Sample records for distorted body image

  1. Body Image Dissatisfaction and Distortion, Steroid Use, and Sex Differences in College Age Bodybuilders.

    ERIC Educational Resources Information Center

    Peters, Mark Anthony; Phelps, LeAddelle

    2001-01-01

    Compares college age bodybuilders by sex and steroid intake on two variables: body image dissatisfaction and body image distortion. Results reveal only a significant effect for gender on body distortion. No steroid-use differences were apparent for either body image dissatisfaction or body image distortion. Analyses indicate that female…

  2. Adolescence and Body Image.

    ERIC Educational Resources Information Center

    Weinshenker, Naomi

    2002-01-01

    Discusses body image among adolescents, explaining that today's adolescents are more prone to body image distortions and dissatisfaction than ever and examining the historical context; how self-image develops; normative discontent; body image distortions; body dysmorphic disorder (BDD); vulnerability of boys (muscle dysmorphia); who is at risk;…

  3. Mediating Effect of Body Image Distortion on Weight Loss Efforts in Normal-Weight and Underweight Korean Adolescent Girls

    ERIC Educational Resources Information Center

    Choi, Jeong-Sil; Kim, Ji-Soo

    2017-01-01

    Background: We explored the relationship between body mass index-for-age percentile, body image distortion, and unnecessary weight loss efforts in Korean adolescent girls who are underweight and normal weight and examined the mediating effect of body image distortion on weight loss efforts. Methods: This study used data from the 2013 Korea Youth…

  4. Perceived face size in healthy adults.

    PubMed

    D'Amour, Sarah; Harris, Laurence R

    2017-01-01

    Perceptual body size distortions have traditionally been studied using subjective, qualitative measures that assess only one type of body representation-the conscious body image. Previous research on perceived body size has typically focused on measuring distortions of the entire body and has tended to overlook the face. Here, we present a novel psychophysical method for determining perceived body size that taps into implicit body representation. Using a two-alternative forced choice (2AFC), participants were sequentially shown two life-size images of their own face, viewed upright, upside down, or tilted 90°. In one interval, the width or length dimension was varied, while the other interval contained an undistorted image. Participants reported which image most closely matched their own face. An adaptive staircase adjusted the distorted image to hone in on the image that was equally likely to be judged as matching their perceived face as the accurate image. When viewed upright or upside down, face width was overestimated and length underestimated, whereas perception was accurate for the on-side views. These results provide the first psychophysically robust measurements of how accurately healthy participants perceive the size of their face, revealing distortions of the implicit body representation independent of the conscious body image.

  5. Differences in the Nature of Body Image Disturbances between Female Obese Individuals with versus without a Comorbid Binge Eating Disorder: An Exploratory Study Including Static and Dynamic Aspects of Body Image

    ERIC Educational Resources Information Center

    Legenbauer, Tanja; Vocks, Silja; Betz, Sabrina; Puigcerver, Maria Jose Baguena; Benecke, Andrea; Troje, Nikolaus F.; Ruddel, Heinz

    2011-01-01

    Various components of body image were measured to assess body image disturbances in patients with obesity. To overcome limitations of previous studies, a photo distortion technique and a biological motion distortion device were included to assess static and dynamic aspects of body image. Questionnaires assessed cognitive-affective aspects, bodily…

  6. Effects of perceptual body image distortion and early weight gain on long-term outcome of adolescent anorexia nervosa.

    PubMed

    Boehm, Ilka; Finke, Beatrice; Tam, Friederike I; Fittig, Eike; Scholz, Michael; Gantchev, Krassimir; Roessner, Veit; Ehrlich, Stefan

    2016-12-01

    Anorexia nervosa (AN), a severe mental disorder with an onset during adolescence, has been found to be difficult to treat. Identifying variables that predict long-term outcome may help to develop better treatment strategies. Since body image distortion and weight gain are central elements of diagnosis and treatment of AN, the current study investigated perceptual body image distortion, defined as the accuracy of evaluating one's own perceived body size in relation to the actual body size, as well as total and early weight gain during inpatient treatment as predictors for long-term outcome in a sample of 76 female adolescent AN patients. Long-term outcome was defined by physical, psychological and psychosocial adjustment using the Morgan-Russell outcome assessment schedule as well as by the mere physical outcome consisting of menses and/or BMI approximately 3 years after treatment. Perceptual body image distortion and early weight gain predicted long-term outcome (explained variance 13.3 %), but not the physical outcome alone. This study provides first evidence for an association of perceptual body image distortion with long-term outcome of adolescent anorexia nervosa and underlines the importance of sufficient early weight gain.

  7. Body image distortion in fifth and sixth grade students may lead to stress, depression, and undesirable dieting behavior.

    PubMed

    Cho, Jin Hee; Han, Sung Nim; Kim, Jung Hee; Lee, Hong Mie

    2012-04-01

    The widespread pursuit of a thin physique may have a detrimental impact on the wellbeing of preadolescents. The influence of body image distortions on the lifestyles, dieting behaviors, and psychological factors was investigated in 631 fifth and sixth grade children in Kyeonggi-do, Korea. Children were classified into three weight groups (underweight, normal, and overweight) and three perception groups (underestimation, normal, and overestimation). Necessary information was obtained by questionnaire, and each subject's weight status was determined by the Röhrer index calculated from the annual measurement records, which were obtained from the school. According to their current weights, 57.4% of children were normal and 32.2% were overweight or obese, 16.6% of the children overestimated their body weight, and 55.2% had an undistorted body image. Overweight children had desirable lifestyles and dietary habits and presented reasonable weight control behaviors. Compared to those without distortion, the overestimated group had greater interest in weight control (P = 0.003) and dissatisfaction with their body weights (P = 0.011), presented unhealthy reasons to lose weight (P = 0.026), and had higher scores for "feeling sad when comparing own body with others" (P = 0.000) and for "easily getting annoyed and tired" (P = 0.037), even though they had similar obesity indices. More subjects from the overestimation group (P = 0.006) chose drama/movies as their favorite TV programs, suggesting a possible role for the media in body image distortion. These findings suggest that body image distortion can lead preadolescents to develop stress about obesity and unhealthy dieting practices, despite similar obesity indices to those without distorted body images. These results emphasize the importance of having an undistorted body image.

  8. Body image distortion in fifth and sixth grade students may lead to stress, depression, and undesirable dieting behavior

    PubMed Central

    Cho, Jin Hee; Han, Sung Nim; Kim, Jung Hee

    2012-01-01

    The widespread pursuit of a thin physique may have a detrimental impact on the wellbeing of preadolescents. The influence of body image distortions on the lifestyles, dieting behaviors, and psychological factors was investigated in 631 fifth and sixth grade children in Kyeonggi-do, Korea. Children were classified into three weight groups (underweight, normal, and overweight) and three perception groups (underestimation, normal, and overestimation). Necessary information was obtained by questionnaire, and each subject's weight status was determined by the Röhrer index calculated from the annual measurement records, which were obtained from the school. According to their current weights, 57.4% of children were normal and 32.2% were overweight or obese, 16.6% of the children overestimated their body weight, and 55.2% had an undistorted body image. Overweight children had desirable lifestyles and dietary habits and presented reasonable weight control behaviors. Compared to those without distortion, the overestimated group had greater interest in weight control (P = 0.003) and dissatisfaction with their body weights (P = 0.011), presented unhealthy reasons to lose weight (P = 0.026), and had higher scores for "feeling sad when comparing own body with others" (P = 0.000) and for "easily getting annoyed and tired" (P = 0.037), even though they had similar obesity indices. More subjects from the overestimation group (P = 0.006) chose drama/movies as their favorite TV programs, suggesting a possible role for the media in body image distortion. These findings suggest that body image distortion can lead preadolescents to develop stress about obesity and unhealthy dieting practices, despite similar obesity indices to those without distorted body images. These results emphasize the importance of having an undistorted body image. PMID:22586508

  9. Health information sources accessed by college females: differences between body-image distorted and non-body-image distorted.

    PubMed

    Nustad, Jill; Adams, Troy; Moore, Monique

    2008-01-01

    This study examined and compared sources of health-related information accessed by female college students with and without body image distortions, and the believability of those sources. Survey data from the American College Health Association, National College Health Assessment were studied retrospectively (N = 27,648). Body image distorted (BID) and non-BID students' most frequent health information sources were parents (76.1% BID; 77.1% non-BID) and internet (70.3% BID; 69.5% non-BID). Believability was greatest for health educators (90.6% BID; 91.1% non-BID) and lowest for television (14.4% BID; 14.5% non-BID). Health intervention strategies for college women should market to parents and teach recognition of credible internet sources of health information.

  10. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    PubMed

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  11. Body image distortion, perfectionism and eating disorder symptoms in risk group of female ballet dancers and models and in control group of female students.

    PubMed

    Zoletić, Emina; Duraković-Belko, Elvira

    2009-09-01

    The aim of this research was to examine differences among two groups of girls, models and ballerinas (with risk factors - experimental group) and young students (control group), in body image preception, body mass index, neurotic perfectionism, body - image distortion and simptoms of eating disorders. The research was conducted with 91 participants divided in two groups, control group - 55 students at University of Sarajevo and experimental group - 13 professional ballerinas, 23 professional models. During this research work we used several measuring instruments: Body mass index; Body Mass Index - Silhouette Matching Test; Neurotic Perfectionism Questioner; Eating Disorders Inventory. In this study statistically significant differences occur between these two groups of girls which are related to body - image perception and objective position on the body mass index chart. All 91 participants saw themselves as obese. Statistically significant differences occur in body - image distortion and simptoms of eating disorders in the experimental group, they have high scores on body - image distortion, on eating disorders inventory and neurotic perfectionism simptoms. Based on th results in this study, we may conclude that there are groups of people who have risk factors for developing some kind of eating disorder, so it would be desirable to create a preventive intervention for young ballerinas and models, but also for those people who coach them, trainers, instructors and managers. For other population groups with risky behavior such as young children, a prevention plan and modifications of cultural influences on people's opinion of body image are extremely important.

  12. [Influence of the dance discipline on body image distortion and dissatisfaction in preadolescents, adolescents and young women dancers].

    PubMed

    Vaquero-Cristóbal, Raquel; Kazarez, Miguel; Esparza-Ros, Francisco

    2017-11-16

    Dance discipline could modulate the presence of alterations in body image, which is a factor relationship with eating disorders. To analyze the body image distortion and dissatisfaction in student dancers based on dance discipline. Two hundred and ninety-eight preadolescents, adolescents and young classical, contemporary and Spanish dancers took part in the study. Participants self-fulfilled the "silhouette scale for adolescents" in order to determine the perceived and ideal image. The real body image was calculated with the body mass index data (BMI). After that, distortion index, dissatisfaction index and the relation between real and ideal image were calculated. About distortion index, classical and contemporary dancers perceived themselves with a higher BMI than they had, whereas Spanish dance showed the opposite tendency. Significant differences among classical dancers and the other modalities were found (p < 0.017). Based on distortion index results, ten dancers showed a high risk for developing an eating disorder. In the dissatisfaction index, all disciplines selected as ideal to be thinner as they perceived themselves, without significant differences. About the real/ideal index, contemporary and Spanish dancers considered as ideal silhouettes with a lower BMI than they had. Classical dancers showed the opposite tendency, with significant differences among this group and the others (p < 0.017). Most dancers have a self-image which is not related with the reality. This could act as a factor which induce eating disorders.

  13. Static and dynamic body image in bulimia nervosa: mental representation of body dimensions and biological motion patterns.

    PubMed

    Vocks, Silja; Legenbauer, Tanja; Rüddel, Heinz; Troje, Nikolaus F

    2007-01-01

    The aim of the present study was to find out whether in bulimia nervosa the perceptual component of a disturbed body image is restricted to the overestimation of one's own body dimensions (static body image) or can be extended to a misperception of one's own motion patterns (dynamic body image). Participants with bulimia nervosa (n = 30) and normal controls (n = 55) estimated their body dimensions by means of a photo distortion technique and their walking patterns using a biological motion distortion device. Not only did participants with bulimia nervosa overestimate their own body dimensions, but also they perceived their own motion patterns corresponding to a higher BMI than did controls. Static body image was correlated with shape/weight concerns and drive for thinness, whereas dynamic body image was associated with social insecurity and body image avoidance. In bulimia nervosa, body image disturbances can be extended to a dynamic component. (c) 2006 by Wiley Periodicals, Inc.

  14. Body Dysmorphic Disorder: Easing the Distress of Distortion.

    ERIC Educational Resources Information Center

    Fore, Cynthia M.

    People who suffer from body dysmorphic disorder believe that their body is defected and that this defect makes them ugly. Their distorted body image can be precipitated by many internal and external factors and as a result of their imagined defect, these normal-appearing individuals exhibit self-defeating behaviors. The disorder can lead to the…

  15. High Slew-Rate Head-Only Gradient for Improving Distortion in Echo Planar Imaging: Preliminary Experience

    PubMed Central

    Tan, Ek T.; Lee, Seung-Kyun; Weavers, Paul T.; Graziani, Dominic; Piel, Joseph E.; Shu, Yunhong; Huston, John; Bernstein, Matt A.; Foo, Thomas K.F.

    2016-01-01

    Purpose To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in-vivo human brain imaging, with a dedicated, head-only gradient coil. Materials and Methods Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T MRI system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. Results As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Conclusion Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. PMID:26921117

  16. High slew-rate head-only gradient for improving distortion in echo planar imaging: Preliminary experience.

    PubMed

    Tan, Ek T; Lee, Seung-Kyun; Weavers, Paul T; Graziani, Dominic; Piel, Joseph E; Shu, Yunhong; Huston, John; Bernstein, Matt A; Foo, Thomas K F

    2016-09-01

    To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in vivo human brain imaging, with a dedicated, head-only gradient coil. Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T magnetic resonance imaging (MRI) system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. J. Magn. Reson. Imaging 2016;44:653-664. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Plasticity and Awareness of Bodily Distortion

    PubMed Central

    Zantedeschi, Marta

    2016-01-01

    Knowledge of the body is filtered by perceptual information, recalibrated through predominantly innate stored information, and neurally mediated by direct sensory motor information. Despite multiple sources, the immediate prediction, construction, and evaluation of one's body are distorted. The origins of such distortions are unclear. In this review, we consider three possible sources of awareness that inform body distortion. First, the precision in the body metric may be based on the sight and positioning sense of a particular body segment. This view provides information on the dual nature of body representation, the reliability of a conscious body image, and implicit alterations in the metrics and positional correspondence of body parts. Second, body awareness may reflect an innate organizational experience of unity and continuity in the brain, with no strong isomorphism to body morphology. Third, body awareness may be based on efferent/afferent neural signals, suggesting that major body distortions may result from changes in neural sensorimotor experiences. All these views can be supported empirically, suggesting that body awareness is synthesized from multimodal integration and the temporal constancy of multiple body representations. For each of these views, we briefly discuss abnormalities and therapeutic strategies for correcting the bodily distortions in various clinical disorders. PMID:27630779

  18. SU-G-JeP2-12: Quantification of 3D Geometric Distortion for 1.5T and 3T MRI Scanners Used for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, M; Gupta, N; Raterman, B

    Purpose: To quantify the magnitude of geometric distortion for MRI scanners and provide recommendations for MRI imaging for radiation therapy Methods: A novel phantom, QUASAR MRID3D [Modus Medical Devices Inc.], was scanned to evaluate the level of 3D geometric distortion present in five MRI scanners used for radiation therapy in our department. The phantom was scanned using the body coil with 1mm image slice thickness to acquire 3D images of the phantom body. The phantom was aligned to its geometric center for each scan, and the field of view was set to visualize the entire phantom. The dependence of distortionmore » magnitude with distance from imaging isocenter and with magnetic field strength (1.5T and 3T) was investigated. Additionally, the characteristics of distortion for Siemens and GE machines were compared. The image distortion for each scanner was quantified in terms of mean, standard deviation (STD), maximum distortion, and skewness. Results: The 3T and 1.5T scans show a similar absolute distortion with a mean of 1.38mm (0.33mm STD) for 3T and 1.39mm (0.34mm STD) for 1.5T for a 100mm radius distance from isocenter. Some machines can have a distortion larger than 10mm at a distance of 200mm from the isocenter. The distortions are presented with plots of the x, y, and z directional components. Conclusion: The results indicate that quantification of MRI image distortion is crucial in radiation oncology for target and organ delineation and treatment planning. The magnitude of geometric distortion determines the margin needed for target contouring which is usually neglected in treatment planning process, especially for SRS/SBRT treatments. Understanding the 3D distribution of the MRI image distortion will improve the accuracy of target delineation and, hence, treatment efficacy. MRI imaging with proper patient alignment to the isocenter is vital to reducing the effects of MRI distortion in treatment planning.« less

  19. Virtual Reality in the Assessment and Treatment of Weight-Related Disorders.

    PubMed

    Wiederhold, Brenda K; Riva, Giuseppe; Gutiérrez-Maldonado, José

    2016-02-01

    Virtual Reality (VR) has, for the past two decades, proven to be a useful adjunctive tool for both assessment and treatment of patients with eating disorders and obesity. VR allows an individual to enter scenarios that simulate real-life situations and to encounter food cues known to trigger his/her disordered eating behavior. As well, VR enables three-dimensional figures of the patient's body to be presented, helping him/her to reach an awareness of body image distortion and then providing the opportunity to confront and correct distortions, resulting in a more realistic body image and a decrease in body image dissatisfaction. In this paper, we describe seminal studies in this research area.

  20. Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats

    NASA Astrophysics Data System (ADS)

    Brovoll, Sverre; Berger, Tor; Aardal, Åyvind; Lande, Tor S.; Hamran, Svein-Erik

    2014-05-01

    Cardiovascular diseases (CVD) are a major cause of deaths all over the world. Microwave radar can be an alternative sensor for heart diagnostics and monitoring in modern healthcare that aids early detection of CVD symptoms. In this paper measurements from a switch array radar system are presented. This UWB system operates below 3 GHz and does time-lapse imaging of the beating heart inside the human body. The array consists of eight fat dipole elements. With a switch system, every possible sequence of transmit/receive element pairs can be selected to build a radar image from the recordings. To make the radar waves penetrate the human tissue, the antenna array is placed in contact with the body. Removal of the direct signal leakage through the antennas and body surface are done by high-pass (HP) filtering of the data prior to image processing. To analyze the results, measurements of moving spheres in air and simulations are carried out. We see that removal of the direct signal introduces amplitude distortion in the images. In addition, the effect of small target motion between the collection times of data from the individual elements is analyzed. With low pulse repetition frequency (PRF) this motion will distort the image. By using data from real measurements of heart motion in simulations, we analyze how the PRF and the antenna geometry influence this distortions.

  1. Body Image in Anorexia Nervosa: Body Size Estimation Utilising a Biological Motion Task and Eyetracking.

    PubMed

    Phillipou, Andrea; Rossell, Susan Lee; Gurvich, Caroline; Castle, David Jonathan; Troje, Nikolaus Friedrich; Abel, Larry Allen

    2016-03-01

    Anorexia nervosa (AN) is a psychiatric condition characterised by a distortion of body image. However, whether individuals with AN can accurately perceive the size of other individuals' bodies is unclear. In the current study, 24 women with AN and 24 healthy control participants undertook two biological motion tasks while eyetracking was performed: to identify the gender and to indicate the walkers' body size. Anorexia nervosa participants tended to 'hyperscan' stimuli but did not demonstrate differences in how visual attention was directed to different body areas, relative to controls. Groups also did not differ in their estimation of body size. The hyperscanning behaviours suggest increased anxiety to disorder-relevant stimuli in AN. The lack of group difference in the estimation of body size suggests that the AN group was able to judge the body size of others accurately. The findings are discussed in terms of body image distortion specific to oneself in AN. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. SU-E-J-205: Dose Distribution Differences Caused by System Related Geometric Distortion in MRI-Guided Radiation Treatment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Yang, J; Wen, Z

    2015-06-15

    Purpose: MRI has superb soft tissue contrast but is also known for geometric distortions. The concerns and uncertainty about MRI’s geometric distortion have contributed to the hesitation of using only MRI for simulation in radiation therapy. There are two major categories of geometric distortion in MRI; system related and patient related. In this presentation, we studied the impact of system-related geometric distortion on dose distribution in a digital body phantom under an MR-Linac environment. Methods: Residual geometric distortion (after built-in geometric correction) was modeled based on phantom measurements of the system-related geometric distortions of a MRI scanner of a combinedmore » MR guided Radiation Therapy (MRgRT) system. A digital oval shaped phantom (40×25 cm) as well as one ellipsoid shaped tumor volume was created to simulate a simplified human body. The simulated tumor volume was positioned at several locations between the isocenter and the body surface. CT numbers in HUs that approximate soft tissue and tumor were assigned to the respective regions in the digital phantom. To study the effect of geometric distortion caused by system imperfections, an IMRT plan was optimized with the distorted image set with the B field. Dose distributions were re-calculated on the undistorted image set with the B field (as in MR-Linac). Results: The maximum discrepancies in both body contour and tumor boundary was less than 2 mm, which leads to small dose distribution change. For the target in the center, coverage was reduced from 98.8% (with distortion) to 98.2%; for the other peripheral target coverage was reduced from 98.4% to 95.9%. Conclusion: System related geometric distortions over the 40×25 area were within 2mm and the resulted dosimetric effects were minor for the two tumor locations in the phantom. Patient study will be needed for further investigation. The authors received a corporate research grant from Elekta.« less

  3. Accuracy evaluation of optical distortion calibration by digital image correlation

    NASA Astrophysics Data System (ADS)

    Gao, Zeren; Zhang, Qingchuan; Su, Yong; Wu, Shangquan

    2017-11-01

    Due to its convenience of operation, the camera calibration algorithm, which is based on the plane template, is widely used in image measurement, computer vision and other fields. How to select a suitable distortion model is always a problem to be solved. Therefore, there is an urgent need for an experimental evaluation of the accuracy of camera distortion calibrations. This paper presents an experimental method for evaluating camera distortion calibration accuracy, which is easy to implement, has high precision, and is suitable for a variety of commonly used lens. First, we use the digital image correlation method to calculate the in-plane rigid body displacement field of an image displayed on a liquid crystal display before and after translation, as captured with a camera. Next, we use a calibration board to calibrate the camera to obtain calibration parameters which are used to correct calculation points of the image before and after deformation. The displacement field before and after correction is compared to analyze the distortion calibration results. Experiments were carried out to evaluate the performance of two commonly used industrial camera lenses for four commonly used distortion models.

  4. Prospective and retrospective high order eddy current mitigation for diffusion weighted echo planar imaging.

    PubMed

    Xu, Dan; Maier, Joseph K; King, Kevin F; Collick, Bruce D; Wu, Gaohong; Peters, Robert D; Hinks, R Scott

    2013-11-01

    The proposed method is aimed at reducing eddy current (EC) induced distortion in diffusion weighted echo planar imaging, without the need to perform further image coregistration between diffusion weighted and T2 images. These ECs typically have significant high order spatial components that cannot be compensated by preemphasis. High order ECs are first calibrated at the system level in a protocol independent fashion. The resulting amplitudes and time constants of high order ECs can then be used to calculate imaging protocol specific corrections. A combined prospective and retrospective approach is proposed to apply correction during data acquisition and image reconstruction. Various phantom, brain, body, and whole body diffusion weighted images with and without the proposed method are acquired. Significantly reduced image distortion and misregistration are consistently seen in images with the proposed method compared with images without. The proposed method is a powerful (e.g., effective at 48 cm field of view and 30 cm slice coverage) and flexible (e.g., compatible with other image enhancements and arbitrary scan plane) technique to correct high order ECs induced distortion and misregistration for various diffusion weighted echo planar imaging applications, without the need for further image post processing, protocol dependent prescan, or sacrifice in signal-to-noise ratio. Copyright © 2013 Wiley Periodicals, Inc.

  5. Depictive and metric body size estimation in anorexia nervosa and bulimia nervosa: A systematic review and meta-analysis.

    PubMed

    Mölbert, Simone Claire; Klein, Lukas; Thaler, Anne; Mohler, Betty J; Brozzo, Chiara; Martus, Peter; Karnath, Hans-Otto; Zipfel, Stephan; Giel, Katrin Elisabeth

    2017-11-01

    A distorted representation of one's own body is a diagnostic criterion and core psychopathology of both anorexia nervosa (AN) and bulimia nervosa (BN). Despite recent technical advances in research, it is still unknown whether this body image disturbance is characterized by body dissatisfaction and a low ideal weight and/or includes a distorted perception or processing of body size. In this article, we provide an update and meta-analysis of 42 articles summarizing measures and results for body size estimation (BSE) from 926 individuals with AN, 536 individuals with BN and 1920 controls. We replicate findings that individuals with AN and BN overestimate their body size as compared to controls (ES=0.63). Our meta-regression shows that metric methods (BSE by direct or indirect spatial measures) yield larger effect sizes than depictive methods (BSE by evaluating distorted pictures), and that effect sizes are larger for patients with BN than for patients with AN. To interpret these results, we suggest a revised theoretical framework for BSE that accounts for differences between depictive and metric BSE methods regarding the underlying body representations (conceptual vs. perceptual, implicit vs. explicit). We also discuss clinical implications and argue for the importance of multimethod approaches to investigate body image disturbance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dissatisfaction with own body makes patients with eating disorders more sensitive to pain

    PubMed Central

    Yamamotova, Anna; Bulant, Josef; Bocek, Vaclav; Papezova, Hana

    2017-01-01

    Body image represents a multidimensional concept including body image evaluation and perception of body appearance. Disturbances of body image perception are considered to be one of the central aspects of anorexia nervosa and bulimia nervosa. There is growing evidence that body image distortion can be associated with changes in pain perception. The aim of our study was to examine the associations between body image perception, body dissatisfaction, and nociception in women with eating disorders and age-matched healthy control women. We measured body dissatisfaction and pain sensitivity in 61 patients with Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition diagnoses of eating disorders (31 anorexia nervosa and 30 bulimia nervosa) and in 30 healthy women. Thermal pain threshold latencies were evaluated using an analgesia meter and body image perception and body dissatisfaction were assessed using Anamorphic Micro software (digital pictures of their own body distorted into larger-body and thinner-body images). Patients with eating disorders overestimated their body size in comparison with healthy controls, but the two groups did not differ in body dissatisfaction. In anorexia and bulimia patient groups, body dissatisfaction (calculated in pixels as desired size/true image size) correlated with pain threshold latencies (r=0.55, p=0.001), while between body image perception (determined as estimation size/true image size) and pain threshold, no correlation was found. Thus, we demonstrated that in patients with eating disorders, pain perception is significantly associated with emotional contrary to sensory (visual) processing of one’s own body image. The more the patients desired to be thin, the more pain-sensitive they were. Our findings based on some shared mechanisms of body dissatisfaction and pain perception support the significance of negative emotions specific for eating disorders and contribute to better understanding of the psychosomatic characteristics of this spectrum of illnesses. PMID:28761371

  7. Body image and weight control in South Africans 15 years or older: SANHANES-1.

    PubMed

    Mchiza, Zandile J; Parker, Whadi-Ah; Makoae, Mokhantso; Sewpaul, Ronel; Kupamupindi, Takura; Labadarios, Demetre

    2015-09-30

    South African studies have suggested that differences in obesity prevalence between groups may be partly related to differences in body image and body size dissatisfaction. However, there has never been a national study that measured body image and its relationship to weight control in the country. Hence, the main aim of the study was to examine body image in relation to body mass index and weight control in South Africa. A cross-sectional survey and a secondary analyses of data were undertaken for 6 411 South Africans (15+ years) participating in the first South African National Health and Nutrition Examination Survey. Body image was investigated in relation to weight status and attempts to lose or gain weight. Data were analysed using STATA version 11.0. Descriptive statistics are presented as counts (numbers), percentages, means, standard error of means, and 95 % confidence intervals. Any differences in values were considered to be significantly different if the confidence intervals did not overlap. Overall, 84.5 % participants had a largely distorted body image and 45.3 % were highly dissatisfied about their body size. Overweight and obese participants under estimated their body size and desired to be thinner. On the other hand, normal- and under-weight participants over estimated their body size and desired to be fatter. Only 12.1 and 10.1 % of participants attempted to lose or gain weight, respectively, mainly by adjusting dietary intake and physical activity. Body mass index appears to influence body image and weight adjustment in South Africa. South Africans at the extreme ends of the body mass index range have a largely distorted body image and are highly dissatisfied by it. This suggests a need for health education and beneficial weight control strategies to halt the obesity epidemic in the country.

  8. Children's response to their true and distorted mirror images.

    PubMed

    Modarressi, T; Kenny, T

    1977-01-01

    In order to study the development of body image, 16 children aged 2 months to 8 years were tested to determine their levels of cognitive development on the basis of Piaget's theory, and their responses to their true and distorted mirror images. The study indicates a definite characteristic response by children according to their levels of cognitive development. This corresponds to infantile anxieties appropriate to the psychoanalytic theory of object relationships. The theoretical and clinical implications of the study are discussed.

  9. BODY IMAGE, HOPELESSNESS AND PERSONALITY DIMENSIONS IN LOWER LIMB AMPUTEES

    PubMed Central

    Bhojak, M.M.; Nathawat, S.S.

    1988-01-01

    SUMMARY A sample of lower limb amputees and equal number of matched surgical controls was studied on body image, hopelessness and personality dimensions using Fisher's Body Distortion Questionnaire (BDQ). Beck's Hopelessness Scale and Hindi PEN Inventory. Amputees had significantly higher mean scores on body distortion (x 27.86), hopelessness (x 14.08) and neuroticism (x 9.30) as compared to surgical controls. Furthermore they had significantly lesser scores on extraversion (x 11.26) in comparison to their surgical counterparts. No significant differences were found on psychoticism in the two groups. Psychological aspects of amputation have not received much attention. By and large, amputees are believed to have more difficulty in dealing with people than things. It is the loss of ability to relate psychologically, socially, sexually and vocationally that inhibits the amputees most. PMID:21927302

  10. Body image perception, satisfaction and somatotype in male and female athletes and non-athletes: results using a novel morphing technique.

    PubMed

    Stewart, Arthur D; Benson, Philip J; Michanikou, Evangelia G; Tsiota, Dimitra G; Narli, Margarita K

    2003-10-01

    Thirty-six adults (24 males, 12 females) were assessed for anthropometric somatotype and body image (perception and satisfaction) by a novel technique using quantitative distortion of a digital still image. Software produced random distortions in nine body regions. The participants manipulated interactive slider controls to adjust each body feature in turn, recreate their perceived image and indicate their desired image. There were no differences in perception between the sexes. However, the ideal-actual differences (i.e. satisfaction) indicated that males desired larger and females smaller features, respectively, in the chest and thighs (P < 0.001) and arms and calves (P < 0.01). When the male-derived data were partitioned by sport (strength, endurance, team-sport and controls), differences were found in the perceived image size in the chest and rib regions (P < 0.01 and P < 0.05, respectively). Strength athletes perceived these areas to be smaller and the control group perceived these areas to be larger than the true values. Somatotype analysis indicated that the physique associated with minimal dissatisfaction was 2.0-5.0-3.0 for males and 3.0-2.5-3.0 for females. Cluster analysis, combining anthropometric and satisfaction data, revealed seven distinct subgroups distinguished by particular attributes of physical appearance. We conclude that the method is reliable and that body image includes sex-specific, anthropometric, perceptual and personality-related components.

  11. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2007-04-01

    Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.

  12. The effects of body exposure on self-body image and esthetic appreciation in anorexia nervosa.

    PubMed

    Cazzato, Valentina; Mian, Emanuel; Mele, Sonia; Tognana, Giulia; Todisco, Patrizia; Urgesi, Cosimo

    2016-03-01

    Repeated exposures to thin-idealized body shapes may alter women's perceptions of what normal (e.g., accepted) and ideal (e.g., desired) bodies in a cultural environment look like. The aim of the present study was to investigate whether exposure to thin and round body shapes may change the subsequent esthetic appreciation of others' bodies and the perceptual and cognitive-affective dimensions of self-body image in patients suffering from anorexia nervosa (AN). Thirteen AN patients and 13 matched healthy controls were exposed to pictures of either thin or round unfamiliar body models and, before and after exposure, they were required to either express liking judgments about round and slim figures of unfamiliar bodies (esthetic task) or to adjust distorted pictures of their own body to their perceptual (How do you see yourself?), affective (How do you feel yourself?), metacognitive (How do others see you?) and ideal (How would you like to look like?) body image (self-body adjustment task). Brief exposures to round models increased liking judgments of round figures in both groups. However, only in AN patients, exposure to round models induced an increase in thin figures liking, which positively correlated with their preoccupation with dieting. Furthermore, exposure to round bodies in AN patients, but not in controls, increased the distortion for the perceptual body image and decreased the size of the ideal one. No differences between the two groups were obtained after adaptation to thin models. Our results suggest that AN patients' perception of their own and others' body is more easily malleable by exposure to round figures as compared to controls. Crucially, this mechanism may strongly contribute to the development and maintenance of self-body image disturbances.

  13. Prototype-Distortion Category Learning: A Two-Phase Learning Process across a Distributed Network

    ERIC Educational Resources Information Center

    Little, Deborah M.; Thulborn, Keith R.

    2006-01-01

    This paper reviews a body of work conducted in our laboratory that applies functional magnetic resonance imaging (fMRI) to better understand the biological response and change that occurs during prototype-distortion learning. We review results from two experiments (Little, Klein, Shobat, McClure, & Thulborn, 2004; Little & Thulborn, 2005) that…

  14. The combined effect of subjective body image and body mass index (distorted body weight perception) on suicidal ideation.

    PubMed

    Shin, Jaeyong; Choi, Young; Han, Kyu-Tae; Cheon, Sung-Youn; Kim, Jae-Hyun; Lee, Sang Gyu; Park, Eun-Cheol

    2015-03-01

    Mental health disorders and suicide are an important and growing public health concern in Korea. Evidence has shown that both globally and in Korea, obesity is associated with an increased risk of developing some psychiatric disorders. Therefore, we examined the association between distorted body weight perception (BWP) and suicidal ideation. Data were obtained from the 2007-2012 Korea National Health and Nutritional Evaluation Survey (KNHANES), an annual cross-sectional nationwide survey that included 14 276 men and 19 428 women. Multiple logistic regression analyses were conducted to investigate the associations between nine BWP categories, which combined body image (BI) and body mass index (BMI) categories, and suicidal ideation. Moreover, the fitness of our models was verified using the Akaike information criterion. Consistent with previous studies, suicidal ideation was associated with marital status, household income, education level, and perceived health status in both genders. Only women were significantly more likely to have distorted BWP; there was no relationship among men. In category B1 (low BMI and normal BI), women (odds ratio [OR], 2.25; 95% confidence interval [CI], 1.48 to 3.42) were more likely to express suicidal ideation than women in category B2 (normal BMI and normal BI) were. Women in overweight BWP category C2 (normal BMI and fat BI) also had an increased OR for suicidal ideation (OR, 2.25; 95% CI, 1.48 to 3.42). Those in normal BWP categories were not likely to have suicidal ideation. Among women in the underweight BWP categories, only the OR for those in category A2 (normal BMI and thin BI) was significant (OR, 1.34; 95% CI, 1.13 to 1.59). Distorted BWP should be considered an important factor in the prevention of suicide and for the improvement of mental health among Korean adults, especially Korean women with distorted BWPs.

  15. The Combined Effect of Subjective Body Image and Body Mass Index (Distorted Body Weight Perception) on Suicidal Ideation

    PubMed Central

    Shin, Jaeyong; Choi, Young; Han, Kyu-Tae; Cheon, Sung-Youn; Kim, Jae-Hyun; Lee, Sang Gyu; Park, Eun-Cheol

    2015-01-01

    Objectives: Mental health disorders and suicide are an important and growing public health concern in Korea. Evidence has shown that both globally and in Korea, obesity is associated with an increased risk of developing some psychiatric disorders. Therefore, we examined the association between distorted body weight perception (BWP) and suicidal ideation. Methods: Data were obtained from the 2007-2012 Korea National Health and Nutritional Evaluation Survey (KNHANES), an annual cross-sectional nationwide survey that included 14 276 men and 19 428 women. Multiple logistic regression analyses were conducted to investigate the associations between nine BWP categories, which combined body image (BI) and body mass index (BMI) categories, and suicidal ideation. Moreover, the fitness of our models was verified using the Akaike information criterion. Results: Consistent with previous studies, suicidal ideation was associated with marital status, household income, education level, and perceived health status in both genders. Only women were significantly more likely to have distorted BWP; there was no relationship among men. In category B1 (low BMI and normal BI), women (odds ratio [OR], 2.25; 95% confidence interval [CI], 1.48 to 3.42) were more likely to express suicidal ideation than women in category B2 (normal BMI and normal BI) were. Women in overweight BWP category C2 (normal BMI and fat BI) also had an increased OR for suicidal ideation (OR, 2.25; 95% CI, 1.48 to 3.42). Those in normal BWP categories were not likely to have suicidal ideation. Among women in the underweight BWP categories, only the OR for those in category A2 (normal BMI and thin BI) was significant (OR, 1.34; 95% CI, 1.13 to 1.59). Conclusions: Distorted BWP should be considered an important factor in the prevention of suicide and for the improvement of mental health among Korean adults, especially Korean women with distorted BWPs. PMID:25857647

  16. Analysis of Attentional Bias towards Attractive and Unattractive Body Regions among Overweight Males and Females: An Eye-Movement Study.

    PubMed

    Warschburger, Petra; Calvano, Claudia; Richter, Eike M; Engbert, Ralf

    2015-01-01

    Body image distortion is highly prevalent among overweight individuals. Whilst there is evidence that body-dissatisfied women and those suffering from disordered eating show a negative attentional bias towards their own unattractive body parts and others' attractive body parts, little is known about visual attention patterns in the area of obesity and with respect to males. Since eating disorders and obesity share common features in terms of distorted body image and body dissatisfaction, the aim of this study was to examine whether overweight men and women show a similar attentional bias. We analyzed eye movements in 30 overweight individuals (18 females) and 28 normal-weight individuals (16 females) with respect to the participants' own pictures as well as gender- and BMI-matched control pictures (front and back view). Additionally, we assessed body image and disordered eating using validated questionnaires. The overweight sample rated their own body as less attractive and showed a more disturbed body image. Contrary to our assumptions, they focused significantly longer on attractive compared to unattractive regions of both their own and the control body. For one's own body, this was more pronounced for women. A higher weight status and more frequent body checking predicted attentional bias towards attractive body parts. We found that overweight adults exhibit an unexpected and stable pattern of selective attention, with a distinctive focus on their own attractive body regions despite higher levels of body dissatisfaction. This positive attentional bias may either be an indicator of a more pronounced pattern of attentional avoidance or a self-enhancing strategy. Further research is warranted to clarify these results.

  17. Analysis of Attentional Bias towards Attractive and Unattractive Body Regions among Overweight Males and Females: An Eye-Movement Study

    PubMed Central

    Warschburger, Petra; Calvano, Claudia; Richter, Eike M.; Engbert, Ralf

    2015-01-01

    Background Body image distortion is highly prevalent among overweight individuals. Whilst there is evidence that body-dissatisfied women and those suffering from disordered eating show a negative attentional bias towards their own unattractive body parts and others’ attractive body parts, little is known about visual attention patterns in the area of obesity and with respect to males. Since eating disorders and obesity share common features in terms of distorted body image and body dissatisfaction, the aim of this study was to examine whether overweight men and women show a similar attentional bias. Methods/Design We analyzed eye movements in 30 overweight individuals (18 females) and 28 normal-weight individuals (16 females) with respect to the participants’ own pictures as well as gender- and BMI-matched control pictures (front and back view). Additionally, we assessed body image and disordered eating using validated questionnaires. Discussion The overweight sample rated their own body as less attractive and showed a more disturbed body image. Contrary to our assumptions, they focused significantly longer on attractive compared to unattractive regions of both their own and the control body. For one’s own body, this was more pronounced for women. A higher weight status and more frequent body checking predicted attentional bias towards attractive body parts. We found that overweight adults exhibit an unexpected and stable pattern of selective attention, with a distinctive focus on their own attractive body regions despite higher levels of body dissatisfaction. This positive attentional bias may either be an indicator of a more pronounced pattern of attentional avoidance or a self-enhancing strategy. Further research is warranted to clarify these results. PMID:26479500

  18. Case 39: Anorexia nervosa

    USDA-ARS?s Scientific Manuscript database

    Anorexia nervosa is a disease affecting primarily young women who have distorted body images. Although their weight is less than 30 percent under ideal body weight, they see themselves as overweight. Anorectics often use diuretic and laxative agents to accomplish their weight loss. Patients with bul...

  19. Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork.

    PubMed

    Czarniecki, Marcin; Caglic, Iztok; Grist, James T; Gill, Andrew B; Lorenc, Kamil; Slough, Rhys A; Priest, Andrew N; Barrett, Tristan

    2018-05-01

    To compare image quality, artefact, and distortion in standard echo-planar imaging (EPI) with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for prostate magnetic resonance imaging (MRI) diffusion-weighted imaging (DWI) in patients with previous total hip replacement (THR). 21 male subjects with a clinical suspicion for, or known prostate cancer and previous THR were scanned at 1.5 T using a phased-array body coil. DWI was obtained using single-shot EPI and PROPELLER techniques using fat saturation (PROPELLER-DWI-FS), and without (PROPELLER-DWI-NFS). Image quality (the overall impression of diagnostic quality) was compared to T 2 -weighted (T2WI) imaging using a 5-point Likert scale, with diffusion sequences additionally scored for artefact and distortion according to a 4-point scale, with artefact defined as the amount of prostate affected and distortion as the degree of warping of the organ. The T2W and DW image volumes were compared to produce quantitative distortion maps. A two-sample Wilcoxon test compared the qualitative scores, with inter-reader variability calculated using Cohen's kappa. 21 patients were included in the study, with an average age of 70.4 years and PSA 9.2 ng/ml. Hip metalwork was present bilaterally in 3 patients, left-sided in 9, and right-sided in 9. PROPELLER-DWI-FS significantly improved image quality (p < 0.01) and reduced distortion (p < 0.01) when compared to standard EP-DWI. Artefact was not shown to be significantly improved. The last 5 patients in the study were additionally imaged with PROPELLER-DWI-NFS, which resulted in a significant reduction in artefact compared to EP-DWI (p < 0.05). Quantitative distortion was significantly lower compared to EP-DWI for both PROPELLER with fat saturation (p < 0.01) and without fat saturation (p < 0.01). PROPELLER-DWI demonstrates better image quality and decreases both artefact and distortion compared to conventional echo planar sequences in patients with hip metalwork. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Body Image Distortion and Exposure to Extreme Body Types: Contingent Adaptation and Cross Adaptation for Self and Other

    PubMed Central

    Brooks, Kevin R.; Mond, Jonathan M.; Stevenson, Richard J.; Stephen, Ian D.

    2016-01-01

    Body size misperception is common amongst the general public and is a core component of eating disorders and related conditions. While perennial media exposure to the “thin ideal” has been blamed for this misperception, relatively little research has examined visual adaptation as a potential mechanism. We examined the extent to which the bodies of “self” and “other” are processed by common or separate mechanisms in young women. Using a contingent adaptation paradigm, experiment 1 gave participants prolonged exposure to images both of the self and of another female that had been distorted in opposite directions (e.g., expanded other/contracted self), and assessed the aftereffects using test images both of the self and other. The directions of the resulting perceptual biases were contingent on the test stimulus, establishing at least some separation between the mechanisms encoding these body types. Experiment 2 used a cross adaptation paradigm to further investigate the extent to which these mechanisms are independent. Participants were adapted either to expanded or to contracted images of their own body or that of another female. While adaptation effects were largest when adapting and testing with the same body type, confirming the separation of mechanisms reported in experiment 1, substantial misperceptions were also demonstrated for cross adaptation conditions, demonstrating a degree of overlap in the encoding of self and other. In addition, the evidence of misperception of one's own body following exposure to “thin” and to “fat” others demonstrates the viability of visual adaptation as a model of body image disturbance both for those who underestimate and those who overestimate their own size. PMID:27471447

  1. Body Image Distortion and Exposure to Extreme Body Types: Contingent Adaptation and Cross Adaptation for Self and Other.

    PubMed

    Brooks, Kevin R; Mond, Jonathan M; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    Body size misperception is common amongst the general public and is a core component of eating disorders and related conditions. While perennial media exposure to the "thin ideal" has been blamed for this misperception, relatively little research has examined visual adaptation as a potential mechanism. We examined the extent to which the bodies of "self" and "other" are processed by common or separate mechanisms in young women. Using a contingent adaptation paradigm, experiment 1 gave participants prolonged exposure to images both of the self and of another female that had been distorted in opposite directions (e.g., expanded other/contracted self), and assessed the aftereffects using test images both of the self and other. The directions of the resulting perceptual biases were contingent on the test stimulus, establishing at least some separation between the mechanisms encoding these body types. Experiment 2 used a cross adaptation paradigm to further investigate the extent to which these mechanisms are independent. Participants were adapted either to expanded or to contracted images of their own body or that of another female. While adaptation effects were largest when adapting and testing with the same body type, confirming the separation of mechanisms reported in experiment 1, substantial misperceptions were also demonstrated for cross adaptation conditions, demonstrating a degree of overlap in the encoding of self and other. In addition, the evidence of misperception of one's own body following exposure to "thin" and to "fat" others demonstrates the viability of visual adaptation as a model of body image disturbance both for those who underestimate and those who overestimate their own size.

  2. Intelligent correction of laser beam propagation through turbulent media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2014-10-01

    Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.

  3. Appearance evaluation of others' faces and bodies in anorexia nervosa and body dysmorphic disorder.

    PubMed

    Moody, Teena D; Shen, Vivian W; Hutcheson, Nathan L; Henretty, Jennifer R; Sheen, Courtney L; Strober, Michael; Feusner, Jamie D

    2017-02-01

    Individuals with anorexia nervosa (AN) and body dysmorphic disorder (BDD) exhibit distorted perception and negative evaluations of their own appearance; however, little is known about how they perceive others' appearance, and whether or not the conditions share perceptual distortions. Thirty participants with BDD, 22 with AN, now weight-restored, and 39 healthy comparison participants (HC) rated photographs of others' faces and bodies on attractiveness, how overweight or underweight they were, and how much photographs triggered thoughts of their own appearance. We compared responses among groups by stimulus type and by level-of-detail (spatial frequency). Compared to HCs, AN and BDD had lower attractiveness ratings for others' bodies and faces for high-detail and low-detail images, rated bodies as more overweight, and were more triggered to think of their own appearance for faces and bodies. In AN, symptom severity was associated with greater triggering of thoughts of own appearance and higher endorsement of overweight ratings for bodies. In BDD, symptom severity was associated with greater triggering of thoughts of own appearance for bodies and higher overweight ratings for low-detail images. BDD was more triggered to think of own facial appearance than AN. AN and BDD show similar behavioral phenotypes of negative appearance evaluations for others' faces and bodies, and have thoughts of their own appearance triggered even for images outside of their primary appearance concerns, suggesting a more complex cross-disorder body-image phenotype than previously assumed. Future treatment strategies may benefit from addressing how these individuals evaluate others in addition to themselves. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2017; 50:127-138). © 2016 Wiley Periodicals, Inc.

  4. SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi-Ardekani, A; Wronski, M; Kim, A

    2015-06-15

    Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode priormore » to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.« less

  5. Compulsive Exercise

    MedlinePlus

    ... diseases. Many teens who play sports have higher self-esteem than their less active pals, and exercise can ... may have a distorted body image and low self-esteem. They may see themselves as overweight or out ...

  6. The Distortion of a Body's Visible Shape at Relativistic Speeds

    ERIC Educational Resources Information Center

    Arkadiy, Leonov

    2009-01-01

    The problem of obtaining the apparent equation of motion and shape of a moving body from its arbitrary given equation of motion in special relativity is considered. Also the inverse problem of obtaining the body's equation of motion from a known equation of motion of its image is discussed. Some examples of this problem solution are considered. As…

  7. Body Image and Eating Disorders Among Lesbian, Gay, Bisexual, and Transgender Youth.

    PubMed

    McClain, Zachary; Peebles, Rebecka

    2016-12-01

    Adolescence is a crucial period for emerging sexual orientation and gender identity and also body image disturbance and disordered eating. Body image distortion and disordered eating are important pediatric problems affecting individuals along the sexual orientation and gender identity spectrum. Lesbian, gay, bisexual, transgender (LGBT) youth are at risk for eating disorders and body dissatisfaction. Disordered eating in LGBT and gender variant youth may be associated with poorer quality of life and mental health outcomes. Pediatricians should know that these problems occur more frequently in LGBT youth. There is evidence that newer treatment paradigms involving family support are more effective than individual models of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a few types. ...

  9. Perceptions of body image among Malaysian male and female adolescents.

    PubMed

    Khor, G L; Zalilah, M S; Phan, Y Y; Ang, M; Maznah, B; Norimah, A K

    2009-03-01

    Body image concerns are common among adolescents as they undergo rapid physical growth and body shape changes. Having a distorted body image is a risk factor for the development of disordered eating behaviours and eating disorders. This study was undertaken to investigate body image concerns among Malaysian male and female adolescents aged 11-15 years. A total of 2,050 adolescents (1,043 males and 1,007 females) with a mean age of 13.1 +/- 0.8 years from secondary schools in Kedah and Pulau Pinang were included in the study. Questionnaires were used to collect socioeconomic data and body image indicators. The majority (87 percent) of the adolescents were concerned with their body shape. While the majority of underweight, normal weight and overweight male and female subjects perceived their body weight status correctly according to their body mass index (BMI), a noteworthy proportion in each category misjudged their body weight. About 35.4 percent of the males and 20.5 percent of the females in the underweight category perceived themselves as having a normal weight, while 29.4 percent and 26.7 percent of the overweight males and females respectively also perceived that they had a normal weight. A higher proportion of the females (20 percent) than males (9 percent) with a normal BMI perceived themselves as fat. Most of the male (78-83 percent) and female subjects (69-74 percent) in all the BMI categories desired to be taller than their current height. An appreciable proportion of both the males (41.9 percent) and females (38.2 percent) preferred to remain thin, or even to be thinner (23.7 percent of males and 5.9 percent of females). Females had a significantly higher mean body dissatisfaction score than males, indicating their preference for a slimmer body shape. More males (49.1 percent) preferred a larger body size while more females (58.3 percent) idealised a smaller body size. Compared to normal weight and underweight subjects, overweight males and females expressed lower confidence and acceptance levels, as well as expressed greater preoccupation with and anxiety over their body weight and shape. As having a distorted body image may lead to negative effects such as unhealthy eating habits and disordered eating behaviours, it is recommended that appropriate educational efforts on body image be incorporated into school health activities for adolescents.

  10. Distortion definition and correction in off-axis systems

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele

    2015-09-01

    Off-axis optical configurations are becoming more and more used in a variety of applications, in particular they are the most preferred solution for cameras devoted to Solar System planets and small bodies (i.e. asteroids and comets) study. Off-axis designs, being devoid of central obstruction, are able to guarantee better PSF and MTF performance, and thus higher contrast imaging capabilities with respect to classical on-axis designs. In particular they are suitable for observing extended targets with intrinsic low contrast features, or scenes where a high dynamical signal range is present. Classical distortion theory is able to well describe the performance of the on-axis systems, but it has to be adapted for the off-axis case. A proper way to deal with off-axis distortion definition is thus needed together with dedicated techniques to accurately measure and hence remove the distortion effects present in the acquired images. In this paper, a review of the distortion definition for off-axis systems will be given. In particular the method adopted by the authors to deal with the distortion related issues (definition, measure, removal) in some off-axis instruments will be described in detail.

  11. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P.; Hoerr, Verena

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows themore » measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal imaging routines including different standard MRI sequences.« less

  12. Vortex-Body Interactions: A Critical Assessment. Coupled Gap-Wake Instabilities/Turbulence: A Source of Noise

    NASA Technical Reports Server (NTRS)

    Rockwell, Donald

    1999-01-01

    This program has involved, first of all, a critical state-of-the-art assessment of vortex-body interactions. Then, efforts were focused on experimental investigation on coupled-wake instabilities and turbulence occurring in a two-cylinder system. An extensive review was undertaken on the effect of incident vortices on various types of bodies. These incident vortices have a length scale of the same order of magnitude as the scale of the body. The body can take on various forms, including, for example, a circular cylinder, a blade or a wing. The classes of vortex-body interaction that were critically assessed include: (1) Periodic distortion of the incident (primary) vortex and shedding of secondary vorticity from the surface of the body. (2) Modulated vortex distortion and shedding at a leading-edge or surface due to incidence of a complex system of vortices. (3) Vortex distortion and shedding in presence of body oscillation. (4) Three-dimensional vortex interaction and shedding. For all of these classes of vortex-body interaction, quantitative topologies of the vorticity distributions and streamline patterns were found to be central to a unified description of mechanisms of vortex distortion and shedding. In most cases, it was possible to define relationships between vortex interactions and unsteady loading at the body surface. This phase of the program was an experimental investigation of a two-cylinder system, which simulated a central aspect of a four-wheel bogie on a large-scale commercial aircraft. The overall aim of this experimental research program was to determine the crucial elements of the unsteadiness in the gap and near-wake regions as a function of time using cinema-based techniques. During the research program, various image evaluation techniques were employed. They involved assessment of instantaneous velocity fields, streamline topology and patterns of vorticity. Experiments were performed in a large-scale water channel using a high-resolution version of digital particle image velocimetry. The program has focused on acquisition of images of velocity and vorticity for varying gap widths between the two-cylinder system. As a result of analysis of a relatively large number of images, it is demonstrated that low frequency instabilities can occur in the gap region between the cylinder. These low frequency instabilities are hypothesized to influence the near-wake structure of the entire two-cylinder system. The nature of the unstable shear layers in the gap region involves generation of small-scale Kelvin-Helmholtz instabilities. These unsteady shear layers then impinge upon the upper and lower surfaces of the cylinders, thereby influencing both the unsteady structure and the time-averaged patterns of the near-wake. Initial efforts have focused on characterization of the patterns of instantaneous and averaged streamlines using topological concepts. The end result of this investigation is a series of documented instantaneous images. They will serve as a basis for various types of post-processing, which will lead to a fuller understanding of the instantaneous and time-averaged unstable-turbulent fields in the gap region and downstream of the two-cylinder system. This further assessment is the focus of a subsequent program.

  13. Psychological assessment for adults and children

    USDA-ARS?s Scientific Manuscript database

    Psychological factors play a significant role in many nutritional abnormalities. These factors include mood (e.g., depression, anger, and anxiety), emotional eating, distorted body image, low self-esteem, poor self-efficacy and quality of life, dietary restraint, stress, susceptibility to external c...

  14. Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI

    NASA Astrophysics Data System (ADS)

    Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef

    2017-02-01

    Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.

  15. The Mirror and Ballet Training: Do You Know How Much the Mirror's Presence Is Really Affecting You?

    ERIC Educational Resources Information Center

    Diehl, Kathy

    2016-01-01

    It is clear that the relationship that dancers have with the mirror, the reflected image, and the accompanying perceptions (and often, distortions) is complicated. One area that is quite complex involves the development of a student's ability to sense movement, which directly connects to other issues involving body image, self-perception,…

  16. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  17. Sex and age-related differences in perceived, desired and measured percentage body fat among adults.

    PubMed

    Campisi, J; Finn, K E; Bravo, Y; Arnold, J; Benjamin, M; Sukiennik, M; Shakya, S; Fontaine, D

    2015-10-01

    Body image distortion/discrepancy leads to psychological stress, disordered eating and mental and physical disease. To begin to assess body image distortion/discrepancy, we compared perceived, desired and measured percentage body fat in male versus female and college-aged versus non-college aged individuals. In addition, we assessed the acute stress response to body composition measurement. Body fat percentage of 15 college aged ('College Students'; CS) (mean = 19 years) and 16 non-college aged ('Non-College Aged Students'; NCS) (mean = 39 years) males and females was assessed with the BodPod Body Composition Tracking System (Life Measurement Instruments, Concord, CA, USA). Participants indicated their perception of body fat and their desired body fat using a somatomorphic matrix. Salivary cortisol, heart rate and blood pressure were also measured. Data were analysed by analysis of variance and alpha was set at 0.05. Mean (SD) percentage body fat of males [15.2% (6.1%)] was significantly lower than that of females [28.4% (6.4%)] (P < 0.0001). Both CS and NCS females perceived their body fat to be lower (5%) than measured body fat and desired their body fat to be lower (12%) than measured (P < 0.05). CS and NCS male participants demonstrated the opposite result; both CS and NCS male populations perceived their body fat to be higher (5%) than measured body fat and desired their body fat to be higher (4%) than measured (P < 0.05). No differences between any groups were observed in heart rate, blood pressure or cortisol response to body fat measurement. Sex-related but not age-related differences in perceived, desired and measured percentage body fat were observed. © 2014 The British Dietetic Association Ltd.

  18. Visual processing in anorexia nervosa and body dysmorphic disorder: similarities, differences, and future research directions

    PubMed Central

    Madsen, Sarah K.; Bohon, Cara; Feusner, Jamie D.

    2013-01-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are psychiatric disorders that involve distortion of the experience of one’s physical appearance. In AN, individuals believe that they are overweight, perceive their body as “fat,” and are preoccupied with maintaining a low body weight. In BDD, individuals are preoccupied with misperceived defects in physical appearance, most often of the face. Distorted visual perception may contribute to these cardinal symptoms, and may be a common underlying phenotype. This review surveys the current literature on visual processing in AN and BDD, addressing lower- to higher-order stages of visual information processing and perception. We focus on peer-reviewed studies of AN and BDD that address ophthalmologic abnormalities, basic neural processing of visual input, integration of visual input with other systems, neuropsychological tests of visual processing, and representations of whole percepts (such as images of faces, bodies, and other objects). The literature suggests a pattern in both groups of over-attention to detail, reduced processing of global features, and a tendency to focus on symptom-specific details in their own images (body parts in AN, facial features in BDD), with cognitive strategy at least partially mediating the abnormalities. Visuospatial abnormalities were also evident when viewing images of others and for non-appearance related stimuli. Unfortunately no study has directly compared AN and BDD, and most studies were not designed to disentangle disease-related emotional responses from lower-order visual processing. We make recommendations for future studies to improve the understanding of visual processing abnormalities in AN and BDD. PMID:23810196

  19. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  20. Characterizing tissue microstructure using an ultrasound system-independent spatial autocorrelation function

    NASA Astrophysics Data System (ADS)

    Dong, Fang

    1999-09-01

    The research described in this dissertation is related to characterization of tissue microstructure using a system- independent spatial autocorrelation function (SAF). The function was determined using a reference phantom method, which employed a well-defined ``point- scatterer'' reference phantom to account for instrumental factors. The SAF's were estimated for several tissue-mimicking (TM) phantoms and fresh dog livers. Both phantom tests and in vitro dog liver measurements showed that the reference phantom method is relatively simple and fairly accurate, providing the bandwidth of the measurement system is sufficient for the size of the scatterer being involved in the scattering process. Implementation of this method in clinical scanner requires that distortions from patient's body wall be properly accounted for. The SAF's were estimated for two phantoms with body-wall-like distortions. The experimental results demonstrated that body wall distortions have little effect if echo data are acquired from a large scattering volume. One interesting application of the SAF is to form a ``scatterer size image''. The scatterer size image may help providing diagnostic tools for those diseases in which the tissue microstructure is different from the normal. Another method, the BSC method, utilizes information contained in the frequency dependence of the backscatter coefficient to estimate the scatterer size. The SAF technique produced accurate scatterer size images of homogeneous TM phantoms and the BSC method was capable of generating accurate size images for heterogeneous phantoms. In the scatterer size image of dog kidneys, the contrast-to-noise-ratio (CNR) between renal cortex and medulla was improved dramatically compared to the gray- scale image. The effect of nonlinear propagation was investigated by using a custom-designed phantom with overlaying TM fat layer. The results showed that the correlation length decreased when the transmitting power increased. The measurement results support the assumption that nonlinear propagation generates harmonic energies and causes underestimation of scatterer diameters. Nonlinear propagation can be further enhanced by those materials with high B/A value-a parameter which characterizes the degree of nonlinearity. Nine versions of TM fat and non-fat materials were measured for their B/A values using a new measurement technique, the ``simplified finite amplitude insertion substitution'' (SFAIS) method.

  1. SU-F-J-143: Initial Assessment of Image Quality of An Integrated MR-Linac System with ACR Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Fuller, C; Yung, J

    Purpose/Objective(s): To assess the image quality of an integrated MR-Linac system and compare with other MRI systems that are primarily used for diagnostic purposes. Materials/Methods: An ACR MRI quality control (QC) phantom was used to evaluate the image quality of a fully integrated 1.5T MRI-Linac system recently installed at our institution. This system has a new split magnet design which gives the magnetic field strength of 1.5T. All images were acquired with a set of phased-array surface coils which are designed to have minimal attention of radiation beam. The anterior coil rests on a coil holder which keeps the anteriormore » coil’s position consistent for QA purposes. The posterior coil is imbedded in the patient couch. Multiple sets of T1, T2/PD images were acquired using the protocols as prescribed by the ACR on three different dates, ranging 3 months apart. Results: The geometric distortion are within 0.5 mm in the axial scans and within 1mm in the saggital (z-direction) scans. Slice thickness accuracy, image uniformity, ghosting ratio, high contrast detectability are comparable to other 1.5T diagnostic MRI scanners. The low-contrast object detectability are lower comparatively, which is a result of using the body array coil. Additionally, the beam’s-eye-view images (oblique coronal and saggital images) have minimal geometric distortion at all linac gantry angles tested. No observable changes or drift in image quality is found from images acquired 3 month apart. Conclusion: Despite the use of a body array surface coil, the image quality is comparable to that of an 1.5T MRI scanner and is of sufficient quality to pass the ACR MRI accreditation program. The geometric distortion of the MRI system of the integrated MR-Linac is within 1mm for an object size similar to the ACR phantom, sufficient for radiation therapy treatment purpose. The authors received corporate sponsored research grants from Elekta which is the vendor for the MR-Linac evaluated in this study.« less

  2. Perceptual body image of patients with anorexia or bulimia nervosa and their fathers.

    PubMed

    Benninghoven, D; Tetsch, N; Kunzendorf, S; Jantschek, G

    2007-03-01

    Little is known about how fathers of patients with eating disorders perceive their own body. In this study we investigated body image perception of patients with anorexia and bulimia nervosa and body image perception of their fathers in a computer assisted approach. A computer program, the somatomorphic matrix, is presented that allows modeling of perceived and desired body-images of patients and their relatives. Patients and fathers rated their own body images and fathers additionally rated the body images of their daughters. The images implemented in the program correspond with defined percentages of body fat and muscularity. Selected images were compared with subjects' anthropometric data regarding body fat and muscularity. Data from 42 father-daughter-dyads (27 patients with anorexia, 15 with bulimia nervosa) were examined. Differences between both diagnostic groups were compared and associations between fathers' and daughters' body image perceptions within each group were investigated. Patients with anorexia nervosa overestimated their bodies on the body fat dimension. Patients with bulimia nervosa wished to have a body with less fat. Fathers of both groups of patients perceived their own bodies correctly but wished to have less body fat and to be more muscular. The wish for a change in body fat of anorexia nervosa patients was highly correlated with fathers' BMI (r=0.49; p=0.009). The wish for a change in body fat of bulimia nervosa patients was correlated with fathers' distorted body image perception in terms of muscularity (r=-0.66, p=0.007) and with fathers' wish for a more muscular body (r=-0.51, p=0.05). Body images of patients with eating disorders and their fathers are related in the group of patients with bulimia nervosa. Perhaps, body images of fathers should be addressed in family therapy with patients with bulimia nervosa.

  3. Body image disturbance in binge eating disorder: a comparison of obese patients with and without binge eating disorder regarding the cognitive, behavioral and perceptual component of body image.

    PubMed

    Lewer, Merle; Nasrawi, Nadia; Schroeder, Dorothea; Vocks, Silja

    2016-03-01

    Whereas the manifestation of body image disturbance in binge eating disorder (BED) has been intensively investigated concerning the cognitive-affective component, with regard to the behavioral and the perceptual components of body image disturbance in BED, research is limited and results are inconsistent. Therefore, the present study assessed body image disturbance in BED with respect to the different components of body image in a sample of obese females (n = 31) with BED compared to obese females without an eating disorder (n = 28). The Eating Disorder Inventory-2, the Eating Disorder Examination-Questionnaire, the Body Image Avoidance Questionnaire and the Body Checking Questionnaire as well as a Digital Photo Distortion Technique based on a picture of each participant taken under standardized conditions were employed. Using two-sample t tests, we found that the participants with BED displayed significantly greater impairments concerning the cognitive-affective component of body image than the control group. Concerning the behavioral component, participants with BED reported more body checking and avoidance behavior than the controls, but group differences failed to reach significance after the Bonferroni corrections. Regarding the perceptual component, a significant group difference was found for the perceived "ideal" figure, with the individuals suffering from BED displaying a greater wish for a slimmer ideal figure than the control group. These results support the assumption that body image disturbance is a relevant factor in BED, similar to other eating disorders.

  4. Extended depth of field imaging for high speed object analysis

    NASA Technical Reports Server (NTRS)

    Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)

    2011-01-01

    A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.

  5. The bid to lose weight: impact of social media on weight perceptions, weight control and diabetes.

    PubMed

    Das, Leah; Mohan, Ranjini; Makaya, Tafadzwa

    2014-01-01

    Over the last decade the internet has come to permeate every aspect of our lives. With huge leaps in accessibility of the internet via mobile personal devices such as smart cellular phones and tablets, individuals are connected to the internet virtually all the time. It is no surprise therefore that social media now dominates the lives of many people within society. The authors take a look at how social media is influencing diabetes with particular focus on weight perception, weight management and eating behaviours. The authors explore the concept of how the advertising of Size 0 models and photo-shopping of images which are easily available on line and via social media is causing an increase in the number of young people with distorted body images. This has led to an increased number of people resorting to sometimes drastic weight loss programmes. We focus on the bid for 'low-fat' consumption and highlight how this could actually be leading to an increased risk for developing diabetes or worsening the complications of diabetes. We also discuss the increase of eating disorder in diabetes related to this distorted body image.

  6. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  7. Application-Driven No-Reference Quality Assessment for Dermoscopy Images With Multiple Distortions.

    PubMed

    Xie, Fengying; Lu, Yanan; Bovik, Alan C; Jiang, Zhiguo; Meng, Rusong

    2016-06-01

    Dermoscopy images often suffer from blur and uneven illumination distortions that occur during acquisition, which can adversely influence consequent automatic image analysis results on potential lesion objects. The purpose of this paper is to deploy an algorithm that can automatically assess the quality of dermoscopy images. Such an algorithm could be used to direct image recapture or correction. We describe an application-driven no-reference image quality assessment (IQA) model for dermoscopy images affected by possibly multiple distortions. For this purpose, we created a multiple distortion dataset of dermoscopy images impaired by varying degrees of blur and uneven illumination. The basis of this model is two single distortion IQA metrics that are sensitive to blur and uneven illumination, respectively. The outputs of these two metrics are combined to predict the quality of multiply distorted dermoscopy images using a fuzzy neural network. Unlike traditional IQA algorithms, which use human subjective score as ground truth, here ground truth is driven by the application, and generated according to the degree of influence of the distortions on lesion analysis. The experimental results reveal that the proposed model delivers accurate and stable quality prediction results for dermoscopy images impaired by multiple distortions. The proposed model is effective for quality assessment of multiple distorted dermoscopy images. An application-driven concept for IQA is introduced, and at the same time, a solution framework for the IQA of multiple distortions is proposed.

  8. Depressive Thought Content Among Female College Students With Bulimia.

    ERIC Educational Resources Information Center

    Brouwers, Mariette

    1988-01-01

    Compared overall depression scores on Beck Depression Inventory between women with and without bulimia and examined differences in specific depression items. Results indicated that bulimics were more depressed than controls and had distorted thoughts regarding body image, self-blame, somatic preoccupation, guilt, and suicidal ideation. (Author/NB)

  9. "When I feel the worst pain, I look like shit" - body image concerns in persistent pain.

    PubMed

    Sündermann, Oliver; Rydberg, Karin; Linder, Ludwig; Linton, Steven James

    2018-04-17

    Persistent pain is a pervasive condition that is often associated with a distorted body image. Most research into pain and body image investigated neural or physiological correlates (e.g. phantom limb pain), and much less is known about the psychological experience of body image changes in response to pain such as appearance concerns. The aim was to examine body image concerns in people with persistent pain, in particular appearance concerns and related coping behaviours and appearance-related emotions such as anger and shame. Design was cross-sectional and data was collected through in-depth semi-structured interviews with people suffering from persistent musculoskeletal pain (n=7; six females; age=19-56), and analysed with inductive thematic analysis (TA). Two main themes were identified: "Relationship to the painful body" and "Dissatisfaction with the body", each containing three subthemes, along with the side-theme "Appearance concerns affected by pain and mood". All participants reported appearance concerns, predominantly about their weight and related coping behaviours such as avoidance of mirrors, exercising or dieting and pain-induced mood changes that were associated with a negative body image. People with persistent pain report appearance concerns, often related to pain-induced negative mood changes, and reduced functioning. It remains unclear to what extent attitudes towards the body change over time in accordance with pain. A wider concept of body image is required, including the perception of reduced functioning, related appraisals (e.g. "I look weak and old") and appearance investment.

  10. Perceptual quality prediction on authentically distorted images using a bag of features approach

    PubMed Central

    Ghadiyaram, Deepti; Bovik, Alan C.

    2017-01-01

    Current top-performing blind perceptual image quality prediction models are generally trained on legacy databases of human quality opinion scores on synthetically distorted images. Therefore, they learn image features that effectively predict human visual quality judgments of inauthentic and usually isolated (single) distortions. However, real-world images usually contain complex composite mixtures of multiple distortions. We study the perceptually relevant natural scene statistics of such authentically distorted images in different color spaces and transform domains. We propose a “bag of feature maps” approach that avoids assumptions about the type of distortion(s) contained in an image and instead focuses on capturing consistencies—or departures therefrom—of the statistics of real-world images. Using a large database of authentically distorted images, human opinions of them, and bags of features computed on them, we train a regressor to conduct image quality prediction. We demonstrate the competence of the features toward improving automatic perceptual quality prediction by testing a learned algorithm using them on a benchmark legacy database as well as on a newly introduced distortion-realistic resource called the LIVE In the Wild Image Quality Challenge Database. We extensively evaluate the perceptual quality prediction model and algorithm and show that it is able to achieve good-quality prediction power that is better than other leading models. PMID:28129417

  11. Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects.

    PubMed

    Albi, Angela; Meola, Antonio; Zhang, Fan; Kahali, Pegah; Rigolo, Laura; Tax, Chantal M W; Ciris, Pelin Aksit; Essayed, Walid I; Unadkat, Prashin; Norton, Isaiah; Rathi, Yogesh; Olubiyi, Olutayo; Golby, Alexandra J; O'Donnell, Lauren J

    2018-03-01

    Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings. Copyright © 2018 by the American Society of Neuroimaging.

  12. Image distortion analysis using polynomial series expansion.

    PubMed

    Baggenstoss, Paul M

    2004-11-01

    In this paper, we derive a technique for analysis of local distortions which affect data in real-world applications. In the paper, we focus on image data, specifically handwritten characters. Given a reference image and a distorted copy of it, the method is able to efficiently determine the rotations, translations, scaling, and any other distortions that have been applied. Because the method is robust, it is also able to estimate distortions for two unrelated images, thus determining the distortions that would be required to cause the two images to resemble each other. The approach is based on a polynomial series expansion using matrix powers of linear transformation matrices. The technique has applications in pattern recognition in the presence of distortions.

  13. People watching: The perception of the relative body proportions of the self and others.

    PubMed

    Linkenauger, Sally A; Kirby, Laura R; McCulloch, Kathleen C; Longo, Matthew R

    2017-07-01

    We have an abundance of perceptual information from multiple modalities specifying our body proportions. Consequently, it seems reasonable for researchers to assume that we have an accurate perception of our body proportions. In contrast to this intuition, recent research has shown large, striking distortions in people's perceptions of the relative proportions of their own bodies. Specifically, individuals show large distortions when estimating the length of their body parts with a corporal metric, such as the hand, but not with a non-corporal object of the same length (Linkenauger et al., 2015). However, it remains unclear whether these distortions are specific to the perception of the relative proportions of one's own body or whether they generalize to the perception of the relative proportions of all human bodies. To assess this, individuals judged the relative lengths of either their own body parts or the body parts of another individual. We found that people have distorted perceptions of relative body proportions even when viewing the bodies of others. These distortions were greater when estimating the relative body parts of someone of the same gender. These results suggest our implicit full body representation is distorted and influences our perceptions of other people's bodies, especially if the other person's body is similar to our own. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Detection of chromatic and luminance distortions in natural scenes.

    PubMed

    Jennings, Ben J; Wang, Karen; Menzies, Samantha; Kingdom, Frederick A A

    2015-09-01

    A number of studies have measured visual thresholds for detecting spatial distortions applied to images of natural scenes. In one study, Bex [J. Vis.10(2), 1 (2010)10.1167/10.2.231534-7362] measured sensitivity to sinusoidal spatial modulations of image scale. Here, we measure sensitivity to sinusoidal scale distortions applied to the chromatic, luminance, or both layers of natural scene images. We first established that sensitivity does not depend on whether the undistorted comparison image was of the same or of a different scene. Next, we found that, when the luminance but not chromatic layer was distorted, performance was the same regardless of whether the chromatic layer was present, absent, or phase-scrambled; in other words, the chromatic layer, in whatever form, did not affect sensitivity to the luminance layer distortion. However, when the chromatic layer was distorted, sensitivity was higher when the luminance layer was intact compared to when absent or phase-scrambled. These detection threshold results complement the appearance of periodic distortions of the image scale: when the luminance layer is distorted visibly, the scene appears distorted, but when the chromatic layer is distorted visibly, there is little apparent scene distortion. We conclude that (a) observers have a built-in sense of how a normal image of a natural scene should appear, and (b) the detection of distortion in, as well as the apparent distortion of, natural scene images is mediated predominantly by the luminance layer and not chromatic layer.

  15. Seeing, mirroring, desiring: the impact of the analyst's pregnant body on the patient's body image.

    PubMed

    Yakeley, Jessica

    2013-08-01

    The paper explores the impact of the analyst's pregnant body on the course of two analyses, a young man, and a young woman, specifically focusing on how each patient's visual perception and affective experience of being with the analyst's pregnant body affected their own body image and subjective experience of their body. The pre-verbal or 'subsymbolic' material evoked in the analyses contributed to a greater understanding of the patients' developmental experiences in infancy and adolescence, which had resulted in both carrying a profoundly distorted body image into adulthood. The analyst's pregnancy offered a therapeutic window in which a shift in the patient's body image could be initiated. Clinical material is presented in detail with reference to the psychoanalytic literature on the pregnant analyst, and that of the development of the body image, particularly focusing on the role of visual communication and the face. The author proposes a theory of psychic change, drawing on Bucci's multiple code theory, in which the patients' unconscious or 'subsymbolic' awareness of her pregnancy, which were manifest in their bodily responses, feeling states and dreams, as well as in the analyst s countertransference, could gradually be verbalized and understood within the transference. Thus visual perception, or 'external seeing', could gradually become 'internal seeing', or insight into unconscious phantasies, leading to a shift in the patients internal object world towards a less persecutory state and more realistic appraisal of their body image. Copyright © 2013 Institute of Psychoanalysis.

  16. Spline function approximation techniques for image geometric distortion representation. [for registration of multitemporal remote sensor imagery

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1975-01-01

    Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.

  17. A Model-Based Approach for Microvasculature Structure Distortion Correction in Two-Photon Fluorescence Microscopy Images

    PubMed Central

    Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh

    2015-01-01

    SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257

  18. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    PubMed

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  19. Image Quality Assessment Based on Local Linear Information and Distortion-Specific Compensation.

    PubMed

    Wang, Hanli; Fu, Jie; Lin, Weisi; Hu, Sudeng; Kuo, C-C Jay; Zuo, Lingxuan

    2016-12-14

    Image Quality Assessment (IQA) is a fundamental yet constantly developing task for computer vision and image processing. Most IQA evaluation mechanisms are based on the pertinence of subjective and objective estimation. Each image distortion type has its own property correlated with human perception. However, this intrinsic property may not be fully exploited by existing IQA methods. In this paper, we make two main contributions to the IQA field. First, a novel IQA method is developed based on a local linear model that examines the distortion between the reference and the distorted images for better alignment with human visual experience. Second, a distortion-specific compensation strategy is proposed to offset the negative effect on IQA modeling caused by different image distortion types. These score offsets are learned from several known distortion types. Furthermore, for an image with an unknown distortion type, a Convolutional Neural Network (CNN) based method is proposed to compute the score offset automatically. Finally, an integrated IQA metric is proposed by combining the aforementioned two ideas. Extensive experiments are performed to verify the proposed IQA metric, which demonstrate that the local linear model is useful in human perception modeling, especially for individual image distortion, and the overall IQA method outperforms several state-of-the-art IQA approaches.

  20. Acceptable distortion and magnification of images on reflective surfaces in an augmented reality system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji; Hosokawa, Natsumi; Yokoya, Mayu; Tsumura, Norimichi

    2016-12-01

    In this paper, we investigated the consistency of visual perception for the change of reflection images in an augmented reality setting. Reflection images with distortion and magnification were generated by changing the capture position of the environment map. Observers evaluated the distortion and magnification in reflection images where the reflected objects were arranged symmetrically or asymmetrically. Our results confirmed that the observers' visual perception was more sensitive to changes in distortion than in magnification in the reflection images. Moreover, the asymmetrical arrangement of reflected objects effectively expands the acceptable range of distortion compared with the symmetrical arrangement.

  1. Effects of a cognitive-behavioral exposure-based body image therapy for overweight females with binge eating disorder: a pilot study.

    PubMed

    Lewer, Merle; Kosfelder, Joachim; Michalak, Johannes; Schroeder, Dorothea; Nasrawi, Nadia; Vocks, Silja

    2017-01-01

    Although not part of the diagnostic criteria of the DSM-5, body image disturbance seems to be a relevant feature of Binge Eating Disorder (BED) as well as of other eating disorders such as Anorexia Nervosa (AN) or Bulimia Nervosa (BN). Hence, the aim of the present pilot study was to assess the changeability of body image disturbance in a sample of overweight females with BED by a cognitive-behavioral treatment, directly addressing body image disturbance. Overweight females ( N  = 34) with BED were randomized to a manualized body image therapy or a waiting-list control group. The final sample consisted of n  = 15 participants in the intervention group and n  = 19 in the control group due to two drop-outs in the control condition. Before and after the intervention or the waiting period, respectively, participants filled out a questionnaire battery assessing several body image and eating disorder related features. To quantify the perceptual component of body image disturbance, a digital photo distortion technique based on a picture of each participant taken in a standardized suit was applied. In a two-way ANOVA, significant Time × Group interactions were found for eating and shape concerns, drive for thinness, body dissatisfaction, depressiveness and low self-esteem. Follow-up t -tests indicated a significant symptom reduction of a generally high magnitude in the intervention group. No significant changes concerning body checking and the estimations of one's own "real", "felt" and "ideal" body dimensions were found. The strong symptom reduction in the cognitive-affective component of body image disturbance indicates that an exposure-based cognitive-behavioral body image intervention is a promising treatment module for overweight females with BED, but future research with a larger sample size is needed to quantify possible changes in all components of body image.

  2. Correction of eddy current distortions in high angular resolution diffusion imaging.

    PubMed

    Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna

    2013-06-01

    To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.

  3. Body image in Brazil: recent advances in the state of knowledge and methodological issues

    PubMed Central

    Laus, Maria Fernanda; Kakeshita, Idalina Shiraishi; Costa, Telma Maria Braga; Ferreira, Maria Elisa Caputo; Fortes, Leonardo de Sousa; Almeida, Sebastião Sousa

    2014-01-01

    OBJECTIVE To analyze Brazilian literature on body image and the theoretical and methodological advances that have been made. METHODS A detailed review was undertaken of the Brazilian literature on body image, selecting published articles, dissertations and theses from the SciELO, SCOPUS, LILACS and PubMed databases and the CAPES thesis database. Google Scholar was also used. There was no start date for the search, which used the following search terms: “body image” AND “Brazil” AND “scale(s)”; “body image” AND “Brazil” AND “questionnaire(s)”; “body image” AND “Brazil” AND “instrument(s)”; “body image” limited to Brazil and “body image”. RESULTS The majority of measures available were intended to be used in college students, with half of them evaluating satisfaction/dissatisfaction with the body. Females and adolescents of both sexes were the most studied population. There has been a significant increase in the number of available instruments. Nevertheless, numerous published studies have used non-validated instruments, with much confusion in the use of the appropriate terms (e.g., perception, dissatisfaction, distortion). CONCLUSIONS Much more is needed to understand body image within the Brazilian population, especially in terms of evaluating different age groups and diversifying the components/dimensions assessed. However, interest in this theme is increasing, and important steps have been taken in a short space of time. PMID:24897056

  4. Recent Research on Eating Disorders and Body Image Distortion among Aerobic Instructors and Exercise Participants.

    ERIC Educational Resources Information Center

    Moriarty, Dick; And Others

    This document reviews the research linking excessive exercise with eating disorders. Seven steps are listed that an individual follows in going from someone who starts out using exercise and aerobic dance as a stress management technique or a hobby to becoming an exercise dependent individual with addictive behavior. Studies are reviewed, the…

  5. Anorexia Nervosa: Its Symptoms and Possible Cures.

    ERIC Educational Resources Information Center

    Bingaman, David E.

    This document presents a definition and description of anorexia nervosa as a disorder that occurs predominantly in girls and that can affect 1 out of every 250 girls between the ages of 12 and 18 years. The existence of a distorted mental body image among anorexics is discussed and symptoms of the disorder are described, including amenorrhea…

  6. GUI for Coordinate Measurement of an Image for the Estimation of Geometric Distortion of an Opto-electronic Display System

    NASA Astrophysics Data System (ADS)

    Saini, Surender Singh; Sardana, Harish Kumar; Pattnaik, Shyam Sundar

    2017-06-01

    Conventional image editing software in combination with other techniques are not only difficult to apply to an image but also permits a user to perform some basic functions one at a time. However, image processing algorithms and photogrammetric systems are developed in the recent past for real-time pattern recognition applications. A graphical user interface (GUI) is developed which can perform multiple functions simultaneously for the analysis and estimation of geometric distortion in an image with reference to the corresponding distorted image. The GUI measure, record, and visualize the performance metric of X/Y coordinates of one image over the other. The various keys and icons provided in the utility extracts the coordinates of distortion free reference image and the image with geometric distortion. The error between these two corresponding points gives the measure of distortion and also used to evaluate the correction parameters for image distortion. As the GUI interface minimizes human interference in the process of geometric correction, its execution just requires use of icons and keys provided in the utility; this technique gives swift and accurate results as compared to other conventional methods for the measurement of the X/Y coordinates of an image.

  7. Body image, weight management behavior, nutritional knowledge and dietary habits in high school boys in Korea and China.

    PubMed

    Hyun, Hwajin; Lee, Hongmie; Ro, Yoona; Gray, Heewon L; Song, Kyunghee

    2017-01-01

    Adolescence is an important period with rapid physical growth transitioning from childhood to adulthood. Distorted body image can result in eating disorders or inadequate nutrient intakes in adolescence. Limited research has been done with high school boys in both Korea and China. To examine body image, weight control behaviors, nutritional knowledge, and dietary habits in Korean and Chinese teenage boys, and to evaluate any differences in these measures between two countries. High school boys in Yongin of Korea and Weihai region of China (n=201 Korean and n=196 Chinese) participated in a selfreport survey. A previously validated questionnaire assessed height and weight, body image, nutritional knowledge, and dietary habits. Descriptive statistics, t-test, Chi-square, and Pearson correlations were used for data analysis. About 41.4% of Korean students and 40.8% of Chinese students desired to be thinner. The majority of the students from both countries showed a perception gap between ideal body image and current body image. Korean students had a higher frequency of weight control attempts compared with Chinese students (p=0.004). Overall, Korean students had higher scores in nutritional knowledge (p<0.001), while Chinese students had higher scores in dietary habits (p<0.001). Nutrition knowledge in Korean students and dietary habit in Chinese students showed positive correlation with body shape satisfaction (p<0.01). The findings of this study support that developing proper body image among high school boys is important in Korea and China. Different educational strategies might be beneficial to Korean or Chinese students.

  8. (In) Sensitivity to spatial distortion in natural scenes

    PubMed Central

    Bex, Peter J.

    2010-01-01

    The perception of object structure in the natural environment is remarkably stable under large variation in image size and projection, especially given our insensitivity to spatial position outside the fovea. Sensitivity to periodic spatial distortions that were introduced into one quadrant of gray-scale natural images was measured in a 4AFC task. Observers were able to detect the presence of distortions in unfamiliar images even though they did not significantly affect the amplitude spectrum. Sensitivity depended on the spatial period of the distortion and on the image structure at the location of the distortion. The results suggest that the detection of distortion involves decisions made in the late stages of image perception and is based on an expectation of the typical structure of natural scenes. PMID:20462324

  9. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function.

    PubMed

    Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S

    2016-06-01

    MRI-guided interventions demand high frame rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real time to interactively deblur spiral images. Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF-predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF-predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 min of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. This real-time distortion correction framework will enable the use of these high frame rate imaging methods for MRI-guided interventions. Magn Reson Med 75:2278-2285, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function

    PubMed Central

    Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S

    2015-01-01

    Purpose MRI-guided interventions demand high frame-rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Methods Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real-time to interactively de-blur spiral images. Results Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 minutes of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. Conclusions This real-time distortion correction framework will enable the use of these high frame-rate imaging methods for MRI-guided interventions. PMID:26114951

  11. Virtually distortion-free imaging system for large field, high resolution lithography

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-05

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  12. Virtually distortion-free imaging system for large field, high resolution lithography

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position.

  13. A novel imaging technique for fusion of high-quality immobilised MR images of the head and neck with CT scans for radiotherapy target delineation.

    PubMed

    Webster, G J; Kilgallon, J E; Ho, K F; Rowbottom, C G; Slevin, N J; Mackay, R I

    2009-06-01

    Uncertainty and inconsistency are observed in target volume delineation in the head and neck for radiotherapy treatment planning based only on CT imaging. Alternative modalities such as MRI have previously been incorporated into the delineation process to provide additional anatomical information. This work aims to improve on previous studies by combining good image quality with precise patient immobilisation in order to maintain patient position between scans. MR images were acquired using quadrature coils placed over the head and neck while the patient was immobilised in the treatment position using a five-point thermoplastic shell. The MR image and CT images were automatically fused in the Pinnacle treatment planning system using Syntegra software. Image quality, distortion and accuracy of the image registration using patient anatomy were evaluated. Image quality was found to be superior to that acquired using the body coil, while distortion was < 1.0 mm to a radius of 8.7 cm from the scan centre. Image registration accuracy was found to be 2.2 mm (+/- 0.9 mm) and < 3.0 degrees (n = 6). A novel MRI technique that combines good image quality with patient immobilization has been developed and is now in clinical use. The scan duration of approximately 15 min has been well tolerated by all patients.

  14. Cracks in Continuing Education's Mirror and a Fix To Correct Its Distorted Internal and External Image.

    ERIC Educational Resources Information Center

    Loch, John R.

    2003-01-01

    Outlines problems in continuing higher education, suggesting that it lacks (1) a standard name; (2) a unified voice on national issues; (3) a standard set of roles and functions; (4) a standard title for the chief administrative officer; (5) an accreditation body and process; and (6) resolution of the centralization/decentralization issue. (SK)

  15. Robot-assisted, ultrasound-guided minimally invasive navigation tool for brachytherapy and ablation therapy: initial assessment

    NASA Astrophysics Data System (ADS)

    Bhattad, Srikanth; Escoto, Abelardo; Malthaner, Richard; Patel, Rajni

    2015-03-01

    Brachytherapy and thermal ablation are relatively new approaches in robot-assisted minimally invasive interventions for treating malignant tumors. Ultrasound remains the most favored choice for imaging feedback, the benefits being cost effectiveness, radiation free, and easy access in an OR. However it does not generally provide high contrast, noise free images. Distortion occurs when the sound waves pass through a medium that contains air and/or when the target organ is deep within the body. The distorted images make it quite difficult to recognize and localize tumors and surgical tools. Often tools, such as a bevel-tipped needle, deflect from its path during insertion, making it difficult to detect the needle tip using a single perspective view. The shifting of the target due to cardiac and/or respiratory motion can add further errors in reaching the target. This paper describes a comprehensive system that uses robot dexterity to capture 2D ultrasound images in various pre-determined modes for generating 3D ultrasound images and assists in maneuvering a surgical tool. An interactive 3D virtual reality environment is developed that visualizes various artifacts present in the surgical site in real-time. The system helps to avoid image distortion by grabbing images from multiple positions and orientation to provide a 3D view. Using the methods developed for this application, an accuracy of 1.3 mm was achieved in target attainment in an in-vivo experiment subjected to tissue motion. An accuracy of 1.36 mm and 0.93 mm respectively was achieved for the ex-vivo experiments with and without external induced motion. An ablation monitor widget that visualizes the changes during the complete ablation process and enables evaluation of the process in its entirety is integrated.

  16. Minor Distortions with Major Consequences: Correcting Distortions in Imaging Spectrographs

    PubMed Central

    Esmonde-White, Francis W. L.; Esmonde-White, Karen A.; Morris, Michael D.

    2010-01-01

    Projective transformation is a mathematical correction (implemented in software) used in the remote imaging field to produce distortion-free images. We present the application of projective transformation to correct minor alignment and astigmatism distortions that are inherent in dispersive spectrographs. Patterned white-light images and neon emission spectra were used to produce registration points for the transformation. Raman transects collected on microscopy and fiber-optic systems were corrected using established methods and compared with the same transects corrected using the projective transformation. Even minor distortions have a significant effect on reproducibility and apparent fluorescence background complexity. Simulated Raman spectra were used to optimize the projective transformation algorithm. We demonstrate that the projective transformation reduced the apparent fluorescent background complexity and improved reproducibility of measured parameters of Raman spectra. Distortion correction using a projective transformation provides a major advantage in reducing the background fluorescence complexity even in instrumentation where slit-image distortions and camera rotation were minimized using manual or mechanical means. We expect these advantages should be readily applicable to other spectroscopic modalities using dispersive imaging spectrographs. PMID:21211158

  17. The effect of the observer vantage point on perceived distortions in linear perspective images.

    PubMed

    Todorović, Dejan

    2009-01-01

    Some features of linear perspective images may look distorted. Such distortions appear in two drawings by Jan Vredeman de Vries involving perceived elliptical, instead of circular, pillars and tilted, instead of upright, columns. Distortions may be due to factors intrinsic to the images, such as violations of the so-called Perkins's laws, or factors extrinsic to them, such as observing the images from positions different from their center of projection. When the correct projection centers for the two drawings were reconstructed, it was found that they were very close to the images and, therefore, practically unattainable in normal observation. In two experiments, enlarged versions of images were used as stimuli, making the positions of the projection centers attainable for observers. When observed from the correct positions, the perceived distortions disappeared or were greatly diminished. Distortions perceived from other positions were smaller than would be predicted by geometrical analyses, possibly due to flatness cues in the images. The results are relevant for the practical purposes of creating faithful impressions of 3-D spaces using 2-D images.

  18. Design of a MATLAB(registered trademark) Image Comparison and Analysis Tool for Augmentation of the Results of the Ann Arbor Distortion Test

    DTIC Science & Technology

    2016-06-25

    The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was

  19. Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging.

    PubMed

    Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho

    2010-05-24

    We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.

  20. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  1. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate.

    PubMed

    Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E

    2017-04-21

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  2. Anorexia nervosa and body dysmorphic disorder are associated with abnormalities in processing visual information.

    PubMed

    Li, W; Lai, T M; Bohon, C; Loo, S K; McCurdy, D; Strober, M; Bookheimer, S; Feusner, J

    2015-07-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities--event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)--to test for abnormal activity associated with early visual signaling. We acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems. AN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces. Results provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.

  3. Radial line method for rear-view mirror distortion detection

    NASA Astrophysics Data System (ADS)

    Rahmah, Fitri; Kusumawardhani, Apriani; Setijono, Heru; Hatta, Agus M.; Irwansyah, .

    2015-01-01

    An image of the object can be distorted due to a defect in a mirror. A rear-view mirror is an important component for the vehicle safety. One of standard parameters of the rear-view mirror is a distortion factor. This paper presents a radial line method for distortion detection of the rear-view mirror. The rear-view mirror was tested for the distortion detection by using a system consisting of a webcam sensor and an image-processing unit. In the image-processing unit, the captured image from the webcam were pre-processed by using smoothing and sharpening techniques and then a radial line method was used to define the distortion factor. It was demonstrated successfully that the radial line method could be used to define the distortion factor. This detection system is useful to be implemented such as in Indonesian's automotive component industry while the manual inspection still be used.

  4. Fisheye image rectification using spherical and digital distortion models

    NASA Astrophysics Data System (ADS)

    Li, Xin; Pi, Yingdong; Jia, Yanling; Yang, Yuhui; Chen, Zhiyong; Hou, Wenguang

    2018-02-01

    Fisheye cameras have been widely used in many applications including close range visual navigation and observation and cyber city reconstruction because its field of view is much larger than that of a common pinhole camera. This means that a fisheye camera can capture more information than a pinhole camera in the same scenario. However, the fisheye image contains serious distortion, which may cause trouble for human observers in recognizing the objects within. Therefore, in most practical applications, the fisheye image should be rectified to a pinhole perspective projection image to conform to human cognitive habits. The traditional mathematical model-based methods cannot effectively remove the distortion, but the digital distortion model can reduce the image resolution to some extent. Considering these defects, this paper proposes a new method that combines the physical spherical model and the digital distortion model. The distortion of fisheye images can be effectively removed according to the proposed approach. Many experiments validate its feasibility and effectiveness.

  5. Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters.

    PubMed

    Lee, Anthony M D; Hohert, Geoffrey; Angkiriwang, Patricia T; MacAulay, Calum; Lane, Pierre

    2017-09-04

    We present a new paradigm for performing two-dimensional scanning called dual-beam manually-actuated distortion-corrected imaging (DMDI). DMDI operates by imaging the same object with two spatially-separated beams that are being mechanically scanned rapidly in one dimension with slower manual actuation along a second dimension. Registration of common features between the two imaging channels allows remapping of the images to correct for distortions due to manual actuation. We demonstrate DMDI using a 4.7 mm OD rotationally scanning dual-beam micromotor catheter (DBMC). The DBMC requires a simple, one-time calibration of the beam paths by imaging a patterned phantom. DMDI allows for distortion correction of non-uniform axial speed and rotational motion of the DBMC. We show the utility of this technique by demonstrating en face OCT image distortion correction of a manually-scanned checkerboard phantom and fingerprint scan.

  6. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  7. Expression-dependent susceptibility to face distortions in processing of facial expressions of emotion.

    PubMed

    Guo, Kun; Soornack, Yoshi; Settle, Rebecca

    2018-03-05

    Our capability of recognizing facial expressions of emotion under different viewing conditions implies the existence of an invariant expression representation. As natural visual signals are often distorted and our perceptual strategy changes with external noise level, it is essential to understand how expression perception is susceptible to face distortion and whether the same facial cues are used to process high- and low-quality face images. We systematically manipulated face image resolution (experiment 1) and blur (experiment 2), and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. Our analysis revealed a reasonable tolerance to face distortion in expression perception. Reducing image resolution up to 48 × 64 pixels or increasing image blur up to 15 cycles/image had little impact on expression assessment and associated gaze behaviour. Further distortion led to decreased expression categorization accuracy and intensity rating, increased reaction time and fixation duration, and stronger central fixation bias which was not driven by distortion-induced changes in local image saliency. Interestingly, the observed distortion effects were expression-dependent with less deterioration impact on happy and surprise expressions, suggesting this distortion-invariant facial expression perception might be achieved through the categorical model involving a non-linear configural combination of local facial features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A methodology to investigate the impact of image distortions on the radiation dose when using magnetic resonance images for planning

    NASA Astrophysics Data System (ADS)

    Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong

    2018-04-01

    We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.

  9. Face detection on distorted images using perceptual quality-aware features

    NASA Astrophysics Data System (ADS)

    Gunasekar, Suriya; Ghosh, Joydeep; Bovik, Alan C.

    2014-02-01

    We quantify the degradation in performance of a popular and effective face detector when human-perceived image quality is degraded by distortions due to additive white gaussian noise, gaussian blur or JPEG compression. It is observed that, within a certain range of perceived image quality, a modest increase in image quality can drastically improve face detection performance. These results can be used to guide resource or bandwidth allocation in a communication/delivery system that is associated with face detection tasks. A new face detector based on QualHOG features is also proposed that augments face-indicative HOG features with perceptual quality-aware spatial Natural Scene Statistics (NSS) features, yielding improved tolerance against image distortions. The new detector provides statistically significant improvements over a strong baseline on a large database of face images representing a wide range of distortions. To facilitate this study, we created a new Distorted Face Database, containing face and non-face patches from images impaired by a variety of common distortion types and levels. This new dataset is available for download and further experimentation at www.ideal.ece.utexas.edu/˜suriya/DFD/.

  10. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    PubMed

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.

  11. Thought-shape fusion in young healthy females appears after vivid imagination of thin ideals.

    PubMed

    Wyssen, Andrea; Coelho, Jennifer S; Wilhelm, Peter; Zimmermann, Grégoire; Munsch, Simone

    2016-09-01

    It has been shown that exposure to female thin ideals in media has minimal to moderate direct effects on body image satisfaction (BIS), mood and dysfunctional eating in healthy young women. Evidence has been found for several intervening variables such as social comparison processes. Accordingly it is assumed, that cognitive processing (rather than mere media exposure) is crucial. Consequently, vivid imagination of thin ideals after exposure to a fashion magazine was induced in order to trigger cognitive processes. Changes in mood, BIS and resulting bodyrelated cognitive distortions (Thought-Shape Fusion Body, TSF-B) were assessed. A total of 91 healthy women (mean age 21.9 years, SD = 2.0) were exposed to either a fashion magazine (thin-ideal group) or a nature magazine (control group) in a waiting room design. Afterwards they were instructed to vividly imagine either the thin ideals or landscapes. When exposed to thin ideals, a significant decrease in mood and BIS emerged after vivid imagination, but not after mere magazine exposure. Imagining thin ideals triggered body-related cognitive distortions (TSF-B). A higher degree of eating disorder (ED) symptomatology amplified this effect. These findings apply to young healthy females and cannot be generalized to samples with obesity, EDs or males. Internal validity is limited since the intensity of the exposure has not been systematically controlled. Vivid imagination of thin ideals promoted by magazines results in impaired mood and BIS and moreover in body-related cognitive distortions (TSF-B) in healthy women, especially, for those with stronger ED symptomatology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Distorted body image and anorexia complicating cystic fibrosis in an adolescent.

    PubMed

    Gilchrist, Francis J; Lenney, Warren

    2008-09-01

    A 15 year old girl with cystic fibrosis has been dieting and losing weight for 2 years. Despite being underweight she aims to lose a further 6 kg to become a "size zero". Her falling weight has been associated with deteriorations in her general health and lung function, which is exacerbated by poor compliance. The situation has been complicated further by her becoming pregnant.

  13. A simple and robust method for artifacts correction on X-ray microtomography images

    NASA Astrophysics Data System (ADS)

    Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Irina, Bayuk; Kirill, Gerke

    2017-04-01

    X-ray microtomography images of rock material often have some kinds of distortion due to different reasons such as X-ray attenuation, beam hardening, irregularity of distribution of liquid/solid phases. Several kinds of distortion can arise from further image processing and stitching of images from different measurements. Beam-hardening is a well-known and studied distortion which is relative easy to be described, fitted and corrected using a number of equations. However, this is not the case for other grey scale intensity distortions. Shading by irregularity of distribution of liquid phases, incorrect scanner operating/parameters choosing, as well as numerous artefacts from mathematical reconstructions from projections, including stitching from separate scans cannot be described using single mathematical model. To correct grey scale intensities on large 3D images we developed a package Traditional method for removing the beam hardening [1] has been modified in order to find the center of distortion. The main contribution of this work is in development of a method for arbitrary image correction. This method is based on fitting the distortion by Bezier curve using image histogram. The distortion along the image is represented by a number of Bezier curves and one base line that characterizes the natural distribution of gray value along the image. All of these curves are set manually by the operator. We have tested our approaches on different X-ray microtomography images of porous media. Arbitrary correction removes all principal distortion. After correction the images has been binarized with subsequent pore-network extracted. Equal distribution of pore-network elements along the image was the criteria to verify the proposed technique to correct grey scale intensities. [1] Iassonov, P. and Tuller, M., 2010. Application of segmentation for correction of intensity bias in X-ray computed tomography images. Vadose Zone Journal, 9(1), pp.187-191.

  14. Prevalence of Body Dysmorphic Disorder Symptoms and Body Weight Concerns in Patients Seeking Abdominoplasty.

    PubMed

    Brito, Maria José Azevedo de; Nahas, Fábio Xerfan; Cordás, Táki Athanássios; Gama, Maria Gabriela; Sucupira, Eduardo Rodrigues; Ramos, Tatiana Dalpasquale; Felix, Gabriel de Almeida Arruda; Ferreira, Lydia Masako

    2016-03-01

    Body dysmorphic disorder (BDD) is one of the most common psychiatric conditions found in patients seeking cosmetic surgery, and body contouring surgery is most frequently sought by patients with BDD. To estimate the prevalence and severity of BDD symptoms in patients seeking abdominoplasty. Ninety patients of both sexes were preoperatively divided into two groups: patients with BDD symptoms (n = 51) and those without BDD symptoms (n = 39) based both on the Body Dysmorphic Disorder Examination (BDDE) and clinical assessment. Patients in the BDD group were classified as having mild to moderate or severe symptoms, according to the BDDE. Body weight and shape concerns were assessed using the Body Shape Questionnaire (BSQ). The prevalence of BDD symptoms was 57%. There were significant associations between BDD symptoms and degree of body dissatisfaction, level of preoccupation with physical appearance, and avoidance behaviors. Mild to moderate and severe symptoms of BDD were present in 41% and 59% of patients, respectively, in the BDD group. It was found that the more severe the symptoms of BDD, the higher the level of concern with body weight and shape (P < .001). Patients having distorted self-perception of body shape, or distorted comparative perception of body image were respectively 3.67 or 5.93 times more likely to show more severe symptoms of BDD than those with a more accurate perception. Candidates for abdominoplasty had a high prevalence of BDD symptoms, and body weight and shape concerns were associated with increased symptom severity. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  15. Analysis of Brown camera distortion model

    NASA Astrophysics Data System (ADS)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  16. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter; Liney, Gary

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developedmore » for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through-plane direction and an increased blurring of capsule images, resulting in an apparent capsule volume increase by up to 170% in extreme axial FOV regions. Blurring increased with table speed and in the central regions of the phantom, geometric distortion was less for static table acquisitions compared to a table speed of 2 mm/s over the same volume. Overall, the best geometric accuracy was achieved with a table speed of 1.1 mm/s. Conclusions: The phantom designed enables full FOV imaging for distortion assessment for the purposes of RTP. MRI acquisition with a moving table extends the imaging volume in the z direction with reduced distortions which could be useful particularly if considering MR-only planning. If utilizing MR images to provide additional soft tissue information to the planning CT, standard acquisition sequences over a smaller volume would avoid introducing additional blurring or distortions from the through-plane table movement.« less

  17. Deformable registration for image-guided spine surgery: preserving rigid body vertebral morphology in free-form transformations

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Zhao, Z.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Deformable registration of preoperative and intraoperative images facilitates accurate localization of target and critical anatomy in image-guided spine surgery. However, conventional deformable registration fails to preserve the morphology of rigid bone anatomy and can impart distortions that confound high-precision intervention. We propose a constrained registration method that preserves rigid morphology while allowing deformation of surrounding soft tissues. Method: The registration method aligns preoperative 3D CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with penalties on rigid body motion imposed according to a simple intensity threshold. The penalties enforced 3 properties of a rigid transformation - namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments (involving phantoms, an ovine spine, and a human cadaver) as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. Result: FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation of rigid morphology and equivalent or improved TRE. Conclusions: A promising method for deformable registration in CBCT-guided spine surgery has been identified incorporating a constrained FFD to preserve bone morphology. The approach overcomes distortions intrinsic to unconstrained FFD and could better facilitate high-precision image-guided spine surgery.

  18. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    PubMed

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  19. Bilateral Symmetry of Distortions of Tactile Size Perception.

    PubMed

    Longo, Matthew R; Ghosh, Arko; Yahya, Tasneem

    2015-01-01

    The perceived distance between touches on the limbs is generally bigger for distances oriented across the width of the limb than for distances oriented along the length of the limb. The present study aimed to investigate the coherence of such distortions of tactile size perception across different skin surfaces. We investigated distortions of tactile size perception on the dorsal and palmar surfaces of both the left and right hands as well as the forehead. Participants judged which of two tactile distances felt larger. One distance was aligned with the proximodistal axis (along the body), the other with the mediolateral axis (across the body). Clear distortions were found on all five skin surfaces, with stimuli oriented across the width of the body being perceived as farther apart than those oriented along the length of the body. Consistent with previous results, distortions were smaller on the palmar than on the dorsal hand surface. Distortion on the forehead was intermediate between the dorsal and palmar surfaces. There were clear correlations between distortion on the left and right hands, for both the dorsal and palmar skin surfaces. In contrast, within each hand, there was no significant correlation between the two skin surfaces. Distortion on the forehead was not significantly correlated with that on any of the other skin surfaces. These results provide evidence for bilaterally symmetric representations underlying tactile size perception. © The Author(s) 2015.

  20. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  1. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  2. More flexibility in representing geometric distortion in astronomical images

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  3. Motion illusions in optical art presented for long durations are temporally distorted.

    PubMed

    Nather, Francisco Carlos; Mecca, Fernando Figueiredo; Bueno, José Lino Oliveira

    2013-01-01

    Static figurative images implying human body movements observed for shorter and longer durations affect the perception of time. This study examined whether images of static geometric shapes would affect the perception of time. Undergraduate participants observed two Optical Art paintings by Bridget Riley for 9 or 36 s (group G9 and G36, respectively). Paintings implying different intensities of movement (2.0 and 6.0 point stimuli) were randomly presented. The prospective paradigm in the reproduction method was used to record time estimations. Data analysis did not show time distortions in the G9 group. In the G36 group the paintings were differently perceived: that for the 2.0 point one are estimated to be shorter than that for the 6.0 point one. Also for G36, the 2.0 point painting was underestimated in comparison with the actual time of exposure. Motion illusions in static images affected time estimation according to the attention given to the complexity of movement by the observer, probably leading to changes in the storage velocity of internal clock pulses.

  4. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions.

    PubMed

    Grootjans, Willem; Meeuwis, Antoi P W; Slump, Cornelis H; de Geus-Oei, Lioe-Fee; Gotthardt, Martin; Visser, Eric P

    2016-12-01

    Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4.2, respectively. Regularization with smoothing priors could suppress these noise patterns at the cost of reduced image contrast. The mean N% was 6.4% and 6.8% for low count QSP and MRP MAP reconstructed images. Alternatively, regularization with an anatomical Bowhser prior resulted in sharp images with high contrast, limited image distortion, and low N% of 8.3% in low count images, although some image artifacts did occur. Analysis of clinical images suggested that the same effects occur in clinical imaging. Image quality of low count SPECT acquisitions reconstructed with modern 3DOSEM algorithms is deteriorated by the occurrence of correlated noise patterns and image distortions. The artifacts observed in the phantom experiments can also occur in clinical imaging. Copyright © 2015. Published by Elsevier GmbH.

  5. Magnetic resonance imaging metallic artifact of commonly encountered surgical implants and foreign material.

    PubMed

    Sutherland-Smith, James; Tilley, Brenda

    2012-01-01

    Magnetic resonance imaging (MRI) artifacts secondary to metallic implants and foreign bodies are well described. Herein, we provide quantitative data from veterinary implants including total hip arthroplasty implants, cranial cruciate repair implants, surgical screws, a skin staple, ligation clips, an identification microchip, ameroid constrictor, and potential foreign bodies including air gun and BB projectiles and a sewing needle. The objects were scanned in a gelatin phantom with plastic grid using standardized T2-weighted turbo-spin echo (TSE), T1-weighted spin echo, and T2*-weighted gradient recalled echo (GRE) image acquisitions at 1.5 T. Maximum linear dimensions and areas of signal voiding and grid distortion were calculated using a DICOM workstation for each sequence and object. Artifact severity was similar between the T2-weighted TSE and T1-weighted images, while the T2*-weighted images were most susceptible to artifact. Metal type influenced artifact size with the largest artifacts arising from steel objects followed by surgical stainless steel, titanium, and lead. For animals with metallic surgical implants or foreign bodies, the quantification of the artifact size will help guide clinicians on the viability of MRI. © 2012 Veterinary Radiology & Ultrasound.

  6. Review and comparison of geometric distortion correction schemes in MR images used in stereotactic radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Pappas, E. P.; Dellios, D.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Karaiskos, P.

    2017-11-01

    In Stereotactic Radiosurgery (SRS), MR-images are widely used for target localization and delineation in order to take advantage of the superior soft tissue contrast they exhibit. However, spatial dose delivery accuracy may be deteriorated due to geometric distortions which are partly attributed to static magnetic field inhomogeneity and patient/object-induced chemical shift and susceptibility related artifacts, known as sequence-dependent distortions. Several post-imaging sequence-dependent distortion correction schemes have been proposed which mainly employ the reversal of read gradient polarity. The scope of this work is to review, evaluate and compare the efficacy of two proposed correction approaches. A specially designed phantom which incorporates 947 control points (CPs) for distortion detection was utilized. The phantom was MR scanned at 1.5T using the head coil and the clinically employed pulse sequence for SRS treatment planning. An additional scan was performed with identical imaging parameters except for reversal of read gradient polarity. In-house MATLAB routines were developed for implementation of the signal integration and average-image distortion correction techniques. The mean CP locations of the two MR scans were regarded as the reference CP distribution. Residual distortion was assessed by comparing the corrected CP locations with corresponding reference positions. Mean absolute distortion on frequency encoding direction was reduced from 0.34mm (original images) to 0.15mm and 0.14mm following application of signal integration and average-image methods, respectively. However, a maximum residual distortion of 0.7mm was still observed for both techniques. The signal integration method relies on the accuracy of edge detection and requires 3-4 hours of post-imaging computational time. The average-image technique is a more efficient (processing time of the order of seconds) and easier to implement method to improve geometric accuracy in such applications.

  7. Assessment of body perception among Swedish adolescents and young adults.

    PubMed

    Bergström, E; Stenlund, H; Svedjehäll, B

    2000-01-01

    To assess body perception in adolescents and young adults without anorexia nervosa. Using a visual size estimation technique, perceived body size was estimated in four groups of Swedish adolescents and young adults without anorexia nervosa (86 males and 95 females). Perceived body size was estimated at nine different body sites comparing these estimations to real body size. The results show that 95% of males and 96% of females overestimated their body size (mean overestimation: males +22%, females +33%). The overestimations were greatest in females. The greatest overestimations were made of the waist (males +31%, females +46%), buttocks (males +22%, females +42%), and thighs (males +27%, females +41%). The results indicate that overestimation of body size may be a general phenomenon in adolescents and young adults in a country such as Sweden, implying a similar, but less pronounced distortion of body image as in individuals with anorexia nervosa.

  8. Assessment of sequence dependent geometric distortion in contrast-enhanced MR images employed in stereotactic radiosurgery treatment planning.

    PubMed

    Pappas, Eleftherios P; Seimenis, Ioannis; Dellios, Dimitrios; Kollias, Georgios; Lampropoulos, Kostas I; Karaiskos, Pantelis

    2018-06-25

    This work focuses on MR-related sequence dependent geometric distortions, which are associated with B 0 inhomogeneity and patient-induced distortion (susceptibility differences and chemical shift effects), in MR images used in stereotactic radiosurgery (SRS) applications. Emphasis is put on characterizing distortion at target brain areas identified by gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) paramagnetic contrast agent uptake. A custom-made phantom for distortion detection was modified to accommodate two small cylindrical inserts, simulating small brain targets. The inserts were filled with Gd-DTPA solutions of various concentrations (0-20 mM). The phantom was scanned at 1.5 T unit using both the reversed read gradient polarity (to determine the overall distortion as reflected by the inserts centroid offset) and the field mapping (to determine B 0 inhomogeneity related distortion in the vicinity of the inserts) techniques. Post-Gd patient images involving a total of 10 brain metastases/targets were also studied using a similar methodology. For the specific imaging conditions, contrast agent presence was found to evidently affect phantom insert position, with centroid offset extending up to 0.068 mm mM -1 (0.208 ppm mM -1 ). The Gd-DTPA induced distortion in patient images was of the order of 0.5 mm for the MRI protocol used, in agreement with the phantom results. Total localization uncertainty of metastases-targets in patient images ranged from 0.35 mm to 0.87 mm, depending on target location, with an average value of 0.54 mm (2.24 ppm). This relative wide range of target localization uncertainty results from the fact that the B 0 inhomogeneity distortion vector in a specific location may add to or partly counterbalance Gd-DTPA induced distortion, thus increasing or decreasing, respectively, the total sequence dependent distortion. Although relatively small, the sequence dependent distortion in Gd-DTPA enhanced brain images can be easily taken into account for SRS treatment planning and target definition purposes by carefully inspecting both the forward and reversed polarity series.

  9. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI

    PubMed Central

    Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.

    2009-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810

  10. Topographic Diagnosis of Craniopharyngiomas: The Accuracy of MRI Findings Observed on Conventional T1 and T2 Images.

    PubMed

    Prieto, R; Pascual, J M; Barrios, L

    2017-11-01

    The topography of craniopharyngiomas has proved fundamental in predicting the involvement of vital brain structures and the possibility of achieving a safe radical resection. Beyond the imprecise term "suprasellar," indiscriminately used for craniopharyngiomas, an accurate definition of craniopharyngioma topography should be assessed by preoperative MR imaging. The objective of this study was to investigate the MRI findings that help define craniopharyngioma topography. This study retrospectively investigated a cohort of 200 surgically treated craniopharyngiomas with their corresponding preoperative midsagittal and coronal conventional T1- and T2-weighted MR images, along with detailed descriptions of the surgical findings. Radiologic variables related to the occupation of the tumor of intracranial compartments and the distortions of anatomic structures along the sella turcica-third ventricle axis were analyzed and correlated with the definitive craniopharyngioma topography observed during the surgical procedures. A predictive model for craniopharyngioma topography was generated by multivariate analysis. Five major craniopharyngioma topographies can be defined according to the degree of hypothalamic distortion caused by the tumor: sellar-suprasellar, pseudointraventricular, secondary intraventricular, not strictly intraventricular, and strictly intraventricular. Seven key radiologic variables identified on preoperative MRI allowed a correct overall prediction of craniopharyngioma topography in 86% of cases: 1) third ventricle occupation, 2) pituitary stalk distortion, 3) relative level of the hypothalamus in relation to the tumor, 4) chiasmatic cistern occupation, 5) mammillary body angle, 6) type of chiasm distortion, and 7) tumor shape. Systematic assessment of these 7 variables on conventional preoperative T1 and T2 MRI is a useful and reliable method to ascertain individual craniopharyngioma topography. © 2017 by American Journal of Neuroradiology.

  11. Comparison of methods for quantitative evaluation of endoscopic distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua

    2015-03-01

    Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.

  12. Towards standardized assessment of endoscope optical performance: geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua

    2013-12-01

    Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.

  13. Generic distortion model for metrology under optical microscopes

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  14. Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values.

    PubMed

    Baca, A

    1996-04-01

    A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.

  15. Nonvisual Multisensory Impairment of Body Perception in Anorexia Nervosa: A Systematic Review of Neuropsychological Studies

    PubMed Central

    Gaudio, Santino; Brooks, Samantha Jane; Riva, Giuseppe

    2014-01-01

    Background Body image distortion is a central symptom of Anorexia Nervosa (AN). Even if corporeal awareness is multisensory majority of AN studies mainly investigated visual misperception. We systematically reviewed AN studies that have investigated different nonvisual sensory inputs using an integrative multisensory approach to body perception. We also discussed the findings in the light of AN neuroimaging evidence. Methods PubMed and PsycINFO were searched until March, 2014. To be included in the review, studies were mainly required to: investigate a sample of patients with current or past AN and a control group and use tasks that directly elicited one or more nonvisual sensory domains. Results Thirteen studies were included. They studied a total of 223 people with current or past AN and 273 control subjects. Overall, results show impairment in tactile and proprioceptive domains of body perception in AN patients. Interoception and multisensory integration have been poorly explored directly in AN patients. A limitation of this review is the relatively small amount of literature available. Conclusions Our results showed that AN patients had a multisensory impairment of body perception that goes beyond visual misperception and involves tactile and proprioceptive sensory components. Furthermore, impairment of tactile and proprioceptive components may be associated with parietal cortex alterations in AN patients. Interoception and multisensory integration have been weakly explored directly. Further research, using multisensory approaches as well as neuroimaging techniques, is needed to better define the complexity of body image distortion in AN. Key Findings The review suggests an altered capacity of AN patients in processing and integration of bodily signals: body parts are experienced as dissociated from their holistic and perceptive dimensions. Specifically, it is likely that not only perception but memory, and in particular sensorimotor/proprioceptive memory, probably shapes bodily experience in patients with AN. PMID:25303480

  16. Mobile-based text recognition from water quality devices

    NASA Astrophysics Data System (ADS)

    Dhakal, Shanti; Rahnemoonfar, Maryam

    2015-03-01

    Measuring water quality of bays, estuaries, and gulfs is a complicated and time-consuming process. YSI Sonde is an instrument used to measure water quality parameters such as pH, temperature, salinity, and dissolved oxygen. This instrument is taken to water bodies in a boat trip and researchers note down different parameters displayed by the instrument's display monitor. In this project, a mobile application is developed for Android platform that allows a user to take a picture of the YSI Sonde monitor, extract text from the image and store it in a file on the phone. The image captured by the application is first processed to remove perspective distortion. Probabilistic Hough line transform is used to identify lines in the image and the corner of the image is then obtained by determining the intersection of the detected horizontal and vertical lines. The image is warped using the perspective transformation matrix, obtained from the corner points of the source image and the destination image, hence, removing the perspective distortion. Mathematical morphology operation, black-hat is used to correct the shading of the image. The image is binarized using Otsu's binarization technique and is then passed to the Optical Character Recognition (OCR) software for character recognition. The extracted information is stored in a file on the phone and can be retrieved later for analysis. The algorithm was tested on 60 different images of YSI Sonde with different perspective features and shading. Experimental results, in comparison to ground-truth results, demonstrate the effectiveness of the proposed method.

  17. Weight status and the perception of body image in men

    PubMed Central

    Gardner, Rick M

    2014-01-01

    Understanding the role of body size in relation to the accuracy of body image perception in men is an important topic because of the implications for avoiding and treating obesity, and it may serve as a potential diagnostic criterion for eating disorders. The early research on this topic produced mixed findings. About one-half of the early studies showed that obese men overestimated their body size, with the remaining half providing accurate estimates. Later, improvements in research technology and methodology provided a clearer indication of the role of weight status in body image perception. Research in our laboratory has also produced diverse findings, including that obese subjects sometimes overestimate their body size. However, when examining our findings across several studies, obese subjects had about the same level of accuracy in estimating their body size as normal-weight subjects. Studies in our laboratory also permitted the separation of sensory and nonsensory factors in body image perception. In all but one instance, no differences were found overall between the ability of obese and normal-weight subjects to detect overall changes in body size. Importantly, however, obese subjects are better at detecting changes in their body size when the image is distorted to be too thin as compared to too wide. Both obese and normal-weight men require about a 3%–7% change in the width of their body size in order to detect the change reliably. Correlations between a range of body mass index values and body size estimation accuracy indicated no relationship between these variables. Numerous studies in other laboratories asked men to place their body size into discrete categorizes, ranging from thin to obese. Researchers found that overweight and obese men underestimate their weight status, and that men are less accurate in their categorizations than are women. Cultural influences have been found to be important, with body size underestimations occurring in cultures where a larger body is found to be desirable. Methodological issues are reviewed with recommendations for future studies. PMID:25114606

  18. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  19. Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.

    PubMed

    Brauers, Johannes; Aach, Til

    2011-02-01

    High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.

  20. Correcting spacecraft jitter in HiRISE images

    USGS Publications Warehouse

    Sutton, S. S.; Boyd, A.K.; Kirk, Randolph L.; Cook, Debbie; Backer, Jean; Fennema, A.; Heyd, R.; McEwen, A.S.; Mirchandani, S.D.; Wu, B.; Di, K.; Oberst, J.; Karachevtseva, I.

    2017-01-01

    Mechanical oscillations or vibrations on spacecraft, also called pointing jitter, cause geometric distortions and/or smear in high resolution digital images acquired from orbit. Geometric distortion is especially a problem with pushbroom type sensors, such as the High Resolution Imaging Science Experiment (HiRISE) instrument on board the Mars Reconnaissance Orbiter (MRO). Geometric distortions occur at a range of frequencies that may not be obvious in the image products, but can cause problems with stereo image correlation in the production of digital elevation models, and in measuring surface changes over time in orthorectified images. The HiRISE focal plane comprises a staggered array of fourteen charge-coupled devices (CCDs) with pixel IFOV of 1 microradian. The high spatial resolution of HiRISE makes it both sensitive to, and an excellent recorder of jitter. We present an algorithm using Fourier analysis to resolve the jitter function for a HiRISE image that is then used to update instrument pointing information to remove geometric distortions from the image. Implementation of the jitter analysis and image correction is performed on selected HiRISE images. Resulting corrected images and updated pointing information are made available to the public. Results show marked reduction of geometric distortions. This work has applications to similar cameras operating now, and to the design of future instruments (such as the Europa Imaging System).

  1. The extent to which garments affect the assessment of body shapes of males from faceless CCTV images.

    PubMed

    Lucas, Teghan; Kumaratilake, Jaliya; Henneberg, Maciej

    2014-01-01

    Closed circuit television (CCTV) systems are being widely used in crime surveillance. The images produced are of poor quality often face details are not visible, however expert witnesses in the field of biological anthropology use morphological descriptions of body shapes in an attempt to identify persons of interest. These methods can be applied to individual images when other cues such as gait, are not present. Criminals commonly disguise their faces, but body shape characteristics can be used to distinguish a person of interest from others. Garments may distort the body shape appearance, thus this study was undertaken to investigate the effects of garments on the description of body shape from CCTV images. Twelve adult males representing a wide body shape range of Sheldonian somatotypes were photographed in identical garments comprising of tight fitting black shirt, horizontally striped shirt, padded leather jacket and in naked torso. These photographs were assessed by 51 males and females aged 18-50 years, with varying levels of education, and different experience in use of CCTV images for identification of people, to identify the 12 participants. The effect of assessors was not significant. They correctly distinguished 88.6% of individuals wearing the same wear, but could not match the same individuals wearing different wear above the random expectations. However, they matched somatotypes above random expectation. Type of clothing produced little bias in somatotype matching; ectomorphic component of individuals wearing black shirts and padded jackets was overestimated and underestimated, respectively. In conclusion, type of the wear had little effect in the description of individuals from CCTV images using the body shapes.

  2. Real-time lens distortion correction: speed, accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Bax, Michael R.; Shahidi, Ramin

    2014-11-01

    Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.

  3. Imaging through strong turbulence with a light field approach.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2016-05-30

    Under strong turbulence conditions, object's images can be severely distorted and become unrecognizable throughout the observing time. Conventional image restoring algorithms do not perform effectively in these circumstances due to the loss of good references on the object. We propose the use a plenoptic sensor as a light field camera to map a conventional camera image onto a cell image array in the image's sub-angular spaces. Accordingly, each cell image on the plenoptic sensor is equivalent to the image acquired by a sub-aperture of the imaging lens. The wavefront distortion over the lens aperture can be analyzed by comparing cell images in the plenoptic sensor. By using a modified "Laplacian" metric, we can identify a good cell image in a plenoptic image sequence. The good cell image corresponds with the time and sub-aperture area on the imaging lens where wavefront distortion becomes relatively and momentarily "flat". As a result, it will reveal the fundamental truths of the object that would be severely distorted on normal cameras. In this paper, we will introduce the underlying physics principles and mechanisms of our approach and experimentally demonstrate its effectiveness under strong turbulence conditions. In application, our approach can be used to provide a good reference for conventional image restoring approaches under strong turbulence conditions. This approach can also be used as an independent device to perform object recognition tasks through severe turbulence distortions.

  4. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    PubMed

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  5. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    NASA Astrophysics Data System (ADS)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  6. Geometric and shading correction for images of printed materials using boundary.

    PubMed

    Brown, Michael S; Tsoi, Yau-Chat

    2006-06-01

    A novel technique that uses boundary interpolation to correct geometric distortion and shading artifacts present in images of printed materials is presented. Unlike existing techniques, our algorithm can simultaneously correct a variety of geometric distortions, including skew, fold distortion, binder curl, and combinations of these. In addition, the same interpolation framework can be used to estimate the intrinsic illumination component of the distorted image to correct shading artifacts. We detail our algorithm for geometric and shading correction and demonstrate its usefulness on real-world and synthetic data.

  7. Robust and efficient method for matching features in omnidirectional images

    NASA Astrophysics Data System (ADS)

    Zhu, Qinyi; Zhang, Zhijiang; Zeng, Dan

    2018-04-01

    Binary descriptors have been widely used in many real-time applications due to their efficiency. These descriptors are commonly designed for perspective images but perform poorly on omnidirectional images, which are severely distorted. To address this issue, this paper proposes tangent plane BRIEF (TPBRIEF) and adapted log polar grid-based motion statistics (ALPGMS). TPBRIEF projects keypoints to a unit sphere and applies the fixed test set in BRIEF descriptor on the tangent plane of the unit sphere. The fixed test set is then backprojected onto the original distorted images to construct the distortion invariant descriptor. TPBRIEF directly enables keypoint detecting and feature describing on original distorted images, whereas other approaches correct the distortion through image resampling, which introduces artifacts and adds time cost. With ALPGMS, omnidirectional images are divided into circular arches named adapted log polar grids. Whether a match is true or false is then determined by simply thresholding the match numbers in a grid pair where the two matched points located. Experiments show that TPBRIEF greatly improves the feature matching accuracy and ALPGMS robustly removes wrong matches. Our proposed method outperforms the state-of-the-art methods.

  8. Feature-based pairwise retinal image registration by radial distortion correction

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2007-03-01

    Fundus camera imaging is widely used to document disorders such as diabetic retinopathy and macular degeneration. Multiple retinal images can be combined together through a procedure known as mosaicing to form an image with a larger field of view. Mosaicing typically requires multiple pairwise registrations of partially overlapped images. We describe a new method for pairwise retinal image registration. The proposed method is unique in that the radial distortion due to image acquisition is corrected prior to the geometric transformation. Vessel lines are detected using the Hessian operator and are used as input features to the registration. Since the overlapping region is typically small in a retinal image pair, only a few correspondences are available, thus limiting the applicable model to an afine transform at best. To recover the distortion due to curved-surface of retina and lens optics, a combined approach of an afine model with a radial distortion correction is proposed. The parameters of the image acquisition and radial distortion models are estimated during an optimization step that uses Powell's method driven by the vessel line distance. Experimental results using 20 pairs of green channel images acquired from three subjects with a fundus camera confirmed that the afine model with distortion correction could register retinal image pairs to within 1.88+/-0.35 pixels accuracy (mean +/- standard deviation) assessed by vessel line error, which is 17% better than the afine-only approach. Because the proposed method needs only two correspondences, it can be applied to obtain good registration accuracy even in the case of small overlap between retinal image pairs.

  9. Psychological Resilience as a Protective Factor for the Body Image in Post-Mastectomy Women with Breast Cancer.

    PubMed

    Izydorczyk, Bernadetta; Kwapniewska, Anna; Lizinczyk, Sebastian; Sitnik-Warchulska, Katarzyna

    2018-06-05

    European statistics confirm a rise in breast cancer among contemporary women. Those suffering from cancer and undergoing a surgery (mastectomy) are undoubtedly considered to be in difficult situations. The range of the numerous negative and/or positive emotions, thoughts, and behaviours depend on many psychological factors such as psychological resilience. The authors are currently drawing a report on their own studies where they are trying to determine factors that protect body image resilience in women suffering from breast cancer after mastectomies. The research group consisted of 120 women after a short (up to 2 years) or a long (over 2 years) duration having elapsed since their mastectomy. The results of the research groups show that psychological resilience is a significant protecting factor for the body image that prevents the excessive development of negative self-esteem in post-mastectomy women. Female patients ought to be provided aid in the short time immediately after the procedure and afterwards, when they are less capable of tolerating negative emotions. In order to significantly improve the general body image resilience to emotional and cognitive distortions in post-mastectomy women who experienced breast cancer, it is recommended that psychological interventions (from psychoeducation to psychological assistance and specialist psychotherapy) are conducted systematically throughout the course of treatment.

  10. Optomechanical integrated simulation of Mars medium resolution lens with large field of view

    NASA Astrophysics Data System (ADS)

    Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi

    2017-10-01

    The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.

  11. Body self. Development, psychopathologies, and psychoanalytic significance.

    PubMed

    Krueger, D W

    2001-01-01

    Ego development or, more broadly, the sense of self has at its core a cohesive, distinct, and accurate body self. Compromise of body self development as a result of early overstimulation, empathic unavailability or nonresponse of the caretaker, and inconsistency or selectivity of response can lead to specific developmental arrests, including body-image distortions, nonintegration of body self and psychological self, and difficulties in the regulation of tension states and affect. The individual may then attempt to repair those disrupted developmental needs by such symptomatic expressions as eating disorders, compulsive exercise, substance abuse, and the creation of physical danger, as a step toward integration of mind and body as well as a defensive antidote to painful affect. In the psychoanalytic treatment of these patients, the need for the analyst's attunement to the patient's development of body self as well as psychological self development is illustrated by clinical vignettes of the enactments and attempted restitution of specific developmental trauma.

  12. A joint source-channel distortion model for JPEG compressed images.

    PubMed

    Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C

    2006-06-01

    The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.

  13. Microscopic vision modeling method by direct mapping analysis for micro-gripping system with stereo light microscope.

    PubMed

    Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai

    2016-04-01

    We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A New Finite Difference Q-compensated RTM Algorithm in Tilted Transverse Isotropic (TTI) Media

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Hu, W.; Ning, J.

    2017-12-01

    Attenuating anisotropic geological body is difficult to image with conventional migration methods. In such kind of scenarios, recorded seismic data suffer greatly from both amplitude decay and phase distortion, resulting in degraded resolution, poor illumination and incorrect migration depth in imaging results. To efficiently obtain high quality images, we propose a novel TTI QRTM algorithm based on Generalized Standard Linear Solid model combined with a unique multi-stage optimization technique to simultaneously correct the decayed amplitude and the distorted phase velocity. Numerical tests (shown in the figure) demonstrate that our TTI QRTM algorithm effectively corrects migration depth, significantly improves illumination, and enhances resolution within and below the low Q regions. The result of our new method is very close to the reference RTM image, while QRTM without TTI cannot get a correct image. Compared to the conventional QRTM method based on a pseudo-spectral operator for fractional Laplacian evaluation, our method is more computationally efficient for large scale applications and more suitable for GPU acceleration. With the current multi-stage dispersion optimization scheme, this TTI QRTM method best performs in the frequency range 10-70 Hz, and could be used in a wider frequency range. Furthermore, as this method can also handle frequency dependent Q, it has potential to be applied in imaging deep structures where low Q exists, such as subduction zones, volcanic zones or fault zones with passive source observations.

  15. Real-time distortion correction for visual inspection systems based on FPGA

    NASA Astrophysics Data System (ADS)

    Liang, Danhua; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin

    2008-03-01

    Visual inspection is a kind of new technology based on the research of computer vision, which focuses on the measurement of the object's geometry and location. It can be widely used in online measurement, and other real-time measurement process. Because of the defects of the traditional visual inspection, a new visual detection mode -all-digital intelligent acquisition and transmission is presented. The image processing, including filtering, image compression, binarization, edge detection and distortion correction, can be completed in the programmable devices -FPGA. As the wide-field angle lens is adopted in the system, the output images have serious distortion. Limited by the calculating speed of computer, software can only correct the distortion of static images but not the distortion of dynamic images. To reach the real-time need, we design a distortion correction system based on FPGA. The method of hardware distortion correction is that the spatial correction data are calculated first under software circumstance, then converted into the address of hardware storage and stored in the hardware look-up table, through which data can be read out to correct gray level. The major benefit using FPGA is that the same circuit can be used for other circularly symmetric wide-angle lenses without being modified.

  16. Enhanced optical design by distortion control

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Gauvin, Jonny; Doucet, Michel; Wang, Min

    2005-09-01

    The control of optical distortion is useful for the design of a variety of optical system. The most popular is the F-theta lens used in laser scanning system to produce a constant scan velocity across the image plane. Many authors have designed during the last 20 years distortion control corrector. Today, many challenging digital imaging system can use distortion the enhanced their imaging capability. A well know example is a reversed telephoto type, if the barrel distortion is increased instead of being corrected; the result is a so-called Fish-eye lens. However, if we control the barrel distortion instead of only increasing it, the resulting system can have enhanced imaging capability. This paper will present some lens design and real system examples that clearly demonstrate how the distortion control can improve the system performances such as resolution. We present innovative optical system which increases the resolution in the field of view of interest to meet the needs of specific applications. One critical issue when we designed using distortion is the optimization management. Like most challenging lens design, the automatic optimization is less reliable. Proper management keeps the lens design within the correct range, which is critical for optimal performance (size, cost, manufacturability). Many lens design presented tailor a custom merit function and approach.

  17. The effects of navigator distortion and noise level on interleaved EPI DWI reconstruction: a comparison between image- and k-space-based method.

    PubMed

    Dai, Erpeng; Zhang, Zhe; Ma, Xiaodong; Dong, Zijing; Li, Xuesong; Xiong, Yuhui; Yuan, Chun; Guo, Hua

    2018-03-23

    To study the effects of 2D navigator distortion and noise level on interleaved EPI (iEPI) DWI reconstruction, using either the image- or k-space-based method. The 2D navigator acquisition was adjusted by reducing its echo spacing in the readout direction and undersampling in the phase encoding direction. A POCS-based reconstruction using image-space sampling function (IRIS) algorithm (POCSIRIS) was developed to reduce the impact of navigator distortion. POCSIRIS was then compared with the original IRIS algorithm and a SPIRiT-based k-space algorithm, under different navigator distortion and noise levels. Reducing the navigator distortion can improve the reconstruction of iEPI DWI. The proposed POCSIRIS and SPIRiT-based algorithms are more tolerable to different navigator distortion levels, compared to the original IRIS algorithm. SPIRiT may be hindered by low SNR of the navigator. Multi-shot iEPI DWI reconstruction can be improved by reducing the 2D navigator distortion. Different reconstruction methods show variable sensitivity to navigator distortion or noise levels. Furthermore, the findings can be valuable in applications such as simultaneous multi-slice accelerated iEPI DWI and multi-slab diffusion imaging. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Correcting geometric and photometric distortion of document images on a smartphone

    NASA Astrophysics Data System (ADS)

    Simon, Christian; Williem; Park, In Kyu

    2015-01-01

    A set of document image processing algorithms for improving the optical character recognition (OCR) capability of smartphone applications is presented. The scope of the problem covers the geometric and photometric distortion correction of document images. The proposed framework was developed to satisfy industrial requirements. It is implemented on an off-the-shelf smartphone with limited resources in terms of speed and memory. Geometric distortions, i.e., skew and perspective distortion, are corrected by sending horizontal and vertical vanishing points toward infinity in a downsampled image. Photometric distortion includes image degradation from moiré pattern noise and specular highlights. Moiré pattern noise is removed using low-pass filters with different sizes independently applied to the background and text region. The contrast of the text in a specular highlighted area is enhanced by locally enlarging the intensity difference between the background and text while the noise is suppressed. Intensive experiments indicate that the proposed methods show a consistent and robust performance on a smartphone with a runtime of less than 1 s.

  19. Television monitor field shifter and an opto-electronic method for obtaining a stereo image of optimal depth resolution and reduced depth distortion on a single screen

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor)

    1989-01-01

    A method and apparatus is developed for obtaining a stereo image with reduced depth distortion and optimum depth resolution. Static and dynamic depth distortion and depth resolution tradeoff is provided. Cameras obtaining the images for a stereo view are converged at a convergence point behind the object to be presented in the image, and the collection-surface-to-object distance, the camera separation distance, and the focal lengths of zoom lenses for the cameras are all increased. Doubling the distances cuts the static depth distortion in half while maintaining image size and depth resolution. Dynamic depth distortion is minimized by panning a stereo view-collecting camera system about a circle which passes through the convergence point and the camera's first nodal points. Horizontal field shifting of the television fields on a television monitor brings both the monitor and the stereo views within the viewer's limit of binocular fusion.

  20. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. [An improved low spectral distortion PCA fusion method].

    PubMed

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  2. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging.

    PubMed

    Bastin, M E; Armitage, P A

    2000-07-01

    The accurate determination of absolute measures of diffusion anisotropy in vivo using single-shot, echo-planar imaging techniques requires the acquisition of a set of high signal-to-noise ratio, diffusion-weighted images that are free from eddy current induced image distortions. Such geometric distortions can be characterized and corrected in brain imaging data using magnification (M), translation (T), and shear (S) distortion parameters derived from separate water phantom calibration experiments. Here we examine the practicalities of using separate phantom calibration data to correct high b-value diffusion tensor imaging data by investigating the stability of these distortion parameters, and hence the eddy currents, with time. It is found that M, T, and S vary only slowly with time (i.e., on the order of weeks), so that calibration scans need not be performed after every patient examination. This not only minimises the scan time required to collect the calibration data, but also the computational time needed to characterize these eddy current induced distortions. Examples of how measurements of diffusion anisotropy are improved using this post-processing scheme are also presented.

  3. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  4. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  5. Spatial Precision in Magnetic Resonance Imaging–Guided Radiation Therapy: The Role of Geometric Distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weygand, Joseph, E-mail: jw2899@columbia.edu; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas; Fuller, Clifton David

    2016-07-15

    Because magnetic resonance imaging–guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into accountmore » relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility–induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility–induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.« less

  6. Abnormalities of Object Visual Processing in Body Dysmorphic Disorder

    PubMed Central

    Feusner, Jamie D.; Hembacher, Emily; Moller, Hayley; Moody, Teena D.

    2013-01-01

    Background Individuals with body dysmorphic disorder may have perceptual distortions for their appearance. Previous studies suggest imbalances in detailed relative to configural/holistic visual processing when viewing faces. No study has investigated the neural correlates of processing non-symptom-related stimuli. The objective of this study was to determine whether individuals with body dysmorphic disorder have abnormal patterns of brain activation when viewing non-face/non-body object stimuli. Methods Fourteen medication-free participants with DSM-IV body dysmorphic disorder and 14 healthy controls participated. We performed functional magnetic resonance imaging while participants matched photographs of houses that were unaltered, contained only high spatial frequency (high detail) information, or only low spatial frequency (low detail) information. The primary outcome was group differences in blood oxygen level-dependent signal changes. Results The body dysmorphic disorder group showed lesser activity in the parahippocampal gyrus, lingual gyrus, and precuneus for low spatial frequency images. There were greater activations in medial prefrontal regions for high spatial frequency images, although no significant differences when compared to a low-level baseline. Greater symptom severity was associated with lesser activity in dorsal occipital cortex and ventrolateral prefrontal cortex for normal and high spatial frequency images. Conclusions Individuals with body dysmorphic disorder have abnormal brain activation patterns when viewing objects. Hypoactivity in visual association areas for configural and holistic (low detail) elements and abnormal allocation of prefrontal systems for details is consistent with a model of imbalances in global vs. local processing. This may occur not only for appearance but also for general stimuli unrelated to their symptoms. PMID:21557897

  7. Design of microcamera for field curvature and distortion correction in monocentric multiscale foveated imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Xiongxiong; Wang, Xiaorui; Zhang, Jianlei; Yuan, Ying; Chen, Xiaoxiang

    2017-04-01

    To realize large field of view (FOV) and high-resolution dynamic gaze of the moving target, this paper proposes the monocentric multiscale foveated (MMF) imaging system based on monocentric multiscale design and foveated imaging. First we present the MMF imaging system concept. Then we analyze large field curvature and distortion of the secondary image when the spherical intermediate image produced by the primary monocentric objective lens is relayed by the microcameras. Further a type of zoom endoscope objective lens is selected as the initial structure and optimized to minimize the field curvature and distortion with ZEMAX optical design software. The simulation results show that the maximum field curvature in full field of view is below 0.25 mm and the maximum distortion in full field of view is below 0.6%, which can meet the requirements of the microcamera in the proposed MMF imaging system. In addition, a simple doublet is used to design the foveated imaging system. Results of the microcamera together with the foveated imager compose the results of the whole MMF imaging system.

  8. Magnetic Resonance Imaging Distortion and Targeting Errors from Strong Rare Earth Metal Magnetic Dental Implant Requiring Revision.

    PubMed

    Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee

    2016-12-22

    Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.

  9. GEOMETRIC PROCESSING OF DIGITAL IMAGES OF THE PLANETS.

    USGS Publications Warehouse

    Edwards, Kathleen

    1987-01-01

    New procedures and software have been developed for geometric transformations of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases.

  10. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge.

    PubMed

    Sang, Xiahan; LeBeau, James M

    2014-03-01

    We report the development of revolving scanning transmission electron microscopy--RevSTEM--a technique that enables characterization and removal of sample drift distortion from atomic resolution images without the need for a priori crystal structure information. To measure and correct the distortion, we acquire an image series while rotating the scan coordinate system between successive frames. Through theory and experiment, we show that the revolving image series captures the information necessary to analyze sample drift rate and direction. At atomic resolution, we quantify the image distortion using the projective standard deviation, a rapid, real-space method to directly measure lattice vector angles. By fitting these angles to a physical model, we show that the refined drift parameters provide the input needed to correct distortion across the series. We demonstrate that RevSTEM simultaneously removes the need for a priori structure information to correct distortion, leads to a dramatically improved signal-to-noise ratio, and enables picometer precision and accuracy regardless of drift rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Lossless Data Embedding—New Paradigm in Digital Watermarking

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica; Goljan, Miroslav; Du, Rui

    2002-12-01

    One common drawback of virtually all current data embedding methods is the fact that the original image is inevitably distorted due to data embedding itself. This distortion typically cannot be removed completely due to quantization, bit-replacement, or truncation at the grayscales 0 and 255. Although the distortion is often quite small and perceptual models are used to minimize its visibility, the distortion may not be acceptable for medical imagery (for legal reasons) or for military images inspected under nonstandard viewing conditions (after enhancement or extreme zoom). In this paper, we introduce a new paradigm for data embedding in images (lossless data embedding) that has the property that the distortion due to embedding can be completely removed from the watermarked image after the embedded data has been extracted. We present lossless embedding methods for the uncompressed formats (BMP, TIFF) and for the JPEG format. We also show how the concept of lossless data embedding can be used as a powerful tool to achieve a variety of nontrivial tasks, including lossless authentication using fragile watermarks, steganalysis of LSB embedding, and distortion-free robust watermarking.

  12. Restoring 2D content from distorted documents.

    PubMed

    Brown, Michael S; Sun, Mingxuan; Yang, Ruigang; Yun, Lin; Seales, W Brent

    2007-11-01

    This paper presents a framework to restore the 2D content printed on documents in the presence of geometric distortion and non-uniform illumination. Compared with textbased document imaging approaches that correct distortion to a level necessary to obtain sufficiently readable text or to facilitate optical character recognition (OCR), our work targets nontextual documents where the original printed content is desired. To achieve this goal, our framework acquires a 3D scan of the document's surface together with a high-resolution image. Conformal mapping is used to rectify geometric distortion by mapping the 3D surface back to a plane while minimizing angular distortion. This conformal "deskewing" assumes no parametric model of the document's surface and is suitable for arbitrary distortions. Illumination correction is performed by using the 3D shape to distinguish content gradient edges from illumination gradient edges in the high-resolution image. Integration is performed using only the content edges to obtain a reflectance image with significantly less illumination artifacts. This approach makes no assumptions about light sources and their positions. The results from the geometric and photometric correction are combined to produce the final output.

  13. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system.

    PubMed

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-21

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer's Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients.

  14. The psychological determinants of obesity in children and adolescents.

    PubMed

    Radoszewska, Joanna

    2017-01-01

    The aim of this article is to show selected psychological mechanisms involved in the onset and maintenance of obesity in children and youth. This work presents a review of the literature related to the psychological determinants of obesity from different theoretical approaches. The role of the mother-child relationship, as well as the specific characteristics of the relationships within the family, have been emphasized in the onset of the disorder. Another topic discussed were the specifics of the body experience and certain body image distortions that promote the maintenance of the obese state. The control deficit caused by family relationships was also described.

  15. Medical Complications of Anorexia Nervosa and Bulimia.

    PubMed

    Westmoreland, Patricia; Krantz, Mori J; Mehler, Philip S

    2016-01-01

    Anorexia nervosa and bulimia nervosa are serious psychiatric illnesses related to disordered eating and distorted body images. They both have significant medical complications associated with the weight loss and malnutrition of anorexia nervosa, as well as from the purging behaviors that characterize bulimia nervosa. No body system is spared from the adverse sequelae of these illnesses, especially as anorexia nervosa and bulimia nervosa become more severe and chronic. We review the medical complications that are associated with anorexia nervosa and bulimia nervosa, as well as the treatment for the complications. We also discuss the epidemiology and psychiatric comorbidities of these eating disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Enabling automated magnetic resonance imaging-based targeting assessment during dipole field navigation

    NASA Astrophysics Data System (ADS)

    Latulippe, Maxime; Felfoul, Ouajdi; Dupont, Pierre E.; Martel, Sylvain

    2016-02-01

    The magnetic navigation of drugs in the vascular network promises to increase the efficacy and reduce the secondary toxicity of cancer treatments by targeting tumors directly. Recently, dipole field navigation (DFN) was proposed as the first method achieving both high field and high navigation gradient strengths for whole-body interventions in deep tissues. This is achieved by introducing large ferromagnetic cores around the patient inside a magnetic resonance imaging (MRI) scanner. However, doing so distorts the static field inside the scanner, which prevents imaging during the intervention. This limitation constrains DFN to open-loop navigation, thus exposing the risk of a harmful toxicity in case of a navigation failure. Here, we are interested in periodically assessing drug targeting efficiency using MRI even in the presence of a core. We demonstrate, using a clinical scanner, that it is in fact possible to acquire, in specific regions around a core, images of sufficient quality to perform this task. We show that the core can be moved inside the scanner to a position minimizing the distortion effect in the region of interest for imaging. Moving the core can be done automatically using the gradient coils of the scanner, which then also enables the core to be repositioned to perform navigation to additional targets. The feasibility and potential of the approach are validated in an in vitro experiment demonstrating navigation and assessment at two targets.

  17. Retinal image mosaicing using the radial distortion correction model

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2008-03-01

    Fundus camera imaging can be used to examine the retina to detect disorders. Similar to looking through a small keyhole into a large room, imaging the fundus with an ophthalmologic camera allows only a limited view at a time. Thus, the generation of a retinal montage using multiple images has the potential to increase diagnostic accuracy by providing larger field of view. A method of mosaicing multiple retinal images using the radial distortion correction (RADIC) model is proposed in this paper. Our method determines the inter-image connectivity by detecting feature correspondences. The connectivity information is converted to a tree structure that describes the spatial relationships between the reference and target images for pairwise registration. The montage is generated by cascading pairwise registration scheme starting from the anchor image downward through the connectivity tree hierarchy. The RADIC model corrects the radial distortion that is due to the spherical-to-planar projection during retinal imaging. Therefore, after radial distortion correction, individual images can be properly mapped onto a montage space by a linear geometric transformation, e.g. affine transform. Compared to the most existing montaging methods, our method is unique in that only a single registration per image is required because of the distortion correction property of RADIC model. As a final step, distance-weighted intensity blending is employed to correct the inter-image differences in illumination encountered when forming the montage. Visual inspection of the experimental results using three mosaicing cases shows our method can produce satisfactory montages.

  18. Magnetic resonance neurography and diffusion tensor imaging: origins, history, and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5000-patient study group.

    PubMed

    Filler, Aaron

    2009-10-01

    Methods were invented that made it possible to image peripheral nerves in the body and to image neural tracts in the brain. The history, physical basis, and dyadic tensor concept underlying the methods are reviewed. Over a 15-year period, these techniques-magnetic resonance neurography (MRN) and diffusion tensor imaging-were deployed in the clinical and research community in more than 2500 published research reports and applied to approximately 50,000 patients. Within this group, approximately 5000 patients having MRN were carefully tracked on a prospective basis. A uniform Neurography imaging methodology was applied in the study group, and all images were reviewed and registered by referral source, clinical indication, efficacy of imaging, and quality. Various classes of image findings were identified and subjected to a variety of small targeted prospective outcome studies. Those findings demonstrated to be clinically significant were then tracked in the larger clinical volume data set. MRN demonstrates mechanical distortion of nerves, hyperintensity consistent with nerve irritation, nerve swelling, discontinuity, relations of nerves to masses, and image features revealing distortion of nerves at entrapment points. These findings are often clinically relevant and warrant full consideration in the diagnostic process. They result in specific pathological diagnoses that are comparable to electrodiagnostic testing in clinical efficacy. A review of clinical outcome studies with diffusion tensor imaging also shows convincing utility. MRN and diffusion tensor imaging neural tract imaging have been validated as indispensable clinical diagnostic methods that provide reliable anatomic pathological information. There is no alternative diagnostic method in many situations. With the elapsing of 15 years, tens of thousands of imaging studies, and thousands of publications, these methods should no longer be considered experimental.

  19. Optimizing image registration and infarct definition in stroke research.

    PubMed

    Harston, George W J; Minks, David; Sheerin, Fintan; Payne, Stephen J; Chappell, Michael; Jezzard, Peter; Jenkinson, Mark; Kennedy, James

    2017-03-01

    Accurate representation of final infarct volume is essential for assessing the efficacy of stroke interventions in imaging-based studies. This study defines the impact of image registration methods used at different timepoints following stroke, and the implications for infarct definition in stroke research. Patients presenting with acute ischemic stroke were imaged serially using magnetic resonance imaging. Infarct volume was defined manually using four metrics: 24-h b1000 imaging; 1-week and 1-month T2-weighted FLAIR; and automatically using predefined thresholds of ADC at 24 h. Infarct overlap statistics and volumes were compared across timepoints following both rigid body and nonlinear image registration to the presenting MRI. The effect of nonlinear registration on a hypothetical trial sample size was calculated. Thirty-seven patients were included. Nonlinear registration improved infarct overlap statistics and consistency of total infarct volumes across timepoints, and reduced infarct volumes by 4.0 mL (13.1%) and 7.1 mL (18.2%) at 24 h and 1 week, respectively, compared to rigid body registration. Infarct volume at 24 h, defined using a predetermined ADC threshold, was less sensitive to infarction than b1000 imaging. 1-week T2-weighted FLAIR imaging was the most accurate representation of final infarct volume. Nonlinear registration reduced hypothetical trial sample size, independent of infarct volume, by an average of 13%. Nonlinear image registration may offer the opportunity of improving the accuracy of infarct definition in serial imaging studies compared to rigid body registration, helping to overcome the challenges of anatomical distortions at subacute timepoints, and reducing sample size for imaging-based clinical trials.

  20. [Comparison of image distortion between three magnetic resonance imaging systems of different magnetic field strengths for use in stereotactic irradiation of brain].

    PubMed

    Takemura, Akihiro; Sasamoto, Kouhei; Nakamura, Kaori; Kuroda, Tatsunori; Shoji, Saori; Matsuura, Yukihiro; Matsushita, Tatsuhiko

    2013-06-01

    In this study, we evaluated the image distortion of three magnetic resonance imaging (MRI) systems with magnetic field strengths of 0.4 T, 1.5 T and 3 T, during stereotactic irradiation of the brain. A quality assurance phantom for MRI image distortion in radiosurgery was used for these measurements of image distortion. Images were obtained from a 0.4-T MRI (APERTO Eterna, HITACHI), a 1.5-T MRI (Signa HDxt, GE Healthcare) and a 3-T MRI (Signa HDx 3.0 T, GE Healthcare) system. Imaging sequences for the 0.4-T and 3-T MRI were based on the 1.5-T MRI sequence used for stereotactic irradiation in the clinical setting. The same phantom was scanned using a computed tomography (CT) system (Aquilion L/B, Toshiba) as the standard. The results showed mean errors in the Z direction to be the least satisfactory of all the directions in all results. The mean error in the Z direction for 1.5-T MRI at -110 mm in the axial plane showed the largest error of 4.0 mm. The maximum errors for the 0.4-T and 3-T MRI were 1.7 mm and 2.8 mm, respectively. The errors in the plane were not uniform and did not show linearity, suggesting that simple distortion correction using outside markers is unlikely to be effective. The 0.4-T MRI showed the lowest image distortion of the three. However, other items, such as image noise, contrast and study duration need to be evaluated in MRI systems when applying frameless stereotactic irradiation.

  1. Distorted own-body representations in patients with dizziness and during caloric vestibular stimulation.

    PubMed

    Lopez, Christophe; Nakul, Estelle; Preuss, Nora; Elzière, Maya; Mast, Fred W

    2018-06-06

    There is increasing evidence that vestibular disorders evoke deficits reaching far beyond imbalance, oscillopsia and spatial cognition. Yet, how vestibular disorders affect own-body representations, in particular the perceived body shape and size, has been overlooked. Here, we explored vestibular contributions to own-body representations using two approaches. Study 1 measured the occurrence and severity of distorted own-body representations in 60 patients with dizziness and 60 healthy controls using six items from the Cambridge Depersonalization Scale. 12% of the patients have experienced distorted own-body representations (their hands or feet felt larger or smaller), 37% reported abnormal sense of agency, 35% reported disownership for the body, and 22% reported disembodiment. These proportions were larger in patients than controls. Study 2 aimed at testing whether artificial stimulation of the vestibular apparatus produced comparable distortions of own-body representations in healthy volunteers. We compared the effects of right-warm/left-cold caloric vestibular stimulation (CVS), left-warm/right-cold CVS and sham CVS on internal models of the left and right hands using a pointing task. The perceived length of the dorsum of the hand was increased specifically during left-warm/right-cold CVS, and this effect was found for both hands. Our studies show a vestibular contribution to own-body representations and should help understand the complex symptomatology of patients with dizziness.

  2. Distortion improvement of capsule endoscope image

    NASA Astrophysics Data System (ADS)

    Mang, Ou-Yang; Huang, Shih-Wei; Chen, Yung-Lin; Lin, Chu-Hsun; Lin, Tai-Yung; Kuo, Yi-Ting

    2007-02-01

    Distortion exists in the present capsule endoscope image resulting from the confined space and the wide-angle requirement [8]. Based on the previous two lens works, the optimal design had obtained that the field of view was about 86 degrees , and MTF was about 18% at 100 lp/mm, but distortion would go to -26%. It's difficult to add another lens on the 7mm optical path between the dome and imaging lenses for improving distortion. In order to overcome this problem, we intend to design the optical dome as another optical lens. The original dome is transparent and has an equal thickness, namely without refracting light almost. Our objective in this paper is to design the inner curvature of the dome and associate two aspheric imaging lenses in front of the CMOS sensors to advance the distortion with maintaining field of view and MTF under the same capsule volume. Furthermore, the paper proposes the real object plane of intestine is nearly a curved surface rather than an ideal flat surface. Taking those reasons under consideration, we design three imaging lenses with curved object plane and obtain the field of view is about 86 degrees , MTF is about 26% at 100 lp/mm, and the distortion improve to -7.5%. Adding the dome lens is not only to enhance the image quality, but also to maintain the tiny volume requirement.

  3. Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications.

    PubMed

    Pappas, E P; Seimenis, I; Moutsatsos, A; Georgiou, E; Nomikos, P; Karaiskos, P

    2016-10-07

    This work provides characterization of system-related geometric distortions present in MRIs used in Gamma Knife (GK) stereotactic radiosurgery (SRS) treatment planning. A custom-made phantom, compatible with the Leksell stereotactic frame model G and encompassing 947 control points (CPs), was utilized. MR images were obtained with and without the frame, thus allowing discrimination of frame-induced distortions. In the absence of the frame and following compensation for field inhomogeneities, measured average CP disposition owing to gradient nonlinearities was 0.53 mm. In presence of the frame, contrarily, detected distortion was greatly increased (up to about 5 mm) in the vicinity of the frame base due to eddy currents induced in the closed loop of its aluminum material. Frame-related distortion was obliterated at approximately 90 mm from the frame base. Although the region with the maximum observed distortion may not lie within the GK treatable volume, the presence of the frame results in distortion of the order of 1.5 mm at a 7 cm distance from the center of the Leksell space. Additionally, severe distortions observed outside the treatable volume could possibly impinge on the delivery accuracy mainly by adversely affecting the registration process (e.g. the position of the lower part of the N-shaped fiducials used to define the stereotactic space may be miss-registered). Images acquired with a modified version of the frame developed by replacing its front side with an acrylic bar, thus interrupting the closed aluminum loop and reducing the induced eddy currents, were shown to benefit from relatively reduced distortion. System-related distortion was also identified in patient MR images. Using corresponding CT angiography images as a reference, an offset of 1.1 mm was detected for two vessels lying in close proximity to the frame base, while excellent spatial agreement was observed for a vessel far apart from the frame base.

  4. Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Pappas, E. P.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Nomikos, P.; Karaiskos, P.

    2016-10-01

    This work provides characterization of system-related geometric distortions present in MRIs used in Gamma Knife (GK) stereotactic radiosurgery (SRS) treatment planning. A custom-made phantom, compatible with the Leksell stereotactic frame model G and encompassing 947 control points (CPs), was utilized. MR images were obtained with and without the frame, thus allowing discrimination of frame-induced distortions. In the absence of the frame and following compensation for field inhomogeneities, measured average CP disposition owing to gradient nonlinearities was 0.53 mm. In presence of the frame, contrarily, detected distortion was greatly increased (up to about 5 mm) in the vicinity of the frame base due to eddy currents induced in the closed loop of its aluminum material. Frame-related distortion was obliterated at approximately 90 mm from the frame base. Although the region with the maximum observed distortion may not lie within the GK treatable volume, the presence of the frame results in distortion of the order of 1.5 mm at a 7 cm distance from the center of the Leksell space. Additionally, severe distortions observed outside the treatable volume could possibly impinge on the delivery accuracy mainly by adversely affecting the registration process (e.g. the position of the lower part of the N-shaped fiducials used to define the stereotactic space may be miss-registered). Images acquired with a modified version of the frame developed by replacing its front side with an acrylic bar, thus interrupting the closed aluminum loop and reducing the induced eddy currents, were shown to benefit from relatively reduced distortion. System-related distortion was also identified in patient MR images. Using corresponding CT angiography images as a reference, an offset of 1.1 mm was detected for two vessels lying in close proximity to the frame base, while excellent spatial agreement was observed for a vessel far apart from the frame base.

  5. Development of the local magnification method for quantitative evaluation of endoscope geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Cheng, Wei-Chung; Suresh, Nitin; Hua, Hong

    2016-05-01

    With improved diagnostic capabilities and complex optical designs, endoscopic technologies are advancing. As one of the several important optical performance characteristics, geometric distortion can negatively affect size estimation and feature identification related diagnosis. Therefore, a quantitative and simple distortion evaluation method is imperative for both the endoscopic industry and the medical device regulatory agent. However, no such method is available yet. While the image correction techniques are rather mature, they heavily depend on computational power to process multidimensional image data based on complex mathematical model, i.e., difficult to understand. Some commonly used distortion evaluation methods, such as the picture height distortion (DPH) or radial distortion (DRAD), are either too simple to accurately describe the distortion or subject to the error of deriving a reference image. We developed the basic local magnification (ML) method to evaluate endoscope distortion. Based on the method, we also developed ways to calculate DPH and DRAD. The method overcomes the aforementioned limitations, has clear physical meaning in the whole field of view, and can facilitate lesion size estimation during diagnosis. Most importantly, the method can facilitate endoscopic technology to market and potentially be adopted in an international endoscope standard.

  6. Body-size perception, body-esteem, and parenting history in college women reporting a history of child abuse.

    PubMed

    Eubanks, Jessica R; Kenkel, Michaela Y; Gardner, Rick M

    2006-04-01

    This study investigated the relations among physical, emotional, and sexual abuse up to adolescence and subsequent perception of body size, detection of changes in body size, and body-esteem. The role of parenting history in abused participants was also examined. 38 college undergraduate women, half of whom had been abused, reported instances of abuse, childhood parenting history, and current body-esteem. A recently developed software program of Gardner and Boice was used to present a series of distorted frontal profiles of each participant's own body for the women to rate as being too wide or too thin. A psychophysical procedure called adaptive probit estimation was used to measure the amount of over- and underestimation of these ratings and whether these changes were statistically significant. Analysis showed abused participants had distorted perceptions of body size, although the direction of the distortion was not consistent. There was no difference in detection of changes in body size. Abused and nonabused participants differed on measures of body-esteem and on ratings of most parenting experiences, including experiences with both mothers and fathers.

  7. Research and implementation of the algorithm for unwrapped and distortion correction basing on CORDIC for panoramic image

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang

    2008-03-01

    The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.

  8. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  9. Q-ball imaging with PROPELLER EPI acquisition.

    PubMed

    Chou, Ming-Chung; Huang, Teng-Yi; Chung, Hsiao-Wen; Hsieh, Tsyh-Jyi; Chang, Hing-Chiu; Chen, Cheng-Yu

    2013-12-01

    Q-ball imaging (QBI) is an imaging technique that is capable of resolving intravoxel fiber crossings; however, the signal readout based on echo-planar imaging (EPI) introduces geometric distortions in the presence of susceptibility gradients. This study proposes an imaging technique that reduces susceptibility distortions in QBI by short-axis PROPELLER EPI acquisition. Conventional QBI and PROPELLER QBI data were acquired from two 3T MR scans of the brains of five healthy subjects. Prior to the PROPELLER reconstruction, residual distortions in single-blade low-resolution b0 and diffusion-weighted images (DWIs) were minimized by linear affine and nonlinear diffeomorphic demon registrations. Subsequently, the PROPELLER keyhole reconstruction was applied to the corrected DWIs to obtain high-resolution PROPELLER DWIs. The generalized fractional anisotropy and orientation distribution function maps contained fewer distortions in PROPELLER QBI than in conventional QBI, and the fiber tracts more closely matched the brain anatomy depicted by turbo spin-echo (TSE) T2-weighted imaging (T2WI). Furthermore, for fixed T(E), PROPELLER QBI enabled a shorter scan time than conventional QBI. We conclude that PROPELLER QBI can reduce susceptibility distortions without lengthening the acquisition time and is suitable for tracing neuronal fiber tracts in the human brain. Copyright © 2013 John Wiley & Sons, Ltd.

  10. System for interferometric distortion measurements that define an optical path

    DOEpatents

    Bokor, Jeffrey; Naulleau, Patrick

    2003-05-06

    An improved phase-shifting point diffraction interferometer can measure both distortion and wavefront aberration. In the preferred embodiment, the interferometer employs an object-plane pinhole array comprising a plurality of object pinholes located between the test optic and the source of electromagnetic radiation and an image-plane mask array that is positioned in the image plane of the test optic. The image-plane mask array comprises a plurality of test windows and corresponding reference pinholes, wherein the positions of the plurality of pinholes in the object-plane pinhole array register with those of the plurality of test windows in image-plane mask array. Electromagnetic radiation that is directed into a first pinhole of object-plane pinhole array thereby creating a first corresponding test beam image on the image-plane mask array. Where distortion is relatively small, it can be directly measured interferometrically by measuring the separation distance between and the orientation of the test beam and reference-beam pinhole and repeating this process for at least one other pinhole of the plurality of pinholes of the object-plane pinhole array. Where the distortion is relative large, it can be measured by using interferometry to direct the stage motion, of a stage supporting the image-plane mask array, and then use the final stage motion as a measure of the distortion.

  11. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE PAGES

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; ...

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  12. MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE).

    PubMed

    Blumhagen, Jan O; Ladebeck, Ralf; Fenchel, Matthias; Scheffler, Klaus

    2013-10-01

    In whole-body MR/PET, the human attenuation correction can be based on the MR data. However, an MR-based field-of-view (FoV) is limited due to physical restrictions such as B0 inhomogeneities and gradient nonlinearities. Therefore, for large patients, the MR image and the attenuation map might be truncated and the attenuation correction might be biased. The aim of this work is to explore extending the MR FoV through B0 homogenization using gradient enhancement in which an optimal readout gradient field is determined to locally compensate B0 inhomogeneities and gradient nonlinearities. A spin-echo-based sequence was developed that computes an optimal gradient for certain regions of interest, for example, the patient's arms. A significant distortion reduction was achieved outside the normal MR-based FoV. This FoV extension was achieved without any hardware modifications. In-plane distortions in a transaxially extended FoV of up to 600 mm were analyzed in phantom studies. In vivo measurements of the patient's arms lying outside the normal specified FoV were compared with and without the use of B0 homogenization using gradient enhancement. In summary, we designed a sequence that provides data for reducing the image distortions due to B0 inhomogeneities and gradient nonlinearities and used the data to extend the MR FoV. Copyright © 2011 Wiley Periodicals, Inc.

  13. On problems of analyzing aerodynamic properties of blunted rotary bodies with small random surface distortions under supersonic and hypersonic flows

    NASA Astrophysics Data System (ADS)

    Degtyar, V. G.; Kalashnikov, S. T.; Mokin, Yu. A.

    2017-10-01

    The paper considers problems of analyzing aerodynamic properties (ADP) of reenetry vehicles (RV) as blunted rotary bodies with small random surface distortions. The interactions of math simulation of surface distortions, selection of tools for predicting ADPs of shaped bodies, evaluation of different-type ADP variations and their adaptation for dynamic problems are analyzed. The possibilities of deterministic and probabilistic approaches to evaluation of ADP variations are considered. The practical value of the probabilistic approach is demonstrated. The examples of extremal deterministic evaluations of ADP variations for a sphere and a sharp cone are given.

  14. BODY DISSATISFACTION, PHYSICAL ACTIVITY, AND SEDENTARY BEHAVIOR IN FEMALE ADOLESCENTS.

    PubMed

    Miranda, Valter Paulo Neves; Morais, Núbia Sousa de; Faria, Eliane Rodrigues de; Amorim, Paulo Roberto Dos Santos; Marins, João Carlos Bouzas; Franceschini, Sylvia do Carmo Castro; Teixeira, Paula Costa; Priore, Silvia Eloiza

    2018-05-21

    To evaluate the association of body image with physical activity level, body composition, and sedentary behavior (SB) of female adolescents. Exploratory cross-sectional study conducted with 120 female adolescents aged between 14-19 years, from the city of Viçosa, Minas Gerais, Southeast Brazil. Body image was evaluated with a Body Silhouette Scale (BSS) and a Body Shape Questionnaire (BSQ). Weight, height, and waist circumference values were analyzed, as well as the waist-to-height ratio and body fat percentage. The physical activity level (PAL) was assessed by 24-hour Physical Activity Recall and SB by screen time, that is, time spent in front of a TV, playing video game, on the computer and using tablets, and, separately, the cell phone time. Mean age was 16.5±1.5 years, and most adolescents were eutrophic (77.6%), sedentary/low PAL (84.2%), with high screen time (85.2%) and cell phone time (58.7%). Body dissatisfaction was stated in 40.6% of BSQ and 45.8% of BSS evaluations. Body distortion was identified in 52.9% of participants. All body composition measures, along with cell phone time and PAL, were associated with body dissatisfaction, the more active adolescents presenting higher levels of dissatisfaction. This study concluded that female adolescents with higher cell phone time also present higher body dissatisfaction, as well as the most physically active ones. All body composition measurements were associated with body dissatisfaction, mainly body mass index, waist circumference, and waist-to-height ratio.

  15. Correcting Concomitant Gradient Distortion in Microtesla Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Myers, Whittier

    2005-03-01

    Progress in ultra-low field magnetic resonance imaging (MRI) using an untuned gradiometer coupled to a Superconducting Quantum Interference Device (SQUID) has resulted in three-dimensional images with an in-plane resolution of 2 mm. Protons in samples up to 80 mm in size were prepolarized in a 100 mT field, manipulated by ˜100 μT/m gradients for image encoding, and detected by the SQUID in the ˜65 μT precession field. Maxwell's equations prohibit a unidirectional magnetic field gradient. While the additional concomitant gradients can be neglected in high-field MRI, they distort high-resolution images of large samples taken in microtesla precession fields. We propose two methods to mitigate such distortion: raising the precession field during image encoding, and software post-processing. Both approaches are demonstrated using computer simulations and MRI images. Simulations show that the combination of these techniques can correct the concomitant gradient distortion present in a 4-mm resolution image of an object the size of a human brain with a precession field of 50 μT. Supported by USDOE.

  16. System for objective assessment of image differences in digital cinema

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  17. Overweight and Body Image Perception in Adolescents with Triage of Eating Disorders

    PubMed Central

    Franceschini, Sylvia do Carmo Castro; Hermsdorff, Helen Hermana Miranda; Priore, Silvia Eloiza

    2017-01-01

    Purpose To verify the influence of overweight and alteration in the perception of the corporal image during the triage of eating disorders. Method A food disorder triage was performed in adolescents with 10 to 19 years of age using the Eating Attitudes Test (EAT-26), Children's Eating Attitudes Test (ChEAT), and Bulimic Investigatory Test Edinburgh (BITE), as well as a nutritional status evaluation. The perception of body image was evaluated in a subsample of adolescents with 10 to 14 years of age, using the Brazilian Silhouette Scale. The project was approved by the Human Research Ethics Committee of the Federal University of Viçosa, Minas Gerais, Brazil. Results The prevalence of eating disorder triage was 11.4% (n = 242) for the 2,123 adolescents evaluated. Overweight was present in 21.1% (n = 447) of the students, being more prevalent in the early adolescence phase, which presented levels of distortion of 56.9% (n = 740) and dissatisfaction of 79.3% (n = 1031). Body dissatisfaction was considered as a risk factor, increasing by more than 13 times the chance of TA screening. Conclusion Overweight was correlated with the ED triage and body dissatisfaction was considered as a risk factor, increasing the chances of these disorders by more than 13 times. PMID:28856236

  18. Correlation processing for correction of phase distortions in subaperture imaging.

    PubMed

    Tavh, B; Karaman, M

    1999-01-01

    Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.

  19. A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa.

    PubMed

    Keizer, Anouk; van Elburg, Annemarie; Helms, Rossa; Dijkerman, H Chris

    2016-01-01

    Patients with anorexia nervosa (AN) have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI) affects body size estimation of body parts more emotionally salient than the hand. In the FBI, analogue to the RHI, participants experience ownership over an entire virtual body in VR after synchronous visuo-tactile stimulation of the actual and virtual body. We asked participants to estimate their body size (shoulders, abdomen, hips) before the FBI was induced, directly after induction and at ~2 hour 45 minutes follow-up. The results showed that AN patients (N = 30) decrease the overestimation of their shoulders, abdomen and hips directly after the FBI was induced. This effect was strongest for estimates of circumference, and also observed in the asynchronous control condition of the illusion. Moreover, at follow-up, the improvements in body size estimation could still be observed in the AN group. Notably, the HC group (N = 29) also showed changes in body size estimation after the FBI, but the effect showed a different pattern than that of the AN group. The results lead us to conclude that the disturbed experience of body size in AN is flexible and can be changed, even for highly emotional body parts. As such this study offers novel starting points from which new interventions for body image disturbance in AN can be developed.

  20. Analyzing the effect of the distortion compensation in reversible watermarking

    NASA Astrophysics Data System (ADS)

    Kim, Suah; Kim, Hyoung Joong

    2014-01-01

    Reversible watermarking is used to hide information in images for medical and military uses. Reversible watermarking in images using distortion compensation proposed by Vasily et al [5] embeds each pixel twice such that distortion caused by the first embedding is reduced or removed by the distortion introduced by the second embedding. In their paper, because it is not applied in its most basic form, it is not clear whether improving it can achieve better results than the existing state of the art techniques. In this paper we first provide a novel basic distortion compensation technique that uses same prediction method as Tian's [2] difference expansion method (DE), in order to measure the effect of the distortion compensation more accurately. In the second part, we will analyze what kind of improvements can be made in distortion compensation.

  1. Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Eslami, Mohammed; Wu, Chensheng; Rzasa, John; Davis, Christopher C.

    2012-10-01

    Ideally, as planar wave fronts travel through an imaging system, all rays, or vectors pointing in the direction of the propagation of energy are parallel, and thus the wave front is focused to a particular point. If the wave front arrives at an imaging system with energy vectors that point in different directions, each part of the wave front will be focused at a slightly different point on the sensor plane and result in a distorted image. The Hartmann test, which involves the insertion of a series of pinholes between the imaging system and the sensor plane, was developed to sample the wavefront at different locations and measure the distortion angles at different points in the wave front. An adaptive optic system, such as a deformable mirror, is then used to correct for these distortions and allow the planar wave front to focus at the point desired on the sensor plane, thereby correcting the distorted image. The apertures of a pinhole array limit the amount of light that reaches the sensor plane. By replacing the pinholes with a microlens array each bundle of rays is focused to brighten the image. Microlens arrays are making their way into newer imaging technologies, such as "light field" or "plenoptic" cameras. In these cameras, the microlens array is used to recover the ray information of the incoming light by using post processing techniques to focus on objects at different depths. The goal of this paper is to demonstrate the use of these plenoptic cameras to recover the distortions in wavefronts. Taking advantage of the microlens array within the plenoptic camera, CODE-V simulations show that its performance can provide more information than a Shack-Hartmann sensor. Using the microlens array to retrieve the ray information and then backstepping through the imaging system provides information about distortions in the arriving wavefront.

  2. The Assessment of Distortion in Neurosurgical Image Overlay Projection.

    PubMed

    Vakharia, Nilesh N; Paraskevopoulos, Dimitris; Lang, Jozsef; Vakharia, Vejay N

    2016-02-01

    Numerous studies have demonstrated the superiority of neuronavigation during neurosurgical procedures compared to non-neuronavigation-based procedures. Limitations to neuronavigation systems include the need for the surgeons to avert their gaze from the surgical field and the cost of the systems, especially for hospitals in developing countries. Overlay projection of imaging directly onto the patient allows localization of intracranial structures. A previous study using overlay projection demonstrated the accuracy of image coregistration for a lesion in the temporal region but did not assess image distortion when projecting onto other anatomical locations. Our aim is to quantify this distortion and establish which regions of the skull would be most suitable for overlay projection. Using the difference in size of a square grid when projected onto an anatomically accurate model skull and a flat surface, from the same distance, we were able to calculate the degree of image distortion when projecting onto the skull from the anterior, posterior, superior, and lateral aspects. Measuring the size of a square when projected onto a flat surface from different distances allowed us to model change in lesion size when projecting a deep structure onto the skull surface. Using 2 mm as the upper limit for distortion, our results show that images can be accurately projected onto the majority (81.4%) of the surface of the skull. Our results support the use of image overlay projection in regions with ≤2 mm distortion to assist with localization of intracranial lesions at a fraction of the cost of existing methods. © The Author(s) 2015.

  3. PSF mapping-based correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging.

    PubMed

    In, Myung-Ho; Posnansky, Oleg; Speck, Oliver

    2016-05-01

    To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.

  4. Sharpening Ejecta Patterns: Investigating Spectral Fidelity After Controlled Intensity-Hue-Saturation Image Fusion of LROC Images of Fresh Craters

    NASA Astrophysics Data System (ADS)

    Awumah, A.; Mahanti, P.; Robinson, M. S.

    2017-12-01

    Image fusion is often used in Earth-based remote sensing applications to merge spatial details from a high-resolution panchromatic (Pan) image with the color information from a lower-resolution multi-spectral (MS) image, resulting in a high-resolution multi-spectral image (HRMS). Previously, the performance of six well-known image fusion methods were compared using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images (1). Results showed the Intensity-Hue-Saturation (IHS) method provided the best spatial performance, but deteriorated the spectral content. In general, there was a trade-off between spatial enhancement and spectral fidelity from the fusion process; the more spatial details from the Pan fused with the MS image, the more spectrally distorted the final HRMS. In this work, we control the amount of spatial details fused (from the LROC NAC images to WAC images) using a controlled IHS method (2), to investigate the spatial variation in spectral distortion on fresh crater ejecta. In the controlled IHS method (2), the percentage of the Pan component merged with the MS is varied. The percent of spatial detail from the Pan used is determined by a variable whose value may be varied between 1 (no Pan utilized) to infinity (entire Pan utilized). An HRMS color composite image (red=415nm, green=321/415nm, blue=321/360nm (3)) was used to assess performance (via visual inspection and metric-based evaluations) at each tested value of the control parameter (1 to 10—after which spectral distortion saturates—in 0.01 increments) within three regions: crater interiors, ejecta blankets, and the background material surrounding the craters. Increasing the control parameter introduced increased spatial sharpness and spectral distortion in all regions, but to varying degrees. Crater interiors suffered the most color distortion, while ejecta experienced less color distortion. The controlled IHS method is therefore desirable for resolution-enhancement of fresh crater ejecta; larger values of the control parameter may be used to sharpen MS images of ejecta patterns but with less impact to color distortion than in the uncontrolled IHS fusion process. References: (1) Prasun et. al (2016) ISPRS. (2) Choi, Myungjin (2006) IEEE. (3) Denevi et. al (2014) JGR.

  5. Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa

    PubMed Central

    Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd

    2015-01-01

    Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813

  6. Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen

    PubMed Central

    Corbett, Alexander D.; Burton, Rebecca A. B.; Bub, Gil; Salter, Patrick S.; Tuohy, Simon; Booth, Martin J.; Wilson, Tony

    2014-01-01

    Remote focussing microscopy allows sharp, in-focus images to be acquired at high speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artifacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY) scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement. However, for many commercial objective lenses, it can be difficult to accurately locate the position of the back focal plane. This paper investigates the impact of this limitation on the fidelity of three-dimensional data sets of living cardiac tissue, specifically the introduction of distortions. These distortions limit the accuracy of sarcomere measurements taken directly from raw volumetric data. The origin of the distortion is first identified through simulation of a remote focussing microscope. Using a novel three-dimensional calibration specimen it was then possible to quantify experimentally the size of the distortion as a function of objective misalignment. Finally, by first approximating and then compensating the distortion in imaging data from whole heart rodent studies, the variance of sarcomere length (SL) measurements was reduced by almost 50%. PMID:25339910

  7. Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates

    NASA Astrophysics Data System (ADS)

    Huang, ZunYue; Luo, Zhen; Ao, Sansan; Cai, YangChuan

    2018-10-01

    Underwater laser weld bowing distortion behavior and mechanism of thin 304 stainless steel plates are studied in the paper. The influence of underwater laser welding parameters (such as laser power, welding speed, defocusing distance and gas flow rate) on weld bowing distortion was investigated through central composite rotatable design and an orthogonal test. A quadratic response model was established to evaluate the underwater laser weld bowing distortion by central composite rotatable design and the order of the impacts of the welding parameters on weld bowing distortion was studied by an orthogonal test. The weld bowing distortion after welding was determined by the digital image correlation technique. The weld bowing distortion of in-air laser welding and underwater laser welding were compared and it revealed that the shape of the in-air and underwater laser welded specimens are the same, but the weld bowing distortion amount of in-air welding is larger than that of underwater welding. Weld bowing distortion mechanism was studied by the digital image correlation technique, and it was demonstrated that weld bowing distortion is associated with the welding plate temperature gradient during laser welding. The wider weld width also resulted in larger weld bowing distortion.

  8. THz optical design considerations and optimization for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Garritano, James; Bajwa, Neha; Nowroozi, Bryan; Llombart, Nuria; Grundfest, Warren; Taylor, Zachary D.

    2014-09-01

    THz imaging system design will play an important role making possible imaging of targets with arbitrary properties and geometries. This study discusses design consideration and imaging performance optimization techniques in THz quasioptical imaging system optics. Analysis of field and polarization distortion by off-axis parabolic (OAP) mirrors in THz imaging optics shows how distortions are carried in a series of mirrors while guiding the THz beam. While distortions of the beam profile by individual mirrors are not significant, these effects are compounded by a series of mirrors in antisymmetric orientation. It is shown that symmetric orientation of the OAP mirror effectively cancels this distortion to recover the original beam profile. Additionally, symmetric orientation can correct for some geometrical off-focusing due to misalignment. We also demonstrate an alternative method to test for overall system optics alignment by investigating the imaging performance of the tilted target plane. Asymmetric signal profile as a function of the target plane's tilt angle indicates when one or more imaging components are misaligned, giving a preferred tilt direction. Such analysis can offer additional insight into often elusive source device misalignment at an integrated system. Imaging plane tilting characteristics are representative of a 3-D modulation transfer function of the imaging system. A symmetric tilted plane is preferred to optimize imaging performance.

  9. Evaluation of different distortion correction methods and interpolation techniques for an automated classification of celiac disease☆

    PubMed Central

    Gadermayr, M.; Liedlgruber, M.; Uhl, A.; Vécsei, A.

    2013-01-01

    Due to the optics used in endoscopes, a typical degradation observed in endoscopic images are barrel-type distortions. In this work we investigate the impact of methods used to correct such distortions in images on the classification accuracy in the context of automated celiac disease classification. For this purpose we compare various different distortion correction methods and apply them to endoscopic images, which are subsequently classified. Since the interpolation used in such methods is also assumed to have an influence on the resulting classification accuracies, we also investigate different interpolation methods and their impact on the classification performance. In order to be able to make solid statements about the benefit of distortion correction we use various different feature extraction methods used to obtain features for the classification. Our experiments show that it is not possible to make a clear statement about the usefulness of distortion correction methods in the context of an automated diagnosis of celiac disease. This is mainly due to the fact that an eventual benefit of distortion correction highly depends on the feature extraction method used for the classification. PMID:23981585

  10. Blind image quality assessment without training on human opinion scores

    NASA Astrophysics Data System (ADS)

    Mittal, Anish; Soundararajan, Rajiv; Muralidhar, Gautam S.; Bovik, Alan C.; Ghosh, Joydeep

    2013-03-01

    We propose a family of image quality assessment (IQA) models based on natural scene statistics (NSS), that can predict the subjective quality of a distorted image without reference to a corresponding distortionless image, and without any training results on human opinion scores of distorted images. These `completely blind' models compete well with standard non-blind image quality indices in terms of subjective predictive performance when tested on the large publicly available `LIVE' Image Quality database.

  11. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    PubMed

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Reflective optical imaging systems with balanced distortion

    DOEpatents

    Hudyma, Russell M.

    2001-01-01

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  13. A Reconstruction Algorithm of Magnetoacoustic Tomography with Magnetic Induction for Acoustically Inhomogeneous Tissue

    PubMed Central

    Zhou, Lian; Zhu, Shanan

    2014-01-01

    Magnetoacoustic tomography with Magnetic Induction (MAT-MI) is a noninvasive electrical conductivity imaging approach that measures ultrasound wave induced by magnetic stimulation, for reconstructing the distribution of electrical impedance in biological tissue. Existing reconstruction algorithms for MAT-MI are based on the assumption that the acoustic properties in the tissue are homogeneous. However, the tissue in most parts of human body, has heterogeneous acoustic properties, which leads to potential distortion and blurring of small buried objects in the impedance images. In the present study, we proposed a new algorithm for MAT-MI to image the impedance distribution in tissues with inhomogeneous acoustic speed distributions. With a computer head model constructed from MR images of a human subject, a series of numerical simulation experiments were conducted. The present results indicate that the inhomogeneous acoustic properties of tissues in terms of speed variation can be incorporated in MAT-MI imaging. PMID:24845284

  14. The design of visible system for improving the measurement accuracy of imaging points

    NASA Astrophysics Data System (ADS)

    Shan, Qiu-sha; Li, Gang; Zeng, Luan; Liu, Kai; Yan, Pei-pei; Duan, Jing; Jiang, Kai

    2018-02-01

    It has a widely applications in robot vision and 3D measurement for binocular stereoscopic measurement technology. And the measure precision is an very important factor, especially in 3D coordination measurement, high measurement accuracy is more stringent to the distortion of the optical system. In order to improving the measurement accuracy of imaging points, to reducing the distortion of the imaging points, the optical system must be satisfied the requirement of extra low distortion value less than 0.1#65285;, a transmission visible optical lens was design, which has characteristic of telecentric beam path in image space, adopted the imaging model of binocular stereo vision, and imaged the drone at the finity distance. The optical system was adopted complex double Gauss structure, and put the pupil stop on the focal plane of the latter groups, maked the system exit pupil on the infinity distance, and realized telecentric beam path in image space. The system mainly optical parameter as follows: the system spectrum rangement is visible light wave band, the optical effective length is f '=30mm, the relative aperture is 1/3, and the fields of view is 21°. The final design results show that the RMS value of the spread spots of the optical lens in the maximum fields of view is 2.3μm, which is less than one pixel(3.45μm) the distortion value is less than 0.1%, the system has the advantage of extra low distortion value and avoids the latter image distortion correction; the proposed modulation transfer function of the optical lens is 0.58(@145 lp/mm), the imaging quality of the system is closed to the diffraction limited; the system has simply structure, and can satisfies the requirements of the optical indexes. Ultimately, based on the imaging model of binocular stereo vision was achieved to measuring the drone at the finity distance.

  15. Contour sensitive saliency and depth application in image retargeting

    NASA Astrophysics Data System (ADS)

    Lu, Hongju; Yue, Pengfei; Zhao, Yanhui; Liu, Rui; Fu, Yuanbin; Zheng, Yuanjie; Cui, Jia

    2018-04-01

    Image retargeting technique requires important information preservation and less edge distortion during increasing/decreasing image size. The major existed content-aware methods perform well. However, there are two problems should be improved: the slight distortion appeared at the object edges and the structure distortion in the nonsalient area. According to psychological theories, people evaluate image quality based on multi-level judgments and comparison between different areas, both image content and image structure. The paper proposes a new standard: the structure preserving in non-salient area. After observation and image analysis, blur (slight blur) is generally existed at the edge of objects. The blur feature is used to estimate the depth cue, named blur depth descriptor. It can be used in the process of saliency computation for balanced image retargeting result. In order to keep the structure information in nonsalient area, the salient edge map is presented in Seam Carving process, instead of field-based saliency computation. The derivative saliency from x- and y-direction can avoid the redundant energy seam around salient objects causing structure distortion. After the comparison experiments between classical approaches and ours, the feasibility of our algorithm is proved.

  16. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation of rigid morphology and equivalent or improved TRE. The approach therefore overcomes distortions intrinsic to uFFD and could better facilitate high-precision IGSS.

  18. Effects of EPI distortion correction pipelines on the connectome in Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Galvis, Justin; Mezher, Adam F.; Ragothaman, Anjanibhargavi; Villalon-Reina, Julio E.; Fletcher, P. Thomas; Thompson, Paul M.; Prasad, Gautam

    2016-03-01

    Echo-planar imaging (EPI) is commonly used for diffusion-weighted imaging (DWI) but is susceptible to nonlinear geometric distortions arising from inhomogeneities in the static magnetic field. These inhomogeneities can be measured and corrected using a fieldmap image acquired during the scanning process. In studies where the fieldmap image is not collected, these distortions can be corrected, to some extent, by nonlinearly registering the diffusion image to a corresponding anatomical image, either a T1- or T2-weighted image. Here we compared two EPI distortion correction pipelines, both based on nonlinear registration, which were optimized for the particular weighting of the structural image registration target. The first pipeline used a 3D nonlinear registration to a T1-weighted target, while the second pipeline used a 1D nonlinear registration to a T2-weighted target. We assessed each pipeline in its ability to characterize high-level measures of brain connectivity in Parkinson's disease (PD) in 189 individuals (58 healthy controls, 131 people with PD) from the Parkinson's Progression Markers Initiative (PPMI) dataset. We computed a structural connectome (connectivity map) for each participant using regions of interest from a cortical parcellation combined with DWI-based whole-brain tractography. We evaluated test-retest reliability of the connectome for each EPI distortion correction pipeline using a second diffusion scan acquired directly after the participants' first. Finally, we used support vector machine (SVM) classification to assess how accurately each pipeline classified PD versus healthy controls using each participants' structural connectome.

  19. SU-E-J-220: Assessment of MRI Geometric Distortion in Head and Neck Cancer Patients Scanned in Immobilized Radiation Treatment Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C; Mohamed, A; Weygand, J

    2015-06-15

    Purpose: Uncertainties about geometric distortion have somewhat hindered MRI simulation in radiation therapy. Most of the geometric distortion studies were performed with phantom measurements but another major aspect of MR distortion is patient related. We studied the geometric distortion in patient images by comparing their MRI scans with the corresponding CT, using CT as the non-distorted gold standard. Methods: Ten H&N cancer patients were imaged with MRI as part of a prospective IRB approved study. All patients had their treatment planning CT done on the same day or within one week of the MRI. MR Images were acquired with amore » T2 SE sequence (1×1×2.5mm voxel size) in the same immobilization position as in the CT scans. MRI to CT rigid registration was then done and geometric distortion comparison was done by measuring the corresponding anatomical landmarks on both the MRI and the CT images by two observers. Several skin to skin (9 landmarks), bone to bone (8 landmarks), and soft tissue (3 landmarks) were measured at specific levels in horizontal and vertical planes of both scans. Results: The mean distortion for all landmark measurements in all scans was 1.8±1.9mm. For each patient 11 measurements were done in the horizontal plane while 9 were done in the vertical plane. The measured geometric distortion were significantly lower in the horizontal axis compared to the vertical axis (1.3±0.16 mm vs 2.2±0.19 mm, respectively, P=0.003*). The magnitude of distortion was lower in the bone to bone landmarks compared to the combined soft tissue and skin to skin landmarks (1.2±0.19 mm vs 2.3±0.17 mm, P=0.0006*). The mean distortion measured by observer one was not significantly different compared toobserver 2 (2.3 vs 2.4 mm, P=0.4). Conclusion: MRI geometric distortions were quantified in H&N patients with mean error of less than 2 mm. JW received a corporate sponsored research grant from Elekta.« less

  20. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  1. Optic for industrial endoscope/borescope with narrow field of view and low distortion

    DOEpatents

    Stone, Gary F.; Trebes, James E.

    2005-08-16

    An optic for the imaging optics on the distal end of a flexible fiberoptic endoscope or rigid borescope inspection tool. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion), compared to the typical <20% distortion. The optic will permit non-contact surface roughness measurements using optical techniques. This optic will permit simultaneous collection of selected image plane data, which data can then be subsequently optically processed. The image analysis will yield non-contact surface topology data for inspection where access to the surface does not permit a mechanical styles profilometer verification of surface topology. The optic allows a very broad spectral band or range of optical inspection. It is capable of spectroscopic imaging and fluorescence induced imaging when a scanning illumination source is used. The total viewing angle for this optic is 10 degrees for the full field of view of 10 degrees, compared to 40-70 degrees full angle field of view of the conventional gradient index or GRIN's lens systems.

  2. Goal-oriented rectification of camera-based document images.

    PubMed

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.

  3. Geometric processing of digital images of the planets

    NASA Technical Reports Server (NTRS)

    Edwards, Kathleen

    1987-01-01

    New procedures and software have been developed for geometric transformation of images to support digital cartography of the planets. The procedures involve the correction of spacecraft camera orientation of each image with the use of ground control and the transformation of each image to a Sinusoidal Equal-Area map projection with an algorithm which allows the number of transformation calculations to vary as the distortion varies within the image. When the distortion is low in an area of an image, few transformation computations are required, and most pixels can be interpolated. When distortion is extreme, the location of each pixel is computed. Mosaics are made of these images and stored as digital databases. Completed Sinusoidal databases may be used for digital analysis and registration with other spatial data. They may also be reproduced as published image maps by digitally transforming them to appropriate map projections.

  4. Image restoration, uncertainty, and information.

    PubMed

    Yu, F T

    1969-01-01

    Some of the physical interpretations about image restoration are discussed. From the theory of information the unrealizability of an inverse filter can be explained by degradation of information, which is due to distortion on the recorded image. The image restoration is a time and space problem, which can be recognized from the theory of relativity (the problem of image restoration is related to Heisenberg's uncertainty principle in quantum mechanics). A detailed discussion of the relationship between information and energy is given. Two general results may be stated: (1) the restoration of the image from the distorted signal is possible only if it satisfies the detectability condition. However, the restored image, at the best, can only approach to the maximum allowable time criterion. (2) The restoration of an image by superimposing the distorted signal (due to smearing) is a physically unrealizable method. However, this restoration procedure may be achieved by the expenditure of an infinite amount of energy.

  5. Investigating Body Image Disturbance in Anorexia Nervosa Using Novel Biometric Figure Rating Scales: A Pilot Study.

    PubMed

    Mölbert, Simone C; Thaler, Anne; Streuber, Stephan; Black, Michael J; Karnath, Hans-Otto; Zipfel, Stephan; Mohler, Betty; Giel, Katrin E

    2017-11-01

    This study uses novel biometric figure rating scales (FRS) spanning body mass index (BMI) 13.8 to 32.2 kg/m 2 and BMI 18 to 42 kg/m 2 . The aims of the study were (i) to compare FRS body weight dissatisfaction and perceptual distortion of women with anorexia nervosa (AN) to a community sample; (ii) how FRS parameters are associated with questionnaire body dissatisfaction, eating disorder symptoms and appearance comparison habits; and (iii) whether the weight spectrum of the FRS matters. Women with AN (n = 24) and a community sample of women (n = 104) selected their current and ideal body on the FRS and completed additional questionnaires. Women with AN accurately picked the body that aligned best with their actual weight in both FRS. Controls underestimated their BMI in the FRS 14-32 and were accurate in the FRS 18-42. In both FRS, women with AN desired a body close to their actual BMI and controls desired a thinner body. Our observations suggest that body image disturbance in AN is unlikely to be characterized by a visual perceptual disturbance, but rather by an idealization of underweight in conjunction with high body dissatisfaction. The weight spectrum of FRS can influence the accuracy of BMI estimation. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  6. Pattern-projected schlieren imaging method using a diffractive optics element

    NASA Astrophysics Data System (ADS)

    Min, Gihyeon; Lee, Byung-Tak; Kim, Nac Woo; Lee, Munseob

    2018-04-01

    We propose a novel schlieren imaging method by projecting a random dot pattern, which is generated in a light source module that includes a diffractive optical element. All apparatuses are located in the source side, which leads to one-body sensor applications. This pattern is distorted by the deflections of schlieren objects such that the displacement vectors of random dots in the pixels can be obtained using the particle image velocity algorithm. The air turbulences induced by a burning candle, boiling pot, heater, and gas torch were successfully imaged, and it was shown that imaging up to a size of 0.7 m  ×  0.57 m is possible. An algorithm to correct the non-uniform sensitivity according to the position of a schlieren object was analytically derived. This algorithm was applied to schlieren images of lenses. Comparing the corrected versions to the original schlieren images, we showed a corrected uniform sensitivity of 14.15 times on average.

  7. MR safety and compatibility of a noninvasively expandable total-joint endoprosthesis.

    PubMed

    Ogg, Robert J; McDaniel, C Brian; Wallace, Donald; Pitot, Pierre; Neel, Michael D; Kaste, Sue C

    2005-09-01

    A noninvasively expandable total-joint endoprosthesis is now available for pediatric patients; the prosthesis can be lengthened by external application of a magnetic field. We investigated the risks of unintentional heating or lengthening of the prosthesis during MR imaging and evaluated the effect of the device on the diagnostic efficacy of MR imaging of surrounding tissues. We performed MR imaging at 1.5 T by using standard pulse sequences and pulse sequences with high-gradient and high-radiofrequency duty cycle. MR imaging caused no measurable change in prosthesis length, and the temperature of the prosthesis increased by less than 1 degrees C during repeated 14-min exposures. Despite significant signal loss and image distortion around the prosthetic joint, clinically useful images were obtained as close as 12 cm from the ends of the prosthetic stems, measured toward the body of the device. Thus, the prosthesis can be safely exposed to MR imaging pulse sequences at 1.5 T, and the visualization of some tissue surrounding the device is clinically useful.

  8. A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa

    PubMed Central

    Keizer, Anouk; van Elburg, Annemarie; Helms, Rossa; Dijkerman, H. Chris

    2016-01-01

    Background Patients with anorexia nervosa (AN) have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI) affects body size estimation of body parts more emotionally salient than the hand. In the FBI, analogue to the RHI, participants experience ownership over an entire virtual body in VR after synchronous visuo-tactile stimulation of the actual and virtual body. Methods and Results We asked participants to estimate their body size (shoulders, abdomen, hips) before the FBI was induced, directly after induction and at ~2 hour 45 minutes follow-up. The results showed that AN patients (N = 30) decrease the overestimation of their shoulders, abdomen and hips directly after the FBI was induced. This effect was strongest for estimates of circumference, and also observed in the asynchronous control condition of the illusion. Moreover, at follow-up, the improvements in body size estimation could still be observed in the AN group. Notably, the HC group (N = 29) also showed changes in body size estimation after the FBI, but the effect showed a different pattern than that of the AN group. Conclusion The results lead us to conclude that the disturbed experience of body size in AN is flexible and can be changed, even for highly emotional body parts. As such this study offers novel starting points from which new interventions for body image disturbance in AN can be developed. PMID:27711234

  9. Reflective optical imaging system with balanced distortion

    DOEpatents

    Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.

    1999-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  10. Super-global distortion correction for a rotational C-arm x-ray image intensifier.

    PubMed

    Liu, R R; Rudin, S; Bednarek, D R

    1999-09-01

    Image intensifier (II) distortion changes as a function of C-arm rotation angle because of changes in the orientation of the II with the earth's or other stray magnetic fields. For cone-beam computed tomography (CT), distortion correction for all angles is essential. The new super-global distortion correction consists of a model to continuously correct II distortion not only at each location in the image but for every rotational angle of the C arm. Calibration bead images were acquired with a standard C arm in 9 in. II mode. The super-global (SG) model is obtained from the single-plane global correction of the selected calibration images with given sampling angle interval. The fifth-order single-plane global corrections yielded a residual rms error of 0.20 pixels, while the SG model yielded a rms error of 0.21 pixels, a negligibly small difference. We evaluated the accuracy dependence of the SG model on various factors, such as the single-plane global fitting order, SG order, and angular sampling interval. We found that a good SG model can be obtained using a sixth-order SG polynomial fit based on the fifth-order single-plane global correction, and that a 10 degrees sampling interval was sufficient. Thus, the SG model saves processing resources and storage space. The residual errors from the mechanical errors of the x-ray system were also investigated, and found comparable with the SG residual error. Additionally, a single-plane global correction was done in the cylindrical coordinate system, and physical information about pincushion distortion and S distortion were observed and analyzed; however, this method is not recommended due to a lack of calculational efficiency. In conclusion, the SG model provides an accurate, fast, and simple correction for rotational C-arm images, which may be used for cone-beam CT.

  11. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    PubMed

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  13. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  14. Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.

    PubMed

    Roy, Snehashis; Chou, Yi-Yu; Jog, Amod; Butman, John A; Pham, Dzung L

    2016-10-01

    Different magnetic resonance imaging pulse sequences are used to generate image contrasts based on physical properties of tissues, which provide different and often complementary information about them. Therefore multiple image contrasts are useful for multimodal analysis of medical images. Often, medical image processing algorithms are optimized for particular image contrasts. If a desirable contrast is unavailable, contrast synthesis (or modality synthesis) methods try to "synthesize" the unavailable constrasts from the available ones. Most of the recent image synthesis methods generate synthetic brain images, while whole head magnetic resonance (MR) images can also be useful for many applications. We propose an atlas based patch matching algorithm to synthesize T 2 -w whole head (including brain, skull, eyes etc) images from T 1 -w images for the purpose of distortion correction of diffusion weighted MR images. The geometric distortion in diffusion MR images due to in-homogeneous B 0 magnetic field are often corrected by non-linearly registering the corresponding b = 0 image with zero diffusion gradient to an undistorted T 2 -w image. We show that our synthetic T 2 -w images can be used as a template in absence of a real T 2 -w image. Our patch based method requires multiple atlases with T 1 and T 2 to be registeLowRes to a given target T 1 . Then for every patch on the target, multiple similar looking matching patches are found on the atlas T 1 images and corresponding patches on the atlas T 2 images are combined to generate a synthetic T 2 of the target. We experimented on image data obtained from 44 patients with traumatic brain injury (TBI), and showed that our synthesized T 2 images produce more accurate distortion correction than a state-of-the-art registration based image synthesis method.

  15. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    PubMed Central

    Tao, S; Trzasko, J D; Gunter, J L; Weavers, P T; Shu, Y; Huston, J; Lee, S K; Tan, E T; Bernstein, M A

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26-cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients. PMID:28033119

  16. The influence of vision, touch, and proprioception on body representation of the lower limbs.

    PubMed

    Stone, Kayla D; Keizer, Anouk; Dijkerman, H Chris

    2018-04-01

    Numerous studies have shown that the representation of the hand is distorted. When participants are asked to localize unseen points on the hand (e.g. the knuckle), it is perceived to be wider and shorter than its physical dimensions. Similar distortions occur when people are asked to judge the distance between two tactile points on the hand; estimates made in the longitudinal direction are perceived as significantly shorter than those made in the transverse direction. Yet, when asked to visually compare the shape and size of one's own hand to a template hand, individuals are accurate at estimating the size of their own hands. Thus, it seems that body representations are, at least in part, a function of the most prominent underlying sensory modality used to perceive the body part. Yet, it remains unknown if the representations of other body parts are similarly distorted. The lower limbs, for example, are structurally and functionally very different from the hands, yet their representation(s) are seldom studied. What does the body representation for the leg look like? And is leg representation dependent on which sense is probed when making judgments about its shape and size? In the current study, we investigated what the representation of the leg looks like in visually-, tactually-, and proprioceptively-guided tasks. Results revealed that the leg, like the hand, is distorted in a highly systematic manner. Distortions seem to rely, at least partly, on sensory input. This is the first study, to our knowledge, to systematically investigate leg representation in healthy individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Comparison of DWI Methods in the Pediatric Brain: PROPELLER Turbo Spin-Echo Imaging Versus Readout-Segmented Echo-Planar Imaging Versus Single-Shot Echo-Planar Imaging.

    PubMed

    Kim, Tae-Hyung; Baek, Moon-Young; Park, Ji Eun; Ryu, Young Jin; Cheon, Jung-Eun; Kim, In-One; Choi, Young Hun

    2018-06-01

    The purpose of this study is to compare DWI for pediatric brain evaluation using single-shot echo-planar imaging (EPI), periodically rotated overlapping parallel lines with enhanced reconstruction (Blade), and readout-segmented EPI (Resolve). Blade, Resolve, and single-shot EPI were performed for 27 pediatric patients (median age, 9 years), and three datasets were independently reviewed by two radiologists. Qualitative analyses were performed for perceptive coarseness, image distortion, susceptibility-related changes, motion artifacts, and lesion conspicuity using a 5-point Likert scale. Quantitative analyses were conducted for spatial distortion and signal uniformity of each sequence. Mean scores were 2.13, 3.17, and 3.76 for perceptive coarseness; 4.85, 3.96, and 2.19 for image distortion; 4.76, 3.96, and 2.30 for susceptibility-related change; 4.96, 3.83, and 4.69 for motion artifacts; and 2.71, 3.75, and 1.92 for lesion conspicuity, for Blade, Resolve, and single-shot EPI, respectively. Blade and Resolve showed better quality than did single-shot EPI for image distortion, susceptibility-related changes, and lesion conspicuity. Blade showed less image distortion, fewer susceptibility-related changes, and fewer motion artifacts than did Resolve, whereas lesion conspicuity was better with Resolve. Blade showed increased signal variation compared with Resolve and single-shot EPI (coefficients of variation were 0.10, 0.08, and 0.05 for lateral ventricle; 0.13, 0.09, and 0.05 for centrum semiovale; and 0.16, 0.09, and 0.06 for pons in Blade, Resolve, and single-shot EPI, respectively). DWI with Resolve or Blade yields better quality regarding distortion, susceptibility-related changes, and lesion conspicuity, compared with single-shot EPI. Blade is less susceptible to motion artifacts than is Resolve, whereas Resolve yields less noise and better lesion conspicuity than does Blade.

  18. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.

  19. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  20. Correction of projective distortion in long-image-sequence mosaics without prior information

    NASA Astrophysics Data System (ADS)

    Yang, Chenhui; Mao, Hongwei; Abousleman, Glen; Si, Jennie

    2010-04-01

    Image mosaicking is the process of piecing together multiple video frames or still images from a moving camera to form a wide-area or panoramic view of the scene being imaged. Mosaics have widespread applications in many areas such as security surveillance, remote sensing, geographical exploration, agricultural field surveillance, virtual reality, digital video, and medical image analysis, among others. When mosaicking a large number of still images or video frames, the quality of the resulting mosaic is compromised by projective distortion. That is, during the mosaicking process, the image frames that are transformed and pasted to the mosaic become significantly scaled down and appear out of proportion with respect to the mosaic. As more frames continue to be transformed, important target information in the frames can be lost since the transformed frames become too small, which eventually leads to the inability to continue further. Some projective distortion correction techniques make use of prior information such as GPS information embedded within the image, or camera internal and external parameters. Alternatively, this paper proposes a new algorithm to reduce the projective distortion without using any prior information whatsoever. Based on the analysis of the projective distortion, we approximate the projective matrix that describes the transformation between image frames using an affine model. Using singular value decomposition, we can deduce the affine model scaling factor that is usually very close to 1. By resetting the image scale of the affine model to 1, the transformed image size remains unchanged. Even though the proposed correction introduces some error in the image matching, this error is typically acceptable and more importantly, the final mosaic preserves the original image size after transformation. We demonstrate the effectiveness of this new correction algorithm on two real-world unmanned air vehicle (UAV) sequences. The proposed method is shown to be effective and suitable for real-time implementation.

  1. Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results

    PubMed Central

    Irfanoglu, M. Okan; Walker, Lindsay; Sarlls, Joelle; Marenco, Stefano; Pierpaoli, Carlo

    2013-01-01

    In this work we investigate the effects of echo planar imaging (EPI) distortions on diffusion tensor imaging (DTI) based fiber tractography results. We propose a simple experimental framework that would enable assessing the effects of EPI distortions on the accuracy and reproducibility of fiber tractography from a pilot study on a few subjects. We compare trajectories computed from two diffusion datasets collected on each subject that are identical except for the orientation of phase encode direction, either right–left (RL) or anterior–posterior (AP). We define metrics to assess potential discrepancies between RL and AP trajectories in association, commissural, and projection pathways. Results from measurements on a 3 Tesla clinical scanner indicated that the effects of EPI distortions on computed fiber trajectories are statistically significant and large in magnitude, potentially leading to erroneous inferences about brain connectivity. The correction of EPI distortion using an image-based registration approach showed a significant improvement in tract consistency and accuracy. Although obtained in the context of a DTI experiment, our findings are generally applicable to all EPI-based diffusion MRI tractography investigations, including high angular resolution (HARDI) methods. On the basis of our findings, we recommend adding an EPI distortion correction step to the diffusion MRI processing pipeline if the output is to be used for fiber tractography. PMID:22401760

  2. Chubby hands or little fingers: sex differences in hand representation.

    PubMed

    Coelho, Lara A; Gonzalez, Claudia L R

    2018-04-03

    Disturbed body representation is a condition defined by the perception that one's body size is different from their anatomical size. While equal amounts of males and females suffer from disturbed body representation, there appear to be differences in the direction of this distortion. Females will typically overestimate, whereas males will typically underestimate body size. One part of the body that has been consistently misperceived is the hands. This misrepresentation consists of two distinct characteristics: an overestimation of hand width, and an underestimation of finger length. Many of these studies, however, have used predominately female participants, allowing for the possibility that women are driving this distortion. The aim of the present study was to examine possible sex differences in hand perception. To this end, participants estimated the location of ten landmarks on their hands when their hands were hidden from view. Our results indicate that females follow the characteristic distortion, whereas males only underestimate finger length (albeit more than females). These findings are surprising, because the hands are not an area of concern for weight gain/loss. We discuss these findings in relation to body dysmorphia literature.

  3. Perceptual distortion analysis of color image VQ-based coding

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  4. Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ma, Ziji; Li, Yanfu; Zeng, Jiuzhen; Jin, Tan; Liu, Hongli

    2017-10-01

    Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x-y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear.

  5. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  6. Multidimensional incremental parsing for universal source coding.

    PubMed

    Bae, Soo Hyun; Juang, Biing-Hwang

    2008-10-01

    A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.

  7. Human Visual System-Based Fundus Image Quality Assessment of Portable Fundus Camera Photographs.

    PubMed

    Wang, Shaoze; Jin, Kai; Lu, Haitong; Cheng, Chuming; Ye, Juan; Qian, Dahong

    2016-04-01

    Telemedicine and the medical "big data" era in ophthalmology highlight the use of non-mydriatic ocular fundus photography, which has given rise to indispensable applications of portable fundus cameras. However, in the case of portable fundus photography, non-mydriatic image quality is more vulnerable to distortions, such as uneven illumination, color distortion, blur, and low contrast. Such distortions are called generic quality distortions. This paper proposes an algorithm capable of selecting images of fair generic quality that would be especially useful to assist inexperienced individuals in collecting meaningful and interpretable data with consistency. The algorithm is based on three characteristics of the human visual system--multi-channel sensation, just noticeable blur, and the contrast sensitivity function to detect illumination and color distortion, blur, and low contrast distortion, respectively. A total of 536 retinal images, 280 from proprietary databases and 256 from public databases, were graded independently by one senior and two junior ophthalmologists, such that three partial measures of quality and generic overall quality were classified into two categories. Binary classification was implemented by the support vector machine and the decision tree, and receiver operating characteristic (ROC) curves were obtained and plotted to analyze the performance of the proposed algorithm. The experimental results revealed that the generic overall quality classification achieved a sensitivity of 87.45% at a specificity of 91.66%, with an area under the ROC curve of 0.9452, indicating the value of applying the algorithm, which is based on the human vision system, to assess the image quality of non-mydriatic photography, especially for low-cost ophthalmological telemedicine applications.

  8. No-reference image quality assessment based on statistics of convolution feature maps

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoxin; Qin, Min; Chen, Xiaohui; Wei, Guo

    2018-04-01

    We propose a Convolutional Feature Maps (CFM) driven approach to accurately predict image quality. Our motivation bases on the finding that the Nature Scene Statistic (NSS) features on convolution feature maps are significantly sensitive to distortion degree of an image. In our method, a Convolutional Neural Network (CNN) is trained to obtain kernels for generating CFM. We design a forward NSS layer which performs on CFM to better extract NSS features. The quality aware features derived from the output of NSS layer is effective to describe the distortion type and degree an image suffered. Finally, a Support Vector Regression (SVR) is employed in our No-Reference Image Quality Assessment (NR-IQA) model to predict a subjective quality score of a distorted image. Experiments conducted on two public databases demonstrate the promising performance of the proposed method is competitive to state of the art NR-IQA methods.

  9. Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rupali

    2018-03-01

    Reversible data hiding means embedding a secret message in a cover image in such a manner, to the point that in the midst of extraction of the secret message, the cover image and, furthermore, the secret message are recovered with no error. The goal of by far most of the reversible data hiding algorithms is to have improved the embedding rate and enhanced visual quality of stego image. An improved encrypted-domain-based reversible data hiding algorithm to embed two binary bits in each gray pixel of original cover image with minimum distortion of stego-pixels is employed in this paper. Highlights of the proposed algorithm are minimum distortion of pixel's value, elimination of underflow and overflow problem, and equivalence of stego image and cover image with a PSNR of ∞ (for Lena, Goldhill, and Barbara image). The experimental outcomes reveal that in terms of average PSNR and embedding rate, for natural images, the proposed algorithm performed better than other conventional ones.

  10. Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion.

    PubMed

    Li, Hui; Jing, Linhai; Tang, Yunwei

    2017-01-05

    Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies.

  11. Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion

    PubMed Central

    Li, Hui; Jing, Linhai; Tang, Yunwei

    2017-01-01

    Since WorldView-2 (WV-2) images are widely used in various fields, there is a high demand for the use of high-quality pansharpened WV-2 images for different application purposes. With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands, the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six datasets from three WV-2 scenes were assessed in this study using both quality indices and information indices, along with visual inspection. The normalized difference vegetation index, normalized difference water index, and morphological building index, which are widely used in applications related to land cover classification, the extraction of vegetation areas, buildings, and water bodies, were employed in this work to evaluate the performance of different pansharpening methods in terms of information presentation ability. The experimental results show that the Haze- and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using enhanced spectral distortion minimal model and enhanced context-based decision model methods are good choices for producing fused WV-2 images used for image interpretation and the extraction of urban buildings. The two GLP-based methods are better choices than the other methods, if the fused images will be used for applications related to vegetation and water-bodies. PMID:28067770

  12. Optic for an endoscope/borescope having high resolution and narrow field of view

    DOEpatents

    Stone, Gary F.; Trebes, James E.

    2003-10-28

    An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.

  13. Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.

    2017-09-01

    It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.

  14. Novel grid combined with peripheral distortion correction for ultra-widefield image grading of age-related macular degeneration

    PubMed Central

    Mach, Steven; Garas, Shady; Kim, Ivana K; Vavvas, Demetrios G; Miller, Joan W; Husain, Deeba; Miller, John B

    2017-01-01

    Purpose Eyes with age-related macular degeneration (AMD) often harbor pathological changes in the retinal periphery and perimacular region. These extramacular changes have not been well classified, but may be phenotypically and functionally relevant. The purpose of this study was to demonstrate a novel grid to systematically study peripheral retinal abnormalities in AMD using geometric distortion-corrected ultra-widefield (UWF) imaging. Methods This is a cross-sectional observational case series. Consecutive patients with AMD without any other coexisting vitreoretinal disease and control patients over age 50 without AMD or any other vitreoretinal disease were imaged using Optos 200 Tx. Captured 200° UWF images were corrected for peripheral geometric distortion using Optos transformation software. A newly developed grid to study perimacular and peripheral abnormalities in AMD was then projected onto the images. Results Peripheral and perimacular changes such as drusen, retinal pigment epithelium changes and atrophy were found in patients with AMD. The presented grid in conjunction with geometric distortion-corrected UWF images allowed for systematic study of these peripheral changes in AMD. Conclusion We present a novel grid to study peripheral and posterior pole changes in AMD. The grid is unique in that it adds a perimacular zone, which may be important in characterizing certain phenotypes in AMD. Our UWF images were corrected for geometric peripheral distortion to accurately reflect the anatomical dimensions of the retina. This grid offers a reliable and reproducible foundation for the exploration of peripheral retinal pathology associated with AMD. PMID:29184386

  15. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation.

    PubMed

    Chandran, Arjun S; Bynevelt, Michael; Lind, Christopher R P

    2016-01-01

    The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.

  16. Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes.

    PubMed

    Embleton, Karl V; Haroon, Hamied A; Morris, David M; Ralph, Matthew A Lambon; Parker, Geoff J M

    2010-10-01

    Single shot echo-planar imaging (EPI) sequences are currently the most commonly used sequences for diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) as they allow relatively high signal to noise with rapid acquisition time. A major drawback of EPI is the substantial geometric distortion and signal loss that can occur due to magnetic field inhomogeneities close to air-tissue boundaries. If DWI-based tractography and fMRI are to be applied to these regions, then the distortions must be accurately corrected to achieve meaningful results. We describe robust acquisition and processing methods for correcting such distortions in spin echo (SE) EPI using a variant of the reversed direction k space traversal method with a number of novel additions. We demonstrate that dual direction k space traversal with maintained diffusion-encoding gradient strength and direction results in correction of the great majority of eddy current-associated distortions in DWI, in addition to those created by variations in magnetic susceptibility. We also provide examples to demonstrate that the presence of severe distortions cannot be ignored if meaningful tractography results are desired. The distortion correction routine was applied to SE-EPI fMRI acquisitions and allowed detection of activation in the temporal lobe that had been previously found using PET but not conventional fMRI. © 2010 Wiley-Liss, Inc.

  17. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  18. Operational rate-distortion performance for joint source and channel coding of images.

    PubMed

    Ruf, M J; Modestino, J W

    1999-01-01

    This paper describes a methodology for evaluating the operational rate-distortion behavior of combined source and channel coding schemes with particular application to images. In particular, we demonstrate use of the operational rate-distortion function to obtain the optimum tradeoff between source coding accuracy and channel error protection under the constraint of a fixed transmission bandwidth for the investigated transmission schemes. Furthermore, we develop information-theoretic bounds on performance for specific source and channel coding systems and demonstrate that our combined source-channel coding methodology applied to different schemes results in operational rate-distortion performance which closely approach these theoretical limits. We concentrate specifically on a wavelet-based subband source coding scheme and the use of binary rate-compatible punctured convolutional (RCPC) codes for transmission over the additive white Gaussian noise (AWGN) channel. Explicit results for real-world images demonstrate the efficacy of this approach.

  19. Geometric distortion correction in prostate diffusion-weighted MRI and its effect on quantitative apparent diffusion coefficient analysis.

    PubMed

    Nketiah, Gabriel; Selnaes, Kirsten M; Sandsmark, Elise; Teruel, Jose R; Krüger-Stokke, Brage; Bertilsson, Helena; Bathen, Tone F; Elschot, Mattijs

    2018-05-01

    To evaluate the effect of correction for B 0 inhomogeneity-induced geometric distortion in echo-planar diffusion-weighted imaging on quantitative apparent diffusion coefficient (ADC) analysis in multiparametric prostate MRI. Geometric distortion correction was performed in echo-planar diffusion-weighted images (b = 0, 50, 400, 800 s/mm 2 ) of 28 patients, using two b 0 scans with opposing phase-encoding polarities. Histology-matched tumor and healthy tissue volumes of interest delineated on T 2 -weighted images were mapped to the nondistortion-corrected and distortion-corrected data sets by resampling with and without spatial coregistration. The ADC values were calculated on the volume and voxel level. The effect of distortion correction on ADC quantification and tissue classification was evaluated using linear-mixed models and logistic regression, respectively. Without coregistration, the absolute differences in tumor ADC (range: 0.0002-0.189 mm 2 /s×10 -3 (volume level); 0.014-0.493 mm 2 /s×10 -3 (voxel level)) between the nondistortion-corrected and distortion-corrected were significantly associated (P < 0.05) with distortion distance (mean: 1.4 ± 1.3 mm; range: 0.3-5.3 mm). No significant associations were found upon coregistration; however, in patients with high rectal gas residue, distortion correction resulted in improved spatial representation and significantly better classification of healthy versus tumor voxels (P < 0.05). Geometric distortion correction in DWI could improve quantitative ADC analysis in multiparametric prostate MRI. Magn Reson Med 79:2524-2532, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Blind image quality assessment via probabilistic latent semantic analysis.

    PubMed

    Yang, Xichen; Sun, Quansen; Wang, Tianshu

    2016-01-01

    We propose a blind image quality assessment that is highly unsupervised and training free. The new method is based on the hypothesis that the effect caused by distortion can be expressed by certain latent characteristics. Combined with probabilistic latent semantic analysis, the latent characteristics can be discovered by applying a topic model over a visual word dictionary. Four distortion-affected features are extracted to form the visual words in the dictionary: (1) the block-based local histogram; (2) the block-based local mean value; (3) the mean value of contrast within a block; (4) the variance of contrast within a block. Based on the dictionary, the latent topics in the images can be discovered. The discrepancy between the frequency of the topics in an unfamiliar image and a large number of pristine images is applied to measure the image quality. Experimental results for four open databases show that the newly proposed method correlates well with human subjective judgments of diversely distorted images.

  1. Quality assessment of color images based on the measure of just noticeable color difference

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien; Hsu, Yun-Hsiang

    2014-01-01

    Accurate assessment on the quality of color images is an important step to many image processing systems that convey visual information of the reproduced images. An accurate objective image quality assessment (IQA) method is expected to give the assessment result highly agreeing with the subjective assessment. To assess the quality of color images, many approaches simply apply the metric for assessing the quality of gray scale images to each of three color channels of the color image, neglecting the correlation among three color channels. In this paper, a metric for assessing color images' quality is proposed, in which the model of variable just-noticeable color difference (VJNCD) is employed to estimate the visibility thresholds of distortion inherent in each color pixel. With the estimated visibility thresholds of distortion, the proposed metric measures the average perceptible distortion in terms of the quantized distortion according to the perceptual error map similar to that defined by National Bureau of Standards (NBS) for converting the color difference enumerated by CIEDE2000 to the objective score of perceptual quality assessment. The perceptual error map in this case is designed for each pixel according to the visibility threshold estimated by the VJNCD model. The performance of the proposed metric is verified by assessing the test images in the LIVE database, and is compared with those of many well-know IQA metrics. Experimental results indicate that the proposed metric is an effective IQA method that can accurately predict the image quality of color images in terms of the correlation between objective scores and subjective evaluation.

  2. Procedure-Oriented Torsional Anatomy of the Hand for Spasticity Injection.

    PubMed

    John, Joslyn; Cianca, John; Chiou-Tan, Faye; Pandit, Sindhu; Furr-Stimming, Erin; Taber, Katherine H

    To provide musculoskeletal ultrasound (MSKUS) images of hand anatomy in the position of hemiparetic flexion as a reference for spasticity injections. After a stroke, spasticity can result in anatomic distortion of the hand. Spasticity may require treatment with botulinum toxin or phenol injections. Anatomic distortion may decrease the accuracy of injections. Standard anatomic references are of limited utility because they are not in this spastic hemiparetic position. There presently is no anatomic reference in the literature for these spastic postures. This study is part three of a series examining torsional anatomy of the body. Ultrasound (US) images were obtained in a healthy subject. The muscles examined included the lumbricals and the flexor pollicis brevis. A marker dot was placed at each dorsal and palmar anatomic injection site for these muscles. The US probe was placed on these dots to obtain a cross-sectional view. A pair of US images was recorded with and without power Doppler imaging: the first in anatomic neutral and second in hemiparetic spastic positions. In addition, a video recording of the movement of the muscles during this rotation was made at each site. On the palmar view, the lumbricals rotated medially. On dorsal view, the lumbricals can be seen deep to the dorsal interossei muscles, with spastic position, and they become difficult to identify. The flexor pollicis brevis (FPB) muscle contracts with torsion, making abductor pollicis brevis (APB) predominately in view. The anatomic location of the lumbrical muscles makes them difficult to inject even with ultrasound guidance. However, recognizing the nearby digital vasculature allows for improved identification of the musculature for injection purposes. The FPB muscle also can be identified by its adjacent radial artery lateral to the flexor pollicus longus tendon. Normal anatomy of hand can become distorted in spastic hemiparesis. Diagnostic ultrasound is able to discern these anatomic locations if the sonographer is competent in recognizing the appearance of normal anatomy and is skilled in resolving the visual changes that occur in spastic hemiparesis. The authors hope this series of images will increase the accuracy, safety, and efficacy of spasticity injections in the hand.

  3. An algorithm for longitudinal registration of PET/CT images acquired during neoadjuvant chemotherapy in breast cancer: preliminary results.

    PubMed

    Li, Xia; Abramson, Richard G; Arlinghaus, Lori R; Chakravarthy, Anuradha Bapsi; Abramson, Vandana; Mayer, Ingrid; Farley, Jaime; Delbeke, Dominique; Yankeelov, Thomas E

    2012-11-16

    By providing estimates of tumor glucose metabolism, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) can potentially characterize the response of breast tumors to treatment. To assess therapy response, serial measurements of FDG-PET parameters (derived from static and/or dynamic images) can be obtained at different time points during the course of treatment. However, most studies track the changes in average parameter values obtained from the whole tumor, thereby discarding all spatial information manifested in tumor heterogeneity. Here, we propose a method whereby serially acquired FDG-PET breast data sets can be spatially co-registered to enable the spatial comparison of parameter maps at the voxel level. The goal is to optimally register normal tissues while simultaneously preventing tumor distortion. In order to accomplish this, we constructed a PET support device to enable PET/CT imaging of the breasts of ten patients in the prone position and applied a mutual information-based rigid body registration followed by a non-rigid registration. The non-rigid registration algorithm extended the adaptive bases algorithm (ABA) by incorporating a tumor volume-preserving constraint, which computed the Jacobian determinant over the tumor regions as outlined on the PET/CT images, into the cost function. We tested this approach on ten breast cancer patients undergoing neoadjuvant chemotherapy. By both qualitative and quantitative evaluation, our constrained algorithm yielded significantly less tumor distortion than the unconstrained algorithm: considering the tumor volume determined from standard uptake value maps, the post-registration median tumor volume changes, and the 25th and 75th quantiles were 3.42% (0%, 13.39%) and 16.93% (9.21%, 49.93%) for the constrained and unconstrained algorithms, respectively (p = 0.002), while the bending energy (a measure of the smoothness of the deformation) was 0.0015 (0.0005, 0.012) and 0.017 (0.005, 0.044), respectively (p = 0.005). The results indicate that the constrained ABA algorithm can accurately align prone breast FDG-PET images acquired at different time points while keeping the tumor from being substantially compressed or distorted. NCT00474604.

  4. Quality labeled faces in the wild (QLFW): a database for studying face recognition in real-world environments

    NASA Astrophysics Data System (ADS)

    Karam, Lina J.; Zhu, Tong

    2015-03-01

    The varying quality of face images is an important challenge that limits the effectiveness of face recognition technology when applied in real-world applications. Existing face image databases do not consider the effect of distortions that commonly occur in real-world environments. This database (QLFW) represents an initial attempt to provide a set of labeled face images spanning the wide range of quality, from no perceived impairment to strong perceived impairment for face detection and face recognition applications. Types of impairment include JPEG2000 compression, JPEG compression, additive white noise, Gaussian blur and contrast change. Subjective experiments are conducted to assess the perceived visual quality of faces under different levels and types of distortions and also to assess the human recognition performance under the considered distortions. One goal of this work is to enable automated performance evaluation of face recognition technologies in the presence of different types and levels of visual distortions. This will consequently enable the development of face recognition systems that can operate reliably on real-world visual content in the presence of real-world visual distortions. Another goal is to enable the development and assessment of visual quality metrics for face images and for face detection and recognition applications.

  5. SU-G-JeP2-13: Spatial Accuracy Evaluation for Real-Time MR Guided Radiation Therapy Using a Novel Large-Field MRI Distortion Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolak, A; Bayouth, J; Bosca, R

    Purpose: Evaluate a large-field MRI phantom for assessment of geometric distortion in whole-body MRI for real-time MR guided radiation therapy. Methods: A prototype CIRS large-field MRI distortion phantom consisting of a PMMA cylinder (33 cm diameter, 30 cm length) containing a 3D-printed orthogonal grid (3 mm diameter rods, 20 mm apart), was filled with 6 mM NiCl{sub 2} and 30 mM NaCl solution. The phantom was scanned at 1.5T and 3.0T on a GE HDxt and Discovery MR750, respectively, and at 0.35T on a ViewRay system. Scans were obtained with and without 3D distortion correction to demonstrate the impact ofmore » such corrections. CT images were used as a reference standard for analysis of geometric distortion, as determined by a fully automated gradient-search method developed in Matlab. Results: 1,116 grid points distributed throughout a cylindrical volume 28 cm in diameter and 16 cm in length were identified and analyzed. With 3D distortion correction, average/maximum displacements for the 1.5, 3.0, and 0.35T systems were 0.84/2.91, 1.00/2.97, and 0.95/2.37 mm, respectively. The percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (73%, 92%, 97%), (54%, 85%, 97%), and (55%, 90%, 99%), respectively. A reduced scan volume of 20 × 20 × 10 cm{sup 3} (representative of a head and neck scan volume) consisting of 420 points was also analyzed. In this volume, the percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (90%, 99%, 100%), (63%, 95%, 100%), and (75%, 96%, 100%), respectively. Without 3D distortion correction, average/maximum displacements were 1.35/3.67, 1.67/4.46, and 1.51/3.89 mm, respectively. Conclusion: The prototype large-field MRI distortion phantom and developed software provide a thorough assessment of 3D spatial distortions in MRI. The distortions measured were acceptable for RT applications, both for the high field strengths and the system configuration developed by ViewRay.« less

  6. Novel approaches to address spectral distortions in photon counting x-ray CT using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Touch, M.; Clark, D. P.; Barber, W.; Badea, C. T.

    2016-04-01

    Spectral CT using a photon-counting x-ray detector (PCXD) can potentially increase accuracy of measuring tissue composition. However, PCXD spectral measurements suffer from distortion due to charge sharing, pulse pileup, and Kescape energy loss. This study proposes two novel artificial neural network (ANN)-based algorithms: one to model and compensate for the distortion, and another one to directly correct for the distortion. The ANN-based distortion model was obtained by training to learn the distortion from a set of projections with a calibration scan. The ANN distortion was then applied in the forward statistical model to compensate for distortion in the projection decomposition. ANN was also used to learn to correct distortions directly in projections. The resulting corrected projections were used for reconstructing the image, denoising via joint bilateral filtration, and decomposition into three-material basis functions: Compton scattering, the photoelectric effect, and iodine. The ANN-based distortion model proved to be more robust to noise and worked better compared to using an imperfect parametric distortion model. In the presence of noise, the mean relative errors in iodine concentration estimation were 11.82% (ANN distortion model) and 16.72% (parametric model). With distortion correction, the mean relative error in iodine concentration estimation was improved by 50% over direct decomposition from distorted data. With our joint bilateral filtration, the resulting material image quality and iodine detectability as defined by the contrast-to-noise ratio were greatly enhanced allowing iodine concentrations as low as 2 mg/ml to be detected. Future work will be dedicated to experimental evaluation of our ANN-based methods using 3D-printed phantoms.

  7. Intensity-hue-saturation-based image fusion using iterative linear regression

    NASA Astrophysics Data System (ADS)

    Cetin, Mufit; Tepecik, Abdulkadir

    2016-10-01

    The image fusion process basically produces a high-resolution image by combining the superior features of a low-resolution spatial image and a high-resolution panchromatic image. Despite its common usage due to its fast computing capability and high sharpening ability, the intensity-hue-saturation (IHS) fusion method may cause some color distortions, especially when a large number of gray value differences exist among the images to be combined. This paper proposes a spatially adaptive IHS (SA-IHS) technique to avoid these distortions by automatically adjusting the exact spatial information to be injected into the multispectral image during the fusion process. The SA-IHS method essentially suppresses the effects of those pixels that cause the spectral distortions by assigning weaker weights to them and avoiding a large number of redundancies on the fused image. The experimental database consists of IKONOS images, and the experimental results both visually and statistically prove the enhancement of the proposed algorithm when compared with the several other IHS-like methods such as IHS, generalized IHS, fast IHS, and generalized adaptive IHS.

  8. Characterization of spatial distortion in a 0.35 T MRI-guided radiotherapy system

    NASA Astrophysics Data System (ADS)

    Ginn, John S.; Agazaryan, Nzhde; Cao, Minsong; Baharom, Umar; Low, Daniel A.; Yang, Yingli; Gao, Yu; Hu, Peng; Lee, Percy; Lamb, James M.

    2017-06-01

    Spatial distortion results in image deformation that can degrade accurate targeting and dose calculations in MRI-guided adaptive radiotherapy. The authors present a comprehensive assessment of a 0.35 T MRI-guided radiotherapy system’s spatial distortion using two commercially-available phantoms with regularly spaced markers. Images of the spatial integrity phantoms were acquired using five clinical protocols on the MRI-guided radiotherapy machine with the radiotherapy gantry positioned at various angles. Software was developed to identify and localize all phantom markers using a template matching approach. Rotational and translational corrections were implemented to account for imperfect phantom alignment. Measurements were made to assess uncertainties arising from susceptibility artifacts, image noise, and phantom construction accuracy. For a clinical 3D imaging protocol with a 1.5 mm reconstructed slice thickness, 100% of spheres within a 50 mm radius of isocenter had a 3D deviation of 1 mm or less. Of the spheres within 100 mm of isocenter, 99.9% had a 3D deviation less than 1 mm. 94.8% and 100% of the spheres within 175 mm were found to be within 1 mm and 2 mm of the expected positions in 3D respectively. Maximum 3D distortions within 50 mm, 100 mm and 175 mm of isocenter were 0.76 mm, 1.15 mm and 1.88 mm respectively. Distortions present in images acquired using the real-time imaging sequence were less than 1 mm for 98.1% and 95.0% of the cylinders within 50 mm and 100 mm of isocenter. The corresponding maximum distortion in these regions was 1.10 mm and 1.67 mm. These results may be used to inform appropriate planning target volume (PTV) margins for 0.35 T MRI-guided radiotherapy. Observed levels of spatial distortion should be explicitly considered when using PTV margins of 3 mm or less or in the case of targets displaced from isocenter by more than 50 mm.

  9. Removing Distortion of Periapical Radiographs in Dental Digital Radiography Using Embedded Markers in an External frame.

    PubMed

    Kafieh, Rahele; Shahamoradi, Mahdi; Hekmatian, Ehsan; Foroohandeh, Mehrdad; Emamidoost, Mostafa

    2012-10-01

    To carry out in vivo and in vitro comparative pilot study to evaluate the preciseness of a newly proposed digital dental radiography setup. This setup was based on markers placed on an external frame to eliminate the measurement errors due to incorrect geometry in relative positioning of cone, teeth and the sensor. Five patients with previous panoramic images were selected to undergo the proposed periapical digital imaging for in vivo phase. For in vitro phase, 40 extracted teeth were replanted in dry mandibular sockets and periapical digital images were prepared. The standard reference for real scales of the teeth were obtained through extracted teeth measurements for in vitro application and were calculated through panoramic imaging for in vivo phases. The proposed image processing thechnique was applied on periapical digital images to distinguish the incorrect geometry. The recognized error was inversely applied on the image and the modified images were compared to the correct values. The measurement findings after the distortion removal were compared to our gold standards (results of panoramic imaging or measurements from extracted teeth) and showed the accuracy of 96.45% through in vivo examinations and 96.0% through in vitro tests. The proposed distortion removal method is perfectly able to identify the possible inaccurate geometry during image acquisition and is capable of applying the inverse transform to the distorted radiograph to obtain the correctly modified image. This can be really helpful in applications like root canal therapy, implant surgical procedures and digital subtraction radiography, which are essentially dependent on precise measurements.

  10. Removing Distortion of Periapical Radiographs in Dental Digital Radiography Using Embedded Markers in an External frame

    PubMed Central

    Kafieh, Rahele; Shahamoradi, Mahdi; Hekmatian, Ehsan; Foroohandeh, Mehrdad; Emamidoost, Mostafa

    2012-01-01

    To carry out in vivo and in vitro comparative pilot study to evaluate the preciseness of a newly proposed digital dental radiography setup. This setup was based on markers placed on an external frame to eliminate the measurement errors due to incorrect geometry in relative positioning of cone, teeth and the sensor. Five patients with previous panoramic images were selected to undergo the proposed periapical digital imaging for in vivo phase. For in vitro phase, 40 extracted teeth were replanted in dry mandibular sockets and periapical digital images were prepared. The standard reference for real scales of the teeth were obtained through extracted teeth measurements for in vitro application and were calculated through panoramic imaging for in vivo phases. The proposed image processing thechnique was applied on periapical digital images to distinguish the incorrect geometry. The recognized error was inversely applied on the image and the modified images were compared to the correct values. The measurement findings after the distortion removal were compared to our gold standards (results of panoramic imaging or measurements from extracted teeth) and showed the accuracy of 96.45% through in vivo examinations and 96.0% through in vitro tests. The proposed distortion removal method is perfectly able to identify the possible inaccurate geometry during image acquisition and is capable of applying the inverse transform to the distorted radiograph to obtain the correctly modified image. This can be really helpful in applications like root canal therapy, implant surgical procedures and digital subtraction radiography, which are essentially dependent on precise measurements. PMID:23724372

  11. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    PubMed

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  12. Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.

    PubMed

    Aliotta, Eric; Moulin, Kévin; Ennis, Daniel B

    2018-02-01

    To design and evaluate eddy current-nulled convex optimized diffusion encoding (EN-CODE) gradient waveforms for efficient diffusion tensor imaging (DTI) that is free of eddy current-induced image distortions. The EN-CODE framework was used to generate diffusion-encoding waveforms that are eddy current-compensated. The EN-CODE DTI waveform was compared with the existing eddy current-nulled twice refocused spin echo (TRSE) sequence as well as monopolar (MONO) and non-eddy current-compensated CODE in terms of echo time (TE) and image distortions. Comparisons were made in simulations, phantom experiments, and neuro imaging in 10 healthy volunteers. The EN-CODE sequence achieved eddy current compensation with a significantly shorter TE than TRSE (78 versus 96 ms) and a slightly shorter TE than MONO (78 versus 80 ms). Intravoxel signal variance was lower in phantoms with EN-CODE than with MONO (13.6 ± 11.6 versus 37.4 ± 25.8) and not different from TRSE (15.1 ± 11.6), indicating good robustness to eddy current-induced image distortions. Mean fractional anisotropy values in brain edges were also significantly lower with EN-CODE than with MONO (0.16 ± 0.01 versus 0.24 ± 0.02, P < 1 x 10 -5 ) and not different from TRSE (0.16 ± 0.01 versus 0.16 ± 0.01, P = nonsignificant). The EN-CODE sequence eliminated eddy current-induced image distortions in DTI with a TE comparable to MONO and substantially shorter than TRSE. Magn Reson Med 79:663-672, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. [Body dysmorphic disorder: clinical aspects, nosological dimensions and controversies with anorexia nervosa].

    PubMed

    Behar, Rosa; Arancibia, Marcelo; Heitzer, Cristóbal; Meza, Nicolás

    2016-05-01

    There is strong evidence about the co-existence of body dysmorphic disorder (BDD) and eating disorders (ED), particularly with anorexia nervosa (AN). An exhaustive review of the specialised literature regarding these disorders was carried out. The results show that their co-occurrence implies a more complex diagnosis and treatment, a more severe clinical symptomatology and a worse prognosis and outcome. Both disorders display common similarities, differences and comorbidities, which allow authors to classify them in different nosological spectra (somatomorphic, anxious, obsessive-compulsive, affective and psychotic). Their crossover involves higher levels of body dissatisfaction and body image distortion, depression, suicidal tendency, personality disorders, substance use/abuse, obsessive-compulsive disorder, social phobia, alexithymia and childhood abuse or neglect background. Treatment including cognitive-behavioral psychotherapy and selective reuptake serotonin inhibitors are effective for both, BDD and ED; nevertheless, plastic surgery could exacerbate BDD. Clinical traits of BDD must be systematically detected in patients suffering from ED and vice versa.

  14. Hologram production and representation for corrected image

    NASA Astrophysics Data System (ADS)

    Jiao, Gui Chao; Zhang, Rui; Su, Xue Mei

    2015-12-01

    In this paper, a CCD sensor device is used to record the distorted homemade grid images which are taken by a wide angle camera. The distorted images are corrected by using methods of position calibration and correction of gray with vc++ 6.0 and opencv software. Holography graphes for the corrected pictures are produced. The clearly reproduced images are obtained where Fresnel algorithm is used in graph processing by reducing the object and reference light from Fresnel diffraction to delete zero-order part of the reproduced images. The investigation is useful in optical information processing and image encryption transmission.

  15. Rectification of curved document images based on single view three-dimensional reconstruction.

    PubMed

    Kang, Lai; Wei, Yingmei; Jiang, Jie; Bai, Liang; Lao, Songyang

    2016-10-01

    Since distortions in camera-captured document images significantly affect the accuracy of optical character recognition (OCR), distortion removal plays a critical role for document digitalization systems using a camera for image capturing. This paper proposes a novel framework that performs three-dimensional (3D) reconstruction and rectification of camera-captured document images. While most existing methods rely on additional calibrated hardware or multiple images to recover the 3D shape of a document page, or make a simple but not always valid assumption on the corresponding 3D shape, our framework is more flexible and practical since it only requires a single input image and is able to handle a general locally smooth document surface. The main contributions of this paper include a new iterative refinement scheme for baseline fitting from connected components of text line, an efficient discrete vertical text direction estimation algorithm based on convex hull projection profile analysis, and a 2D distortion grid construction method based on text direction function estimation using 3D regularization. In order to examine the performance of our proposed method, both qualitative and quantitative evaluation and comparison with several recent methods are conducted in our experiments. The experimental results demonstrate that the proposed method outperforms relevant approaches for camera-captured document image rectification, in terms of improvements on both visual distortion removal and OCR accuracy.

  16. Overestimation of body size in eating disorders and its association to body-related avoidance behavior.

    PubMed

    Vossbeck-Elsebusch, Anna N; Waldorf, Manuel; Legenbauer, Tanja; Bauer, Anika; Cordes, Martin; Vocks, Silja

    2015-06-01

    Body-related avoidance behavior, e.g., not looking in the mirror, is a common feature of eating disorders. It is assumed that it leads to insufficient feedback concerning one's own real body form and might thus contribute to distorted mental representation of one's own body. However, this assumption still lacks empirical foundation. Therefore, the aim of the present study was to examine the relationship between misperception of one's own body and body-related avoidance behavior in N = 78 female patients with Bulimia nervosa and eating disorder not otherwise specified. Body-size misperception was assessed using a digital photo distortion technique based on an individual picture of each participant which was taken in a standardized suit. In a regression analysis with body-related avoidance behavior, body mass index and weight and shape concerns as predictors, only body-related avoidance behavior significantly contributed to the explanation of body-size overestimation. This result supports the theoretical assumption that body-related avoidance behavior makes body-size overestimation more likely.

  17. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.

    PubMed

    Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C

    2014-02-01

    It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

  18. Comparative study of attitudes to eating between male and female students in the People's Republic of China.

    PubMed

    Makino, M; Hashizume, M; Tsuboi, K; Yasushi, M; Dennerstein, L

    2006-09-01

    This study was conducted to compare eating attitudes and lifestyles of male and female college students in China (Beijing). The subjects of this study consisted of 217 male and 177 female college students. They were asked to fill out the Eating Attitudes Test-26 (EAT-26) and a lifestyle questionnaire. The percentages of those above the cutoff point on the EAT-26 for abnormal eating attitudes were 4.7% of male and 6.2% of female students. Body perception of being fat (distorted body image) was the factor most associated with abnormal eating attitudes. Weight related concern was prevalent amongst the Chinese students. This suggests that the culture of the beauty of thinness is common among young students in Beijing, particularly female students.

  19. The psychoanalyst of the adolescent.

    PubMed

    Laufer, M

    1996-01-01

    The adolescent who comes for psychoanalytic treatment has probably experienced a developmental breakdown-a rejection of his or her body and a distorted image of himself or herself as being male or female. A critical requisite for work with such adolescents is an understanding of one's own adolescent development. The internal freedom of the psychoanalyst is an essential ingredient in the treatment of the adolescent. This means that the psychoanalyst of the adolescent can separate his own sexual life and thoughts from what is lived out in the analytic sessions and thus can ensure that the treatment will confront whatever is essential and that he will avoid deriving gratification from the treatment process through taking over the adolescent's body or feeling that he is secretly sharing the intimacies of the patient.

  20. Spread spectrum image watermarking based on perceptual quality metric.

    PubMed

    Zhang, Fan; Liu, Wenyu; Lin, Weisi; Ngan, King Ngi

    2011-11-01

    Efficient image watermarking calls for full exploitation of the perceptual distortion constraint. Second-order statistics of visual stimuli are regarded as critical features for perception. This paper proposes a second-order statistics (SOS)-based image quality metric, which considers the texture masking effect and the contrast sensitivity in Karhunen-Loève transform domain. Compared with the state-of-the-art metrics, the quality prediction by SOS better correlates with several subjectively rated image databases, in which the images are impaired by the typical coding and watermarking artifacts. With the explicit metric definition, spread spectrum watermarking is posed as an optimization problem: we search for a watermark to minimize the distortion of the watermarked image and to maximize the correlation between the watermark pattern and the spread spectrum carrier. The simple metric guarantees the optimal watermark a closed-form solution and a fast implementation. The experiments show that the proposed watermarking scheme can take full advantage of the distortion constraint and improve the robustness in return.

  1. Localized lossless authentication watermark (LAW)

    NASA Astrophysics Data System (ADS)

    Celik, Mehmet U.; Sharma, Gaurav; Tekalp, A. Murat; Saber, Eli S.

    2003-06-01

    A novel framework is proposed for lossless authentication watermarking of images which allows authentication and recovery of original images without any distortions. This overcomes a significant limitation of traditional authentication watermarks that irreversibly alter image data in the process of watermarking and authenticate the watermarked image rather than the original. In particular, authenticity is verified before full reconstruction of the original image, whose integrity is inferred from the reversibility of the watermarking procedure. This reduces computational requirements in situations when either the verification step fails or the zero-distortion reconstruction is not required. A particular instantiation of the framework is implemented using a hierarchical authentication scheme and the lossless generalized-LSB data embedding mechanism. The resulting algorithm, called localized lossless authentication watermark (LAW), can localize tampered regions of the image; has a low embedding distortion, which can be removed entirely if necessary; and supports public/private key authentication and recovery options. The effectiveness of the framework and the instantiation is demonstrated through examples.

  2. Perception of facial esthetics by native Chinese participants by using manipulated digital imagery techniques.

    PubMed

    Maganzini, A L; Tseng, J Y; Epstein, J Z

    2000-10-01

    This investigation utilized a manipulated digital video imaging model to elicit profile facial esthetics preferences in a lay population of native Chinese participants from Beijing. A series of 4 distinct digitized distortions were constructed from an initial lateral cephalogram. These images represented skeletal or dental changes that differed by 2 standard deviations from the normative values for Chinese adults. Video morphing then created soft-tissue profiles. A series of nonparametric tests validated the digitized distortion model. The native Chinese participants in this sample found that the profile distortions most acceptable were the "flatter", or bimaxillary retrusive distortion, in the male stimulus face and the "anterior divergent", or maxillary deficiency, in the female stimulus face.

  3. On relative distortion in fingerprint comparison.

    PubMed

    Kalka, Nathan D; Hicklin, R Austin

    2014-11-01

    When fingerprints are deposited, non-uniform pressure in conjunction with the inherent elasticity of friction ridge skin often causes linear and non-linear distortions in the ridge and valley structure. The effects of these distortions must be considered during analysis of fingerprint images. Even when individual prints are not notably distorted, relative distortion between two prints can have a serious impact on comparison. In this paper we discuss several metrics for quantifying and visualizing linear and non-linear fingerprint deformations, and software tools to assist examiners in accounting for distortion in fingerprint comparisons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    PubMed

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.

  5. Mitigating Effects of Missing Data for SAR Coherent Images

    DOE PAGES

    Musgrove, Cameron H.; West, James C.

    2017-01-01

    Missing samples within synthetic aperture radar data result in image distortions. For coherent data products, such as coherent change detection and interferometric processing, the image distortion can be devastating to these second order products, resulting in missed detections and inaccurate height maps. Earlier approaches to repair the coherent data products focus upon reconstructing the missing data samples. This study demonstrates that reconstruction is not necessary to restore the quality of the coherent data products.

  6. Three-dimensional passive sensing photon counting for object classification

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  7. Laser Illuminated Imaging: Multiframe Beam Tilt Tracking and Deconvolution Algorithm

    DTIC Science & Technology

    2013-03-01

    same way with atmospheric turbulence resulting in tilt, blur and other higher order distortions on the returned image. Using the Fourier shift...of the target image with distortions such as speckle, blurring and defocus mitigated via a multiframe processing strategy. Atmospheric turbulence ...propagating a beam in a turbulent atmosphere with a beam width at the target is smaller than the field of view (FOV) of the receiver optics. 1.2

  8. Quantitative metrics for evaluating parallel acquisition techniques in diffusion tensor imaging at 3 Tesla.

    PubMed

    Ardekani, Siamak; Selva, Luis; Sayre, James; Sinha, Usha

    2006-11-01

    Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here. Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error). The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index. Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.

  9. Gravitational Lensing by Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Tyson, J.; Murdin, P.

    2000-11-01

    CLUSTERS OF GALAXIES are massive and relatively rare objects containing hundreds of galaxies. Their huge mass—dominated by DARK MATTER—bends light from all background objects, systematically distorting the images of thousands of distant galaxies (shear). This observed gravitational lens distortion can be inverted to produce an `image' of the mass in the foreground cluster of galaxies. Most of the...

  10. Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes.

    PubMed

    Wighton, Paul; Lee, Tim K; Lui, Harvey; McLean, David; Atkins, M Stella

    2011-08-01

    We present a method for calibrating low-cost digital dermoscopes that corrects for color and inconsistent lighting and also corrects for chromatic aberration. Chromatic aberration is a form of radial distortion that often occurs in inexpensive digital dermoscopes and creates red and blue halo-like effects on edges. Being radial in nature, distortions due to chromatic aberration are not constant across the image, but rather vary in both magnitude and direction. As a result, distortions are not only visually distracting but could also mislead automated characterization techniques. Two low-cost dermoscopes, based on different consumer-grade cameras, were tested. Color is corrected by imaging a reference and applying singular value decomposition to determine the transformation required to ensure accurate color reproduction. Lighting is corrected by imaging a uniform surface and creating lighting correction maps. Chromatic aberration is corrected using a second-order radial distortion model. Our results for color and lighting calibration are consistent with previously published results, while distortions due to chromatic aberration can be reduced by 42-47% in the two systems considered. The disadvantages of inexpensive dermoscopy can be quickly substantially mitigated with a suitable calibration procedure. © 2011 John Wiley & Sons A/S.

  11. Capturing and stitching images with a large viewing angle and low distortion properties for upper gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Cheng; Chung, Chien-Kai; Lai, Jyun-Yi; Chang, Han-Chao; Hsu, Feng-Yi

    2013-06-01

    Upper gastrointestinal endoscopies are primarily performed to observe the pathologies of the esophagus, stomach, and duodenum. However, when an endoscope is pushed into the esophagus or stomach by the physician, the organs behave similar to a balloon being gradually inflated. Consequently, their shapes and depth-of-field of images change continually, preventing thorough examination of the inflammation or anabrosis position, which delays the curing period. In this study, a 2.9-mm image-capturing module and a convoluted mechanism was incorporated into the tube like a standard 10- mm upper gastrointestinal endoscope. The scale-invariant feature transform (SIFT) algorithm was adopted to implement disease feature extraction on a koala doll. Following feature extraction, the smoothly varying affine stitching (SVAS) method was employed to resolve stitching distortion problems. Subsequently, the real-time splice software developed in this study was embedded in an upper gastrointestinal endoscope to obtain a panoramic view of stomach inflammation in the captured images. The results showed that the 2.9-mm image-capturing module can provide approximately 50 verified images in one spin cycle, a viewing angle of 120° can be attained, and less than 10% distortion can be achieved in each image. Therefore, these methods can solve the problems encountered when using a standard 10-mm upper gastrointestinal endoscope with a single camera, such as image distortion, and partial inflammation displays. The results also showed that the SIFT algorithm provides the highest correct matching rate, and the SVAS method can be employed to resolve the parallax problems caused by stitching together images of different flat surfaces.

  12. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Meyer, J; Sandison, G

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database weremore » included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.« less

  13. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  14. An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications.

    PubMed

    Khaleghi, A; Chávez-Santiago, R; Balasingham, I

    2012-01-01

    Ultra wideband (UWB) technology has big potential for applications in wireless body area networks (WBANs). The inherent characteristics of UWB signals make them suitable for the wireless interface of medical sensors. In particular, implanted medical wireless sensors for monitoring physiological parameters, automatic drug provision, etc. can benefit greatly from this ultra low power (ULP) interface. As with any other wireless technology, accurate knowledge of the channel is necessary for the proper design of communication systems. Only a few models that describe the radio propagation inside the human body have been published. Moreover, there is no comprehensive UWB in-body propagation model that includes the frequency-dependent attenuation. Hence, this paper extends a statistical model for UWB propagation channels inside the human chest in the 1-6 GHz frequency range by including the frequency-dependent attenuation. This is done by modeling the spectrum shape of distorted pulses at different depths inside the human chest. The distortion of the pulse was obtained through numerical simulations using a voxel representation of the human body. We propose a mathematical expression for the spectrum shape of the distorted pulses that act as a window function to reproduce the effects of frequency-dependent attenuation.

  15. High Efficiency, Low Distortion 3D Diffusion Tensor Imaging with Variable Density Spiral Fast Spin Echoes (3D DW VDS RARE)

    PubMed Central

    Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.

    2009-01-01

    We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618

  16. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  17. Deferred slanted-edge analysis: a unified approach to spatial frequency response measurement on distorted images and color filter array subsets.

    PubMed

    van den Bergh, F

    2018-03-01

    The slanted-edge method of spatial frequency response (SFR) measurement is usually applied to grayscale images under the assumption that any distortion of the expected straight edge is negligible. By decoupling the edge orientation and position estimation step from the edge spread function construction step, it is shown in this paper that the slanted-edge method can be extended to allow it to be applied to images suffering from significant geometric distortion, such as produced by equiangular fisheye lenses. This same decoupling also allows the slanted-edge method to be applied directly to Bayer-mosaicked images so that the SFR of the color filter array subsets can be measured directly without the unwanted influence of demosaicking artifacts. Numerical simulation results are presented to demonstrate the efficacy of the proposed deferred slanted-edge method in relation to existing methods.

  18. The perceptual homunculus: the perception of the relative proportions of the human body.

    PubMed

    Linkenauger, Sally A; Wong, Hong Yu; Geuss, Michael; Stefanucci, Jeanine K; McCulloch, Kathleen C; Bülthoff, Heinrich H; Mohler, Betty J; Proffitt, Dennis R

    2015-02-01

    Given that observing one's body is ubiquitous in experience, it is natural to assume that people accurately perceive the relative sizes of their body parts. This assumption is mistaken. In a series of studies, we show that there are dramatic systematic distortions in the perception of bodily proportions, as assessed by visual estimation tasks, where participants were asked to compare the lengths of two body parts. These distortions are not evident when participants estimate the extent of a body part relative to a noncorporeal object or when asked to estimate noncorporal objects that are the same length as their body parts. Our results reveal a radical asymmetry in the perception of corporeal and noncorporeal relative size estimates. Our findings also suggest that people visually perceive the relative size of their body parts as a function of each part's relative tactile sensitivity and physical size.

  19. Cognitive Distortions Associated with Imagination of the Thin Ideal: Validation of the Thought-Shape Fusion Body Questionnaire (TSF-B)

    PubMed Central

    Wyssen, Andrea; Debbeler, Luka J.; Meyer, Andrea H.; Coelho, Jennifer S.; Humbel, Nadine; Schuck, Kathrin; Lennertz, Julia; Messerli-Bürgy, Nadine; Biedert, Esther; Trier, Stephan N.; Isenschmid, Bettina; Milos, Gabriella; Whinyates, Katherina; Schneider, Silvia; Munsch, Simone

    2017-01-01

    Thought-shape fusion (TSF) describes the experience of body-related cognitive distortions associated with eating disorder (ED) pathology. In the laboratory TSF has been activated by thoughts about fattening/forbidden foods and thin ideals. This study aims at validating a questionnaire to assess the trait susceptibility to TSF (i.e., body-related cognitive distortions) associated with the imagination of thin ideals, and developing an adapted version of the original TSF trait questionnaire, the Thought-Shape Fusion Body Questionnaire (TSF-B). Healthy control women (HC, n = 317) and women diagnosed with subthreshold and clinical EDs (n = 243) completed an online-questionnaire. The factor structure of the TSF-B questionnaire was examined using exploratory (EFA) and subsequent confirmatory factor analysis (CFA). EFA pointed to a two-factor solution, confirmed by CFA. Subscale 1 was named Imagination of thin ideals, containing five items referring to the imagination of female thin ideals. Subscale 2 was named Striving for own thin ideal, with seven items about pursuing/abandoning attempts to reach one’s own thin ideal. The total scale and both subscales showed good convergent validity, excellent reliability, and good ability to discriminate between individuals with subthreshold/clinical EDs and HCs. Results indicate that cognitive distortions are also related to the imagination of thin ideals, and are associated with ED pathology. With two subscales, the TSF-B trait questionnaire appropriately measures this construct. Future studies should clarify whether TSF-B is predictive for the development and course of EDs. Assessing cognitive distortions with the TSF-B questionnaire could improve understanding of EDs and stimulate the development of cognitively oriented interventions. Clinical Trial Registration Number: DRKS-ID: DRKS00005709. PMID:29312059

  20. Medical-grade Sterilizable Target for Fluid-immersed Fetoscope Optical Distortion Calibration.

    PubMed

    Nikitichev, Daniil I; Shakir, Dzhoshkun I; Chadebecq, François; Tella, Marcel; Deprest, Jan; Stoyanov, Danail; Ourselin, Sébastien; Vercauteren, Tom

    2017-02-23

    We have developed a calibration target for use with fluid-immersed endoscopes within the context of the GIFT-Surg (Guided Instrumentation for Fetal Therapy and Surgery) project. One of the aims of this project is to engineer novel, real-time image processing methods for intra-operative use in the treatment of congenital birth defects, such as spina bifida and the twin-to-twin transfusion syndrome. The developed target allows for the sterility-preserving optical distortion calibration of endoscopes within a few minutes. Good optical distortion calibration and compensation are important for mitigating undesirable effects like radial distortions, which not only hamper accurate imaging using existing endoscopic technology during fetal surgery, but also make acquired images less suitable for potentially very useful image computing applications, like real-time mosaicing. In this paper proposes a novel fabrication method to create an affordable, sterilizable calibration target suitable for use in a clinical setup. This method involves etching a calibration pattern by laser cutting a sandblasted stainless steel sheet. This target was validated using the camera calibration module provided by OpenCV, a state-of-the-art software library popular in the computer vision community.

  1. Landsat real-time processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.L.

    A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less

  2. Medical-grade Sterilizable Target for Fluid-immersed Fetoscope Optical Distortion Calibration

    PubMed Central

    Chadebecq, François; Tella, Marcel; Deprest, Jan; Stoyanov, Danail; Ourselin, Sébastien; Vercauteren, Tom

    2017-01-01

    We have developed a calibration target for use with fluid-immersed endoscopes within the context of the GIFT-Surg (Guided Instrumentation for Fetal Therapy and Surgery) project. One of the aims of this project is to engineer novel, real-time image processing methods for intra-operative use in the treatment of congenital birth defects, such as spina bifida and the twin-to-twin transfusion syndrome. The developed target allows for the sterility-preserving optical distortion calibration of endoscopes within a few minutes. Good optical distortion calibration and compensation are important for mitigating undesirable effects like radial distortions, which not only hamper accurate imaging using existing endoscopic technology during fetal surgery, but also make acquired images less suitable for potentially very useful image computing applications, like real-time mosaicing. In this paper proposes a novel fabrication method to create an affordable, sterilizable calibration target suitable for use in a clinical setup. This method involves etching a calibration pattern by laser cutting a sandblasted stainless steel sheet. This target was validated using the camera calibration module provided by OpenCV, a state-of-the-art software library popular in the computer vision community. PMID:28287588

  3. a Study of the Effects of Processing Chemistry on the Holographic Image Space.

    NASA Astrophysics Data System (ADS)

    Kocher, Clive Joseph

    Available from UMI in association with The British Library. Processing methods for reflection and transmission holograms were evaluated with a view to minimising distortion in the images of small, metallic, near field subjects, whilst retaining optimum quality. The study was limited to recordings made with the HeNe laser (633 nm) in conjunction with the Agfa Gevaert 8E75 HD silver halide emulsion on glass or film support (5^{' '} x 4^{' '} format). Simple ray diagrams were used to help predict angular distortion arising from emulsion shrinkage for a two-dimensional model. The main conclusions are: (a) Serious distortion of the order of several millimetres, and loss of resolution will occur in the images of reflection holograms unless careful attention is given to processing procedures. Evidence supports the hypothesis that shrinkage due to processing causes the fringe system to collapse with a resultant change in inclination angle, and hence a distortion of the reconstructed image. Minimum distortion occurs with a laser reconstructed hologram processed in a high tanning developer and rehalogenating bleach, none being detected under the test conditions. (b) The same problem was not apparent for the transmission hologram due to a different fringe orientation, and within the limitations of the measuring system, no distortion was detected for any processing system. Comparative tests were made to evaluate the differences in performance for the Agfa 8E75 HD emulsion on plate and film support. Results show a significant increase in speed for film (as high as times4) and shrinkage (~3%), under all processing conditions. The advantages of using Phenidone based developers are shown. The report also includes a comprehensive background theory section covering basic concepts, silver halide recording material, holographic processing chemistry, distortion in holograms and pulsed laser holography. A review of previous work on phase holograms is given. Although primarily intended for measurement, this report contains useful information of benefit to display holography.

  4. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.

  5. MRI-Related Geometric Distortions in Stereotactic Radiotherapy Treatment Planning: Evaluation and Dosimetric Impact.

    PubMed

    Pappas, Eleftherios P; Alshanqity, Mukhtar; Moutsatsos, Argyris; Lababidi, Hani; Alsafi, Khalid; Georgiou, Konstantinos; Karaiskos, Pantelis; Georgiou, Evangelos

    2017-12-01

    In view of their superior soft tissue contrast compared to computed tomography, magnetic resonance images are commonly involved in stereotactic radiosurgery/radiotherapy applications for target delineation purposes. It is known, however, that magnetic resonance images are geometrically distorted, thus deteriorating dose delivery accuracy. The present work focuses on the assessment of geometric distortion inherent in magnetic resonance images used in stereotactic radiosurgery/radiotherapy treatment planning and attempts to quantitively evaluate the consequent impact on dose delivery. The geometric distortions for 3 clinical magnetic resonance protocols (at both 1.5 and 3.0 T) used for stereotactic radiosurgery/radiotherapy treatment planning were evaluated using a recently proposed phantom and methodology. Areas of increased distortion were identified at the edges of the imaged volume which was comparable to a brain scan. Although mean absolute distortion did not exceed 0.5 mm on any spatial axis, maximum detected control point disposition reached 2 mm. In an effort to establish what could be considered as acceptable geometric uncertainty, highly conformal plans were utilized to irradiate targets of different diameters (5-50 mm). The targets were mispositioned by 0.5 up to 3 mm, and dose-volume histograms and plan quality indices clinically used for plan evaluation and acceptance were derived and used to investigate the effect of geometrical uncertainty (distortion) on dose delivery accuracy and plan quality. The latter was found to be strongly dependent on target size. For targets less than 20 mm in diameter, a spatial disposition of the order of 1 mm could significantly affect (>5%) plan acceptance/quality indices. For targets with diameter greater than 2 cm, the corresponding disposition was found greater than 1.5 mm. Overall results of this work suggest that efficacy of stereotactic radiosurgery/radiotherapy applications could be compromised in case of very small targets lying distant from the scanner's isocenter (eg, the periphery of the brain).

  6. [Design of a Component and Transmission Imaging Spectrometer].

    PubMed

    Sun, Bao-peng; Zhang, Yi; Yue, Jiang; Han, Jing; Bai, Lian-fa

    2015-05-01

    In the reflection-based imaging spectrometer, multiple reflection(diffraction) produces stray light and it is difficult to assemble. To address that, a high performance transmission spectral imaging system based on general optical components was developed. On the basis of simple structure, the system is easy to assemble. And it has wide application and low cost compared to traditional imaging spectrometers. All components in the design can be replaced according to different application situations, having high degree of freedom. In order to reduce the influence of stray light, a method based on transmission was introduced. Two sets of optical systems with different objective lenses were simulated; the parameters such as distortion, MTF and aberration.were analyzed and optimized in the ZEMAX software. By comparing the performance of system with different objective len 25 and 50 mm, it can be concluded that the replacement of telescope lens has little effect on imaging quality of whole system. An imaging spectrometer is developed successfully according design parameters. The telescope lens uses double Gauss structures, which is beneficial to reduce field curvature and distortion. As the craftsmanship of transmission-type plane diffraction grating is mature, it can be used without modification and it is easy to assemble, so it is used as beam-split. component of the imaging spectrometer. In addition, the real imaging spectrometer was tested for spectral resolution and distortion. The result demonstrates that the system has good ability in distortion control, and spectral resolution is 2 nm. These data satisfy the design requirement, and obtained spectrum of deuterium lamp through calibrated system are ideal results.

  7. Visual information processing of faces in body dysmorphic disorder.

    PubMed

    Feusner, Jamie D; Townsend, Jennifer; Bystritsky, Alexander; Bookheimer, Susan

    2007-12-01

    Body dysmorphic disorder (BDD) is a severe psychiatric condition in which individuals are preoccupied with perceived appearance defects. Clinical observation suggests that patients with BDD focus on details of their appearance at the expense of configural elements. This study examines abnormalities in visual information processing in BDD that may underlie clinical symptoms. To determine whether patients with BDD have abnormal patterns of brain activation when visually processing others' faces with high, low, or normal spatial frequency information. Case-control study. University hospital. Twelve right-handed, medication-free subjects with BDD and 13 control subjects matched by age, sex, and educational achievement. Intervention Functional magnetic resonance imaging while performing matching tasks of face stimuli. Stimuli were neutral-expression photographs of others' faces that were unaltered, altered to include only high spatial frequency visual information, or altered to include only low spatial frequency visual information. Blood oxygen level-dependent functional magnetic resonance imaging signal changes in the BDD and control groups during tasks with each stimulus type. Subjects with BDD showed greater left hemisphere activity relative to controls, particularly in lateral prefrontal cortex and lateral temporal lobe regions for all face tasks (and dorsal anterior cingulate activity for the low spatial frequency task). Controls recruited left-sided prefrontal and dorsal anterior cingulate activity only for the high spatial frequency task. Subjects with BDD demonstrate fundamental differences from controls in visually processing others' faces. The predominance of left-sided activity for low spatial frequency and normal faces suggests detail encoding and analysis rather than holistic processing, a pattern evident in controls only for high spatial frequency faces. These abnormalities may be associated with apparent perceptual distortions in patients with BDD. The fact that these findings occurred while subjects viewed others' faces suggests differences in visual processing beyond distortions of their own appearance.

  8. Oxygen octahedra picker: A software tool to extract quantitative information from STEM images.

    PubMed

    Wang, Yi; Salzberger, Ute; Sigle, Wilfried; Eren Suyolcu, Y; van Aken, Peter A

    2016-09-01

    In perovskite oxide based materials and hetero-structures there are often strong correlations between oxygen octahedral distortions and functionality. Thus, atomistic understanding of the octahedral distortion, which requires accurate measurements of atomic column positions, will greatly help to engineer their properties. Here, we report the development of a software tool to extract quantitative information of the lattice and of BO6 octahedral distortions from STEM images. Center-of-mass and 2D Gaussian fitting methods are implemented to locate positions of individual atom columns. The precision of atomic column distance measurements is evaluated on both simulated and experimental images. The application of the software tool is demonstrated using practical examples. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy

    PubMed Central

    Cha, Jae Won; Ballesta, Jerome; So, Peter T.C.

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration. PMID:20799824

  10. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

    PubMed

    Cha, Jae Won; Ballesta, Jerome; So, Peter T C

    2010-01-01

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

  11. Perceptual Optimization of DCT Color Quantization Matrices

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.

  12. Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.

    PubMed

    Sun, Zhe; Zheng, Desheng; Baldelli, Steven

    2017-02-21

    A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.

  13. Limited distortion in LSB steganography

    NASA Astrophysics Data System (ADS)

    Kim, Younhee; Duric, Zoran; Richards, Dana

    2006-02-01

    It is well known that all information hiding methods that modify the least significant bits introduce distortions into the cover objects. Those distortions have been utilized by steganalysis algorithms to detect that the objects had been modified. It has been proposed that only coefficients whose modification does not introduce large distortions should be used for embedding. In this paper we propose an effcient algorithm for information hiding in the LSBs of JPEG coefficients. Our algorithm uses parity coding to choose the coefficients whose modifications introduce minimal additional distortion. We derive the expected value of the additional distortion as a function of the message length and the probability distribution of the JPEG quantization errors of cover images. Our experiments show close agreement between the theoretical prediction and the actual additional distortion.

  14. Least-Squares Camera Calibration Including Lens Distortion and Automatic Editing of Calibration Points

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.

    1998-01-01

    A method is described for calibrating cameras including radial lens distortion, by using known points such as those measured from a calibration fixture. The distortion terms are relative to the optical axis, which is included in the model so that it does not have to be orthogonal to the image sensor plane.

  15. Visual quality analysis for images degraded by different types of noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Ieremeyev, Oleg I.; Egiazarian, Karen O.; Astola, Jaakko T.

    2013-02-01

    Modern visual quality metrics take into account different peculiarities of the Human Visual System (HVS). One of them is described by the Weber-Fechner law and deals with the different sensitivity to distortions in image fragments with different local mean values (intensity, brightness). We analyze how this property can be incorporated into a metric PSNRHVS- M. It is shown that some improvement of its performance can be provided. Then, visual quality of color images corrupted by three types of i.i.d. noise (pure additive, pure multiplicative, and signal dependent, Poisson) is analyzed. Experiments with a group of observers are carried out for distorted color images created on the basis of TID2008 database. Several modern HVS-metrics are considered. It is shown that even the best metrics are unable to assess visual quality of distorted images adequately enough. The reasons for this deal with the observer's attention to certain objects in the test images, i.e., with semantic aspects of vision, which are worth taking into account in design of HVS-metrics.

  16. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  17. Optimization of white matter tractography for pre-surgical planning and image-guided surgery.

    PubMed

    Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana

    2006-01-01

    Accurate localization of white matter fiber tracts in relation to brain tumors is a goal of critical importance to the neurosurgical community. White matter fiber tractography by means of diffusion tensor magnetic resonance imaging (DTI) is the only non-invasive method that can provide estimates of brain connectivity. However, conventional tractography methods are based on data acquisition techniques that suffer from image distortions and artifacts. Thus, a large percentage of white matter fiber bundles are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber tractography in pre-surgical planning and image-guided surgery. In contrast, Turboprop-DTI is a technique that provides images with significantly fewer distortions and artifacts than conventional DTI data acquisition methods. The purpose of this study was to evaluate fiber tracking results obtained from Turboprop-DTI data. It was demonstrated that Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers than conventional DTI methods, especially in applications such as pre-surgical planning and image-guided surgery.

  18. No-Reference Image Quality Assessment by Wide-Perceptual-Domain Scorer Ensemble Method.

    PubMed

    Liu, Tsung-Jung; Liu, Kuan-Hsien

    2018-03-01

    A no-reference (NR) learning-based approach to assess image quality is presented in this paper. The devised features are extracted from wide perceptual domains, including brightness, contrast, color, distortion, and texture. These features are used to train a model (scorer) which can predict scores. The scorer selection algorithms are utilized to help simplify the proposed system. In the final stage, the ensemble method is used to combine the prediction results from selected scorers. Two multiple-scale versions of the proposed approach are also presented along with the single-scale one. They turn out to have better performances than the original single-scale method. Because of having features from five different domains at multiple image scales and using the outputs (scores) from selected score prediction models as features for multi-scale or cross-scale fusion (i.e., ensemble), the proposed NR image quality assessment models are robust with respect to more than 24 image distortion types. They also can be used on the evaluation of images with authentic distortions. The extensive experiments on three well-known and representative databases confirm the performance robustness of our proposed model.

  19. A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation

    NASA Astrophysics Data System (ADS)

    Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen

    2014-02-01

    High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.

  20. Attacks, applications, and evaluation of known watermarking algorithms with Checkmark

    NASA Astrophysics Data System (ADS)

    Meerwald, Peter; Pereira, Shelby

    2002-04-01

    The Checkmark benchmarking tool was introduced to provide a framework for application-oriented evaluation of watermarking schemes. In this article we introduce new attacks and applications into the existing Checkmark framework. In addition to describing new attacks and applications, we also compare the performance of some well-known watermarking algorithms (proposed by Bruyndonckx,Cox, Fridrich, Dugad, Kim, Wang, Xia, Xie, Zhu and Pereira) with respect to the Checkmark benchmark. In particular, we consider the non-geometric application which contains tests that do not change the geometry of image. This attack constraint is artificial, but yet important for research purposes since a number of algorithms may be interesting, but would score poorly with respect to specific applications simply because geometric compensation has not been incorporated. We note, however, that with the help of image registration, even research algorithms that do not have counter-measures against geometric distortion -- such as a template or reference watermark -- can be evaluated. In the first version of the Checkmark benchmarking program, application-oriented evaluation was introduced, along with many new attacks not already considered in the literature. A second goal of this paper is to introduce new attacks and new applications into the Checkmark framework. In particular, we introduce the following new applications: video frame watermarking, medical imaging and watermarking of logos. Video frame watermarking includes low compression attacks and distortions which warp the edges of the video as well as general projective transformations which may result from someone filming the screen at a cinema. With respect to medical imaging, only small distortions are considered and furthermore it is essential that no distortions are present at embedding. Finally for logos, we consider images of small sizes and particularly compression, scaling, aspect ratio and other small distortions. The challenge of watermarking logos is essentially that of watermarking a small and typically simple image. With respect to new attacks, we consider: subsampling followed by interpolation, dithering and thresholding which both yield a binary image.

  1. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  2. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Schatz, George C.

    2017-06-01

    A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.

  3. Computational Evaluation of Inlet Distortion on an Ejector Powered Hybrid Wing Body at Takeoff and Landing Conditions

    NASA Technical Reports Server (NTRS)

    Tompkins, Daniel M.; Sexton, Matthew R.; Mugica, Edward A.; Beyar, Michael D.; Schuh, Michael J.; Stremel, Paul M.; Deere, Karen A.; McMillin, Naomi; Carter, Melissa B.

    2016-01-01

    Due to the aft, upper surface engine location on the Hybrid Wing Body (HWB) planform, there is potential to shed vorticity and separated wakes into the engine when the vehicle is operated at off-design conditions and corners of the envelope required for engine and airplane certification. CFD simulations were performed of the full-scale reference propulsion system, operating at a range of inlet flow rates, flight speeds, altitudes, angles of attack, and angles of sideslip to identify the conditions which produce the largest distortion and lowest pressure recovery. Pretest CFD was performed by NASA and Boeing, using multiple CFD codes, with various turbulence models. These data were used to make decisions regarding model integration, characterize inlet flow distortion patterns, and help define the wind tunnel test matrix. CFD was also performed post-test; when compared with test data, it was possible to make comparisons between measured model-scale and predicted full-scale distortion levels. This paper summarizes these CFD analyses.

  4. Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system

    NASA Astrophysics Data System (ADS)

    Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Yang, Shenwu; Liu, Boyang; Chen, Duo; Yan, Binbin; Yu, Chongxiu

    2018-09-01

    A floating aerial three-dimensional (3D) display based on the freeform-mirror and the improved integral imaging system is demonstrated. In the traditional integral imaging (II), the distortion originating from lens aberration warps elemental images and degrades the visual effect severely. To correct the distortion of the observed pixels and to improve the image quality, a directional diffuser screen (DDS) is introduced. However, the improved integral imaging system can hardly present realistic images with the large off-screen depth, which limits floating aerial visual experience. To display the 3D image in the free space, the off-axis reflection system with the freeform-mirror is designed. By combining the improved II and the designed freeform optical element, the floating aerial 3D image is presented.

  5. Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi

    2013-03-01

    Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron H.; West, James C.

    Missing samples within synthetic aperture radar data result in image distortions. For coherent data products, such as coherent change detection and interferometric processing, the image distortion can be devastating to these second order products, resulting in missed detections and inaccurate height maps. Earlier approaches to repair the coherent data products focus upon reconstructing the missing data samples. This study demonstrates that reconstruction is not necessary to restore the quality of the coherent data products.

  7. SU-G-IeP1-08: MR Geometric Distortion Dependency On Imaging Sequence, Acquisition Orientation and Receiver Bandwidth of a Dedicated 1.5T MR-Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, M; Yuan, J; Wong, O

    Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom. Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).A customizedmore » geometric accuracy phantom (polyurethane, MR/CT invisible, W×L×H:55×55×32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts. Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference). According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck applications. These Largest-DSVs were attained on different acquisition-orientations and receiver-bandwidths. Conclusion: Geometric distortion was shown to be dependent on sequence-type, acquisition-orientation and receiver-bandwidth. In the experiment, no configuration in any one of these factors could consistently reduce distortion while the others were varying. The distortion analysis result is a valuable guideline for sequence selection and optimization for MR-aided radiotherapy applications.« less

  8. Perceptually lossless fractal image compression

    NASA Astrophysics Data System (ADS)

    Lin, Huawu; Venetsanopoulos, Anastasios N.

    1996-02-01

    According to the collage theorem, the encoding distortion for fractal image compression is directly related to the metric used in the encoding process. In this paper, we introduce a perceptually meaningful distortion measure based on the human visual system's nonlinear response to luminance and the visual masking effects. Blackwell's psychophysical raw data on contrast threshold are first interpolated as a function of background luminance and visual angle, and are then used as an error upper bound for perceptually lossless image compression. For a variety of images, experimental results show that the algorithm produces a compression ratio of 8:1 to 10:1 without introducing visual artifacts.

  9. Imaging through water turbulence with a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2016-09-01

    A plenoptic sensor can be used to improve the image formation process in a conventional camera. Through this process, the conventional image is mapped to an image array that represents the image's photon paths along different angular directions. Therefore, it can be used to resolve imaging problems where severe distortion happens. Especially for objects observed at moderate range (10m to 200m) through turbulent water, the image can be twisted to be entirely unrecognizable and correction algorithms need to be applied. In this paper, we show how to use a plenoptic sensor to recover an unknown object in line of sight through significant water turbulence distortion. In general, our approach can be applied to both atmospheric turbulence and water turbulence conditions.

  10. In vivo magnetic resonance microscopy of brain structure in unanesthetized flies

    NASA Astrophysics Data System (ADS)

    Jasanoff, Alan; Sun, Phillip Z.

    2002-09-01

    We present near-cellular-resolution magnetic resonance (MR) images of an unanesthetized animal, the blowfly Sarcophaga bullata. Immobilized flies were inserted into a home-built gradient probe in a 14.1-T magnet, and images of voxel size (20-40 μm) 3—comparable to the diameter of many neuronal cell bodies in the fly's brain—were obtained in several hours. Use of applied field gradients on the order of 60 G/cm allowed minimally distorted images to be produced, despite significant susceptibility differences across the specimen. The images we obtained have exceptional contrast-to-noise levels; comparison with histology-based anatomical information shows that the MR microscopy faithfully represents patterns of nervous tissue and allows distinct brain regions to be clearly identified. Even at the highest resolutions we explored, morphological detail was pronounced in the apparent absence of instabilities or movement-related artifacts frequently observed during imaging of live animal specimens. This work demonstrates that the challenges of noninvasive in vivo MR microscopy can be overcome in a system amenable to studies of brain structure and physiology.

  11. Metadata-assisted nonuniform atmospheric scattering model of image haze removal for medium-altitude unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Chunlei; Ding, Wenrui; Li, Hongguang; Li, Jiankun

    2017-09-01

    Haze removal is a nontrivial work for medium-altitude unmanned aerial vehicle (UAV) image processing because of the effects of light absorption and scattering. The challenges are attributed mainly to image distortion and detail blur during the long-distance and large-scale imaging process. In our work, a metadata-assisted nonuniform atmospheric scattering model is proposed to deal with the aforementioned problems of medium-altitude UAV. First, to better describe the real atmosphere, we propose a nonuniform atmospheric scattering model according to the aerosol distribution, which directly benefits the image distortion correction. Second, considering the characteristics of long-distance imaging, we calculate the depth map, which is an essential clue to modeling, on the basis of UAV metadata information. An accurate depth map reduces the color distortion compared with the depth of field obtained by other existing methods based on priors or assumptions. Furthermore, we use an adaptive median filter to address the problem of fuzzy details caused by the global airlight value. Experimental results on both real flight and synthetic images demonstrate that our proposed method outperforms four other existing haze removal methods.

  12. Models of formation and some algorithms of hyperspectral image processing

    NASA Astrophysics Data System (ADS)

    Achmetov, R. N.; Stratilatov, N. R.; Yudakov, A. A.; Vezenov, V. I.; Eremeev, V. V.

    2014-12-01

    Algorithms and information technologies for processing Earth hyperspectral imagery are presented. Several new approaches are discussed. Peculiar properties of processing the hyperspectral imagery, such as multifold signal-to-noise reduction, atmospheric distortions, access to spectral characteristics of every image point, and high dimensionality of data, were studied. Different measures of similarity between individual hyperspectral image points and the effect of additive uncorrelated noise on these measures were analyzed. It was shown that these measures are substantially affected by noise, and a new measure free of this disadvantage was proposed. The problem of detecting the observed scene object boundaries, based on comparing the spectral characteristics of image points, is considered. It was shown that contours are processed much better when spectral characteristics are used instead of energy brightness. A statistical approach to the correction of atmospheric distortions, which makes it possible to solve the stated problem based on analysis of a distorted image in contrast to analytical multiparametric models, was proposed. Several algorithms used to integrate spectral zonal images with data from other survey systems, which make it possible to image observed scene objects with a higher quality, are considered. Quality characteristics of hyperspectral data processing were proposed and studied.

  13. Validation of a novel technique for creating simulated radiographs using computed tomography datasets.

    PubMed

    Mendoza, Patricia; d'Anjou, Marc-André; Carmel, Eric N; Fournier, Eric; Mai, Wilfried; Alexander, Kate; Winter, Matthew D; Zwingenberger, Allison L; Thrall, Donald E; Theoret, Christine

    2014-01-01

    Understanding radiographic anatomy and the effects of varying patient and radiographic tube positioning on image quality can be a challenge for students. The purposes of this study were to develop and validate a novel technique for creating simulated radiographs using computed tomography (CT) datasets. A DICOM viewer (ORS Visual) plug-in was developed with the ability to move and deform cuboidal volumetric CT datasets, and to produce images simulating the effects of tube-patient-detector distance and angulation. Computed tomographic datasets were acquired from two dogs, one cat, and one horse. Simulated radiographs of different body parts (n = 9) were produced using different angles to mimic conventional projections, before actual digital radiographs were obtained using the same projections. These studies (n = 18) were then submitted to 10 board-certified radiologists who were asked to score visualization of anatomical landmarks, depiction of patient positioning, realism of distortion/magnification, and image quality. No significant differences between simulated and actual radiographs were found for anatomic structure visualization and patient positioning in the majority of body parts. For the assessment of radiographic realism, no significant differences were found between simulated and digital radiographs for canine pelvis, equine tarsus, and feline abdomen body parts. Overall, image quality and contrast resolution of simulated radiographs were considered satisfactory. Findings from the current study indicated that radiographs simulated using this new technique are comparable to actual digital radiographs. Further studies are needed to apply this technique in developing interactive tools for teaching radiographic anatomy and the effects of varying patient and tube positioning. © 2013 American College of Veterinary Radiology.

  14. Robust image registration for multiple exposure high dynamic range image synthesis

    NASA Astrophysics Data System (ADS)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  15. TESTS OF LOW-FREQUENCY GEOMETRIC DISTORTIONS IN LANDSAT 4 IMAGES.

    USGS Publications Warehouse

    Batson, R.M.; Borgeson, W.T.; ,

    1985-01-01

    Tests were performed to investigate the geometric characteristics of Landsat 4 images. The first set of tests was designed to determine the extent of image distortion caused by the physical process of writing the Landsat 4 images on film. The second was designed to characterize the geometric accuracies inherent in the digital images themselves. Test materials consisted of film images of test targets generated by the Laser Beam Recorders at Sioux Falls, the Optronics* Photowrite film writer at Goddard Space Flight Center, and digital image files of a strip 600 lines deep across the full width of band 5 of the Washington, D. C. Thematic Mapper scene. The tests were made by least-squares adjustment of an array of measured image points to a corresponding array of control points.

  16. A hybrid LBG/lattice vector quantizer for high quality image coding

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, V.; Sayood, K.; Arikan, E. (Editor)

    1991-01-01

    It is well known that a vector quantizer is an efficient coder offering a good trade-off between quantization distortion and bit rate. The performance of a vector quantizer asymptotically approaches the optimum bound with increasing dimensionality. A vector quantized image suffers from the following types of degradations: (1) edge regions in the coded image contain staircase effects, (2) quasi-constant or slowly varying regions suffer from contouring effects, and (3) textured regions lose details and suffer from granular noise. All three of these degradations are due to the finite size of the code book, the distortion measures used in the design, and due to the finite training procedure involved in the construction of the code book. In this paper, we present an adaptive technique which attempts to ameliorate the edge distortion and contouring effects.

  17. New Insights in Anorexia Nervosa

    PubMed Central

    Gorwood, Philip; Blanchet-Collet, Corinne; Chartrel, Nicolas; Duclos, Jeanne; Dechelotte, Pierre; Hanachi, Mouna; Fetissov, Serguei; Godart, Nathalie; Melchior, Jean-Claude; Ramoz, Nicolas; Rovere-Jovene, Carole; Tolle, Virginie; Viltart, Odile; Epelbaum, Jacques

    2016-01-01

    Anorexia nervosa (AN) is classically defined as a condition in which an abnormally low body weight is associated with an intense fear of gaining weight and distorted cognitions regarding weight, shape, and drive for thinness. This article reviews recent evidences from physiology, genetics, epigenetics, and brain imaging which allow to consider AN as an abnormality of reward pathways or an attempt to preserve mental homeostasis. Special emphasis is put on ghrelino-resistance and the importance of orexigenic peptides of the lateral hypothalamus, the gut microbiota and a dysimmune disorder of neuropeptide signaling. Physiological processes, secondary to underlying, and premorbid vulnerability factors—the “pondero-nutritional-feeding basements”- are also discussed. PMID:27445651

  18. Dedicated dental volumetric and total body multislice computed tomography: a comparison of image quality and radiation dose

    NASA Astrophysics Data System (ADS)

    Strocchi, Sabina; Colli, Vittoria; Novario, Raffaele; Carrafiello, Gianpaolo; Giorgianni, Andrea; Macchi, Aldo; Fugazzola, Carlo; Conte, Leopoldo

    2007-03-01

    Aim of this work is to compare the performances of a Xoran Technologies i-CAT Cone Beam CT for dental applications with those of a standard total body multislice CT (Toshiba Aquilion 64 multislice) used for dental examinations. Image quality and doses to patients have been compared for the three main i-CAT protocols, the Toshiba standard protocol and a Toshiba modified protocol. Images of two phantoms have been acquired: a standard CT quality control phantom and an Alderson Rando ® anthropomorphic phantom. Image noise, Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and geometric accuracy have been considered. Clinical image quality was assessed. Effective dose and doses to main head and neck organs were evaluated by means of thermo-luminescent dosimeters (TLD-100) placed in the anthropomorphic phantom. A Quality Index (QI), defined as the ratio of squared CNR to effective dose, has been evaluated. The evaluated effective doses range from 0.06 mSv (i-CAT 10 s protocol) to 2.37 mSv (Toshiba standard protocol). The Toshiba modified protocol (halved tube current, higher pitch value) imparts lower effective dose (0.99 mSv). The conventional CT device provides lower image noise and better SNR, but clinical effectiveness similar to that of dedicated dental CT (comparable CNR and clinical judgment). Consequently, QI values are much higher for this second CT scanner. No geometric distortion has been observed with both devices. As a conclusion, dental volumetric CT supplies adequate image quality to clinical purposes, at doses that are really lower than those imparted by a conventional CT device.

  19. The validity of arterial measurements in a South African embalmed body population.

    PubMed

    Schoeman, Marelize; van Schoor, Albert; Suleman, Farhana; Louw, Liebie; du Toit, Peet

    2018-01-01

    Knowledge of the normal arterial diameter at a given anatomical point is the first step toward quantifying the severity of cardiovascular diseases. According to several studies, parameters such as weight, height, age and sex can explain morphometric variations in arterial anatomy that are observed in a population. Before the development of a reference database against which to compare the diameters of arteries in a variety of pathological conditions, the compatibility between embalmed body measurements and computed tomography (CT) measurements must first be established. The aim of this study was to compare embalmed body measurements and CT measurements at 19 different arterial sites to establish whether embalmed body measurements are a true reflection of a living population. A total of 154 embalmed bodies were randomly selected from the Department of Anatomy at the University of Pretoria and 36 embalmed bodies were randomly selected from the Department of Human Anatomy at the University of Limpopo, Medunsa Campus. Dissections were performed on the embalmed body sample and the arterial dimensions were measured with a mechanical dial-sliding caliper (accuracy of 0.01 mm). 30 CT images for each of the 19 arterial sites were retrospectively selected from the database of radiographic images at the Department of Radiology, Steve Biko Academic Hospital. Radiant, a Digital Imaging and Communications in Medicine (DICOM) viewer was used to analyze the CT images. The only statistically significant differences between the embalmed body measurements and CT measurements were found in the left common carotid- and the left subclavian arteries. The null hypothesis of no statistically significant difference between the embalmed body and CT measurements was accepted since the P value indicated no significant difference for 87% of the measurements, the exception being the left common carotid- and the left subclavian arteries. With the exception of two measurements, measurements in embalmed bodies and living people are interchangeable and concerns regarding the effect of distortion and shrinkage are unfounded. Even small changes in arterial diameter greatly influence blood flow and blood pressure, which contribute to undesirable clinical outcomes such as aortic aneurysms and aortic dissections. This study completes the first step towards the development of a reference database against which to compare the diameters of arteries in a variety of pathological conditions in a South African population.

  20. Seeing the Body Distorts Tactile Size Perception

    ERIC Educational Resources Information Center

    Longo, Matthew R.; Sadibolova, Renata

    2013-01-01

    Vision of the body modulates somatosensation, even when entirely non-informative about stimulation. For example, seeing the body increases tactile spatial acuity, but reduces acute pain. While previous results demonstrate that vision of the body modulates somatosensory sensitivity, it is unknown whether vision also affects metric properties of…

  1. Perception of 3D spatial relations for 3D displays

    NASA Astrophysics Data System (ADS)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  2. Evaluation of lens distortion errors in video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo

    1993-01-01

    In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.

  3. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed four separate Pb images, as shown in Fig.1. Using these images, we could obtain acute and obtuse rhombohedral structures of the crystal unit cells. Moreover, the Pb-Pb correlated images reconstructed from Pb Lα holograms showed a local structure of body center-like 2a0 ×2a0 × 2a0 superlattice, proving a rigid 3D network structural model combining the two kinds of rhombohedrons. This superstructure are believed to play an important role in the relaxor behaviour of PMN at atomic level[3].jmicro;63/suppl_1/i13/DFU047F1F1DFU047F1Fig. 1.3D images of the nearest Pb and O atoms around Nb in Pb(Mg1/3Nb2/3)O3. The cube represents 1/8 of the unit cell. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Removal of instrument signature from Mariner 9 television images of Mars

    NASA Technical Reports Server (NTRS)

    Green, W. B.; Jepsen, P. L.; Kreznar, J. E.; Ruiz, R. M.; Schwartz, A. A.; Seidman, J. B.

    1975-01-01

    The Mariner 9 spacecraft was inserted into orbit around Mars in November 1971. The two vidicon camera systems returned over 7300 digital images during orbital operations. The high volume of returned data and the scientific objectives of the Television Experiment made development of automated digital techniques for the removal of camera system-induced distortions from each returned image necessary. This paper describes the algorithms used to remove geometric and photometric distortions from the returned imagery. Enhancement processing of the final photographic products is also described.

  5. A neural network-based method for spectral distortion correction in photon counting x-ray CT

    NASA Astrophysics Data System (ADS)

    Touch, Mengheng; Clark, Darin P.; Barber, William; Badea, Cristian T.

    2016-08-01

    Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables both 4 energy bins acquisition, as well as full-spectrum mode in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical effects in the detector and can be very noisy due to photon starvation in narrow energy bins. To address spectral distortions, we propose and demonstrate a novel artificial neural network (ANN)-based spectral distortion correction mechanism, which learns to undo the distortion in spectral CT, resulting in improved material decomposition accuracy. To address noise, post-reconstruction denoising based on bilateral filtration, which jointly enforces intensity gradient sparsity between spectral samples, is used to further improve the robustness of ANN training and material decomposition accuracy. Our ANN-based distortion correction method is calibrated using 3D-printed phantoms and a model of our spectral CT system. To enable realistic simulations and validation of our method, we first modeled the spectral distortions using experimental data acquired from 109Cd and 133Ba radioactive sources measured with our PCXD. Next, we trained an ANN to learn the relationship between the distorted spectral CT projections and the ideal, distortion-free projections in a calibration step. This required knowledge of the ground truth, distortion-free spectral CT projections, which were obtained by simulating a spectral CT scan of the digital version of a 3D-printed phantom. Once the training was completed, the trained ANN was used to perform distortion correction on any subsequent scans of the same system with the same parameters. We used joint bilateral filtration to perform noise reduction by jointly enforcing intensity gradient sparsity between the reconstructed images for each energy bin. Following reconstruction and denoising, the CT data was spectrally decomposed using the photoelectric effect, Compton scattering, and a K-edge material (i.e. iodine). The ANN-based distortion correction approach was tested using both simulations and experimental data acquired in phantoms and a mouse with our PCXD-based micro-CT system for 4 bins and full-spectrum acquisition modes. The iodine detectability and decomposition accuracy were assessed using the contrast-to-noise ratio and relative error in iodine concentration estimation metrics in images with and without distortion correction. In simulation, the material decomposition accuracy in the reconstructed data was vastly improved following distortion correction and denoising, with 50% and 20% reductions in material concentration measurement error in full-spectrum and 4 energy bins cases, respectively. Overall, experimental data confirms that full-spectrum mode provides superior results to 4-energy mode when the distortion corrections are applied. The material decomposition accuracy in the reconstructed data was vastly improved following distortion correction and denoising, with as much as a 41% reduction in material concentration measurement error for full-spectrum mode, while also bringing the iodine detectability to 4-6 mg ml-1. Distortion correction also improved the 4 bins mode data, but to a lesser extent. The results demonstrate the experimental feasibility and potential advantages of ANN-based distortion correction and joint bilateral filtration-based denoising for accurate K-edge imaging with a PCXD. Given the computational efficiency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.

  6. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    PubMed

    Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja

    2018-01-01

    Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol is wide-ranging and not limited to the orthotopic prostate tumor study presented in the study.

  7. 2-Step scalar deadzone quantization for bitplane image coding.

    PubMed

    Auli-Llinas, Francesc

    2013-12-01

    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.

  8. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    PubMed

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, M; Rane-Levandovsky, S; Andre, J

    Purpose: Traditional arterial spin labeling (ASL) acquisitions with echo planar imaging (EPI) readouts suffer from image distortion due to susceptibility effects, compromising ASL’s ability to accurately quantify cerebral blood flow (CBF) and assess disease-specific patterns associated with CBF abnormalities. Phase labeling for additional coordinate encoding (PLACE) can remove image distortion; our goal is to apply PLACE to improve the quantitative accuracy of ASL CBF in humans. Methods: Four subjects were imaged on a 3T Philips Ingenia scanner using a 16-channel receive coil with a 21/21/10cm (frequency/phase/slice direction) field-of-view. An ASL sequence with a pseudo-continuous ASL (pCASL) labeling scheme was employedmore » to acquire thirty dynamics of single-shot EPI data, with control and label datasets for all dynamics, and PLACE gradients applied on odd dynamics. Parameters included a post-labeling delay = 2s, label duration = 1.8s, flip angle = 90°, TR/TE = 5000/23.5ms, and 2.9/2.9/5.0mm (frequency/phase/slice direction) voxel size. “M0” EPI-reference images and T1-weighted spin-echo images with 0.8/1.0/3.3mm (frequency/phase/slice directions) voxel size were also acquired. Complex conjugate image products of pCASL odd and even dynamics were formed, a linear phase ramp applied, and data expanded and smoothed. Data phase was extracted to map control, label, and M0 magnitude image pixels to their undistorted locations, and images were rebinned to original size. All images were corrected for motion artifacts in FSL 5.0. pCASL images were registered to M0 images, and control and label images were subtracted to compute quantitative CBF maps. Results: pCASL image and CBF map distortions were removed by PLACE in all subjects. Corrected images conformed well to the anatomical T1-weighted reference image, and deviations in corrected CBF maps were evident. Conclusion: Eliminating pCASL distortion with PLACE can improve CBF quantification accuracy using minimal pulse sequence modifications and no additional scan time, improving ASL’s clinical applicability.« less

  10. Monitoring of breathing motion in image-guided PBS proton therapy: comparative analysis of optical and electromagnetic technologies.

    PubMed

    Fattori, Giovanni; Safai, Sairos; Carmona, Pablo Fernández; Peroni, Marta; Perrin, Rosalind; Weber, Damien Charles; Lomax, Antony John

    2017-03-31

    Motion monitoring is essential when treating non-static tumours with pencil beam scanned protons. 4D medical imaging typically relies on the detected body surface displacement, considered as a surrogate of the patient's anatomical changes, a concept similarly applied by most motion mitigation techniques. In this study, we investigate benefits and pitfalls of optical and electromagnetic tracking, key technologies for non-invasive surface motion monitoring, in the specific environment of image-guided, gantry-based proton therapy. Polaris SPECTRA optical tracking system and the Aurora V3 electromagnetic tracking system from Northern Digital Inc. (NDI, Waterloo, CA) have been compared both technically, by measuring tracking errors and system latencies under laboratory conditions, and clinically, by assessing their practicalities and sensitivities when used with imaging devices and PBS treatment gantries. Additionally, we investigated the impact of using different surrogate signals, from different systems, on the reconstructed 4D CT images. Even though in controlled laboratory conditions both technologies allow for the localization of static fiducials with sub-millimetre jitter and low latency (31.6 ± 1 msec worst case), significant dynamic and environmental distortions limit the potential of the electromagnetic approach in a clinical setting. The measurement error in case of close proximity to a CT scanner is up to 10.5 mm and precludes its use for the monitoring of respiratory motion during 4DCT acquisitions. Similarly, the motion of the treatment gantry distorts up to 22 mm the tracking result. Despite the line of sight requirement, the optical solution offers the best potential, being the most robust against environmental factors and providing the highest spatial accuracy. The significant difference in the temporal location of the reconstructed phase points is used to speculate on the need to apply the same monitoring system for imaging and treatment to ensure the consistency of detected phases.

  11. Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury

    NASA Astrophysics Data System (ADS)

    Simioni, Emanuele; Da Deppo, Vania; Re, Cristina; Naletto, Giampiero; Martellato, Elena; Borrelli, Donato; Dami, Michele; Aroldi, Gianluca; Ficai Veltroni, Iacopo; Cremonese, Gabriele

    2016-07-01

    The ESA-JAXA mission BepiColombo that will be launched in 2018 is devoted to the observation of Mercury, the innermost planet of the Solar System. SIMBIOSYS is its remote sensing suite, which consists of three instruments: the High Resolution Imaging Channel (HRIC), the Visible and Infrared Hyperspectral Imager (VIHI), and the Stereo Imaging Channel (STC). The latter will provide the global three dimensional reconstruction of the Mercury surface, and it represents the first push-frame stereo camera on board of a space satellite. Based on a new telescope design, STC combines the advantages of a compact single detector camera to the convenience of a double direction acquisition system; this solution allows to minimize mass and volume performing a push-frame imaging acquisition. The shared camera sensor is divided in six portions: four are covered with suitable filters; the others, one looking forward and one backwards with respect to nadir direction, are covered with a panchromatic filter supplying stereo image pairs of the planet surface. The main STC scientific requirements are to reconstruct in 3D the Mercury surface with a vertical accuracy better than 80 m and performing a global imaging with a grid size of 65 m along-track at the periherm. Scope of this work is to present the on-ground geometric calibration pipeline for this original instrument. The selected STC off-axis configuration forced to develop a new distortion map model. Additional considerations are connected to the detector, a Si-Pin hybrid CMOS, which is characterized by a high fixed pattern noise. This had a great impact in pre-calibration phases compelling to use a not common approach to the definition of the spot centroids in the distortion calibration process. This work presents the results obtained during the calibration of STC concerning the distortion analysis for three different temperatures. These results are then used to define the corresponding distortion model of the camera.

  12. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach.

    PubMed

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Lin, Yi-Ru; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-04-01

    This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts.

  13. High-speed adaptive optics line scan confocal retinal imaging for human eye

    PubMed Central

    Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Purpose Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. Methods A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye’s optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. Results The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. Conclusions We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss. PMID:28257458

  14. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    PubMed

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  15. High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.

    PubMed

    Krämer, Martin; Reichenbach, Jürgen R

    2014-05-01

    We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. Copyright © 2014. Published by Elsevier GmbH.

  16. Automatic source camera identification using the intrinsic lens radial distortion

    NASA Astrophysics Data System (ADS)

    Choi, Kai San; Lam, Edmund Y.; Wong, Kenneth K. Y.

    2006-11-01

    Source camera identification refers to the task of matching digital images with the cameras that are responsible for producing these images. This is an important task in image forensics, which in turn is a critical procedure in law enforcement. Unfortunately, few digital cameras are equipped with the capability of producing watermarks for this purpose. In this paper, we demonstrate that it is possible to achieve a high rate of accuracy in the identification by noting the intrinsic lens radial distortion of each camera. To reduce manufacturing cost, the majority of digital cameras are equipped with lenses having rather spherical surfaces, whose inherent radial distortions serve as unique fingerprints in the images. We extract, for each image, parameters from aberration measurements, which are then used to train and test a support vector machine classifier. We conduct extensive experiments to evaluate the success rate of a source camera identification with five cameras. The results show that this is a viable approach with high accuracy. Additionally, we also present results on how the error rates may change with images captured using various optical zoom levels, as zooming is commonly available in digital cameras.

  17. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  18. Improving MRI surface coil decoupling to reduce B1 distortion

    NASA Astrophysics Data System (ADS)

    Larson, Christian

    As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.

  19. Spectral signature variations, atmospheric scintillations and sensor parameters

    NASA Astrophysics Data System (ADS)

    Berger, Henry; Neander, John

    2002-11-01

    The spectral signature of a material is the curve of power density vs. wavelength (λ) obtained from measurements of reflected light. It is used, among other things, for the identification of targets in remotely acquired images. Sometimes, however, unpredictable distortions may prevent this. In only a few cases have such distortions been explained. We propose some reasonable arguments that in a significant number of circumstances, atmospheric turbulence may contribute to such spectral signature distortion. We propose, based on this model, what appears to be one method that could combat such distortion.

  20. Photometric correction for an optical CCD-based system based on the sparsity of an eight-neighborhood gray gradient.

    PubMed

    Zhang, Yuzhong; Zhang, Yan

    2016-07-01

    In an optical measurement and analysis system based on a CCD, due to the existence of optical vignetting and natural vignetting, photometric distortion, in which the intensity falls off away from the image center, affects the subsequent processing and measuring precision severely. To deal with this problem, an easy and straightforward method used for photometric distortion correction is presented in this paper. This method introduces a simple polynomial fitting model of the photometric distortion function and employs a particle swarm optimization algorithm to get these model parameters by means of a minimizing eight-neighborhood gray gradient. Compared with conventional calibration methods, this method can obtain the profile information of photometric distortion from only a single common image captured by the optical CCD-based system, with no need for a uniform luminance area source used as a standard reference source and relevant optical and geometric parameters in advance. To illustrate the applicability of this method, numerical simulations and photometric distortions with different lens parameters are evaluated using this method in this paper. Moreover, the application example of temperature field correction for casting billets also demonstrates the effectiveness of this method. The experimental results show that the proposed method is able to achieve the maximum absolute error for vignetting estimation of 0.0765 and the relative error for vignetting estimation from different background images of 3.86%.

  1. Efficacy of Distortion Correction on Diffusion Imaging: Comparison of FSL Eddy and Eddy_Correct Using 30 and 60 Directions Diffusion Encoding

    PubMed Central

    Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki

    2014-01-01

    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “eddy_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme. PMID:25405472

  2. Efficacy of distortion correction on diffusion imaging: comparison of FSL eddy and eddy_correct using 30 and 60 directions diffusion encoding.

    PubMed

    Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki

    2014-01-01

    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.

  3. Detection and Rectification of Distorted Fingerprints.

    PubMed

    Si, Xuanbin; Feng, Jianjiang; Zhou, Jie; Luo, Yuxuan

    2015-03-01

    Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task. Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.

  4. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Defense Mechanisms in Adolescence as Predictors of Adult Personality Disorders.

    PubMed

    Strandholm, Thea; Kiviruusu, Olli; Karlsson, Linnea; Miettunen, Jouko; Marttunen, Mauri

    2016-05-01

    Our study examines whether defense styles and separate defenses in depressed adolescent outpatients predict adult personality disorders (PDs). We obtained data from consecutive adolescent outpatients who participated in the Adolescent Depression Study at baseline and at the 8-year follow-up (N = 140). Defense styles were divided into mature, neurotic, image-distorting, and immature and a secondary set of analyses were made with separate defenses as predictors of a PD diagnosis. Neurotic, image-distorting, and immature defense styles in adolescence were associated with adulthood PDs. Neurotic defense style associated with cluster B diagnosis and image-distorting defense style associated with cluster A diagnosis. Separate defenses of displacement, isolation, and reaction formation were independent predictors of adult PD diagnosis even after adjusting for PD diagnosis in adolescence. Defense styles and separate defenses predict later PDs and could be used in the focusing of treatment interventions for adolescents.

  6. Development of new family of wide-angle anamorphic lens with controlled distortion profile

    NASA Astrophysics Data System (ADS)

    Gauvin, Jonny; Doucet, Michel; Wang, Min; Thibault, Simon; Blanc, Benjamin

    2005-08-01

    It is well known that a fish-eye lens produces a circular image of the scene with a particular distortion profile. When using a fish-eye lens with a standard sensor (e.g. 1/3", 1/4",.), only a part of the rectangular detector area is used, leaving many pixels unused. We proposed a new approach to get enhanced resolution for panoramic imaging. In this paper, various arrangements of innovative 180-degree anamorphic wide-angle lens design are considered. Their performances as well as lens manufacturability are also discussed. The concept of the design is to use anamorphic optics to produce elliptical image that maximize pixel resolution in both axis. Furthermore, a non-linear distortion profile is also introduced to enhance spatial resolution for specific field angle. Typical applications such as panoramic photography, video conferencing, and homeland/transportation security are also presented.

  7. Ghost artifact cancellation using phased array processing.

    PubMed

    Kellman, P; McVeigh, E R

    2001-08-01

    In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples.

  8. Ghost Artifact Cancellation Using Phased Array Processing

    PubMed Central

    Kellman, Peter; McVeigh, Elliot R.

    2007-01-01

    In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples. PMID:11477638

  9. A user's guide to the Mariner 9 television reduced data record

    NASA Technical Reports Server (NTRS)

    Seidman, J. B.; Green, W. B.; Jepsen, P. L.; Ruiz, R. M.; Thorpe, T. E.

    1973-01-01

    The Mariner 9 television experiment used two cameras to photograph Mars from an orbiting spacecraft. For quantitative analysis of the image data transmitted to earth, the pictures were processed by digital computer to remove camera-induced distortions. The removal process was performed by the JPL Image Processing Laboratory (IPL) using calibration data measured during prelaunch testing of the cameras. The Reduced Data Record (RDR) is the set of data which results from the distortion-removal, or decalibration, process. The principal elements of the RDR are numerical data on magnetic tape and photographic data. Numerical data are the result of correcting for geometric and photometric distortions and residual-image effects. Photographic data are reproduced on negative and positive transparency films, strip contact and enlargement prints, and microfiche positive transparency film. The photographic data consist of two versions of each TV frame created by applying two special enhancement processes to the numerical data.

  10. NOTE: Wobbled splatting—a fast perspective volume rendering method for simulation of x-ray images from CT

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Seemann, Rudolf; Figl, Michael; Hummel, Johann; Ede, Christopher; Homolka, Peter; Yang, Xinhui; Niederer, Peter; Bergmann, Helmar

    2005-05-01

    3D/2D registration, the automatic assignment of a global rigid-body transformation matching the coordinate systems of patient and preoperative volume scan using projection images, is an important topic in image-guided therapy and radiation oncology. A crucial part of most 3D/2D registration algorithms is the fast computation of digitally rendered radiographs (DRRs) to be compared iteratively to radiographs or portal images. Since registration is an iterative process, fast generation of DRRs—which are perspective summed voxel renderings—is desired. In this note, we present a simple and rapid method for generation of DRRs based on splat rendering. As opposed to conventional splatting, antialiasing of the resulting images is not achieved by means of computing a discrete point spread function (a so-called footprint), but by stochastic distortion of either the voxel positions in the volume scan or by the simulation of a focal spot of the x-ray tube with non-zero diameter. Our method generates slightly blurred DRRs suitable for registration purposes at framerates of approximately 10 Hz when rendering volume images with a size of 30 MB.

  11. Local lattice distortion in high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian

    2017-07-01

    The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.

  12. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  13. Should the orthodontic brackets always be removed prior to magnetic resonance imaging (MRI)?

    PubMed Central

    Poorsattar-Bejeh Mir, Arash; Rahmati-Kamel, Manouchehr

    2015-01-01

    Request for temporary removal of orthodontic appliances due to medical conditions that require magnetic resonance (MR) imaging is not uncommon in daily practice in the field of orthodontics. This may be at the expense of time and cost. Metal Orthodontic appliances cause more signal loss and image distortion as compared to ceramic and titanium ones. Stainless steel and large brackets in addition to the oriented miniscrews in relation to the axis of magnetic field may cause severe signal loss and image distortion. Moreover, gradient echo and frequency-selective fat saturation MR protocols are more susceptible to metal artifacts. The spin echo and fat-suppression protocols, low magnetic field strength (e.g., 1.5 Tesla vs. 3 Tesla), small field of view, high-resolution matrix, thin slice, increased echo train length and increased receiver band width could be applied to lessen the metal artifacts in MR images. The larger the distance between an appliance and desired location to be imaged, the lower the distortion and signal loss. Decision to remove brackets should be made based on its composition and desired anatomic location. In this review, first the principles of MR imaging are introduced (Part-I) and then the interactions of orthodontic appliances and magnetic field are farther discussed (Part-II). PMID:27195213

  14. Imaging human brain cyto- and myelo-architecture with quantitative OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boas, David A.; Wang, Hui; Konukoglu, Ender; Fischl, Bruce; Sakadzic, Sava; Magnain, Caroline V.

    2017-02-01

    No current imaging technology allows us to directly and without significant distortion visualize the microscopic and defining anatomical features of the human brain. Ex vivo histological techniques can yield exquisite planar images, but the cutting, mounting and staining that are required components of this type of imaging induce distortions that are different for each slice, introducing cross-slice differences that prohibit true 3D analysis. We are overcoming this issue by utilizing Optical Coherence Tomography (OCT) with the goal to image whole human brain cytoarchitectural and laminar properties with potentially 3.5 µm resolution in block-face without the need for exogenous staining. From the intrinsic scattering contrast of the brain tissue, OCT gives us images that are comparable to Nissl stains, but without the distortions introduced in standard histology as the OCT images are acquired from the block face prior to slicing and thus without the need for subsequent staining and mounting. We have shown that laminar and cytoarchitectural properties of the brain can be characterized with OCT just as well as with Nissl staining. We will present our recent advances to improve the axial resolution while maintaining contrast; improvements afforded by speckle reduction procedures; and efforts to obtain quantitative maps of the optical scattering coefficient, an intrinsic property of the tissue.

  15. Overlay of multiframe SEM images including nonlinear field distortions

    NASA Astrophysics Data System (ADS)

    Babin, S.; Borisov, S.; Ivonin, I.; Nakazawa, S.; Yamazaki, Y.

    2018-03-01

    To reduce charging and shrinkage, CD-SEMs utilize low electron energies and multiframe imaging. This results in every next frame being altered due to stage and beam instability, as well as due to charging. Regular averaging of the frames blurs the edges; this directly effects the extracted values of critical dimensions. A technique was developed to overlay multiframe images without the loss of quality. This method takes into account drift, rotation, and magnification corrections, as well as nonlinear distortions due to wafer charging. A significant improvement in the signal to noise ratio and overall image quality without degradation of the feature's edge quality was achieved. The developed software is capable of working with regular and large size images up to 32K pixels in each direction.

  16. Titanium Alloy Strong Back for IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Byron, Glenn P.; Kai-Wang, Chan

    2011-01-01

    A titanium-alloy mirror-holding fixture called a strong back allows the temporary and permanent bonding of a 50 degree D263 glass x-ray mirror (IXO here stands for International X-ray Observatory). The strong back is used to hold and position a mirror segment so that mounting tabs may be bonded to the mirror with ultra-low distortion of the optical surface. Ti-15%Mo alloy was the material of choice for the strong back and tabs because the coefficient of thermal expansion closely matches that of the D263 glass and the material is relatively easy to machine. This invention has the ability to transfer bonded mounting points from a temporary location on the strong back to a permanent location on the strong back with minimal distortion. Secondly, it converts a single mirror segment into a rigid body with an acceptable amount of distortion of the mirror, and then maneuvers that rigid body into optical alignment such that the mirror segment can be bonded into a housing simulator or mirror module. Key problems are that the mirrors are 0.4-mm thick and have a very low coefficient of thermal expansion (CTE). Because the mirrors are so thin, they are very flexible and are easily distorted. When permanently bonding the mirror, the goal is to achieve a less than 1-micron distortion. Temperature deviations in the lab, which have been measured to be around 1 C, have caused significant distortions in the mirror segment.

  17. Optical Distortion Evaluation in Large Area Windows using Interferometry

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  18. A Comparison of Three Methods for Measuring Distortion in Optical Windows

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Skow, Miles

    2015-01-01

    It's important that imagery seen through large-area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach, the distortion of an acrylic window is measured using three different methods: image comparison, moiré interferometry, and phase-shifting interferometry.

  19. Body Mass Index Table

    MedlinePlus

    ... Aim for a Healthy Weight » Healthy Weight Tools » BMI Calculator » Body Mass Index Table 1 Home Assessing ... Eat Right Be Physically Active Healthy Weight Tools BMI Calculator Menu Plans Portion Distortion Key Recommendations Healthy ...

  20. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    PubMed

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of sampling points exceeding 1 mm. A novel harmonic analysis approach relying on finite element methods was introduced and validated for multiple volumes with surface shape functions ranging from simple to highly complex. Since a boundary value problem is solved the method requires input data from only the surface of the desired domain of interest. It is believed that the harmonic method will facilitate (a) the design of new phantoms dedicated for the quantification of MR image distortions in large volumes and (b) an integrative approach of combining multiple imaging tests specific to radiotherapy into a single test object for routine imaging quality control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    PubMed

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.

  2. Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals.

    PubMed

    Ranasinghesagara, Janaka C; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O; Venugopalan, Vasan

    2017-04-17

    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction.

  3. Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals

    PubMed Central

    Ranasinghesagara, Janaka C.; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O.; Venugopalan, Vasan

    2017-01-01

    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction. PMID:28437941

  4. Transmission ratio distortion in the human body louse, Pediculus humanus (Insecta: Phthiraptera).

    PubMed

    McMeniman, C J; Barker, S C

    2006-01-01

    We studied inheritance at three microsatellite loci in eight F, and two F2 families of the body (clothes) louse of humans, Pediculus humanus. The alleles of heterozygous female-parents were always inherited in a Mendelian fashion in these families. Alleles from heterozygous male-parents, however, were inherited in two different ways: (i) in a Mendelian fashion and (ii) in a non-Mendelian fashion, where males passed to their offspring only one of their two alleles, that is, 100% nonrandom transmission. In male body lice, where there was non-Mendelian inheritance, the paternally inherited set of alleles was eliminated. We interpret this pattern of inheritance as evidence for extreme transmission ratio distortion of paternal alleles in this species.

  5. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  6. A comparative quantitative analysis of the IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) and the CHESS (chemical shift selection suppression) techniques in 3.0 T L-spine MRI

    NASA Astrophysics Data System (ADS)

    Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok

    2013-03-01

    This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.

  7. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach

    PubMed Central

    Chang, Hing-Chiu; Chuang, Tzu-Chao; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen

    2013-01-01

    Objective This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Materials and methods Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Results Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. Conclusions The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts. PMID:23630654

  8. Projective rectification of infrared images from air-cooled condenser temperature measurement by using projection profile features and cross-ratio invariability.

    PubMed

    Xu, Lijun; Chen, Lulu; Li, Xiaolu; He, Tao

    2014-10-01

    In this paper, we propose a projective rectification method for infrared images obtained from the measurement of temperature distribution on an air-cooled condenser (ACC) surface by using projection profile features and cross-ratio invariability. In the research, the infrared (IR) images acquired by the four IR cameras utilized are distorted to different degrees. To rectify the distorted IR images, the sizes of the acquired images are first enlarged by means of bicubic interpolation. Then, uniformly distributed control points are extracted in the enlarged images by constructing quadrangles with detected vertical lines and detected or constructed horizontal lines. The corresponding control points in the anticipated undistorted IR images are extracted by using projection profile features and cross-ratio invariability. Finally, a third-order polynomial rectification model is established and the coefficients of the model are computed with the mapping relationship between the control points in the distorted and anticipated undistorted images. Experimental results obtained from an industrial ACC unit show that the proposed method performs much better than any previous method we have adopted. Furthermore, all rectified images are stitched together to obtain a complete image of the whole ACC surface with a much higher spatial resolution than that obtained by using a single camera, which is not only useful but also necessary for more accurate and comprehensive analysis of ACC performance and more reliable optimization of ACC operations.

  9. Predicting perceptual quality of images in realistic scenario using deep filter banks

    NASA Astrophysics Data System (ADS)

    Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang

    2018-03-01

    Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.

  10. Evaluation of image quality and radiation dose by adaptive statistical iterative reconstruction technique level for chest CT examination.

    PubMed

    Hong, Sun Suk; Lee, Jong-Woong; Seo, Jeong Beom; Jung, Jae-Eun; Choi, Jiwon; Kweon, Dae Cheol

    2013-12-01

    The purpose of this research is to determine the adaptive statistical iterative reconstruction (ASIR) level that enables optimal image quality and dose reduction in the chest computed tomography (CT) protocol with ASIR. A chest phantom with 0-50 % ASIR levels was scanned and then noise power spectrum (NPS), signal and noise and the degree of distortion of peak signal-to-noise ratio (PSNR) and the root-mean-square error (RMSE) were measured. In addition, the objectivity of the experiment was measured using the American College of Radiology (ACR) phantom. Moreover, on a qualitative basis, five lesions' resolution, latitude and distortion degree of chest phantom and their compiled statistics were evaluated. The NPS value decreased as the frequency increased. The lowest noise and deviation were at the 20 % ASIR level, mean 126.15 ± 22.21. As a result of the degree of distortion, signal-to-noise ratio and PSNR at 20 % ASIR level were at the highest value as 31.0 and 41.52. However, maximum absolute error and RMSE showed the lowest deviation value as 11.2 and 16. In the ACR phantom study, all ASIR levels were within acceptable allowance of guidelines. The 20 % ASIR level performed best in qualitative evaluation at five lesions of chest phantom as resolution score 4.3, latitude 3.47 and the degree of distortion 4.25. The 20 % ASIR level was proved to be the best in all experiments, noise, distortion evaluation using ImageJ and qualitative evaluation of five lesions of a chest phantom. Therefore, optimal images as well as reduce radiation dose would be acquired when 20 % ASIR level in thoracic CT is applied.

  11. Precise X-ray and video overlay for augmented reality fluoroscopy.

    PubMed

    Chen, Xin; Wang, Lejing; Fallavollita, Pascal; Navab, Nassir

    2013-01-01

    The camera-augmented mobile C-arm (CamC) augments any mobile C-arm by a video camera and mirror construction and provides a co-registration of X-ray with video images. The accurate overlay between these images is crucial to high-quality surgical outcomes. In this work, we propose a practical solution that improves the overlay accuracy for any C-arm orientation by: (i) improving the existing CamC calibration, (ii) removing distortion effects, and (iii) accounting for the mechanical sagging of the C-arm gantry due to gravity. A planar phantom is constructed and placed at different distances to the image intensifier in order to obtain the optimal homography that co-registers X-ray and video with a minimum error. To alleviate distortion, both X-ray calibration based on equidistant grid model and Zhang's camera calibration method are implemented for distortion correction. Lastly, the virtual detector plane (VDP) method is adapted and integrated to reduce errors due to the mechanical sagging of the C-arm gantry. The overlay errors are 0.38±0.06 mm when not correcting for distortion, 0.27±0.06 mm when applying Zhang's camera calibration, and 0.27±0.05 mm when applying X-ray calibration. Lastly, when taking into account all angular and orbital rotations of the C-arm, as well as correcting for distortion, the overlay errors are 0.53±0.24 mm using VDP and 1.67±1.25 mm excluding VDP. The augmented reality fluoroscope achieves an accurate video and X-ray overlay when applying the optimal homography calculated from distortion correction using X-ray calibration together with the VDP.

  12. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yanle, E-mail: Hu.Yanle@mayo.edu; Rankine, Leith; Green, Olga L.

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identifiedmore » around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19.11, and 22.22 ppm, respectively, using the field camera method over the 45 cm DSV. Conclusions: The onboard imaging unit of the first commercial MR-IGRT system meets ACR, NEMA, and vendor specifications.« less

  13. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system.

    PubMed

    Hu, Yanle; Rankine, Leith; Green, Olga L; Kashani, Rojano; Li, H Harold; Li, Hua; Nana, Roger; Rodriguez, Vivian; Santanam, Lakshmi; Shvartsman, Shmaryu; Victoria, James; Wooten, H Omar; Dempsey, James F; Mutic, Sasa

    2015-10-01

    To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm(3) spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19.11, and 22.22 ppm, respectively, using the field camera method over the 45 cm DSV. The onboard imaging unit of the first commercial MR-IGRT system meets ACR, NEMA, and vendor specifications.

  14. Bone Metabolism in Anorexia Nervosa

    PubMed Central

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed chronic nutritional deprivation and distorted body image. AN is associated with a number of medical co-morbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population. PMID:24419863

  15. Evaluation of body-wise and organ-wise registrations for abdominal organs

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Panjwani, Sahil A.; Lee, Christopher P.; Burke, Ryan P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2016-03-01

    Identifying cross-sectional and longitudinal correspondence in the abdomen on computed tomography (CT) scans is necessary for quantitatively tracking change and understanding population characteristics, yet abdominal image registration is a challenging problem. The key difficulty in solving this problem is huge variations in organ dimensions and shapes across subjects. The current standard registration method uses the global or body-wise registration technique, which is based on the global topology for alignment. This method (although producing decent results) has substantial influence of outliers, thus leaving room for significant improvement. Here, we study a new image registration approach using local (organ-wise registration) by first creating organ-specific bounding boxes and then using these regions of interest (ROIs) for aligning references to target. Based on Dice Similarity Coefficient (DSC), Mean Surface Distance (MSD) and Hausdorff Distance (HD), the organ-wise approach is demonstrated to have significantly better results by minimizing the distorting effects of organ variations. This paper compares exclusively the two registration methods by providing novel quantitative and qualitative comparison data and is a subset of the more comprehensive problem of improving the multi-atlas segmentation by using organ normalization.

  16. White matter tractography by means of Turboprop diffusion tensor imaging.

    PubMed

    Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana

    2005-12-01

    White matter fiber-tractography by means of diffusion tensor imaging (DTI) is a noninvasive technique that provides estimates of the structural connectivity of the brain. However, conventional fiber-tracking methods using DTI are based on echo-planar image acquisitions (EPI), which suffer from image distortions and artifacts due to magnetic susceptibility variations and eddy currents. Thus, a large percentage of white matter fiber bundles that are mapped using EPI-based DTI data are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber-tracking techniques. In contrast, Turboprop imaging is a multiple-shot gradient and spin-echo (GRASE) technique that provides images with significantly fewer susceptibility and eddy current-related artifacts than EPI. The purpose of this work was to evaluate the performance of fiber-tractography techniques when using data obtained with Turboprop-DTI. All fiber pathways that were mapped were found to be in agreement with the anatomy. There were no visible distortions in any of the traced fiber bundles, even when these were located in the vicinity of significant magnetic field inhomogeneities. Additionally, the Turboprop-DTI data used in this research were acquired in less than 19 min of scan time. Thus, Turboprop appears to be a promising DTI data acquisition technique for tracing white matter fibers.

  17. Auto-calibration of GF-1 WFV images using flat terrain

    NASA Astrophysics Data System (ADS)

    Zhang, Guo; Xu, Kai; Huang, Wenchao

    2017-12-01

    Four wide field view (WFV) cameras with 16-m multispectral medium-resolution and a combined swath of 800 km are onboard the Gaofen-1 (GF-1) satellite, which can increase the revisit frequency to less than 4 days and enable large-scale land monitoring. The detection and elimination of WFV camera distortions is key for subsequent applications. Due to the wide swath of WFV images, geometric calibration using either conventional methods based on the ground control field (GCF) or GCF independent methods is problematic. This is predominantly because current GCFs in China fail to cover the whole WFV image and most GCF independent methods are used for close-range photogrammetry or computer vision fields. This study proposes an auto-calibration method using flat terrain to detect nonlinear distortions of GF-1 WFV images. First, a classic geometric calibration model is built for the GF1 WFV camera, and at least two images with an overlap area that cover flat terrain are collected, then the elevation residuals between the real elevation and that calculated by forward intersection are used to solve nonlinear distortion parameters in WFV images. Experiments demonstrate that the orientation accuracy of the proposed method evaluated by GCF CPs is within 0.6 pixel, and residual errors manifest as random errors. Validation using Google Earth CPs further proves the effectiveness of auto-calibration, and the whole scene is undistorted compared to not using calibration parameters. The orientation accuracy of the proposed method and the GCF method is compared. The maximum difference is approximately 0.3 pixel, and the factors behind this discrepancy are analyzed. Generally, this method can effectively compensate for distortions in the GF-1 WFV camera.

  18. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.

    PubMed

    Rosales, Patricia; Marcos, Susana

    2009-05-01

    To implement geometrical and optical distortion correction methods for anterior segment Scheimpflug images obtained with a commercially available system (Pentacam, Oculus Optikgeräte GmbH). Ray tracing algorithms were implemented to obtain corrected ocular surface geometry from the original images captured by the Pentacam's CCD camera. As details of the optical layout were not fully provided by the manufacturer, an iterative procedure (based on imaging of calibrated spheres) was developed to estimate the camera lens specifications. The correction procedure was tested on Scheimpflug images of a physical water cell model eye (with polymethylmethacrylate cornea and a commercial IOL of known dimensions) and of a normal human eye previously measured with a corrected optical and geometrical distortion Scheimpflug camera (Topcon SL-45 [Topcon Medical Systems Inc] from the Vrije University, Amsterdam, Holland). Uncorrected Scheimpflug images show flatter surfaces and thinner lenses than in reality. The application of geometrical and optical distortion correction algorithms improves the accuracy of the estimated anterior lens radii of curvature by 30% to 40% and of the estimated posterior lens by 50% to 100%. The average error in the retrieved radii was 0.37 and 0.46 mm for the anterior and posterior lens radii of curvature, respectively, and 0.048 mm for lens thickness. The Pentacam Scheimpflug system can be used to obtain quantitative information on the geometry of the crystalline lens, provided that geometrical and optical distortion correction algorithms are applied, within the accuracy of state-of-the art phakometry and biometry. The techniques could improve with exact knowledge of the technical specifications of the instrument, improved edge detection algorithms, consideration of aspheric and non-rotationally symmetrical surfaces, and introduction of a crystalline gradient index.

  19. A Tractography Comparison between Turboprop and Spin-Echo Echo-Planar Diffusion Tensor Imaging

    PubMed Central

    Gui, Minzhi; Peng, Huiling; Carew, John D.; Lesniak, Maciej S.; Arfanakis, Konstantinos

    2008-01-01

    The development of accurate, non-invasive methods for mapping white matter fiber-tracts is of critical importance. However, fiber-tracking is typically performed on diffusion tensor imaging (DTI) data obtained with echo-planar-based imaging techniques (EPI), which suffer from susceptibility-related image artifacts, and image warping due to eddy-currents. Thus, a number of white matter fiber-bundles mapped using EPI-based DTI data are distorted and/or terminated early. This severely limits the clinical potential of fiber-tracking. In contrast, Turboprop-MRI provides images with significantly fewer susceptibility and eddy-current-related artifacts than EPI. The purpose of this work was to compare fiber-tracking results obtained from DTI data acquired with Turboprop-DTI and EPI-based DTI. It was shown that, in brain regions near magnetic field inhomogeneities, white matter fiber-bundles obtained with EPI-based DTI were distorted and/or partially detected, when magnetic susceptibility-induced distortions were not corrected. After correction, residual distortions were still present and several fiber-tracts remained partially detected. In contrast, when using Turboprop-DTI data, all traced fiber-tracts were in agreement with known anatomy. The inter-session reproducibility of tractography results was higher for Turboprop than EPI-based DTI data in regions near field inhomogeneities. Thus, Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers near regions with significant magnetic susceptibility differences, as well as in longitudinal studies of such fibers. However, the intra-session reproducibility of tractography results was higher for EPI-based than Turboprop DTI data. Thus, EPI-based DTI may be more advantageous for tracing fibers minimally affected by field inhomogeneities. PMID:18621131

  20. A tractography comparison between turboprop and spin-echo echo-planar diffusion tensor imaging.

    PubMed

    Gui, Minzhi; Peng, Huiling; Carew, John D; Lesniak, Maciej S; Arfanakis, Konstantinos

    2008-10-01

    The development of accurate, non-invasive methods for mapping white matter fiber-tracts is of critical importance. However, fiber-tracking is typically performed on diffusion tensor imaging (DTI) data obtained with echo-planar-based imaging techniques (EPI), which suffer from susceptibility-related image artifacts, and image warping due to eddy-currents. Thus, a number of white matter fiber-bundles mapped using EPI-based DTI data are distorted and/or terminated early. This severely limits the clinical potential of fiber-tracking. In contrast, Turboprop-MRI provides images with significantly fewer susceptibility and eddy-current-related artifacts than EPI. The purpose of this work was to compare fiber-tracking results obtained from DTI data acquired with Turboprop-DTI and EPI-based DTI. It was shown that, in brain regions near magnetic field inhomogeneities, white matter fiber-bundles obtained with EPI-based DTI were distorted and/or partially detected, when magnetic susceptibility-induced distortions were not corrected. After correction, residual distortions were still present and several fiber-tracts remained partially detected. In contrast, when using Turboprop-DTI data, all traced fiber-tracts were in agreement with known anatomy. The inter-session reproducibility of tractography results was higher for Turboprop than EPI-based DTI data in regions near field inhomogeneities. Thus, Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers near regions with significant magnetic susceptibility differences, as well as in longitudinal studies of such fibers. However, the intra-session reproducibility of tractography results was higher for EPI-based than Turboprop DTI data. Thus, EPI-based DTI may be more advantageous for tracing fibers minimally affected by field inhomogeneities.

  1. Marker Configuration Model-Based Roentgen Fluoroscopic Analysis.

    PubMed

    Garling, Eric H; Kaptein, Bart L; Geleijns, Koos; Nelissen, Rob G H H; Valstar, Edward R

    2005-04-01

    It remains unknown if and how the polyethylene bearing in mobile bearing knees moves during dynamic activities with respect to the tibial base plate. Marker Configuration Model-Based Roentgen Fluoroscopic Analysis (MCM-based RFA) uses a marker configuration model of inserted tantalum markers in order to accurately estimate the pose of an implant or bone using single plane Roentgen images or fluoroscopic images. The goal of this study is to assess the accuracy of (MCM-Based RFA) in a standard fluoroscopic set-up using phantom experiments and to determine the error propagation with computer simulations. The experimental set-up of the phantom study was calibrated using a calibration box equipped with 600 tantalum markers, which corrected for image distortion and determined the focus position. In the computer simulation study the influence of image distortion, MC-model accuracy, focus position, the relative distance between MC-models and MC-model configuration on the accuracy of MCM-Based RFA were assessed. The phantom study established that the in-plane accuracy of MCM-Based RFA is 0.1 mm and the out-of-plane accuracy is 0.9 mm. The rotational accuracy is 0.1 degrees. A ninth-order polynomial model was used to correct for image distortion. Marker-Based RFA was estimated to have, in a worst case scenario, an in vivo translational accuracy of 0.14 mm (x-axis), 0.17 mm (y-axis), 1.9 mm (z-axis), respectively, and a rotational accuracy of 0.3 degrees. When using fluoroscopy to study kinematics, image distortion and the accuracy of models are important factors, which influence the accuracy of the measurements. MCM-Based RFA has the potential to be an accurate, clinically useful tool for studying kinematics after total joint replacement using standard equipment.

  2. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    PubMed

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P < 0.05). Tractography with TSE-DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue

    PubMed Central

    Chaigneau, Emmanuelle; Wright, Amanda J.; Poland, Simon P.; Girkin, John M.; Silver, R. Angus

    2011-01-01

    Two-photon (2P) microscopy is widely used in neuroscience, but the optical properties of brain tissue are poorly understood. We have investigated the effect of brain tissue on the 2P point spread function (PSF2P) by imaging fluorescent beads through living cortical slices. By combining this with measurements of the mean free path of the excitation light, adaptive optics and vector-based modeling that includes phase modulation and scattering, we show that tissue-induced wavefront distortions are the main determinant of enlargement and distortion of the PSF2P at intermediate imaging depths. Furthermore, they generate surrounding lobes that contain more than half of the 2P excitation. These effects reduce the resolution of fine structures and contrast and they, together with scattering, limit 2P excitation. Our results disentangle the contributions of scattering and wavefront distortion in shaping the cortical PSF2P, thereby providing a basis for improved 2P microscopy. PMID:22109156

  4. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    NASA Astrophysics Data System (ADS)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  5. Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target

    NASA Astrophysics Data System (ADS)

    Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.

    2016-06-01

    In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.

  6. Double-spin-echo diffusion weighting with a modified eddy current adjustment.

    PubMed

    Finsterbusch, Jürgen

    2010-04-01

    Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.

  7. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  8. A holistic calibration method with iterative distortion compensation for stereo deflectometry

    NASA Astrophysics Data System (ADS)

    Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian

    2018-07-01

    This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.

  9. Distortion correction of echo-planar diffusion-weighted images of uterine cervix.

    PubMed

    deSouza, Nandita M; Orton, Matthew; Downey, Kate; Morgan, Veronica A; Collins, David J; Giles, Sharon L; Payne, Geoffrey S

    2016-05-01

    To investigate the clinical utility of the reverse gradient algorithm in correcting distortions in diffusion-weighted images of the cervix and for increasing diagnostic performance. Forty-one patients ages 25-72 years (mean 40 ± 11 years) with suspected or early stage cervical cancer were imaged at 3T using an endovaginal coil. T2 -weighted (W) and diffusion-weighted images with right and left phase-encode gradient directions were obtained coronal to the cervix (b = 0, 100, 300, 500, 800 s mm(-2) ). Differences in angle of the endocervical canal to the x-axis between T2 W and right-gradient, left-gradient, and corrected images were measured. Uncorrected and corrected images were assessed for diagnostic performance when viewed together with T2 W images by two independent observers against subsequent histology. The angles of the endocervical canal relative to the x-axis were significantly different between the T2 W images and the right-gradient images (P = 0.007), approached significance for left-gradient images (P = 0.055), and were not significantly different after correction (P = 0.95). Corrected images enabled a definitive diagnosis in 34% (n = 14) of patients classified as equivocal on uncorrected images. Tumor volume in this subset was 0.18 ± 0.44 cm(3) (mean ± SD; sensitivity of detection 100% [8/8], specificity 50% [3/6] for an experienced observer). Correction did not improve diagnostic performance for the less-experienced observer. Distortion-corrected diffusion-weighted images improved correspondence with T2 W images and diagnostic performance in a third of cases. © 2015 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Phase conjugate digital inline holography (PCDIH)

    DOE PAGES

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley; ...

    2018-01-12

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  11. Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances

    DTIC Science & Technology

    2012-12-01

    c) image, and unfolding arti- facts (d). (e), (f), (g). Susceptibility artifacts with geometric distortion before (e), (f) and after (g) correction...either using an electrostatic repul- sion scheme [45] or through various geometric polyhe- dral schemes [59]. 2.1.2.3. Signal-to-Noise (SNR) The...inhomogeneity (∆B), causes signal loss due to a shift of the maximal signal away from the theoretical echo time, leading to geometric distortion due to suscep

  12. Phase conjugate digital inline holography (PCDIH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley

    We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

  13. Effect of probe diffusion on the SOFI imaging accuracy.

    PubMed

    Vandenberg, Wim; Dedecker, Peter

    2017-03-23

    Live-cell super-resolution fluorescence imaging is becoming commonplace for exploring biological systems, though sample dynamics can affect the imaging quality. In this work we evaluate the effect of probe diffusion on super-resolution optical fluctuation imaging (SOFI), using a theoretical model and numerical simulations based on the imaging of live cells labelled with photochromic fluorescent proteins. We find that, over a range of physiological conditions, fluorophore diffusion results in a change in the amplitude of the SOFI signal. The magnitude of this change is approximately proportional to the on-time ratio of the fluorophores. However, for photochromic fluorescent proteins this effect is unlikely to present a significant distortion in practical experiments in biological systems. Due to this lack of distortions, probe diffusion strongly enhances the SOFI imaging by avoiding spatial undersampling caused by the limited labeling density.

  14. Open-loop measurement of data sampling point for SPM

    NASA Astrophysics Data System (ADS)

    Wang, Yueyu; Zhao, Xuezeng

    2006-03-01

    SPM (Scanning Probe Microscope) provides "three-dimensional images" with nanometer level resolution, and some of them can be used as metrology tools. However, SPM's images are commonly distorted by non-ideal properties of SPM's piezoelectric scanner, which reduces metrological accuracy and data repeatability. In order to eliminate this limit, an "open-loop sampling" method is presented. In this method, the positional values of sampling points in all three directions on the surface of the sample are measured by the position sensor and recorded in SPM's image file, which is used to replace the image file from a conventional SPM. Because the positions in X and Y directions are measured at the same time of sampling height information in Z direction, the image distortion caused by scanner locating error can be reduced by proper image processing algorithm.

  15. Image-based spectral distortion correction for photon-counting x-ray detectors

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation coefficient of PMMA estimate was also improved with the proposed spectral distortion correction. Finally, the relative RMS error of water, lipid, and protein decompositions in dual-energy imaging was significantly reduced from 53.4% to 6.8% after correction was applied. Conclusions: The study demonstrated that dramatic distortions in the recorded raw image yielded from a photon-counting detector could be expected, which presents great challenges for applying the quantitative material decomposition method in spectral CT. The proposed semi-empirical correction method can effectively reduce these errors caused by various artifacts, including pulse pileup and charge sharing effects. Furthermore, rather than detector-specific simulation packages, the method requires a relatively simple calibration process and knowledge about the incident spectrum. Therefore, it may be used as a generalized procedure for the spectral distortion correction of different photon-counting detectors in clinical breast CT systems. PMID:22482608

  16. A comparison of the accuracy of polyether, polyvinyl siloxane, and plaster impressions for long-span implant-supported prostheses.

    PubMed

    Hoods-Moonsammy, Vyonne J; Owen, Peter; Howes, Dale G

    2014-01-01

    The purpose of this study was to compare the capacity of different impression materials to accurately reproduce the positions of five implant analogs on a master model by comparing the resulting cast with the stainless steel master model. The study was motivated by the knowledge that distortions can occur during impression making and the pouring of casts and that this distortion may produce inaccuracies of subsequent restorations, especially long-span castings for implant superstructures. The master model was a stainless steel model with five implant analogs. The impression materials used were impression plaster (Plastogum, Harry J Bosworth), a polyether (Impregum Penta, 3M ESPE), and two polyvinyl siloxane (PVS) materials (Aquasil Monophase and Aquasil putty with light-body wash, Dentsply). Five impressions were made with each impression material and cast in die stone under strictly controlled laboratory conditions. The positions of the implants on the master model, the impression copings, and the implant analogs in the subsequent casts were measured using a coordinate measuring machine that measures within 4 μm of accuracy. Statistical analyses indicated that distortion occurred in all of the impression materials, but inconsistently. The PVS monophase material reproduced the master model most accurately. Although there was no significant distortion between the impressions and the master model or between the impressions and their casts, there were distortions between the master model and the master casts, which highlighted the cumulative effects of the distortions. The polyether material proved to be the most reliable in terms of predictability. The impression plaster displayed cumulative distortion, and the PVS putty with light body showed the least reliability. Some of the distortions observed are of clinical significance and likely to contribute to a lack of passive fit of any superstructure. The inaccuracy of these analog materials and procedures suggested that greater predictability may lie in digital technology.

  17. An image understanding system using attributed symbolic representation and inexact graph-matching

    NASA Astrophysics Data System (ADS)

    Eshera, M. A.; Fu, K.-S.

    1986-09-01

    A powerful image understanding system using a semantic-syntactic representation scheme consisting of attributed relational graphs (ARGs) is proposed for the analysis of the global information content of images. A multilayer graph transducer scheme performs the extraction of ARG representations from images, with ARG nodes representing the global image features, and the relations between features represented by the attributed branches between corresponding nodes. An efficient dynamic programming technique is employed to derive the distance between two ARGs and the inexact matching of their respective components. Noise, distortion and ambiguity in real-world images are handled through modeling in the transducer mapping rules and through the appropriate cost of error-transformation for the inexact matching of the representation. The system is demonstrated for the case of locating objects in a scene composed of complex overlapped objects, and the case of target detection in noisy and distorted synthetic aperture radar image.

  18. Subjective evaluation of compressed image quality

    NASA Astrophysics Data System (ADS)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  19. The effects of body position on distortion-product otoacoustic emission testing.

    PubMed

    Driscoll, Carlie; Kei, Joseph; Shyu, Jenny; Fukai, Natasha

    2004-09-01

    Otoacoustic emissions are frequently acquired from patients in a variety of body positions aside from the standard, seated orientation. Yet little knowledge is available regarding whether these deviations will produce nonpathological changes to the clinical results obtained. The present study aimed to describe the effects of body position on the distortion-product otoacoustic emissions of 60 normal-hearing adults. With particular attention given to common clinical practice, the Otodynamics ILO292, and the measurement parameters of amplitude, signal-to-noise ratio, and noise were utilized. Significant position-related effects and interactions were revealed for all parameters. Specifically, stronger emissions in the mid frequencies and higher noise levels at the extreme low and high frequencies were produced by testing subjects while lying on their side compared with the seated position. Further analysis of body position effects on emissions is warranted, in order to determine the need for clinical application of position-dependent normative data.

  20. The Center for Advanced Systems and Engineering (CASE). Visiting Faculty Research Program 06 March 2007 to 05 March 2009

    DTIC Science & Technology

    2009-09-01

    and could be used to compensate for high frequency distortions to the LOS caused by platform jitter and the effects of the optical turbulence . In...engineer an unknown detector based on few experimental interactions. For watermarking algorithms in particular, we seek to identify specific distortions ...of a watermarked image that clearly identify or rule out one particular class of embedding. These experimental distortions surgical test for rapid

  1. Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction.

    PubMed

    Taylor, Paul A; Alhamud, A; van der Kouwe, Andre; Saleh, Muhammad G; Laughton, Barbara; Meintjes, Ernesta

    2016-12-01

    Diffusion tensor imaging (DTI) is susceptible to several artifacts due to eddy currents, echo planar imaging (EPI) distortion and subject motion. While several techniques correct for individual distortion effects, no optimal combination of DTI acquisition and processing has been determined. Here, the effects of several motion correction techniques are investigated while also correcting for EPI distortion: prospective correction, using navigation; retrospective correction, using two different popular packages (FSL and TORTOISE); and the combination of both methods. Data from a pediatric group that exhibited incidental motion in varying degrees are analyzed. Comparisons are carried while implementing eddy current and EPI distortion correction. DTI parameter distributions, white matter (WM) maps and probabilistic tractography are examined. The importance of prospective correction during data acquisition is demonstrated. In contrast to some previous studies, results also show that the inclusion of retrospective processing also improved ellipsoid fits and both the sensitivity and specificity of group tractographic results, even for navigated data. Matches with anatomical WM maps are highest throughout the brain for data that have been both navigated and processed using TORTOISE. The inclusion of both prospective and retrospective motion correction with EPI distortion correction is important for DTI analysis, particularly when studying subject populations that are prone to motion. Hum Brain Mapp 37:4405-4424, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Effect of high-pitch dual-source CT to compensate motion artifacts: a phantom study.

    PubMed

    Farshad-Amacker, Nadja A; Alkadhi, Hatem; Leschka, Sebastian; Frauenfelder, Thomas

    2013-10-01

    To evaluate the potential of high-pitch, dual-source computed tomography (DSCT) for compensation of motion artifacts. Motion artifacts were created using a moving chest/cardiac phantom with integrated stents at different velocities (from 0 to 4-6 cm/s) parallel (z direction), transverse (x direction), and diagonal (x and z direction combined) to the scanning direction using standard-pitch (SP) (pitch = 1) and high-pitch (HP) (pitch = 3.2) 128-detector DSCT (Siemens, Healthcare, Forchheim, Germany). The scanning parameters were (SP/HP): tube voltage, 120 kV/120 kV; effective tube current time product, 300 mAs/500 mAs; and a pitch of 1/3.2. Motion artifacts were analyzed in terms of subjective image quality and object distortion. Image quality was rated by two blinded, independent observers using a 4-point scoring system (1, excellent; 2, good with minor object distortion or blurring; 3, diagnostically partially not acceptable; and 4, diagnostically not acceptable image quality). Object distortion was assessed by the measured changes of the object's outer diameter (x) and length (z) and a corresponding calculated distortion vector (d) (d = √(x(2) + z(2))). The interobserver agreement was excellent (k = 0.91). Image quality using SP was diagnostically not acceptable with any motion in x direction (scores 3 and 4), in contrast to HP DSCT where it remained diagnostic up to 2 cm/s (scores 1 and 2). For motion in the z direction only, image quality remained diagnostic for SP and HP DSCT (scores 1 and 2). Changes of the object's diameter (x), length (z), and distortion vectors (d) were significantly greater with SP (overall: x = 1.9 cm ± 1.7 cm, z = 0.6 cm ± 0.8 cm, and d = 1.4 cm ± 1.5 cm) compared to HP DSCT (overall: x = 0.1 cm ± 0.1 cm, z = 0.0 cm ± 0.1 cm, and d = 0.1 cm ± 0.1 cm; each P < .05). High-pitch DSCT significantly decreases motion artifacts in various directions and improves image quality. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  3. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

    PubMed Central

    Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.

    2015-01-01

    We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133

  4. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  5. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  6. PSQM-based RR and NR video quality metrics

    NASA Astrophysics Data System (ADS)

    Lu, Zhongkang; Lin, Weisi; Ong, Eeping; Yang, Xiaokang; Yao, Susu

    2003-06-01

    This paper presents a new and general concept, PQSM (Perceptual Quality Significance Map), to be used in measuring the visual distortion. It makes use of the selectivity characteristic of HVS (Human Visual System) that it pays more attention to certain area/regions of visual signal due to one or more of the following factors: salient features in image/video, cues from domain knowledge, and association of other media (e.g., speech or audio). PQSM is an array whose elements represent the relative perceptual-quality significance levels for the corresponding area/regions for images or video. Due to its generality, PQSM can be incorporated into any visual distortion metrics: to improve effectiveness or/and efficiency of perceptual metrics; or even to enhance a PSNR-based metric. A three-stage PQSM estimation method is also proposed in this paper, with an implementation of motion, texture, luminance, skin-color and face mapping. Experimental results show the scheme can improve the performance of current image/video distortion metrics.

  7. Prevalence of eating disorder risk and body image distortion among National Collegiate Athletic Association Division I varsity equestrian athletes.

    PubMed

    Torres-McGehee, Toni M; Monsma, Eva V; Gay, Jennifer L; Minton, Dawn M; Mady-Foster, Ashley N

    2011-01-01

    Participation in appearance-based sports, particularly at the collegiate level, may place additional pressures on female athletes to be thin, which may increase the likelihood of their resorting to drastic weight control measures, such as disordered eating behaviors. (1) To estimate the prevalence and sources of eating disorder risk classification by academic status (freshman, sophomore, junior, or senior) and riding discipline (English and Western), (2) to examine riding style and academic status variations in body mass index (BMI) and silhouette type, and (3) to examine these variations across eating disorder risk classification type (eg, body image disturbances). Cross-sectional study. Seven universities throughout the United States. A total of 138 participants volunteered (mean age = 19.88 ± 1.29 years). They represented 2 equestrian disciplines English riding (n = 91) and Western riding (n = 47). Participants self-reported menstrual cycle history, height, and weight. We screened for eating disorder risk behaviors with the Eating Attitudes Test and for body disturbance with sex-specific BMI silhouettes. Based on the Eating Attitudes Test, estimated eating disorder prevalence was 42.0% in the total sample, 38.5% among English riders, and 48.9% among Western riders. No BMI or silhouette differences were found across academic status or discipline in disordered eating risk. Overall, participants perceived their body images as significantly larger than their actual physical sizes (self-reported BMI) and wanted to be significantly smaller in both normal clothing and competitive uniforms. Disordered eating risk prevalence among equestrian athletes was similar to that reported in other aesthetic sports and lower than that in nonaesthetic sports. Athletic trainers working with these athletes should be sensitive to these risks and refer athletes as needed to clinicians knowledgeable about disordered eating. Professionals working with this population should avoid making negative comments about physical size and appearance.

  8. Susceptibility to cognitive distortions: the role of eating pathology.

    PubMed

    Coelho, Jennifer S; Ouellet-Courtois, Catherine; Purdon, Christine; Steiger, Howard

    2015-01-01

    Thought-Shape Fusion (TSF) and Thought-Action Fusion (TAF) are cognitive distortions that are associated with eating and obsessional pathology respectively. Both involve the underlying belief that mere thoughts and mental images can lead to negative outcomes. TSF involves the belief that food-related thoughts lead to weight gain, body dissatisfaction, and perceptions of moral wrong-doing. TAF is more general, and involves the belief that merely thinking about a negative event (e.g., a loved one getting into a car accident) can make this event more likely to happen, and leads to perceptions of moral wrong-doing. However, the shared susceptibility across related cognitive distortions-TAF and TSF-has not yet been studied. The effects of TSF and TAF inductions in women with an eating disorder (n = 21) and a group of healthy control women with no history of an eating disorder (n = 23) were measured. A repeated-measures design was employed, with all participants exposed to a TSF, TAF and neutral induction during three separate experimental sessions. Participants' cognitive and behavioral responses were assessed. Individuals with eating disorders were more susceptible to TSF and TAF than were control participants, demonstrating more neutralization behavior after TSF and TAF inductions (i.e., actions to try to reduce the negative effects of the induction), and reporting higher levels of trait TAF and TSF than did controls. Individuals with eating disorders are particularly susceptible to both TAF and TSF. Clinical implications of these findings will be discussed.

  9. Influence of the quality of intraoperative fluoroscopic images on the spatial positioning accuracy of a CAOS system.

    PubMed

    Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo

    2018-06-01

    Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Optimal Inlet Shape Design of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the Subsonic Fixed Wing project of NASA Fundamental Aeronautics Program. In the present study, flow simulations are conducted around the N2B configuration by a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by the NPSS thermodynamic engine cycle model. The flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and airframe-propulsion integration. Adjoint-based optimal designs are then conducted for the inlet shape to minimize the airframe drag force and flow distortion at fan faces. Design surfaces are parameterized by NURBS, and the cowl lip geometry is modified by a spring analogy approach. By the drag minimization design, flow separation on the cowl surfaces are almost removed, and shock wave strength got remarkably reduced. For the distortion minimization design, a circumferential distortion indicator DPCP(sub avg) is adopted as the design objective and diffuser bottom and side wall surfaces are perturbed for the design. The distortion minimization results in a 12.5 % reduction in the objective function.

  11. Neural-net-based image matching

    NASA Astrophysics Data System (ADS)

    Jerebko, Anna K.; Barabanov, Nikita E.; Luciv, Vadim R.; Allinson, Nigel M.

    2000-04-01

    The paper describes a neural-based method for matching spatially distorted image sets. The matching of partially overlapping images is important in many applications-- integrating information from images formed from different spectral ranges, detecting changes in a scene and identifying objects of differing orientations and sizes. Our approach consists of extracting contour features from both images, describing the contour curves as sets of line segments, comparing these sets, determining the corresponding curves and their common reference points, calculating the image-to-image co-ordinate transformation parameters on the basis of the most successful variant of the derived curve relationships. The main steps are performed by custom neural networks. The algorithms describe in this paper have been successfully tested on a large set of images of the same terrain taken in different spectral ranges, at different seasons and rotated by various angles. In general, this experimental verification indicates that the proposed method for image fusion allows the robust detection of similar objects in noisy, distorted scenes where traditional approaches often fail.

  12. Numerical correction of distorted images in full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha

    2012-03-01

    We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.

  13. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  14. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue.

    PubMed

    Hoffman, David M; Girshick, Ahna R; Akeley, Kurt; Banks, Martin S

    2008-03-28

    Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues-accommodation and blur in the retinal image-specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one's ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays.

  15. Joint Chroma Subsampling and Distortion-Minimization-Based Luma Modification for RGB Color Images With Application.

    PubMed

    Chung, Kuo-Liang; Hsu, Tsu-Chun; Huang, Chi-Chao

    2017-10-01

    In this paper, we propose a novel and effective hybrid method, which joins the conventional chroma subsampling and the distortion-minimization-based luma modification together, to improve the quality of the reconstructed RGB full-color image. Assume the input RGB full-color image has been transformed to a YUV image, prior to compression. For each 2×2 UV block, one 4:2:0 subsampling is applied to determine the one subsampled U and V components, U s and V s . Based on U s , V s , and the corresponding 2×2 original RGB block, a main theorem is provided to determine the ideally modified 2×2 luma block in constant time such that the color peak signal-to-noise ratio (CPSNR) quality distortion between the original 2×2 RGB block and the reconstructed 2×2 RGB block can be minimized in a globally optimal sense. Furthermore, the proposed hybrid method and the delivered theorem are adjusted to tackle the digital time delay integration images and the Bayer mosaic images whose Bayer CFA structure has been widely used in modern commercial digital cameras. Based on the IMAX, Kodak, and screen content test image sets, the experimental results demonstrate that in high efficiency video coding, the proposed hybrid method has substantial quality improvement, in terms of the CPSNR quality, visual effect, CPSNR-bitrate trade-off, and Bjøntegaard delta PSNR performance, of the reconstructed RGB images when compared with existing chroma subsampling schemes.

  16. Optimising diffusion-weighted imaging in the abdomen and pelvis: comparison of image quality between monopolar and bipolar single-shot spin-echo echo-planar sequences.

    PubMed

    Kyriazi, Stavroula; Blackledge, Matthew; Collins, David J; Desouza, Nandita M

    2010-10-01

    To compare geometric distortion, signal-to-noise ratio (SNR), apparent diffusion coefficient (ADC), efficacy of fat suppression and presence of artefact between monopolar (Stejskal and Tanner) and bipolar (twice-refocused, eddy-current-compensating) diffusion-weighted imaging (DWI) sequences in the abdomen and pelvis. A semiquantitative distortion index (DI) was derived from the subtraction images with b = 0 and 1,000 s/mm(2) in a phantom and compared between the two sequences. Seven subjects were imaged with both sequences using four b values (0, 600, 900 and 1,050 s/mm(2)) and SNR, ADC for different organs and fat-to-muscle signal ratio (FMR) were compared. Image quality was evaluated by two radiologists on a 5-point scale. DI was improved in the bipolar sequence, indicating less geometric distortion. SNR was significantly lower for all tissues and b values in the bipolar images compared with the monopolar (p < 0.05), whereas FMR was not statistically different. ADC in liver, kidney and sacrum was higher in the bipolar scheme compared to the monopolar (p < 0.03), whereas in muscle it was lower (p = 0.018). Image quality scores were higher for the bipolar sequence (p ≤ 0.025). Artefact reduction makes the bipolar DWI sequence preferable in abdominopelvic applications, although the trade-off in SNR may compromise ADC measurements in muscle.

  17. Impact of physiologic estrogen replacement on anxiety symptoms, body shape perception, and eating attitudes in adolescent girls with anorexia nervosa: data from a randomized controlled trial.

    PubMed

    Misra, Madhusmita; Katzman, Debra K; Estella, Nara Mendes; Eddy, Kamryn T; Weigel, Thomas; Goldstein, Mark A; Miller, Karen K; Klibanski, Anne

    2013-08-01

    Anorexia nervosa is characterized by low weight, aberrant eating attitudes, body image distortion, and hypogonadism. Anxiety is a common comorbid condition. Estrogen replacement reduces anxiety in animal models, and reported variations in food intake across the menstrual cycle may be related to gonadal steroid levels. The impact of estrogen replacement on anxiety, eating attitudes, and body image has not been reported in anorexia nervosa. We hypothesized that physiologic estrogen replacement would ameliorate anxiety and improve eating attitudes without affecting body image in anorexia nervosa. Girls 13-18 years old with anorexia nervosa (DSM-IV) were randomized to transdermal estradiol (100 μg twice weekly) with cyclic progesterone or placebo patches and pills for 18-months, between 2002 and 2010. The State-Trait Anxiety Inventory for Children (STAIC), the Eating Disorders Inventory-2 (EDI-2), and the Body Shape Questionnaire (BSQ-34) were administered. 72 girls completed these measures at baseline (n=38 [girls receiving estrogen] and n=34 [girls receiving placebo]) and 37 at 18 months (n=20 [girls receiving estrogen] and n=17 [girls receiving placebo]). The primary outcome measure was the change in these scores over 18 months. Estrogen replacement caused a decrease in STAIC-trait scores (-3.05 [1.22] vs. 2.07 [1.73], P=.02), without impacting STAIC-state scores (-1.11 [2.17] vs. 0.20 [1.42], P=.64). There was no effect of estrogen replacement on EDI-2 or BSQ-34 scores. Body mass index (BMI) changes did not differ between groups, and effects of estrogen replacement on STAIC-trait scores persisted after controlling for BMI changes (P=.03). Increases in serum estradiol were significantly associated with decreases in STAIC-trait scores (Spearman ρ = -0.45, P=.03). Estrogen replacement improved trait anxiety (the tendency to experience anxiety) but did not impact eating attitudes or body shape perception. ClinicalTrials.gov identifier: NCT00088153. © Copyright 2013 Physicians Postgraduate Press, Inc.

  18. Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.

    PubMed

    Johansson, Adam; Balter, James; Cao, Yue

    2018-03-01

    Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P <  0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Robust distortion correction of endoscope

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Nie, Sixiang; Soto-Thompson, Marcelo; Chen, Chao-I.; A-Rahim, Yousif I.

    2008-03-01

    Endoscopic images suffer from a fundamental spatial distortion due to the wide angle design of the endoscope lens. This barrel-type distortion is an obstacle for subsequent Computer Aided Diagnosis (CAD) algorithms and should be corrected. Various methods and research models for the barrel-type distortion correction have been proposed and studied. For industrial applications, a stable, robust method with high accuracy is required to calibrate the different types of endoscopes in an easy of use way. The correction area shall be large enough to cover all the regions that the physicians need to see. In this paper, we present our endoscope distortion correction procedure which includes data acquisition, distortion center estimation, distortion coefficients calculation, and look-up table (LUT) generation. We investigate different polynomial models used for modeling the distortion and propose a new one which provides correction results with better visual quality. The method has been verified with four types of colonoscopes. The correction procedure is currently being applied on human subject data and the coefficients are being utilized in a subsequent 3D reconstruction project of colon.

  20. SU-F-P-48: The Quantitative Evaluation and Comparison of Image Distortion and Loss of X-Ray Images Between Anti-Scattered Grid and Moire Compensation Processing in Digital Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, W; Jung, J; Kang, Y

    Purpose: To quantitatively analyze the influence image processing for Moire elimination has in digital radiography by comparing the image acquired from optimized anti-scattered grid only and the image acquired from software processing paired with misaligned low-frequency grid. Methods: Special phantom, which does not create scattered radiation, was used to acquire non-grid reference images and they were acquired without any grids. A set of images was acquired with optimized grid, aligned to pixel of a detector and other set of images was acquired with misaligned low-frequency grid paired with Moire elimination processing algorithm. X-ray technique used was based on consideration tomore » Bucky factor derived from non-grid reference images. For evaluation, we analyze by comparing pixel intensity of acquired images with grids to that of reference images. Results: When compared to image acquired with optimized grid, images acquired with Moire elimination processing algorithm showed 10 to 50% lower mean contrast value of ROI. Severe distortion of images was found with when the object’s thickness was measured at 7 or less pixels. In this case, contrast value measured from images acquired with Moire elimination processing algorithm was under 30% of that taken from reference image. Conclusion: This study shows the potential risk of Moire compensation images in diagnosis. Images acquired with misaligned low-frequency grid results in Moire noise and Moire compensation processing algorithm used to remove this Moire noise actually caused an image distortion. As a result, fractures and/or calcifications which are presented in few pixels only may not be diagnosed properly. In future work, we plan to evaluate the images acquired without grid but based on 100% image processing and the potential risks it possesses.« less

  1. JPEG2000 encoding with perceptual distortion control.

    PubMed

    Liu, Zhen; Karam, Lina J; Watson, Andrew B

    2006-07-01

    In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.

  2. Accurate band-to-band registration of AOTF imaging spectrometer using motion detection technology

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhao, Huijie; Jin, Shangzhong; Li, Ningchuan

    2016-05-01

    This paper concerns the problem of platform vibration induced band-to-band misregistration with acousto-optic imaging spectrometer in spaceborne application. Registrating images of different bands formed at different time or different position is difficult, especially for hyperspectral images form acousto-optic tunable filter (AOTF) imaging spectrometer. In this study, a motion detection method is presented using the polychromatic undiffracted beam of AOTF. The factors affecting motion detect accuracy are analyzed theoretically, and calculations show that optical distortion is an easily overlooked factor to achieve accurate band-to-band registration. Hence, a reflective dual-path optical system has been proposed for the first time, with reduction of distortion and chromatic aberration, indicating the potential of higher registration accuracy. Consequently, a spectra restoration experiment using additional motion detect channel is presented for the first time, which shows the accurate spectral image registration capability of this technique.

  3. Effects of Transducer Installation on Unsteady Pressure Measurements on Oscillating Blades

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2006-01-01

    Unsteady pressures were measured above the suction side of a blade that was oscillated to simulate blade stall flutter. Measurements were made at blade oscillation frequencies up to 500 Hz. Two types of miniature pressure transducers were used: surface-mounted flat custom-made, and conventional miniature, body-mounted transducers. The signals of the surface-mounted transducers are significantly affected by blade acceleration, whereas the signals of body-mounted transducers are practically free of this distortion. A procedure was introduced to correct the signals of surface-mounted transducers to rectify the signal distortion due to blade acceleration. The signals from body-mounted transducers, and corrected signals from surface-mounted transducers represent true unsteady pressure signals on the surface of a blade subjected to forced oscillations. However, the use of body-mounted conventional transducers is preferred for the following reasons: no signal corrections are needed for blade acceleration, the conventional transducers are noticeably less expensive than custom-made flat transducers, the survival rate of body-mounted transducers is much higher, and finally installation of body-mounted transducers does not disturb the blade surface of interest.

  4. Vidicon intensifier

    NASA Technical Reports Server (NTRS)

    Carpentier, R. P.; Pietrzyk, J. P.; Beyer, R. R.; Kalafut, J. S.

    1976-01-01

    Computer-designed sensor, consisting of single-stage electrostatically-focused, triode image intensifier, provides high quality imaging characterized by exceptionally low geometric distortion, low shading, and high center-and-corner modulation transfer function.

  5. Detection of potential mosquito breeding sites based on community sourced geotagged images

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankit; Chaudhuri, Usashi; Chaudhuri, Subhasis; Seetharaman, Guna

    2014-06-01

    Various initiatives have been taken all over the world to involve the citizens in the collection and reporting of data to make better and informed data-driven decisions. Our work shows how the geotagged images collected through the general population can be used to combat Malaria and Dengue by identifying and visualizing localities that contain potential mosquito breeding sites. Our method first employs image quality assessment on the client side to reject the images with distortions like blur and artifacts. Each geotagged image received on the server is converted into a feature vector using the bag of visual words model. We train an SVM classifier on a histogram-based feature vector obtained after the vector quantization of SIFT features to discriminate images containing either a small stagnant water body like puddle, or open containers and tires, bushes etc. from those that contain flowing water, manicured lawns, tires attached to a vehicle etc. A geographical heat map is generated by assigning a specific location a probability value of it being a potential mosquito breeding ground of mosquito using feature level fusion or the max approach presented in the paper. The heat map thus generated can be used by concerned health authorities to take appropriate action and to promote civic awareness.

  6. Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells.

    PubMed

    Kim, Youngkyoo; Nelson, Jenny; Zhang, Tong; Cook, Steffan; Durrant, James R; Kim, Hwajeong; Park, Jiho; Shin, Minjung; Nam, Sungho; Heeney, Martin; McCulloch, Iain; Ha, Chang-Sik; Bradley, Donal D C

    2009-09-22

    We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.

  7. Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Kim, Dae Ho; Lee, Ho Nyung; Biegalski, Michael D.; Christen, Hans M.

    2008-01-01

    Multiferroic BiFeO3 epitaxial films with thicknesses ranging from 40to960nm were grown by pulsed laser deposition on SrTiO3 (001) substrates with SrRuO3 bottom electrodes. X-ray characterization shows that the structure evolves from angularly distorted tetragonal with c /a≈1.04 to more bulklike distorted rhombohedral (c/a≈1.01) as the strain relaxes with increasing thickness. Despite this significant structural evolution, the ferroelectric polarization along the body diagonal of the distorted pseudocubic unit cells, as calculated from measurements along the normal direction, barely changes.

  8. Adapting the ISO 20462 softcopy ruler method for online image quality studies

    NASA Astrophysics Data System (ADS)

    Burns, Peter D.; Phillips, Jonathan B.; Williams, Don

    2013-01-01

    In this paper we address the problem of Image Quality Assessment of no reference metrics, focusing on JPEG corrupted images. In general no reference metrics are not able to measure with the same performance the distortions within their possible range and with respect to different image contents. The crosstalk between content and distortion signals influences the human perception. We here propose two strategies to improve the correlation between subjective and objective quality data. The first strategy is based on grouping the images according to their spatial complexity. The second one is based on a frequency analysis. Both the strategies are tested on two databases available in the literature. The results show an improvement in the correlations between no reference metrics and psycho-visual data, evaluated in terms of the Pearson Correlation Coefficient.

  9. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    PubMed

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  10. Label inspection of approximate cylinder based on adverse cylinder panorama

    NASA Astrophysics Data System (ADS)

    Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo

    2013-12-01

    This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.

  11. Typical effects of laser dazzling CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  12. ESIM: Edge Similarity for Screen Content Image Quality Assessment.

    PubMed

    Ni, Zhangkai; Ma, Lin; Zeng, Huanqiang; Chen, Jing; Cai, Canhui; Ma, Kai-Kuang

    2017-10-01

    In this paper, an accurate full-reference image quality assessment (IQA) model developed for assessing screen content images (SCIs), called the edge similarity (ESIM), is proposed. It is inspired by the fact that the human visual system (HVS) is highly sensitive to edges that are often encountered in SCIs; therefore, essential edge features are extracted and exploited for conducting IQA for the SCIs. The key novelty of the proposed ESIM lies in the extraction and use of three salient edge features-i.e., edge contrast, edge width, and edge direction. The first two attributes are simultaneously generated from the input SCI based on a parametric edge model, while the last one is derived directly from the input SCI. The extraction of these three features will be performed for the reference SCI and the distorted SCI, individually. The degree of similarity measured for each above-mentioned edge attribute is then computed independently, followed by combining them together using our proposed edge-width pooling strategy to generate the final ESIM score. To conduct the performance evaluation of our proposed ESIM model, a new and the largest SCI database (denoted as SCID) is established in our work and made to the public for download. Our database contains 1800 distorted SCIs that are generated from 40 reference SCIs. For each SCI, nine distortion types are investigated, and five degradation levels are produced for each distortion type. Extensive simulation results have clearly shown that the proposed ESIM model is more consistent with the perception of the HVS on the evaluation of distorted SCIs than the multiple state-of-the-art IQA methods.

  13. The algorithm of motion blur image restoration based on PSF half-blind estimation

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ke; Lin, Zhe

    2011-08-01

    A novel algorithm of motion blur image restoration based on PSF half-blind estimation with Hough transform was introduced on the basis of full analysis of the principle of TDICCD camera, with the problem that vertical uniform linear motion estimation used by IBD algorithm as the original value of PSF led to image restoration distortion. Firstly, the mathematical model of image degradation was established with the transcendental information of multi-frame images, and then two parameters (movement blur length and angle) that have crucial influence on PSF estimation was set accordingly. Finally, the ultimate restored image can be acquired through multiple iterative of the initial value of PSF estimation in Fourier domain, which the initial value was gained by the above method. Experimental results show that the proposal algorithm can not only effectively solve the image distortion problem caused by relative motion between TDICCD camera and movement objects, but also the details characteristics of original image are clearly restored.

  14. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm

    PubMed Central

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2010-01-01

    With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame. PMID:21258443

  15. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  16. Perspective distortion in craniofacial superimposition: Logarithmic decay curves mapped mathematically and by practical experiment.

    PubMed

    Stephan, Carl N

    2015-12-01

    The superimposition of a face photograph with that of a skull for identification purposes necessitates the use of comparable photographic parameters between the two image acquisition sessions, so that differences in optics and consequent recording of images does not thwart the morphological analysis. Widely divergent, but published, speculations about the thresholds at which perspective distortion becomes negligible (0.5 to >13.5 m) must be resolved and perspective distortion (PD) relationships quantified across their full range to judge tolerance levels, and the suitability of commonly employed contemporary equipment (e.g., 1 m photographic copy-stands). Herein, basic trigonometry is employed to map PD for two same sized 179 mm linear lengths - separated anteroposteriorly by 127 mm - as a function of subject-to-camera distance (SCD; 0.2-20 m). These lengths approximate basic craniofacial heights (e.g., tr-n) and widths (e.g., zy-zy), while the latter approximates facial depth (e.g., n-t). As anticipated, PD decayed in logarithmic and continuous manner with increasing SCD. At SCD of 12 m, the within-image PD was negligible (<1%). At <2.5 m SCD, it exceeded 5% and increased sharply as SCD decreased. Since life size images of skulls and faces are commonly employed for superimposition, a relative 1% perspective distortion difference is recommended as the ceiling standard for craniofacial comparison (translates into a ≤2 mm difference in physiognomical face height). Since superimposition depends on relative comparisons of a photographic pair (not one photograph), there is practically no scenario in superimposition casework where SCDs should be ignored and no single distance at which PD should be considered negligible (even if one image holds >12 m SCD). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. X-PROP: a fast and robust diffusion-weighted propeller technique.

    PubMed

    Li, Zhiqiang; Pipe, James G; Lee, Chu-Yu; Debbins, Josef P; Karis, John P; Huo, Donglai

    2011-08-01

    Diffusion-weighted imaging (DWI) has shown great benefits in clinical MR exams. However, current DWI techniques have shortcomings of sensitivity to distortion or long scan times or combinations of the two. Diffusion-weighted echo-planar imaging (EPI) is fast but suffers from severe geometric distortion. Periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging (PROPELLER DWI) is free of geometric distortion, but the scan time is usually long and imposes high Specific Absorption Rate (SAR) especially at high fields. TurboPROP was proposed to accelerate the scan by combining signal from gradient echoes, but the off-resonance artifacts from gradient echoes can still degrade the image quality. In this study, a new method called X-PROP is presented. Similar to TurboPROP, it uses gradient echoes to reduce the scan time. By separating the gradient and spin echoes into individual blades and removing the off-resonance phase, the off-resonance artifacts in X-PROP are minimized. Special reconstruction processes are applied on these blades to correct for the motion artifacts. In vivo results show its advantages over EPI, PROPELLER DWI, and TurboPROP techniques. Copyright © 2011 Wiley-Liss, Inc.

  18. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  19. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    PubMed

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  20. Map projections for global and continental data sets and an analysis of pixel distortion caused by reprojection

    USGS Publications Warehouse

    Steinwand, Daniel R.; Hutchinson, John A.; Snyder, J.P.

    1995-01-01

    In global change studies the effects of map projection properties on data quality are apparent, and the choice of projection is significant. To aid compilers of global and continental data sets, six equal-area projections were chosen: the interrupted Goode Homolosine, the interrupted Mollweide, the Wagner IV, and the Wagner VII for global maps; the Lambert Azimuthal Equal-Area for hemisphere maps; and the Oblated Equal-Area and the Lambert Azimuthal Equal-Area for continental maps. Distortions in small-scale maps caused by reprojection, and the additional distortions incurred when reprojecting raster images, were quantified and graphically depicted. For raster images, the errors caused by the usual resampling methods (pixel brightness level interpolation) were responsible for much of the additional error where the local resolution and scale change were the greatest.

  1. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.

    PubMed

    Matovic, Milovan; Jankovic, Milica; Barjaktarovic, Marko; Jeremic, Marija

    2017-01-01

    After radioiodine therapy of differentiated thyroid cancer (DTC) patients, whole body scintigraphy (WBS) is standard procedure before releasing the patient from the hospital. A common problem is the precise localization of regions where the iod-avide tissue is located. Sometimes is practically impossible to perform precise topographic localization of such regions. In order to face this problem, we have developed a low-cost Vision-Fusion system for web-camera image acquisition simultaneously with routine scintigraphic whole body acquisition including the algorithm for fusion of images given from both cameras. For image acquisition in the gamma part of the spectra we used e.cam dual head gamma camera (Siemens, Erlangen, Germany) in WBS modality, with matrix size of 256×1024 pixels and bed speed of 6cm/min, equipped with high energy collimator. For optical image acquisition in visible part of spectra we have used web-camera model C905 (Logitech, USA) with Carl Zeiss® optics, native resolution 1600×1200 pixels, 34 o field of view, 30g weight, with autofocus option turned "off" and auto white balance turned "on". Web camera is connected to upper head of gamma camera (GC) by a holder of lightweight aluminum rod and a plexiglas adapter. Our own Vision-Fusion software for image acquisition and coregistration was developed using NI LabVIEW programming environment 2015 (National Instruments, Texas, USA) and two additional LabVIEW modules: NI Vision Acquisition Software (VAS) and NI Vision Development Module (VDM). Vision acquisition software enables communication and control between laptop computer and web-camera. Vision development module is image processing library used for image preprocessing and fusion. Software starts the web-camera image acquisition before starting image acquisition on GC and stops it when GC completes the acquisition. Web-camera is in continuous acquisition mode with frame rate f depending on speed of patient bed movement v (f=v/∆ cm , where ∆ cm is a displacement step that can be changed in Settings option of Vision-Fusion software; by default, ∆ cm is set to 1cm corresponding to ∆ p =15 pixels). All images captured while patient's bed is moving are processed. Movement of patient's bed is checked using cross-correlation of two successive images. After each image capturing, algorithm extracts the central region of interest (ROI) of the image, with the same width as captured image (1600 pixels) and the height that is equal to the ∆ p displacement in pixels. All extracted central ROI are placed next to each other in the overall whole-body image. Stacking of narrow central ROI introduces negligible distortion in the overall whole-body image. The first step for fusion of the scintigram and the optical image was determination of spatial transformation between them. We have made an experiment with two markers (point radioactivity sources of 99m Tc pertechnetate 1MBq) visible in both images (WBS and optical) to find transformation of coordinates between images. The distance between point markers is used for spatial coregistration of the gamma and optical images. At the end of coregistration process, gamma image is rescaled in spatial domain and added to the optical image (green or red channel, amplification changeable from user interface). We tested our system for 10 patients with DTC who received radioiodine therapy (8 women and two men, with average age of 50.10±12.26 years). Five patients received 5.55Gbq, three 3.70GBq and two 1.85GBq. Whole-body scintigraphy and optical image acquisition were performed 72 hours after application of radioiodine therapy. Based on our first results during clinical testing of our system, we can conclude that our system can improve diagnostic possibility of whole body scintigraphy to detect thyroid remnant tissue in patients with DTC after radioiodine therapy.

  2. Design considerations for a C-shaped PET system, dedicated to small animal brain imaging, using GATE Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Efthimiou, N.; Papadimitroulas, P.; Kostou, T.; Loudos, G.

    2015-09-01

    Commercial clinical and preclinical PET scanners rely on the full cylindrical geometry for whole body scans as well as for dedicated organs. In this study we propose the construction of a low cost dual-head C-shaped PET system dedicated for small animal brain imaging. Monte Carlo simulation studies were performed using GATE toolkit to evaluate the optimum design in terms of sensitivity, distortions in the FOV and spatial resolution. The PET model is based on SiPMs and BGO pixelated arrays. Four different configurations with C- angle 0°, 15°, 30° and 45° within the modules, were considered. Geometrical phantoms were used for the evaluation process. STIR software, extended by an efficient multi-threaded ray tracing technique, was used for the image reconstruction. The algorithm automatically adjusts the size of the FOV according to the shape of the detector's geometry. The results showed improvement in sensitivity of ∼15% in case of 45° C-angle compared to the 0° case. The spatial resolution was found 2 mm for 45° C-angle.

  3. High-performance electronic image stabilisation for shift and rotation correction

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, D. L.; Wu, F.

    2014-06-01

    A novel low size, weight and power (SWaP) video stabiliser called HALO™ is presented that uses a SoC to combine the high processing bandwidth of an FPGA, with the signal processing flexibility of a CPU. An image based architecture is presented that can adapt the tiling of frames to cope with changing scene dynamics. A real-time implementation is then discussed that can generate several hundred optical flow vectors per video frame, to accurately calculate the unwanted rigid body translation and rotation of camera shake. The performance of the HALO™ stabiliser is comprehensively benchmarked against the respected Deshaker 3.0 off-line stabiliser plugin to VirtualDub. Eight different videos are used for benchmarking, simulating: battlefield, surveillance, security and low-level flight applications in both visible and IR wavebands. The results show that HALO™ rivals the performance of Deshaker within its operating envelope. Furthermore, HALO™ may be easily reconfigured to adapt to changing operating conditions or requirements; and can be used to host other video processing functionality like image distortion correction, fusion and contrast enhancement.

  4. Development and validation of a novel large field of view phantom and a software module for the quality assurance of geometric distortion in magnetic resonance imaging.

    PubMed

    Torfeh, Tarraf; Hammoud, Rabih; McGarry, Maeve; Al-Hammadi, Noora; Perkins, Gregory

    2015-09-01

    To develop and validate a large field of view phantom and quality assurance software tool for the assessment and characterization of geometric distortion in MRI scanners commissioned for radiation therapy planning. A purpose built phantom was developed consisting of 357 rods (6mm in diameter) of polymethyl-methacrylat separated by 20mm intervals, providing a three dimensional array of control points at known spatial locations covering a large field of view up to a diameter of 420mm. An in-house software module was developed to allow automatic geometric distortion assessment. This software module was validated against a virtual dataset of the phantom that reproduced the exact geometry of the physical phantom, but with known translational and rotational displacements and warping. For validation experiments, clinical MRI sequences were acquired with and without the application of a commercial 3D distortion correction algorithm (Gradwarp™). The software module was used to characterize and assess system-related geometric distortion in the sequences relative to a benchmark CT dataset, and the efficacy of the vendor geometric distortion correction algorithms (GDC) was also assessed. Results issued from the validation of the software against virtual images demonstrate the algorithm's ability to accurately calculate geometric distortion with sub-pixel precision by the extraction of rods and quantization of displacements. Geometric distortion was assessed for the typical sequences used in radiotherapy applications and over a clinically relevant 420mm field of view (FOV). As expected and towards the edges of the field of view (FOV), distortion increased with increasing FOV. For all assessed sequences, the vendor GDC was able to reduce the mean distortion to below 1mm over a field of view of 5, 10, 15 and 20cm radius respectively. Results issued from the application of the developed phantoms and algorithms demonstrate a high level of precision. The results indicate that this platform represents an important, robust and objective tool to perform routine quality assurance of MR-guided therapeutic applications, where spatial accuracy is paramount. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Assessment of diffusion tensor image quality across sites and vendors using the American College of Radiology head phantom.

    PubMed

    Wang, Zhiyue J; Seo, Youngseob; Babcock, Evelyn; Huang, Hao; Bluml, Stefan; Wisnowski, Jessica; Holshouser, Barbara; Panigrahy, Ashok; Shaw, Dennis W W; Altman, Nolan; McColl, Roderick W; Rollins, Nancy K

    2016-05-08

    The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.

  6. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    PubMed Central

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-01-01

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level. PMID:27649207

  7. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    PubMed

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  8. a Novel Technique for Precision Geometric Correction of Jitter Distortion for the Europa Imaging System and Other Rolling-Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Shepherd, M.; Sides, S. C.

    2018-04-01

    We use simulated images to demonstrate a novel technique for mitigating geometric distortions caused by platform motion ("jitter") as two-dimensional image sensors are exposed and read out line by line ("rolling shutter"). The results indicate that the Europa Imaging System (EIS) on NASA's Europa Clipper can likely meet its scientific goals requiring 0.1-pixel precision. We are therefore adapting the software used to demonstrate and test rolling shutter jitter correction to become part of the standard processing pipeline for EIS. The correction method will also apply to other rolling-shutter cameras, provided they have the operational flexibility to read out selected "check lines" at chosen times during the systematic readout of the frame area.

  9. CCD centroiding experiment for JASMINE and ILOM

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Nakajima, Tadashi; Kawano, Nobuyuki; Tazawa, Seiichi; Yamada, Yoshiyuki; Hanada, Hideo; Asari, Kazuyoshi; Tsuruta, Seiitsu

    2006-06-01

    JASMINE and ILOM are space missions which are in progress at the National Astronomical Observatory of Japan. These two projects need a common astrometric technique to obtain precise positions of star images on solid state detectors to accomplish the objectives. We have carried out measurements of centroid of artificial star images on a CCD to investigate the accuracy of the positions of the stars, using an algorithm for estimating them from photon weighted means of the stars. We find that the accuracy of the star positions reaches 1/300 pixel for one measurement. We also measure positions of stars, using an algorithm for correcting the distorted optical image. Finally, we find that the accuracy of the measurement for the positions of the stars from the strongly distorted image is under 1/150 pixel for one measurement.

  10. Optimization of a novel large field of view distortion phantom for MR-only treatment planning.

    PubMed

    Price, Ryan G; Knight, Robert A; Hwang, Ken-Pin; Bayram, Ersin; Nejad-Davarani, Siamak P; Glide-Hurst, Carri K

    2017-07-01

    MR-only treatment planning requires images of high geometric fidelity, particularly for large fields of view (FOV). However, the availability of large FOV distortion phantoms with analysis software is currently limited. This work sought to optimize a modular distortion phantom to accommodate multiple bore configurations and implement distortion characterization in a widely implementable solution. To determine candidate materials, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision-machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature (14 systems, 5 vendors). Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 T), compared against previously published 1.0 T results, and integrated into the 3D Slicer application platform. All foam samples provided sufficient MR image contrast with paintball landmarks. Urethane foam (compressive strength ∼1000 psi, density ~20 lb/ft 3 ) was selected for its accurate machinability and weight characteristics. For smaller bores, a phantom version with the following parameters was used: 15 foam plates, 55 × 55 × 37.5 cm 3 (L×W×H), 5,082 landmarks, and weight ~30 kg. To accommodate > 70 cm wide bores, an extended build used 20 plates spanning 55 × 55 × 50 cm 3 with 7,497 landmarks and weight ~44 kg. Distortion characterization software was implemented as an external module into 3D Slicer's plugin framework and results agreed with the literature. The design and implementation of a modular, extendable distortion phantom was optimized for several bore configurations. The phantom and analysis software will be available for multi-institutional collaborations and cross-validation trials to support MR-only planning. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    PubMed

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-01-01

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes the structural similarity between the reconstructed image and prior image to modify the distorted edges by slope artifacts; (2) it adopts wavelet tight frames to obtain the first and high derivative in several directions and levels; and (3) it takes advantage of l0 regularization to promote the sparsity of wavelet coefficients, which is effective for the inhibition of the slope artifacts. Therefore, the new method can address the limited-angle CT reconstruction problem effectively and have practical significance.

  12. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, C; Zheng, W; Stehning, C

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising frommore » respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for patient-specific distortion corrections may be advantageous for MR-only RTP, although further investigations in larger cohorts are needed to fully characterize distortion magnitude. The submitting institution has research agreements with Philips Healthcare. Research sponsored by a Henry Ford Health System Internal Mentored Grant.« less

  13. Minimizing eddy currents induced in the ground plane of a large phased-array ultrasound applicator for echo-planar imaging-based MR thermometry.

    PubMed

    Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond

    2016-01-01

    The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.

  14. Female and Male Perceptions of Ideal Body Shapes: Distorted Views among Caucasian College Students.

    ERIC Educational Resources Information Center

    Cohn, Lawrence D.; Adler, Nancy E.

    1992-01-01

    Using body silhouettes, 87 college women and 118 college men indicated their own body shapes and shapes they and same-sex and other-sex peers find most attractive. Focus was on whether women overestimate desirability of thin figures among female peers. Males and females misjudged same-sex peers' preferences compared with ideals. (SLD)

  15. Prospects for Image Restoration

    NASA Astrophysics Data System (ADS)

    Hunt, B. R.

    Image restoration is the theory and practice of processing an image to correct it for distortions caused by the image formation process. The first efforts in image restoration appeared more than 25 years ago. In this article we review the more recent trends in image restoration and discuss the main directions that are expected to influence the continued evolution of this technology.

  16. Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.

    PubMed

    Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V

    2018-07-01

    Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Image Processing Of Images From Peripheral-Artery Digital Subtraction Angiography (DSA) Studies

    NASA Astrophysics Data System (ADS)

    Wilson, David L.; Tarbox, Lawrence R.; Cist, David B.; Faul, David D.

    1988-06-01

    A system is being developed to test the possibility of doing peripheral, digital subtraction angiography (DSA) with a single contrast injection using a moving gantry system. Given repositioning errors that occur between the mask and contrast-containing images, factors affecting the success of subtractions following image registration have been investigated theoretically and experimentally. For a 1 mm gantry displacement, parallax and geometric image distortion (pin-cushion) both give subtraction errors following registration that are approximately 25% of the error resulting from no registration. Image processing techniques improve the subtractions. The geometric distortion effect is reduced using a piece-wise, 8 parameter unwarping method. Plots of image similarity measures versus pixel shift are well behaved and well fit by a parabola, leading to the development of an iterative, automatic registration algorithm that uses parabolic prediction of the new minimum. The registration algorithm converges quickly (less than 1 second on a MicroVAX) and is relatively immune to the region of interest (ROI) selected.

  18. Geometric accuracy of Landsat-4 and Landsat-5 Thematic Mapper images.

    USGS Publications Warehouse

    Borgeson, W.T.; Batson, R.M.; Kieffer, H.H.

    1985-01-01

    The geometric accuracy of the Landsat Thematic Mappers was assessed by a linear least-square comparison of the positions of conspicuous ground features in digital images with their geographic locations as determined from 1:24 000-scale maps. For a Landsat-5 image, the single-dimension standard deviations of the standard digital product, and of this image with additional linear corrections, are 11.2 and 10.3 m, respectively (0.4 pixel). An F-test showed that skew and affine distortion corrections are not significant. At this level of accuracy, the granularity of the digital image and the probable inaccuracy of the 1:24 000 maps began to affect the precision of the comparison. The tested image, even with a moderate accuracy loss in the digital-to-graphic conversion, meets National Horizontal Map Accuracy standards for scales of 1:100 000 and smaller. Two Landsat-4 images, obtained with the Multispectral Scanner on and off, and processed by an interim software system, contain significant skew and affine distortions. -Authors

  19. Dynamics of flow control in an emulated boundary layer-ingesting offset diffuser

    NASA Astrophysics Data System (ADS)

    Gissen, A. N.; Vukasinovic, B.; Glezer, A.

    2014-08-01

    Dynamics of flow control comprised of arrays of active (synthetic jets) and passive (vanes) control elements , and its effectiveness for suppression of total-pressure distortion is investigated experimentally in an offset diffuser, in the absence of internal flow separation. The experiments are conducted in a wind tunnel inlet model at speeds up to M = 0.55 using approach flow conditioning that mimics boundary layer ingestion on a Blended-Wing-Body platform. Time-dependent distortion of the dynamic total-pressure field at the `engine face' is measured using an array of forty total-pressure probes, and the control-induced distortion changes are analyzed using triple decomposition and proper orthogonal decomposition (POD). These data indicate that an array of the flow control small-scale synthetic jet vortices merge into two large-scale, counter-rotating streamwise vortices that exert significant changes in the flow distortion. The two most energetic POD modes appear to govern the distortion dynamics in either active or hybrid flow control approaches. Finally, it is shown that the present control approach is sufficiently robust to reduce distortion with different inlet conditions of the baseline flow.

  20. Comparative Evaluation of Fracture Resistance and Mode of Failure of Zirconia and Titanium Abutments with Different Diameters.

    PubMed

    Shabanpour, Reza; Mousavi, Niloufar; Ghodsi, Safoura; Alikhasi, Marzieh

    2015-08-01

    The purpose of the current study was to compare the fracture resistance and mode of failure of zirconia and titanium abutments with different diameters. Fourteen groups of abutments including prefabricated zirconia, copy-milled zirconia and titanium abutments of an implant system (XiVE, Dentsply) were prepared in different diameters. An increasing vertical load was applied to each specimen until failure occurred. Fracture resistance was measured in each group using the universal testing machine. Moreover, the failure modes were studied and categorized as abutment screw fracture, connection area fracture, abutment body fracture, abutment body distortion, screw distortion and connection area distortion. Groups were statistically compared using univariate and post-hoc tests. The level of statistical significance was set at 5%. Fabrication method (p = 0.03) and diameter (p < 0.001) had significant effect on the fracture resistance of abutments. Fracture resistance of abutments with 5.5 mm diameter was higher than other diameters (p < 0.001). The observed modes of failure were dependent on the abutment material as well. All of the prefabricated titanium abutments fractured within the abutment screw. Abutment screw distortion, connection area fracture, and abutment body fracture were the common failure type in other groups. Diameter had a significant effect on fracture resistance of implant abutments, as abutments with greater diameters were more resistant to static loads. Copy-milled abutments showed lower fracture resistance as compared to other experimental groups. Although zirconia abutments have received great popularity among clinicians and even patients selecting them for narrow implants should be with caution.

  1. Perceiving Control Over Aversive and Fearful Events Can Alter How We Experience Those Events: An Investigation of Time Perception in Spider-Fearful Individuals

    PubMed Central

    Buetti, Simona; Lleras, Alejandro

    2012-01-01

    We used a time perception task to study the effects of the subjective experience of control on emotion and cognitive processing. This task is uniquely sensitive to the emotionality of the stimuli: high-arousing negative stimuli are perceived as lasting longer than high-arousing positive events, while the opposite pattern is observed for low-arousing stimuli. We evaluated the temporal distortions of emotionally charged events in non-anxious (Experiments 1 and 5) and spider-fearful individuals (Experiments 2–4). Participants were shown images of varying durations between 400 and 1600 ms and were asked to report if the perceived duration of the image seemed closer to a short (400 ms) or to a long (1600 ms) standard duration. Our results replicate previous findings showing that the emotional content of the image modulated the perceived duration of that image. More importantly, we studied whether giving participants the illusion that they have some control over the emotional content of the images could eliminate this temporal distortion. Results confirmed this hypothesis, even though our participant population was composed of highly reactive emotional individuals (spider-fearful) facing fear-related images (spiders). Further, we also showed that under conditions of little-to-no control, spider-fearful individuals perceive temporal distortions in a distinct manner from non-anxious participants: the duration of events was entirely determined by the valence of the events, rather than by the typical valence × arousal interaction. That is, spider-fearful participants perceived negative events as lasting longer than positive events, regardless of their level of arousal. Finally, we also showed that under conditions of cognitive dissonance, control can eliminate temporal distortions of low arousal events, but not of high-arousing events, providing an important boundary condition to the otherwise positive effects of control on time estimation. PMID:23060824

  2. Dithiocarbamates have a common toxic effect on zebrafish body axis formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilton, Fred; La Du, Jane K.; Vue, Meng

    2006-10-01

    We previously determined that the dithiocarbamate pesticide sodium metam (NaM) and its active ingredient methylisothiocyanate (MITC) were developmentally toxic causing notochord distortions in the zebrafish. In this study, developing zebrafish were exposed to isothiocyanates (ITCs), dithiocarbamates (DTCs) and several degradation products to determine the teratogenic relationship of these chemical classes at the molecular level. All dithiocarbamates tested elicited notochord distortions with notochord NOELs from <4 to 40 ppb, while none of the ITCs caused notochord distortions with the exception of MITC. Carbon disulfide (CS{sub 2}), a common DTC degradate, also caused distortions at concentrations >200 times the DTCs. Whole mountmore » in situ hybridization of developmental markers for collagen (collagen2a1), muscle (myoD), and body axis formation (no tail) was perturbed well after cessation of treatment with pyrolidine-DTC (PDTC), dimethyl-DTC (DMDTC), NaM, MITC, and CS{sub 2}. Therefore, distinct albeit related chemical classes share a common toxic effect on zebrafish notochord development. To test the responsiveness of the distortion to metal perturbation, five metal chelators and 2 metals were studied. The membrane permeable copper chelator neocuproine (NCu) was found to cause notochord distortions similar to DTC-related molecules. DMDTC and NCu treated animals were protected with copper, and collagen 2a1 and no tail gene expression patterns were identical to controls in these animals. PDTC, NaM, MITC, and CS{sub 2} were not responsive to copper indicating that the chelation of metals is not the primary means by which these molecules elicit their developmental toxicity. Embryos treated with DMDTC, NaM, and NCu were rescued by adding triciaine (MS-222) which abolishes the spontaneous muscle contractions that begin at 18 hpf. In these animals, only collagen 2a1 expression showed a similar pattern to the other notochord distorting molecules. This indicates that the perturbation of no tail expression is in response to the muscle contractions distorting the notochord, while collagen 2a1 is associated with the impact of these molecules on much earlier developmental processes.« less

  3. Characterization of Acoustic Droplet Vaporization Using MRI

    NASA Astrophysics Data System (ADS)

    Li, David; Allen, Steven; Hernandez-Garcia, Luis; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) is the selective vaporization of liquid droplets to form larger gas bubbles. The ADV process is currently being researched for biomedical applications such as gas embolotherapy, drug delivery, and phase-change contrast agents. In this study an albumin encapsulated dodecafluoropentane (DDFP, CAS: 678-26-2) microdroplet suspension was vaporized using a single element focused (f/2, D = 19 mm) 3.5 MHz transducer (Panametrics A321S, Olympus, Waltham, MA). The resulting DDFP bubble clouds were imaged using both bright field microscopy and MRI (Varian 7T, Agilent Technologies Inc., Santa Clara, CA). Field distortions due to DDFP bubble generation were characterized against the bright field images as a function of acoustic power and bubble cloud size. Experimentally a direct correlation between bubble cloud dimensions generated and field distortions seen in the MRI was observed. Additionally, MR velocimetry was used to measure the flow field resulting from ADV. The field distortions due to the bubbles were further characterized by modeling Maxwell's equations using COMSOL (COMSOL Inc., Burlington, MA). The ability to characterize ADV with alternative imaging modalities may prove useful in further development of ADV based biomedical therapies.

  4. Head-mounted spatial instruments: Synthetic reality or impossible dream

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Grunwald, Arthur; Velger, Mordekhai

    1988-01-01

    A spatial instrument is defined as a display device which has been either geometrically or symbolically enhanced to better enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. It is also found that deliberate, appropriate geometric distortion of the perspective projection of an image can improve user performance. These two findings raise intriguing questions concerning the design of head-mounted spatial instruments. The design of such instruments may not only require the introduction of compensatory distortions to remove the neutrally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. These image manipulations, however, can cause a loss of visual-vestibular coordination and induce motion sickness. Additionally, adaptation to these manipulations is apt to be impaired by computational delays in the image display. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord.

  5. Automatic anatomy recognition in post-tonsillectomy MR images of obese children with OSAS

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Sin, Sanghun; Arens, Raanan

    2015-03-01

    Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by surgical intervention. We focus on MRI of the neck in pediatric Obstructive Sleep Apnea Syndrome (OSAS). The proposed method consists of an AAR step followed by support vector machine techniques to detect the presence/absence of organs. The AAR step employs a hierarchical organization of the organs for model building. For each organ, a fuzzy model over a population is built. The model of the body region is then described in terms of the fuzzy models and a host of other descriptors which include parent to offspring relationship estimated over the population. Organs are recognized following the organ hierarchy by using an optimal threshold based search. The SVM step subsequently checks for evidence of the presence of organs. Experimental results show that AAR techniques can be combined with machine learning strategies within the AAR recognition framework for good performance in recognizing missing organs, in our case missing tonsils in post-tonsillectomy images as well as in simulating tonsillectomy images. The previous recognition performance is maintained achieving an organ localization accuracy of within 1 voxel when the organ is actually not removed. To our knowledge, no methods have been reported to date for handling significantly deformed or missing organs, especially in neck MRI.

  6. Updates to WFC3/UVIS Filter-Dependent and Filter-Distinct Distortion Corrections

    NASA Astrophysics Data System (ADS)

    Martlin, Catherine; Kozhurina-Platais, Vera; McKay, Myles; Sabbi, Elena

    2018-06-01

    The WFC3/UVIS filter wheel contains 63 filters that cover a large range of wavelengths from near ultraviolet to the near infrared. Previously, analysis was completed on the 14 most used UVIS filters to calibrate geometric distortions. These distortions are due to a combination of the optical assembly of HST as well as the variabilities in the composition of individual filters. We report recent updates to reference files that aid in correcting for these distortions of an additional 22 UVIS narrow and medium band filters and 4 unique UVIS filters. They were created following a calibration of the large-scale optical distortions and fine-scale filter-dependent distortions. Furthermore, we present results on a study into a selection of unique polynomial coefficient terms from all solved filters which allows us to better investigate the filter-dependent patterns across a large range of wavelengths.These updates will provide important enhancements for HST/WFC3 users as they allow more accurate alignment of images across the range of UVIS filters.

  7. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY-A CADAVERIC STUDY.

    PubMed

    Djernaes, Julie D; Nielsen, Jon V; Berg, Lise C

    2017-03-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired. Sequential radiographs were acquired with each interspinous space in focus. Measurements were performed for each interspinous space in the focus position and up to eight angled positions as the interspinous space moved away from focus (±). Focus position measurements were compared to matching sagittal CT measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous spaces in position +3 (P = 0.038). Changes in width did not follow a consistent pattern. Interspinous space widths in focus position were significantly smaller in radiographs compared to matching reconstructed CT images for backs diagnosed with kissing spine syndrome (P < 0.001). Geometric distortion markedly affected appearance of interspinous space width between planes. In conclusion, X-ray beam angle and geometric distortion influence radiographically measured widths of interspinous spaces in the equine thoracolumbar spine, and this should be taken into consideration when evaluating sport horses. © 2016 American College of Veterinary Radiology.

  8. Seeing the body distorts tactile size perception.

    PubMed

    Longo, Matthew R; Sadibolova, Renata

    2013-03-01

    Vision of the body modulates somatosensation, even when entirely non-informative about stimulation. For example, seeing the body increases tactile spatial acuity, but reduces acute pain. While previous results demonstrate that vision of the body modulates somatosensory sensitivity, it is unknown whether vision also affects metric properties of touch, and if so how. This study investigated how non-informative vision of the body modulates tactile size perception. We used the mirror box illusion to induce the illusion that participants were directly seeing their stimulated left hand, though they actually saw their reflected right hand. We manipulated whether participants: (a) had the illusion of directly seeing their stimulated left hand, (b) had the illusion of seeing a non-body object at the same location, or (c) looked directly at their non-stimulated right-hand. Participants made verbal estimates of the perceived distance between two tactile stimuli presented simultaneously to the dorsum of the left hand, either 20, 30, or 40mm apart. Vision of the body significantly reduced the perceived size of touch, compared to vision of the object or of the contralateral hand. In contrast, no apparent changes of perceived hand size were found. These results show that seeing the body distorts tactile size perception. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Independent psychophysical measurement of experimental modulations in the somatotopy of cutaneous heat-pain stimuli.

    PubMed

    Trojan, Jörg; Kleinböhl, Dieter; Stolle, Annette M; Andersen, Ole K; Hölzl, Rupert; Arendt-Nielsen, Lars

    2009-03-01

    Distortions of the body image have been repeatedly reported for various clinical conditions, but direct experimental analyses of the perceptual changes involved are still scarce. In addition, most experimental studies rely on cerebral activation patterns to assess neuroplastic changes in central representation, although the relationship between cerebral topography and the topology of the perceptual space is not clear. This study examines whether the direct psychophysical mapping approach we introduced recently (Trojan et al., Brain Res 2006;1120:106-113) is capable of tracking perceptual distortions in the somatotopic representation of heat-pain stimuli. Eleven healthy participants indicated the perceived positions of CO(2) laser stimuli, repetitively presented to the dorsal forearm, with a 3D tracking system in two consecutive sessions, separated by the topical application of capsaicin cream. In line with earlier reports, we expected that the resulting individual perceptual maps (i.e., one-dimensional projections of the perceived positions onto the forearm surface) would be subject to modulation through the altered sensory input, to be measured in terms of altered topological parameters. We found that the topology and metrics of the somatotopic representation were well preserved in the second session, but that the perceptual map was compressed to a smaller range in 9 out of 11 participants. By providing dimensional measures of perceptual representations, perceptual maps constitute an independent, genuinely psychological complement to the topography of cortical activations measured with neuroimaging methods. In addition, we expect them to be useful in diagnosing pathological changes in body perception accompanying chronic pain and other disorders.

  10. The right cerebral hemisphere: emotion, music, visual-spatial skills, body-image, dreams, and awareness.

    PubMed

    Joseph, R

    1988-09-01

    Based on a review of numerous studies conducted on normal, neurosurgical and brain-injured individuals, the right cerebral hemisphere appears to be dominant in the perception and identification of environmental and nonverbal sounds; the analysis of geometric and visual space (e.g., depth perception, visual closure); somesthesis, stereognosis, the maintenance of the body image; the production of dreams during REM sleep; the perception of most aspects of musical stimuli; and the comprehension and expression of prosodic, melodic, visual, facial, and verbal emotion. When the right hemisphere is damaged a variety of cognitive abnormalities may result, including hemi-inattention and neglect, prosopagnosia, constructional apraxia, visual-perceptual disturbances, and agnosia for environmental, musical, and emotional sounds. Similarly, a myriad of affective abnormalities may occur, including indifference, depression, hysteria, gross social-emotional disinhibition, florid manic excitement, childishness, euphoria, impulsivity, and abnormal sexual behavior. Patients may become delusional, engage in the production of bizzare confabulations and experience a host of somatic disturbances such as pain and body-perceptual distortions. Based on studies of normal and "split-brain" functioning, it also appears that the right hemisphere maintains a highly developed social-emotional mental system and can independently perceive, recall and act on certain memories and experiences without the aid or active reflective participation of the left. This leads to situations in which the right and left halves of the brain sometime act in an uncooperative fashion, which gives rise to inter-manual and intra-psychic conflicts.

  11. Research of paste transition to substrate in LTCC-technology

    NASA Astrophysics Data System (ADS)

    Litunov, S. N.; Yurkov, V. Y.

    2018-01-01

    The electronics development demands for accuracy of printed technologies, in particular, to screen printing. Under a flat blade operation the print form is deformed and the image is distorted relative to the original. A squeegee in a form of a smooth cylinder reduces distortion, but it allows obtaining satisfactory print quality only when using high density grids. The paper shows findings of using roller squeegee with dosed ink supply. The roller squeegee is provided with an elastic layer. Dosage is carried out due to the cells on the elastic layer surface. There were used meshes 100-31 and 120-34 for the stencil. The experiments were carried out with layers of photopolymers and rubber. The carried out calculations made possible to choose the optimum printing pressure. Under the selected conditions, the printed image had minimal distortion. The findings allow drawing a conclusion about the possibility of roller squeegee using in chips manufacture according to LTCC-technology.

  12. Improved Accuracy of the Inherent Shrinkage Method for Fast and More Reliable Welding Distortion Calculations

    NASA Astrophysics Data System (ADS)

    Mendizabal, A.; González-Díaz, J. B.; San Sebastián, M.; Echeverría, A.

    2016-07-01

    This paper describes the implementation of a simple strategy adopted for the inherent shrinkage method (ISM) to predict welding-induced distortion. This strategy not only makes it possible for the ISM to reach accuracy levels similar to the detailed transient analysis method (considered the most reliable technique for calculating welding distortion) but also significantly reduces the time required for these types of calculations. This strategy is based on the sequential activation of welding blocks to account for welding direction and transient movement of the heat source. As a result, a significant improvement in distortion prediction is achieved. This is demonstrated by experimentally measuring and numerically analyzing distortions in two case studies: a vane segment subassembly of an aero-engine, represented with 3D-solid elements, and a car body component, represented with 3D-shell elements. The proposed strategy proves to be a good alternative for quickly estimating the correct behaviors of large welded components and may have important practical applications in the manufacturing industry.

  13. Enhanced differential evolution to combine optical mouse sensor with image structural patches for robust endoscopic navigation.

    PubMed

    Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku

    2014-01-01

    Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.

  14. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  15. Kruger National Park

    Atmospheric Science Data Center

    2013-04-15

    ...     View Larger Image These images of northeastern South Africa, near Kruger National ... Unlike the MISR view, the AirMISR data are in "raw" form and processing to remove radiometric and geometric distortions has not yet been ...

  16. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  17. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO.

    PubMed

    Hernandez-Vicen, Juan; Martinez, Santiago; Garcia-Haro, Juan Miguel; Balaguer, Carlos

    2018-03-25

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

  18. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    PubMed Central

    2018-01-01

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid. PMID:29587392

  19. Laboratory test of a polarimetry imaging subtraction system for the high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Li, Rong

    2012-09-01

    We propose a polarimetry imaging subtraction test system that can be used for the direct imaging of the reflected light from exoplanets. Such a system will be able to remove the speckle noise scattered by the wave-front error and thus can enhance the high-contrast imaging. In this system, we use a Wollaston Prism (WP) to divide the incoming light into two simultaneous images with perpendicular linear polarizations. One of the images is used as the reference image. Then both the phase and geometric distortion corrections have been performed on the other image. The corrected image is subtracted with the reference image to remove the speckles. The whole procedure is based on an optimization algorithm and the target function is to minimize the residual speckles after subtraction. For demonstration purpose, here we only use a circular pupil in the test without integrating of our apodized-pupil coronagraph. It is shown that best result can be gained by inducing both phase and distortion corrections. Finally, it has reached an extra contrast gain of 50-times improvement in average, which is promising to be used for the direct imaging of exoplanets.

  20. Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation

    PubMed Central

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2015-01-01

    We present a new technique for the correction of nonuniform rotation distortion in catheter-based optical coherence tomography (OCT), based on the statistics of speckle between A-lines using intensity-based dynamic light scattering. This technique does not rely on tissue features and can be performed on single frames of data, thereby enabling real-time image correction. We demonstrate its suitability in a gastrointestinal balloon-catheter OCT system, determining the actual rotational speed with high temporal resolution, and present corrected cross-sectional and en face views showing significant enhancement of image quality. PMID:26625040

Top