectious b karyotype, whereas Sap activity in the commensal c type was as high as that registered for the infectious c strains. Marked differences in SAP mRNA expression were observed in commensal strains under non-Sap-inducing conditions, with all SAP genes being expressed only by strains with the c karyotype; interestingly, none of the commensal b strains expressed SAP2. In addition, while all of the SAP1-10 genes were detectable under Sap-inducing conditions, the timing of their expression during growth differed significantly, with mRNAs of SAP1-10 genes detected at 8 and 24 h postinoculation in c and b commensal strains, respectively. This provides the first evidence that commensal oral C. albicans isolates with distinct karyotypes are characterized by different patterns of SAP1-10 gene expression and different levels of Sap secretion. PMID:15472333

  16. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm.

    PubMed

    Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro

    2014-08-01

    The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.

  17. PIM-1 kinase expression in adipocytic neoplasms: diagnostic and biological implications

    PubMed Central

    Nga, Min En; Swe, Nu Nu Ma; Chen, Kang Ting; Shen, Liang; Lilly, Michael B; Chan, Siew Pang; Salto-Tellez, Manuel; Das, Kakoli

    2010-01-01

    The differential diagnosis of soft tissue tumours poses a considerable challenge for pathologists, especially adipocytic tumours, as these may show considerable overlap in clinical presentation and morphological features with many other mesenchymal neoplasms. Hence, a specific and reliable marker that identifies adipocytic differentiation is much sought. We investigated the immunohistochemical expression of PIM-1 kinase in 35 samples of soft tissue tumours using tissue microarray technology and 49 full sections of adipocytic (n = 26) and non-adipocytic tumours (n = 23). Benign and malignant adipocytic tumours showed strong expression of PIM-1 while the non-adipocytic tumours were either negative or showed only weak staining for the protein. In myxoid liposarcomas, PIM-1 showed a distinct, unique vacuolar staining pattern, clearly outlining fine cytoplasmic lipid vacuoles. By contrast, non-adipocytic myxoid tumours (myxoma, chordoma and myxoid chondrosarcoma) did not show this vacuolar pattern of PIM-1 staining, although vacuolated cells were present on H&E. This differential expression was confirmed at a gene expression level in selected cases. Our results indicate that the expression of PIM-1 in adipose tissue may be a useful marker of adipocytic differentiation, in particular if the staining is both of high intensity and present in a unique, vacuolar pattern. PMID:19878356

  18. Segmentation gene expression patterns in Bactrocera dorsalis and related insects: regulation and shape of blastoderm and larval cuticle.

    PubMed

    Suksuwan, Worramin; Cai, Xiaoli; Ngernsiri, Lertluk; Baumgartner, Stefan

    2017-01-01

    The oriental fruit fly, Bactrocera dorsalis, is regarded as a severe pest of fruit production in Asia. Despite its economic importance, only limited information regarding the molecular and developmental biology of this insect is known to date. We provide a detailed analysis of B. dorsalis embryology, as well as the expression patterns of a number of segmentation genes known to act during patterning of Drosophila and compare these to the patterns of other insect families. An anterior shift of the expression of gap genes was detected when compared to Drosophila. This shift was largely restored during the step where the gap genes control expression of the pair-rule genes. We analyzed and compared the shapes of the embryos of insects of different families, B. dorsalis and the blow fly Lucilia sericata with that of the well-characterized Drosophila melanogaster. We found distinct shapes as well as differences in the ratios of the length of the anterior-posterior axis and the dorsal-ventral axis. These features were integrated into a profile of how the expression patterns of the gap gene Krüppel and the pair-rule gene even-skipped were observed along the A-P axis in three insects families. Since significant differences were observed, we discuss how Krüppel controls the even-skipped stripes. Furthermore, we discuss how the position and angles of the segmentation gene stripes differed from other insects. Finally, we analyzed the outcome of the expression patterns of the late acting segment polarity genes in relation to the anlagen of the naked-cuticle and denticle belt area of the B. dorsalis larva.

  19. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.

  20. Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage.

    PubMed

    Russell, Scott D; Gou, Xiaoping; Wong, Chui E; Wang, Xinkun; Yuan, Tong; Wei, Xiaoping; Bhalla, Prem L; Singh, Mohan B

    2012-08-01

    Genomic assay of sperm cell RNA provides insight into functional control, modes of regulation, and contributions of male gametes to double fertilization. Sperm cells of rice (Oryza sativa) were isolated from field-grown, disease-free plants and RNA was processed for use with the full-genome Affymetrix microarray. Comparison with Gene Expression Omnibus (GEO) reference arrays confirmed expressionally distinct gene profiles. A total of 10,732 distinct gene sequences were detected in sperm cells, of which 1668 were not expressed in pollen or seedlings. Pathways enriched in male germ cells included ubiquitin-mediated pathways, pathways involved in chromatin modeling including histones, histone modification and nonhistone epigenetic modification, and pathways related to RNAi and gene silencing. Genome-wide expression patterns in angiosperm sperm cells indicate common and divergent themes in the male germline that appear to be largely self-regulating through highly up-regulated chromatin modification pathways. A core of highly conserved genes appear common to all sperm cells, but evidence is still emerging that another class of genes have diverged in expression between monocots and dicots since their divergence. Sperm cell transcripts present at fusion may be transmitted through plasmogamy during double fertilization to effect immediate post-fertilization expression of early embryo and (or) endosperm development. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  1. Analysis of NUAK1 and NUAK2 expression during early chick development reveals specific patterns in the developing head.

    PubMed

    Bekri, Abdelhamid; Billaud, Marc; Thélu, Jacques

    2014-01-01

    Several human diseases are associated with the NUAK1 and NUAK2 genes. These genes encode kinases, members of the AMPK-related kinases (ARK) gene family. Both NUAK1 and NUAK2 are known targets of the serine threonine kinase LKB1, a tumor suppressor involved in regulating cell polarity. While much is known about their functions in disease, their expression pattern in normal development has not been extensively studied. Here, we present the expression patterns for NUAK1 and NUAK2 in the chick during early-stage embryogenesis, until day 3 (Hamburger and Hamilton stage HH20). Several embryonic structures, in particular the nascent head, showed distinct expression levels. NUAK1 expression was first detected at stage HH6 in the rostral neural folds. It was then expressed (HH7-11) throughout the encephalalon, predominantly in the telencephalon and mesencephalon. NUAK1 expression was also detected in the splanchnic endoderm area at HH8-10, and in the vitellin vein derived from this area, but not in the heart. NUAK2 expression was first detected at stage HH6 in the neural folds. It was then found throughout the encephalon at stage HH20. Particular attention was paid in this study to the dorsal ectoderm at stages HH7 and HH8, where a local deficit or accumulation of NUAK2 mRNA were found to correlate with the direction of curvature of the neural plate. This is the first description of NUAK1 and NUAK2 expression patterns in the chick during early development; it reveals non-identical expression profiles for both genes in neural development.

  2. Cognitive specialization for learning faces is associated with shifts in the brain transcriptome of a social wasp.

    PubMed

    Berens, Ali J; Tibbetts, Elizabeth A; Toth, Amy L

    2017-06-15

    The specialized ability to learn and recall individuals based on distinct facial features is known in only a few, large-brained social taxa. Social paper wasps in the genus Polistes are the only insects known to possess this form of cognitive specialization. We analyzed genome-wide brain gene expression during facial and pattern training for two species of paper wasps ( P. fuscatus , which has face recognition, and P. metricus , which does not) using RNA sequencing. We identified 237 transcripts associated with face specialization in P. fuscatus , including some transcripts involved in neuronal signaling (serotonin receptor and tachykinin). Polistes metricus that learned faces (without specialized learning) and P. fuscatus in social interactions with familiar partners (from a previous study) showed distinct sets of brain differentially expressed transcripts. These data suggest face specialization in P. fuscatus is related to shifts in the brain transcriptome associated with genes distinct from those related to general visual learning and social interactions. © 2017. Published by The Company of Biologists Ltd.

  3. Geometric Morphometrics on Gene Expression Patterns Within Phenotypes: A Case Example on Limb Development

    PubMed Central

    Martínez-Abadías, Neus; Mateu, Roger; Niksic, Martina; Russo, Lucia; Sharpe, James

    2016-01-01

    How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype–phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common developmental pattern to generate a wide diversity of morphologies, as in the vertebrate limb. PMID:26377442

  4. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats.

    PubMed

    Tang, Qianzi; Huang, Wenyao; Guan, Jiuqiang; Jin, Long; Che, Tiandong; Fu, Yuhua; Hu, Yaodong; Tian, Shilin; Wang, Dawei; Jiang, Zhi; Li, Xuewei; Li, Mingzhou

    2015-08-10

    Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    PubMed

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  6. Distinct expression patterns for type II topoisomerases IIA and IIB in the early foetal human telencephalon.

    PubMed

    Harkin, Lauren F; Gerrelli, Dianne; Gold Diaz, Diana C; Santos, Chloe; Alzu'bi, Ayman; Austin, Caroline A; Clowry, Gavin J

    2016-03-01

    TOP2A and TOP2B are type II topoisomerase enzymes that have important but distinct roles in DNA replication and RNA transcription. Recently, TOP2B has been implicated in the transcription of long genes in particular that play crucial roles in neural development and are susceptible to mutations contributing to neurodevelopmental conditions such as autism and schizophrenia. This study maps their expression in the early foetal human telencephalon between 9 and 12 post-conceptional weeks. TOP2A immunoreactivity was restricted to cell nuclei of the proliferative layers of the cortex and ganglionic eminences (GE), including the ventricular zone and subventricular zone (SVZ) closely matching expression of the proliferation marker KI67. Comparison with sections immunolabelled for NKX2.1, a medial GE (MGE) marker, and PAX6, a cortical progenitor cell and lateral GE (LGE) marker, revealed that TOP2A-expressing cells were more abundant in MGE than the LGE. In the cortex, TOP2B is expressed in cell nuclei in both proliferative (SVZ) and post-mitotic compartments (intermediate zone and cortical plate) as revealed by comparison with immunostaining for PAX6 and the post-mitotic neuron marker TBR1. However, co-expression with KI67 was rare. In the GE, TOP2B was also expressed by proliferative and post-mitotic compartments. In situ hybridisation studies confirmed these patterns of expression, except that TOP2A mRNA is restricted to cells in the G2/M phase of division. Thus, during early development, TOP2A is likely to have a role in cell proliferation, whereas TOP2B is expressed in post-mitotic cells and may be important in controlling expression of long genes even at this early stage. © 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  7. The neural signatures of distinct psychopathic traits

    PubMed Central

    Carré, Justin M.; Hyde, Luke W.; Neumann, Craig S.; Viding, Essi; Hariri, Ahmad R.

    2016-01-01

    Recent studies suggest that psychopathy may be associated with dysfunction in the neural circuitry supporting both threat- and reward-related processes. However, these studies have involved small samples and often focused on extreme groups. Thus, it is unclear to what extent current findings may generalize to psychopathic traits in the general population. Furthermore, no studies have systematically and simultaneously assessed associations between distinct psychopathy facets and both threat- and reward-related brain function in the same sample of participants. Here, we examined the relationship between threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity and variation in four facets of self-reported psychopathy in a sample of 200 young adults. Path models indicated that amygdala reactivity to fearful facial expressions is negatively associated with the interpersonal facet of psychopathy, whereas amygdala reactivity to angry facial expressions is positively associated with the lifestyle facet. Furthermore, these models revealed that differential VS reactivity to positive versus negative feedback is negatively associated with the lifestyle facet. There was suggestive evidence for gender-specific patterns of association between brain function and psychopathy facets. Our findings are the first to document differential associations between both threat- and reward-related neural processes and distinct facets of psychopathy and thus provide a more comprehensive picture of the pattern of neural vulnerabilities that may predispose to maladaptive outcomes associated with psychopathy. PMID:22775289

  8. The neural signatures of distinct psychopathic traits.

    PubMed

    Carré, Justin M; Hyde, Luke W; Neumann, Craig S; Viding, Essi; Hariri, Ahmad R

    2013-01-01

    Recent studies suggest that psychopathy may be associated with dysfunction in the neural circuitry supporting both threat- and reward-related processes. However, these studies have involved small samples and often focused on extreme groups. Thus, it is unclear to what extent current findings may generalize to psychopathic traits in the general population. Furthermore, no studies have systematically and simultaneously assessed associations between distinct psychopathy facets and both threat- and reward-related brain function in the same sample of participants. Here, we examined the relationship between threat-related amygdala reactivity and reward-related ventral striatum (VS) reactivity and variation in four facets of self-reported psychopathy in a sample of 200 young adults. Path models indicated that amygdala reactivity to fearful facial expressions is negatively associated with the interpersonal facet of psychopathy, whereas amygdala reactivity to angry facial expressions is positively associated with the lifestyle facet. Furthermore, these models revealed that differential VS reactivity to positive versus negative feedback is negatively associated with the lifestyle facet. There was suggestive evidence for gender-specific patterns of association between brain function and psychopathy facets. Our findings are the first to document differential associations between both threat- and reward-related neural processes and distinct facets of psychopathy and thus provide a more comprehensive picture of the pattern of neural vulnerabilities that may predispose to maladaptive outcomes associated with psychopathy.

  9. Patterning of leaf vein networks by convergent auxin transport pathways.

    PubMed

    Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico

    2013-01-01

    The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

  10. Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors

    PubMed Central

    Bruggeman, Christine W.; den Haan, Joke M. M.; Mul, Erik P. J.; van den Berg, Timo K.; van Bruggen, Robin; Kuijpers, Taco W.

    2018-01-01

    Tissue-resident macrophages in the spleen play a major role in the clearance of immunoglobulin G (IgG)–opsonized blood cells, as occurs in immune thrombocytopenia (ITP) and autoimmune hemolytic anemia (AIHA). Blood cells are phagocytosed via the Fc-γ receptors (FcγRs), but little is known about the FcγR expression on splenic red pulp macrophages in humans, with only a few previous studies that showed conflicting results. We developed a novel method to specifically isolate red pulp macrophages from 82 human spleens. Surface expression of various receptors and phagocytic capacity was analyzed by flow cytometry and immunofluorescence of tissue sections. Red pulp macrophages were distinct from splenic monocytes and blood monocyte–derived macrophages on various surface markers. Human red pulp macrophages predominantly expressed the low-affinity receptors FcγRIIa and FcγRIIIa. In contrast to blood monocyte–derived macrophages, red pulp macrophages did not express the inhibitory FcγRIIb. Red pulp macrophages expressed very low levels of the high-affinity receptor FcγRI. Messenger RNA transcript analysis confirmed this expression pattern. Unexpectedly and despite these differences in FcγR expression, phagocytosis of IgG-opsonized blood cells by red pulp macrophages was dependent on the same FcγRs as phagocytosis by blood monocyte–derived macrophages, especially in regarding the response to IV immunoglobulin. Concluding, we show the distinct nature of splenic red pulp macrophages in human subjects. Knowledge on the FcγR expression and usage of these cells is important for understanding and improving treatment strategies for autoimmune diseases such as ITP and AIHA. PMID:29692344

  11. The tailless Ortholog nhr-67 Regulates Patterning of Gene Expression and Morphogenesis in the C. elegans Vulva

    PubMed Central

    Fernandes, Jolene S; Sternberg, Paul W

    2007-01-01

    Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2), lin-11 (LIM), and egl-38 (Pax2/5/8) to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types. PMID:17465684

  12. AINTEGUMENTA homolog expression in Gnetum (gymnosperms) and implications for the evolution of ovulate axes in seed plants.

    PubMed

    Yamada, Toshihiro; Hirayama, Yumiko; Imaichi, Ryoko; Kato, Masahiro

    2008-01-01

    The expression of GpANTL1, a homolog of AINTEGUMENTA (ANT) found in the gymnosperm Gnetum parvifolium, was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana. A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.

  13. Assessing the utility of gene co-expression stability in combination with correlation in the analysis of protein-protein interaction networks

    PubMed Central

    2011-01-01

    Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally different groups of proteins and interactions. We conclude that it is a useful and important measure to be used in concert with gene co-expression correlation for further insights into the characteristics of proteins in the context of their interaction network. PMID:22369639

  14. Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.

    PubMed

    Wang, Rong; Jin, Chengmeng; Hu, Xun

    2017-06-20

    One cancer cell line is believed to be composed of numerous clones with different drug sensitivity. We sought to investigate the difference of drug-response pattern in clones from a cell line or from a single cell. We showed that 22 clones derived from 4T1 cells were drastically different from each other with respect to drug-response pattern against 11 anticancer drugs and expression profile of 19 genes associated with drug resistance or sensitivity. Similar results were obtained using daughter clones derived from a single 4T1 cell. Each daughter clone showed distinct drug-response pattern and gene expression profile. Similar results were also obtained using Bcap37 cells. We conclude that a single cancer cell can rapidly produce a population of cells with high heterogeneity of drug response and the acquisition of drug-response heterogeneity is random.

  15. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury.

    PubMed

    Guenther, Catherine A; Wang, Zhen; Li, Emma; Tran, Misha C; Logan, Catriona Y; Nusse, Roel; Pantalena-Filho, Luiz; Yang, George P; Kingsley, David M

    2015-08-01

    Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus. Analysis by two-dimensional gel electrophoresis.

    PubMed

    Horiuchi, Takayuki; Taoka, Masato; Isobe, Toshiaki; Komano, Teruya; Inouye, Sumiko

    2002-07-26

    Two genes, fruA and csgA, encoding a putative transcription factor and C-factor, respectively, are essential for fruiting body formation of Myxococcus xanthus. To investigate the role of fruA and csgA genes in developmental gene expression, developing cells as well as vegetative cells of M. xanthus wild-type, fruA::Tc, and csgA731 strains were pulse-labeled with [(35)S]methionine, and the whole cell proteins were analyzed using two-dimensional immobilized pH gradient/SDS-PAGE. Differences in protein synthesis patterns among more than 700 protein spots were detected during development of the three strains. Fourteen proteins showing distinctly different expression patterns in mutant cells were analyzed in more detail. Five of the 14 proteins were identified as elongation factor Tu (EF-Tu), Dru, DofA, FruA, and protein S by immunoblot analysis and mass spectroscopy. A gene encoding DofA was cloned and sequenced. Although both fruA and csgA genes regulate early development of M. xanthus, they were found to differently regulate expression of several developmental genes. The production of six proteins, including DofA and protein S, was dependent on fruA, whereas the production of two proteins was dependent on csgA, and one protein was dependent on both fruA and csgA. To explain the present findings, a new model was presented in which different levels of FruA phosphorylation may distinctively regulate the expression of two groups of developmental genes.

  17. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  18. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.

    PubMed

    Cui, Peng; Zhong, Tingyan; Wang, Zhuo; Wang, Tao; Zhao, Hongyu; Liu, Chenglin; Lu, Hui

    2018-06-01

    Circadian genes express periodically in an approximate 24-h period and the identification and study of these genes can provide deep understanding of the circadian control which plays significant roles in human health. Although many circadian gene identification algorithms have been developed, large numbers of false positives and low coverage are still major problems in this field. In this study we constructed a novel computational framework for circadian gene identification using deep neural networks (DNN) - a deep learning algorithm which can represent the raw form of data patterns without imposing assumptions on the expression distribution. Firstly, we transformed time-course gene expression data into categorical-state data to denote the changing trend of gene expression. Two distinct expression patterns emerged after clustering of the state data for circadian genes from our manually created learning dataset. DNN was then applied to discriminate the aperiodic genes and the two subtypes of periodic genes. In order to assess the performance of DNN, four commonly used machine learning methods including k-nearest neighbors, logistic regression, naïve Bayes, and support vector machines were used for comparison. The results show that the DNN model achieves the best balanced precision and recall. Next, we conducted large scale circadian gene detection using the trained DNN model for the remaining transcription profiles. Comparing with JTK_CYCLE and a study performed by Möller-Levet et al. (doi: https://doi.org/10.1073/pnas.1217154110), we identified 1132 novel periodic genes. Through the functional analysis of these novel circadian genes, we found that the GTPase superfamily exhibits distinct circadian expression patterns and may provide a molecular switch of circadian control of the functioning of the immune system in human blood. Our study provides novel insights into both the circadian gene identification field and the study of complex circadian-driven biological control. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  19. Linear signaling in the Toll-Dorsal pathway of Drosophila: activated Pelle kinase specifies all threshold outputs of gene expression while the bHLH protein Twist specifies a subset.

    PubMed

    Stathopoulos, Angelike; Levine, Michael

    2002-07-01

    Differential activation of the Toll receptor leads to the formation of a broad Dorsal nuclear gradient that specifies at least three patterning thresholds of gene activity along the dorsoventral axis of precellular embryos. We investigate the activities of the Pelle kinase and Twist basic helix-loop-helix (bHLH) transcription factor in transducing Toll signaling. Pelle functions downstream of Toll to release Dorsal from the Cactus inhibitor. Twist is an immediate-early gene that is activated upon entry of Dorsal into nuclei. Transgenes misexpressing Pelle and Twist were introduced into different mutant backgrounds and the patterning activities were visualized using various target genes that respond to different thresholds of Toll-Dorsal signaling. These studies suggest that an anteroposterior gradient of Pelle kinase activity is sufficient to generate all known Toll-Dorsal patterning thresholds and that Twist can function as a gradient morphogen to establish at least two distinct dorsoventral patterning thresholds. We discuss how the Dorsal gradient system can be modified during metazoan evolution and conclude that Dorsal-Twist interactions are distinct from the interplay between Bicoid and Hunchback, which pattern the anteroposterior axis.

  20. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    PubMed

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  1. Reptilian heart development and the molecular basis of cardiac chamber evolution.

    PubMed

    Koshiba-Takeuchi, Kazuko; Mori, Alessandro D; Kaynak, Bogac L; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O; Latham, Stephany; Beck, Laurel; Beck, Laural; Henkelman, R Mark; Black, Brian L; Olson, Eric N; Wade, Juli; Takeuchi, Jun K; Nemer, Mona; Gilbert, Scott F; Bruneau, Benoit G

    2009-09-03

    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution.

  2. Reptilian heart development and the molecular basis of cardiac chamber evolution

    PubMed Central

    Koshiba-Takeuchi, Kazuko; Mori, Alessandro D.; Kaynak, Bogac L.; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O.; Latham, Stephany; Beck, Laural; Henkelman, R. Mark; Black, Brian L.; Olson, Eric N.; Wade, Juli; Takeuchi, Jun K.; Nemer, Mona; Gilbert, Scott F.; Bruneau, Benoit G.

    2009-01-01

    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals, and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy1–3. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles4–7? We examined heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors8,9. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus, ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution. PMID:19727199

  3. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus).

    PubMed

    Liu, Chaoyang; Xie, Tao; Chen, Chenjie; Luan, Aiping; Long, Jianmei; Li, Chuhao; Ding, Yaqi; He, Yehua

    2017-07-01

    The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.

  4. Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model.

    PubMed

    Haga, Yutaka; Dominique, Vincent J; Du, Shao Jun

    2009-10-01

    To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.

  5. Evolution and inheritance of early embryonic patterning in D. simulans and D. sechellia

    PubMed Central

    Lott, Susan E.; Ludwig, Michael Z.; Kreitman, Martin

    2010-01-01

    Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation which selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth ‘stripe allometry’) in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species D. simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the “margin of error” for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness PMID:21121913

  6. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-linemore » RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.« less

  7. Complex interactions between cis-regulatory modules in native conformation are critical for Drosophila snail expression

    PubMed Central

    Dunipace, Leslie; Ozdemir, Anil; Stathopoulos, Angelike

    2011-01-01

    It has been shown in several organisms that multiple cis-regulatory modules (CRMs) of a gene locus can be active concurrently to support similar spatiotemporal expression. To understand the functional importance of such seemingly redundant CRMs, we examined two CRMs from the Drosophila snail gene locus, which are both active in the ventral region of pre-gastrulation embryos. By performing a deletion series in a ∼25 kb DNA rescue construct using BAC recombineering and site-directed transgenesis, we demonstrate that the two CRMs are not redundant. The distal CRM is absolutely required for viability, whereas the proximal CRM is required only under extreme conditions such as high temperature. Consistent with their distinct requirements, the CRMs support distinct expression patterns: the proximal CRM exhibits an expanded expression domain relative to endogenous snail, whereas the distal CRM exhibits almost complete overlap with snail except at the anterior-most pole. We further show that the distal CRM normally limits the increased expression domain of the proximal CRM and that the proximal CRM serves as a `damper' for the expression levels driven by the distal CRM. Thus, the two CRMs interact in cis in a non-additive fashion and these interactions may be important for fine-tuning the domains and levels of gene expression. PMID:21813571

  8. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq.

    PubMed

    Ye, Meixia; Wang, Zhong; Wang, Yaqun; Wu, Rongling

    2015-03-01

    Dynamic changes of gene expression reflect an intrinsic mechanism of how an organism responds to developmental and environmental signals. With the increasing availability of expression data across a time-space scale by RNA-seq, the classification of genes as per their biological function using RNA-seq data has become one of the most significant challenges in contemporary biology. Here we develop a clustering mixture model to discover distinct groups of genes expressed during a period of organ development. By integrating the density function of multivariate Poisson distribution, the model accommodates the discrete property of read counts characteristic of RNA-seq data. The temporal dependence of gene expression is modeled by the first-order autoregressive process. The model is implemented with the Expectation-Maximization algorithm and model selection to determine the optimal number of gene clusters and obtain the estimates of Poisson parameters that describe the pattern of time-dependent expression of genes from each cluster. The model has been demonstrated by analyzing a real data from an experiment aimed to link the pattern of gene expression to catkin development in white poplar. The usefulness of the model has been validated through computer simulation. The model provides a valuable tool for clustering RNA-seq data, facilitating our global view of expression dynamics and understanding of gene regulation mechanisms. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy

    PubMed Central

    2013-01-01

    Background Polyadenylation is a key regulatory step in eukaryotic gene expression and one of the major contributors of transcriptome diversity. Aberrant polyadenylation often associates with expression defects and leads to human diseases. Results To better understand global polyadenylation regulation, we have developed a polyadenylation sequencing (PA-seq) approach. By profiling polyadenylation events in 13 human tissues, we found that alternative cleavage and polyadenylation (APA) is prevalent in both protein-coding and noncoding genes. In addition, APA usage, similar to gene expression profiling, exhibits tissue-specific signatures and is sufficient for determining tissue origin. A 3′ untranslated region shortening index (USI) was further developed for genes with tandem APA sites. Strikingly, the results showed that different tissues exhibit distinct patterns of shortening and/or lengthening of 3′ untranslated regions, suggesting the intimate involvement of APA in establishing tissue or cell identity. Conclusions This study provides a comprehensive resource to uncover regulated polyadenylation events in human tissues and to characterize the underlying regulatory mechanism. PMID:24025092

  10. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and proteinmore » expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.« less

  11. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis.

    PubMed

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-04-11

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning.

  12. A computational neural approach to support the discovery of gene function and classes of cancer.

    PubMed

    Azuaje, F

    2001-03-01

    Advances in molecular classification of tumours may play a central role in cancer treatment. Here, a novel approach to genome expression pattern interpretation is described and applied to the recognition of B-cell malignancies as a test set. Using cDNA microarrays data generated by a previous study, a neural network model known as simplified fuzzy ARTMAP is able to identify normal and diffuse large B-cell lymphoma (DLBCL) patients. Furthermore, it discovers the distinction between patients with molecularly distinct forms of DLBCL without previous knowledge of those subtypes.

  13. Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer.

    PubMed

    Padányi, Rita; Pászty, Katalin; Hegedűs, Luca; Varga, Karolina; Papp, Béla; Penniston, John T; Enyedi, Ágnes

    2016-06-01

    Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    PubMed

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  15. Distinct Transcriptional Changes and Epithelial-stromal Interactions are Altered in Early Stage Colon Cancer Development

    PubMed Central

    Mo, Allen; Jackson, Stephen; Varma, Kamini; Carpino, Alan; Giardina, Charles; Devers, Thomas J.; Rosenberg, Daniel W.

    2016-01-01

    While the progression of mutated colonic cells is dependent upon interactions between the initiated epithelium and surrounding stroma, the nature of these interactions is poorly understood. Here the development of an ultra-sensitive laser-capture microdissection (LCM)/RNA-seq approach for studying the epithelial and stromal compartments of aberrant crypt foci (ACF) is described. ACF are the earliest identifiable pre-neoplastic lesion found within the human colon and are detected using high-definition endoscopy with contrast dye-spray. The current analysis focused on the epithelium of ACF with somatic mutations to either KRAS, BRAF, or APC, with expression patterns compared to normal mucosa from each patient. By comparing gene expression patterns between groups, an increase in a number of pro-inflammatory NF-κB target genes were identified that were specific to ACF epithelium, including TIMP1, RELA and RELB. Distinct transcriptional changes associated with each somatic mutation were observed and a subset display a BRAFV600E-mediated senescence-associated transcriptome characterized by increased expression of CDKN2A. Finally, LCM-captured ACF-associated stroma was found to be transcriptionally distinct from normal stroma, with an up-regulation of genes related to immune cell infiltration and fibroblast activation. Immunofluorescence confirmed increased CD3+ T cells within the stromal microenvironment of ACF and an abundance of activated fibroblasts. Collectively, these results provide new insight into the cellular interplay that occurs at the earliest stages of colonic neoplasia, highlighting the important role of NF-kB, activated stromal fibroblasts and lymphocyte infiltration. Implications Fibroblasts and immune cells in the stromal microenvironment play an important role during the earliest stages of colon carcinogenesis. PMID:27353028

  16. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  17. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  18. Distinct cell-specific expression of homospermidine synthase involved in pyrrolizidine alkaloid biosynthesis in three species of the boraginales.

    PubMed

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-07-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant's chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature.

  19. Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales1[C][W][OA

    PubMed Central

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-01-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491

  20. Analysis of gene expression in a developmental context emphasizes distinct biological leitmotifs in human cancers

    PubMed Central

    Naxerova, Kamila; Bult, Carol J; Peaston, Anne; Fancher, Karen; Knowles, Barbara B; Kasif, Simon; Kohane, Isaac S

    2008-01-01

    Background In recent years, the molecular underpinnings of the long-observed resemblance between neoplastic and immature tissue have begun to emerge. Genome-wide transcriptional profiling has revealed similar gene expression signatures in several tumor types and early developmental stages of their tissue of origin. However, it remains unclear whether such a relationship is a universal feature of malignancy, whether heterogeneities exist in the developmental component of different tumor types and to which degree the resemblance between cancer and development is a tissue-specific phenomenon. Results We defined a developmental landscape by summarizing the main features of ten developmental time courses and projected gene expression from a variety of human tumor types onto this landscape. This comparison demonstrates a clear imprint of developmental gene expression in a wide range of tumors and with respect to different, even non-cognate developmental backgrounds. Our analysis reveals three classes of cancers with developmentally distinct transcriptional patterns. We characterize the biological processes dominating these classes and validate the class distinction with respect to a new time series of murine embryonic lung development. Finally, we identify a set of genes that are upregulated in most cancers and we show that this signature is active in early development. Conclusion This systematic and quantitative overview of the relationship between the neoplastic and developmental transcriptome spanning dozens of tissues provides a reliable outline of global trends in cancer gene expression, reveals potentially clinically relevant differences in the gene expression of different cancer types and represents a reference framework for interpretation of smaller-scale functional studies. PMID:18611264

  1. Anterior-posterior regionalized gene expression in the Ciona notochord

    PubMed Central

    Veeman, Michael

    2014-01-01

    Background In the simple ascidian chordate Ciona the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape and behavior vary consistently along the anterior-posterior (AP) axis. Results Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. Conclusions We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. PMID:24288133

  2. Anterior-posterior regionalized gene expression in the Ciona notochord.

    PubMed

    Reeves, Wendy; Thayer, Rachel; Veeman, Michael

    2014-04-01

    In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. Copyright © 2013 Wiley Periodicals, Inc.

  3. Neural representations of emotion are organized around abstract event features.

    PubMed

    Skerry, Amy E; Saxe, Rebecca

    2015-08-03

    Research on emotion attribution has tended to focus on the perception of overt expressions of at most five or six basic emotions. However, our ability to identify others' emotional states is not limited to perception of these canonical expressions. Instead, we make fine-grained inferences about what others feel based on the situations they encounter, relying on knowledge of the eliciting conditions for different emotions. In the present research, we provide convergent behavioral and neural evidence concerning the representations underlying these concepts. First, we find that patterns of activity in mentalizing regions contain information about subtle emotional distinctions conveyed through verbal descriptions of eliciting situations. Second, we identify a space of abstract situation features that well captures the emotion discriminations subjects make behaviorally and show that this feature space outperforms competing models in capturing the similarity space of neural patterns in these regions. Together, the data suggest that our knowledge of others' emotions is abstract and high dimensional, that brain regions selective for mental state reasoning support relatively subtle distinctions between emotion concepts, and that the neural representations in these regions are not reducible to more primitive affective dimensions such as valence and arousal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Neural Representations of Emotion Are Organized around Abstract Event Features

    PubMed Central

    Skerry, Amy E.; Saxe, Rebecca

    2016-01-01

    Summary Research on emotion attribution has tended to focus on the perception of overt expressions of at most five or six basic emotions. However, our ability to identify others' emotional states is not limited to perception of these canonical expressions. Instead, we make fine-grained inferences about what others feel based on the situations they encounter, relying on knowledge of the eliciting conditions for different emotions. In the present research, we provide convergent behavioral and neural evidence concerning the representations underlying these concepts. First, we find that patterns of activity in mentalizing regions contain information about subtle emotional distinctions conveyed through verbal descriptions of eliciting situations. Second, we identify a space of abstract situation features that well captures the emotion discriminations subjects make behaviorally and show that this feature space outperforms competing models in capturing the similarity space of neural patterns in these regions. Together, the data suggest that our knowledge of others' emotions is abstract and high dimensional, that brain regions selective for mental state reasoning support relatively subtle distinctions between emotion concepts, and that the neural representations in these regions are not reducible to more primitive affective dimensions such as valence and arousal. PMID:26212878

  5. pySAPC, a python package for sparse affinity propagation clustering: Application to odontogenesis whole genome time series gene-expression data.

    PubMed

    Cao, Huojun; Amendt, Brad A

    2016-11-01

    Developmental dental anomalies are common forms of congenital defects. The molecular mechanisms of dental anomalies are poorly understood. Systematic approaches such as clustering genes based on similar expression patterns could identify novel genes involved in dental anomalies and provide a framework for understanding molecular regulatory mechanisms of these genes during tooth development (odontogenesis). A python package (pySAPC) of sparse affinity propagation clustering algorithm for large datasets was developed. Whole genome pair-wise similarity was calculated based on expression pattern similarity based on 45 microarrays of several stages during odontogenesis. pySAPC identified 743 gene clusters based on expression pattern similarity during mouse tooth development. Three clusters are significantly enriched for genes associated with dental anomalies (with FDR <0.1). The three clusters of genes have distinct expression patterns during odontogenesis. Clustering genes based on similar expression profiles recovered several known regulatory relationships for genes involved in odontogenesis, as well as many novel genes that may be involved with the same genetic pathways as genes that have already been shown to contribute to dental defects. By using sparse similarity matrix, pySAPC use much less memory and CPU time compared with the original affinity propagation program that uses a full similarity matrix. This python package will be useful for many applications where dataset(s) are too large to use full similarity matrix. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016. Published by Elsevier B.V.

  6. Cognitive, cultural, and linguistic sources of a handshape distinction expressing agentivity.

    PubMed

    Brentari, Diane; Di Renzo, Alessio; Keane, Jonathan; Volterra, Virginia

    2015-01-01

    In this paper the cognitive, cultural, and linguistic bases for a pattern of conventionalization of two types of iconic handshapes are described. Work on sign languages has shown that handling handshapes (H-HSs: those that represent how objects are handled or manipulated) and object handshapes (O-HSs: those that represent the class, size, or shape of objects) express an agentive/non-agentive semantic distinction in many sign languages. H-HSs are used in agentive event descriptions and O-HSs are used in non-agentive event descriptions. In this work, American Sign Language (ASL) and Italian Sign Language (LIS) productions are compared (adults and children) as well as the corresponding groups of gesturers in each country using "silent gesture." While the gesture groups, in general, did not employ an H-HS/O-HS distinction, all participants (signers and gesturers) used iconic handshapes (H-HSs and O-HSs together) more often in agentive than in no-agent event descriptions; moreover, none of the subjects produced an opposite pattern than the expected one (i.e., H-HSs associated with no-agent descriptions and O-HSs associated with agentive ones). These effects are argued to be grounded in cognition. In addition, some individual gesturers were observed to produce the H-HS/O-HS opposition for agentive and non-agentive event descriptions-that is, more Italian than American adult gesturers. This effect is argued to be grounded in culture. Finally, the agentive/non-agentive handshape opposition is confirmed for signers of ASL and LIS, but previously unreported cross-linguistic differences were also found across both adult and child sign groups. It is, therefore, concluded that cognitive, cultural, and linguistic factors contribute to the conventionalization of this distinction of handshape type. Copyright © 2014 Cognitive Science Society, Inc.

  7. Differentiation and activation of equine monocyte-derived dendritic cells are not correlated with CD206 or CD83 expression

    PubMed Central

    Moyo, Nathifa A; Marchi, Emanuele; Steinbach, Falko

    2013-01-01

    Dendritic cells (DC) are the main immune mediators inducing primary immune responses. DC generated from monocytes (MoDC) are a model system to study the biology of DC in vitro, as they represent inflammatory DC in vivo. Previous studies on the generation of MoDC in horses indicated that there was no distinct difference between immature and mature DC and that the expression profile was distinctly different from humans, where CD206 is expressed on immature MoDC whereas CD83 is expressed on mature MoDC. Here we describe the kinetics of equine MoDC differentiation and activation, analysing both phenotypic and functional characteristics. Blood monocytes were first differentiated with equine granulocyte–macrophage colony-stimulating factor and interleukin-4 generating immature DC (iMoDC). These cells were further activated with a cocktail of cytokines including interferon-γ) but not CD40 ligand to obtain mature DC (mMoDC). To determine the expression of a broad range of markers for which no monoclonal antibodies were available to analyse the protein expression, microarray and quantitative PCR analysis were performed to carry out gene expression analysis. This study demonstrates that equine iMoDC and mMoDC can be distinguished both phenotypically and functionally but the expression pattern of some markers including CD206 and CD83 is dissimilar to the human system. PMID:23461413

  8. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions.

    PubMed

    Poynton, Helen C; Lazorchak, James M; Impellitteri, Christopher A; Smith, Mark E; Rogers, Kim; Patra, Manomita; Hammer, Katherine A; Allen, H Joel; Vulpe, Chris D

    2011-01-15

    Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment, and chemotherapy providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolution to Zn(2+), but the relative contribution of Zn(2+) to ZnO NP bioavailability and toxicity is not clear. We show that a fraction of the ZnO NPs in suspension dissolves, and this fraction cannot account for the toxicity of the ZnO NP suspensions to Daphnia magna. Gene expression profiling of D. magna exposed to ZnO NPs or ZnSO(4) at sublethal concentrations revealed distinct modes of toxicity. There was also little overlap in gene expression between ZnO NPs and SiO(x) NPs, suggesting specificity for the ZnO NP expression profile. ZnO NPs effected expression of genes involved in cytoskeletal transport, cellular respiration, and reproduction. A specific pattern of differential expression of three biomarker genes including a multicystatin, ferritin, and C1q containing gene were confirmed for ZnO NP exposure and provide a suite of biomarkers for identifying environmental exposure to ZnO NPs and differentiating between NP and ionic exposure.

  9. Diagnostic utility and limitations of glutamine synthetase and serum amyloid-associated protein immunohistochemistry in the distinction of focal nodular hyperplasia and inflammatory hepatocellular adenoma.

    PubMed

    Joseph, Nancy M; Ferrell, Linda D; Jain, Dhanpat; Torbenson, Michael S; Wu, Tsung-Teh; Yeh, Matthew M; Kakar, Sanjay

    2014-01-01

    Inflammatory hepatocellular adenoma can show overlapping histological features with focal nodular hyperplasia, including inflammation, fibrous stroma, and ductular reaction. Expression of serum amyloid-associated protein in inflammatory hepatocellular adenoma and map-like pattern of glutamine synthetase in focal nodular hyperplasia can be helpful in this distinction, but the pitfalls and limitations of these markers have not been established. Morphology and immunohistochemistry were analyzed in 54 inflammatory hepatocellular adenomas, 40 focal nodular hyperplasia, and 3 indeterminate lesions. Morphological analysis demonstrated that nodularity, fibrous stroma, dystrophic blood vessels, and ductular reaction were more common in focal nodular hyperplasia, while telangiectasia, hemorrhage, and steatosis were more common in inflammatory hepatocellular adenoma, but there was frequent overlap of morphological features. The majority of inflammatory hepatocellular adenomas demonstrated perivascular and/or patchy glutamine synthetase staining (73.6%), while the remaining cases had diffuse (7.5%), negative (3.8%), or patchy pattern of staining (15%) that showed subtle differences from the classic map-like staining pattern and was designated as pseudo map-like staining. Positive staining for serum amyloid-associated protein was seen in the majority of inflammatory hepatocellular adenomas (92.6%) and in the minority of focal nodular hyperplasia (17.5%). The glutamine synthetase staining pattern was map-like in 90% of focal nodular hyperplasia cases, with the remaining 10% of cases showing pseudo map-like staining. Three cases were labeled as indeterminate and showed focal nodular hyperplasia-like morphology but lacked map-like glutamine synthetase staining pattern; these cases demonstrated a patchy pseudo map-like glutamine synthetase pattern along with the expression of serum amyloid-associated protein. Our results highlight the diagnostic errors that can be caused by variant patterns of staining with glutamine synthetase and serum amyloid-associated protein in inflammatory hepatocellular adenoma and focal nodular hyperplasia.

  10. Regional differences in BMP-dependence of dorsoventral patterning in the leech Helobdella.

    PubMed

    Kuo, Dian-Han; Shankland, Marty; Weisblat, David A

    2012-08-01

    In the leech Helobdella, the ectoderm exhibits a high degree of morphological homonomy between body segments, but pattern elements in lateral ectoderm arise via distinct cell lineages in the segments of the rostral and midbody regions. In each of the four rostral segments, a complete set of ventrolateral (O fate) and dorsolateral (P fate) ectodermal pattern elements arises from a single founder cell, op. In the 28 midbody and caudal segments, however, there are two initially indeterminate o/p founder cells; the more dorsal of these is induced to adopt the P fate by BMP5-8 emanating from the dorsalmost ectoderm, while the more ventral cell assumes the O fate. Previous work has suggested that the dorsoventral patterning of O and P fates differs in the rostral region, but the role of BMP signaling in those segments has not been investigated. We show here that suppression of dorsal BMP5-8 signaling (which effects a P-to-O fate change in the midbody) has no effect on the patterning of O and P fates in the rostral region. Furthermore, ectopic expression of BMP5-8 in the ventral ectoderm (which induces an O-to-P fate change in the midbody) has no effect in the rostral region. Finally, expression of a dominant-negative BMP receptor (which induces a P-to-O fate change in the midbody) fails to affect O/P patterning in the rostral region. Thus, the rostral segments appear to use some mechanism other than BMP signaling to pattern O and P cell fates along the dorsoventral axis. From a mechanistic standpoint, the OP lineage of the rostral segments and the O-P equivalence group of the midbody and caudal segments constitute distinct developmental modules that rely to differing degrees on positional cues from surrounding ectoderm in order to specify homonomous cell fates. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Differential expression of members of the annexin multigene family in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Sessions, A.; Eastburn, D. J.; Roux, S. J.

    2001-01-01

    Although in most plant species no more than two annexin genes have been reported to date, seven annexin homologs have been identified in Arabidopsis, Annexin Arabidopsis 1-7 (AnnAt1--AnnAt7). This establishes that annexins can be a diverse, multigene protein family in a single plant species. Here we compare and analyze these seven annexin gene sequences and present the in situ RNA localization patterns of two of these genes, AnnAt1 and AnnAt2, during different stages of Arabidopsis development. Sequence analysis of AnnAt1--AnnAt7 reveals that they contain the characteristic four structural repeats including the more highly conserved 17-amino acid endonexin fold region found in vertebrate annexins. Alignment comparisons show that there are differences within the repeat regions that may have functional importance. To assess the relative level of expression in various tissues, reverse transcription-PCR was carried out using gene-specific primers for each of the Arabidopsis annexin genes. In addition, northern blot analysis using gene-specific probes indicates differences in AnnAt1 and AnnAt2 expression levels in different tissues. AnnAt1 is expressed in all tissues examined and is most abundant in stems, whereas AnnAt2 is expressed mainly in root tissue and to a lesser extent in stems and flowers. In situ RNA localization demonstrates that these two annexin genes display developmentally regulated tissue-specific and cell-specific expression patterns. These patterns are both distinct and overlapping. The developmental expression patterns for both annexins provide further support for the hypothesis that annexins are involved in the Golgi-mediated secretion of polysaccharides.

  12. Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes.

    PubMed

    Lomsadze, Alexandre; Gemayel, Karl; Tang, Shiyuyun; Borodovsky, Mark

    2018-05-17

    In a conventional view of the prokaryotic genome organization, promoters precede operons and ribosome binding sites (RBSs) with Shine-Dalgarno consensus precede genes. However, recent experimental research suggesting a more diverse view motivated us to develop an algorithm with improved gene-finding accuracy. We describe GeneMarkS-2, an ab initio algorithm that uses a model derived by self-training for finding species-specific (native) genes, along with an array of precomputed "heuristic" models designed to identify harder-to-detect genes (likely horizontally transferred). Importantly, we designed GeneMarkS-2 to identify several types of distinct sequence patterns (signals) involved in gene expression control, among them the patterns characteristic for leaderless transcription as well as noncanonical RBS patterns. To assess the accuracy of GeneMarkS-2, we used genes validated by COG (Clusters of Orthologous Groups) annotation, proteomics experiments, and N-terminal protein sequencing. We observed that GeneMarkS-2 performed better on average in all accuracy measures when compared with the current state-of-the-art gene prediction tools. Furthermore, the screening of ∼5000 representative prokaryotic genomes made by GeneMarkS-2 predicted frequent leaderless transcription in both archaea and bacteria. We also observed that the RBS sites in some species with leadered transcription did not necessarily exhibit the Shine-Dalgarno consensus. The modeling of different types of sequence motifs regulating gene expression prompted a division of prokaryotic genomes into five categories with distinct sequence patterns around the gene starts. © 2018 Lomsadze et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Intrapopulation variation in stature and body proportions: social status and sex differences in an Italian medieval population (Trino Vercellese, VC).

    PubMed

    Vercellotti, Giuseppe; Stout, Sam D; Boano, Rosa; Sciulli, Paul W

    2011-06-01

    The phenotypic expression of adult body size and shape results from synergistic interactions between hereditary factors and environmental conditions experienced during growth. Variation in body size and shape occurs even in genetically relatively homogeneous groups, due to different occurrence, duration, and timing of growth insults. Understanding the causes and patterns of intrapopulation variation can foster meaningful information on early life conditions in living and past populations. This study assesses the pattern of biological variation in body size and shape attributable to sex and social status in a medieval Italian population. The sample includes 52 (20 female, 32 male) adult individuals from the medieval population of Trino Vercellese, Italy. Differences in element size and overall body size (skeletal height and body mass) were assessed through Monte Carlo methods, while univariate non-parametric tests and Principal Component Analysis (PCA) were employed to examine segmental and overall body proportions. Discriminant Analysis was employed to determine the predictive value of individual skeletal elements for social status in the population. Our results highlight a distinct pattern in body size and shape variation in relation to status and sex. Male subsamples exhibit significant postcranial variation in body size, while female subsamples express smaller, nonsignificant differences. The analysis of segmental proportions highlighted differences in trunk/lower limb proportions between different status samples, and PCA indicated that in terms of purely morphological variation high status males were distinct from all other groups. The pattern observed likely resulted from a combination of biological factors and cultural practices. Copyright © 2011 Wiley-Liss, Inc.

  14. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women

    PubMed Central

    Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L.; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J.; Ribeiro, Enilze M.; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R.

    2016-01-01

    Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature. PMID:27813494

  15. Identification of new TSGA10 transcript variants in human testis with conserved regulatory RNA elements in 5'untranslated region and distinct expression in breast cancer.

    PubMed

    Salehipour, Pouya; Nematzadeh, Mahsa; Mobasheri, Maryam Beigom; Afsharpad, Mandana; Mansouri, Kamran; Modarressi, Mohammad Hossein

    2017-09-01

    Testis specific gene antigen 10 (TSGA10) is a cancer testis antigen involved in the process of spermatogenesis. TSGA10 could also play an important role in the inhibition of angiogenesis by preventing nuclear localization of HIF-1α. Although it has been shown that TSGA10 messenger RNA (mRNA) is mainly expressed in testis and some tumors, the transcription pattern and regulatory mechanisms of this gene remain largely unknown. Here, we report that human TSGA10 comprises at least 22 exons and generates four different transcript variants. It was identified that using two distinct promoters and splicing of exons 4 and 7 produced these transcript variants, which have the same coding sequence, but the sequence of 5'untanslated region (5'UTR) is different between them. This is significant because conserved regulatory RNA elements like upstream open reading frame (uORF) and putative internal ribosome entry site (IRES) were found in this region which have different combinations in each transcript variant and it may influence translational efficiency of them in normal or unusual environmental conditions like hypoxia. To indicate the transcription pattern of TSGA10 in breast cancer, expression of identified transcript variants was analyzed in 62 breast cancer samples. We found that TSGA10 tends to express variants with shorter 5'UTR and fewer uORF elements in breast cancer tissues. Our study demonstrates for the first time the expression of different TSGA10 transcript variants in testis and breast cancer tissues and provides a first clue to a role of TSGA10 5'UTR in regulation of translation in unusual environmental conditions like hypoxia. Copyright © 2017. Published by Elsevier B.V.

  16. Alterations in expression pattern of splicing factors in epithelial ovarian cancer and its clinical impact.

    PubMed

    Iborra, Severine; Hirschfeld, Marc; Jaeger, Markus; Zur Hausen, Axel; Braicu, Iona; Sehouli, Jalid; Gitsch, Gerald; Stickeler, Elmar

    2013-07-01

    Alternative splicing represents an important nuclear mechanism in the posttranscriptional regulation of gene expression, which is frequently altered during tumorigenesis. Previously, we described marked changes in alternative splicing of the CD44 gene in ovarian and breast cancer as well as specific induction of distinct splicing factors during tumor development. The present study was focused on the expression profiles of different splicing factors, including classical serine-arginine (SR) proteins including ASF/SF2, hTra2β1, hTra2α, and Y-box-binding protein (YB-1) in physiological and malignant epithelial ovarian tissue to evaluate their expression pattern with regard to tumor development and disease progression. Expression levels of the different splicing factors were analyzed in physiological epithelial ovarian tissue samples, primary tumors, and metastatic samples of patients with a diagnosis of epithelial ovarian cancer using quantified reverse transcription polymerase chain reaction analysis. We examined more closely the splicing factor hTra2β1 using Western blot analysis and immunohistochemistry. The analysis revealed a marked and specific induction of ASF/SF2, SRp20, hTra2β1, and YB-1 in primary tumors as well as in their metastatic sites. However, in our patient cohort, no induction was seen for the other investigated splicing factors SRp55, SRp40, and hTra2α. Our results suggest a specific induction of distinct splicing factors in ovarian cancer tumorigenesis. The involvement of hTra2β1, YB-1, SRp20, and ASF/SF2 in exon recognition and alternative splicing may be important for gene regulation of alternatively spliced genes like CD44 with potential functional consequences in this tumor type leading to progression and metastasis.

  17. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women.

    PubMed

    Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J; Ribeiro, Enilze M; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R

    2016-11-29

    Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78-0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.

  18. Recanalization and flow regulate venous thrombus resolution and Matrix metalloproteinases expression in vivo

    PubMed Central

    Chabasse, Christine; Siefert, Suzanne A.; Chaudry, Mohammed; Hoofnagle, Mark H.; Lal, Brajesh K.; Sarkar, Rajabrata

    2016-01-01

    Objective We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. Design of study In CD1 mice, we performed surgical inferior vena cava (IVC) ligation (stasis thrombosis), stenosis (thrombosis with recanalization) or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution, and quantified the mRNA and protein levels of Membrane-Type Matrix Metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at day 4, 8 and 12 post-surgery. Results Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8, and 12.57% at day 12, as compared with stasis thrombosis (ligation model). Immunoblot and real-time PCR demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P=.03 and P=.006 respectively), as well as a difference in MT2-MMP gene expression at day 8 (P=.044) and day 12 (P=0.03) and MT1-MMP protein expression at day 4 (P=.021). Histological analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared to the ligation model, as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Conclusions Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo, and are associated with distinct patterns of MT1- and MT3-MMP expression and macrophages localization in areas of intra-thrombus recanalization. PMID:26993683

  19. Recanalization and flow regulate venous thrombus resolution and matrix metalloproteinase expression in vivo.

    PubMed

    Chabasse, Christine; Siefert, Suzanne A; Chaudry, Mohammed; Hoofnagle, Mark H; Lal, Brajesh K; Sarkar, Rajabrata

    2015-01-01

    We examined the role of thrombus recanalization and ongoing blood flow in the process of thrombus resolution by comparing two murine in vivo models of deep venous thrombosis. In CD1 mice, we performed surgical inferior vena cava ligation (stasis thrombosis), stenosis (thrombosis with recanalization), or sham procedure. We analyzed thrombus weight over time as a measure of thrombus resolution and quantified the messenger RNA and protein levels of membrane-type matrix metalloproteinases (MT-MMPs) as well as effectors of the plasmin complex at days 4, 8, and 12 after surgery. Despite similar initial thrombus size, the presence of ongoing blood flow (stenosis model) was associated with a 45.91% subsequent improvement in thrombus resolution at day 8 and 12.57% at day 12 compared with stasis thrombosis (ligation model). Immunoblot and real-time polymerase chain reaction analysis demonstrated a difference in MMP-2 and MMP-9 activity at day 8 between the two models (P = .03 and P = .006, respectively) as well as a difference in MT2-MMP gene expression at day 8 (P = .044) and day 12 (P = .03) and MT1-MMP protein expression at day 4 (P = .021). Histologic analyses revealed distinct areas of recanalization in the thrombi of the stenosis model compared with the ligation model as well as the recruitment of inflammatory cells, especially macrophages, and a focal pattern of localized expression of MT1-MMP and MT3-MMP proteins surrounding the areas of recanalization in the stenosis model. Recanalization and ongoing blood flow accelerate deep venous thrombus resolution in vivo and are associated with distinct patterns of MT1-MMP and MT3-MMP expression and macrophage localization in areas of intrathrombus recanalization. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. Distinct patterns of outcome valuation and amygdala-prefrontal cortex synaptic remodeling in adolescence and adulthood

    PubMed Central

    Stolyarova, Alexandra; Izquierdo, Alicia

    2015-01-01

    Adolescent behavior is typified by increased risk-taking, reward- and novelty-seeking, as well as an augmented need for social and environmental stimulation. This behavioral phenotype may result from alterations in outcome valuation or reward learning. In the present set of experiments, we directly compared adult and adolescent animals on tasks measuring both of these processes. Additionally, we examined developmental differences in dopamine D1-like receptor (D1R), dopamine D2-like receptor (D2R), and polysialylated neural cell adhesion molecule (PSA-NCAM) expression in animals that were trained on an effortful reward valuation task, given that these proteins play an important role in the functional development of the amygdala-prefrontocortical (PFC) circuit and mesocorticolimbic dopamine system. We found that adolescent animals were not different from adults in appetitive associative learning, but exhibited distinct pattern of responses to differences in outcome values, which was paralleled by an enhanced motivation to invest effort to obtain larger rewards. There were no differences in D2 receptor expression, but D1 receptor expression was significantly reduced in the striatum of animals that had experiences with reward learning during adolescence compared to animals that went through the same experiences in adulthood. We observed increased levels of PSA-NCAM expression in both PFC and amygdala of late adolescents compared to adults that were previously trained on an effortful reward valuation task. PSA-NCAM levels in PFC were strongly and positively associated with high effort/reward (HER) choices in adolescents, but not in adult animals. Increased levels of PSA-NCAM expression in adolescents may index increased structural plasticity and represent a neural correlate of a reward sensitive endophenotype. PMID:25999830

  1. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.

    PubMed

    Seiler, Markus; Mehrle, Alexander; Poustka, Annemarie; Wiemann, Stefan

    2006-03-16

    The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.

  2. Increased complexity of circRNA expression during species evolution.

    PubMed

    Dong, Rui; Ma, Xu-Kai; Chen, Ling-Ling; Yang, Li

    2017-08-03

    Circular RNAs (circRNAs) are broadly identified from precursor mRNA (pre-mRNA) back-splicing across various species. Recent studies have suggested a cell-/tissue- specific manner of circRNA expression. However, the distinct expression pattern of circRNAs among species and its underlying mechanism still remain to be explored. Here, we systematically compared circRNA expression from human and mouse, and found that only a small portion of human circRNAs could be determined in parallel mouse samples. The conserved circRNA expression between human and mouse is correlated with the existence of orientation-opposite complementary sequences in introns that flank back-spliced exons in both species, but not the circRNA sequences themselves. Quantification of RNA pairing capacity of orientation-opposite complementary sequences across circRNA-flanking introns by Complementary Sequence Index (CSI) identifies that among all types of complementary sequences, SINEs, especially Alu elements in human, contribute the most for circRNA formation and that their diverse distribution across species leads to the increased complexity of circRNA expression during species evolution. Together, our integrated and comparative reference catalog of circRNAs in different species reveals a species-specific pattern of circRNA expression and suggests a previously under-appreciated impact of fast-evolved SINEs on the regulation of (circRNA) gene expression.

  3. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    PubMed Central

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han; Lim, Jing Quan; Huang, Mi Ni; Padmanabhan, Nisha; Nellore, Vishwa; Kongpetch, Sarinya; Ng, Alvin Wei Tian; Ng, Ley Moy; Choo, Su Pin; Myint, Swe Swe; Thanan, Raynoo; Nagarajan, Sanjanaa; Lim, Weng Khong; Ng, Cedric Chuan Young; Boot, Arnoud; Liu, Mo; Ong, Choon Kiat; Rajasegaran, Vikneswari; Lie, Stefanus; Lim, Alvin Soon Tiong; Lim, Tse Hui; Tan, Jing; Loh, Jia Liang; McPherson, John R.; Khuntikeo, Narong; Bhudhisawasdi, Vajaraphongsa; Yongvanit, Puangrat; Wongkham, Sopit; Totoki, Yasushi; Nakamura, Hiromi; Arai, Yasuhito; Yamasaki, Satoshi; Chow, Pierce Kah-Hoe; Chung, Alexander Yaw Fui; Ooi, London Lucien Peng Jin; Lim, Kiat Hon; Dima, Simona; Duda, Dan G.; Popescu, Irinel; Broet, Philippe; Hsieh, Sen-Yung; Yu, Ming-Chin; Scarpa, Aldo; Lai, Jiaming; Luo, Di-Xian; Carvalho, André Lopes; Vettore, André Luiz; Rhee, Hyungjin; Park, Young Nyun; Alexandrov, Ludmil B.; Gordân, Raluca; Rozen, Steven G.; Shibata, Tatsuhiro; Pairojkul, Chawalit; Teh, Bin Tean; Tan, Patrick

    2017-01-01

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters – Fluke-Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3′UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation of H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores – mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer. PMID:28667006

  4. Neuroendocrine profiles associated with discrete behavioural variation in Symphodus ocellatus, a species with male alternative reproductive tactics.

    PubMed

    Nugent, B M; Stiver, K A; Alonzo, S H; Hofmann, H A

    2016-10-01

    The molecular mechanisms underlying phenotypic plasticity are not well understood. Identifying mechanisms underlying alternative reproductive tactics (ARTs) in species for which the behavioural and fitness consequences of this variation are well characterized provides an opportunity to integrate evolutionary and mechanistic understanding of the maintenance of variation within populations. In the ocellated wrasse Symphodus ocellatus, the behavioural phenotypes of three distinct male morphs (sneakers, satellites and nesting males), which arise from a single genome, have been thoroughly characterized. To determine the neuroendocrine and genomic mechanisms associated with discrete phenotypic variation and ARTs in S. ocellatus in their natural environment, we constructed a whole-brain de novo transcriptome and compared global patterns of gene expression between sexes and male morphs. Next, we quantified circulating cortisol and 11-ketotestosterone (11-kt), mediators of male reproductive behaviours, as well as stress and gonadal steroid hormone receptor expression in the preoptic area, ventral subpallial division of the telencephalon and dorsolateral telencephalon, critical brain regions for social and reproductive behaviours. We found higher levels of 11-kt in nesting males and higher levels of cortisol in sneaker males relative to other male morphs and females. We also identified distinct patterns of brain region-specific hormone receptor expression between males such that most hormone receptors are more highly expressed in satellites and nesting males relative to sneakers and females. Our results establish the neuroendocrine and molecular mechanisms that underlie ARTs in the wild and provide a foundation for experimentally testing hypotheses about the relationship between neuromolecular processes and reproductive success. © 2016 John Wiley & Sons Ltd.

  5. In the eye of the beholder? Universality and cultural specificity in the expression and perception of emotion.

    PubMed

    Scherer, Klaus R; Clark-Polner, Elizabeth; Mortillaro, Marcello

    2011-12-01

    Do members of different cultures express (or "encode") emotions in the same fashion? How well can members of distinct cultures recognize (or "decode") each other's emotion expressions? The question of cultural universality versus specificity in emotional expression has been a hot topic of debate for more than half a century, but, despite a sizeable amount of empirical research produced to date, no convincing answers have emerged. We suggest that this unsatisfactory state of affairs is due largely to a lack of concern with the precise mechanisms involved in emotion expression and perception, and propose to use a modified Brunswikian lens model as an appropriate framework for research in this area. On this basis we provide a comprehensive review of the existing literature and point to research paradigms that are likely to provide the evidence required to resolve the debate on universality vs. cultural specificity of emotional expression. Applying this fresh perspective, our analysis reveals that, given the paucity of pertinent data, no firm conclusions can be drawn on actual expression (encoding) patterns across cultures (although there appear to be more similarities than differences), but that there is compelling evidence for intercultural continuity in decoding, or recognition, ability. We also note a growing body of research on the notion of ingroup advantage due to expression "dialects," above and beyond the general encoding or decoding patterns. We furthermore suggest that these empirical patterns could be explained by both universality in the underlying mechanisms and cultural specificity in the input to, and the regulation of, these expression and perception mechanisms. Overall, more evidence is needed, both to further elucidate these mechanisms and to inventory the patterns of cultural effects. We strongly recommend using more solid conceptual and theoretical perspectives, as well as more ecologically valid approaches, in designing future studies in emotion expression and perception research.

  6. Evolution and inheritance of early embryonic patterning in Drosophila simulans and D. sechellia.

    PubMed

    Lott, Susan E; Ludwig, Michael Z; Kreitman, Martin

    2011-05-01

    Pattern formation in Drosophila is a widely studied example of a robust developmental system. Such robust systems pose a challenge to adaptive evolution, as they mask variation that selection may otherwise act upon. Yet we find variation in the localization of expression domains (henceforth "stripe allometry") in the pattern formation pathway. Specifically, we characterize differences in the gap genes giant and Kruppel, and the pair-rule gene even-skipped, which differ between the sibling species Drosophila simulans and D. sechellia. In a double-backcross experiment, stripe allometry is consistent with maternal inheritance of stripe positioning and multiple genetic factors, with a distinct genetic basis from embryo length. Embryos produced by F1 and F2 backcross mothers exhibit novel spatial patterns of gene expression relative to the parental species, with no measurable increase in positional variance among individuals. Buffering of novel spatial patterns in the backcross genotypes suggests that robustness need not be disrupted in order for the trait to evolve, and perhaps the system is incapable of evolving to prevent the expression of all genetic variation. This limitation, and the ability of natural selection to act on minute genetic differences that are within the "margin of error" for the buffering mechanism, indicates that developmentally buffered traits can evolve without disruption of robustness. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  7. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat.

    PubMed

    Laskowska-Macios, Karolina; Zapasnik, Monika; Hu, Tjing-Tjing; Kossut, Malgorzata; Arckens, Lutgarde; Burnat, Kalina

    2015-10-01

    Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD. © The Author 2014. Published by Oxford University Press.

  8. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult

    PubMed Central

    Pfaltzgraff, Elise R.; Shelton, Elaine L.; Galindo, Cristi L.; Nelms, Brian L.; Hooper, Christopher W.; Poole, Stanley D.; Labosky, Patricia A.; Bader, David M.; Reese, Jeff

    2014-01-01

    Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression. PMID:24508561

  9. Modulation of Immunoregulatory Properties of Mesenchymal Stromal Cells by Toll-Like Receptors: Potential Applications on GVHD

    PubMed Central

    2016-01-01

    In the last decade, the immunomodulatory properties of mesenchymal stromal cells (MSCs) have attracted a lot of attention, due to their potential applicability in the treatment of graft-versus-host disease (GVHD), a condition frequently associated with opportunistic infections. The present review addresses how Pathogen-Associated Molecular Patterns (PAMPS) modulate the immunosuppressive phenotype of human MSCs by signaling through Toll-like receptors (TLRs). Overall, we observed that regardless of the source tissue, human MSCs express TLR2, TLR3, TLR4, and TLR9. Stimulation of distinct TLRs on MSCs elicits distinct inflammatory signaling pathways, differentially influencing the expression of inflammatory factors and the ability of MSCs to suppress the proliferation of immune system cells. The capacity to enhance the immunosuppressive phenotype of MSCs through TLRs stimulation might be properly elucidated in order to improve the MSC-based immunotherapy against GVHD. PMID:27738438

  10. Role of Innate Immunity in Neonatal Infection

    PubMed Central

    Cuenca, Alex G; Wynn, James L; Moldawer, Lyle L; Levy, Ofer

    2014-01-01

    Newborns are at increased risk of infection due to genetic, epigenetic, and environmental factors. Herein we examine the roles of the neonatal innate immune system in host defense against bacterial and viral infections. Full-term newborns express a distinct innate immune system biased towards TH2/TH17-polarizing and anti-inflammatory cytokine production with relative impairment in TH1-polarizing cytokine production that leaves them particularly vulnerable to infection with intracellular pathogens. In addition to these distinct features, preterm newborns also have fragile skin, impaired TH17-polarizing cytokine production and deficient expression of complement and of antimicrobial proteins and peptides (APPs) that likely contribute to susceptibility to pyogenic bacteria. Ongoing research is identifying APPs, including bacterial/permeability-increasing protein and lactoferrin, as well as pattern recognition receptor (PRR) agonists that may serve to enhance protective newborn and infant immune responses as stand alone immune response modifiers or vaccine adjuvants. PMID:23297181

  11. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.

    PubMed

    Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia

    2006-02-02

    Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification.

  12. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time

    PubMed Central

    Razy-Krajka, Florian; Gravez, Basile; Kaplan, Nicole; Racioppi, Claudia; Wang, Wei

    2018-01-01

    In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors. PMID:29431097

  13. Differential Expression of Programmed Cell Death on the Follicular Development in Normal and Miniature Pig Ovary

    PubMed Central

    Kim, Sang Hwan; Min, Kwan Sik; Kim, Nam Hyung; Yoon, Jong Taek

    2012-01-01

    Follicles are important in oocyte maturation. Successful estrous cycle requires remodeling of follicular cells, and proper execution of programmed cell death is crucial for normal follicular development. The objectives of the present study were to understand programmed cell death during follicle development, to analyze the differential follicle development patterns, and to assess the patterns of apoptosis and autophagy expression during follicle development in normal and miniature pigs. Through the analysis of differential patterns of programmed cell death during follicular development in porcine, MAP1LC3A, B and other autophagy-associated genes (ATG5, mTOR, Beclin-1) were found to increase in normal pigs, while it decreased in miniature pigs. However, for the apoptosis-associated genes, progression of genes during follicular development increased in miniature pigs, while it decreased in normal pigs. Thus, results show that normal and miniature pigs showed distinct patterns of follicular remodeling manifesting that programmed cell death largely depends on the types of pathway during follicular development (Type II or autophagy for normal pigs and Type I or apoptosis for miniature pigs). PMID:23056260

  14. Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing.

    PubMed

    Popov, Ivan K; Kwon, Taejoon; Crossman, David K; Crowley, Michael R; Wallingford, John B; Chang, Chenbei

    2017-06-15

    During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Beta-Adrenergic Receptor Activation during Distinct Patterns of Stimulation Critically Modulates the PKA-Dependence of LTP in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Gelinas, Jennifer N.; Tenorio, Gustavo; Lemon, Neal; Abel, Ted; Nguyen, Peter V.

    2008-01-01

    Activation of Beta-adrenergic receptors (Beta-ARs) enhances hippocampal memory consolidation and long-term potentiation (LTP), a likely mechanism for memory storage. One signaling pathway linked to Beta-AR activation is the cAMP-PKA pathway. PKA is critical for the consolidation of hippocampal long-term memory and for the expression of some forms…

  16. Comparison of the Structure and Expression of Odd-Skipped and Two Related Genes That Encode a New Family of Zinc Finger Proteins in Drosophila

    PubMed Central

    Hart, M. C.; Wang, L.; Coulter, D. E.

    1996-01-01

    The odd-skipped (odd) gene, which was identified on the basis of a pair-rule segmentation phenotype in mutant embryos, is initially expressed in the Drosophila embryo in seven pair-rule stripes, but later exhibits a segment polarity-like pattern for which no phenotypic correlate is apparent. We have molecularly characterized two embryonically expressed odd-cognate genes, sob and bowel (bowl), that encode proteins with highly conserved C(2)H(2) zinc fingers. While the Sob and Bowl proteins each contain five tandem fingers, the Odd protein lacks a fifth (C-terminal) finger and is also less conserved among the four common fingers. Reminiscent of many segmentation gene paralogues, the closely linked odd and sob genes are expressed during embryogenesis in similar striped patterns; in contrast, the less-tightly linked bowl gene is expressed in a distinctly different pattern at the termini of the early embryo. Although our results indicate that odd and sob are more likely than bowl to share overlapping developmental roles, some functional divergence between the Odd and Sob proteins is suggested by the absence of homology outside the zinc fingers, and also by amino acid substitutions in the Odd zinc fingers at positions that appear to be constrained in Sob and Bowl. PMID:8878683

  17. Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus.

    PubMed

    Ben-David, Jonathan; Chipman, Ariel D

    2010-10-01

    The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. A Modified ABCDE Model of Flowering in Orchids Based on Gene Expression Profiling Studies of the Moth Orchid Phalaenopsis aphrodite

    PubMed Central

    Lee, Ann-Ying; Chen, Chun-Yi; Chang, Yao-Chien Alex; Chao, Ya-Ting; Shih, Ming-Che

    2013-01-01

    Previously we developed genomic resources for orchids, including transcriptomic analyses using next-generation sequencing techniques and construction of a web-based orchid genomic database. Here, we report a modified molecular model of flower development in the Orchidaceae based on functional analysis of gene expression profiles in Phalaenopsis aphrodite (a moth orchid) that revealed novel roles for the transcription factors involved in floral organ pattern formation. Phalaenopsis orchid floral organ-specific genes were identified by microarray analysis. Several critical transcription factors including AP3, PI, AP1 and AGL6, displayed distinct spatial distribution patterns. Phylogenetic analysis of orchid MADS box genes was conducted to infer the evolutionary relationship among floral organ-specific genes. The results suggest that gene duplication MADS box genes in orchid may have resulted in their gaining novel functions during evolution. Based on these analyses, a modified model of orchid flowering was proposed. Comparison of the expression profiles of flowers of a peloric mutant and wild-type Phalaenopsis orchid further identified genes associated with lip morphology and peloric effects. Large scale investigation of gene expression profiles revealed that homeotic genes from the ABCDE model of flower development classes A and B in the Phalaenopsis orchid have novel functions due to evolutionary diversification, and display differential expression patterns. PMID:24265826

  19. Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus.

    PubMed

    Onai, Takayuki; Lin, Hsiu-Chin; Schubert, Michael; Koop, Demian; Osborne, Peter W; Alvarez, Susana; Alvarez, Rosana; Holland, Nicholas D; Holland, Linda Z

    2009-08-15

    A role for Wnt/beta-catenin signaling in axial patterning has been demonstrated in animals as basal as cnidarians, while roles in axial patterning for retinoic acid (RA) probably evolved in the deuterostomes and may be chordate-specific. In vertebrates, these two pathways interact both directly and indirectly. To investigate the evolutionary origins of interactions between these two pathways, we manipulated Wnt/beta-catenin and RA signaling in the basal chordate amphioxus during the gastrula stage, which is the RA-sensitive period for anterior/posterior (A/P) patterning. The results show that Wnt/beta-catenin and RA signaling have distinctly different roles in patterning the A/P axis of the amphioxus gastrula. Wnt/beta-catenin specifies the identity of the ends of the embryo (high Wnt = posterior; low Wnt = anterior) but not intervening positions. Thus, upregulation of Wnt/beta-catenin signaling induces ectopic expression of posterior markers at the anterior tip of the embryo. In contrast, RA specifies position along the A/P axis, but not the identity of the ends of the embryo-increased RA signaling strongly affects the domains of Hox expression along the A/P axis but has little or no effect on the expression of either anterior or posterior markers. Although the two pathways may both influence such things as specification of neuronal identity, interactions between them in A/P patterning appear to be minimal.

  20. Geo-Distinctive Comorbidity Networks of Pediatric Asthma.

    PubMed

    Shin, Eun Kyong; Shaban-Nejad, Arash

    2018-01-01

    Most pediatric asthma cases occur in complex interdependencies, exhibiting complex manifestation of multiple symptoms. Studying asthma comorbidities can help to better understand the etiology pathway of the disease. Albeit such relations of co-expressed symptoms and their interactions have been highlighted recently, empirical investigation has not been rigorously applied to pediatric asthma cases. In this study, we use computational network modeling and analysis to reveal the links and associations between commonly co-observed diseases/conditions with asthma among children in Memphis, Tennessee. We present a novel method for geo-parsed comorbidity network analysis to show the distinctive patterns of comorbidity networks in urban and suburban areas in Memphis.

  1. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4 and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia

    PubMed Central

    Volpe, MaryAnn Vitoria; Wang, Karen Ting Wai; Nielsen, Heber Carl; Chinoy, Mala Romeshchandra

    2009-01-01

    Background Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 proteins compared to normal lung development. Methods Temporal, spatial and cellular Hoxa5, Hoxb4 and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, 19 fetuses and neonates using western blot and immunohistochemistry. Results Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 isoforms changed with development and further in NT-PH lungs. Compared to normal lungs, Gd19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. Conclusions Unique spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition. PMID:18553509

  2. Gene expression profiling in Ishikawa cells: A fingerprint for estrogen active compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehme, Kathleen; Simon, Stephanie; Mueller, Stefan O.

    2009-04-01

    Several anthropogenous and naturally occurring substances, referred to as estrogen active compounds (EACs), are able to interfere with hormone and in particular estrogen receptor signaling. EACs can either cause adverse health effects in humans and wildlife populations or have beneficial effects on estrogen-dependent diseases. The aim of this study was to examine global gene expression profiles in estrogen receptor (ER)-proficient Ishikawa plus and ER-deficient Ishikawa minus endometrial cancer cells treated with selected well-known EACs (Diethylstilbestrol, Genistein, Zearalenone, Resveratrol, Bisphenol A and o,p'-DDT). We also investigated the effect of the pure antiestrogen ICI 182,780 (ICI) on the expression patterns caused bymore » these compounds. Transcript levels were quantified 24 h after compound treatment using Illumina BeadChip Arrays. We identified 87 genes with similar expression changes in response to all EAC treatments in Ishikawa plus. ICI lowered the magnitude or reversed the expression of these genes, indicating ER dependent regulation. Apart from estrogenic gene regulation, Bisphenol A, o,p'-DDT, Zearalenone, Genistein and Resveratrol displayed similarities to ICI in their expression patterns, suggesting mixed estrogenic/antiestrogenic properties. In particular, the predominant antiestrogenic expression response of Resveratrol could be clearly distinguished from the other test compounds, indicating a distinct mechanism of action. Divergent gene expression patterns of the phytoestrogens, as well as weaker estrogenic gene expression regulation determined for the anthropogenous chemicals Bisphenol A and o,p'-DDT, warrants a careful assessment of potential detrimental and/or beneficial effects of EACs. The characteristic expression fingerprints and the identified subset of putative marker genes can be used for screening chemicals with an unknown mode of action and for predicting their potential to exert endocrine disrupting effects.« less

  3. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells

    PubMed Central

    Leddin, Mathias; Perrod, Chiara; Hoogenkamp, Maarten; Ghani, Saeed; Assi, Salam; Heinz, Sven; Wilson, Nicola K.; Follows, George; Schönheit, Jörg; Vockentanz, Lena; Mosammam, Ali M.; Chen, Wei; Tenen, Daniel G.; Westhead, David R.; Göttgens, Berthold

    2011-01-01

    The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type–specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements. PMID:21239694

  4. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    PubMed

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  5. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana

    PubMed Central

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts. PMID:26451798

  6. Analysis of Thioester-Containing Proteins during the Innate Immune Response of Drosophila melanogaster

    PubMed Central

    Bou Aoun, Richard; Hetru, Charles; Troxler, Laurent; Doucet, Daniel; Ferrandon, Dominique; Matt, Nicolas

    2010-01-01

    Thioester-containing proteins (TEPs) are conserved proteins among insects that are thought to be involved in innate immunity. In Drosophila, the Tep family is composed of 6 genes named Tep1–Tep6. In this study, we investigated the phylogeny, expression pattern and roles of these genes in the host defense of Drosophila. Protostomian Tep genes are clustered in 3 distinct branches, 1 of which is specific to mosquitoes. Most D. melanogaster Tep genes are expressed in hemocytes, can be induced in the fat body, and are expressed in specific regions of the hypodermis. This expression pattern is consistent with a role in innate immunity. However, we find that TEP1, TEP2, and TEP4 are not strictly required in the body cavity to fight several bacterial and fungal infections. One possibility is that Drosophila TEPs act redundantly or that their absence can be compensated by other components of the immune response. TEPs may thus provide a subtle selective advantage during evolution. Alternatively, they may be required in host defense against specific as yet unidentified natural pathogens of Drosophila. PMID:21063077

  7. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines

    PubMed Central

    2012-01-01

    Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum) was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization) was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA) and Aegilops tauschii (2n = 2x = 14; genome DD), which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD). Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs) revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing non-additive expression exhibited a significant enrichment for vesicle-function. Conclusions Our results show that two patterns of global alteration in gene expression are conditioned by allohexaploidization in wheat, that is, parental dominance expression and non-additive expression. Both altered patterns of gene expression but not the identity of the genes involved are likely to play functional roles in stabilization and establishment of the newly formed allohexaploid plants, and hence, relevant to speciation and evolution of T. aestivum. PMID:22277161

  8. Transcriptional Modulation of Genes Encoding Structural Characteristics of Differentiating Enterocytes During Development of a Polarized Epithelium In Vitro

    PubMed Central

    Halbleib, Jennifer M.; Sääf, Annika M.

    2007-01-01

    Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590

  9. Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection.

    PubMed

    Teutsch, Christine; Kondo, Richard P; Dederko, Dorothy A; Chrast, Jacqueline; Chien, Kenneth R; Giles, Wayne R

    2007-03-01

    Regional differences in repolarizing K(+) current densities and expression levels of their molecular components are important for coordinating the pattern of electrical excitation and repolarization of the heart. The small size of hearts from mice may obscure these interventricular and/or transmural expression differences of K(+) channels. We have examined this possibility in adult mouse ventricle using a technology that provides very high spatial resolution of tissue collection. Conventional manual dissection and laser capture microdissection (LCM) were utilized to dissect tissue from distinct ventricular regions. RNA was isolated from epicardial, mid-myocardial and endocardial layers of both the right and left ventricles. Real-time RT-PCR was used to quantify the transcript expression in these different regions. LCM revealed significant interventricular and transmural gradients for both Kv4.2 and the alpha-subunit of KChIP2. The expression profile of a second K(+) channel transcript, Kir2.1, which is responsible for the inwardly rectifying K(+) current I(k1), showed no interventricular or transmural gradients and therefore served as a negative control. Our findings are in contrast to previous reports of a relatively uniform left ventricular transmural pattern of expression of Kv4.2, Kv4.3 and KChIP2 in adult mouse heart, which appear to be different than that in larger mammals. Specifically, our results demonstrate significant epi- to endocardial differences in the patterns of expression of both Kv4.2 and KChIP2.

  10. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring.

    PubMed

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R

    2017-05-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring

    PubMed Central

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J.; Pak, Toni R.

    2016-01-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the last 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. PMID:27817987

  12. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  13. Cell Pattern in the Arabidopsis Root Epidermis Determined by Lateral Inhibition with Feedback

    PubMed Central

    Lee, Myeong Min; Schiefelbein, John

    2002-01-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants. PMID:11910008

  14. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.

    PubMed

    Lee, Myeong Min; Schiefelbein, John

    2002-03-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.

  15. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors

    PubMed Central

    Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter

    2010-01-01

    The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028

  16. The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation

    NASA Technical Reports Server (NTRS)

    Seaver, E. C.; Paulson, D. A.; Irvine, S. Q.; Martindale, M. Q.

    2001-01-01

    We are interested in understanding whether the annelids and arthropods shared a common segmented ancestor and have approached this question by characterizing the expression pattern of the segment polarity gene engrailed (en) in a basal annelid, the polychaete Chaetopterus. We have isolated an en gene, Ch-en, from a Chaetopterus cDNA library. Genomic Southern blotting suggests that this is the only en class gene in this animal. The predicted protein sequence of the 1.2-kb cDNA clone contains all five domains characteristic of en proteins in other taxa, including the en class homeobox. Whole-mount in situ hybridization reveals that Ch-en is expressed throughout larval life in a complex spatial and temporal pattern. The Ch-en transcript is initially detected in a small number of neurons associated with the apical organ and in the posterior portion of the prototrochophore. At later stages, Ch-en is expressed in distinct patterns in the three segmented body regions (A, B, and C) of Chaetopterus. In all segments, Ch-en is expressed in a small set of segmentally iterated cells in the CNS. In the A region, Ch-en is also expressed in a small group of mesodermal cells at the base of the chaetal sacs. In the B region, Ch-en is initially expressed broadly in the mesoderm that then resolves into one band/segment coincident with morphological segmentation. The mesodermal expression in the B region is located in the anterior region of each segment, as defined by the position of ganglia in the ventral nerve cord, and is involved in the morphogenesis of segment-specific feeding structures late in larval life. We observe banded mesodermal and ectodermal staining in an anterior-posterior sequence in the C region. We do not observe a segment polarity pattern of expression of Ch-en in the ectoderm, as is observed in arthropods. Copyright 2001 Academic Press.

  17. Claudins in teleost fishes

    PubMed Central

    Kolosov, Dennis; Bui, Phuong; Chasiotis, Helen; Kelly, Scott P

    2013-01-01

    Teleost fishes are a large and diverse animal group that represent close to 50% of all described vertebrate species. This review consolidates what is known about the claudin (Cldn) family of tight junction (TJ) proteins in teleosts. Cldns are transmembrane proteins of the vertebrate epithelial/endothelial TJ complex that largely determine TJ permeability. Cldns achieve this by expressing barrier or pore forming properties and by exhibiting distinct tissue distribution patterns. So far, ~63 genes encoding for Cldn TJ proteins have been reported in 16 teleost species. Collectively, cldns (or Cldns) are found in a broad array of teleost fish tissues, but select genes exhibit restricted expression patterns. Evidence to date strongly supports the view that Cldns play a vital role in the embryonic development of teleost fishes and in the physiology of tissues and organ systems studied thus far. PMID:24665402

  18. Differential regulation of transcription through distinct Suppressor of Hairless DNA binding site architectures during Notch signaling in proneural clusters.

    PubMed

    Cave, John W; Xia, Li; Caudy, Michael

    2011-01-01

    In Drosophila melanogaster, achaete (ac) and m8 are model basic helix-loop-helix activator (bHLH A) and repressor genes, respectively, that have the opposite cell expression pattern in proneural clusters during Notch signaling. Previous studies have shown that activation of m8 transcription in specific cells within proneural clusters by Notch signaling is programmed by a "combinatorial" and "architectural" DNA transcription code containing binding sites for the Su(H) and proneural bHLH A proteins. Here we show the novel result that the ac promoter contains a similar combinatorial code of Su(H) and bHLH A binding sites but contains a different Su(H) site architectural code that does not mediate activation during Notch signaling, thus programming a cell expression pattern opposite that of m8 in proneural clusters.

  19. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis.

    PubMed

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Han, A-Reum; Jang, Cheol Seong

    2014-05-15

    In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress. In particular, modules 1 and 2 commonly showed enriched annotation categories such as oxidoreductase activity, including enriched cis-regulatory elements known as ROS-specific regulators. These results suggest that the ROS-mediated irradiation response pathway is affected by CR in modules 1 and 2. We found 243 ionizing radiation (IR)-responsive probes that exhibited similarities in expression patterns in various irradiation microarray data sets. The expression patterns of 6 randomly selected IR-responsive genes were evaluated by quantitative reverse transcription polymerase chain reaction following treatment with CR, gamma rays (GR), and ion beam (IB); similar patterns were observed among these genes under these 3 treatments. Moreover, we constructed subnetworks of IR-responsive genes and evaluated the expression levels of their neighboring genes following GR treatment; similar patterns were observed among them. These results of network-based analyses might provide a clue to understanding the complex biological system related to the CR response in plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Full-length Transcriptome Sequencing and Modular Organization Analysis of Naringin/Neoeriocitrin Related Gene Expression Pattern in Drynaria roosii.

    PubMed

    Sun, Mei-Yu; Li, Jing-Yi; Li, Dong; Huang, Feng-Jie; Wang, Di; Li, Hui; Xing, Quan; Zhu, Hui-Bin; Shi, Lei

    2018-04-12

    Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as 'GuSuiBu'. The corresponding effective components of naringin/neoeriocitrin share highly similar chemical structure and medicinal function. Our HPLC-MS/MS results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin related genes involved in their regulatory pathways. For lack of the basic genetic information, we applied a combination of SMRT sequencing and SGS to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the DEG-based heat map analysis revealed the naringin/neoeriocitrin related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. Hereinto, naringin/neoeriocitrin related DEGs distributed in nine distinct modules, and DEGs in these modules showed significant different patterns of transcript abundance to be linked with specific tissues or ages. Moreover, WGCNA results further identified that PAL, 4CL, C4H and C3H, HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis respectively and exhibited high co-expression with MYB- and bHLH-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue- and time-specificity of gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome dataset provided the important genetic information for further research on D. roosii.

  1. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development.

    PubMed

    Tsai, Yu-Hwai; Nattiv, Roy; Dedhia, Priya H; Nagy, Melinda S; Chin, Alana M; Thomson, Matthew; Klein, Ophir D; Spence, Jason R

    2017-03-15

    The intestine plays a central role in digestion, nutrient absorption and metabolism, with individual regions of the intestine having distinct functional roles. Many examples of region-specific gene expression in the adult intestine are known, but how intestinal regional identity is established during development is a largely unresolved issue. Here, we have identified several genes that are expressed in a region-specific manner in the developing human intestine. Using human embryonic stem cell-derived intestinal organoids, we demonstrate that the duration of exposure to active FGF and WNT signaling controls regional identity. Short-term exposure to FGF4 and CHIR99021 (a GSK3β inhibitor that stabilizes β-catenin) resulted in organoids with gene expression patterns similar to developing human duodenum, whereas longer exposure resulted in organoids similar to ileum. When region-specific organoids were transplanted into immunocompromised mice, duodenum-like organoids and ileum-like organoids retained their regional identity, demonstrating that regional identity of organoids is stable after initial patterning occurs. This work provides insights into the mechanisms that control regional specification of the developing human intestine and provides new tools for basic and translational research. © 2017. Published by The Company of Biologists Ltd.

  2. Analysis of TLR7, SOCS1 and ISG15 immune genes expression in the peripheral blood of responder and non-responder patients with chronic Hepatitis C

    PubMed Central

    Dowran, Razieh; Sarvari, Jamal; Moattari, Afagh; Fattahi, Mohammad-Reza; Ramezani, Amin; Hosseini, Seyed Younes

    2017-01-01

    Aim: To evaluate the baseline expression of the immune genes in PBMCs of responder and non-responder patients with chronic Hepatitis C. Background: Although the contribution of peripheral blood mononuclear cell (PBMC) gene expression in treatment outcome of hepatitis C virus (HCV) infection is supposed, it has remained to be distinctly delineated. The baseline expression of the immune genes inside PBMCs may reflect the responsiveness status following IFN treatment. Methods: Totally, 22 chronic HCV encompasses 10 responders and 12 non-responsive cases enrolled randomly regarding medical records. The PBMCs from the peripheral blood samples were isolated and then incubated for 6 hours in the culture media. The baseline expression of TLR7, SOCS1 and ISG15 was measured by Real time PCR. Results: The gene expression pattern in PBMCs of both groups showed a similar trend. The expression of SOCS1 and TLR7 genes showed higher levels in non-responder group (P>0.05). The result of ISG15 showed a higher but non-significant expression in the responder group (P>0.05). Conclusion: The similar pattern of TLR7, SOCS1 and ISG15 expression in the responder and non-responder patients indicated their poor discriminating and predictive value in PBMCs sample. PMID:29379591

  3. Dual RNA regulatory control of a Staphylococcus aureus virulence factor.

    PubMed

    Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice

    2014-04-01

    In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.

  4. Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer.

    PubMed

    Kettunen, Eeva; Anttila, Sisko; Seppänen, Jouni K; Karjalainen, Antti; Edgren, Henrik; Lindström, Irmeli; Salovaara, Reijo; Nissén, Anna-Maria; Salo, Jarmo; Mattson, Karin; Hollmén, Jaakko; Knuutila, Sakari; Wikman, Harriet

    2004-03-01

    The expression patterns of cancer-related genes in 13 cases of squamous cell lung cancer (SCC) were characterized and compared with those in normal lung tissue and 13 adenocarcinomas (AC), the other major type of nonsmall cell lung cancer (NSCLC). cDNA array was used to screen the gene expression levels and the array results were verified using a real-time reverse-transcriptase-polymerase chain reaction (RT-PCR). Thirty-nine percent of the 25 most upregulated and the 25 most downregulated genes were common to SCC and AC. Of these genes, DSP, HMGA1 (alias HMGIY), TIMP1, MIF, CCNB1, TN, MMP11, and MMP12 were upregulated and COPEB (alias CPBP), TYROBP, BENE, BMPR2, SOCS3, TIMP3, CAV1, and CAV2 were downregulated. The expression levels of several genes from distinct protein families (cytokeratins and hemidesmosomal proteins) were markedly increased in SCC compared with AC and normal lung. In addition, several genes, overexpressed in SCC, such as HMGA1, CDK4, IGFBP3, MMP9, MMP11, MMP12, and MMP14, fell into distinct chromosomal loci, which we have detected as gained regions on the basis of comparative genomic hybridization data. Our study revealed new candidate genes involved in NSCLC.

  5. Molecular events of apical bud formation in white spruce, Picea glauca.

    PubMed

    El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K

    2011-03-01

    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce. © 2011 Blackwell Publishing Ltd.

  6. Affective matching of odors and facial expressions in infants: shifting patterns between 3 and 7 months.

    PubMed

    Godard, Ornella; Baudouin, Jean-Yves; Schaal, Benoist; Durand, Karine

    2016-01-01

    Recognition of emotional facial expressions is a crucial skill for adaptive behavior. Past research suggests that at 5 to 7 months of age, infants look longer to an unfamiliar dynamic angry/happy face which emotionally matches a vocal expression. This suggests that they can match stimulations of distinct modalities on their emotional content. In the present study, olfaction-vision matching abilities were assessed across different age groups (3, 5 and 7 months) using dynamic expressive faces (happy vs. disgusted) and distinct hedonic odor contexts (pleasant, unpleasant and control) in a visual-preference paradigm. At all ages the infants were biased toward the disgust faces. This visual bias reversed into a bias for smiling faces in the context of the pleasant odor context in the 3-month-old infants. In infants aged 5 and 7 months, no effect of the odor context appeared in the present conditions. This study highlights the role of the olfactory context in the modulation of visual behavior toward expressive faces in infants. The influence of olfaction took the form of a contingency effect in 3-month-old infants, but later evolved to vanish or to take another form that could not be evidenced in the present study. © 2015 John Wiley & Sons Ltd.

  7. F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen.

    PubMed

    Dos Anjos Cassado, Alexandra

    2017-01-01

    Tissue macrophages are a heterogeneous cell population residing in all body tissues that contribute to the maintenance of homeostasis and trigger immune activation in response to injurious stimuli. This heterogeneity may be associated with tissue-specific functions; however, the presence of distinct macrophage populations within the same microenvironment indicates that macrophage heterogeneity may also be influenced outside of tissue specialization. The F4/80 molecule was established as a unique marker of murine macrophages when a monoclonal antibody was found to recognize an antigen exclusively expressed by these cells. However, recent research has shown that F4/80 is expressed by other immune cells and is not equivalently expressed across tissue-specific macrophage lineages, including those residing in the same microenvironment, such as the peritoneum and spleen. In this context, two murine macrophage subtypes with distinct F4/80 expression patterns were recently found to coexist in the peritoneum, termed large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs). However, the presence of phenotypic and functional heterogeneous macrophage subpopulations in the spleen was already known. Thus, although F4/80 surface expression continues to be the best method to identify tissue macrophages, additional molecules must also be examined to distinguish these cells from other immune cells.

  8. R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation.

    PubMed

    Kocer, Ayhan; Pinheiro, Iris; Pannetier, Maëlle; Renault, Lauriane; Parma, Pietro; Radi, Orietta; Kim, Kyung-Ah; Camerino, Giovanna; Pailhoux, Eric

    2008-04-02

    Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may influence gonad development, we also studied the expression patterns of RSPO2, 3 and 4. Similarly to the mouse, RSPO1 shows a sex-dimorphic expression pattern during goat gonad development with higher levels in the ovaries. Interestingly, the PIS mutation does not seem to influence its level of expression. Moreover, using an RSPO1 specific antibody, the RSPO1 protein was localized in the cortical area of early differentiating ovaries (36 and 40 dpc). This cortical area contains the majority of germ cell that are surrounded by FOXL2 negative somatic cells. At latter stages (50 and 60 dpc) RSPO1 protein remains specifically localized on the germ cell membranes. Interestingly, a time-specific relocation of RSPO1 on the germ cell membrane was noticed, moving from a uniform distribution at 40 dpc to a punctuated staining before and during meiosis (50 and 60 dpc respectively). Interestingly, also RSPO2 and RSPO4 show a sex-dimorphic expression pattern with higher levels in the ovaries. Although RSPO4 was found to be faintly and belatedly expressed, the expression of RSPO2 increases at the crucial 36 dpc stage, as does that of FOXL2. Importantly, RSPO2 expression appears dramatically decreased in XX PIS-/- gonads at all three tested stages (36, 40 and 50 dpc). During goat ovarian development, the pattern of expression of RSPO1 is in agreement with its possible anti-testis function but is not influenced by the PIS mutation. Moreover, our data suggest that RSPO1 may be associated with germ cell development and meiosis. Interestingly, another RSPO gene, RSPO2 shows a sex-dimorphic pattern of expression that is dramatically influenced by the PIS mutation.

  9. R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation

    PubMed Central

    Kocer, Ayhan; Pinheiro, Iris; Pannetier, Maëlle; Renault, Lauriane; Parma, Pietro; Radi, Orietta; Kim, Kyung-Ah; Camerino, Giovanna; Pailhoux, Eric

    2008-01-01

    Background Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may influence gonad development, we also studied the expression patterns of RSPO2, 3 and 4. Results Similarly to the mouse, RSPO1 shows a sex-dimorphic expression pattern during goat gonad development with higher levels in the ovaries. Interestingly, the PIS mutation does not seem to influence its level of expression. Moreover, using an RSPO1 specific antibody, the RSPO1 protein was localized in the cortical area of early differentiating ovaries (36 and 40 dpc). This cortical area contains the majority of germ cell that are surrounded by FOXL2 negative somatic cells. At latter stages (50 and 60 dpc) RSPO1 protein remains specifically localized on the germ cell membranes. Interestingly, a time-specific relocation of RSPO1 on the germ cell membrane was noticed, moving from a uniform distribution at 40 dpc to a punctuated staining before and during meiosis (50 and 60 dpc respectively). Interestingly, also RSPO2 and RSPO4 show a sex-dimorphic expression pattern with higher levels in the ovaries. Although RSPO4 was found to be faintly and belatedly expressed, the expression of RSPO2 increases at the crucial 36 dpc stage, as does that of FOXL2. Importantly, RSPO2 expression appears dramatically decreased in XX PIS-/- gonads at all three tested stages (36, 40 and 50 dpc). Conclusion During goat ovarian development, the pattern of expression of RSPO1 is in agreement with its possible anti-testis function but is not influenced by the PIS mutation. Moreover, our data suggest that RSPO1 may be associated with germ cell development and meiosis. Interestingly, another RSPO gene, RSPO2 shows a sex-dimorphic pattern of expression that is dramatically influenced by the PIS mutation. PMID:18384673

  10. Glutamine Synthetase Is a Genetic Determinant of Cell Type–Specific Glutamine Independence in Breast Epithelia

    PubMed Central

    Kung, Hsiu-Ni; Marks, Jeffrey R.; Chi, Jen-Tsan

    2011-01-01

    Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type–specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS). Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies. PMID:21852960

  11. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    PubMed Central

    Permenter, Matthew G.; Lewis, John A.; Jackson, David A.

    2011-01-01

    Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells. PMID:22110744

  12. Transcriptome-Wide Changes in Chlamydomonas reinhardtii Gene Expression Regulated by Carbon Dioxide and the CO2-Concentrating Mechanism Regulator CIA5/CCM1[W][OA

    PubMed Central

    Fang, Wei; Si, Yaqing; Douglass, Stephen; Casero, David; Merchant, Sabeeha S.; Pellegrini, Matteo; Ladunga, Istvan; Liu, Peng; Spalding, Martin H.

    2012-01-01

    We used RNA sequencing to query the Chlamydomonas reinhardtii transcriptome for regulation by CO2 and by the transcription regulator CIA5 (CCM1). Both CO2 and CIA5 are known to play roles in acclimation to low CO2 and in induction of an essential CO2-concentrating mechanism (CCM), but less is known about their interaction and impact on the whole transcriptome. Our comparison of the transcriptome of a wild type versus a cia5 mutant strain under three different CO2 conditions, high CO2 (5%), low CO2 (0.03 to 0.05%), and very low CO2 (<0.02%), provided an entry into global changes in the gene expression patterns occurring in response to the interaction between CO2 and CIA5. We observed a massive impact of CIA5 and CO2 on the transcriptome, affecting almost 25% of all Chlamydomonas genes, and we discovered an array of gene clusters with distinctive expression patterns that provide insight into the regulatory interaction between CIA5 and CO2. Several individual clusters respond primarily to either CIA5 or CO2, providing access to genes regulated by one factor but decoupled from the other. Three distinct clusters clearly associated with CCM-related genes may represent a rich source of candidates for new CCM components, including a small cluster of genes encoding putative inorganic carbon transporters. PMID:22634760

  13. Three members of the iodothyronine deiodinase family, dio1, dio2 and dio3, are expressed in spatially and temporally specific patterns during metamorphosis of the flounder, Paralichthys olivaceus.

    PubMed

    Itoh, Kae; Watanabe, Kohei; Wu, Xiaoming; Suzuki, Tohru

    2010-07-01

    Flounder metamorphosis, marked by eye migration, lateralized pigmentation, and tissue differentiation in the stomach and skeletal muscle, is stimulated by thyroid hormone (TH). It is known that tri-iodothyronine (T3) produced by iodothyronine deiodinase type-1 (Dio1) from thyroxine (T4) enters the blood, whereas T3 produced by Dio2 penetrates into the nucleus of the Dio2-expressing cells, and then Dio3 inactivates both T4 and T3. To better understand the distinct functions of these three deiodinases in T3 regulation during flounder metamorphosis, we examined the tissue expression patterns of dio1, dio2, and dio3 in larvae of the Japanese flounder, Paralichthys olivaceus, by section in situ hybridization (SISH). We found that each deiodinase is expressed in a spatially and temporally specific pattern. dio1 is expressed in liver parenchymal cells from pro-metamorphosis to early climax, while dio2 is expressed in limited regions of the eyes, tectum, and skeletal muscles from pro-metamorphosis to post-climax. Considering these findings together with reports on other vertebrates, we predict that the liver cells expressing dio1 supply T3 to the blood, and that this systemic T3 synchronizes metamorphosis of differentiating tissues throughout the larval body, whereas the eyes, tectum, and skeletal muscles autonomously produce additional T3 for local tissue differentiation. Finally, dio3 expression is detected in skeletal muscle and gastric gland blastemas, which both undergo marked tissue differentiation at metamorphic climax. We hypothesize that dio3 expression protects these tissues from basal T3 levels early in metamorphosis, ensuring, together with the T3 surge from the liver, the synchronization of tissue differentiation at metamorphic climax.

  14. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    PubMed

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata

    PubMed Central

    2014-01-01

    Background The monophyly of Mandibulata - the division of arthropods uniting pancrustaceans and myriapods - is consistent with several morphological characters, such as the presence of sensory appendages called antennae and the eponymous biting appendage, the mandible. Functional studies have demonstrated that the patterning of the mandible requires the activity of the Hox gene Deformed and the transcription factor cap-n-collar (cnc) in at least two holometabolous insects: the fruit fly Drosophila melanogaster and the beetle Tribolium castaneum. Expression patterns of cnc from two non-holometabolous insects and a millipede have suggested conservation of the labral and mandibular domains within Mandibulata. However, the activity of cnc is unknown in crustaceans and chelicerates, precluding understanding of a complete scenario for the evolution of patterning of this appendage within arthropods. To redress these lacunae, here we investigate the gene expression of the ortholog of cnc in Parhyale hawaiensis, a malacostracan crustacean, and two chelicerates: the harvestman Phalangium opilio, and the scorpion Centruroides sculpturatus. Results In the crustacean P. hawaiensis, the segmental expression of Ph-cnc is the same as that reported previously in hexapods and myriapods, with two distinct head domains in the labrum and the mandibular segment. In contrast, Po-cnc and Cs-cnc expression is not enriched in the labrum of either chelicerate, but instead is expressed at comparable levels in all appendages. In further contrast to mandibulate orthologs, the expression domain of Po-cnc posterior to the labrum is not confined within the expression domain of Po-Dfd. Conclusions Expression data from two chelicerate outgroup taxa suggest that the signature two-domain head expression pattern of cnc evolved at the base of Mandibulata. The observation of the archetypal labral and mandibular segment domains in a crustacean exemplar supports the synapomorphic nature of mandibulate cnc expression. The broader expression of Po-cnc with respect to Po-Dfd in chelicerates further suggests that the regulation of cnc by Dfd was also acquired at the base of Mandibulata. To test this hypothesis, future studies examining panarthropod cnc evolution should investigate expression of the cnc ortholog in arthropod outgroups, such as Onychophora and Tardigrada. PMID:24405788

  16. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Keshishian, H.

    1998-01-01

    The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spatzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spatzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.

  17. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits

    PubMed Central

    Kononenko, Olga; Galatenko, Vladimir; Andersson, Malin; Bazov, Igor; Watanabe, Hiroyuki; Zhou, Xing Wu; Iatsyshyna, Anna; Mityakina, Irina; Yakovleva, Tatiana; Sarkisyan, Daniil; Ponomarev, Igor; Krishtal, Oleg; Marklund, Niklas; Tonevitsky, Alex; Adkins, DeAnna L.; Bakalkin, Georgy

    2017-01-01

    Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.—Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits. PMID:28122917

  18. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis.

    PubMed

    Saudemont, Alexandra; Dray, Nicolas; Hudry, Bruno; Le Gouar, Martine; Vervoort, Michel; Balavoine, Guillaume

    2008-05-15

    NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.

  19. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis

    PubMed Central

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-01-01

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning. DOI: http://dx.doi.org/10.7554/eLife.12845.001 PMID:27063937

  20. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development.

    PubMed

    Zhang, Bin; Liu, Xia; Zhao, Guangyao; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2014-06-01

    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat. © 2014 The Authors. Journal of Integrative Plant Biology Published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  1. Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom

    NASA Astrophysics Data System (ADS)

    Song, Xiaoming; Duan, Weike; Huang, Zhinan; Liu, Gaofeng; Wu, Peng; Liu, Tongkun; Li, Ying; Hou, Xilin

    2015-09-01

    In plants, flowering is the most important transition from vegetative to reproductive growth. The flowering patterns of monocots and eudicots are distinctly different, but few studies have described the evolutionary patterns of the flowering genes in them. In this study, we analysed the evolutionary pattern, duplication and expression level of these genes. The main results were as follows: (i) characterization of flowering genes in monocots and eudicots, including the identification of family-specific, orthologous and collinear genes; (ii) full characterization of CONSTANS-like genes in Brassica rapa (BraCOL genes), the key flowering genes; (iii) exploration of the evolution of COL genes in plant kingdom and construction of the evolutionary pattern of COL genes; (iv) comparative analysis of CO and FT genes between Brassicaceae and Grass, which identified several family-specific amino acids, and revealed that CO and FT protein structures were similar in B. rapa and Arabidopsis but different in rice; and (v) expression analysis of photoperiod pathway-related genes in B. rapa under different photoperiod treatments by RT-qPCR. This analysis will provide resources for understanding the flowering mechanisms and evolutionary pattern of COL genes. In addition, this genome-wide comparative study of COL genes may also provide clues for evolution of other flowering genes.

  2. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

    PubMed

    Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut

    2014-01-01

    Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.

  3. Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.

    PubMed

    Otaki, Joji M

    2012-09-01

    To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.

  4. Computational exploration of cis-regulatory modules in rhythmic expression data using the "Exploration of Distinctive CREs and CRMs" (EDCC) and "CRM Network Generator" (CNG) programs.

    PubMed

    Bekiaris, Pavlos Stephanos; Tekath, Tobias; Staiger, Dorothee; Danisman, Selahattin

    2018-01-01

    Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, "Exploration of Distinctive CREs and CRMs" (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, "CRM Network Generator" (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression.

  5. Computational exploration of cis-regulatory modules in rhythmic expression data using the “Exploration of Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG) programs

    PubMed Central

    Staiger, Dorothee

    2018-01-01

    Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, “Exploration of Distinctive CREs and CRMs” (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, “CRM Network Generator” (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression. PMID:29298348

  6. Three Hierarchies in Skeletal Muscle Fibre Classification Allotype, Isotype and Phenotype

    NASA Technical Reports Server (NTRS)

    Hoh, Joseph F. Y.; Hughes, Suzanne; Hugh, Gregory; Pozgaj, Irene

    1991-01-01

    Immunocytochemical analyses using specific anti-myosin antibodies of mammalian muscle fibers during regeneration, development, and after denervation have revealed two distinct myogenic components determining fiber phenotype. The jaw-closing muscles of the cat contain superfast fibers which express a unique myosin not found in limb muscles. When superfast muscle is transplanted into a limb muscle bed, regenerating myotubes synthesize superfast myosin independent of innervation. Reinnervation by the nerve to a fast muscle leads to the expression of superfast and not fast myosin, while reinnervation by the nerve to a slow muscle leads to the expression of a slow myosin. When limb muscle is transplanted into the jaw muscle bed, only limb myosins are synthesized. Thus jaw and limb muscles belong to distinct allotypes, each with a unique range of phenotype options, the expressions of which may be modulated by the nerve. Primary and secondary myotubes in developing jaw and limb muscles are observed to belong to different categories characterized by different patterns of myosin gene expression. By taking into consideration the pattern of myosins synthesized and the changes in fiber size after denervation, 3 types of primary (fast, slow, and intermediate) fibers can be distinguished in rat fast limb muscles. All primaries synthesize slow myosin soon after their formation, but this is withdrawn in fast and intermediate primaries at different times. After neonatal denervation, slow and intermediate primaries express slow primaries hypertrophy with other fibers atrophy. In the mature rat, the number of slow fibers in the EDL is less than the number of slow primaries. Upon denervation, hypertrophic slow fibers matching the number and topographic distribution of slow primaries appear, suggesting that a subpopulation of the slow primaries acquire the fast phenotype during adult life, but reveal their original identity as slow primaries in response to denervation by hypertrophying and synthesizing slow myosin. It is proposed that within each muscle allotype, the various isotypes of primary and secondary fibers are myogenically determined, and are derived from different lineage of myoblasts.

  7. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium

    PubMed Central

    Yang, Fengxi; Zhu, Genfa

    2015-01-01

    Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL) unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms underlying floral patterning of Cymbidium and supports a valuable resource for molecular breeding of the orchid plant. PMID:26580566

  8. Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa.

    PubMed

    Chao, Nan; Liu, Shu-Xin; Liu, Bing-Mei; Li, Ning; Jiang, Xiang-Ning; Gai, Ying

    2014-11-01

    Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.

  9. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity

    PubMed Central

    2013-01-01

    Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560

  10. The anatomy of the caudal zona incerta in rodents and primates

    PubMed Central

    Watson, Charles; Lind, Christopher R P; Thomas, Meghan G

    2014-01-01

    The caudal zona incerta is the target of a recent modification of established procedures for deep brain stimulation (DBS) for Parkinson's disease and tremor. The caudal zona incerta contains a number of neuronal populations that are distinct in terms of their cytoarchitecture, connections, and pattern of immunomarkers and is located at a position where a number of major tracts converge before turning toward their final destination in the forebrain. However, it is not clear which of the anatomical features of the region are related to its value as a target for DBS. This paper has tried to identify features that distinguish the caudal zona incerta of rodents (mouse and rat) and primates (marmoset, rhesus monkey, and human) from the remainder of the zona incerta. We studied cytoarchitecture, anatomical relationships, the pattern of immunomarkers, and gene expression in both of these areas. We found that the caudal zona incerta has a number of histological and gene expression characteristics that distinguish it from the other subdivisions of the zona incerta. Of particular note are the sparse population of GABA neurons and the small but distinctive population of calbindin neurons. We hope that a clearer appreciation of the anatomy of the region will in the end assist the interpretation of cases in which DBS is used in human patients. PMID:24138151

  11. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner

    PubMed Central

    Pai, Vaibhav P.; Willocq, Valerie; Pitcairn, Emily J.; Lemire, Joan M.; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A.

    2017-01-01

    ABSTRACT Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. PMID:28818840

  12. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner.

    PubMed

    Pai, Vaibhav P; Willocq, Valerie; Pitcairn, Emily J; Lemire, Joan M; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A; Levin, Michael

    2017-10-15

    Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels ( I h currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal , Lefty , and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. © 2017. Published by The Company of Biologists Ltd.

  13. CLOCK expression identifies developing circadian oscillator neurons in the brains of Drosophila embryos.

    PubMed

    Houl, Jerry H; Ng, Fanny; Taylor, Pete; Hardin, Paul E

    2008-12-18

    The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development. A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic stage (ES) 16, and this CLK expression pattern persists through larval development. PER then accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17, consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER expression in cells that co-express PER and CLK is eliminated. These data demonstrate that brain oscillator neurons begin development during embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors are not activated until the end of embryogenesis, and suggest that PER functions in a different capacity before oscillator cell development is initiated.

  14. spiel ohne grenzen/pou2 is required for zebrafish hindbrain segmentation.

    PubMed

    Hauptmann, Giselbert; Belting, Heinz-Georg; Wolke, Uta; Lunde, Karen; Söll, Iris; Abdelilah-Seyfried, Salim; Prince, Victoria; Driever, Wolfgang

    2002-04-01

    Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.

  15. Homo sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity.

    PubMed

    Dweep, Harsh; Kubikova, Nada; Gretz, Norbert; Voskarides, Konstantinos; Felekkis, Kyriacos

    2015-07-16

    Gene expression regulation is a complex and highly organized process involving a variety of genomic factors. It is widely accepted that differences in gene expression can contribute to the phenotypic variability between species, and that their interpretation can aid in the understanding of the physiologic variability. CNVs and miRNAs are two major players in the regulation of expression plasticity and may be responsible for the unique phenotypic characteristics observed in different lineages. We have previously demonstrated that a close interaction between these two genomic elements may have contributed to the regulation of gene expression during evolution. This work presents the molecular interactions between CNV and non CNV genes with miRNAs and other genomic elements in eight different species. A comprehensive analysis of these interactions indicates a unique nature of human CNV genes regulation as compared to other species. By using genes with short 3' UTR that abolish the "canonical" miRNA-dependent regulation, as a model, we demonstrate a distinct and tight regulation of human genes that might explain some of the unique features of human physiology. In addition, comparison of gene expression regulation between species indicated that there is a significant difference between humans and mice possibly questioning the effectiveness of the latest as experimental models of human diseases.

  16. Homo sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity

    PubMed Central

    Dweep, Harsh; Kubikova, Nada; Gretz, Norbert; Voskarides, Konstantinos; Felekkis, Kyriacos

    2015-01-01

    Gene expression regulation is a complex and highly organized process involving a variety of genomic factors. It is widely accepted that differences in gene expression can contribute to the phenotypic variability between species, and that their interpretation can aid in the understanding of the physiologic variability. CNVs and miRNAs are two major players in the regulation of expression plasticity and may be responsible for the unique phenotypic characteristics observed in different lineages. We have previously demonstrated that a close interaction between these two genomic elements may have contributed to the regulation of gene expression during evolution. This work presents the molecular interactions between CNV and non CNV genes with miRNAs and other genomic elements in eight different species. A comprehensive analysis of these interactions indicates a unique nature of human CNV genes regulation as compared to other species. By using genes with short 3′ UTR that abolish the “canonical” miRNA-dependent regulation, as a model, we demonstrate a distinct and tight regulation of human genes that might explain some of the unique features of human physiology. In addition, comparison of gene expression regulation between species indicated that there is a significant difference between humans and mice possibly questioning the effectiveness of the latest as experimental models of human diseases. PMID:26178010

  17. Sessile serrated adenomas with dysplasia: morphological patterns and correlations with MLH1 immunohistochemistry.

    PubMed

    Liu, Cheng; Walker, Neal I; Leggett, Barbara A; Whitehall, Vicki Lj; Bettington, Mark L; Rosty, Christophe

    2017-12-01

    Sessile serrated adenomas are the precursor polyp of approximately 20% of colorectal carcinomas. Sessile serrated adenomas with dysplasia are rarely encountered and represent an intermediate step to malignant progression, frequently associated with loss of MLH1 expression. Accurate diagnosis of these lesions is important to facilitate appropriate surveillance, particularly because progression from dysplasia to carcinoma can be rapid. The current World Health Organization classification describes two main patterns of dysplasia occurring in sessile serrated adenomas, namely, serrated and conventional. However, this may not adequately reflect the spectrum of changes seen by pathologists in routine practice. Furthermore, subtle patterns of dysplasia that are nevertheless associated with loss of MLH1 expression are not encompassed in this classification. We performed a morphological analysis of 266 sessile serrated adenomas with dysplasia with concurrent MLH1 immunohistochemistry with the aims of better defining the spectrum of dysplasia occurring in these lesions and correlating dysplasia patterns with MLH1 expression. We found that dysplasia can be divided morphologically into four major patterns, comprising minimal deviation (19%), serrated (12%), adenomatous (8%) and not otherwise specified (79%) groups. Minimal deviation dysplasia is defined by minor architectural and cytological changes that typically requires loss of MLH1 immunohistochemical expression to support the diagnosis. Serrated dysplasia and adenomatous dysplasia have distinctive histological features and are less frequently associated with loss of MLH1 expression (13 and 5%, respectively). Finally, dysplasia not otherwise specified encompasses most cases and shows a diverse range of morphological changes that do not fall into the other subgroups and are frequently associated with loss of MLH1 expression (83%). This morphological classification of sessile serrated adenomas with dysplasia may represent an improvement on the current description as it correlates with the underlying mismatch repair protein status of the polyps and better highlights the range of morphologies seen by pathologists.

  18. Apple miRNAs and tasiRNAs with novel regulatory networks

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. Results We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. Conclusions Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family. PMID:22704043

  19. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.

  20. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  1. Molecular profiling of tumor progression in head and neck cancer.

    PubMed

    Belbin, Thomas J; Singh, Bhuvanesh; Smith, Richard V; Socci, Nicholas D; Wreesmann, Volkert B; Sanchez-Carbayo, Marta; Masterson, Jessica; Patel, Snehal; Cordon-Cardo, Carlos; Prystowsky, Michael B; Childs, Geoffrey

    2005-01-01

    To assess gene expression changes associated with tumor progression in patients with squamous cell carcinoma of the oral cavity. A microarray containing 17 840 complementary DNA clones was used to measure gene expression changes associated with tumor progression in 9 patients with squamous cell carcinoma of the oral cavity. Samples were taken for analysis from the primary tumor, nodal metastasis, and "normal" mucosa from the patients' oral cavity. Tertiary care facility. Patients Nine patients with stage III or stage IV untreated oral cavity squamous cell carcinoma. Our analysis to categorize genes based on their expression patterns has identified 140 genes that consistently increased in expression during progression from normal tissue to invasive tumor and subsequently to metastatic node (in at least 4 of the 9 cases studied). A similar list of 94 genes has been identified that decreased in expression during tumor progression and metastasis. We validated this gene discovery approach by selecting moesin (a member of the ezrin/radixin/moesin [ERM] family of cytoskeletal proteins) and one of the genes that consistently increased in expression during tumor progression for subsequent immunohistochemical analysis using a head and neck squamous cell carcinoma tissue array. A distinct pattern of gene expression, with progressive up- or down-regulation of expression, is found during the progression from histologically normal tissue to primary carcinoma and to nodal metastasis.

  2. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    PubMed

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  3. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat

    PubMed Central

    2014-01-01

    Background Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. Results We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. Conclusions We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution. PMID:24726045

  4. Spectral biclustering of microarray data: coclustering genes and conditions.

    PubMed

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T; Gerstein, Mark

    2003-04-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data).

  5. Characterization of the sequence and expression pattern of LFY homologues from dogwood species (Cornus) with divergent inflorescence architectures

    PubMed Central

    Liu, Juan; Franks, Robert G.; Feng, Chun-Miao; Liu, Xiang; Fu, Cheng-Xin;  (Jenny) Xiang, Qiu-Yun

    2013-01-01

    Background and Aims LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. Methods Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT–PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. Key Results cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. Conclusions The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories. PMID:24052556

  6. Characterization of the sequence and expression pattern of LFY homologues from dogwood species (Cornus) with divergent inflorescence architectures.

    PubMed

    Liu, Juan; Franks, Robert G; Feng, Chun-Miao; Liu, Xiang; Fu, Cheng-Xin; Jenny Xiang, Qiu-Yun

    2013-11-01

    LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT-PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories.

  7. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs).

    PubMed

    Kandasamy, Majury; Roll, Lars; Langenstroth, Daniel; Brüstle, Oliver; Faissner, Andreas

    2017-06-01

    Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487 LeX , 5750 LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487 LeX -, 5750 LeX - and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs FGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs FGF-2/EGF . Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487 LeX , 5750 LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.

  8. Four Novel Cellulose Synthase (CESA) Genes from Birch (Betula platyphylla Suk.) Involved in Primary and Secondary Cell Wall Biosynthesis

    PubMed Central

    Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping

    2012-01-01

    Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, −4, −7 and −8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula. PMID:23202892

  9. Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression.

    PubMed

    Singh, Chandrajeet; Shyanti, Ritis K; Singh, Virendra; Kale, Raosaheb K; Mishra, Jai P N; Singh, Rana P

    2018-05-05

    Integrins are the major cell adhesion glycoproteins involved in cell-extracellular matrix (ECM) interaction and metastasis. Further, glycosylation on integrin is necessary for its proper folding and functionality. Herein, differential expression of integrins viz., αvβ3 and αvβ6 was examined in MDA-MB-231, MDA-MB-468 and MCF-10A cells, which signify three different stages of breast cancer development from highly metastatic to non-tumorigenic stage. The expression of αvβ3 and αvβ6 integrins at mRNA and protein levels was observed in all three cell lines and the results displayed a distinct pattern of expression. Highly metastatic cells showed enhanced expression of αvβ3 than moderate metastatic and non-tumorigenic cells. The scenario was reversed in case of αvβ6 integrin, which was strongly expressed in moderate metastatic and non-tumorigenic cells. N-glycosylation of αvβ3 and αvβ6 integrins is required for the attachment of cells to ECM proteins like fibronectin. The cell adhesion properties were found to be different in these cancer cells with respect to the type of integrins expressed. The results testify that αvβ3 integrin in highly metastatic cells, αvβ6 integrin in both moderate metastatic and non-tumorigenic cells play an important role in cell adhesion. The investigation typify that N-glycosylation on integrins is also necessary for cell-ECM interaction. Further, glycosylation inhibition by Swainsonine is found to be more detrimental to invasive property of moderate metastatic cells. Conclusively, types of integrins expressed as well as their N-glycosylation pattern alter during the course of breast cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock KW; D Honys; JM. Ward

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. About 1269 genes encoding classified transporters were collected from themore » Arabidopsis thaliana genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3 and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9); while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, were developmentally-regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::GUS analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.« less

  11. Integrating membrane transport with male gametophyte development and function through transcriptomics.

    PubMed

    Bock, Kevin W; Honys, David; Ward, John M; Padmanaban, Senthilkumar; Nawrocki, Eric P; Hirschi, Kendal D; Twell, David; Sze, Heven

    2006-04-01

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::beta-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.

  12. Temporomandibular joint formation requires two distinct hedgehog-dependent steps.

    PubMed

    Purcell, Patricia; Joo, Brian W; Hu, Jimmy K; Tran, Pamela V; Calicchio, Monica L; O'Connell, Daniel J; Maas, Richard L; Tabin, Clifford J

    2009-10-27

    We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk-condyle separation and provide a molecular framework for future studies of the TMJ.

  13. Temporomandibular joint formation requires two distinct hedgehog-dependent steps

    PubMed Central

    Purcell, Patricia; Joo, Brian W.; Hu, Jimmy K.; Tran, Pamela V.; Calicchio, Monica L.; O'Connell, Daniel J.; Maas, Richard L.; Tabin, Clifford J.

    2009-01-01

    We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk–condyle separation and provide a molecular framework for future studies of the TMJ. PMID:19815519

  14. Complex Degradation Processes Lead to Non-Exponential Decay Patterns and Age-Dependent Decay Rates of Messenger RNA

    PubMed Central

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-01-01

    Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982

  15. Molecular basis of floral petaloidy: insights from androecia of Canna indica

    PubMed Central

    Fu, Qian; Liu, Huanfang; Almeida, Ana M. R.; Kuang, Yanfeng; Zou, Pu; Liao, Jingping

    2014-01-01

    Floral organs that take on the characteristics of petals can occur in all whorls of the monocot order Zingiberales. In Canna indica, the most ornamental or ‘petaloid’ parts of the flowers are of androecial origin and are considered staminodes. However, the precise nature of these petaloid organs is yet to be determined. In order to gain a better understanding of the genetic basis of androecial identity, a molecular investigation of B- and C-class genes was carried out. Two MADS-box genes GLOBOSA (GLO) and AGAMOUS (AG) were isolated from young inflorescences of C. indica by 3′ rapid amplification of cDNA ends polymerase chain reaction (3′-RACE PCR). Sequence characterization and phylogenetic analyses show that CiGLO and CiAG belong to the B- and C-class MADS-box gene family, respectively. CiAG is expressed in petaloid staminodes, the labellum, the fertile stamen and carpels. CiGLO is expressed in petals, petaloid staminodes, the labellum, the fertile stamen and carpels. Expression patterns in mature tissues of CiGLO and CiAG suggest that petaloid staminodes and the labellum are of androecial identity, in agreement with their position within the flower and with described Arabidopsis thaliana expression patterns. Although B- and C-class genes are important components of androecial determination, their expression patterns are not sufficient to explain the distinct morphology observed in staminodes and the fertile stamen in C. indica. PMID:24876297

  16. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K.; Chubb, C.; Huberman, E.

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteinsmore » were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.« less

  17. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  18. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma

    DOE PAGES

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han; ...

    2017-06-30

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  19. Neutrality and Robustness in Evo-Devo: Emergence of Lateral Inhibition

    PubMed Central

    Munteanu, Andreea; Solé, Ricard V.

    2008-01-01

    Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype) into a spatial gene expression pattern (phenotype) providing the positional information for the correct unfolding of the organism. The nature and evolutionary implications of genotype–phenotype mapping still remain key topics in evolutionary developmental biology (evo-devo). We have explored here issues of neutrality, robustness, and diversity in evo-devo by means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles. PMID:19023404

  20. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages.

    PubMed

    Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D

    2005-08-01

    Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.

  1. Identification of the homolog of cell-counting factor in the cellular slime mold Dictyostelium discoideum.

    PubMed

    Okuwa, Takako; Katayama, Takahiro; Takano, Akinori; Yasukawa, Hiroo

    2002-10-01

    Genes for the cell-counting factors in Dictyostelium discoideum, countin and countin2, are considered to control the size of the multicellular structure of this organism. A novel gene, countin3, that is homologous to countin and countin2 genes (49 and 39% identity in amino acid sequence, respectively) was identified in the D. discoideum genome. The expression of countin3 was observed in the vegetatively growing cells, decreased in the aggregating stage, increased in the mid-developmental stage and decreased again in subsequent stages. This expression pattern is different from that of countin and countin2. The distinct expression kinetics of three genes suggests that they would have unique roles in size control of D. discoideum.

  2. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells.

    PubMed

    Veazey, Kylee J; Golding, Michael C

    2011-01-01

    Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified mRNAs, offers a reliable method to assess differing patterns of gene expression between the three founding stem cell lineages present within the mammalian preimplantation embryo.

  3. Multivariate pattern classification reveals autonomic and experiential representations of discrete emotions.

    PubMed

    Kragel, Philip A; Labar, Kevin S

    2013-08-01

    Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Multivariate Pattern Classification Reveals Autonomic and Experiential Representations of Discrete Emotions

    PubMed Central

    Kragel, Philip A.; LaBar, Kevin S.

    2013-01-01

    Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PMID:23527508

  5. Lineage-specific evolution of cnidarian Wnt ligands.

    PubMed

    Hensel, Katrin; Lotan, Tamar; Sanders, Steve M; Cartwright, Paulyn; Frank, Uri

    2014-09-01

    We have studied the evolution of Wnt genes in cnidarians and the expression pattern of all Wnt ligands in the hydrozoan Hydractinia echinata. Current views favor a scenario in which 12 Wnt sub-families were jointly inherited by cnidarians and bilaterians from their last common ancestor. Our phylogenetic analyses clustered all medusozoan genes in distinct, well-supported clades, but many orthologous relationships between medusozoan Wnts and anthozoan and bilaterian Wnt genes were poorly supported. Only seven anthozoan genes, Wnt2, Wnt4, Wnt5, Wnt6, Wnt 10, Wnt11, and Wnt16 were recovered with strong support with bilaterian genes and of those, only the Wnt2, Wnt5, Wnt11, and Wnt16 clades also included medusozoan genes. Although medusozoan Wnt8 genes clustered with anthozoan and bilaterian genes, this was not well supported. In situ hybridization studies revealed poor conservation of expression patterns of putative Wnt orthologs within Cnidaria. In polyps, only Wnt1, Wnt3, and Wnt7 were expressed at the same position in the studied cnidarian models Hydra, Hydractinia, and Nematostella. Different expression patterns are consistent with divergent functions. Our data do not fully support previous assertions regarding Wnt gene homology, and suggest a more complex history of Wnt family genes than previously suggested. This includes high rates of sequence divergence and lineage-specific duplications of Wnt genes within medusozoans, followed by functional divergence over evolutionary time scales. © 2014 Wiley Periodicals, Inc.

  6. The Regulation of Cytokine Networks in Hippocampal CA1 Differentiates Extinction from Those Required for the Maintenance of Contextual Fear Memory after Recall

    PubMed Central

    Scholz, Birger; Doidge, Amie N.; Barnes, Philip; Hall, Jeremy; Wilkinson, Lawrence S.; Thomas, Kerrie L.

    2016-01-01

    We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity–associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families’ characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory. PMID:27224427

  7. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora

    PubMed Central

    Reyes-Bermudez, Alejandro; Lin, Zhiyi; Hayward, David C; Miller, David J; Ball, Eldon E

    2009-01-01

    Background The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora. Results One of the Acropora genes (Amgalaxin) encodes a clear galaxin ortholog, while the others (Amgalaxin-like 1 and Amgalaxin-like 2) encode larger and more divergent proteins. All three proteins are predicted to be extracellular and share common structural features, most notably the presence of repetitive motifs containing dicysteine residues. In situ hybridization reveals distinct, but partially overlapping, spatial expression of the genes in patterns consistent with distinct roles in calcification. Both of the Amgalaxin-like genes are expressed exclusively in the early stages of calcification, while Amgalaxin continues to be expressed in the adult, consistent with the situation in the coral Galaxea. Conclusion Comparisons with molluscs suggest functional convergence in the two groups; lustrin A/pearlin proteins may be the mollusc counterparts of galaxin, whereas the galaxin-like proteins combine characteristics of two distinct proteins involved in mollusc calcification. Database searches indicate that, although sequences with high similarity to the galaxins are restricted to the Scleractinia, more divergent members of this protein family are present in other cnidarians and some other metazoans. We suggest that ancestral galaxins may have been secondarily recruited to roles in calcification in the Triassic, when the Scleractinia first appeared. Understanding the evolution of the broader galaxin family will require wider sampling and expression analysis in a range of cnidarians and other animals. PMID:19638240

  8. Natural language indicators of differential gene regulation in the human immune system.

    PubMed

    Mehl, Matthias R; Raison, Charles L; Pace, Thaddeus W W; Arevalo, Jesusa M G; Cole, Steve W

    2017-11-21

    Adverse social conditions have been linked to a conserved transcriptional response to adversity (CTRA) in circulating leukocytes that may contribute to social gradients in disease. However, the CNS mechanisms involved remain obscure, in part because CTRA gene-expression profiles often track external social-environmental variables more closely than they do self-reported internal affective states such as stress, depression, or anxiety. This study examined the possibility that variations in patterns of natural language use might provide more sensitive indicators of the automatic threat-detection and -response systems that proximally regulate autonomic induction of the CTRA. In 22,627 audio samples of natural speech sampled from the daily interactions of 143 healthy adults, both total language output and patterns of function-word use covaried with CTRA gene expression. These language features predicted CTRA gene expression substantially better than did conventional self-report measures of stress, depression, and anxiety and did so independently of demographic and behavioral factors (age, sex, race, smoking, body mass index) and leukocyte subset distributions. This predictive relationship held when language and gene expression were sampled more than a week apart, suggesting that associations reflect stable individual differences or chronic life circumstances. Given the observed relationship between personal expression and gene expression, patterns of natural language use may provide a useful behavioral indicator of nonconsciously evaluated well-being (implicit safety vs. threat) that is distinct from conscious affective experience and more closely tracks the neurobiological processes involved in peripheral gene regulation. Copyright © 2017 the Author(s). Published by PNAS.

  9. Raman intensity and vibrational modes of armchair CNTs

    NASA Astrophysics Data System (ADS)

    Hur, Jaewoong; Stuart, Steven J.

    2017-07-01

    Raman intensity changes and frequency patterns have been studied using the various armchair (n, n) to understand the variations of bond polarizability, in regard to changing diameters, lengths, and the number of atoms in the (n, n). The Raman intensity trends of the (n, n) are validated by those of Cn isomers. For frequency trends, similar frequency patterns and frequency inward shifts for the (n, n) are characterized. Also, VDOS trends of the (n, n) expressing Raman modes are interpreted. The decomposition of vibrational modes in the (n, n) into radial, longitudinal, and tangential mode is beneficially used to recognize the distinct characteristics of vibrational modes.

  10. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and highmore » (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.« less

  11. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae.

    PubMed

    Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2014-01-01

    Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.

  12. Specific Duplication and Dorsoventrally Asymmetric Expression Patterns of Cycloidea-Like Genes in Zygomorphic Species of Ranunculaceae

    PubMed Central

    Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2014-01-01

    Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture. PMID:24752428

  13. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells

    PubMed Central

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N.; Glenn, Sean T.; Liu, Song; Trump, Donald L.; Johnson, Candace S.

    2014-01-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. MiRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253 J and 253J-BV cells express endogenous vitamin D receptor (VDR) which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253 J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. PMID:25263658

  14. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    PubMed

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Role of IKK-alpha in EGFR Signaling Regulation

    DTIC Science & Technology

    2013-09-01

    correlated with IKKα expression using CCLE. Nonsupervised hierarchical clustering analysis was performed based on Erbb2, ERα ( ESR1 ), PR (PgR...signature (ERBB2, ESR1 , and PGR) genes. A subset of 4 genes showing distinct expression pattern in TNBC versus non-TNBC cell lines is shown in the...AKT2 AKT3 CDH1 MYB CDH2 VIM ERBB2 ESR1 PGR H C C 11 87 C A L- 85 -1 H C C 11 43 H D Q -P 1 C A L- 51 H C C 38 H C C 21 57 C A L- 12 0 B T- 54 9 H C C

  16. Spatially Restricted and Developmentally Dynamic Expression of Engrailed Genes in Multiple Cerebellar Cell Types

    PubMed Central

    Wilson, Sandra L.; Kalinovsky, Anna; Orvis, Grant D.

    2011-01-01

    The cerebellum is a highly organized structure partitioned into lobules along the anterior–posterior (A-P) axis and into striped molecular domains along the medial–lateral (M-L) axis. The Engrailed (En) homeobox genes are required for patterning the morphological and molecular domains along both axes, as well as for the establishment of the normal afferent topography required to generate a fully functional cerebellum. As a means to understand how the En genes regulate multiple levels of cerebellum construction, we characterized En1 and En2 expression around birth and at postnatal day (P)21 during the period when the cerebellum undergoes a remarkable transformation from a smooth ovoid structure to a highly foliated structure. We show that both En1 and En2 are expressed in many neuronal cell types in the cerebellum, and expression persists until at least P21. En1 and En2 expression, however, undergoes profound changes in their cellular and spatial distributions between embryonic stages and P21, and their expression domains become largely distinct. Comparison of the distribution of En-expressing Purkinje cells relative to early- and late-onset Purkinje cell M-L stripe proteins revealed that although En1- and En2-expressing Purkinje cell domains do not strictly align with those of ZEBRINII at P21, a clear pattern exists that is most evident at E17.5 by an inverse correlation between the level of En2 expression and PLCβ4 and EPHA4. PMID:21431469

  17. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  18. Dominance and Sexual Dimorphism Pervade the Salix purpurea L. Transcriptome

    DOE PAGES

    Carlson, Craig H.; Choi, Yongwook; Chan, Agnes P.; ...

    2017-09-01

    The heritability of gene expression is critical in understanding heterosis and is dependent on allele-specific regulation by local and remote factors in the genome. We used RNA-Seq to test whether variation in gene expression among F 1 and F 2 intraspecific Salix purpurea progeny is attributable to cis- and trans-regulatory divergence. We assessed the mode of inheritance based on gene expression levels and allele-specific expression for F1 and F2 intraspecific progeny in two distinct tissue types: shoot tip and stem internode. In addition, we explored sexually dimorphic patterns of inheritance and regulatory divergence among F 1 progeny individuals. We showmore » that in S. purpurea intraspecific crosses, gene expression inheritance largely exhibits a maternal dominant pattern, regardless of tissue type or pedigree. A significantly greater number of cis- and trans-regulated genes coincided with upregulation of the maternal parent allele in the progeny, irrespective of the magnitude, whereas the paternal allele was higher expressed for genes showing cis × trans or compensatory regulation. Importantly, consistent with previous genetic mapping results for sex in shrub willow, we have delimited sex-biased gene expression to a 2 Mb pericentromeric region on S. purpurea chr15 and further refined the sex determination region. Lastly, altogether, our results offer insight into the inheritance of gene expression in S. purpurea as well as evidence of sexually dimorphic expression which may have contributed to the evolution of dioecy in Salix.« less

  19. Expression of the ADHD candidate gene Diras2 in the brain.

    PubMed

    Grünewald, Lena; Becker, Nils; Camphausen, Annika; O'Leary, Aet; Lesch, Klaus-Peter; Freudenberg, Florian; Reif, Andreas

    2018-06-01

    The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.

  20. Dominance and Sexual Dimorphism Pervade the Salix purpurea L. Transcriptome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Craig H.; Choi, Yongwook; Chan, Agnes P.

    The heritability of gene expression is critical in understanding heterosis and is dependent on allele-specific regulation by local and remote factors in the genome. We used RNA-Seq to test whether variation in gene expression among F 1 and F 2 intraspecific Salix purpurea progeny is attributable to cis- and trans-regulatory divergence. We assessed the mode of inheritance based on gene expression levels and allele-specific expression for F1 and F2 intraspecific progeny in two distinct tissue types: shoot tip and stem internode. In addition, we explored sexually dimorphic patterns of inheritance and regulatory divergence among F 1 progeny individuals. We showmore » that in S. purpurea intraspecific crosses, gene expression inheritance largely exhibits a maternal dominant pattern, regardless of tissue type or pedigree. A significantly greater number of cis- and trans-regulated genes coincided with upregulation of the maternal parent allele in the progeny, irrespective of the magnitude, whereas the paternal allele was higher expressed for genes showing cis × trans or compensatory regulation. Importantly, consistent with previous genetic mapping results for sex in shrub willow, we have delimited sex-biased gene expression to a 2 Mb pericentromeric region on S. purpurea chr15 and further refined the sex determination region. Lastly, altogether, our results offer insight into the inheritance of gene expression in S. purpurea as well as evidence of sexually dimorphic expression which may have contributed to the evolution of dioecy in Salix.« less

  1. Overlapping but distinct topology for zebrafish V2R-like olfactory receptors reminiscent of odorant receptor spatial expression zones.

    PubMed

    Ahuja, Gaurav; Reichel, Vera; Kowatschew, Daniel; Syed, Adnan S; Kotagiri, Aswani Kumar; Oka, Yuichiro; Weth, Franco; Korsching, Sigrun I

    2018-05-23

    The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and their expression zones intermingle with those of odorant receptor genes. Thus, distinctly different expression zones for individual receptor genes constitute a general feature shared by teleost and tetrapod V2R/OlfC and odorant receptor families alike.

  2. Identification of a spatially specific enhancer element in the chicken Msx-2 gene that regulates its expression in the apical ectodermal ridge of the developing limb buds of transgenic mice.

    PubMed

    Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B

    1995-07-01

    Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.

  3. Hodgkin's-like lymphoma in a ferret (Mustela putorius furo).

    PubMed

    Matsumoto, Isao; Uchida, Kazuyuki; Chambers, James Kenn; Nibe, Kazumi; Sato, Yu; Hamasu, Taku; Nakayama, Hiroyuki

    2017-10-07

    A 7-year-old castrated male ferret developed unilateral cervical lymphadenomegaly over a 1-month period. Histological examination revealed proliferation of tumor cells in a diffuse and partially nodular pattern. The tumor cells were predominantly Hodgkin cells and binucleated Reed-Sternberg cells, characterized by abundant, clear, vacuolated cytoplasm, pleomorphic, ovoid nuclei with thick nuclear membranes and distinct nucleoli. Multinucleated cells, resembling lymphocytic and histiocytic (L&H) cells, were also observed. Immunohistochemically, the tumor cells expressed Pax-5, BLA-36 and vimentin. A small population of the tumor cells expressed CD20. This case showed proliferation of Hodgkin/Reed-Sternberg cells in conjunction with L&H cells that were histologically analogous to feline Hodgkin's-like lymphoma. However, Pax-5 and BLA-36 expression along with rare CD20 expression were consistent with classical Hodgkin's lymphoma in humans.

  4. Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis

    PubMed Central

    Voelckel, Claudia; Borevitz, Justin O.; Kramer, Elena M.; Hodges, Scott A.

    2010-01-01

    Background The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels. Methodology/Principal Findings We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource). Conclusions/Significance Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology. PMID:20352114

  5. T-lymphocyte cytokine mRNA expression in cystic echinococcosis.

    PubMed

    Fauser, S; Kern, P

    1997-04-01

    In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.

  6. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death.

    PubMed

    Graham, A; Koentges, G; Lumsden, A

    1996-01-01

    During development of the vertebrate head neural crest cells emigrate from the hindbrain and populate the branchial arches, giving rise to distinct skeletal elements and muscle connective tissues in each arch. The production of neural crest from the hindbrain is discontinuous and crest cells destined for different arches, carrying different positional cues, are separated by regions of apoptosis centered on rhombomeres (r) 3 and r5. This cell death program is under the interactive control of the neighboring hindbrain segments. Both r3 and r5 produce large numbers of crest cells when freed from their flanking rhombomere, but when conjoined with their neighbor the cell death program is restored. Two key components of this program are Bmp 4 and msx-2, both of which are expressed in the apoptotic foci of r3 and r5 and which are also regulated by neighbor interactions. Importantly, the addition of recombinant Bmp 4 to isolated cultures of r3 and r5 induces the expression of Bmp 4 and msx-2 and restores the cell death program. This early neural crest segregation is maintained during development and it has profound effects upon the final craniofacial pattern. Even though crest cells from different axial origins will contribute to compound skeletal elements, these distinct populations do not intermingle. Furthermore head muscle connective tissues are exclusively anchored to skeletal domains arising from neural crest from the same axial level. Thus the discontinuous production of neural crest sculpts the crest into nonmixing streams and consequently ensures the fidelity of patterning.

  7. CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development.

    PubMed

    Ventura, Tomer; Bose, Utpal; Fitzgibbon, Quinn P; Smith, Gregory G; Shaw, P Nicholas; Cummins, Scott F; Elizur, Abigail

    2017-07-01

    Cytochrome P450s (CYP450s) are a rapidly evolving family of enzymes, making it difficult to identify bona fide orthologs with notable lineage-specific exceptions. In ecdysozoans, a small number of the most conserved orthologs include enzymes which metabolize ecdysteroids. Ecdysone pathway components were recently shown in a decapod crustacean but with a notable absence of shade, which is important for converting ecdysone to its active form, 20-hydroxyecdysone (20HE), suggesting that another CYP450 performs a similar function in crustaceans. A CYPome temporal expression analysis throughout metamorphosis performed in this research highlights several un-annotated CYP450s displaying differential expression and provides information into expression patterns of annotated CYP450s. Using the expression patterns in the Eastern spiny lobster Sagmariasus verreauxi, followed by 3D modelling and finally activity assays in vitro, we were able to conclude that a group of CYP450s, conserved across decapod crustaceans, function as the insect shade. To emphasize the fact that these genes share the function with shade but are phylogenetically distinct, we name this enzyme system Shed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Differential expression of CK20, β-catenin, and MUC2/5AC/6 in Lynch syndrome and familial colorectal cancer type X.

    PubMed

    Haraldsson, Stefan; Klarskov, Louise; Nilbert, Mef; Bernstein, Inge; Bonde, Jesper; Holck, Susanne

    2017-01-01

    Hereditary non-polyposis colorectal cancer comprises Lynch syndrome and familial colorectal cancer type X (FCCTX). Differences in genetics, demographics and histopathology have been extensively studied. The purpose of this study is to characterize their immunoprofile of markers other than MMR proteins. We compared the expression patterns of cytokeratins (CK7 and CK20), mucins (MUC2/5 AC/6), CDX2 and β-catenin in Lynch syndrome and FCCTX. Differences were identified for CK20 and nuclear β-catenin, which were significantly more often expressed in FCCTX than in Lynch syndrome ( p  < 0.001), whereas MUC2, MUC5AC and MUC6 were overexpressed in Lynch syndrome tumors compared with FCCTX tumors ( p  = 0.001, < 0.01, and < 0.001, respectively). We observed no differences in the expression patterns of CK7 and CDX2. In summary, we identified significant differences in the immunoprofiles of colorectal cancers linked to FCCTX and Lynch syndrome with a more sporadic-like profile in the former group and a more distinct profile with frequent MUC6 positivity in the latter group.

  9. Multiple, Distinct Isoforms of Sucrose Synthase in Pea1

    PubMed Central

    Barratt, D.H. Paul; Barber, Lorraine; Kruger, Nicholas J.; Smith, Alison M.; Wang, Trevor L.; Martin, Cathie

    2001-01-01

    Genes encoding three isoforms of sucrose synthase (Sus1, Sus2, and Sus3) have been cloned from pea (Pisum sativum). The genes have distinct patterns of expression in different organs of the plant, and during organ development. Studies of the isoforms expressed as recombinant proteins in Escherichia coli show that they differ in kinetic properties. Although not of great magnitude, the differences in properties are consistent with some differentiation of physiological function between the isoforms. Evidence for differentiation of function in vivo comes from the phenotypes of rug4 mutants of pea, which carry mutations in the gene encoding Sus1. One mutant line (rug4-c) lacks detectable Sus1 protein in both the soluble and membrane-associated fractions of the embryo, and Sus activity in the embryo is reduced by 95%. The starch content of the embryo is reduced by 30%, but the cellulose content is unaffected. The results imply that different isoforms of Sus may channel carbon from sucrose towards different metabolic fates within the cell. PMID:11598239

  10. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma.

    PubMed

    Ricketts, Christopher J; De Cubas, Aguirre A; Fan, Huihui; Smith, Christof C; Lang, Martin; Reznik, Ed; Bowlby, Reanne; Gibb, Ewan A; Akbani, Rehan; Beroukhim, Rameen; Bottaro, Donald P; Choueiri, Toni K; Gibbs, Richard A; Godwin, Andrew K; Haake, Scott; Hakimi, A Ari; Henske, Elizabeth P; Hsieh, James J; Ho, Thai H; Kanchi, Rupa S; Krishnan, Bhavani; Kwiatkowski, David J; Lui, Wembin; Merino, Maria J; Mills, Gordon B; Myers, Jerome; Nickerson, Michael L; Reuter, Victor E; Schmidt, Laura S; Shelley, C Simon; Shen, Hui; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Vincent, Benjamin G; Vocke, Cathy D; Wheeler, David A; Yang, Lixing; Kim, William Y; Robertson, A Gordon; Spellman, Paul T; Rathmell, W Kimryn; Linehan, W Marston

    2018-04-03

    Renal cell carcinoma (RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival. Published by Elsevier Inc.

  11. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

    PubMed

    Pietra, Stefano; Lang, Patricia; Grebe, Markus

    2015-03-01

    Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning. © 2014 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  12. Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick.

    PubMed

    Chan-Thomas, P S; Thompson, R P; Robert, B; Yacoub, M H; Barton, P J

    1993-07-01

    The vertebrate homeobox genes Msx-1 and Msx-2 are related to the Drosophila msh gene and are expressed in a variety of tissues during embryogenesis. We have examined their expression by in situ hybridisation during critical stages of cardiac development in the chick from stages 15+ to 37. Msx-1 expression is apparent in a number of non-myocardial cell populations, including cells undergoing an epithelial to mesenchymal transformation in the atrioventricular and the outflow tract regions that play an integral role in heart septation and valve formation. Msx-2 expression is restricted to a distinct subpopulation of myocardial cells that, in later stages, coincides morphologically with the cardiac conduction system. The timing of Msx-2 expression suggests that it plays a role in conduction system tissue formation and that it identifies precursor cells of this specialised myocardium. The pattern of Msx-2 expression is discussed with reference to current models of conduction tissue development.

  13. Laminin γ3 plays an important role in retinal lamination, photoreceptor organisation and ganglion cell differentiation.

    PubMed

    Dorgau, Birthe; Felemban, Majed; Sharpe, Alexander; Bauer, Roman; Hallam, Dean; Steel, David H; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-23

    Laminins are heterotrimeric glycoproteins of the extracellular matrix. Eleven different laminin chains have been identified in vertebrates. They are ubiquitously expressed in the human body, with a distinct tissue distribution. Laminin expression in neural retina and their functional role during human retinogenesis is still unknown. This study investigated the laminin expression in human developing and adult retina, showing laminin α1, α5, β1, β2 and γ1 to be predominantly expressed in Bruch's membrane and the inner limiting membrane. Laminin-332 and laminin γ3 expression were mainly observed in the neural retina during retinal histogenesis. These expression patterns were largely conserved in pluripotent stem cell-derived retinal organoids. Blocking of laminin γ3 function in retinal organoids resulted in the disruption of laminar organisation and synapse formation, the loss of photoreceptor organisation and retinal ganglion cells. Our data demonstrate a unique temporal and spatial expression for laminins and reveal a novel role for laminin γ3 during human retinogenesis.

  14. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape

    PubMed Central

    Drea, Sinéad

    2012-01-01

    Members of the core pooids represent the most important crops in temperate zones including wheat, barley, and oats. Their importance as crops is largely due to the grain, particularly the storage capabilities of the endosperm. In this study, a comprehensive survey of grain morphology and endosperm organization in representatives of wild and cultivated species throughout the core pooids was performed. As sister to the core pooid tribes Poeae, Aveneae, Triticeae, and Bromeae within the Pooideae subfamily, Brachypodium provides a taxonomically relevant reference point. Using macroscopic, histological, and molecular analyses distinct patterns of grain tissue organization in these species, focusing on the peripheral and modified aleurone, are described. The results indicate that aleurone organization is correlated with conventional grain quality characters such as grain shape and starch content. In addition to morphological and organizational variation, expression patterns of candidate gene markers underpinning this variation were examined. Features commonly associated with grains are largely defined by analyses on lineages within the Triticeae and knowledge of grain structure may be skewed as a result of the focus on wheat and barley. Specifically, the data suggest that the modified aleurone is largely restricted to species in the Triticeae tribe. PMID:23081982

  15. Aggressive Versus Nonaggressive Antisocial Behavior: Distinctive Etiological Moderation by Age

    PubMed Central

    Burt, S. Alexandra; Neiderhiser, Jenae M.

    2015-01-01

    Research has supported the existence of distinct behavioral patterns, demographic correlates, and etiologic mechanisms for aggressive (AGG) versus nonaggressive but delinquent (DEL) antisocial behavior. Though behavioral genetic studies have the potential to further crystallize these dimensions, inconsistent results have limited their contribution. These inconsistencies may stem in part from the limited attention paid to the impact of age. In the current study, the authors thus examined age-related etiological moderation of AGG and DEL antisocial behavior in a sample of 720 sibling pairs (ranging in age from 10 to 18 years) with varying degrees of genetic relatedness. Results reveal that the magnitude of genetic and environmental influences on AGG remained stable across adolescence. By contrast, genetic influences on DEL increased dramatically with age, whereas shared environmental influences decreased. Subsequent longitudinal analyses fully replicated these results. Such findings highlight etiological distinctions between aggression and delinquency, and offer insights into the expression of genetic influences during development. PMID:19586186

  16. Post-Transcriptional Dysregulation by miRNAs Is Implicated in the Pathogenesis of Gastrointestinal Stromal Tumor [GIST

    PubMed Central

    Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A.; Killian, J. Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S.; van de Rijn, Matt; Debiec-Rychter, Maria; O’Sullivan, Maureen

    2013-01-01

    In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly. PMID:23717541

  17. Post-transcriptional dysregulation by miRNAs is implicated in the pathogenesis of gastrointestinal stromal tumor [GIST].

    PubMed

    Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A; Killian, J Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S; van de Rijn, Matt; Debiec-Rychter, Maria; O'Sullivan, Maureen

    2013-01-01

    In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly.

  18. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.

    PubMed

    Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.

  19. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions

    PubMed Central

    Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth. PMID:26371882

  20. Novel localization of peripherin 2, the photoreceptor-specific retinal degeneration slow protein, in retinal pigment epithelium.

    PubMed

    Uhl, Patrizia B; Amann, Barbara; Hauck, Stefanie M; Deeg, Cornelia A

    2015-01-26

    Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye. Since one typical feature of the autoimmune disease, equine recurrent uveitis (ERU), is the breakdown of this barrier, we recently performed comparative analysis of healthy and uveitic RPE. We identified for the first time peripherin 2, which is responsible for visual perception and retina development, to be localized in RPE. The purpose of this study was therefore to validate our findings by characterizing the expression patterns of peripherin 2 in RPE and retina. We also investigated whether peripherin 2 expression changes in ERU and if it is expressed by the RPE itself. Via immunohistochemistry, significant downregulation of peripherin 2 in uveitic RPE compared to the control was detectable, but there was no difference in healthy and uveitic retina. A further interesting finding was the clear distinction between peripherin 2 and the phagocytosis marker, rhodopsin, in healthy RPE. In conclusion, changes in the expression pattern of peripherin 2 selectively affect RPE, but not retina, in ERU. Moreover, peripherin 2 is clearly detectable in healthy RPE due to both phagocytosis and the expression by the RPE cells themselves. Our novel findings are very promising for better understanding the molecular mechanisms taking place on RPE in uveitis.

  1. Kcnh1 Voltage-gated Potassium Channels Are Essential for Early Zebrafish Development*

    PubMed Central

    Stengel, Rayk; Rivera-Milla, Eric; Sahoo, Nirakar; Ebert, Christina; Bollig, Frank; Heinemann, Stefan H.; Schönherr, Roland; Englert, Christoph

    2012-01-01

    The Kcnh1 gene encodes a voltage-gated potassium channel highly expressed in neurons and involved in tumor cell proliferation, yet its physiological roles remain unclear. We have used the zebrafish as a model to analyze Kcnh1 function in vitro and in vivo. We found that the kcnh1 gene is duplicated in teleost fish (i.e. kcnh1a and kcnh1b) and that both genes are maternally expressed during early development. In adult zebrafish, kcnh1a and kcnh1b have distinct expression patterns but share expression in brain and testis. Heterologous expression of both genes in Xenopus oocytes revealed a strong conservation of characteristic functional properties between human and fish channels, including a unique sensitivity to intracellular Ca2+/calmodulin and modulation of voltage-dependent gating by extracellular Mg2+. Using a morpholino antisense approach, we demonstrate a strong kcnh1 loss-of-function phenotype in developing zebrafish, characterized by growth retardation, delayed hindbrain formation, and embryonic lethality. This late phenotype was preceded by transcriptional up-regulation of known cell-cycle inhibitors (p21, p27, cdh2) and down-regulation of pro-proliferative factors, including cyclin D1, at 70% epiboly. These results reveal an unanticipated basic activity of kcnh1 that is crucial for early embryonic development and patterning. PMID:22927438

  2. Unique gene expression profiles of donor-matched human retinal and choroidal vascular endothelial cells.

    PubMed

    Smith, Justine R; Choi, Dongseok; Chipps, Timothy J; Pan, Yuzhen; Zamora, David O; Davies, Michael H; Babra, Bobby; Powers, Michael R; Planck, Stephen R; Rosenbaum, James T

    2007-06-01

    Consistent with clinical observations that posterior uveitis frequently involves the retinal vasculature and recent recognition of vascular heterogeneity, the hypothesis for this study was that retinal vascular endothelium was a cell population of unique molecular phenotype. Donor-matched cultures of primary retinal and choroidal endothelial cells from six human cadavers were incubated with either Toxoplasma gondii tachyzoites (10:1, parasites per cell) or Escherichia coli lipopolysaccharide (100 ng/mL); control cultures were simultaneously incubated with medium. Gene expression profiling of endothelial cells was performed using oligonucleotide arrays containing probes designed to detect 8746 human transcripts. After normalization, differential gene expression was assessed by the significance analysis of microarrays, with the false-discovery rate set at 5%. For selected genes, differences in the level of expression between retinal and choroidal cells were evaluated by real-time RT-PCR. Graphic descriptive analysis demonstrated a strong correlation between gene expression of unstimulated retinal and choroidal endothelial cells, but also highlighted distinctly different patterns of expression that were greater than differences noted between donors or between unstimulated and stimulated cells. Overall, 779 (8.9%) of 8746 transcripts were differentially represented. Of note, the 330 transcripts that were present at higher levels in retinal cells included a larger percentage of transcripts encoding molecules involved in the immune response. Differential gene expression was confirmed for 12 transcripts by RT-PCR. Retinal and choroidal vascular endothelial cells display distinctive gene expression profiles. The findings suggest the possibility of treating posterior uveitis by targeting specific interactions between the retinal endothelial cell and an infiltrating leukocyte.

  3. Temporal Dynamics of Host Molecular Responses Differentiate Symptomatic and Asymptomatic Influenza A Infection

    PubMed Central

    Huang, Yongsheng; Zaas, Aimee K.; Rao, Arvind; Dobigeon, Nicolas; Woolf, Peter J.; Veldman, Timothy; Øien, N. Christine; McClain, Micah T.; Varkey, Jay B.; Nicholson, Bradley; Carin, Lawrence; Kingsmore, Stephen; Woods, Christopher W.; Ginsburg, Geoffrey S.; Hero, Alfred O.

    2011-01-01

    Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza. PMID:21901105

  4. Generative Models of Segregation: Investigating Model-Generated Patterns of Residential Segregation by Ethnicity and Socioeconomic Status

    PubMed Central

    Fossett, Mark

    2011-01-01

    This paper considers the potential for using agent models to explore theories of residential segregation in urban areas. Results of generative experiments conducted using an agent-based simulation of segregation dynamics document that varying a small number of model parameters representing constructs from urban-ecological theories of segregation can generate a wide range of qualitatively distinct and substantively interesting segregation patterns. The results suggest how complex, macro-level patterns of residential segregation can arise from a small set of simple micro-level social dynamics operating within particular urban-demographic contexts. The promise and current limitations of agent simulation studies are noted and optimism is expressed regarding the potential for such studies to engage and contribute to the broader research literature on residential segregation. PMID:21379372

  5. Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection

    PubMed Central

    Choi, Young-Jun; Fuchs, Jeremy F.; Mayhew, George F.; Yu, Helen E.; Christensen, Bruce M.

    2012-01-01

    Hemocytes are integral components of mosquito immune mechanisms such as phagocytosis, melanization, and production of antimicrobial peptides. However, our understanding of hemocyte-specific molecular processes and their contribution to shaping the host immune response remains limited. To better understand the immunophysiological features distinctive of hemocytes, we conducted genome-wide analysis of hemocyte-enriched transcripts, and examined how tissue-enriched expression patterns change with the immune status of the host. Our microarray data indicate that the hemocyte-enriched trascriptome is dynamic and context-dependent. Analysis of transcripts enriched after bacterial challenge in circulating hemocytes with respect to carcass added a dimension to evaluating infection-responsive genes and immune-related gene families. We resolved patterns of transcriptional change unique to hemocytes from those that are likely shared by other immune responsive tissues, and identified clusters of genes preferentially induced in hemocytes, likely reflecting their involvement in cell type specific functions. In addition, the study revealed conserved hemocyte-enriched molecular repertoires which might be implicated in core hemocyte function by cross-species meta-analysis of microarray expression data from Anopheles gambiae and Drosophila melanogaster. PMID:22796331

  6. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.

    PubMed

    Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando

    2015-09-01

    Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2018-05-01

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  8. Boechera Species Exhibit Species-Specific Responses to Combined Heat and High Light Stress

    PubMed Central

    Gallas, Genna; Waters, Elizabeth R.

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  9. Network Analysis Reveals Distinct Clinical Syndromes Underlying Acute Mountain Sickness

    PubMed Central

    Hall, David P.; MacCormick, Ian J. C.; Phythian-Adams, Alex T.; Rzechorzek, Nina M.; Hope-Jones, David; Cosens, Sorrel; Jackson, Stewart; Bates, Matthew G. D.; Collier, David J.; Hume, David A.; Freeman, Thomas; Thompson, A. A. Roger; Baillie, John Kenneth

    2014-01-01

    Acute mountain sickness (AMS) is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS), we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25). These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes. PMID:24465370

  10. Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers.

    PubMed

    Castaldi, Peter J; San José Estépar, Raúl; Mendoza, Carlos S; Hersh, Craig P; Laird, Nan; Crapo, James D; Lynch, David A; Silverman, Edwin K; Washko, George R

    2013-11-01

    Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. Compared with percentage of low-attenuation area less than -950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures.

  11. Quantitative RT-PCR Comparison of the Urea and Nitric Oxide Cycle Gene Transcripts in Adult Human Tissues

    PubMed Central

    Neill, Meaghan Anne; Aschner, Judy; Barr, Frederick; Summar, Marshall L.

    2009-01-01

    The urea cycle and nitric oxide cycle play significant roles in complex biochemical and physiologic reactions. These cycles have distinct biochemical goals including the clearance of waste nitrogen; the production of the intermediates ornithine, citrulline, and arginine for the urea cycle; and the production of nitric oxide for the nitric oxide pathway. Despite their disparate functions, the two pathways share two enzymes, argininosuccinic acid synthase and argininosuccinic acid lyase, and a transporter, citrin. Studying the gene expression of these enzymes is paramount in understanding these complex biochemical pathways. Here, we examine the expression of genes involved in the urea cycle and the nitric oxide cycle in a panel of eleven different tissue samples obtained from individual adults without known inborn errors of metabolism. In this study, the pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Our results show that these transcripts are differentially expressed in different tissues. The pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Using the co-expression profiles, we discovered that the combination of expression of enzyme transcripts as detected in our study, might serve to fulfill specific physiologic function(s) in tissue including urea production/nitrogen removal, arginine/citrulline production, nitric oxide production, and ornithine production. Our study reveals the importance of studying not only the expression profile of an enzyme of interest, but also studying the expression profiles of the other enzymes involved in a particular pathway so as to better understand the context of expression. The tissue patterns we observed highlight the variety of important functions they conduct and provide insight into many of the clinical observations from their disruption. PMID:19345634

  12. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns.

    PubMed

    Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou

    2005-07-01

    A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.

  13. Oligodendrocytes in brain and optic nerve express the beta3 subunit isoform of Na,K-ATPase.

    PubMed

    Martín-Vasallo, P; Wetzel, R K; García-Segura, L M; Molina-Holgado, E; Arystarkhova, E; Sweadner, K J

    2000-09-01

    The Na,K-ATPase, which catalyzes the active transport of Na(+) and K(+), has two principal subunits (alpha and beta) that have several genetically distinct isoforms. Most of these isoforms are expressed in the nervous system, but certain ones are preferentially expressed in glia and others in neurons. Of the beta isoforms, beta1 predominates in neurons and beta2 in astrocytes, although there are some exceptions. Here we demonstrate that beta3 is expressed in rat and mouse white matter oligodendrocytes. Immunofluorescence microscopy identified beta3 in oligodendrocytes of rat brain white matter in typical linear arrays of cell bodies between fascicles of axons. The intensity of stain peaked at 20 postnatal days. beta3 was identified in cortical oligodendrocytes grown in culture, where it was expressed in processes and colocalized with antibody to galactocerebroside. In the mouse and rat optic nerve, beta3 stain was seen in oligodendrocytes, where it colocalized with carbonic anhydrase II. For comparison, optic nerve was stained for the beta1 and beta2 subunits, showing distinct patterns of labelling of axons (beta1) and astrocytes (beta2). The C6 glioma cell line was also found to express the beta3 isoform preferentially. Since beta3 was not found at detectable levels in astrocytes, this suggests that C6 is closer to oligodendrocytes than astrocytes in the glial cell lineage. Copyright 2000 Wiley-Liss, Inc.

  14. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se; Chen, Maoshan; Lind, Sara Bergström

    The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phasemore » and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.« less

  15. Comparative transcriptome analyses of flower development in four species of Achimenes (Gesneriaceae).

    PubMed

    Roberts, Wade R; Roalson, Eric H

    2017-03-20

    Flowers have an amazingly diverse display of colors and shapes, and these characteristics often vary significantly among closely related species. The evolution of diverse floral form can be thought of as an adaptive response to pollination and reproduction, but it can also be seen through the lens of morphological and developmental constraints. To explore these interactions, we use RNA-seq across species and development to investigate gene expression and sequence evolution as they relate to the evolution of the diverse flowers in a group of Neotropical plants native to Mexico-magic flowers (Achimenes, Gesneriaceae). The assembled transcriptomes contain between 29,000 and 42,000 genes expressed during development. We combine sequence orthology and coexpression clustering with analyses of protein evolution to identify candidate genes for roles in floral form evolution. Over 25% of transcripts captured were distinctive to Achimenes and overrepresented by genes involved in transcription factor activity. Using a model-based clustering approach we find dynamic, temporal patterns of gene expression among species. Selection tests provide evidence of positive selection in several genes with roles in pigment production, flowering time, and morphology. Combining these approaches to explore genes related to flower color and flower shape, we find distinct patterns that correspond to transitions of floral form among Achimenes species. The floral transcriptomes developed from four species of Achimenes provide insight into the mechanisms involved in the evolution of diverse floral form among closely related species with different pollinators. We identified several candidate genes that will serve as an important and useful resource for future research. High conservation of sequence structure, patterns of gene coexpression, and detection of positive selection acting on few genes suggests that large phenotypic differences in floral form may be caused by genetic differences in a small set of genes. Our characterized floral transcriptomes provided here should facilitate further analyses into the genomics of flower development and the mechanisms underlying the evolution of diverse flowers in Achimenes and other Neotropical Gesneriaceae.

  16. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice

    PubMed Central

    Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.

    2015-01-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing system and development of hepatic steatosis. PMID:25960184

  17. The conservation of Javanese-cultured city through visual expression study on the architecture of Keraton Yogyakarta

    NASA Astrophysics Data System (ADS)

    Tohar, Ibrahim; Hardiman, Gagoek; Ratih Sari, Suzanna

    2017-12-01

    Keraton Yogyakarta as a summit of Javanese culture has been renowned as a heritage building. As object of study, Keraton Yogyakarta is ornamented with a collection of architectural artifacts. The acculturation and merging of these different styles create a unique impression within the palace complex. This study aims to identify the pattern of acculturation of these two styles and to interpret their meaning and expression. A descriptive-qualitative method is employed in this research, which contains visual observation, documentation collection, interviews with informants, and relevant literature review. As results of study, the expression of Tratag Pagelaran, Tratag Sitihinggil, Bangsal Ponconiti, and Gedong Jene tends to widen, while the expression of Gedong Purwaretna tends to uprise. Every building has its own point of interest and ornamentation which its place and content are different.. In visual observations, there are two categories of buildings in Keraton Yogyakarta,which accommodate two styles, namely Javanese Traditional style and Dutch Colonial style. Buildings of Javanese traditional style, which hold a special concept of shading, were built without buttresses and embody a ‘light’ expression, while buildings of Dutch Colonial style, which hold a concept of protection, were built with massive enclosure and produce a “heavy” expression. Although visually split into two distinct styles, the acculturation process in Keraton Yogyakarta produced a unity in its overall expression. The expression pattern of Keraton Yogyakarta can be used as conservation guidance of Javanese-cultured city.

  18. Sonic hedgehog: restricted expression and limb dysmorphologies

    PubMed Central

    Hill, Robert E; Heaney, Simon JH; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  19. Long interspersed nuclear element-1 expression and retrotransposition in prostate cancer cells.

    PubMed

    Briggs, Erica M; Ha, Susan; Mita, Paolo; Brittingham, Gregory; Sciamanna, Ilaria; Spadafora, Corrado; Logan, Susan K

    2018-01-01

    Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous retrotransposon that generates new genomic insertions through the retrotransposition of a RNA intermediate. Expression of LINE-1 is tightly repressed in most somatic tissues to prevent DNA damage and ensure genomic integrity. However, the reactivation of LINE-1 has been documented in cancer and the role of LINE-1 protein expression and retrotransposition has become of interest in the development, progression, and adaptation of many epithelial neoplasms, including prostate cancer. Here, we examined endogenous LINE-1 protein expression and localization in a panel of prostate cancer cells and observed a diverse range of LINE-1 expression patterns between cell lines. Subcellular localization of LINE-1 proteins, ORF1p and ORF2p, revealed distinct expression patterns. ORF1p, a nucleic acid chaperone that binds LINE-1 mRNA, was predominantly expressed in the cytoplasm, with minor localization in the nucleus. ORF2p, containing endonuclease and reverse transcriptase domains, exhibited punctate foci in the nucleus and also displayed co-localization with PCNA and γH2AX. Using a retrotransposition reporter assay, we found variations in LINE-1 retrotransposition between cell lines. Overall, our findings reveal new insight into the expression and retrotransposition of LINE-1 in prostate cancer. The prostate cancer cells we investigated provide a unique model for investigating endogenous LINE-1 activity and provide a functional model for studying LINE-1 mechanisms in prostate cancer.

  20. Drug-Path: a database for drug-induced pathways

    PubMed Central

    Zeng, Hui; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661

  1. Drug-Path: a database for drug-induced pathways.

    PubMed

    Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.

  2. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer

    PubMed Central

    Shen, Hui; Fridley, Brooke L.; Song, Honglin; Lawrenson, Kate; Cunningham, Julie M.; Ramus, Susan J.; Cicek, Mine S.; Tyrer, Jonathan; Stram, Douglas; Larson, Melissa C.; Köbel, Martin; Ziogas, Argyrios; Zheng, Wei; Yang, Hannah P.; Wu, Anna H.; Wozniak, Eva L.; Woo, Yin Ling; Winterhoff, Boris; Wik, Elisabeth; Whittemore, Alice S.; Wentzensen, Nicolas; Weber, Rachel Palmieri; Vitonis, Allison F.; Vincent, Daniel; Vierkant, Robert A.; Vergote, Ignace; Van Den Berg, David; Van Altena, Anne M.; Tworoger, Shelley S.; Thompson, Pamela J.; Tessier, Daniel C.; Terry, Kathryn L.; Teo, Soo-Hwang; Templeman, Claire; Stram, Daniel O.; Southey, Melissa C.; Sieh, Weiva; Siddiqui, Nadeem; Shvetsov, Yurii B.; Shu, Xiao-Ou; Shridhar, Viji; Wang-Gohrke, Shan; Severi, Gianluca; Schwaab, Ira; Salvesen, Helga B.; Rzepecka, Iwona K.; Runnebaum, Ingo B.; Rossing, Mary Anne; Rodriguez-Rodriguez, Lorna; Risch, Harvey A.; Renner, Stefan P.; Poole, Elizabeth M.; Pike, Malcolm C.; Phelan, Catherine M.; Pelttari, Liisa M.; Pejovic, Tanja; Paul, James; Orlow, Irene; Omar, Siti Zawiah; Olson, Sara H.; Odunsi, Kunle; Nickels, Stefan; Nevanlinna, Heli; Ness, Roberta B.; Narod, Steven A.; Nakanishi, Toru; Moysich, Kirsten B.; Monteiro, Alvaro N.A.; Moes-Sosnowska, Joanna; Modugno, Francesmary; Menon, Usha; McLaughlin, John R.; McGuire, Valerie; Matsuo, Keitaro; Adenan, Noor Azmi Mat; Massuger, Leon F.A. G.; Lurie, Galina; Lundvall, Lene; Lubiński, Jan; Lissowska, Jolanta; Levine, Douglas A.; Leminen, Arto; Lee, Alice W.; Le, Nhu D.; Lambrechts, Sandrina; Lambrechts, Diether; Kupryjanczyk, Jolanta; Krakstad, Camilla; Konecny, Gottfried E.; Kjaer, Susanne Krüger; Kiemeney, Lambertus A.; Kelemen, Linda E.; Keeney, Gary L.; Karlan, Beth Y.; Karevan, Rod; Kalli, Kimberly R.; Kajiyama, Hiroaki; Ji, Bu-Tian; Jensen, Allan; Jakubowska, Anna; Iversen, Edwin; Hosono, Satoyo; Høgdall, Claus K.; Høgdall, Estrid; Hoatlin, Maureen; Hillemanns, Peter; Heitz, Florian; Hein, Rebecca; Harter, Philipp; Halle, Mari K.; Hall, Per; Gronwald, Jacek; Gore, Martin; Goodman, Marc T.; Giles, Graham G.; Gentry-Maharaj, Aleksandra; Garcia-Closas, Montserrat; Flanagan, James M.; Fasching, Peter A.; Ekici, Arif B.; Edwards, Robert; Eccles, Diana; Easton, Douglas F.; Dürst, Matthias; du Bois, Andreas; Dörk, Thilo; Doherty, Jennifer A.; Despierre, Evelyn; Dansonka-Mieszkowska, Agnieszka; Cybulski, Cezary; Cramer, Daniel W.; Cook, Linda S.; Chen, Xiaoqing; Charbonneau, Bridget; Chang-Claude, Jenny; Campbell, Ian; Butzow, Ralf; Bunker, Clareann H.; Brueggmann, Doerthe; Brown, Robert; Brooks-Wilson, Angela; Brinton, Louise A.; Bogdanova, Natalia; Block, Matthew S.; Benjamin, Elizabeth; Beesley, Jonathan; Beckmann, Matthias W.; Bandera, Elisa V.; Baglietto, Laura; Bacot, François; Armasu, Sebastian M.; Antonenkova, Natalia; Anton-Culver, Hoda; Aben, Katja K.; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A.T.; Schildkraut, Joellen M.; Sellers, Thomas A.; Huntsman, David; Berchuck, Andrew; Chenevix-Trench, Georgia; Gayther, Simon A.; Pharoah, Paul D.P.; Laird, Peter W.; Goode, Ellen L.; Pearce, Celeste Leigh

    2013-01-01

    HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR) = 1.13, P = 3.1 × 10−10) and clear cell (rs11651755 OR = 0.77, P = 1.6 × 10−8) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes. PMID:23535649

  3. Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain.

    PubMed

    Davenne, M; Maconochie, M K; Neun, R; Pattyn, A; Chambon, P; Krumlauf, R; Rijli, F M

    1999-04-01

    Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain.

  4. Three-dimensional spatiotemporal focusing of holographic patterns

    PubMed Central

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-01-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044

  5. Distinct Patterns of Gene and Protein Expression Elicited by Organophosphorus Pesticides in Caenorhabditis elegans

    DTIC Science & Technology

    2009-01-01

    them an important concern for public health. OPs are a class of chemicals that inhibit serine esterases by covalently bonding with the active site...K03E5.2 gene product, which contains a calponin repeat, is also induced. Calponins may play a role in regulation of myosin ATPase activity and muscle...indication of apoptotic activity is an apparent change in sphingolipid metabolism in OP exposed worms. The sphingolipid metabolites, ceramide and

  6. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana.

    PubMed

    Li, Zhiguo; Li, Meng; He, Jingfang; Zhao, Xiaomeng; Chaimanee, Veeranan; Huang, Wei-Fone; Nie, Hongyi; Zhao, Yazhou; Su, Songkun

    2017-08-01

    Acute toxicities (LD50s) of imidacloprid and clothianidin to Apis mellifera and A. cerana were investigated. Changing patterns of immune-related gene expressions and the activities of four enzymes between the two bee species were compared and analyzed after exposure to sublethal doses of insecticides. Results indicated that A. cerana was more sensitive to imidacloprid and clothianidin than A. mellifera. The acute oral LD50 values of imidacloprid and clothianidin for A. mellifera were 8.6 and 2.0ng/bee, respectively, whereas the corresponding values for A. cerana were 2.7 and 0.5ng/bee. The two bee species possessed distinct abilities to mount innate immune response against neonicotinoids. After 48h of imidacloprid treatment, carboxylesterase (CCE), prophenol oxidase (PPO), and acetylcholinesterase (AChE) activities were significantly downregulated in A. mellifera but were upregulated in A. cerana. Glutathione-S-transferase (GST) activity was significantly elevated in A. mellifera at 48h after exposure to imidacloprid, but no significant change was observed in A. cerana. AChE was downregulated in both bee species at three different time points during clothianidin exposure, and GST activities were upregulated in both species exposed to clothianidin. Different patterns of immune-related gene expression and enzymatic activities implied distinct detoxification and immune responses of A. cerana and A. mellifera to imidacloprid and clothianidin. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions

    PubMed Central

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T.; Gerstein, Mark

    2003-01-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find “marker genes” that are differentially expressed in particular sets of “conditions.” We have developed a method that simultaneously clusters genes and conditions, finding distinctive “checkerboard” patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data). PMID:12671006

  8. Portraying the Expression Landscapes of B-Cell Lymphoma-Intuitive Detection of Outlier Samples and of Molecular Subtypes

    PubMed Central

    Hopp, Lydia; Lembcke, Kathrin; Binder, Hans; Wirth, Henry

    2013-01-01

    We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sample with individual resolution, characterizes the subtypes, disentangles the expression patterns into distinct modules, extracts their functional context using enrichment techniques and enables investigation of the similarity relations between the samples. The method also allows to detect and to correct outliers caused by contaminations. Based on our analysis, we propose a refined classification of B-cell Lymphoma into four molecular subtypes which are characterized by differential functional and clinical characteristics. PMID:24833231

  9. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  10. Super Memory Bros.: going from mirror patterns to concordant patterns via similarity enhancements.

    PubMed

    Ozubko, Jason D; Joordens, Steve

    2008-12-01

    When memory is contrasted for stimuli belonging to distinct stimulus classes, one of two patterns is observed: a mirror pattern, in which one stimulus gives rise to higher hits but lower false alarms (e.g., the frequency-based mirror effect) or a concordant pattern, in which one stimulus class gives rise both to higher hits and to higher false alarms (e.g., the pseudoword effect). On the basis of the dual-process account proposed by Joordens and Hockley (2000), we predict that mirror patterns occur when one stimulus class is more familiar and less distinctive than another, whereas concordant patterns occur when one stimulus class is more familiar than another. We tested these assumptions within a video game paradigm using novel stimuli that allow manipulations in terms of distinctiveness and familiarity (via similarity). When more distinctive, less familiar items are contrasted with less distinctive, more familiar items, a mirror pattern is observed. Systematically enhancing the familiarity of stimuli transforms the mirror pattern to a concordant pattern as predicted. Although our stimuli differ considerably from those used in examinations of the frequency-based mirror effect and the pseudoword effect, the implications of our findings with respect to those phenomena are also discussed.

  11. Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye.

    PubMed

    Johnston, Robert J; Otake, Yoshiaki; Sood, Pranidhi; Vogt, Nina; Behnia, Rudy; Vasiliauskas, Daniel; McDonald, Elizabeth; Xie, Baotong; Koenig, Sebastian; Wolf, Reinhard; Cook, Tiffany; Gebelein, Brian; Kussell, Edo; Nakagoshi, Hideki; Desplan, Claude

    2011-06-10

    How complex networks of activators and repressors lead to exquisitely specific cell-type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression. dve is a shared component of two opposing, interlocked feedforward loops (FFLs). Orthodenticle and Dve interact in an incoherent FFL to repress Rhodopsin expression throughout the eye. In R7 and R8 photoreceptors, a coherent FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network uses repression to restrict and combinatorial activation to induce cell-type-specific expression. Furthermore, Dve levels are finely tuned to yield cell-type- and region-specific repression or activation outcomes. This interlocked FFL motif may be a general mechanism to control terminal cell-fate specification. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  13. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.

    PubMed

    Kay, Jeremy N; De la Huerta, Irina; Kim, In-Jung; Zhang, Yifeng; Yamagata, Masahito; Chu, Monica W; Meister, Markus; Sanes, Joshua R

    2011-05-25

    The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.

  14. Distinct Quantitative Computed Tomography Emphysema Patterns Are Associated with Physiology and Function in Smokers

    PubMed Central

    San José Estépar, Raúl; Mendoza, Carlos S.; Hersh, Craig P.; Laird, Nan; Crapo, James D.; Lynch, David A.; Silverman, Edwin K.; Washko, George R.

    2013-01-01

    Rationale: Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. Objectives: To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. Methods: Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. Measurements and Main Results: Compared with percentage of low-attenuation area less than −950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). Conclusions: Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures. PMID:23980521

  15. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland.

  16. A Systematic Survey of Expression and Function of Zebrafish frizzled Genes

    PubMed Central

    Nikaido, Masataka; Law, Edward W. P.; Kelsh, Robert N.

    2013-01-01

    Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation. PMID:23349976

  17. Molecular cloning and characterization of Echinostoma caproni heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts.

    PubMed

    Higón, M; Monteagudo, C; Fried, B; Esteban, J G; Toledo, R; Marcilla, A

    2008-10-01

    We cloned and expressed Echinostoma caproni HSP70 in Escherichia coli. This molecule presents an open reading frame (ORF) of 655 amino acids, and a theoretical molecular weight of 71 kDa. E. caproni HSP70 protein showed a high homology to other helminth molecules, major differences being located in the C-terminal region of the molecule, with a hydrophobic portion. Studies of protein and messenger RNA (mRNA) expression revealed a distinct pattern, depending on the host (low- or high-compatible). Specific polyclonal antisera raised against the recombinant protein expressed in Escherichia coli demonstrated its selective presence in excretory/secretory products (ESP) of adult parasites obtained from high-compatible hosts. Immunological studies showed clearly the association of HSP70 with the parasite surface and other structures, including eggs.

  18. SSX2-4 expression in early-stage non-small cell lung cancer.

    PubMed

    Greve, K B V; Pøhl, M; Olsen, K E; Nielsen, O; Ditzel, H J; Gjerstorff, M F

    2014-05-01

    The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies and performed immunohistochemical staining of 25 different normal tissues and 143 NSCLCs. The antibodies differed in binding to two distinctive splice variants of SSX2 that exhibited different subcellular staining patterns, suggesting that the two splice variants display different functions. SSX2-4 expression was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  20. Proteogenomic characterization of human colon and rectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing; Wang, Jing; Wang, Xiaojing

    2014-09-18

    We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less

  1. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    PubMed

    Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K; Stevenson, Holly; Meltzer, Paul; Fine, Howard A

    2012-01-01

    Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  2. G-Cimp Status Prediction Of Glioblastoma Samples Using mRNA Expression Data

    PubMed Central

    Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C.; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K.; Stevenson, Holly; Meltzer, Paul; Fine, Howard A.

    2012-01-01

    Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data. PMID:23139755

  3. Functional Smiles: Tools for Love, Sympathy, and War.

    PubMed

    Rychlowska, Magdalena; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Martin, Jared D; Niedenthal, Paula M

    2017-09-01

    A smile is the most frequent facial expression, but not all smiles are equal. A social-functional account holds that smiles of reward, affiliation, and dominance serve basic social functions, including rewarding behavior, bonding socially, and negotiating hierarchy. Here, we characterize the facial-expression patterns associated with these three types of smiles. Specifically, we modeled the facial expressions using a data-driven approach and showed that reward smiles are symmetrical and accompanied by eyebrow raising, affiliative smiles involve lip pressing, and dominance smiles are asymmetrical and contain nose wrinkling and upper-lip raising. A Bayesian-classifier analysis and a detection task revealed that the three smile types are highly distinct. Finally, social judgments made by a separate participant group showed that the different smile types convey different social messages. Our results provide the first detailed description of the physical form and social messages conveyed by these three types of functional smiles and document the versatility of these facial expressions.

  4. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.

    PubMed

    Wu, Jing; Wang, Lanfen; Wang, Shumin

    2016-09-07

    Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.

  5. Muscle-specific gene expression is underscored by differential stressor responses and coexpression changes.

    PubMed

    Moreno-Sánchez, Natalia; Rueda, Julia; Reverter, Antonio; Carabaño, María Jesús; Díaz, Clara

    2012-03-01

    Variations on the transcriptome from one skeletal muscle type to another still remain unknown. The reliable identification of stable gene coexpression networks is essential to unravel gene functions and define biological processes. The differential expression of two distinct muscles, M. flexor digitorum (FD) and M. psoas major (PM), was studied using microarrays in cattle to illustrate muscle-specific transcription patterns and to quantify changes in connectivity regarding the expected gene coexpression pattern. A total of 206 genes were differentially expressed (DE), 94 upregulated in PM and 112 in FD. The distribution of DE genes in pathways and biological functions was explored in the context of system biology. Global interactomes for genes of interest were predicted. Fast/slow twitch genes, genes coding for extracellular matrix, ribosomal and heat shock proteins, and fatty acid uptake centred the specific gene expression patterns per muscle. Genes involved in repairing mechanisms, such as ribosomal and heat shock proteins, suggested a differential ability of muscles to react to similar stressing factors, acting preferentially in slow twitch muscles. Muscle attributes do not seem to be completely explained by the muscle fibre composition. Changes in connectivity accounted for 24% of significant correlations between DE genes. Genes changing their connectivity mostly seem to contribute to the main differential attributes that characterize each specific muscle type. These results underscore the unique flexibility of skeletal muscle where a substantial set of genes are able to change their behavior depending on the circumstances.

  6. MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma

    PubMed Central

    Zhang, Shile; Wei, Jun S.; Li, Samuel Q.; Badgett, Tom C.; Song, Young K.; Agarwal, Saurabh; Coarfa, Cristian; Tolman, Catherine; Hurd, Laura; Liao, Hongling; He, Jianbin; Wen, Xinyu; Liu, Zhihui; Thiele, Carol J.; Westermann, Frank; Asgharzadeh, Shahab; Seeger, Robert C.; Maris, John M.; Auvil, Jamie M Guidry; Smith, Malcolm A; Kolaczyk, Eric D; Shohet, Jason; Khan, Javed

    2016-01-01

    The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p≤0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification. PMID:26683771

  7. Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina.

    PubMed

    Leonelli, Mauro; Martins, Daniel O; Kihara, Alexandre H; Britto, Luiz R G

    2009-11-01

    The present study aimed to analyze the gene and protein expression and the pattern of distribution of the vanilloid receptors TRPV1 and TRPV2 in the developing rat retina. During the early phases of development, TRPV1 was found mainly in the neuroblastic layer of the retina and in the pigmented epithelium. In the adult, TRPV1 was found in microglial cells, blood vessels, astrocytes and in neuronal structures, namely synaptic boutons of both retinal plexiform layers, as well as in cell bodies of the inner nuclear layer and the ganglion cell layer. The pattern of distribution of TRPV1 was mainly punctate, and there was higher TRPV1 labeling in the peripheral retina than in central regions. TRPV2 expression was quite distinct. Its expression was virtually undetectable by immunoblotting before P1, and that receptor was found by immunohistochemistry only by postnatal day 15 (P15). RNA and protein analysis showed that the adult levels are only reached by P60, which includes small processes in the retinal plexiform layers, and labeled cellular bodies in the inner nuclear layer and the ganglion cell layer. There was no overlapping between the signal observed for both receptors. In conclusion, our results showed that the patterns of distribution of TRPV1 and TRPV2 are different during the development of the rat retina, suggesting that they have specific roles in both visual processing and in providing specific cues to neural development.

  8. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem

    PubMed Central

    Wallace, Matthew M.; Harris, J. Aaron; Brubaker, Donald Q.; Klotz, Caitlyn A.; Gabriele, Mark L.

    2016-01-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. PMID:26906676

  9. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem.

    PubMed

    Wallace, Matthew M; Harris, J Aaron; Brubaker, Donald Q; Klotz, Caitlyn A; Gabriele, Mark L

    2016-05-01

    Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-09-01

    In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans-type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, -2, -3 and -4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin- and Ki-67-immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.

  11. Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning.

    PubMed

    Ursache, Robertas; Miyashima, Shunsuke; Chen, Qingguo; Vatén, Anne; Nakajima, Keiji; Carlsbecker, Annelie; Zhao, Yunde; Helariutta, Ykä; Dettmer, Jan

    2014-03-01

    The development and growth of higher plants is highly dependent on the conduction of water and minerals throughout the plant by xylem vessels. In Arabidopsis roots the xylem is organized as an axis of cell files with two distinct cell fates: the central metaxylem and the peripheral protoxylem. During vascular development, high and low expression levels of the class III HD-ZIP transcription factors promote metaxylem and protoxylem identities, respectively. Protoxylem specification is determined by both mobile, ground tissue-emanating miRNA165/6 species, which downregulate, and auxin concentrated by polar transport, which promotes HD-ZIP III expression. However, the factors promoting high HD-ZIP III expression for metaxylem identity have remained elusive. We show here that auxin biosynthesis promotes HD-ZIP III expression and metaxylem specification. Several auxin biosynthesis genes are expressed in the outer layers surrounding the vascular tissue in Arabidopsis root and downregulation of HD-ZIP III expression accompanied by specific defects in metaxylem development is seen in auxin biosynthesis mutants, such as trp2-12, wei8 tar2 or a quintuple yucca mutant, and in plants treated with L-kynurenine, a pharmacological inhibitor of auxin biosynthesis. Some of the patterning defects can be suppressed by synthetically elevated HD-ZIP III expression. Taken together, our results indicate that polar auxin transport, which was earlier shown to be required for protoxylem formation, is not sufficient to establish a proper xylem axis but that root-based auxin biosynthesis is additionally required.

  12. The mouse forkhead gene Foxp2 modulates expression of the lung genes.

    PubMed

    Yang, Zhi; Hikosaka, Keisuke; Sharkar, Mohammad T K; Tamakoshi, Tomoki; Chandra, Abhishek; Wang, Bo; Itakura, Tatsuo; Xue, XiaoDong; Uezato, Tadayoshi; Kimura, Wataru; Miura, Naoyuki

    2010-07-03

    Foxp2 is expressed in the lung during mouse development. A monoclonal anti-mouse Foxp2 antibody was created to determine the expression pattern in the developing lung. Next, transcriptional control of two lung genes, CC10 and surfactant protein C (SPC) genes, by Foxp2 was investigated in H441 and A549 cells. Thirdly, expression patterns of Foxp2 and Foxf2 were compared in the developing lung. Finally, Foxp2 expression was determined in the Foxf2-null mice. Immunohistochemical staining and in situ hybridization were applied to the sections of lungs in the developing embryos. Monoclonal anti-Foxp2 antibody demonstrated that Foxp2 was expressed in the bronchial epithelium at E10.5 and its expression became restricted to the distal portion of the elongating bronchiolar epithelium and finally to type II alveolar epithelial cells around birth and in the adult. Foxp2 activated the SPC gene promoter in the presence of Nkx2.1 in A549 cells while it repressed the CC10 gene promoter in H441 cells. Next, the expression domains of the Foxp2 and Foxf2 were found to be exclusive in the lung. Finally, the expression of Foxp2 did not change in the lung of Foxf2-null mice. The Foxp2 protein is expressed in the growing distal edge of airway epithelium. When the bronchiolus elongates, Foxp2 suppresses CC10 expression. When the lung alveolus is formed, Foxp2 modulates the Nkx2.1-mediated SPC expression in type II alveolar cells. Foxp2 and Foxf2 independently play distinct roles in the alveoli and the mesenchyme, respectively. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Heat sensitization in skin and muscle nociceptors expressing distinct combinations of TRPV1 and TRPV2 protein.

    PubMed

    Rau, K K; Jiang, N; Johnson, R D; Cooper, B Y

    2007-04-01

    Recordings were made from small and medium diameter dorsal root ganglia (DRG) neurons that expressed transient receptor potential (TRP) proteins. Physiologically characterized skin nociceptors expressed either TRPV1 (type 2) or TRPV2 (type 4) in isolation. Other nociceptors co-expressed both TRP proteins and innervated deep tissue sites (gastrocnemius muscle, distal colon; type 5, type 8) and skin (type 8). Subpopulations of myelinated (type 8) and unmyelinated (type 5) nociceptors co-expressed both TRPs. Cells that expressed TRPV1 were excellent transducers of intense heat. Proportional inward currents were obtained from a threshold of approximately 46.5 to approximately 56 degrees C. In contrast, cells expressing TRPV2 alone (52 degrees C threshold) did not reliably transduce the intensity of thermal events. Studies were undertaken to assess the capacity of skin and deep nociceptors to exhibit sensitization to repeated intense thermal stimuli [heat-heat sensitization (HHS)]. Only nociceptors that expressed TRPV2, alone or in combination with TRPV1, exhibited HHS. HHS was shown to be Ca(2+) dependent in either case. Intracellular Ca(2+) dependent pathways to HHS varied with the pattern of TRP protein expression. Cells co-expressing both TRPs modulated heat reactivity through serine/threonine phosphorylation or PLA(2)-dependent pathways. Cells expressing only TRPV2 may have relied on tyrosine kinases for HHS. We conclude that heat sensitization in deep and superficial capsaicin and capsaicin-insensitive C and Adelta nociceptors varies with the distribution of TRPV1 and TRPV2 proteins. The expression pattern of these proteins are specific to subclasses of physiologically identified C and A fiber nociceptors with highly restricted tissue targets.

  14. Abrupt loss of MLH1 and PMS2 expression in endometrial carcinoma: molecular and morphologic analysis of 6 cases.

    PubMed

    Pai, Rish K; Plesec, Thomas P; Abdul-Karim, Fadi W; Yang, Bin; Marquard, Jessica; Shadrach, Bonnie; Roma, Andres R

    2015-07-01

    Given that endometrial cancer (EC) is often the sentinel cancer for female Lynch syndrome patients, we have successfully implemented universal screening of ECs and have previously shown that this is the preferred method to identify these patients. However, during the course of universal screening of EC, we encountered 6 cases with an unusual pattern of mismatch-repair protein immunohistochemistry that has not been previously described in this setting. In these 6 cases, there was an abrupt loss of MLH1 and PMS2 expression in a portion of the tumor. In 3 cases, marked histologic differences were identified between the areas of the tumor with retained expression and areas with loss of expression. In 2 cases, the areas with loss of expression were of higher grade (1 demonstrated solid growth and the other demonstrated increased nuclear atypia with diffuse p53 expression). In 4 tumors, histologic features associated with microsatellite instability (MSI) were present, including increased intraepithelial lymphocytes. The areas with loss of and retained MLH1/PMS2 expression were separately microdissected and assessed for MSI and MLH1 promoter methylation. The areas with loss of MLH1 and PMS2 more commonly demonstrated MSI compared with the areas with intact expression (83% vs. 33%). MLH1 promoter methylation analysis demonstrated heterogenous hypermethylation, as all areas with loss of MLH1/PMS2 expression had more extensive methylation of MLH1 compared with those areas with retained expression. In summary, we describe the histologic and molecular features of 6 cases of EC with abrupt loss of MLH1 and PMS2 expression and demonstrate that heterogenous methylation of the MLH1 promoter results in this distinct and unusual pattern of immunohistochemical expression.

  15. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression.

    PubMed

    Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin; Moufarrej, Mira N; Jones, Joan G; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-03-01

    Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.

  16. Accelerated recruitment of new brain development genes into the human genome.

    PubMed

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan

    2011-10-01

    How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.

  17. Cell-Type–Specific Transcriptional Profiles of the Dimorphic Pathogen Penicillium marneffei Reflect Distinct Reproductive, Morphological, and Environmental Demands

    PubMed Central

    Pasricha, Shivani; Payne, Michael; Canovas, David; Pase, Luke; Ngaosuwankul, Nathamon; Beard, Sally; Oshlack, Alicia; Smyth, Gordon K.; Chaiyaroj, Sansanee C.; Boyce, Kylie J.; Andrianopoulos, Alex

    2013-01-01

    Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify “phase or cell-state–specific” gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase–encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity. PMID:24062530

  18. Genome-scale gene expression characteristics define the follicular initiation and developmental rules during folliculogenesis.

    PubMed

    Shi, Kerong; He, Feng; Yuan, Xuefeng; Zhao, Yaofeng; Deng, Xuemei; Hu, Xiaoxiang; Li, Ning

    2013-08-01

    The ovarian follicle supplies a unique dynamic system for gametes that ensures the propagation of the species. During folliculogenesis, the vast majority of the germ cells are lost or inactivated because of ovarian follicle atresia, resulting in diminished reproductive potency and potential infertility. Understanding the underlying molecular mechanism of folliculogenesis rules is essential. Primordial (P), preantral (M), and large antral (L) porcine follicles were used to reveal their genome-wide gene expression profiles. Results indicate that primordial follicles (P) process a diverse gene expression pattern compared to growing follicles (M and L). The 5,548 differentially expressed genes display a similar expression mode in M and L, with a correlation coefficient of 0.892. The number of regulated (both up and down) genes in M is more than that in L. Also, their regulation folds in M (2-364-fold) are much more acute than in L (2-75-fold). Differentially expressed gene groups with different regulation patterns in certain follicular stages are identified and presumed to be closely related following follicular developmental rules. Interestingly, functional annotation analysis revealed that these gene groups feature distinct biological processes or molecular functions. Moreover, representative candidate genes from these gene groups have had their RNA or protein expressions within follicles confirmed. Our study emphasized genome-scale gene expression characteristics, which provide novel entry points for understanding the folliculogenesis rules on the molecular level, such as follicular initiation, atresia, and dominance. Transcriptional regulatory circuitries in certain follicular stages are expected to be found among the identified differentially expressed gene groups.

  19. Erythropoietin and engineered innate repair activators.

    PubMed

    Brines, Michael; Cerami, Anthony

    2013-01-01

    Erythropoietin (EPO) is a pleiotropic type I cytokine that has been identified as a major endogenous tissue protective molecule. In response to injury, EPO and a distinct receptor are expressed with a characteristic temporal and spatial expression pattern. Together, these serve to limit injury and to initiate repair. Administration of EPO in the setting of injury has been shown to be beneficial in a multitude of preclinical models. However, translation into the clinic has been hampered by EPO's adverse effects, including promotion of thrombosis. Recently, engineered molecules based on EPO's structure-activity relationships have been developed that are devoid of hematopoietic effects. These compounds are promising candidates for treatment of a wide variety of acute and chronic diseases.

  20. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    PubMed

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  1. Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses

    PubMed Central

    Ward, Jordan D.; Mullaney, Brendan; Schiller, Benjamin J.; He, Le D.; Petnic, Sarah E.; Couillault, Carole; Pujol, Nathalie; Bernal, Teresita U.; Van Gilst, Marc R.; Ashrafi, Kaveh; Ewbank, Jonathan J.; Yamamoto, Keith R.

    2014-01-01

    Metazoan transcription factors control distinct networks of genes in specific tissues, yet understanding how these networks are integrated into physiology, development, and homeostasis remains challenging. Inactivation of the nuclear hormone receptor nhr-25 ameliorates developmental and metabolic phenotypes associated with loss of function of an acyl-CoA synthetase gene, acs-3. ACS-3 activity prevents aberrantly high NHR-25 activity. Here, we investigated this relationship further by examining gene expression patterns following acs-3 and nhr-25 inactivation. Unexpectedly, we found that the acs-3 mutation or nhr-25 RNAi resulted in similar transcriptomes with enrichment in innate immunity and stress response gene expression. Mutants of either gene exhibited distinct sensitivities to pathogens and environmental stresses. Only nhr-25 was required for wild-type levels of resistance to the bacterial pathogen P. aeruginosa and only acs-3 was required for wild-type levels of resistance to osmotic stress and the oxidative stress generator, juglone. Inactivation of either acs-3 or nhr-25 compromised lifespan and resistance to the fungal pathogen D. coniospora. Double mutants exhibited more severe defects in the lifespan and P. aeruginosa assays, but were similar to the single mutants in other assays. Finally, acs-3 mutants displayed defects in their epidermal surface barrier, potentially accounting for the observed sensitivities. Together, these data indicate that inactivation of either acs-3 or nhr-25 causes stress sensitivity and increased expression of innate immunity/stress genes, most likely by different mechanisms. Elevated expression of these immune/stress genes appears to abrogate the transcriptional signatures relevant to metabolism and development. PMID:24651852

  2. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  3. Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia.

    PubMed

    Cox, Brian; Sharma, Parveen; Evangelou, Andreas I; Whiteley, Kathie; Ignatchenko, Vladimir; Ignatchenko, Alex; Baczyk, Dora; Czikk, Marie; Kingdom, John; Rossant, Janet; Gramolini, Anthony O; Adamson, S Lee; Kislinger, Thomas

    2011-12-01

    Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent molecular mechanisms in the origins of this disease.

  4. Cellular Trafficking of Phospholamban and Formation of Functional Sarcoplasmic Reticulum During Myocyte DIfferentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenoien, David L.; Knyushko, Tatyana V.; Londono, Monica P.

    2007-06-01

    The sarco/endoplasmic reticulum Ca-ATPase (SERCA) family members are transmembrane proteins that play an essential role in regulating intracellular calcium levels. Phospholamban (PLB), a 52 amino acid phosphoprotein, regulates SERCA activity in adult heart and skeletal muscle. Using the C2C12 myocyte cell line, we find endogenous PLB constitutively expressed in both myoblasts and myotubes, whereas SERCA expression coincides with activation of the differentiation program. PLB has a punctuate distribution in myoblasts changing to a reticular distribution in myotubes where it colocalizes with SERCAs. To examine the distribution and dynamics of PLB and SERCA, we expressed fluorescent fusion proteins (GFP, CFP, andmore » YFP) of PLB and SERCA in myoblasts. Coexpressed PLB and SERCA localize to distinct cellular compartments in myoblasts but begin to colocalize as cells differentiate. Fluorescence Recovery After Photobleaching (FRAP) studies show different recovery patterns for each protein in myoblasts confirming their localization to distinct compartments. To extend these studies, we created stable cell lines expressing O6-alkylguanine-DNA alkyltransferase (AGT) fusions with PLB or SERCA to track their localization as myocytes differentiate. These experiments demonstrate that PLB localizes to punctate vesicles in myoblasts and adopts a reticular distribution that coincides with SERCA distribution after differentiation. Colocalization experiments indicate that a subset of PLB in myoblasts colocalizes with endosomes, Golgi, and the plasma membrane however PLB also localizes to other, as yet unidentified vesicles. Our results indicate that differentiation plays a critical role in regulating PLB distribution to ensure its colocalization within the same cellular compartment as SERCA in differentiated cells. The presence and altered distribution of PLB in undifferentiated myoblasts raises the possibility that this protein has additional functions distinct from SERCA regulation.« less

  5. Growth and patterning are evolutionarily dissociated in the vestigial wing discs of workers of the red imported fire ant, Solenopsis invicta.

    PubMed

    Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab

    2007-12-15

    Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits. 2007 Wiley-Liss, Inc

  6. Membrane localization of insulin receptor substrate-2 (IRS-2) is associated with decreased overall survival in breast cancer

    PubMed Central

    Clark, Jennifer L.; Dresser, Karen; Hsieh, Chung-Cheng; Sabel, Michael; Kleer, Celina G.; Khan, Ashraf

    2011-01-01

    Recent studies have identified a role for insulin receptor substrate-2 (IRS-2) in promoting motility and metastasis in breast cancer. However, no published studies to date have examined IRS-2 expression in human breast tumors. We examined IRS-2 expression by immunohistochemistry (IHC) in normal breast tissue, benign breast lesions, and malignant breast tumors from the institutional pathology archives and a tumor microarray from a separate institution. Three distinct IRS-2 staining patterns were noted: diffusely cytoplasmic, punctate cytoplasmic, and localized to the cell membrane. The individual and pooled datasets were analyzed for associations of IRS-2 staining pattern with core clinical parameters and clinical outcomes. Univariate analysis revealed a trend toward decreased overall survival (OS) with IRS-2 membrane staining, and this association became significant upon multivariate analysis (P = 0.01). In progesterone receptor negative (PR−) tumors, in particular, IRS-2 staining at the membrane correlated with significantly worse OS than other IRS-2 staining patterns (P < 0.001). When PR status and IRS-2 staining pattern were evaluated in combination, PR− tumors with IRS-2 at the membrane were associated with a significantly decreased OS when compared with all other combinations (P = 0.002). Evaluation of IRS-2 staining patterns could potentially be used to identify patients with PR− tumors who would most benefit from aggressive treatment. PMID:21258861

  7. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  9. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of Rat Liver-Derived Cell Lines

    DTIC Science & Technology

    2010-05-22

    member B8 Blue 1370939_at Acsl1 acyl-CoA synthetase long-chain family member 1 Yellow 1372006_at --- --- Blue 1372101_at Ppap2b phosphatidic acid ...Stress L-ascorbic Acid Binding Cation Binding Identical Protein Binding Protein Dimerization Activity Dioxygenase Activity Oxidoreductase...Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts, and proteins. Nucleic Acid Research. 35: D61-65. Ryter SW

  10. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    DTIC Science & Technology

    2011-11-16

    nickel, cadmium, and chromium are toxic industrial chemicals with an exposure. While these substances are known to produce adverse health effects leading...in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects...that particular bin. A chi-squared test was used to test bin enrichment ( p ≤0.05). Probe sets that did not contain any biological process annotation were

  11. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  12. Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio (Devario aequipinnatus) and Zebrafish (Danio rerio) Hearts

    PubMed Central

    Manalo, Trina; May, Adam; Quinn, Joshua; Lafontant, Dominique S.; Shifatu, Olubusola; He, Wei; Gonzalez-Rosa, Juan M.; Burns, Geoffrey C.; Burns, Caroline E.; Burns, Alan R.; Lafontant, Pascal J.

    2016-01-01

    Lectins are carbohydrate-binding proteins commonly used as biochemical and histochemical tools to study glycoconjugate (glycoproteins, glycolipids) expression patterns in cells, tissues, including mammalian hearts. However, lectins have received little attention in zebrafish (Danio rerio) and giant danio (Devario aequipinnatus) heart studies. Here, we sought to determine the binding patterns of six commonly used lectins—wheat germ agglutinin (WGA), Ulex europaeus agglutinin, Bandeiraea simplicifolia lectin (BS lectin), concanavalin A (Con A), Ricinus communis agglutinin I (RCA I), and Lycopersicon esculentum agglutinin (tomato lectin)—in these hearts. Con A showed broad staining in the myocardium. WGA stained cardiac myocyte borders, with binding markedly stronger in the compact heart and bulbus. BS lectin, which stained giant danio coronaries, was used to measure vascular reconstruction during regeneration. However, BS lectin reacted poorly in zebrafish. RCA I stained the compact heart of both fish. Tomato lectin stained the giant danio, and while low reactivity was seen in the zebrafish ventricle, staining was observed in their transitional cardiac myocytes. In addition, we observed unique staining patterns in the developing zebrafish heart. Lectins’ ability to reveal differential glycoconjugate expression in giant danio and zebrafish hearts suggests they can serve as simple but important tools in studies of developing, adult, and regenerating fish hearts. PMID:27680670

  13. Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire

    NASA Technical Reports Server (NTRS)

    Miracle, A. L.; Anderson, M. K.; Litman, R. T.; Walsh, C. J.; Luer, C. A.; Rothenberg, E. V.; Litman, G. W.

    2001-01-01

    Cartilaginous fish express canonical B and T cell recognition genes, but their lymphoid organs and lymphocyte development have been poorly defined. Here, the expression of Ig, TCR, recombination-activating gene (Rag)-1 and terminal deoxynucleosidase (TdT) genes has been used to identify roles of various lymphoid tissues throughout development in the cartilaginous fish, Raja eglanteria (clearnose skate). In embryogenesis, Ig and TCR genes are sharply up-regulated at 8 weeks of development. At this stage TCR and TdT expression is limited to the thymus; later, TCR gene expression appears in peripheral sites in hatchlings and adults, suggesting that the thymus is a source of T cells as in mammals. B cell gene expression indicates more complex roles for the spleen and two special organs of cartilaginous fish-the Leydig and epigonal (gonad-associated) organs. In the adult, the Leydig organ is the site of the highest IgM and IgX expression. However, the spleen is the first site of IgM expression, while IgX is expressed first in gonad, liver, Leydig and even thymus. Distinctive spatiotemporal patterns of Ig light chain gene expression also are seen. A subset of Ig genes is pre-rearranged in the germline of the cartilaginous fish, making expression possible without rearrangement. To assess whether this allows differential developmental regulation, IgM and IgX heavy chain cDNA sequences from specific tissues and developmental stages have been compared with known germline-joined genomic sequences. Both non-productively rearranged genes and germline-joined genes are transcribed in the embryo and hatchling, but not in the adult.

  14. Pair-wise comparison analysis of differential expression of mRNAs in early and advanced stage primary colorectal adenocarcinomas

    PubMed Central

    Lau, Tze Pheng; Roslani, April Camilla; Lian, Lay Hoong; Chai, Hwa Chia; Lee, Ping Chin; Hilmi, Ida; Goh, Khean Lee; Chua, Kek Heng

    2014-01-01

    Objectives To characterise the mRNA expression patterns of early and advanced stage colorectal adenocarcinomas of Malaysian patients. Design Comparative expression analysis. Setting and participants We performed a combination of annealing control primer (ACP)-based PCR and reverse transcription-quantitative real-time PCR for the identification of differentially expressed genes (DEGs) associated with early and advanced stage primary colorectal tumours. We recruited four paired samples from patients with colorectal cancer (CRC) of Dukes’ A and B for the preliminary differential expression study, and a total of 27 paired samples, ranging from CRC stages I to IV, for subsequent confirmatory test. The tumouric samples were obtained from the patients with CRC undergoing curative surgical resection without preoperative chemoradiotherapy. The recruited patients with CRC were newly diagnosed with CRC, and were not associated with any hereditary syndromes, previously diagnosed cancer or positive family history of CRC. The paired non-cancerous tissue specimens were excised from macroscopically normal colonic mucosa distally located from the colorectal tumours. Primary and secondary outcome measures The differential mRNA expression patterns of early and advanced stage colorectal adenocarcinomas compared with macroscopically normal colonic mucosa were characterised by ACP-based PCR and reverse transcription-quantitative real-time PCR. Results The RPL35, RPS23 and TIMP1 genes were found to be overexpressed in both early and advanced stage colorectal adenocarcinomas (p<0.05). However, the ARPC2 gene was significantly underexpressed in early colorectal adenocarcinomas, while the advanced stage primary colorectal tumours exhibited an additional overexpression of the C6orf173 gene (p<0.05). Conclusions We characterised two distinctive gene expression patterns to aid in the stratification of primary colorectal neoplasms among Malaysian patients with CRC. Further work can be done to assess and compare the mRNA expression levels of these identified DEGs between each CRC stage group, stages I–IV. PMID:25107436

  15. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted therapeutics for HNSCC. PMID:17498291

  16. Six related nucleoside/nucleobase transporters from Trypanosoma brucei exhibit distinct biochemical functions.

    PubMed

    Sanchez, Marco A; Tryon, Rob; Green, Joy; Boor, Ilja; Landfear, Scott M

    2002-06-14

    Purine nucleoside and nucleobase transporters are of fundamental importance for Trypanosoma brucei and related kinetoplastid parasites because these protozoa are not able to synthesize purines de novo and must salvage the compounds from their hosts. In the studies reported here, we have identified a family of six clustered genes in T. brucei that encode nucleoside/nucleobase transporters. These genes, TbNT2/927, TbNT3, TbNT4, TbNT5, TbNT6, and TbNT7, have predicted amino acid sequences that show high identity to each other and to TbNT2, a P1 type nucleoside transporter recently identified in our laboratory. Expression in Xenopus laevis oocytes revealed that TbNT2/927, TbNT5, TbNT6, and TbNT7 are high affinity adenosine/inosine transporters with K(m) values of <5 microm. In addition, TbNT5, and to a limited degree TbNT6 and TbNT7, also mediate the uptake of the nucleobase hypoxanthine. Ribonuclease protection assays showed that mRNA from all of the six members of this gene family are expressed in the bloodstream stage of the T. brucei life cycle but that TbNT2/927 and TbNT5 mRNAs are also expressed in the insect stage of the life cycle. These results demonstrate that T. brucei expresses multiple purine transporters with distinct substrate specificities and different patterns of expression during the parasite life cycle.

  17. A cloning and expression analysis of pregnancy-associated glycoproteins expressed in trophoblasts of the white-tail deer placenta.

    PubMed

    Brandt, Gretchen A; Parks, Tina E; Killian, Gary; Ealy, Alan D; Green, Jonathan A

    2007-11-01

    The pregnancy-associated glycoproteins (PAGs) are placental proteins that have been cloned from swine, sheep, goats, and cattle, but never from animals within the Cervidae family. The goal of this work was to characterize PAGs in white-tailed deer. Placenta and uterine tissues were collected from pregnant does at days 85 and 90 of pregnancy. RNA from cotyledons was used to amplify deer PAGs by RT-PCR. Ten distinct cDNAs were cloned and sequenced. Some normally conserved amino acids comprising the catalytic site were found to be altered in deer PAGs 4, 5, and 8; another PAG, (PAG-9) was a splice variant that lacked exon 7. In each case, these mutations would likely preclude proteolytic activity for these proteins. A phylogenetic analysis revealed that most of the deer PAGs fell within the ancient PAG grouping. The remainder fell within the more modern (BNC-specific) PAG group. Western blotting was performed with anti-PAG antibodies and this analysis revealed that deer PAGs comprise a heterogeneous group based on different antigenicities and electrophoretic mobilities. Immunohistochemistry and in situ hybridization revealed some unique localization patterns of PAGs in the deer placentome compared to those in other ruminants. Most notably, deer PAGs 4 and 5, which according to the phylogeny, are "ancient PAGs," were expected to be present in all trophoblasts; instead, they were localized to the BNC. Although many of the PAGs identified here are very similar to those in Bovidae, some are clearly distinct in their expression pattern and probably possess functional roles unique to cervid reproduction. (c) 2007 Wiley-Liss, Inc.

  18. Functional Analysis of a Pomegranate (Punica granatum L.) MYB Transcription Factor Involved in the Regulation of Anthocyanin Biosynthesis

    PubMed Central

    Khaksar, Ghazale; Sayed Tabatabaei, Badraldin Ebrahim; Arzani, Ahmad; Ghobadi, Cyrus; Ebrahimie, Esmaeil

    2015-01-01

    Background Pomegranate fruit (Punica granatum L.) is a rich source of anthocyanin pigments resulting in vibrant colours and anti-oxidant contents. Although the intensity and pattern of anthocyanin biosynthesis in fruit are strongly influenced by R2R3-MYB transcription factors, little is known about the regulation and role of MYB in anthocyanin pathway of pomegranate. Objectives The present study was conducted to elucidate the relationship between the expression of MYB transcription factor and the anthocyanin accumulation during the colour development phase of pomegranate fruits. Materials and Methods In this work, R2R3-MYB transcription factor (PgMYB) was isolated and characterized from pomegranate skin through RACE-PCR. The expression of PgMYB gene was monitored in three distinct pomegranate accessions with distinctive skin colour and pattern by semi-quantitative RT-PCR. Results The results indicated a strong association between skin colour in mature pomegranate fruits with the PgMYB transcripts. The highest expression level of PgMYB gene was observed in Poost Siyah Yazd (dark purple skin) throughout the ripening process. Furthermore, comparison of PgMYB amino acid sequences with those of R2R3-MYB family in grapevine, eucalyptus, peach, cacao, populus and Arabidopsis demonstrated that this protein shares high similarity (75-85% amino acid identity) with their conserved MYB domain. Computational structure prediction of PgMYB showed that the three conserved amino acids (Asn, Lys and Lys) are present in the same position of the MYB domain. Conclusions It is speculated that PgMYB gene influences the fruit colour and could be used to improve the accumula-tion of anthocyanin pigments in the pomegranate fruit. PMID:28959277

  19. Developmental pattern of diacylglycerol lipase-α (DAGLα) immunoreactivity in brain regions important for song learning and control in the zebra finch (Taeniopygia guttata).

    PubMed

    Soderstrom, Ken; Wilson, Ashley R

    2013-11-01

    Zebra finch song is a learned behavior dependent upon successful progress through a sensitive period of late-postnatal development. This learning is associated with maturation of distinct brain nuclei and the fiber tract interconnections between them. We have previously found remarkably distinct and dense CB1 cannabinoid receptor expression within many of these song control brain regions, implying a normal role for endocannabinoid signaling in vocal learning. Activation of CB1 receptors via daily treatments with exogenous agonist during sensorimotor stages of song learning (but not in adulthood) results in persistent alteration of song patterns. Now we are working to understand physiological changes responsible for this cannabinoid-altered vocal learning. We have found that song-altering developmental treatments are associated with changes in expression of endocannabinoid signaling elements, including CB1 receptors and the principal CNS endogenous agonist, 2-AG. Within CNS, 2-AG is produced largely through activity of the α isoform of the enzyme diacylglycerol lipase (DAGLα). To better appreciate the role of 2-AG production in normal vocal development we have determined the spatial distribution of DAGLα expression within zebra finch CNS during vocal development. Early during vocal development at 25 days, DAGLα staining is typically light and of fibroid processes. Staining peaks late in the sensorimotor stage of song learning at 75 days and is characterized by fiber, neuropil and some staining of both small and large cell somata. Results provide insight to the normal role for endocannabinoid signaling in the maturation of brain regions responsible for song learning and vocal-motor output, and suggest mechanisms by which exogenous cannabinoid exposure alters acquisition of this form of vocal communication. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Melatonin regulates somatotrope and lactotrope function through common and distinct signaling pathways in cultured primary pituitary cells from female primates.

    PubMed

    Ibáñez-Costa, Alejandro; Córdoba-Chacón, José; Gahete, Manuel D; Kineman, Rhonda D; Castaño, Justo P; Luque, Raúl M

    2015-03-01

    Melatonin (MT) is secreted by the pineal gland and exhibits a striking circadian rhythm in its release. Depending on the species studied, some pituitary hormones also display marked circadian/seasonal patterns and rhythms of secretion. However, the precise relationship between MT and pituitary function remains controversial, and studies focusing on the direct role of MT in normal pituitary cells are limited to nonprimate species. Here, adult normal primate (baboons) primary pituitary cell cultures were used to determine the direct impact of MT on the functioning of all pituitary cell types from the pars distalis. MT increased GH and prolactin (PRL) expression/release in a dose- and time-dependent fashion, a response that was blocked by somatostatin. However, MT did not significantly affect ACTH, FSH, LH, or TSH expression/release. MT did not alter GHRH- or ghrelin-induced GH and/or PRL secretions, suggesting that MT may activate similar signaling pathways as ghrelin/GHRH. The effects of MT on GH/PRL release, which are likely mediated through MT1 receptor, involve both common (adenylyl cyclase/protein kinase A/extracellular calcium-channels) and distinct (phospholipase C/intracellular calcium-channels) signaling pathways. Actions of MT on pituitary cells also included regulation of the expression of other key components for the control of somatotrope/lactotrope function (GHRH, ghrelin, and somatostatin receptors). These results show, for the first time in a primate model, that MT directly regulates somatotrope/lactotrope function, thereby lending support to the notion that the actions of MT on these cells might substantially contribute to the define daily patterns of GH and PRL observed in primates and perhaps in humans.

  1. Single-cell systems level analysis of human Toll-Like-Receptor activation defines a chemokine signature in Systemic Lupus Erythematosus

    PubMed Central

    O'Gorman, William E.; Hsieh, Elena W.Y.; Savig, Erica S.; Gherardini, Pier Federico; Hernandez, Joseph D.; Hansmann, Leo; Balboni, Imelda M.; Utz, Paul J.; Bendall, Sean C.; Fantl, Wendy J.; Lewis, David B.; Nolan, Garry P.; Davis, Mark M.

    2015-01-01

    Background Activation of Toll-Like Receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in Systemic Lupus Erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has previously not been described. Objective To characterize TLR activation across multiple immune cell subsets and individuals, with the goal of establishing a reference framework against which to compare pathological processes. Methods Peripheral whole blood samples were stimulated with TLR ligands, and analyzed by mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied seventeen healthy volunteer donors and eight newly diagnosed untreated SLE patients. Results Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of NK and T cells selectively induced NF-κB in response to TLR2 ligands. CD14hi monocytes exhibited the most polyfunctional cytokine expression patterns, with over 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared amongst a group of healthy donors, with minimal intra- and inter- individual variability. Furthermore, autoimmune disease altered baseline cytokine production, as newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. Conclusion Mass cytometry analysis defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in inflammatory disease, such as SLE. PMID:26037552

  2. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation

    PubMed Central

    2012-01-01

    Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods. PMID:22510249

  3. Can a few non‐coding mutations make a human brain?

    PubMed Central

    Franchini, Lucía F.

    2015-01-01

    The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human‐specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human‐specific genetic and genomic changes are linked to complex human traits. Also watch the Video Abstract. PMID:26350501

  4. Transcriptional architecture of the primate neocortex.

    PubMed

    Bernard, Amy; Lubbers, Laura S; Tanis, Keith Q; Luo, Rui; Podtelezhnikov, Alexei A; Finney, Eva M; McWhorter, Mollie M E; Serikawa, Kyle; Lemon, Tracy; Morgan, Rebecca; Copeland, Catherine; Smith, Kimberly; Cullen, Vivian; Davis-Turak, Jeremy; Lee, Chang-Kyu; Sunkin, Susan M; Loboda, Andrey P; Levine, David M; Stone, David J; Hawrylycz, Michael J; Roberts, Christopher J; Jones, Allan R; Geschwind, Daniel H; Lein, Ed S

    2012-03-22

    Genome-wide transcriptional profiling was used to characterize the molecular underpinnings of neocortical organization in rhesus macaque, including cortical areal specialization and laminar cell-type diversity. Microarray analysis of individual cortical layers across sensorimotor and association cortices identified robust and specific molecular signatures for individual cortical layers and areas, prominently involving genes associated with specialized neuronal function. Overall, transcriptome-based relationships were related to spatial proximity, being strongest between neighboring cortical areas and between proximal layers. Primary visual cortex (V1) displayed the most distinctive gene expression compared to other cortical regions in rhesus and human, both in the specialized layer 4 as well as other layers. Laminar patterns were more similar between macaque and human compared to mouse, as was the unique V1 profile that was not observed in mouse. These data provide a unique resource detailing neocortical transcription patterns in a nonhuman primate with great similarity in gene expression to human. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities.

    PubMed

    Liu, Xuan; Trakooljul, Nares; Hadlich, Frieder; Murani, Eduard; Wimmers, Klaus; Ponsuksili, Siriluck

    2017-10-25

    Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.

  6. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite.

    PubMed

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-06-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

  7. Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120

    PubMed Central

    Videau, Patrick; Rivers, Orion S.; Ushijima, Blake; Oshiro, Reid T.; Kim, Min Joo; Philmus, Benjamin

    2016-01-01

    ABSTRACT To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:l-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. IMPORTANCE Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. PMID:26811320

  8. Mutation of the murC and murB Genes Impairs Heterocyst Differentiation in Anabaena sp. Strain PCC 7120.

    PubMed

    Videau, Patrick; Rivers, Orion S; Ushijima, Blake; Oshiro, Reid T; Kim, Min Joo; Philmus, Benjamin; Cozy, Loralyn M

    2016-04-01

    To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:L-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein

    PubMed Central

    Orth, Martin F.; Cazes, Alex; Butt, Elke; Grunewald, Thomas G. P.

    2015-01-01

    The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities. PMID:25622104

  10. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures

    PubMed Central

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2014-01-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584

  11. Happy guys finish last: the impact of emotion expressions on sexual attraction.

    PubMed

    Tracy, Jessica L; Beall, Alec T

    2011-12-01

    This research examined the relative sexual attractiveness of individuals showing emotion expressions of happiness, pride, and shame compared with a neutral control. Across two studies using different images and samples ranging broadly in age (total N = 1041), a large gender difference emerged in the sexual attractiveness of happy displays: happiness was the most attractive female emotion expression, and one of the least attractive in males. In contrast, pride showed the reverse pattern; it was the most attractive male expression, and one of the least attractive in women. Shame displays were relatively attractive in both genders, and, among younger adult women viewers, male shame was more attractive than male happiness, and not substantially less than male pride. Effects were largely consistent with evolutionary and socio-cultural-norm accounts. Overall, this research provides the first evidence that distinct emotion expressions have divergent effects on sexual attractiveness, which vary by gender but largely hold across age. (c) 2011 APA, all rights reserved.

  12. Cassava (Manihot esculenta Krantz) genome harbors KNOX genes differentially expressed during storage root development.

    PubMed

    Guo, D; Li, H L; Tang, X; Peng, S Q

    2014-12-18

    In plants, homeodomain proteins play a critical role in regulating various aspects of plant growth and development. KNOX proteins are members of the homeodomain protein family. The KNOX transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of cassava (Manihot esculenta Krantz) has allowed a genome-wide search for M. esculenta KNOX (MeKNOX) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. In the present study, we identified 12 MeKNOX genes in the cassava genome and grouped them into two distinct subfamilies based on their domain composition and phylogenetic analysis. Furthermore, semi-quantitative reverse transcription polymerase chain reaction analysis was performed to elucidate the expression profiles of these genes in different tissues and during various stages of root development. The analysis of MeKNOX expression profiles of indicated that 12 MeKNOX genes display differential expressions either in their transcript abundance or expression patterns.

  13. Identification of apoptosis-related PLZF target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes

    2007-07-27

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localizationmore » is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression.« less

  14. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2016-01-01

    Abstract Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model. PMID:27017527

  15. Molecular changes associated with heat-shock treatment in avian mononuclear and lymphoid lineage cells.

    PubMed

    Miller, L; Qureshi, M A

    1992-03-01

    The induction of heat-shock protein (HSP) synthesis in avian cells of the mononuclear phagocytic system (MPS) and lymphoid system (LS) lineage was investigated by exposure to in vitro heat-shock conditions. In addition, the kinetics of HSP90 mRNA expression was examined in chicken peritoneal macrophages (PM) as well as heat-shock-induced HSP synthesis in PM from chickens, turkeys, quail, and ducks. Each MPS and LS cell type expressed three major (23, 70, and 90 kDa) HSP following a 1-h heat shock at 45 C. However, a unique heat-induced 32-kDa protein (P32) was expressed only by cells of MPS lineage. The expression of HSP90 mRNA in chicken PM was temperature- and time-dependent. These findings imply that avian PM undergo molecular changes in response to elevated environmental temperatures and that the pattern of HSP expression appears to be distinct for cells of the MPS and LS lineages in chickens.

  16. Disruption of zebrafish cyclin G-associated kinase (GAK) function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development

    PubMed Central

    2010-01-01

    Background The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish. Results Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK), differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures. Conclusion In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues: an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells. PMID:20082716

  17. Msx and dlx homeogene expression in epithelial odontogenic tumors.

    PubMed

    Ruhin-Poncet, Blandine; Ghoul-Mazgar, Sonia; Hotton, Dominique; Capron, Frédérique; Jaafoura, Mohamed Habib; Goubin, Gérard; Berdal, Ariane

    2009-01-01

    Epithelial odontogenic tumors are rare jaw pathologies that raise clinical diagnosis and prognosis dilemmas notably between ameloblastomas and clear cell odontogenic carcinomas (CCOCs). In line with previous studies, the molecular determinants of tooth development-amelogenin, Msx1, Msx2, Dlx2, Dlx3, Bmp2, and Bmp4-were analyzed by RT-PCR, ISH, and immunolabeling in 12 recurrent ameloblastomas and in one case of CCOC. Although Msx1 expression imitates normal cell differentiation in these tumors, other genes showed a distinct pattern depending on the type of tumor and the tissue involved. In benign ameloblastomas, ISH localized Dlx3 transcripts and inconstantly detected Msx2 transcripts in epithelial cells. In the CCOC, ISH established a lack of both Dlx3 and Msx2 transcripts but allowed identification of the antisense transcript of Msx1, which imitates the same scheme of distribution between mesenchyme and epithelium as in the cup stage of tooth development. Furthermore, while exploring the expression pattern of signal molecules by RT-PCR, Bmp2 was shown to be completely inactivated in the CCOC and irregularly noticeable in ameloblastomas. Bmp4 was always expressed in all the tumors. Based on the established roles of Msx and Dlx transcription factors in dental cell fates, these data suggest that their altered expression is a proposed trail to explain the genesis and/or the progression of odontogenic tumors.

  18. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes.

    PubMed

    Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio

    2012-06-01

    Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants.

  19. The Expression Pattern of microRNAs in Granulosa Cells of Subordinate and Dominant Follicles during the Early Luteal Phase of the Bovine Estrous Cycle

    PubMed Central

    Gebremedhn, Samuel; Sahadevan, Sudeep; Hossain, MD Munir; Rings, Franca; Hoelker, Michael; Tholen, Ernst; Neuhoff, Christiane; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2014-01-01

    This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF) and dominant follicle (DF) during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291–318) were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle. PMID:25192015

  20. Basolateral junctions are sufficient to suppress epithelial invasion during Drosophila oogenesis.

    PubMed

    Szafranski, Przemyslaw; Goode, Scott

    2007-02-01

    Epithelial junctions play crucial roles during metazoan evolution and development by facilitating tissue formation, maintenance, and function. Little is known about the role of distinct types of junctions in controlling epithelial transformations leading to invasion of neighboring tissues. Discovering the key junction complexes that control these processes and how they function may also provide mechanistic insight into carcinoma cell invasion. Here, using the Drosophila ovary as a model, we show that four proteins of the basolateral junction (BLJ), Fasciclin-2, Neuroglian, Discs-large, and Lethal-giant-larvae, but not proteins of other epithelial junctions, directly suppress epithelial tumorigenesis and invasion. Remarkably, the expression pattern of Fasciclin-2 predicts which cells will invade. We compared the apicobasal polarity of BLJ tumor cells to border cells (BCs), an epithelium-derived cluster that normally migrates during mid-oogenesis. Both tumor cells and BCs differentiate a lateralized membrane pattern that is necessary but not sufficient for invasion. Independent of lateralization, derepression of motility pathways is also necessary, as indicated by a strong linear correlation between faster BC migration and an increased incidence of tumor invasion. However, without membrane lateralization, derepression of motility pathways is also not sufficient for invasion. Our results demonstrate that spatiotemporal patterns of basolateral junction activity directly suppress epithelial invasion by organizing the cooperative activity of distinct polarity and motility pathways.

  1. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression.

    PubMed

    Robertson, M; Chandler, P M

    1994-11-01

    Dehydrins are a family of proteins characterised by conserved amino acid motifs, and induced in plants by dehydration or treatment with ABA. An antiserum was raised against a synthetic oligopeptide based on the most highly conserved dehydrin amino acid motif, the lysine-rich (core sequence KIKEK-LPG). This antiserum detected a novel M(r) 40,000 polypeptide and enabled isolation of a corresponding cDNA clone, pPsB61 (B61). The deduced amino acid sequence contained two lysine-rich blocks, however the remainder of the sequenced differed markedly from other pea dehydrins. Surprisingly, the sequence contained a stretch of serine residues, a characteristic common to dehydrins from many plant species but which is missing in pea dehydrin. The expression patterns of B61 mRNA and polypeptide were distinctively different from those of the pea dehydrins during seed development, germination and in young seedlings exposed to dehydration stress or treated with ABA. In particular, dehydration stress led to slightly reduced levels of B61 RNA, and ABA application to young seedlings had no marked effect on its abundance. The M(r) 40,000 polypeptide is thus related to pea dehydrin by the presence of the most highly conserved amino acid sequence motifs, but lacks the characteristic expression pattern of dehydrin. By analogy with heat shock cognate proteins we refer to this protein as a dehydrin cognate.

  2. Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in Drosophila melanogaster.

    PubMed

    Tognon, Emiliana; Kobia, Francis; Busi, Ilaria; Fumagalli, Arianna; De Masi, Federico; Vaccari, Thomas

    2016-01-01

    In vertebrates, TFEB (transcription factor EB) and MITF (microphthalmia-associated transcription factor) family of basic Helix-Loop-Helix (bHLH) transcription factors regulates both lysosomal function and organ development. However, it is not clear whether these 2 processes are interconnected. Here, we show that Mitf, the single TFEB and MITF ortholog in Drosophila, controls expression of vacuolar-type H(+)-ATPase pump (V-ATPase) subunits. Remarkably, we also find that expression of Vha16-1 and Vha13, encoding 2 key components of V-ATPase, is patterned in the wing imaginal disc. In particular, Vha16-1 expression follows differentiation of proneural regions of the disc. These regions, which will form sensory organs in the adult, appear to possess a distinctive endolysosomal compartment and Notch (N) localization. Modulation of Mitf activity in the disc in vivo alters endolysosomal function and disrupts proneural patterning. Similar to our findings in Drosophila, in human breast epithelial cells we observe that impairment of the Vha16-1 human ortholog ATP6V0C changes the size and function of the endolysosomal compartment and that depletion of TFEB reduces ligand-independent N signaling activity. Our data suggest that lysosomal-associated functions regulated by the TFEB-V-ATPase axis might play a conserved role in shaping cell fate.

  3. Vitellogenin and vitellogenin receptor gene expression profiles in Spodoptera exigua are related to host plant suitability.

    PubMed

    Zhao, Jing; Sun, Yang; Xiao, Liubin; Tan, Yongan; Jiang, Yiping; Bai, Lixin

    2018-04-01

    The beet armyworm Spodoptera exigua, a worldwide phytophagous pest, causes considerable economic agricultural losses. Understanding the relationship between its fecundity and the host plant is a basic and important component of early forecasting of beet armyworm outbreaks. However, little is known about the molecular mechanism by which distinct hosts affect S. exigua fecundity. In this study, key life-history parameters of S. exigua reared on distinct hosts were investigated; the host plants could be ranked as lettuce > shallot > tomato > celery in their order of suitability. Full-length S. exigua vitellogenin receptor (SeVgR) cDNA was cloned, and sex-, stage- and tissue-specific expression characteristics were assessed. Spodoptera exigua vitellogenin (SeVg) and SeVgR expression levels were markedly modulated by host nutrients (P < 0.05). SeVg and SeVgR expression levels were significantly higher in S. exigua reared on lettuce, the most preferred and most nutritive host, than in those reared on tomato and celery. Interestingly, significant linear regression correlations were found between SeVg and SeVgR expression levels and key S. exigua life-history parameters, especially life span, pupa weight, and female fecundity (P < 0.01). Host plant type and suitability could affect the expression pattern of SeVg and SeVgR, which influenced S. exigua fecundity. Vg and VgR have the potential to be used as molecular markers of S. exigua fecundity and for forecasting outbreaks of S. exigua on different hosts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Contrasting expression of membrane metalloproteinases, MT1-MMP and MT3-MMP, suggests distinct functions in skeletal development.

    PubMed

    Yang, Maozhou; Zhang, Bingbing; Zhang, Liang; Gibson, Gary

    2008-07-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.

  5. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, Stephan; Dambacher, Julia; Beigel, Florian

    2005-10-15

    Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting inmore » increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.« less

  6. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    PubMed Central

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-01-01

    Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks. PMID:17672917

  7. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    PubMed

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks.

  8. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination

    PubMed Central

    Zhu, Qiang; Tan, Zhou; Zhao, Shufang; Huang, Hao; Zhao, Xiaofeng; Hu, Xuemei; Zhang, Yiping; Shields, Christopher B; Uetani, Noriko; Qiu, Mengsheng

    2015-01-01

    Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocyte undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals. PMID:26341907

  9. Proteomic Characterization of Host Response to Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Perkins, J; Heidbrink, J

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct formore » the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.« less

  10. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells.

    PubMed

    Holm, Karolina; Staaf, Johan; Lauss, Martin; Aine, Mattias; Lindgren, David; Bendahl, Pär-Ola; Vallon-Christersson, Johan; Barkardottir, Rosa Bjork; Höglund, Mattias; Borg, Åke; Jönsson, Göran; Ringnér, Markus

    2016-02-29

    Aberrant DNA methylation is frequently observed in breast cancer. However, the relationship between methylation patterns and the heterogeneity of breast cancer has not been comprehensively characterized. Whole-genome DNA methylation analysis using Illumina Infinium HumanMethylation450 BeadChip arrays was performed on 188 human breast tumors. Unsupervised bootstrap consensus clustering was performed to identify DNA methylation epigenetic subgroups (epitypes). The Cancer Genome Atlas data, including methylation profiles of 669 human breast tumors, was used for validation. The identified epitypes were characterized by integration with publicly available genome-wide data, including gene expression levels, DNA copy numbers, whole-exome sequencing data, and chromatin states. We identified seven breast cancer epitypes. One epitype was distinctly associated with basal-like tumors and with BRCA1 mutations, one epitype contained a subset of ERBB2-amplified tumors characterized by multiple additional amplifications and the most complex genomes, and one epitype displayed a methylation profile similar to normal epithelial cells. Luminal tumors were stratified into the remaining four epitypes, with differences in promoter hypermethylation, global hypomethylation, proliferative rates, and genomic instability. Specific hyper- and hypomethylation across the basal-like epitype was rare. However, we observed that the candidate genomic instability drivers BRCA1 and HORMAD1 displayed aberrant methylation linked to gene expression levels in some basal-like tumors. Hypomethylation in luminal tumors was associated with DNA repeats and subtelomeric regions. We observed two dominant patterns of aberrant methylation in breast cancer. One pattern, constitutively methylated in both basal-like and luminal breast cancer, was linked to genes with promoters in a Polycomb-repressed state in normal epithelial cells and displayed no correlation with gene expression levels. The second pattern correlated with gene expression levels and was associated with methylation in luminal tumors and genes with active promoters in normal epithelial cells. Our results suggest that hypermethylation patterns across basal-like breast cancer may have limited influence on tumor progression and instead reflect the repressed chromatin state of the tissue of origin. On the contrary, hypermethylation patterns specific to luminal breast cancer influence gene expression, may contribute to tumor progression, and may present an actionable epigenetic alteration in a subset of luminal breast cancers.

  11. Genomic Organization, Phylogenetic Comparison and Differential Expression of the SBP-Box Family Genes in Grape

    PubMed Central

    Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping

    2013-01-01

    Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172

  12. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    PubMed

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.

  13. Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs

    PubMed Central

    Barttfeld, Pablo; Wicker, Bruno; McAleer, Phil; Belin, Pascal; Cojan, Yann; Graziano, Martín; Leiguarda, Ramón; Sigman, Mariano

    2013-01-01

    The degree of correspondence between objective performance and subjective beliefs varies widely across individuals. Here we demonstrate that functional brain network connectivity measured before exposure to a perceptual decision task covaries with individual objective (type-I performance) and subjective (type-II performance) accuracy. Increases in connectivity with type-II performance were observed in networks measured while participants directed attention inward (focus on respiration), but not in networks measured during states of neutral (resting state) or exogenous attention. Measures of type-I performance were less sensitive to the subjects’ specific attentional states from which the networks were derived. These results suggest the existence of functional brain networks indexing objective performance and accuracy of subjective beliefs distinctively expressed in a set of stable mental states. PMID:23801762

  14. Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus.

    PubMed

    Hu, Qiaomu; Xiao, Hanbing; Tian, HaiFeng; Meng, Yan

    2016-02-01

    We cloned the full length cyp19a of Chinese giant salamander Andrias davidianus, determined its distribution in tissues and developing gonads, and analyzed the CpG methylation pattern of the cyp19a promoter. The results revealed isoforms of 1706 bp (G arom) and 1698 bp (B arom) in length, differing in the 5' flanking region, both encoding 502 amino acids. The G arom gene was observed mainly in the ovary and kidney, with little in other investigated tissues, while B arom expression was high in the brain, ovary, testis, and pituitary, with low or undetected expression in other examined tissues. Total aromatase expression was high in the ovary; moderate in the kidney, brain, testis, and pituitary; and low in the remaining tissues. G arom expression was significantly higher in the ovary than in the testis and gradually decreased with maturation of the salamander. A single injection of methyltestosterone or letrozole resulted in ovarian G arom expression decreasing over a 12-96 h period. A 1366 bp sequence of the cyp19a promoter was cloned and shown to be conserved in selected species. CpG methylation level was negatively correlated with cyp19a expression in the examined tissues and developing ovaries. Five and three CpG methylation sites positively correlated with DNA methylation levels in tissues and developing ovary, suggesting that they play an important role in regulating cyp19a expression. The aromatase gene showed two isoforms with distinct expression patterns, and the promoter methylation level at specific CpG sites was associated with variation in expression profiles of tissues and developing ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    PubMed

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Differential expression of decorin and biglycan genes during palatogenesis in normal and retinoic acid-treated mice.

    PubMed

    Zhang, Yuxiang; Mori, Tetsuji; Iseki, Ken; Hagino, Seita; Takaki, Hiromi; Takeuchi, Mayumi; Hikake, Tsuyoshi; Tase, Choichiro; Murakawa, Masahiro; Yokoya, Sachihiko; Wanaka, Akio

    2003-04-01

    Proteoglycans are involved in secondary palate formation. In the present study, we focused on two small leucine-rich proteoglycans, decorin and biglycan, because they assembled extracellular matrix molecules such as collagens and modulated signaling pathway of transforming growth factor-beta. To investigate the functions of decorin and biglycan in palatogenesis, we compared their mRNA expression patterns between normal palate and retinoic acid-induced cleft palate in mice by using in situ hybridization analysis during the period of embryonic day 13.5 (E13.5) to E15.5. On E13.5, decorin mRNA was expressed in the epithelia and mesenchyme on the nasal side of the developing secondary palate. During the period the palate shelves were fusing (E14.5), decorin mRNA was strongly expressed in the mesenchyme but its expression pattern was asymmetric; decorin mRNA expression area in the nasal side was broader than that in the oral side. The expression of decorin mRNA was hardly detected in the mesenchyme on either side of the medial edge epithelium. After fusion (E15.5), its expression converged to the mesenchyme just around the palatine bone. Biglycan mRNA was ubiquitously distributed throughout the palatal mesenchyme for the mid-gestation period. Its expression area became limited to the ossification area within the palate after the late gestation period. In the retinoic acid-treated mice, the area of the decorin gene expression expanded to the core region of the palate primordium where little signal was observed in control mice. On the other hand, biglycan in the retinoic acid-treated mice did not show remarkable change in its distribution patterns compared with that in the control mice. These findings suggest that decorin and biglycan play distinct roles in palatogenesis, and decorin was more actively involved in the process of secondary palate formation than biglycan. Up-regulation of decorin gene expression in the retinoic acid-treated mice might influence the pathogenesis of cleft palate. Copyright 2003 Wiley-Liss, Inc.

  17. Tissue-Specific Chromatin Modifications at a Multigene Locus Generate Asymmetric Transcriptional Interactions

    PubMed Central

    Yoo, Eung Jae; Cajiao, Isabela; Kim, Jeong-Seon; Kimura, Atsushi P.; Zhang, Aiwen; Cooke, Nancy E.; Liebhaber, Stephen A.

    2006-01-01

    Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitarycell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome. PMID:16847312

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jusakul, Apinya; Cutcutache, Ioana; Yong, Chern Han

    Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analysed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined four CCA clusters - Fluke- Positive CCAs (Clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations, conversely Fluke-Negative CCAs (Clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3’UTR deletion as a mechanism of FGFR2 upregulation. Integration of non-coding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation ofmore » H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores - mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Lastly, our results exemplify how genetics, epigenetics and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.« less

  19. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    PubMed

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  20. Transcription factor-dependent chromatin remodeling of Il18r1 during Th1 and Th2 differentiation 1

    PubMed Central

    Yu, Qing; Chang, Hua-Chen; Ahyi, Ayele-Nati N.; Kaplan, Mark H.

    2008-01-01

    The IL-18Rα chain is expressed on Th1 but not Th2 cells. We have recently shown that Stat4 is an important component of programming the Il18r1 locus (encoding IL-18Rα) for maximal expression in Th1 cells. Il18r1 is reciprocally repressed during Th2 development. In this report we demonstrate that the establishment of DNase hypersensitivity patterns that are distinct among undifferentiated CD4 T cells, Th1 and Th2 cells. Stat6 is required for the repression of Il18r1 expression and in Stat6-deficient Th2 cultures, mRNA levels, histone acetylation and H3K4 methylation levels are intermediate between levels observed in Th1 and Th2 cells. Despite the repressive effects of IL-4 during Th2 differentiation, we observed only modest binding of Stat6 to the Il18r1 locus. In contrast, we observed robust GATA-3 binding to a central region of the locus where DNase hypersensitivity sites overlapped with conserved non-coding sequences in Il18r1 introns. Ectopic expression of GATA-3 in differentiated Th1 cells repressed Il18r1 mRNA and surface expression of IL-18Rα. These data provide further mechanistic insight into transcription factor dependent establishment of Th subset-specific patterns of gene expression. PMID:18714006

Top