Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials
NASA Astrophysics Data System (ADS)
Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.
2018-05-01
The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.
NASA Astrophysics Data System (ADS)
Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash
2018-04-01
Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.
Oxygen octahedra picker: A software tool to extract quantitative information from STEM images.
Wang, Yi; Salzberger, Ute; Sigle, Wilfried; Eren Suyolcu, Y; van Aken, Peter A
2016-09-01
In perovskite oxide based materials and hetero-structures there are often strong correlations between oxygen octahedral distortions and functionality. Thus, atomistic understanding of the octahedral distortion, which requires accurate measurements of atomic column positions, will greatly help to engineer their properties. Here, we report the development of a software tool to extract quantitative information of the lattice and of BO6 octahedral distortions from STEM images. Center-of-mass and 2D Gaussian fitting methods are implemented to locate positions of individual atom columns. The precision of atomic column distance measurements is evaluated on both simulated and experimental images. The application of the software tool is demonstrated using practical examples. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cammarata, Antonio; Rondinelli, James
2012-02-01
Transition-metal oxides within the perovskite crystal family exhibit strong electron--electron correlation effects that coexist with complex structural distortions, leading to metal-insulator (MI) transitions. Using first-principles density functional calculations, we investigate the effects of cooperative octahedral rotations and dilations/contractions on the charge-ordering MI-transition in CaFeO3. By calculating the evolution in the lattice phonons, which describe the different octahedral distortions present in the low-symmetry monoclinic phase of CaFeO3 with increasing electron correlation, we show that the MI-transition results from a complex interplay between these modes and correlation effects. We combine this study with group theoretical tools to disentangle the electron--lattice interactions by computing the evolution in the low-energy electronic band structure with the lattice phonons, demonstrating the MI-transition in CaFeO3 proceeds through a symmetry-lowering transition driven by a cooperative three-dimensional octahedral dilation/contraction pattern. Finally, we suggest a possible route by which to control the charge ordering by fine-tuning the electron--lattice coupling.
Oxygen octahedral distortions in LaMO 3/SrTiO 3 superlattices
Sanchez-Santolino, Gabriel; Cabero, Mariona; Varela, Maria; ...
2014-04-24
Here we study the interfaces between the Mott insulator LaMnO 3 (LMO) and the band insulator SrTiO 3 (STO) in epitaxially grown superlattices with different thickness ratios and different transport and magnetic behaviors. Using atomic resolution electron energy-loss spectrum imaging, we analyze simultaneously the structural and chemical properties of these interfaces. We find changes in the oxygen octahedral tilts within the LaMnO 3 layers when the thickness ratio between the manganite and the titanate layers is varied. Superlattices with thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along with a small amount of oxygen vacancies.more » On the other hand, thick STO layers exhibit undistorted octahedra while the LMO layers present reduced O octahedral distortions near the interfaces. In conclusion, these findings will be discussed in view of the transport and magnetic differences found in previous studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Yingge; Gu, Meng; Varga, Tamas
2014-08-27
In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planarmore » defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.« less
Controlling octahedral rotations in a perovskite via strain doping
Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; ...
2016-05-24
The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film canmore » be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO 3 films coherently grown on SrTiO 3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Emily; Kennedy, Brendan J.; Avdeev, Maxim
A combination of S-XRD and NPD demonstrate the structure of Ba{sub 2}Y{sub 0.879}UO{sub 6+x} to be monoclinic in space group I2/m. That the U is hexavalent is evident from the U L{sub 2}-edge XANES measurements. This appears to be a rare example of a double perovskite containing vacancies at the octahedral B-sites and interstitial oxygen defects, which combine to stabilise hexavalent U and appears to be a consequence of the preparation of the sample in air. The Y vacancies, coupled with anion disorder, results in a distortion of the BO{sub 6} octahedra. - Graphical abstract: The structure of Ba{sub 2}Y{submore » 0.879}UO{sub 6+x} is shown to be a rare example of a double perovskite containing vacancies at the octahedral B-sites and interstitial oxygen defects. - Highlights: • Structure of Ba{sub 2}Y{sub 0.879}UO{sub 6+x} refined. • U L-edge XANES demonstrates the U is hexavalent. • Rare example of a perovskite containing vacancies at the octahedral B-site. • Y vacancies result in a distortion of the BO{sub 6} octahedra.« less
Thomas, S.; Kuiper, B.; Hu, J.; ...
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less
Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.
Formation, stability and crystal structure of mullite-type Al{sub 6−x}B{sub x}O{sub 9}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de; Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße/NW2, Universität Bremen, D-28359 Bremen; Hooper, T.J.N.
2016-11-15
Mullite-type Al{sub 6−x}B{sub x}O{sub 9} compounds were studied by means of powder diffraction and spectroscopic methods. The backbones of this structure are chains of edge-connected AlO{sub 6} octahedra crosslinked by AlO- and BO-polyhedra. Rietveld refinements show that the a and b lattice parameters can be well resolved, thus representing an orthorhombic metric. A continuous decrease of the lattice parameters most pronounced in c-direction indicates a solid solution for Al{sub 6−x}B{sub x}O{sub 9} with 1.09≤x≤2. A preference of boron in 3-fold coordination is confirmed by {sup 11}B MAS NMR spectroscopy and Fourier calculations based on neutron diffraction data collected at 4more » K. Distance Least Squares modeling was performed to simulate a local geometry avoiding long B-O distances linking two octahedral chains by planar BO{sub 3} groups yielding split positions for the oxygen atoms and a strong distortion in the octahedral chains. The lattice thermal expansion was calculated using the Grüneisen first-order equation of state Debye-Einstein-Anharmonicity model. - Graphical abstract: Local distortion induced by boron linking the octahedral chains. - Highlights: • Decreasing lattice parameters indicate a solid solution for Al{sub 6−x}B{sub x}O{sub 9} (1.09≤x≤2). • B-atoms induce a local distortion of neighboring AlO{sub 6} octahedra. • A preference of boron in BO{sub 3} coordination is confirmed by {sup 11}B MAS NMR spectroscopy. • An optimized structural model for Al{sub 6−x}B{sub x}O{sub 9} is presented.« less
Torchinsky, D H; Chu, H; Zhao, L; Perkins, N B; Sizyuk, Y; Qi, T; Cao, G; Hsieh, D
2015-03-06
We report a global structural distortion in Sr_{2}IrO_{4} using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I4_{1}/acd to I4_{1}/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr_{2}IrO_{4}.
NASA Astrophysics Data System (ADS)
Saritha, A.; Raju, B.; Ramachary, M.; Raghavaiah, P.; Hussain, K. A.
2012-11-01
The synthesis, crystal structure and physical properties of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III) [K3Fe(C2O4)3] are described. X-ray analysis reveals that the compound crystallized in the chiral space group P4132 of cubic system with a=b=c=13.5970(2), Z=4. The structure of the complex consists of infinite anionic [Fe(C2O4)3]3- units with distorted octahedral environment of iron surrounded by six oxygen atoms of three oxalato groups. The anionic units are interlinked through K+ ions of three different coordination environments of distorted octahedral, bicapped trigonal prismatic and trigonal prismatic yielding a three-dimensional motif. The two broad absorption bands at 644 and 924 nm from UV-vis-NIR transmittance spectra were ascribed to a ligand-to-metal charge transfer. The room temperature crystalline EPR spectra indicate the high-spin (S=5/2) of Fe(III) ion. The vibrating sample magnetometer measurement shows the paramagnetic nature at room temperature. Thermal studies of the compound confirm the absence of water molecule.
NASA Astrophysics Data System (ADS)
Voss, Johannes; Fennie, Craig J.
2011-03-01
The Ruddlesden-Popper ruthenates Sr n+1 Ru n O3 n + 1 display a broad range of electronic phases including p -wave superconductivity, electronic nematicity, and ferromagnetism. Elucidating the role of the number of perovskite blocks, n , in the realization of these differently ordered electronic states remains a challenge. Additionally dramatic experimental advances now enable the atomic scale growth of these complex oxide thin films on a variety of substrates coherently, allowing for the application of tunable epitaxial strain and subsequently the ability to control structural distortions such as oxygen octahedral rotations. Here we investigate from first principles the effect of oxygen octahedral rotations on the electronic structure of Sr 2 Ru O4 and Sr 3 Ru 2 O7 . We discuss possible implications for the physics of the bulk systems and point towards new effects in thin films.
Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites
NASA Astrophysics Data System (ADS)
Boström, Hanna L. B.; Hill, Joshua A.; Goodwin, Andrew L.
We introduce columnar shifts---collective rigid-body translations---as a structural degree of freedom relevant to the phase behaviour of molecular perovskites ABX$_{\\textrm3}$ (X = molecular anion). Like the well-known octahedral tilts of conventional perovskites, shifts also preserve the octahedral coordination geometry of the B-site cation in molecular perovskites, and so are predisposed to influencing the low-energy dynamics and displacive phase transitions of these topical systems. We present a qualitative overview of the interplay between shift activation and crystal symmetry breaking, and introduce a generalised terminology to allow characterisation of simple shift distortions, drawing analogy to the "Glazer notation" for octahedral tilts. We apply our approach to the interpretation of a representative selection of azide and formate perovskite structures, and discuss the implications for functional exploitation of shift degrees of freedom in negative thermal expansion materials and hybrid ferroelectrics.
Octahedral tilting instabilities in inorganic halide perovskites
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-02-01
Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.
Tailoring Electronic Properties in Semiconducting Perovskite Materials through Octahedral Control
NASA Astrophysics Data System (ADS)
Choquette, Amber K.
Perovskite oxides, which take the chemical formula ABO 3, are a very versatile and interesting materials family, exhibiting properties that include ferroelectricity, ferromagnetism, mixed ionic/electronic conductivity, metal-insulator behavior and multiferroicity. Key to these functionalities is the network of BO6 corner-connected octahedra, which are known to distort and rotate, directly altering electronic and ferroic properties. By controlling the BO6 octahedral distortions and rotations through cationic substitutions, the use of strain engineering, or through the formation of superlattice structures, the functional properties of perovskites can be tuned. Motivating the use of structure-driven design in oxide heterostructures is the prediction of hybrid improper ferroelectricity in A'BO3/ABO3 superlattices. Two key design rules to realizing hybrid improper ferroelectricity are the growth of high quality superlattice structures with odd periodicities of the A / A' layers, and the control of the octahedral rotation pattern. My work explores the rotational response in perovskite oxides to strain and interface effects in thin films of RFeO3 ( R = La, Eu). I demonstrate a synchrotron x-ray diffraction technique to identify the rotation pattern that is present in the films. I then establish substrate imprinting as a key tool for controlling the rotation patterns in heterostructures, providing a means to realize the necessary structural variants of the predicted hybrid improper ferroelectricity in superlattices. In addition, by pairing measured diffraction data with a structure factor calculation, I demonstrate how one can extract both A-site and oxygen atomic positions in single crystal perovskite oxide films. Finally, I show results from (LaFeO 3)n/(EuFeO3)n superlattices (n = 1-5), synthesized to test the motivating predictions of hybrid improper ferroelectricity in oxide superlattices.
Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Michael D; Takamura, Y; Mehta, A
Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.
Rosales-Vázquez, Luis D; Sánchez-Mendieta, Víctor; Dorazco-González, Alejandro; Martínez-Otero, Diego; García-Orozco, Iván; Morales-Luckie, Raúl A; Jaramillo-Garcia, Jonathan; Téllez-López, Antonio
2017-09-26
Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H 2 O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H 2 O} n (1); [Cd 2 (H 2 O) 2 (e,a-cis-1,4-chdc) 2 (4,4'-dmb) 2 ] n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H 2 O·CH 3 OH} n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH 3 OH} n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd 2 O 2 ) as nodes to generate larger cycles made up of four dinuclear units, a Cd 4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λ em = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 μmol L -1 .
Phase transitions of titanite CaTiSiO5 from density functional perturbation theory
NASA Astrophysics Data System (ADS)
Malcherek, Thomas; Fischer, Michael
2018-02-01
Phonon dispersion of titanite CaTiSiO5 has been calculated using the variational density functional perturbation theory. The experimentally known out-of-center distortion of the Ti atom is confirmed. The distortion is associated with a Bu mode that is unstable for wave vectors normal to the octahedral chain direction of the C 2 /c aristotype structure. The layer of wave vectors with imaginary mode frequencies also comprises the Brillouin zone boundary point Y (0 ,1 ,0 ) , which is critical for the transition to the P 21/c ground-state structure. The phonon branch equivalent to the imaginary branch of the titanite aristotype is found to be stable in malayaite CaSnSiO5. The unstable phonon mode in titanite leads to the formation of transoriented short and long Ti-O1 bonds. The Ti as well as the connecting O1 atom exhibit strongly anomalous Born effective charges along the octahedral chain direction [001], indicative of the strong covalency in this direction. Accordingly and in contrast to malayaite, LO-TO splitting is very large in titanite. In the C 2 /c phase of titanite, the Ti-O1-Ti distortion chain is disordered with respect to neighboring distortion chains, as all chain configurations are equally unstable along the phonon branch. This result is in agreement with diffuse x-ray scattering in layers normal to the chain direction that is observed at temperatures close to the P 21/c to C 2 /c transition temperature and above. The resulting dynamic chains of correlated Ti displacements are expected to order in two dimensions to yield the P 21/c ground-state structure of titanite.
NASA Astrophysics Data System (ADS)
Lukyanov, Alexey; Lubchenko, Vassiliy
2017-09-01
We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in covalently bonded glassy liquids, where the identification of the effective rigid molecular unit is ambiguous.
Structural analysis of LaVO3 thin films under epitaxial strain
NASA Astrophysics Data System (ADS)
Meley, H.; Karandeep, Oberson, L.; de Bruijckere, J.; Alexander, D. T. L.; Triscone, J.-M.; Ghosez, Ph.; Gariglio, S.
2018-04-01
Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3) and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.
Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S
2008-10-18
In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.
Structural and Acidic Properties of Niobia-Silica and Niobia-Alumina Aerogels
1991-05-06
some weak Bronsted acidity. The silica aerogel supported niobia samples also had strong Lewis acidity as well as strong iv Bronsted acidity which was...NS25w or the silica aerogel supported niobia because of the formation of a distorted octahedral niobia-rigid silica interface. Isomerization of 1...67 2.1.2 Silica Aerogel .......................................................... 70 2.1.3 Alumina
Quadratic elongation: A quantitative measure of distortion in coordination polyhedra
Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.
1971-01-01
Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vailionis, A.; Boschker, H.; Max Planck Institute for Solid State Research, 70569 Stuttgart
2014-09-29
Distinct MnO{sub 6} octahedral distortions near and away from the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3}(001) (LSMO/STO) interface are quantified using synchrotron x-ray diffraction and dynamical x-ray diffraction simulations. Three structural regions of stress accommodation throughout the film thickness were resolved: near the LSMO/STO interface, intermediate region farther from the interface, and the main layer away from the interface. The results show that within the first two unit cells stress is accommodated by the suppression of octahedral rotations in the film, leading to the expansion of the c-axis lattice parameter. Farther from the interface film structure acquires octahedral tilts similar tomore » thicker perovskite films under tensile stress, leading to a reduced c-axis parameter. We demonstrate that these regions are related to two different strain coupling mechanisms: symmetry mismatch at the interface and lattice mismatch in the rest of the film. The findings suggest new routes for strain engineering in correlated perovskite heterostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barahona, P., E-mail: pbaraho@ucm.cl; Galdámez, A., E-mail: agaldamez@uchile.cl; López-Vergara, F.
CuTi{sub 2−x}M{sub x}S{sub 4} (M=Fe, Mn, Co; x=0.3, 0.5) and CuCr{sub 2−x}Ti{sub x}Se{sub 4} (x=0.3, 0.5, 0.7) chalcospinels were synthesized by conventional solid-state reactions. Their crystal structures were determined by single-crystal X-ray diffraction. All of the phases crystallized in cubic spinel-type structures (space group, Fd3{sup ¯}m). For all of the chalcospinel compounds, the edge-length distortion parameter (ELD) indicated that the most distorted polyhedron was Q[(Ti,M){sub 3}Cu], which displayed an ∼8% distortion from an ideal tetrahedron structure (Q=S or Se). The Mn-based thiospinel CuMn{sub 0.3}Ti{sub 1.7}S{sub 4} is paramagnetic, whereas the Fe-based thiospinels (CuTi{sub 2−x}Fe{sub x}S{sub 4}; x=0.3 and 0.7) aremore » strongly antiferromagnetic due to their spin-glass states. The magnetic susceptibility measurements indicated ferromagnetic behavior for the selenospinels (CuCr{sub 2−x}Ti{sub x}Se{sub 4}; x=0.3, 0.5 and 0.7). - Graphical abstract: View along [1 0 0] of CuCr{sub 2−x}Ti{sub x}Se{sub 4} crystal structure showing tetrahedral and octahedral units. To the right, experimental X-ray powder diffraction pattern of CuCr{sub 1.7}Ti{sub 0.3}Se{sub 4} (top) in compared (in a like-mirror representation) to a simulated X-ray pattern from single-crystal data (bottom). - Highlights: • Chalcogenides belong to the family of compounds spinel-type. • Resolved single crystals of the solid solutions have space group Fd-3m. • The distortion of the tetrahedral and octahedral volume were calculated. • These solid solutions shows a ferromagnetic or spin-glass behavior.« less
Rhoda, Hannah M; Crandall, Laura A; Geier, G Richard; Ziegler, Christopher J; Nemykin, Victor N
2015-05-18
A series of metallocorroles were investigated by UV-vis and magnetic circular dichroism spectroscopies. The diamagnetic distorted square-pyramidal main-group corrole Ga(tpfc)py (2), the diamagnetic distorted octahedral transition-metal adduct Co(tpfc)(py)2 (3), and paramagnetic distorted octahedral transition-metal complex Fe(tpfc)(py)2 (4) [H3tpfc = tris(perfluorophenyl)corrole] were studied to investigate similarities and differences in the electronic structure and spectroscopy of the closed- and open-shell metallocorroles. Similar to the free-base H3tpfc (1), inspection of the MCD Faraday B-terms for all of the macrocycles presented in this report revealed that a ΔHOMO < ΔLUMO [ΔHOMO is the energy difference between two highest energy corrole-centered π-orbitals and ΔLUMO is the energy difference between two lowest energy corrole-centered π*-orbitals originating from ML ± 4 and ML ± 5 pairs of perimeter] condition is present for each complex, which results in an unusual sign-reversed sequence for π-π* transitions in their MCD spectra. In addition, the MCD spectra of the cobalt and the iron complexes were also complicated by a number of charge-transfer states in the visible region. Iron complex 4 also exhibits a low-energy absorption in the NIR region (1023 nm). DFT and TDDFT calculations were used to elaborate the electronic structures and provide band assignments in UV-vis and MCD spectra of the metallocorroles. DFT and TDDFT calculations predict that the orientation of the axial pyridine ligand(s) has a very minor influence on the calculated electronic structures and absorption spectra in the target systems.
NASA Astrophysics Data System (ADS)
Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.
2014-02-01
Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.
Linear energy relationships for the octahedral preference of Mg, Ca and transition metal ions.
Pontikis, George; Borden, James; Martínek, Václav; Florián, Jan
2009-04-16
The geometry, atomic charges, force constants, and relative energies of the symmetric and distorted M(2+)(H(2)O)(4)(F(-))(2), M(3+)(H(2)O)(4)(F(-))(2), M(2+)(H(2)O)(3)(F(-))(2), and M(3+)(H(2)O)(3)(F(-))(2) metal complexes, M = Mg, Ca, Co, Cu, Fe, Mn, Ni, Zn, Cr, V, were calculated by using the B3LYP/TZVP density functional method in both gas phase and aqueous solution, modeled using the polarized continuum model. The deformation energy associated with moving one water ligand 12 degrees from the initial "octahedral" arrangement, in which all O-M-O, O-M-F, and F-M-F angles are either 90 degrees or 180 degrees, was calculated to examine the angular ligand flexibility. For all M(2+)(H(2)O)(4)(F(-))(2) complexes, this distortion increased the energy of the complex in proportion to the electrostatic potential-derived (ESP) charge of the metal, and in proportion to D(-10), where D is the distance from the distorted ligand to its closest neighbor. The octahedral stability was further examined by calculating the energies for the removal of a water ligand from the octahedral complex to form a square-pyramidal or trigonal-bipyramidal complex. The octahedral preference, defined as the negative of the corresponding binding energy of the ligand, was found to linearly correlate with the ESP charge of the metal in both the gas phase and aqueous solution. The obtained results indicate that quantum-mechanical covalent effects are of secondary importance for both the flexibility and the octahedral preference of M(2+)(H(2)O)(4)(F(-))(2) and M(3+)(H(2)O)(4)(F(-))(2) complexes. This conclusion and supporting data are important for the development of consistent molecular mechanical force fields of the studied metal ions.
Strain-induced metal-insulator transitions in d1 perovskites within DFT+DMFT
NASA Astrophysics Data System (ADS)
Dymkowski, Krzysztof; Ederer, Claude
2014-03-01
We present results of combined density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations, assessing the effect of epitaxial strain on the electronic properties of the Mott insulator LaTiO3 and the correlated metal SrVO3. In particular, we take into account the effect of strain on the collective tilts and rotations of the oxygen octahedra in the orthorhombically distorted Pbnm perovskite structure of LaTiO3. We find that LaTiO3 undergoes an insulator-to-metal transition under a compressive strain of about - 2 %, consistent with recent experimental observations. We show that this transition is driven mainly by strain-induced changes in the crystal-field splitting between the Ti t2 g orbitals, which in turn are related to changes in the octahedral tilt distortion. We compare this with the case of SrVO3, without octahedral tilts, where we find a metal-to-insulator transition under tensile epitaxial strain. Similar to LaTiO3, this metal-insulator transition is linked to the strain-induced change in the crystal-field splitting within the t2 g orbitals.
Kritayakornupong, Chinapong
2009-12-01
A hybrid ab initio QM/MM molecular dynamics simulation at the Hartree-Fock level has been performed to investigate structural and dynamical parameters of the V(3+) ion in dilute aqueous solution. A distorted octahedral structure with the average V(3+)-O distance of 1.99 A is evaluated from the QM/MM simulation, which is in good agreement with the X-ray data. Several structural parameters such as angular distribution functions, theta- and tilt-angle distributions have been determined to obtain the full description of the hydration structure of the hydrated V(3+). The Jahn-Teller distortions of the V(3+) ion are pronounced in the QM/MM simulation. The mean residence time of 14.5 ps is estimated for the ligand exchange processes in the second hydration shell. (c) 2009 Wiley Periodicals, Inc.
A correlation between structural distortion and variation of TC in Ba1-x/2LaxBi4-x/2Ti4O15
NASA Astrophysics Data System (ADS)
Asha, M. Arul; Gajendra Babu, M. Veera; Abdul Kader, S. M.; Sundarakannan, B.; Srihari, V.; Sridharan, V.
2012-06-01
Ba and Bi ions were simultaneously substituted by La ion up to 0.3 mole fraction and studied by powder XRD and temperature dependent dielectric measurements. Perovskite slab thickness reduces due to octahedral tilting and the cell volume decreases. Low mole fraction of simultaneous substitution of La is preferred as it increases physical properties.
Pluth, Joseph J.; Smith, Joseph V.
2002-01-01
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O; triclinic, P1̄, a = 13.634(5) Å, b = 13.687(7), c = 14.522(7), α = 110.83(1)°, β = 107.21(1), γ = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4⋅H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404
Pluth, Joseph J; Smith, Joseph V
2002-08-20
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16* approximately 8H2O; triclinic, P1, a = 13.634(5) A, b = 13.687(7), c = 14.522(7), alpha = 110.83(1) degrees, beta = 107.21(1), gamma = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4.H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae
The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less
Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae; ...
2018-03-26
The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less
NASA Astrophysics Data System (ADS)
Fridrichová, Jana; Bačík, Peter; Ertl, Andreas; Wildner, Manfred; Dekan, Július; Miglierini, Marcel
2018-01-01
Red beryl from Utah is chemically homogeneous and contains only Fe < 0.163, Mn < 0.018, and Mg < 0.016 apfu. Channel sites contain only up to Cs 0.011, K 0.009, Rb 0.004, and Na 0.004 apfu. This suggests only very slight tetrahedral (Cs,K,Rb)Li□-1Be-1 substitution, octahedral Na(Fe2+,Mg)□-1Al-1 substitution can be excluded. Fe and Mn are trivalent as documented by Mössbauer spectroscopy and optical absorption spectroscopy. Red beryl optimized formula is ∼[(Cs,Rb,K)0.02□0.98]Σ1.00□1.00(Al1.79Fe3+0.16Mn3+0.02Ti4+0.02Mg0.01)Σ2.00Be3(Si6O18). Location of Mn3+ was estimated to the octahedral Al3+ site, other choices are improbable due to the bond-length requirements. No Mn3+-induced Jahn-Teller structural distortion was detected due to site symmetry restrictions and small Mn3+ content. However, optical spectroscopy shows broad band at ∼7190 cm-1 assigned to the excited level of the spin-allowed pseudo-tetragonal split E ground state of elongated six-fold Mn3+ coordination. Crystal field calculations indicate that the local Mn3+ environment complies well with crystal chemical expectations for Jahn-Teller distorted Mn3+O6 octahedra.
Cryo-Trapping the Distorted Octahedral Reaction Intermediate of Manganese Superoxide Dismutase
NASA Technical Reports Server (NTRS)
Borgstahl, Gloria; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Superoxide dismutase protects organisms from potentially damaging oxygen radicals by catalyzing the disproportion of superoxide to oxygen and hydrogen peroxide. We report the use of cryogenic temperatures to kinetically trap the 6th ligand bound to the active site of manganese superoxide dismutase. Using cryocrystallography and synchrotron radiation, we describe at 1.55A resolution the six-coordinate, distorted octahedral geometry assumed by the active site during catalysis and compare it to the room temperature, five-coordinate trigonal-bipyramidal active site. Gateway residues Tyr34, His30 and a tightly bound water molecule are implicated in closing off the active site and blocking the escape route of superoxide during dismutation.
Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures
NASA Astrophysics Data System (ADS)
Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.
2011-12-01
The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.
Effects of compositional defects on small polaron hopping in micas.
Rosso, Kevin M; Ilton, Eugene S
2005-06-22
Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Wu, Li-Na; Zhang, Li-Juan; Peng, Li; Wu, Ming-He; Teng, Bao-Hua
2018-02-01
The electron paramagnetic resonance (EPR) parameters and local structures for impurities VO2+ and Cu2+ in RO-Li2O-Na2O-K2O-B2O3 (RLNKB; R = Zn, Mg, Sr and Ba) glasses are theoretically investigated by using the perturbation formulas of the EPR parameters for tetragonally compressed octahedral 3d1 and tetragonally elongated octahedral 3d9 clusters, respectively. The VO2+ and Cu2+ dopants are found to undergo the tetragonal compression (characterized by the negative relative distortion ratios ρ ≈ -3%, -0.98%, -1% and -0.8% for R = Zn, Mg, Sr and Ba) and elongation (characterized by the positive relative distortion ratios ρ ≈ 29%, 17%, 16% and 28%), respectively, due to the Jahn-Teller effect. Both dopants show similar overall decreasing trends of cubic field parameter Dq and covalency factor N with decreasing electronegativity of alkali earth cation R. The conventional optical basicities Λth and local optical basicities Λloc are calculated for both systems, and the local Λloc are higher for Cu2+ than for VO2+ in the same RLNKB glass, despite the opposite relationship for the conventional Λth. This point is supported by the weaker covalency or stronger ionicity for Cu2+ than VO2+ in the same RLNKB system, characterized by the larger N in the former. The above comparative analysis on the spectral and local structural properties would be helpful to understand structures and spectroscopic properties for the similar oxide glasses with transition-metal dopants of complementary electronic configurations.
Ba 3 (Cr 0.97(1) Te 0.03(1) ) 2 TeO 9 : in Search of Jahn–Teller Distorted Cr(II) Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Man-Rong; Deng, Zheng; Lapidus, Saul H.
2016-10-17
A novel 6H - type hexagonal perovskite Ba 3 (Cr 0.97(1) Te 0.03 (1 ) ) 2 TeO 9 was prepared at high pressure (6 GPa) and temperature ( 1 773 K). Both transmission electron microscopy and synchrotron powder x - ray diffraction data demonstrate that Ba 3 (Cr 0.97(1) Te 0.03(1) ) 2 TeO 9 crystallize s in P6 3 / mmc with face - shared (Cr 0.97(1) Te 0.03(1) )O 6 octahedral pairs interconnected with TeO 6 octahedra via corner - sharing. Structure analysis shows a mixed Cr 2+ /Cr 3+ valence state with ~ 10% Cr 2+more » . The existence of Cr 2+ in Ba 3 (Cr 2+ 0.10(1) Cr 3+ 0.87(1) Te 6+ 0.03 ) 2 TeO 9 is further evidenced by x - ray absorption near edge spectr oscopy . Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy - state curvature at low temperature. In this work, the o ctahedral Cr 2+ O 6 component is stabilized in an oxide material for the first time ; the expected Jahn - Teller distortion of high - spin ( d 4 ) Cr 2+ is not found , which is attributed to the small proportion of Cr 2+ (~ 10%) and the face - sharing arrangement of CrO 6 octahedral pairs, that structu rally dis favor axial distortion.« less
Structural phase transitions in monolayer molybdenum dichalcogenides
NASA Astrophysics Data System (ADS)
Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo
2015-03-01
The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.
Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol
NASA Astrophysics Data System (ADS)
Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.
2009-03-01
A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.
(Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.
Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan
2009-12-12
The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.
The effect of symmetry on the U L3 NEXAFS of octahedral coordinated uranium(vi)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.
2017-03-21
We describe a detailed theoretical analysis of how distortions from ideal cubic or Oh symmetry affect the shape, in particular the width, of the U L3-edge NEXAFS for U(VI) in octahedral coordination. The full-width-half-maximum (FWHM) of the L3-edge white line decreases with increasing distortion from Oh symmetry due to the mixing of symmetry broken t2g and eg components of the excited state U(6d) orbitals. The mixing is allowed because of spin-orbit splitting of the ligand field split 6d orbitals. Especially for higher distortions, it is possible to identify a mixing between one of the t2g and one of the egmore » components, allowed in the double group representation when the spin-orbit interaction is taken into account. This mixing strongly reduces the ligand field splitting, which, in turn, leads to a narrowing of the U L3 white line. However, the effect of this mixing is partially offset by an increase in the covalent anti-bonding character of the highest energy spin-orbit split eg orbital. At higher distortions, mixing overwhelms the increasing anti-bonding character of this orbital which leads to an accelerated decrease in the FWHM with increasing distortion. Additional evidence for the effect of mixing of t2g and eg components is that the FWHM of the white line narrows whether the two axial U-O bond distances shorten or lengthen. Our ab initio theory uses relativistic wavefunctions for cluster models of the structures; empirical or semi-empirical parameters were not used to adjust prediction to experiment. A major advantage is that it provides a transparent approach for determining how the character and extent of the covalent mixing of the relevant U and O orbitals affect the U L3-edge white line.« less
NASA Astrophysics Data System (ADS)
Khalsa, Guru; Benedek, Nicole A.
2018-03-01
Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.
Cationic aza-macrocyclic complexes of germanium(II) and silicon(IV).
Everett, Matthew; Jolleys, Andrew; Levason, William; Light, Mark E; Pugh, David; Reid, Gillian
2015-12-28
[GeCl2(dioxane)] reacts with the neutral aza-macrocyclic ligands L, L = Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), Me4cyclen (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) or Me4cyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and two mol. equiv. of Me3SiO3SCF3 in thf solution to yield the unusual and hydrolytically very sensitive [Ge(L)][O3SCF3]2 as white solids in moderate yield. Using shorter reaction times [Ge(Me3tacn)]Cl2 and [Ge(Me3tacn)]Cl[O3SCF3] were also isolated; the preparation of [Ge(Me4cyclen)][GeCl3]2 is also described. The structures of the Me3tacn complexes show κ(3)-coordination of the macrocycle, with the anions interacting only weakly to produce very distorted five- or six-coordination at germanium. In contrast, the structure of [Ge(Me4cyclen)][O3SCF3]2 shows no anion interactions, and a distorted square planar geometry at germanium from coordination to the tetra-aza macrocycle. Crystal structures of the Si(iv) complexes, [SiCl3(Me3tacn)]Y (Y = O3SCF3, BAr(F); [B{3,5-(CF3)2C6H3}4]) and [SiHCl2(Me3tacn)][BAr(F)], obtained from reaction of SiCl4 or SiHCl3 with Me3tacn, followed by addition of either Me3SiO3SCF3 or Na[BAr(F)], contain distorted octahedral cations, with facialκ(3)-coordinated Me3tacn. The open-chain triamine, Me2NCH2CH2N(Me)CH2CH2NMe2 (pmdta), forms [SiCl3(pmdta)][BAr(F)] and [SiBr3(pmdta)][BAr(F)] under similar conditions, containing mer-octahedral cations.
On the 16O 6+ ion irradiation induced magnetic moment generation in ZnFe2O4 nano ferrite
NASA Astrophysics Data System (ADS)
Satalkar, M.; Kane, S. N.; Raghuvanshi, S.
2018-05-01
X-ray diffraction (XRD) was utilized to study the effect of 80 MeV 16O 6+ ion irradiation of the as-burnt ZnFe2O4 samples, prepared by sol-gel auto-combustion technique. The samples were irradiated at fluence: 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 ions/cm2 to observe the effect of irradiation on structural properties and cationic distribution. XRD confirms the formation of single phase nanocrystalline cubic spinel ferrites with Scherrer's particle diameter (D) ranging between 15.7 - 17.4 nm. Results very distinctly show the electronic energy loss induced changes in: - experimental and theoretical lattice parameter (aexp., ath.), tetrahedral and octahedral bond length (RA, RB), and shared tetrahedral and octahedral edge (dAE, dBE). The paper reports the generation of magnetic moment of Zn ferrite by swift heavy ion irradiation induced distortion at tetrahedral site.
Prout, Keith; Edwards, Alison; Mtetwa, Victor; Murray, Jon; Saunders, John F.; Rossotti, Francis J. C.
1997-06-18
The crystal structure of trans-diaquabis(methoxyacetato)copper(II), C(6)H(14)O(8)Cu, has been determined by neutron diffraction at 4.2 K (monoclinic, P2(1)/n, a = 6.88(1), b = 7.19(1), c = 9.77(2) Å, gamma = 95.7(1) degrees, (Z = 2)) and by X-ray diffraction at 125, 165, 205, 240, 265, 295, and 325 K. These measurements show that there is no phase change in the temperature range 4.2-325 K. The copper(II) coordination at 4.2 K is a tetragonally distorted elongated rhombic octahedron (Cu-OOC 1.955(1), Cu-OMe 2.209(1), and Cu-OH(2) 2.031(2) Å). As the temperature increases to 325 K, the Cu-OOC bonds shorten slightly to 1.934(5) Å, the Cu-OMe bonds shorten more markedly to 2.137(4) Å, and Cu-OH(2) lengthens to 2.155(6) Å to give a tetragonally distorted compressed rhombic octahedron. For comparison the structure of the isomorphous nickel(II) complex (monoclinic, P2(1)/n, a = 6.633(1), b = 7.192(1), c = 10.016(2) Å, gamma = 98.30(2) degrees, (Z = 2)) has been redetermined at 295 K and the structure of the analogous zinc(II) complex (orthorhombic, F2dd, a = 7.530(1), b = 13.212(1), c = 21.876(2) Å (Z = 8)) has also been determined. The nickel(II) complex has an almost regular trans (centrosymmetric) octahedral coordination (Ni-OOC 2.022(1), Ni-OMe 2.043(1), and Ni-OH(2) 2.077(2) Å). However, zinc(II) has a very distorted octahedral coordination with the zinc atom on a 2-fold axis with the water molecules and the methoxy ligators cis and the carboxylate ligators trans (Zn-OOC 1.985(1), Zn-OMe 2.304(2), and Zn-OH(2) 2.038(2) Å). The variation in the dimensions of the copper(II) coordination sphere is discussed in terms of static (low temperature) and planar dynamic (high temperature) pseudo-Jahn-Teller effects.
Raman Study of the Structural Distortion in the Ni 1–xCo xTiO 3 Solid Solution
Fujioka, Yukari; Frantti, Johannes; Puretzky, Alexander; ...
2016-09-08
In this paper, Raman spectra were collected on Ni 1–xCo xTiO 3 (0 ≤ x ≤ 1) ilmenite samples as a function of the temperature between 4 and 1200 K. An evident symmetry lowering from the prototype Rmore » $$\\bar{3}$$symmetry is observed. The distortion was largest for the x = 0.40 and 0.50 samples and significantly diminished for small and large values of x. The distortion was preserved in the whole temperature range and, except for the x = 0.50 sample, did not show significant changes. Notably, between 25 and 69 K, distortion of the x = 0.40 sample is accompanied by ferromagnetic order. The direct cation–cation and O-mediated indirect interactions are discussed as mechanisms behind the distortion and magnetic order. A reversible order–disorder phase transformation, assigned to occur between the ilmenite and corundum phases, took place at 973 K in the x = 0.50 sample. Completion of the transformation took over 1 h. Finally, the role of the overlap of Co/Ni and Ti 3d orbitals through O octahedral faces for charge transfer is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeber, Stefan, E-mail: stefan.stoeber@geo.uni-halle.de; Redhammer, Guenther; Schorr, Susan
2013-01-15
Four different brownmillerite solid solutions Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3 were synthesized by a solid oxide ceramic method. The phases crystallize either in a primitive centered orthorhombic cell with space group Pnma or in a body centered cell with space group I2mb dependent on the aluminum concentration present in the solid solution. Mn{sup 3+} ions occupy exclusively site 4a coordinated by six oxygen anions. Increasing Mn{sup 3+} concentrations cause a remarkable distortion of the octahedron and indirectly of the tetrahedron, resulting in twisted and tilted octahedral layers as well as buckled tetrahedral chains. The influences aremore » discussed on the site 4a of trivalent manganese due to its Jahn-Teller activity, with regard to the occupation of octahedron and tetrahedron with different sized iron and aluminum ions. - Graphical Abstract: The coupled substitution Fe{sup 3+}>Mn{sup 3+}+Fe{sup 3+} <=>2 Al{sup 3+} in brownmillerite phases (Ca{sub 2}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}Al{sub x}O{sub 5+{delta}}) changes predominantly their structural properties, which is essential for the hydration performance of the calcium aluminate cement, where brownmillerites occur as clinker phases. Highlights: Black-Right-Pointing-Pointer We present structural data of four Ca-Al-Fe-Mn-brownmillerites. Black-Right-Pointing-Pointer Mn{sup 3+}-ions occupy exclusively the octahedrally coordinated site 0,0,0. Black-Right-Pointing-Pointer Bonds and angles of the octahedrally coordinated site are distorted strongly. Black-Right-Pointing-Pointer Mn{sup 3+}-ions influence indirectly the shape of the tetrahedron. Black-Right-Pointing-Pointer Mn{sup 3+}-ions stabilize Pnma instead of I2mb in Ca-Al-Fe-Mn-brownmillerites.« less
Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura
2005-12-01
The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.
Bis(6-meth-oxy-2-{[tris-(hydroxy-meth-yl)-meth-yl]-imino-meth-yl}phenolato)-copper(II) dihydrate.
Zhang, Xiutang; Wei, Peihai; Dou, Jianmin; Li, Bin; Hu, Bo
2009-01-08
In the title compound, [Cu(C(12)H(16)NO(5))(2)]·2H(2)O, the Cu(II) ion adopts a trans-CuN(2)O(4) octa-hedral geometry arising from two N,O,O'-tridentate 6-meth-oxy-2-{[tris-(hydroxy-meth-yl)meth-yl]-imino-meth-yl}phenolate ligands. The Jahn-Teller distortion of the copper centre is unusally small. In the crystal structure, O-H⋯O hydrogen bonds, some of which are bifurcated, link the component species.
Tris(5,6-dimethyl-1H-benzimidazole-κN(3))(pyridine-2,6-dicarboxyl-ato-κ(3)O(2),N,O(6))nickel(II).
Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan
2012-06-01
The title mononuclear complex, [Ni(C(7)H(3)NO(4))(C(9)H(10)N(2))(3)], shows a central Ni(II) atom which is coordinated by two carboxyl-ate O atoms and the N atom from a pyridine-2,6-dicarboxyl-ate ligand and by three N atoms from different 5,6-dimethyl-1H--benzimidazole ligands in a distorted octa-hedral geometry. The crystal structure shows intermolecular N-H⋯O hydrogen bonds.
Chagas, Luciano Honorato; Janczak, Jan; Machado, Flavia C; de Oliveira, Luiz Fernando C; Diniz, Renata
2010-11-27
The title structure, K(2)[Co(C(11)N(4)O(3))(2)(H(2)O)(4)], is isotypic with K(2)[Fe(C(11)N(4)O(3))(2)(H(2)O)(4)]. The Co(II) atom is in a distorted octa-hedral CoN(2)O(4) geometry, forming a dianionic mononuclear entity. Each dianionic unit is associated with two potassium cations and inter-acts with adjacent units through O-H⋯N and O-H⋯O hydrogen bonds.
Insight into the biological effects of acupuncture points by X-ray absorption fine structure.
Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang
2018-06-02
Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.
Two novel mixed-ligand complexes containing organosulfonate ligands.
Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun
2008-07-01
The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.
Nanoscale structural and electronic characterization of α-RuCl3 layered compound
NASA Astrophysics Data System (ADS)
Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei
The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua
2017-11-01
Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Borthakur, Rosmita; Koch, Angira; Chanu, Oinam B.; Choudhury, Sanjesh; Lemtur, Aka; Lal, Ram A.
2011-07-01
Heterobimetallic nickel and molybdenum complexes of the composition [Ni(L)MoO 2(A) 4]· nH 2O (A = H 2O (1), py (2), 2-pic (3), 3-pic (4), and 4-pic (5); n = 0, 2) and [Ni(L)(MoO 2)(BB) 2](BB = bpy (6) and (phen (7)) have been synthesized from the multidentate ligand disalicylaldehyde oxaloyldihydrazone (H 4L) in methanol. The composition of the complexes has been established based on data obtained from elemental analyses, thermoanalytical, mass spectral and molecular weight studies. The probable structures of the complexes have been discussed in the light of molar conductance, magnetic moment data and electronic, EPR and infrared spectral studies. In all of the complexes, the dihydrazone is present in enol form and coordinates to the metal centre as a tetrabasic hexadentate ligand. All of the complexes are normal paramagnetic to the extent of two unpaired electrons per nickel atom. The μeff values for the complexes lying in the region 2.87-3.07 B.M. are consistent with the octahedral stereochemistry of nickel(II) in the heterobimetallic complexes. The EPR and electronic spectral data also support the distorted octahedral stereochemistry of the nickel(II) centre. Both nickel and molybdenum have octahedral geometry in the complexes.
NASA Astrophysics Data System (ADS)
Batool, Syeda Shahzadi; Gilani, Syeda Rubina; Tahir, Muhammad Nawaz; Rüffer, Tobias
2017-11-01
Two ternary copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine (tmen = C6H16N2) with benzoic acid and p-aminobenzoic acid, having the formula [Cu(tmen)(BA)2(H2O)2] (1), and [Cu(tmen)(pABA)2]. 1/2 CH3OH (2) {(Where BA1- = benzoate1- (C6H5CO21-), pABA1- = p-aminobenzoate1- (p-H2NC6H5CO21-)} have been prepared and characterized by elemental combustion analysis, Uv-Visible spectroscopy, FT-IR spectroscopy, thermal, and single crystal X-ray diffraction analyses. The complex 1 is a monomer with distorted octahedral geometry. In its CuN2O4 chromophore, the Cu(II) centre is coordinated by two N atoms of a symmetrically chelating tmen ligand, by two carboxylate-O atoms from two monodentate benzoate1- anions, and by two apical aqua-O atoms, which define the distorted octahedral structure. The complex 2 is a monomer with a distorted square planar coordination geometry. In CuN2O2 chromophore, tmen is coordinated to Cu(II) ion in a chelating bidentate fashion, while the two p-aminobenzoate1- anions coordinate to Cu(II) centre through their carboxylate-O atoms in a monodentate manner, forming a square planar structure. The observed difference between asymmetric ѵas(OCO) and symmetric ѵs(OCO) stretching IR vibrations of the carboxylate moieties for 1 and 2 is 220 cm-1 and 232 cm-1, respectively, which suggests monodentate coordination mode (Δν OCO>200) of the carboxylate groups to Cu(II) ion. Thermogravimetric studies of 1 indicates removal of two water molecules at 171 °C, elimination of a tmen upto 529 °C and of two benzoate groups upto 931 °C. In tga curve of 2, methanol is lost upto 212 °C, while tmen is lost from 212 to 993 °C. The antibacterial activities of these new compounds against various bacterial strains were also investigated.
NASA Astrophysics Data System (ADS)
Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing
2014-11-01
Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.
NASA Astrophysics Data System (ADS)
Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.
2016-05-01
Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.
Borthakur, R; Kumar, A; Lal, R A
2015-10-05
Synthesis, structural characterization and redox properties of three heterobimetallic complexes with formule {[NiCu(L(n))(CH3OH)3]·CH3OH} using [Cu(H2L(n))(H2O)] as metalloligand have been demonstrated in the present paper. Electronic spectroscopy suggests that the copper center has a pseudo square pyramidal stereochemistry in all the complexes while the nickel center has a distorted octahedral stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Copyright © 2015 Elsevier B.V. All rights reserved.
Atomic-Scale Fingerprint of Mn Dopant at the Surface of Sr3(Ru1−xMnx)2O7
Li, Guorong; Li, Qing; Pan, Minghu; Hu, Biao; Chen, Chen; Teng, Jing; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.
2013-01-01
Chemical doping in materials is known to give rise to emergent phenomena. These phenomena are extremely difficult to predict a priori, because electron-electron interactions are entangled with local environment of assembled atoms. Scanning tunneling microscopy and low energy electron diffraction are combined to investigate how the local electronic structure is correlated with lattice distortion on the surface of Sr3(Ru1−xMnx)2O7, which has double-layer building blocks formed by (Ru/Mn)O6 octahedra with rotational distortion. The presence of doping-dependent tilt distortion of (Ru/Mn)O6 octahedra at the surface results in a C2v broken symmetry in contrast with the bulk C4v counterpart. It also enables us to observe two Mn sites associated with the octahedral rotation in the bulk through the “chirality” of local electronic density of states surrounding Mn, which is randomly distributed. These results serve as fingerprint of chemical doping on the atomic scale. PMID:24108411
Kyono, Atsushi; Gramsch, Stephen A.; Nakamoto, Yuki; ...
2015-08-14
The Jahn-Teller-effect at Cu 2+ in cuprospinel CuFe 2O 4 was investigated using high-pressure, single crystal synchrotron x-ray diffraction (XRD) techniques at beamline BL10A at the Photon Factory, KEK, Japan. Six data sets were collected in the pressure range from ambient to 5.9 GPa at room temperature. Structural refinements based on the data were performed at 0.0, 1.8, 2.7, and 4.6 GPa. The unit cell volume of cuprospinel decreases continuously from 590.8 (6) Å 3 to 579.5 (8) Å 3 up to 3.8 GPa. Leastsquares fitting to a third-order Birch-Murnaghan equation of state yields zero-pressure volume V 0 = 590.7more » (1) Å 3 and bulk modulus K 0 = 188.1 (4.4) GPa with K’ fixed at 4.0. The crystal chemical composition determined by electron-probe analysis and x-ray site-occupancy refinement is represented as [Cu 0.526Fe 0.474] [6][Cu 0.074Fe 1.926]O 4. Most of the Cu 2+ are preferentially distributed onto the tetrahedral (T) site of the spinel structure. At 4.6 GPa, a cubic-tetragonal phase transition is indicated by a splitting of the a axis of the cubic structure into a smaller a axis and a longer c axis, with unit cell parameters a = 5.882 (1) Å and c = 8.337 (1) Å. The tetragonal crystal structure with space group I4 1/amd was refined to R1 = 0.0182 and wR2 = 0.0134 using observed 35 x-ray reflections. At the T site, the tetrahedral O-T-O bond angles along the c-axis direction of the unit cell decreases slightly from 109.47 ° to 108.7 (4) °, which generates a stretched tetrahedral geometry along the c-axis. The cubic-totetragonal transition induced by the Jahn-Teller effect at Cu 2+ is attributable to the angular distortion at the tetrahedral site. At the octahedral (M) site, on the other hand, the two M-O bonds parallel to the caxis are shortened with respect to the four M-O bonds parallel to the ab-plane, which are lengthened as a result of the phase transition, leading to a compressed octahedral geometry along the c-axis. With the competing distortions between the stretched tetrahedron and the compressed octahedron along the c-axis, the a unit cell parameter is shortened with respect to the c unit cell parameter, giving a c/a ratio slightly greater than unity as referred to cubic lattice (c/a = 1.002). The c/a value increases to 1.007 with pressure, suggesting a further evolution of the stretched tetrahedron and the compressed octahedron. The variation of c/a ratio of the cuprospinel is similar to that observed in the tetragonally distorted cuprospinel with Cu 2+ fully occupying the octahedral site of the structure.« less
NASA Astrophysics Data System (ADS)
AlShammari, Mohammed B.; Kaiba, A.; Guionneau, P.; Geesi, Mohammed H.; Aljohani, Talal; Riadi, Yassine
2018-06-01
A new organic-inorganic hybrid with the formula (NH3C3H6CO2H)2CdCl4 has been crystallized and investigated by X-ray diffraction. Structural investigations highlight a first-order reversible structural phase transition occurring within the range (290-370 K) between a chiral (phase II) and non-centrosymmetric (Phase I) crystal packing. This strong structural reorganization is the result of conformational changes in the organic chains accompanied by a decrease in octahedral distortion. The accurate crystallographic analysis illustrates the crucial role of organic moieties. The experimental energy gap value (3.65 eV) is in good agreement with the theoretical value obtained by density functional theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya
2012-06-15
Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less
Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...
2016-04-25
Evolution of the average and local crystal structure of Ca-doped LaMnO 3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO 6 octahedra across the OR transition at T S~720 K.more » The study utilized explicit two-phase PDF structural modeling, revealing that away from T MI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO 3. The results hence do not support the percolative scenario for the MI transition in La 1–xCa xMnO 3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO 3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less
Aqua(1,10-phenanthroline-κ2 N,N′)bis(trimethylacetato)-κ2 O,O′;κO-cobalt(II)
Chen, Xiao-Dan; Chen, Hong-Xian; Li, Zhong-Shu; Zhang, Huai-Hong; Sun, Bai-Wang
2009-01-01
In the title compound, [Co(C5H9O2)2(C12H8N2)(H2O)], the CoII atom is coordinated in a distorted octahedral environment by three carboxyl O atoms of two trimethylacetate ligands, one aqua O atom and two N atoms from 1,10-phenanthroline. The crystal structure is stabilized by O—H⋯O hydrogen bonds and π–π stacking interactions [interplanar distance between interdigitating 1,10-phenanthroline ligands = 3.378 (2) Å]. PMID:21583436
Bonding in Some Zintl Phases: A Study by Tin-119 Mössbauer Spectroscopy
NASA Astrophysics Data System (ADS)
Asbrand, M.; Berry, F. J.; Eisenmann, B.; Kniep, R.; Smart, L. E.; Thied, R. C.
1995-09-01
The 119Sn Mössbauer parameters for a range of Zintl phase compounds are reported. The compounds containing tetrahedrally coordinated tin of composition M5SnX3 (M = Na, K; X = P, As, Sb) have chemical isomer shifts close to that of grey-tin and can be considered to be covalently bonded species. The layer structures of composition KSnX (X = As, Sb) and double-layer compounds M Sn2X2 (M = Na, Sr; X = As, Sb) have tin in a distorted octahedral environment. The chemical isomer shifts are closer to that of white-tin and can be interpreted in terms of metallic bonding.
Praveen, Marapaka; Sherazi, Syed K. A.
1998-01-01
Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857
Tang, Xiao-Yan; Wang, Yong-Xia; Liu, San-Rong; Liu, Jing-Yu; Li, Yue-Sheng
2013-01-14
A series of novel monochloro half-zirconocene complexes containing phosphine oxide-(thio)phenolate chelating ligands of the type, ClCp'Zr[X-2-R(1)-4-R(2)-6-(Ph(2)P=O)C(6)H(2)](2) (Cp' = C(5)H(5), 2a: X = O, R(1) = Ph, R(2) = H; 2b: X = O, R(1) = F, R(2) = H; 2c: X = O, R(1) = (t)Bu, R(2) = H; 2d: X = O, R(1) = R(2) = (t)Bu; 2e: X = O, R(1) = SiMe(3), R(2) = H; 2f: X = S, R(1) = SiMe(3), R(2) = H; Cp' = C(5)Me(5), 2g: X = O, R(1) = SiMe(3), R(2) = H), have been synthesized in high yields. These complexes were identified by (1)H {(13)C} NMR and elemental analyses. Structures for 2b, 2c and 2f were further confirmed by X-ray crystallography. Structural characterization of these complexes reveals crowded environments around the zirconium. Complexes 2b and 2c adopt six-coordinate, distorted octahedral geometry around the zirconium center, in which the equatorial positions are occupied by three oxygen atoms of two chelating phosphine oxide-bridged phenolate ligands and a chlorine atom. The cyclopentadienyl ring and one oxygen atom of the ligand are coordinated on the axial position. Complex 2f also folds a six-coordinate, distorted octahedral geometry around the Zr center, consisting of a Cp-Zr-O (in P=O) axis [177.16°] and a distorted plane of two sulfur atoms and one oxygen atom of two chelating phosphine oxide-bridged thiophenolate ligands as well as a chlorine atom. When activated by modified methylaluminoxane (MMAO), all the complexes exhibited high activities towards ethylene polymerization at high temperature (75 °C), giving high molecular weight polymers with unimodal molecular weight distribution. The formation of 14-electron, cationic metal alkyl species might come from the Zr-O (in phenol ring) bond cleavage based on the DFT calculations study.
Interfacial Symmetry Control of Emergent Ferromagnetism
NASA Astrophysics Data System (ADS)
Grutter, Alexander; Borchers, Julie; Kirby, Brian; He, Chunyong; Arenholz, Elke; Vailionis, Arturas; Flint, Charles; Suzuki, Yuri
Atomically precise complex oxide heterostructures provide model systems for the discovery of new emergent phenomena since their magnetism, structure and electronic properties are strongly coupled. Octahedral tilts and rotations have been shown to alter the magnetic properties of complex oxide heterostructures, but typically induce small, gradual magnetic changes. Here, we demonstrate sharp switching between ferromagnetic and antiferromagnetic order at the emergent ferromagnetic interfaces of CaRuO3/CaMnO3 superlattices. Through synchrotron X-ray diffraction and neutron reflectometry, we show that octahedral distortions in superlattices with an odd number of CaMnO3 unit cells in each layer are symmetry mismatched across the interface. In this case, the rotation symmetry switches across the interface, reducing orbital overlap, suppressing charge transfer from Ru to Mn, and disrupting the interfacial double exchange. This disruption switches half of the interfaces from ferromagnetic to antiferromagnetic and lowers the saturation magnetic of the superlattice from 1.0 to 0.5 μB/interfacial Mn. By targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state with extremely small changes in layer thickness.
NASA Astrophysics Data System (ADS)
Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio
2004-09-01
Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M(hihm)(H 2O)]SO 4·H 2O (M: Co, Zn) ( 1, 4), [CoCl(hihm)]Cl·H 2O ( 5) and [M(HCOO)(hihm)](HCOO) (M: Ni, Cu, Zn) ( 9- 11) seem to have the same structures as the structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [NiCl(hihm)]Cl·H 2O ( 6) and [Co(HCOO)(hihm)](HCOO) ( 8), respectively, judging by the results of IR and powder diffuse reflection spectra and powder X-ray diffraction analysis. Bis-Tris has coordinated to the metal atoms as a pentadentate ligand in all complexes of which the structures have been determined by single crystal X-ray diffraction analysis in this work.
Synthesis and crystal structure of bis(di- n-butyldithiocarbamato)(1,10-phenanthroline)cadmium(II)
NASA Astrophysics Data System (ADS)
Ivanchenko, A. V.; Gromilov, S. A.; Zemskova, S. M.; Baidina, I. A.; Glinskaya, L. A.
2002-02-01
A new mixed-ligand complex, Cd(S2CN(C4H9)2)2Phen, is synthesized and investigated by thermal, element, and IR analyses and by diffractometry of polycrystals (DRON-3M, CuKα radiation, Ni filter). The crystal structure was determined on a CAD-4 Enraf-Nonius automatic diffractometer (MoKα radiation, θ from 1.5 to 25‡, 2325 nonzero independent reflections, 190 refined parameters, R = 0.036 for I > 2Σ(I)). Crystal data for C30H44CdN4S4 : a = 15.592(3), b = 22.724(5), c = 9.922(2) å, space group Pbcn, V = 3515.5(12) å3, Z = 4, M = 701.33, dcalc = 1.325 g/cm3. The structure involves monomeric molecules in which the cadmium atom has a distorted octahedral environment.
NASA Astrophysics Data System (ADS)
Patel, R. N.; Singh, Yogendra Pratap
2018-02-01
The mixed ligand oxovanadium(IV) complex [VO(L1)(L2)] [L1 = N'-[(Z)-phenyl(pyridin-2-yl)methylidene]benzohydrazide and L2 = Benzohydrazide] has been synthesized in aerobic condition. The complex was characterized by elemental analysis spectroscopic (UV-vis, IR, epr) and electrochemical methods. X-ray diffraction pattern was also used to characterize this complex, which has a distorted octahedral structure. Single crystal diffraction analysis reveals that Csbnd H⋯π (aryl/metal chelate rings) interactions contribute to the stabilization of the crystal structure in given dimension. The room temperature magnetic susceptibility data shows paramagnetic nature of the complex. The complex was also tested for in-vitro antidiabetic activity. Moderate α-glucosidase inhibition is shown by this complex, which may be considered as α-glucosidase inhibitors.
Merola, Joseph S; Franks, Marion A
2015-02-01
The crystal structures of two solvates of fac-tri-chlorido-tris-(tri-methyl-phosphane-κP)rhodium(III) are reported, i.e. one with water in the crystal lattice, fac-[RhCl3(Me3P)3]·H2O, and one with methanol in the crystal lattice, fac-[RhCl3(Me3P)3]·0.5CH3OH. These rhodium compounds exhibit distorted octahedral coordination spheres at the metal and are isotypic with the analogous iridium compounds previously reported by us [Merola et al. (2013 ▶). Polyhedron, 54, 67-73]. Comparison is made between the rhodium and iridium compounds, highlighting their isostructural relationships.
NASA Astrophysics Data System (ADS)
Mahmoudi, Ghodrat; Chowdhury, Habibar; Ghosh, Barindra K.; Lofland, Samuel E.; Maniukiewicz, Waldemar
2018-05-01
One-pot reactions of pre-assigned molar ratios of appropriate metal (II) salts and HL1 (2-acetylpyridine nicotinoylhydrazone) or HL2 (2-acetylpyridine isonicotinoylhydrazone) in MeOH solutions at room temperature afford 1D coordination polymeric chain [Cu(μ-L1) (Cl)]n (1) and a mononuclear complex [Ni(L2)2] (2). The compounds (1) and (2) were characterized using elemental analyses, spectral and other physicochemical methods. Single crystal X-ray diffraction measurements for (1) and (2) have been made to define the molecular aggregates and crystalline architectures. In (1), each copper (II) center adopts a distorted square pyramidal geometry with a CuN3OCl chromophore linked through μ-L1 to form the 1D polymeric chain. While in (2) each Ni(II) cation is six-coordinate with octahedral structure having NiN4O2 chromophore containing two L2 units each functioning as a classical tridentate (N,N,O) chelator. Different weak non-covalent interactions promote dimensionalities in the compounds. A Hirshfeld surface analysis was employed to gain additional insight into interactions responsible for packing of (1) and (2). Magnetic susceptibility measurement of (1) in the 4-300 K range reveals simple paramagnetism.
Stable monolayer honeycomb-like structures of RuX2 (X =S,Se)
NASA Astrophysics Data System (ADS)
Ersan, Fatih; Cahangirov, Seymur; Gökoǧlu, Gökhan; Rubio, Angel; Aktürk, Ethem
2016-10-01
Recent studies show that several metal oxides and dichalcogenides (M X2) , which exist in nature, can be stable in two-dimensional (2D) form and each year several new M X2 structures are explored. The unstable structures in H (hexagonal) or T (octahedral) forms can be stabilized through Peierls distortion. In this paper, we propose new 2D forms of RuS2 and RuSe2 materials. We investigate in detail the stability, electronic, magnetic, optical, and thermodynamic properties of 2D Ru X2 (X =S,Se) structures from first principles. While their H and T structures are unstable, the distorted T structures (T'-Ru X2) are stable and have a nonmagnetic semiconducting ground state. The molecular dynamic simulations also confirm that T'-Ru X2 systems are stable even at 500 K without any structural deformation. T'-RuS2 and T'-RuSe2 have indirect band gaps with 0.745 eV (1.694 eV with HSE) and 0.798 eV (1.675 eV with HSE) gap values, respectively. We also examine their bilayer and trilayer forms and find direct and smaller band gaps. We find that AA stacking is more favorable than the AB configuration. The new 2D materials obtained can be good candidates with striking properties for applications in semiconductor electronic, optoelectronic devices, and sensor technology.
NASA Astrophysics Data System (ADS)
Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.
2017-06-01
A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belharouak, I.; Parent, C.; Tanguy, B.
1999-06-01
The relationships between the crystal structures and the luminescent properties of the AgM(PO{sub 3}){sub 3} (M = Mg, Zn, Ba) polyphosphates are reported in comparison with those of AgPO{sub 3}. The structure of the magnesium and zinc phosphates is characterized by long polyphosphates chains connected to infinite chains of [AgO{sub 6}] and [MO{sub 6}] polyhedra sharing faces. The basic structural phosphate unit in AgBa(PO{sub 3}){sub 3} is a P{sub 3}O{sub 9} ring. Silver atoms are located in distorted octahedral sites. Two types of luminescent centers have been observed. The UV emission observed in all these materials is typical of isolatedmore » Ag{sup +} ions. The visible emission observed only in the zinc phosphate is probably the result of a silver-zinc association. 16 refs., 8 figs., 3 tabs.« less
Structure of TeO2 - LiNbO3 glasses
NASA Astrophysics Data System (ADS)
Shinde, A. B.; Krishna, P. S. R.; Rao, Rekha
2017-05-01
Tellurite based lithium niobate glasses with composition (100-x)TeO2-xLiNbO3 (x=0.1,0.2 & 0.3) were prepared by conventional melt quenching method. The microscopic structural investigation of these glasses is carried out by means of neutron diffraction and Raman scattering measurements. It is found that the basic structural units in these glasses are TeO4 trigonal bipyramids(TBP), TeO3 trigonal pyramids(TP) and NbO6 Octahedra depending on the composition. It is evident from Raman studies that TBPs decreases, TPs increases and NbO6 Octahedra increases with increasing x. From Neutron diffraction studies it is found that network is comprised of TBPs and TPs along with TeO3+1 structural units. Distorted NbO6 octahedral units are present and also increase with the increase in x.
Composition dependence of structural and optical properties in epitaxial Sr(Sn1-xTix)O3 films
NASA Astrophysics Data System (ADS)
Liu, Qinzhuang; Li, Bing; Li, Hong; Dai, Kai; Zhu, Guangping; Wang, Wei; Zhang, Yongxing; Gao, Guanyin; Dai, Jianming
2015-03-01
Epitaxial Sr(Sn1-xTix)O3 (SSTO, x = 0-1) thin films were grown on MgO substrates by a pulsed laser deposition technique. The effects of composition on the structural and optical properties of SSTO films were investigated. X-ray diffraction studies show that the lattice parameter decreases from 4.041 to 3.919 Å gradually with increasing Ti content from 0 to 1 in SSTO films. Optical spectra analysis reveals that the band gap energy Eg decreases continuously from 4.44 to 3.78 eV over the entire doping range, which is explained by the decreasing degree of octahedral tilting distortion and thus the increasing tolerance factor caused by the increasing small-Ti-ion doping concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.-F., E-mail: wgf1979@126.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W., E-mail: s-shuwen@163.com
3-(4-(1H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one (L{sup 1}, 1) and its Mn(II) complex, [Mn(L{sup 1}){sub 2}(SCN){sub 2}]{sub ∞} (2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L{sup 1} ligands, two SCN-ligands, and two oxygen atoms of other two L{sup 1} ligands to form a distorted octahedral geometry. Therefore, each L{sup 1} links Mn ions through the O and N atoms to generate 2D sheet structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: xps@ftiudm.ru; Zakirova, R. M., E-mail: ftt@udsu.ru
2016-07-15
The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K–O–P–O. The K–O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.
NASA Technical Reports Server (NTRS)
Clark, Eric B.; Breen, Marc L.; Fanwick, Phillip E.; Hepp, Aloysius F.; Duraj, Stan A.
1998-01-01
The synthesis and structure of the indium dithiocarbamate, In[SCN(CH3)2]3*1/2 4-mepy (4-mepy = 4-methylpyridine), is described. Indium metal was oxidized by tetramethylthiuramdisulfide in 4-methylpyridine at 25C to form a new, homoleptic indium(HI) dithiocarbamate in yields exceeding 60%. In[S2CN(CH3)213 exists as a discrete molecule with a distorted-octahedral geometry. The compound crystallizes in the P 1-bar (No. 2) space group with a = 9.282(l)A, b = 10.081(1)A, c = 12.502 A, alpha= 73.91 (1) degrees, beta = 70.21(1) degrees, gamma = 85.84(1) degrees, Z = 2,v(A(exp 3)) =1057.3(3), R = 0.046, and R(sub w) = 0.061.
Jung, Young-Kwang; Lee, Ji-Hwan; Walsh, Aron; Soon, Aloysius
2017-04-11
CsSnI 3 is a potential lead-free inorganic perovskite for solar energy applications due to its nontoxicity and attractive optoelectronic properties. Despite these advantages, photovoltaic cells using CsSnI 3 have not been successful to date, in part due to low stability. We demonstrate how gradual substitution of Rb for Cs influences the structural, thermodynamic, and electronic properties on the basis of first-principles density functional theory calculations. By examining the effect of the Rb:Cs ratio, we reveal a correlation between octahedral distortion and band gap, including spin-orbit coupling. We further highlight the cation-induced variation of the ionization potential (work function) and the importance of surface termination for tin-based halide perovskites for engineering high-performance solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Minfeng, E-mail: m.f.lv@ciac.jl.cn; Deng, Xiaolong; Waerenborgh, João C.
2014-03-15
Sr{sub x}La{sub 2−x}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} (x=1, 1.5) oxides with K{sub 2}NiF{sub 4}-type structure were prepared by solid state reaction and characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, magnetic and electrical resistivity measurements. The SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} phase was obtained for the first time with a negligible amount of impurities. The octahedral Cu/RuO{sub 6} units are more elongated in SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} than in Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} indicating a greater extent of static Jahn–Teller distortion. XPS suggests that mixed ion pairs Ru{sup 5+}/Ru{sup 4+}↔Cu{sup +}/Cu{sup 2+} are present in SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4}, whilemore » Ru remains as Ru{sup 5+} and Cu as Cu{sup 2+} in Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4}. Both samples show spin-glass behavior, which can be explained by competition between ferromagnetic and antiferromagnetic superexchange interactions. The negative Weiss temperature estimated for SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4}, −318 K, is significantly lower than −11.5 K deduced for Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} which may be related to the higher static Jahn–Teller distortion in the former oxide. -- Graphical abstract: SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} with K{sub 2}NiF{sub 4}-type structure show a larger static Jahn–Teller distortion than Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4}, which may be related to stronger antiferromagnetic superexchange interactions. Highlights: • SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} (I) larger Jahn–Teller (J–T) distortion than Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} (II). • Octahedral Cu/RuO{sub 6} units are more elongated in I than in II. • Mixed ion pairs Ru{sup 5+}/Ru{sup 4+}↔Cu{sup +}/Cu{sup 2+} are present in I, while Ru remains as Ru{sup 5+} and Cu as Cu{sup 2+} in II. • Negative Weiss temperature of I significantly lower, consistent with higher J–T distortion.« less
Istomin, S Ya; Tyablikov, O A; Kazakov, S M; Antipov, E V; Kurbakov, A I; Tsirlin, A A; Hollmann, N; Chin, Y Y; Lin, H-J; Chen, C T; Tanaka, A; Tjeng, L H; Hu, Z
2015-06-21
The crystal and magnetic structures of brownmillerite-like Sr(2)Co(1.2)Ga(0.8)O(5) with a stable Co(3+) oxidation state at both octahedral and tetrahedral sites are refined using neutron powder diffraction data collected at 2 K (S.G. Icmm, a = 5.6148(6) Å, b = 15.702(2) Å, c = 5.4543(6) Å; R(wp) = 0.0339, R(p) = 0.0443, χ(2) = 0.775). The very large tetragonal distortion of CoO(6) octahedra (1.9591(4) Å for Co-O(eq) and 2.257(6) Å for Co-O(ax)) could be beneficial for the stabilization of the long-sought intermediate-spin state of Co(3+) in perovskite-type oxides. However, the large magnetic moment of octahedral Co(3+) (3.82(7)μ(B)) indicates the conventional high-spin state of Co(3+) ions, which is further supported by the results of a combined theoretical and experimental soft X-ray absorption spectroscopy study at the Co-L(2,3) edges on Sr(2)Co(1.2)Ga(0.8)O(5). A high-spin ground state of Co(3+) in Sr(2)Co(1.2)Ga(0.8)O(5) resulted in much lower in comparison with a LaCoO(3) linear thermal expansion coefficient of 13.1 ppm K(-1) (298-1073 K) determined from high-temperature X-ray powder diffraction data collected in air.
NASA Astrophysics Data System (ADS)
Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali
2018-05-01
This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.
NASA Astrophysics Data System (ADS)
Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N. L.; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.
2017-01-01
We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni1-xCrxFe2O4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties.
NASA Astrophysics Data System (ADS)
Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia
2015-03-01
In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).
Asatryan, Rubik; Ruckenstein, Eli; Hachmann, Johannes
2017-08-01
This paper provides a first-principles theoretical investigation of the polytopal rearrangements and fluxional behavior of five-coordinate d 7 -transition metal complexes. Our work is primarily based on a potential energy surface analysis of the iron tetracarbonyl hydride radical HFe˙(CO) 4 . We demonstrate the existence of distorted coordination geometries in this prototypical system and, for the first time, introduce three general rearrangement mechanisms, which account for the non-ideal coordination. The first of these mechanisms constitutes a modified version of the Berry pseudorotation via a square-based pyramidal C 4v transition state that connects two chemically identical edge-bridged tetrahedral stereoisomers of C 2v symmetry. It differs from the classical Berry mechanism, which involves two regular D 3h equilibrium structures and a C 4v transition state. The second mechanism is related to the famous "tetrahedral jump" hypothesis, postulated by Muetterties for a number of d 6 HML 4 and H 2 ML 4 complexes. Here, our study suggests two fluxional rearrangement pathways via distinct types of C 2v transition states. Both pathways of this mechanism can be described as a single-ligand migration to a vacant position of an "octahedron", thus interchanging (switching) the apical and basal ligands of the initial quasi-square pyramidal isomer, which is considered as an idealized octahedron with a vacancy. Accordingly, we call this mechanism "octahedral switch". The third mechanism follows a butterfly-type isomerization featuring a key-angle deformation, and we thus call it "butterfly isomerization". It connects the quasi-square pyramidal and edge-bridged tetrahedral isomers of HFe˙(CO) 4 through a distorted edge-bridged tetrahedral transition state of C s symmetry. Our paper discusses the overall features of the isomers and rearrangement mechanisms as well as their implications. We rationalize the existence of each stationary point through an electronic structure analysis and argue their relevance for isolobal analogues of HFe˙(CO) 4 .
Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate
Borjas, Rosendo; Mariappan Balasekaran, Samundeeswari; Poineau, Frederic
2018-04-06
The bis(tetraphenylarsonium) hexachloridozirconate(IV) salt, (AsPh 4 ) 2 [ZrCl 6 ] (Ph = C 6 H 5 ), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991). Indian J. Chem. 30 A , 99–101], but its crystal structure was never reported. By following a similar experimental procedure, the compound was synthesized and its crystal structure was investigated as a acetonitrile tetrasolvate, (As(C 6 H 5 ) 4 ) 2 [ZrCl 6 ]·4CH 3 CN, by single-crystal X –ray diffraction. The [ZrCl 6 ] 2− anion adopts a slightly distorted octahedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6),more » and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.« less
NASA Technical Reports Server (NTRS)
Clark, Eric B.; Breen, Marc L.; Fanwick, Phillip E.; Hepp, Aloysius F.; Duraj, Stan A.
1998-01-01
The synthesis and structure of the indium dithiocarbamate, In[S2CN(CH3)2]30 central dot 1/2 4- mepy (4-mepy = 4-methylpyridine), is described. Indium metal was oxidized by tetramethylthiuramdisulfide in 4-methylpyridine at 25 C to form a new, homoleptic indium(III) dithiocarbamate in yields exceeding 60%. In[S2CN(CH3)2]3 exists as a discrete molecule with a distorted-octahedral geometry. The compound crystallizes in the P 1-bar (No. 2) space group with a = 9.282(l) A, b = 10.081 (1) A, c, c = 12.502 A, alpha = 73.91 (1)(sup 0), beta = 70.21(1)(sup 0), gamma = 85.84(1)(sup 0), Z = 2, V (A(sup 3) = 1057.3(3), R = 0.046, and R(sub w) = 0.061.
First-principles study of Ga-vacancy induced magnetism in β-Ga2O3.
Yang, Ya; Zhang, Jihua; Hu, Shunbo; Wu, Yabei; Zhang, Jincang; Ren, Wei; Cao, Shixun
2017-11-01
First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga 2 O 3 in the presence of cation vacancies. We investigated two kinds of Ga vacancies at different symmetry sites and the consequent structural distortion and defect states. We found that both the six-fold coordinated octahedral site and the four-fold coordinated tetrahedral site vacancies can lead to a spin polarized ground state. Furthermore, the calculation identified a relationship between the spin polarization and the charge states of the vacancies, which might be explained by a molecular orbital model consisting of uncompensated O 2- 2p dangling bonds. The calculations for the two vacancy systems also indicated a potential long-range ferromagnetic order which is beneficial for spintronics application.
Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borjas, Rosendo; Mariappan Balasekaran, Samundeeswari; Poineau, Frederic
The bis(tetraphenylarsonium) hexachloridozirconate(IV) salt, (AsPh 4 ) 2 [ZrCl 6 ] (Ph = C 6 H 5 ), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991). Indian J. Chem. 30 A , 99–101], but its crystal structure was never reported. By following a similar experimental procedure, the compound was synthesized and its crystal structure was investigated as a acetonitrile tetrasolvate, (As(C 6 H 5 ) 4 ) 2 [ZrCl 6 ]·4CH 3 CN, by single-crystal X –ray diffraction. The [ZrCl 6 ] 2− anion adopts a slightly distorted octahedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6),more » and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.« less
Saito, Ken; Eishiro, Yoshinori; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi
2012-03-05
The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.; Yao, C. G.; Meng, J. L.
The crystal structures, magnetic, and dielectric properties for the ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd) have been investigated. The crystal structure has been solved by Rietveld refinements of X-ray diffraction data in the monoclinic space group P2{sub 1}/n (No. 14). The Co{sup 2+} and Sb{sup 5+} ions are almost fully ordered over the B-site, and the octahedral framework displays significant tilting distortion according to the Glazer's tilt system a{sup –}a{sup –}c{sup +}. As the result of lanthanide contraction from La{sup 3+} to Nd{sup 3+}, the B-site sublattice distortions become stronger accompanying with the reduction of themore » tolerance factor and coordination number. The magnetization measurements show an antiferromagnetic ordering with large effective magnetic moments (μ{sub eff}) suggesting that the orbital component is significant. The maximum values of isothermal magnetization increase with the decrease in radii of rare earth ions, which is attributed to the weakening of antiferromagnetic interaction via Co{sup 2+}–O–Sb{sup 5+}–O–Co{sup 2+} paths. The dielectric constants present frequency dependence and monotonically decrease with the ionic radii reduction from La{sup 3+} to Nd{sup 3+} due to the suppression of electron transfer. These results indicate that the magnetic and dielectric properties can be tuned by controlling the degree of lattice distortion, which is realized by introducing different Ln{sup 3+} ions at the A-site.« less
Muller; Baudour; Bedoya; Bouree; Soubeyroux; Roubin
2000-02-01
Neutron powder diffraction data, collected over the temperature range 10-770 K, have been analysed in order to make a detailed characterization of the sequence of phase transitions occurring in the Hf-rich ferroelectric PbHf(0.8)Ti(0.2)O3, titanium hafnium lead oxide. Over the whole temperature range this compound undergoes two phase transitions, which involve cationic displacements and octahedral deformations (tilt and/or distortion) leading to strongly distorted perovskite-type structures. The first transition appears around 415 K between two ferroelectric rhombohedral phases: a low-temperature nonzero-tilt phase F(RL) (space group R3c) and an intermediate zero-tilt phase FRH (space group R3m). The second one, detected around 520 K, is associated with a ferroelectric to-paraelectric transition between the FRH phase and the Pc cubic phase (space group Pm3m). From high-resolution neutron powder diffraction data (diffractometer 3T2-LLB, Saclay, France, lambda = 1.2251 A), the crystallographic structure of the three successive phases has been accurately determined at the following temperatures: T = 10 K (FRL): space group R3c, Z = 6, a(hex) = 5.7827 (1), c(hex) = 14.2702 (4) A, V(hex) = 413.26 (2) A3; T = 150 K (F(RL)): space group R3c, Z = 6, a(hex) = 5.7871 (1), C(hex) = 14.2735 (4) A, V(hex) = 413.98 (3) A3; T = 290 K (FRL): space group R3c, Z = 6, a(hex) = 5.7943 (1), C(hex) = 14.2742 (5) A, V(hex) = 415.04 (3) A3; T = 440 K (F(RH)): space group R3c, Z = 6, a(hex) = 5.8025 (1), c(hex) = 14.2648 (4) A, V(hex) = 415.94 (3) A3; T = 520 K (Pc): space group Pm3m, Z = 1, a(cub) = 4.1072 (2) A, V(cub) = 69.29 (1) A3. In addition, a neutron powder thermodiffractometry experiment, performed between 290 and 770 K (diffractometer D1B-ILL, Grenoble, France, lambda = 2.533 A), has been used to study in situ the temperature-induced phase transitions. From sequential Rietveld refinements, the temperature dependence of the cation displacements and the rotation and/or distortion of oxygen octahedra was derived.
Zhao, Jing; Ross, Nancy L; Wang, Di; Angel, Ross J
2011-11-16
The structural evolution of orthorhombic CaTiO3 perovskite has been studied using high-pressure single-crystal x-ray diffraction under hydrostatic conditions up to 8.1 GPa and under a non-hydrostatic stress field formed in a diamond anvil cell (DAC) up to 4.7 GPa. Under hydrostatic conditions, the TiO6 octahedra become more tilted and distorted with increasing pressure, similar to other 2:4 perovskites. Under non-hydrostatic conditions, the experiments do not show any apparent difference in the internal structural variation from hydrostatic conditions and no additional tilts and distortions in the TiO6 octahedra are observed, even though the lattice itself becomes distorted due to the non-hydrostatic stress. The similarity between the hydrostatic and non-hydrostatic cases can be ascribed to the fact that CaTiO3 perovskite is nearly elastically isotropic and, as a consequence, its deviatoric unit-cell volume strain produced by the non-hydrostatic stress is very small; in other words, the additional octahedral tilts relevant to the extra unit-cell volume associated with the deviatoric unit-cell volume strain may be totally neglected. This study further addresses the role that three factors--the elastic properties, the crystal orientation and the pressure medium--have on the structural evolution of an orthorhombic perovskite loaded in a DAC under non-hydrostatic conditions. The influence of these factors can be clearly visualized by plotting the three-dimensional distribution of the deviatoric unit-cell volume strain in relation to the cylindrical axis of the DAC and indicates that, if the elasticity of a perovskite is nearly isotropic as it is for CaTiO3, the other two factors become relatively insignificant.
Synthetic and natural chromium-bearing spinels: an optical spectroscopy study
NASA Astrophysics Data System (ADS)
Taran, M. N.; Parisi, F.; Lenaz, D.; Vishnevskyy, A. A.
2014-09-01
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2 g → 4 T 2 g and 4 A 2 g → 4 T 1 g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2 g → 2 E g and 4 A 2 g → 2 T 1 g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm-1. A vague broad band in the range from ca. 15,000 to 12,000 cm-1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand-metal charge-transfer O2- → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm-1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4-MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr-O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.
Crystal structure of fac-tri-chlorido-[tris-(pyridin-2-yl-N)amine]-chromium(III).
Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio
2015-01-01
In the neutral complex mol-ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris-(pyridin-2-yl)amine; C15H12N4], the Cr(III) ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa-hedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol-ecule is located on a mirror plane. In the crystal, a combination of C-H⋯N and C-H⋯Cl hydrogen-bonding inter-actions connect the mol-ecules into a three-dimensional network.
Crystal structure of fac-aquatricarbonyl[(S)-valin-ato-κ(2) N,O]-rhenium(I).
Piletska, Kseniia O; Domasevitch, Kostiantyn V; Shtemenko, Alexander V
2016-04-01
In the mol-ecule of the title compound, [Re(C5H10NO2)(CO)3(H2O)], the Re(I) atom adopts a distorted octa-hedral coordination sphere defined by one aqua and three carbonyl ligands as well as one amino N and one carboxyl-ate O atom of the chelating valinate anion. The carbonyl ligands are arranged in a fac-configuration around the Re(I) ion. In the crystal, an intricate hydrogen-bonding system under participation of two O-H, two N-H and one C-H donor groups and the carboxyl-ate and carbonyl O atoms as acceptor groups contribute to the formation of a three-dimensional supra-molecular network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linaburg, Matthew R.; McClure, Eric T.; Majher, Jackson D.
The structures of the lead halide perovskites CsPbCl3 and CsPbBr3 have been determined from X-ray powder diffraction data to be orthorhombic with Pnma space group symmetry. Their structures are distorted from the cubic structure of their hybrid analogs, CH3NH3PbX3 (X = Cl, Br), by tilts of the octahedra (Glazer tilt system a–b+a–). Substitution of the smaller Rb+ for Cs+ increases the octahedral tilting distortion and eventually destabilizes the perovskite structure altogether. To understand this behavior, bond valence parameters appropriate for use in chloride and bromide perovskites have been determined for Cs+, Rb+, and Pb2+. As the tolerance factor decreases, themore » band gap increases, by 0.15 eV in Cs1–xRbxPbCl3 and 0.20 eV in Cs1–xRbxPbBr3, upon going from x = 0 to x = 0.6. The band gap shows a linear dependence on tolerance factor, particularly for the Cs1–xRbxPbBr3 system. Comparison with the cubic perovskites CH3NH3PbCl3 and CH3NH3PbBr3 shows that the band gaps of the methylammonium perovskites are anomalously large for APbX3 perovskites with a cubic structure. This comparison suggests that the local symmetry of CH3NH3PbCl3 and CH3NH3PbBr3 deviate significantly from the cubic symmetry of the average structure.« less
Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3
Gao, Ran; Dong, Yongqi; Xu, Han; ...
2016-05-24
We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less
NASA Astrophysics Data System (ADS)
Abdel-Latif, Samir A.; Mohamed, Adel A.
2018-02-01
Novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions with 1,3-diphenyl-4-phenylazo-5-pyrazolone (L) have been prepared and characterized using different analytical and spectroscopic techniques. 1:1 Complexes of Mn(II), Co(II) and Zn(II) are distorted octahedral whereas Ni(II) complex is square planar and Cu(II) is distorted trigonal bipyramid. 1:2 Complexes of Mn(II), Co(II), Cu(II) and Zn(II) are distorted trigonal bipyramid whereas Ni(II) complex is distorted tetrahedral. All complexes behave as non-ionic in dimethyl formamide (DMF). The electronic structure and nonlinear optical parameters (NLO) of the complexes were investigated theoretically at the B3LYP/GEN level of theory. Molecular stability and bond strengths have been investigated by applying natural bond orbital (NBO) analysis. The geometries of the studied complexes are non-planner. DFT calculations have been also carried out to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the complexes. The total static dipole moment (μtot), the mean polarizability (<α>), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (<β>) were calculated and compared with urea as a reference material. The complexes show implying optical properties.
NASA Astrophysics Data System (ADS)
Paraginski, Gustavo Luiz; Hörner, Manfredo; Back, Davi Fernando; Wohlmuth Alves dos Santos, Aline Joana Rolina; Beck, Johannes
2016-01-01
Deprotonated triazene N-oxides are able to chelate metal ions resulting in five-membered rings without carbon atoms. A new ligand 1-(2-biphenyl)-3-methyltriazenide-N-oxide (1) and its mononuclear Cu(II) complex (2) were synthesized to verify the capability of this ligand to promote Cu(II)⋯arene-π interactions. Ligand 1 and complex 2 have been characterized by elemental analysis, mass spectrometry (ESI(+)-TOF), IR, and UV-Vis spectroscopy. In addition, ligand 1 was characterized by 1H and 13C NMR and complex 2 by X-ray diffraction on single crystal. The crystal structure of complex 2 reveals a distorted tetrahedral geometry of Cu(II) in the first coordination sphere, which expands to a distorted octahedral environment by two symmetrically independent intramolecular metal⋯arene-π interactions. These interactions are provided by ortho-phenyl rings of both triazene N-oxide ligands 1. The aim of this work was to contribute to the architecture of new Cu(II)⋯arene-π complexes based on the synthesis of appropriated ligand for intramolecular interactions
Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7
NASA Astrophysics Data System (ADS)
Ye, Feng; Wang, Jinchen; Sheng, Jieming; Hoffmann, C.; Gu, T.; Xiang, H. J.; Tian, Wei; Molaison, J. J.; dos Santos, A. M.; Matsuda, M.; Chakoumakos, B. C.; Fernandez-Baca, J. A.; Tong, X.; Gao, Bin; Kim, Jae Wook; Cheong, S.-W.
2018-01-01
We report a single crystal neutron and x-ray diffraction study of the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7 (CMTO), a prototypical system where the electric polarization arises from the condensation of two lattice distortion modes. With increasing temperature (T ), the out-of-plane, antiphase tilt of MnO6 decreases in amplitude while the in-plane, in-phase rotation remains robust and experiences abrupt changes across the first-order structural transition. Application of hydrostatic pressure (P ) to CMTO at room temperature shows a similar effect. The consistent behavior under both T and P reveals the softness of antiphase tilt and highlights the role of the partially occupied d orbital of the transition-metal ions in determining the stability of the octahedral distortion. Polarized neutron analysis indicates the symmetry-allowed canted ferromagnetic moment is less than the 0.04 μB/Mn site, despite a substantial out-of-plane tilt of the MnO6 octahedra.
NASA Astrophysics Data System (ADS)
Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri
2014-08-01
Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.
Electronic and structural reconstruction in titanate heterostructures from first principles
NASA Astrophysics Data System (ADS)
Mulder, Andrew T.; Fennie, Craig J.
2014-03-01
Recent advances in transition metal oxide heterostructures have opened new routes to create materials with novel functionalities and properties. One direction has been to combine a Mott insulating perovskite with an electronic d1 configuration, such as LaTiO3, with a band insulating d0 perovskite, such as SrTiO3. An exciting recent development is the demonstration of interfacial conductivity in GdTiO3/SrTiO3 heterostructures that display a complex structural motif of octahedral rotations and ferromagnetic properties similar to bulk GdTiO3. In this talk we present our first principles investigation of the interplay of structural, electronic, magnetic, and orbital degrees of freedom for a wide range of d1/d0 titanate heterostructures. We find evidence for both rotation driven ferroelectricity and a symmetry breaking electronic reconstruction with a concomitant structural distortion at the interface. We argue that these materials represent an ideal platform to realize novel functionalities such as the electric field control of electronic and magnetic properties.
NASA Astrophysics Data System (ADS)
Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham
2018-05-01
Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.
The molecular mechanism of Mo isotope fractionation during adsorption to birnessite
Wasylenki, L.E.; Weeks, C.L.; Bargar, J.R.; Spiro, T.G.; Hein, J.R.; Anbar, A.D.
2011-01-01
Fractionation of Mo isotopes during adsorption to manganese oxides is a primary control on the global ocean Mo isotope budget. Previous attempts to explain what drives the surprisingly large isotope effect ??97/95Modissolved-??97/95Moadsorbed=1.8??? have not successfully resolved the fractionation mechanism. New evidence from extended X-ray absorption fine structure analysis and density functional theory suggests that Mo forms a polymolybdate complex on the surfaces of experimental and natural samples. Mo in this polynuclear structure is in distorted octahedral coordination, while Mo remaining in solution is predominantly in tetrahedral coordination as MoO42- Our results indicate that the difference in coordination environment between dissolved Mo and adsorbed Mo is the cause of isotope fractionation. The molecular mechanism of metal isotope fractionation in this system should enable us to explain and possibly predict metal isotope effects in other systems where transition metals adsorb to mineral surfaces. ?? 2011 Elsevier Ltd.
Priyatharsini, Maruthupandiyan; Shankar, Bhaskaran; Sathiyendiran, Malaichamy; Srinivasan, Navaneethakrishnan; Krishnakumar, Rajaputi Venkatraman
2017-02-01
The title dinuclear complex, [Re 2 (C 13 H 8 NOS) 2 (CO) 6 ], crystallizes in two polymorphs where the 2-(1,3-benzo-thia-zol-2-yl)phenolate ligands and two carbonyl groups are trans - ( I ) or cis -arranged ( II ) with respect to the [Re 2 O 2 (CO) 4 ] core. Polymorphs I and II exhibit a crystallographically imposed centre of symmetry and a twofold rotation axis, respectively. The structures may be described as being formed by two octa-hedrally distorted metal-coordinating units fused through μ-oxido bridges, leading to edge-sharing dimers. The crystal packing is governed by C-H⋯O hydrogen-bonding inter-actions, forming chains parallel to the c axis in I and a three-dimensional network in II .
Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Pelosi, G; Albertini, R; Bonati, A; Dall'Aglio, P P; Lunghi, P; Pinelli, S
1997-04-01
The reaction of iron, nickel, copper, and zinc chlorides or acetates with acenaphthenequinone thiosemicarbazone, Haqtsc leads to the formation of novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the free ligand Haqtsc 1 and of the compound [Ni(aqtsc)2].DMF 2, have also been determined by X-ray methods from diffractometer data. In 1, the conformation of the two nonequivalent molecules is governed by intramolecular hydrogen bonds, while an intermolecular hydrogen bond is responsible for dimer-like groups formation. In 2, the coordination geometry about nickel is distorted octahedral, and the two ligand molecules are terdentate monodeprotonated. Biological studies have shown that, for the first time at least up the used doses, a free ligand is active both in the inhibition of cell proliferation and in the induced differentiation on Friend erythroleukemia cells (FLC).
Stephen, Emma; Huang, Deguang; Shaw, Jennifer L; Blake, Alexander J; Collison, David; Davies, E Stephen; Edge, Ruth; Howard, Judith A K; McInnes, Eric J L; Wilson, Claire; Wolowska, Joanna; McMaster, Jonathan; Schröder, Martin
2011-09-05
The Ni(II) complexes [Ni([9]aneNS(2)-CH(3))(2)](2+) ([9]aneNS(2)-CH(3)=N-methyl-1-aza-4,7-dithiacyclononane), [Ni(bis[9]aneNS(2)-C(2)H(4))](2+) (bis[9]aneNS(2)-C(2)H(4)=1,2-bis-(1-aza-4,7-dithiacyclononylethane) and [Ni([9]aneS(3))(2)](2+) ([9]aneS(3)=1,4,7-trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal Ni(III) products, which have been characterized by X-ray crystallography, UV/Vis and multi-frequency EPR spectroscopy. The single-crystal X-ray structure of [Ni(III)([9]aneNS(2)-CH(3))(2)](ClO(4))(6)·(H(5)O(2))(3) reveals an octahedral co-ordination at the Ni centre, while the crystal structure of [Ni(III)(bis[9]aneNS(2)-C(2)H(4))](ClO(4))(6)·(H(3)O)(3)·3H(2)O exhibits a more distorted co-ordination. In the homoleptic analogue, [Ni(III)([9]aneS(3))(2)](ClO(4))(3), structurally characterized at 30 K, the Ni-S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn-Teller distorted octahedral stereochemistry. [Ni([9]aneNS(2)-CH(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(½)=+1.10 V versus Fc(+)/Fc assigned to a formal Ni(III)/Ni(II) couple. [Ni(bis[9]aneNS(2)-C(2)H(4))](PF(6))(2) exhibits a one-electron oxidation process at E(½)=+0.98 V and a reduction process at E(½)=-1.25 V assigned to Ni(II)/Ni(III) and Ni(II)/Ni(I) couples, respectively. The multi-frequency X-, L-, S-, K-band EPR spectra of the 3+ cations and their 86.2% (61)Ni-enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6%, 42.8% and 37.2% Ni character in [Ni([9]aneNS(2)-CH(3))(2)](3+), [Ni(bis[9]aneNS(2)-C(2)H(4))](3+) and [Ni([9]aneS(3))(2)](3+), respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S-thioether centres. EPR spectra for [(61)Ni([9]aneS(3))(2)](3+) are consistent with a dynamic Jahn-Teller distortion in this compound. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.; ...
2016-12-06
We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.
We report the discovery of noncentrosymmetry in the family of HRTiO 4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden-Popper derivative structure, by second harmonic generation and synchrotron x-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is broken by oxygen octahedral rotations, a mechanism that is not active in simple perovskites. We discover a competition between oxygen octahedral rotations and sliding of the octahedral perovskite blocks at the OH layers. For the smaller rare earth ions, R = Eu, Gd, Dy, which favor themore » octahedral rotations, noncentrosymmetry is present but the sliding at the OH layer is absent. For the larger rare earth ions, R = Nd and Sm, the octahe-dral rotations are absent, but sliding of the octahedral blocks at the OH layer is present, likely to optimize the hydrogen bond length arising from the directional nature of these bonds in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetry in layered oxides, and chemical-structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. In conclusion, we construct a complete phase diagram of temperature versus rare earth ionic radius for the HRTiO 4 family.« less
Understanding the spin-driven polarizations in Bi MO3 (M = 3 d transition metals) multiferroics
NASA Astrophysics Data System (ADS)
Kc, Santosh; Lee, Jun Hee; Cooper, Valentino R.
Bismuth ferrite (BiFeO3) , a promising multiferroic, stabilizes in a perovskite type rhombohedral crystal structure (space group R3c) at room temperature. Recently, it has been reported that in its ground state it possess a huge spin-driven polarization. To probe the underlying mechanism of this large spin-phonon response, we examine these couplings within other Bi based 3 d transition metal oxides Bi MO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) using density functional theory. Our results demonstrate that this large spin-driven polarization is a consequence of symmetry breaking due to competition between ferroelectric distortions and anti-ferrodistortive octahedral rotations. Furthermore, we find a strong dependence of these enhanced spin-driven polarizations on the crystal structure; with the rhombohedral phase having the largest spin-induced atomic distortions along [111]. These results give us significant insights into the magneto-electric coupling in these materials which is essential to the magnetic and electric field control of electric polarization and magnetization in multiferroic based devices. Research is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and the Office of Science Early Career Research Program (V.R.C) and used computational resources at NERSC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun
Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12} have been prepared by standard solid-state reactions using Y{sub 2}O{sub 3}, MoO{sub 3}, and SeO{sub 2} (or TeO{sub 2}) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order Jahn–Teller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y{sub 2}MoSe{sub 3}O{sub 12} shows a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} groups, Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed ofmore » YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} polyhedra. With the Mo{sup 6+} cations in Y{sub 2}MoSe{sub 3}O{sub 12}, a C{sub 3}-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo{sup 6+} is away from the oxide ligand linked to a Se{sup 4+} cation. The Se{sup 4+} and Te{sup 4+} cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented. - Graphical abstract: Y{sub 2}MoSe{sub 3}O{sub 12} reveals a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} polyhedra, whereas Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} groups. - Highlights: • Two new selenite and tellurite (Y{sub 2}MoQ{sub 3}O{sub 12}; Q=Se and Te) are synthesized. • Y{sub 2}MoQ{sub 3}O{sub 12} contain second-order Jahn–Teller distortive cations in asymmetric environments. • The intra-octahedral distortion of the Mo{sup 6+} is influenced by the Se{sup 4+}.« less
NASA Astrophysics Data System (ADS)
Açıkgöz, Muhammed; Rudowicz, Czesław; Gnutek, Paweł
2017-11-01
Theoretical investigations are carried out to determine the temperature dependence of the local structural parameters of Cr3+ and Mn2+ ions doped into RAl3(BO3)4 (RAB, R = Y, Eu, Tm) crystals. The zero-field splitting (ZFS) parameters (ZFSPs) obtained from the spin Hamiltonian (SH) analysis of EMR (EPR) spectra serve for fine-tuning the theoretically predicted ZFSPs obtained using the semi-empirical superposition model (SPM). The SPM analysis enables to determine the local structure changes around Cr3+ and Mn2+ centers in RAB crystals and explain the observed temperature dependence of the ZFSPs. The local monoclinic C2 site symmetry of all Al sites in YAB necessitates consideration of one non-zero monoclinic ZFSP (in the Stevens notation, b21) for Cr3+ ions. However, the experimental second-rank ZFSPs (D =b20 , E = 1 / 3b22) were expressed in a nominal principal axis system. To provide additional insight into low symmetry aspects, the distortions (ligand's distances ΔRi and angular distortions Δθi) have been varied while preserving monoclinic site symmetry, in such way as to obtain the calculated values (D, E) close to the experimental ones, while keeping b21 close to zero. This procedure yields good matching of the calculated ZFSPs and the experimental ones, and enables determination of the corresponding local distortions. The present results may be useful in future studies aimed at technological applications of the Huntite-type borates with the formula RM3(BO3)4. The model parameters determined here may be utilized for ZFSP calculations for Cr3+ and Mn2+ ions at octahedral sites in single-molecule magnets and single-chain magnets.
Substrate-dependent structural and CO sensing properties of LaCoO3 epitaxial films
NASA Astrophysics Data System (ADS)
Liu, Haifeng; Sun, Hongjuan; Xie, Ruishi; Zhang, Xingquan; Zheng, Kui; Peng, Tongjiang; Wu, Xiaoyu; Zhang, Yanping
2018-06-01
LaCoO3 thin films were grown on different (0 0 1) oriented LaAlO3, SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 by the polymer assisted deposition method, respectively. All the LaCoO3 thin films are in epitaxial growth on these substrates, with tetragonal distortion of CoO6 octahedrons. Due to different in-plane lattice mismatch, the LaCoO3 film on LaAlO3 has the largest tetragonal distortion of CoO6 octahedrons while the film grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 has the smallest tetragonal distortion. The relative contents of the surface absorbed oxygen species are found to increase for the LaCoO3 epitaxial films grown on (0 0 1) oriented (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and LaAlO3 substrates, sequentially. The film sensors exhibit good CO sensing properties at 150 °C, and the LaCoO3 film on LaAlO3 shows the highest response but the film on (LaAlO3)0.3(Sr2AlTaO6)0.7 shows the lowest. It reveals that the larger degree of Jahn-Teller-like tetragonal distortion of CoO6 octahedrons may greatly improve the surface absorbing and catalytic abilities, corresponding to more excellent CO sensing performance. The present study suggests that the formation of epitaxial films is an efficient methodology for controlling the octahedral distortion and thereby improving the gas sensing performance of perovskite transition metal oxides.
Band structure of the quasi two-dimensional purple molybdenum bronze
NASA Astrophysics Data System (ADS)
Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.
2006-09-01
The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.
NASA Astrophysics Data System (ADS)
El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.
2003-02-01
The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.
El-Sonbati, A Z; El-Bindary, A A; Diab, M A
2003-02-01
The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.
NASA Astrophysics Data System (ADS)
Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran
2013-10-01
Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1‧ and L2‧ are N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2), N,N-diethyl-N‧-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1‧) and N-((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2‧) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (μ-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.
High-Pressure Study of Perovskites and Postperovskites in the (Mg,Fe)GeO 3 System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan, Camelia V.; Dutta, Rajkrishna; Cava, Robert J.
2017-06-22
The effect of incorporation of Fe 2+ on the perovskite (Pbnm) and postperovskite (Cmcm) structures was investigated in the (Mg,Fe)GeO 3 system at high pressures and temperatures using laser-heated diamond anvil cell and synchrotron X-ray diffraction. Samples with compositions of Mg# ≥ 48 were shown to transform to the perovskite (~30 GPa and ~1500 K) and postperovskite (>55 GPa, ~1600–1800 K) structures. Compositions with Mg# ≥ 78 formed single-phase perovskite and postperovskite, whereas those with Mg# < 78 showed evidence for partial decomposition. The incorporation of Fe into the perovskite structure causes a decrease in octahedral distortion as well asmore » a modest decrease in bulk modulus (K 0) and a modest increase in zero-pressure volume (V 0). It also leads to a decrease in the perovskite-to-postperovskite phase transition pressure by ~9.5 GPa over compositions from Mg#78 to Mg#100.« less
Yang, Qi; Chen, Sanping; Xie, Gang; Gao, Shengli
2011-12-15
An energetic coordination compound Cu(Mtta)(2)(NO(3))(2) has been synthesized by using 1-methyltetrazole (Mtta) as ligand and its structure has been characterized by X-ray single crystal diffraction. The central copper (II) cation was coordinated by four O atoms from two Mtta ligands and two N atoms from two NO(3)(-) anions to form a six-coordinated and distorted octahedral structure. 2D superamolecular layer structure was formed by the extensive intermolecular hydrogen bonds between Mtta ligands and NO(3)(-) anions. Thermal decomposition process of the compound was predicted based on DSC and TG-DTG analyses results. The kinetic parameters of the first exothermic process of the compound were studied by the Kissinger's and Ozawa-Doyle's methods. Sensitivity tests revealed that the compound was insensitive to mechanical stimuli. In addition, compound was explored as additive to promote the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimetry. Copyright © 2011 Elsevier B.V. All rights reserved.
Yan, Yong; O'Connor, Alice E; Kanthasamy, Gopikkaa; Atkinson, George; Allan, David R; Blake, Alexander J; Schröder, Martin
2018-03-21
High-pressure single-crystal X-ray structural analyses of isostructural MFM-133(M) (M = Zr, Hf) of flu topology and incorporating the tetracarboxylate ligand TCHB 4- [H 4 TCHB = 3,3',5,5'-tetrakis(4-carboxyphenyl)-2,2',4,4',6,6'-hexamethyl-1,1'-biphenyl] and {M 6 (μ 3 -OH) 8 (OH) 8 (COO) 8 } clusters confirm negative linear compressibility (NLC) behavior along the c axis. This occurs via a three-dimensional wine-rack NLC mechanism leading to distortion of the octahedral cage toward a more elongated polyhedron under static compression. Despite the isomorphous nature of these two structures, MFM-133(Hf) shows a higher degree of NLC than the Zr(IV) analogue. Thus, for the first time, we demonstrate here that the NLC property can be effectively tuned in a framework material by simply varying the inorganic component of the frameworks without changing the network topology and structure.
Nanocrystalline ordered vanadium carbide: Superlattice and nanostructure
NASA Astrophysics Data System (ADS)
Kurlov, A. S.; Gusev, A. I.; Gerasimov, E. Yu.; Bobrikov, I. A.; Balagurov, A. M.; Rempel, A. A.
2016-02-01
The crystal structure, micro- and nanostructure of coarse- and nanocrystalline powders of ordered vanadium carbide V8C7 have been examined by X-ray and neutron diffraction and electron microscopy methods. The synthesized coarse-crystalline powder of ordered vanadium carbide has flower-like morphology. It was established that the real ordered phase has the composition V8C7-δ (δ ≅ 0.03) deviating from perfect stoichiometric composition V8C7. The vanadium atoms forming the octahedral environment □V6 of vacant sites in V8C7-δ are displaced towards the vacancy □. The presence of carbon onion-like structures was found in the vanadium carbide powders with a small content of free (uncombined) carbon. The nanopowders of V8C7-δ carbide with average particle size of 20-30 nm produced by high-energy milling of coarse-crystalline powder retain the crystal structure of the initial powder, but differ in the lattice deformation distortion anisotropy.
Lee, Chi-Heon; Moon, Suk-Hee; Park, Ki-Min; Kang, Youngjin
2016-12-01
In the title compound, [Ir(C 11 H 8 N) 2 (C 18 H 14 N)], the Ir III ion adopts a distorted octa-hedral coordination environment defined by three C , N -chelating ligands, one stemming from a 2-(4-phenyl-5-methyl-pyridin-2-yl)phenyl ligand and two from 2-(pyridin-2-yl)phenyl ligands, arranged in a facial manner. The Ir III ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. In the crystal, inter-molecular π-π stacking inter-actions, as well as inter-molecular C-H⋯π inter-actions, are present, leading to a three-dimensional network.
Chromium incorporation into TiO{sub 2} at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Alberto, E-mail: aescudero@icmse.csic.es; Langenhorst, Falko; Institut fuer Geowissenschaften, Friedrich-Schiller-Universitaet Jena, Carl-Zeiss-Promenade 10, D-07745 Jena
2012-06-15
Chromium incorporation into TiO{sub 2} up to 3 GPa at 1300 Degree-Sign C and 900 Degree-Sign C has been studied by XRD as well as TEM. A CaCl{sub 2} type TiO{sub 2} polymorph has been observed in the quenched samples from high pressure. Two different mechanisms of solubility occur in the recovered samples. Chromium replaces titanium on normal octahedral sites but it also occupies interstitial octahedral sites, especially in the samples recovered from higher pressures. Interstitial chromium is responsible for an orthorhombic distortion of the TiO{sub 2} rutile structure in the quenched samples and gives rise to a (1 1more » 0) twinned CaCl{sub 2}-structured polymorph. This phase is very likely the result of temperature quench at high pressure. The formation of this phase is directly related to the chromium content of the TiO{sub 2} grains. Chromium solubility in TiO{sub 2} increases with increasing the synthesis pressure. TiO{sub 2} is able to accommodate up to 15.3 wt% Cr{sub 2}O{sub 3} at 3 GPa and 1300 Degree-Sign C, compared to 5.7 wt% at atmospheric pressure at the same temperature. - Graphical abstract: Microstructure consisting of twins domains of recovered Cr-doped CaCl{sub 2} type TiO{sub 2} grains synthesised at high pressure. Highlights: Black-Right-Pointing-Pointer Chromium solubility in TiO{sub 2} increases at high pressure. Black-Right-Pointing-Pointer Chromium occupies substitutional and interstitial positions in the rutile structure. Black-Right-Pointing-Pointer Interstitial chromium causes a decrease of the rutile symmetry. Black-Right-Pointing-Pointer An orthorhombic CaCl{sub 2} type structure is observed in the quenched samples.« less
Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe
2013-03-04
Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.
Karabach, Yauhen Y; Guedes da Silva, M Fátima C; Kopylovich, Maximilian N; Gil-Hernández, Beatriz; Sanchiz, Joaquin; Kirillov, Alexander M; Pombeiro, Armando J L
2010-12-06
The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively.
Basu Baul, Tushar S; Kundu, Sajal; Singh, Palwinder; Shaveta; Guedes da Silva, M Fátima C
2015-02-07
The amyloid beta precursor protein (APP) and its neurotoxic cleavage product amyloid beta (Aβ) are a cause of Alzheimer's disease and appear essential for neuronal development and cell homeostasis. Proteolytic processing of APP is influenced by metal ions and protein ligands, however the structural and functional mechanism of APP regulation is not known so far. In this context, molecular modeling studies were performed to understand the molecular behavior of (E)-N-(pyridin-2-ylmethylene)arylamines (LR) with an E2 domain of the APP in its complex with zinc (APP; PDB ID: ). Docking results indeed confirmed that the LR interacts with Zn in the binding site of the protein between two α-helical chains. In view of these findings, LR was further investigated for complexation reactions with Zn(2+) in order to establish the structural models in solution and in the solid state. Five new Zn(2+) complexes of compositions viz. [Zn(Br)2(L2-Me)] (), [Zn(Br)2(L2-OMe)] (), [Zn(i)2(L2-OMe)] (), [Zn(NO3)2(L2-OMe)(H2O)] () and [Zn(L4-Me)2(H2O)2](NO3)2 () were synthesized and their structures were ascertained by microanalysis, IR and (1)H NMR spectroscopy, and single-crystal X-ray diffraction. The zinc atom in complex exhibits a distorted tetrahedral geometry while the crystal structures of complexes and show distorted square pyramidal geometries. The zinc cation in and has an octahedral coordination environment, but in the zinc coordination geometry is less distorted. The Zn(ii) cations take part in one ( and ) or two () 5-membered metallacycles imposed by the NN or NNO chelation modes of LR. The significant intermolecular ππ interactions are also discussed.
Redox interplay of oxo-thio-tungsten centers with sulfur-donor co-ligands.
Thomas, Simon; Eagle, Aston A; Sproules, Stephen A; Hill, Jason P; White, Jonathan M; Tiekink, Edward R T; George, Graham N; Young, Charles G
2003-09-22
The oxo-thio-W(VI) complexes TpWOS(S(2)PR(2)-S) and TpWOS(pyS-S) (Tp = hydrotris(3,5-dimethylpyrazol-1-yl)borate, R = OEt, Ph; pyS = pyridine-2-thiolate) have been prepared and characterized by microanalytical, spectroscopic, and structural techniques. Crystals of the 1,2-dichloroethane hemisolvate of TpWOS(S(2)PPh(2)-S) belong to the triclinic space group Ponemacr; with a = 10.732(6) A, b = 16.91(1) A, c = 10.021(4) A, alpha = 104.40(4) degrees, beta = 107.52(3) degrees, gamma = 96.09(5) degrees, V = 1647(1) A(3) for Z = 2. The complex exhibits a distorted octahedral structure featuring a facial tridentate Tp ligand and mutually cis terminal oxo (W-O(1) = 1.712(7) A), terminal thio (W-S(1) = 2.162(3) A), and monodentate dithiophosphinate ligands. X-ray absorption and extended X-ray absorption fine structure results support a related oxo-thio formulation for TpWOS(pyS-S). The complexes are reduced to the corresponding oxo-thio-W(V) anions, [TpWOS(S(2)PR(2)-S)](-) and [TpWOS(pyS-S)](-), which exhibit highly anisotropic EPR spectra. They are oxidized to form the EPR-active (dithio)oxo-W(V) cations, [TpWO(S(3)PR(2)-S,S')](+) and [TpWO(pyS(2)-N,S)](+) (pyS(2) = pyridine-2-dithio). Green [TpWO(pyS(2)-N,S)]BF(4), formed in the reaction of TpWOS(pyS) and NOBF(4), has been isolated and spectroscopically and structurally characterized. Crystals of [TpWO(pyS(2)-N,S)]BF(4) belong to the monoclinic space group Cc with a = 16.007(5) A, b = 14.091(4) A, c = 13.608(4) A, beta = 124.525(4) degrees, V = 2528.8(13) A(3) for Z = 4. The cation exhibits a distorted octahedral structure featuring facial tridentate Tp, terminal oxo (W-O(1) = 1.632(12) A), and bidentate pyridine-2-dithio-N,S (W-S(1) = 2.317(7) A, S(1)-S(2) = 2.037(9) A) ligands. The structures and redox behavior of the complexes are compared and contrasted with those of the related molybdenum complexes, TpMo(VI)OS(S(2)PR(2)-S) and TpMo(IV)O(pyS(2)-N,S) (Hill, J. P.; Laughlin, L. J.; Gable, R. W.; Young, C. G. Inorg. Chem. 1996, 35, 3447).
Site-specific spin crossover in F e2Ti O4 post-spinel under high pressure up to nearly a megabar
NASA Astrophysics Data System (ADS)
Xu, W. M.; Hearne, G. R.; Layek, S.; Levy, D.; Itié, J.-P.; Pasternak, M. P.; Rozenberg, G. Kh.; Greenberg, E.
2017-07-01
X-ray diffraction studies to ˜90 GPa at room temperature show that F e2Ti O4 ferrous inverse spinel undergoes the following sequence of structural transitions: cubic (F d 3 ¯m ) →˜8 GPa tetragonal (I 41/a m d ) →˜16 GPa orthorhombic (C m c m ) →˜55 GPa orthorhombic (P m m a ) , at the indicated onset transition pressures. Within the Cmcm phase, site-specific spin crossover is initiated and involves only highly distorted octahedral sites constituting ˜25 % of all Fe locations. This is manifest as a steeper volume decrease of Δ V /V0˜3.5 % beyond ˜40 GPa and an emergent diamagnetic component discerned in 57Fe Mössbauer spectroscopy at variable cryogenic temperatures. A subsequent C m c m →P m m a Fe/Ti disorder-order reconfiguration is facilitated at sixfold coordinated (octahedral) sites. The rest of the high-spin Fe in sixfold and eightfold coordinated sites (˜75 % abundance) in the Pmma phase exhibit average saturation internal magnetic fields of Hh f˜42 T to ˜90 GPa , typical of spin-only (orbitally quenched) Fermi-contact values. By contrast, average Hh f˜20 T values, signifying unquenched orbital moments, occur below the 40 -45 GPa spin-crossover initiation regime in the Cmcm phase. Therefore, site-specific spin crossover invokes a cooperative lattice response and polyhedral distortions at the rest of the high-spin Fe sites, translating to 3 d level (sub-band) changes and consequential orbital moment quenching. Near ˜90 GPa , F e2Ti O4 is a partially spin-converted chemically ordered Pmma post-spinel having a persistent charge gap of ˜100 meV . Despite structural symmetry changes, partial spin crossover and lattice compressibility, resulting in a ˜33 % total reduction in unit-cell volume and corresponding 3 d bandwidth broadening, strong electron correlations persist at high densification.
Bis(O-ethyl dithio-carbonato-κS,S')bis-(pyridine-3-carbonitrile-κN)nickel(II).
Kapoor, Sanjay; Kour, Ramandeep; Sachar, Renu; Kant, Rajni; Gupta, Vivek K; Kapoor, Kamini
2012-01-01
The Ni(2+) ion in the title complex, [Ni(C(3)H(5)OS(2))(2)(C(6)H(4)N(2))(2)], is in a strongly distorted octa-hedral coordination environment formed by an N(2)S(4) donor set, with the Ni(2+) ion located on a centre of inversion. In the crystal, weak C-H⋯S and C-H⋯N inter-actions are observed.
Chlorine-induced assembly of a cationic coordination cage with a μ5-carbonato-bridged Mn(II)24 core.
Xiong, Ke-Cai; Jiang, Fei-Long; Gai, Yan-Li; Yuan, Da-Qiang; Han, Dong; Ma, Jie; Zhang, Shu-Quan; Hong, Mao-Chun
2012-04-27
Chlorine caged in! The chlorine-induced assembly of six shuttlecock-like tetranuclear Mn(II) building blocks generated in situ based on p-tert-butylthiacalix[4]arene and facial anions gave rise to a novel truncated distorted octahedral cationic coordination cage with a μ(5)-carbonato-bridged Mn(II)(24) core. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vjunov, Aleksei; Wang, Meng; Govind, Niranjan
We report the structural changes induced by Brønsted acidic site deprotonation in a zeolite with MFI structure as a function of temperature up to 430°C using in situ Al K-edge X-ray absorption fine structure spectroscopy (XAFS). At ambient conditions, the protons are present as hydrated hydronium ions (H3O+(H2O)n) that are ion-paired to the anionic, Al tetrahedral (T) site. At elevated temperatures, loss of water molecules hydrating the hydronium ions leads to an unstable free hydronium ion that disso-ciates to form the hydroxylated T-site. The formation of this (-O3)-Al-(OH-) species leads to the elongation of one of the four Al-O bondsmore » and causes significant distortion of the tetrahedral symmetry about the Al atom. This distortion leads to the appearance of new pre-edge features in the Al K-edge X-ray absorption near edge structure (XANES) spectra. The pre-edge peak assignment is confirmed by time-dependent density functional theory calculation of the XANES spectrum. The XANES spectra are also sensitive to solutes or solvent that are in proximity to the T-site. A second structural transition occurs at about the same temperature, namely the conversion of a minor fraction of extra-framework octahedral Al present in the sample at ambient conditions to a tetrahedral species through the de-coordination of H2O-ligands. Both IR spectroscopy and thermogravimetric analysis (TGA) are further used to confirm the overall chemical transformation of the T-site.« less
Towards a better understanding of honeycomb alternating magnetic networks.
Marino, Nadia; Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Cano, Joan; Julve, Miguel
2015-06-28
Two new two-dimensional homometallic compounds {[M2(bpm)(ox)2]n·5nH2O} with M = Co(II) (1) and Zn(II) (2) and the mononuclear nickel(II) complex [Ni(bpm)2(ox)]·2H2O (3) [bpm = 2,2'-bipyrimidine and ox = oxalate] have been prepared and structurally characterized. 1 and 2 are isostructural compounds whose structures are made up of oxalate-bridged M(II) cations cross-linked by bis-bidentate bpm molecules to afford a honeycomb layered network extending in the crystallographic ab plane. The layers are eclipsed along the crystallographic c axis and show graphitic-like interactions between the bpm rings. The three-dimensional supramolecular network deriving from such interactions is characterized by hexagonal-shaped channels extending in the same direction. Each M(II) ion in 1 and 2 is tris-chelated with four oxygen atoms from two oxalate groups and two bpm-nitrogen atoms building a distorted octahedral surrounding. The reduced values of the angles subtended by the bis-chelating bpm [77.69(8) (1) and 76.59(8)° (2)] and oxalate [79.69(6) (1) and 80.01(5)° (2)] are the main factors accounting for this distortion. The values of the metal-metal separation through bridging bpm are 5.6956(7) (1) and 5.7572(9) Å (2), whereas those across the bis-bidentate oxalate are 5.4306(4) (1) and 5.4058(5) Å (2). 3 is a neutral mononuclear nickel(II) complex where each metal ion is six-coordinate with four nitrogen atoms from two bpm ligands in a cis arrangement and two oxalate-oxygen atoms building a somewhat distorted octahedral surrounding. The values of the angles subtended at the nickel(II) ion by bpm and oxalate are 78.14(4) and 80.95(5)°, respectively. The magnetic properties of 1 have been investigated in the temperature range 1.9-295 K. They are typical of an overall antiferromagnetic coupling with a maximum of the magnetic susceptibility at 22.0 K. The analysis of the susceptibility data of 1 through an effective spin Hamiltonian allowed a satisfactory simulation in the temperature range 10-295 K with the best-fit parameters λ = -110 cm(-1), α = 1.1, |Δ| = 400 cm(-1), J(ox) = -11.1 cm(-1) and J(bpm) = -5.0 cm(-1). The values of the antiferromagnetic coupling through bpm and ox in 1 have also been supported by electronic structure calculations based on Density Functional Theory (DFT) and they compare well with those reported in the literature for bpm-bridged dicobalt(II) complexes and oxalate-bridged cobalt(II) chains.
Alvarez, Santiago; Menjón, Babil; Falceto, Andrés; Casanova, David; Alemany, Pere
2014-11-17
To each coordination polyhedron we can associate a normalized coordination polyhedron that retains the angular orientation of the central atom-ligand bonds but has all the vertices at the same distance from the center. The use of shape measures of these normalized coordination polyhedra provides a simple and efficient way of discriminating angular and bond distance distortions from an ideal polyhedron. In this paper we explore the applications of such an approach to analyses of several stereochemical problems. Among others, we discuss how to discern the off-center displacement of the metal from metal-ligand bond shortening distortions in families of square planar biscarbene and octahedral dioxo complexes. The normalized polyhedron approach is also shown to be very useful to understand stereochemical trends with the help of shape maps, minimal distortion pathways, and ligand association/dissociation pathways, illustrated by the Berry and anti Berry distortions of triple-bonded [X≡ML4] complexes, the square pyramidal geometries of Mo coordination polyhedra in oxido-reductases, the coordination geometries of actinyl complexes, and the tetrahedricity of heavy atom-substituted carbon centers.
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Azimi, Saeid; Molaei, Atefeh; Hatami, Masoud; Notash, Behrouz
2017-10-01
A new Schiff base ligand HL, 1,3-bis(2-((Z)-(2-aminoethylimino)methyl)phenoxy)ethylene di amine, has been synthesized from the reaction of a new aldehyde and ethylenediamine. After preparation the Schiff base, a new dinuclear Cu(II) complex with two different geometry for each metal ion was synthesized. Single crystal X-ray structure analysis of the complex Cu(II) showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. The crystal structure studying shows, a perchlorate ion has been coordinated to the two Cu(II) metal centers as bridged and another perchlorate coordinated to the one of Cu(II) ion as terminal. However, two interesting structures square pyramidal and distorted octahedral Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, we had a theoretical study to have a comparison of experimental and theoretical results we determined the HOMO and LUMO orbitals.
A theoretical prediction of the paradoxical surface free energy for FCC metallic nanosolids
NASA Astrophysics Data System (ADS)
Abdul-Hafidh, Esam H.; Aïssa, Brahim
2016-08-01
We report on the development of an efficient and simple method to calculate the surface free energy (surface tension) of a general-shaped metallic nanosolid. Both nanoparticles and nanostructures that account for the crystal structure and size were considered. The surface free energy of a face-centered cubic structure of a metallic nanoparticles was found to decrease as the size decreases, for a shape factor equal to 1.0 (i.e., spherical). However, when the shape factor exceeds this value, which includes disk-like, regular tetrahedral, regular hexahedral, regular octahedral, nanorod, and regular quadrangular structures, the behavior of the surface free energy was found to reverse, especially for small nanoparticles and then increases as the size decreases. Moreover, this behavior was systematically recorded for large nanoparticles when the mechanical distortion was appreciable. As a matter of fact, this model was also applied to the noble transition metals, including gold and silver nanoparticles. This work is a clear step forward establishing a systematic mechanism for controlling the mechanical properties of nanoscale particles by controlling the shape, size and structure.
Rusanova, Julia A; Semenaka, Valentina V; Dyakonenko, Viktoriya V; Shishkin, Oleg V
2015-09-01
The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal Cu(II)/Cr(III) complex. The mol-ecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thio-cyanato ligands. The Cu(II) ion adopts a distorted square-pyramidal coordination while the Cr(III) ion has a distorted octa-hedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O-H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two -CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).
NASA Astrophysics Data System (ADS)
Shakir, Mohammad; Khanam, Sadiqa; Firdaus, Farha; Latif, Abdul; Aatif, Mohammad; Al-Resayes, Saud I.
The template condensation reaction between benzil and 3,4-diaminotoulene resulted mononuclear 12-membered tetraimine macrocyclic complexes of the type, [MLCl2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The synthesized complexes have been characterized on the basis of the results of elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz. FT-IR, 1H and 13C NMR, FAB mass, UV-vis and EPR. An octahedral geometry has been envisaged for all these complexes, while a distorted octahedral geometry has been noticed for Cu(II) complex. Low conductivity data of all these complexes suggest their non-ionic nature. The interactive studies of these complexes with calf thymus DNA showed that the complexes are avid binders of calf thymus DNA. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria proved them as growth inhibiting agents.
cis-Dichloridobis-(5,5'-dimethyl-2,2'-bipyridine)-manganese(II) 2.5-hydrate.
Lopes, Lívia Batista; Corrêa, Charlane Cimini; Diniz, Renata
2011-07-01
The metal site in the title compound [MnCl(2)(C(12)H(12)N(2))(2)]·2.5H(2)O has a distorted octa-hedral geometry, coordinated by four N atoms of two 5,5'-dimethyl-2,2'-dipyridine ligands and two Cl atoms. Two and a half water molecules of hydration per complex unit are observed in the crystal structure. The compounds extend along the c axis with O-H⋯Cl, O-H⋯O, C-H⋯Cl and C-H⋯O hydrogen bonds and π-π inter-actions [centroid-centroid distance = 3.70 (2) Å] contributing substanti-ally to the crystal packing. The Mn and one of the water O atoms, the latter being half-occupied, are located on special positions, in this case a rotation axis of order 2.
Investigation of the thermal stability of 1T'-MoTe2 multilayers via Raman spectroscopy
NASA Astrophysics Data System (ADS)
Herman, Irving P.; Wang, Dennis; Smyser, Kori; Rhodes, Daniel; Pasupathy, Abhay N.
The distorted octahedral (1T') form of MoTe2 has garnered much interest in recent years because of its potential applications as a quantum spin hall insulator. Here we study the structural stability of 1T'-MoTe2 multilayers encapsulated by hexagonal boron nitride (hBN) above room temperature by tracking the evolution of its Raman spectrum and cross-checking the results with atomic force microscopy (AFM). Our data indicate the presence of both linear and nonlinear redshifts in peak positions upon heating and, furthermore, suggest the irreversible degradation of the original compound into tellurium nanocrystals at higher temperatures. We discuss the implications of these findings for related optical and transport experiments involving this material and how encapsulation may help extend the lifetime of such devices. NSF IGERT (DGE-1069240).
Bae, Ji-Eun; Hwang, Kwang Yeon; Nam, Ki Hyun
2018-06-16
Glucose isomerase (GI) catalyzes the reversible enzymatic isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This is one of the most important enzymes in the production of high-fructose corn syrup (HFCS) and biofuel. We recently determined the crystal structure of GI from S. rubiginosus (SruGI) complexed with a xylitol inhibitor in one metal binding mode. Although we assessed inhibitor binding at the M1 site, the metal binding at the M2 site and the substrate recognition mechanism for SruGI remains the unclear. Here, we report the crystal structure of the two metal binding modes of SruGI and its complex with glucose. This study provides a snapshot of metal binding at the SruGI M2 site in the presence of Mn 2+ , but not in the presence of Mg 2+ . Metal binding at the M2 site elicits a configuration change at the M1 site. Glucose molecule can only bind to the M1 site in presence of Mn 2+ at the M2 site. Glucose and Mn 2+ at the M2 site were bridged by water molecules using a hydrogen bonding network. The metal binding geometry of the M2 site indicates a distorted octahedral coordination with an angle of 55-110°, whereas the M1 site has a relatively stable octahedral coordination with an angle of 85-95°. We suggest a two-step sequential process for SruGI substrate recognition, in Mn 2+ binding mode, at the M2 site. Our results provide a better understanding of the molecular role of the M2 site in GI substrate recognition. Copyright © 2018. Published by Elsevier Inc.
trans-Bis(azido-kappaN)bis(pyridine-2-carboxamide-kappa2N1,O2)nickel(II).
Daković, Marijana; Popović, Zora
2007-11-01
In the title compound, [Ni(N(3))(2)(C(6)H(6)N(2)O)(2)], the Ni(II) atom lies on an inversion centre. The distorted octahedral nickel(II) coordination environment contains two planar trans-related N,O-chelating picolinamide ligands in one plane and two monodentate azide ligands perpendicular to this plane. Molecules are linked into a three-dimensional framework by N-H...N hydrogen bonds.
Tetraammine(carbonato-κ(2) O,O')cobalt(III) perchlorate.
Mohan, Singaravelu Chandra; Jenniefer, Samson Jegan; Muthiah, Packianathan Thomas; Jothivenkatachalam, Kandasamy
2013-01-01
In the title complex, [Co(CO3)(NH3)4]ClO4, both the cation and anion lie on a mirror plane. The Co(III) ion is coordinated by two NH3 ligands and a chelating carbonato ligand in the equatorial sites and by two NH3 groups in the axial sites, forming a distorted octa-hedral geometry. In the crystal, N-H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network.
Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...
2015-07-13
The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less
Structural transition and orbital glass physics in near-itinerant CoV 2O 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reig-i-Plessis, D.; Casavant, D.; Garlea, Vasile O.
2016-01-25
In this study, the ferrimagnetic spinel CoV 2O 4 has been a topic of intense recent interest, both as a frustrated insulator with unquenched orbital degeneracy and as a near-itinerant magnet which can be driven metallic with moderate applied pressure. Here, we report on our recent neutron di raction and inelastic scattering measurements on powders with minimal cation site disorder. Our main new result is the identification of a weak (Δa/a ~ 10 –4), first order structural phase transition at T* = 90 K, the same temperature where spin canting was seen in recent single crystal measurements. This transition ismore » characterized by a short-range distortion of oxygen octahedral positions, and inelastic data further establish a weak 1.25meV spin gap at low temperature. Together, these findings provide strong support for the local orbital picture and the existence of an orbital glass state at temperatures below T*.« less
Neutron scattering study of yttrium iron garnet
NASA Astrophysics Data System (ADS)
Shamoto, Shin-ichi; Ito, Takashi U.; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato; Akatsu, Mitsuhiro; Kodama, Katsuaki; Nakao, Akiko; Moyoshi, Taketo; Munakata, Koji; Ohhara, Takashi; Nakamura, Mitsutaka; Ohira-Kawamura, Seiko; Nemoto, Yuichi; Shibata, Kaoru
2018-02-01
The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R 3 ¯ . The highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16 a (octahedral) and 24 d (tetrahedral) sites, Ja a, Ja d, and Jd d, which are estimated to be 0.00 ±0.05 , -2.90 ±0.07 , and -0.35 ±0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of q -integrated dynamical spin susceptibility χ″(E ) exhibits a square-root energy dependence at low energies. The magnon density of state is estimated from χ″(E ) obtained on an absolute scale. The value is consistent with the single chirality mode for the magnon branch expected theoretically.
NASA Astrophysics Data System (ADS)
Cheng, Wei-Qin; Li, Guo-Ling; Zhang, Ran; Ni, Zhong-Hai; Wang, Wen-Feng; Sato, Osamu
2015-05-01
A linear-chain cobalt coordination polymer, [Co(2,3-LH2)2(4,4‧-bipy)]ṡ2H2Oṡ4,4‧-bipy]n (1) (2,3-LH2 = 2,3-tetrahydroxy-9,10-dimethyl-9,10-dihydro- 9,10-ethanoanthracene, 4,4‧-bipy = 4,4‧-bipyridine), has been synthesized and structurally characterized. Single-crystal X-ray analysis reveals that complex 1 is a chiral polymer assemblied from achiral components. The complex 1 crystallizes in the chiral space group P3221 and the central Co ion has a slightly distorted octahedral coordination environment. The temperature dependence of magnetic susceptibility indicates that the complex 1 undergoes valence tautomeric interconversion between low-spin ls-[CoIII(2,3-LH2Cat)(2,3-LH2SQ)] and high-spin hs-[CoII(2,3-LH2SQ)2] (2,3-LH2Cat = 2,3-LH2catecholate, 2,3-LH2SQ = 2,3-LH2semiquinone).
NASA Astrophysics Data System (ADS)
Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin
2018-02-01
A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.
NASA Astrophysics Data System (ADS)
Solanki, Dina; Hogarth, Graeme
2015-11-01
Reaction of CuCl2·2H2O and K2[Ni(CN)4]·2H2O in aqueous ammonia gave blue rod-like crystals of [Cu(NH3)4][Ni(CN)4]. An X-ray crystallographic reveals that square-planar anions and cations are weakly associated through coordination of a cis pair of cyanide ligands to copper, with one short and one long contact and thus the copper centre is best described as a square-based pyramid. Crystals lose ammonia readily upon removal from the solvent and this has been probed by TGA and DSC measurements. For comparison we have also re-determined the structure of the related ethylenediamine (en) complex [Cu(en)2][Ni(CN)4] at 150 K. This consists of a 1D chain in which a trans pair of cyanide ligands bind to copper such that the latter has an overall tetragonally distorted octahedral coordination geometry.
Silicon K-edge XANES spectra of silicate minerals
NASA Astrophysics Data System (ADS)
Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.
1995-03-01
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.
Ma, Yi; Zhang, Li-Tian; Wang, Xiao-Fang; He, Yong-Ke; Han, Zheng-Bo
2007-12-01
A new coordination polymer, catena-poly[[(dipyrido[3,2-a:2',3'-c]phenazine-kappa(2)N,N')nickel(II)]-mu-2,6-dipicolinato-kappa(4)O(2),N,O(6):O(2')], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one-dimensional structure in which 2,6-dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one Ni(II) center, one dipyrido[3,2-a:2',3'-c]phenazine ligand and one 2,6-dipicolinate ligand. Each Ni(II) center is six-coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2-a:2',3'-c]phenazine ligand and two different 2,6-dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by pi-pi stacking interactions and weak interactions to form a three-dimensional supramolecular network.
High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals
NASA Astrophysics Data System (ADS)
Yu, Yifu; Nam, Gwang-Hyeon; He, Qiyuan; Wu, Xue-Jun; Zhang, Kang; Yang, Zhenzhong; Chen, Junze; Ma, Qinglang; Zhao, Meiting; Liu, Zhengqing; Ran, Fei-Rong; Wang, Xingzhi; Li, Hai; Huang, Xiao; Li, Bing; Xiong, Qihua; Zhang, Qing; Liu, Zheng; Gu, Lin; Du, Yonghua; Huang, Wei; Zhang, Hua
2018-06-01
Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T'-MoX2 (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T'-MoS2 crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS2 following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T'-MoS2 is much more active than that of 2H-MoS2 for the electrocatalytic hydrogen evolution reaction in an acidic medium.
Chromium Ions in Tetrahedral Sites
1991-09-01
octahedral sites-the inversion site and the mirror site.4 After energy level calculations were performed, it was found that chromium ions in octahedral sites...octahedral site with symmetry C, the other half at the mirror octahedral sites with symmetry Cs. Its structure projected on (100) plane is shown in Fig... mirror symmetry. I 181 !U 10O 0 0 Fig. 2.1 Unit cell of forsterite, Mg2SiO4. Small open and solid circles are Mg atoms, big circles are 0 atoms and
Sarazin, Yann; Howard, Ruth H; Hughes, David L; Humphrey, Simon M; Bochmann, Manfred
2006-01-14
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fengqi; Kuang, Xiaojun, E-mail: kuangxj@glut.edu.cn
The structure of 18-layer shifted B-site deficient hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} compound has been re-examined by neutron powder diffraction. Structural analysis reveals that La{sub 6}MgTi{sub 4}O{sub 18} compound adopts a 18R octahedral-tilted structure with LaO{sub 3} layer stacking sequence of (hhcccc){sub 3} in space group R{sup {sup -}}3, in contrast with the previously proposed R3m. La{sub 6}MgTi{sub 4}O{sub 18} demonstrates partially ordered Mg cation distribution with a preference on the central octahedral sites over the outer octahedral sites in the cubic perovskite blocks isolated by the single vacant octahedral layers between the two consecutive hexagonal layers. The instabilitymore » of the La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic substrate at high temperature and its dependencies of cell parameters and permittivity were characterized as well. - Graphical abstract: 18-layer shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} adopts octahedral-tilted structure in R{sup {sup -}}3 and demonstrates partially ordered Mg distribution in the cubic perovskite blocks isolated by the vacant octahedral layers. - Highlights: • Neutron diffraction reveals an octahedra-tilted structure in R{sup {sup -}}3 for La{sub 6}MgTi{sub 4}O{sub 18}. • Mg/Ti distribution in La{sub 6}MgTi{sub 4}O{sub 18} is partially ordered in the perovskite blocks. • Instability of La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic at high temperature is demonstrated.« less
Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3.
Graf, Monica Elisabet; Di Napoli, Solange; Barral, Maria Andrea Andrea; Saleh Medina, Leila; Negri, R Martín; Sepliarsky, Marcelo; Llois, Ana María
2018-05-23
In this work we study, by means of <i>ab initio</i> calculations, the structural, electronic and magnetic properties of Y-doped BiFeO<sub>3</sub> compounds. We determine that there is a morphotropic phase boundary at an yttrium concentration of (18 ± 2)%, where the structure changes from <i>R3c</i> to <i>Pnma</i>. This structural transition is driven by the chemical pressure induced by the dopant. By analyzing the evolution of the oxygen octahedral tilts we find an enhanced antiferrodistortive distortion when increasing the Y-doping, together with a reduction of the ferroelectric distorsion, that gives rise to a smaller value of the electric polarization. These cooperative effects should lead to a larger canting of the Fe magnetic moments and to a larger ferromagnetic response in the <i>R3c</i> phase, as it is observed in the experiments. . © 2018 IOP Publishing Ltd.
Al-Assy, Waleed H; El-Askalany, Abdel Moneum H; Mostafa, Mohsen M
2013-12-01
The structure of a new Mn(II) complex, [Mn(TPTZ)Cl2(H2O)]⋅H2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c,a = 8.7202 (3)Å, b = 11.5712 (4)Å, c = 20.8675 (9)Å, β=11 (18) × 1010, V = 2029.27 (13)Å(3), Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (Mn(II), Cr(III) and Ru(III)). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Assy, Waleed H.; El-Askalany, Abdel Moneum H.; Mostafa, Mohsen M.
2013-12-01
The structure of a new MnII complex, [Mn(TPTZ)Cl2(H2O)]ṡH2O, was established by a single crystal X-ray diffraction. Crystal data are as follow: monoclinic, P21/c, a = 8.7202 (3) Å, b = 11.5712 (4) Å, c = 20.8675 (9) Å, β = 11 (18) × 1010, V = 2029.27 (13) Å3, Z = 4. The HOMO, LUMO and other DFT parameters on the atoms have been calculated to confirm the geometry of the ligand and its complexes using material studio program. The complexes were characterized by elemental analyses, spectral, magnetic, thermal and cyclic voltammetry measurements. Electronic spectra and magnetic moments of the complexes suggest distorted-octahedral structures around the metal ions (MnII, CrIII and RuIII). The redox properties were investigated by cyclic voltammetry. Kinetic parameters were determined using Coats-Redfern and Horowitz-Metzger methods. The results of DNA studies of the metal complexes promised to be effective in tumour treatment.
Structure and Electrical Conductivity of AgTaS 3
NASA Astrophysics Data System (ADS)
Kim, Changkeun; Yun, Hoseop; Lee, Youngju; Shin, Heekyoon; Liou, Kwangkyoung
1997-09-01
Single crystals of the compound AgTaS 3have been prepared through reactions of the elements with halide mixtures. The structure of AgTaS 3has been analyzed by single-crystal X-ray diffraction methods. AgTaS 3crystallizes in the space group D172h- Cmcmof the orthorhombic system with four formula units in a cell of dimensions a=3.378(2), b=14.070(5), c=7.756(3) Å. The structure of AgTaS 3consists of two-dimensional 2∞[TaS -3] layers separated by Ag +cations. The layer is composed of Ta-centered bicapped trigonal prisms stacked on top of each other by sharing triangular faces. These chains are linked to form the infinite two-dimensional 2∞[TaS -3] slabs. These layers are held together through van der Waals interactions, and Ag +ions reside in the distorted octahedral sites between the layers. The temperature dependence of the electrical conductivity along the needle axis of AgTaS 3shows the typical behavior of an extrinsic semiconductor.
Du, Ke-Zhao; Tu, Qing; Zhang, Xu; Han, Qiwei; Liu, Jie; Zauscher, Stefan; Mitzi, David B
2017-08-07
A series of two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals, based on acene alkylamine cations (i.e., phenylmethylammonium (PMA), 2-phenylethylammonium (PEA), 1-(2-naphthyl)methanammonium (NMA), and 2-(2-naphthyl)ethanammonium (NEA)) and lead(II) halide (i.e., PbX 4 2- , X = Cl, Br, and I) frameworks, and their corresponding thin films were fabricated and examined for structure-property relationship. Several new or redetermined crystal structures are reported, including those for (NEA) 2 PbI 4 , (NEA) 2 PbBr 4 , (NMA) 2 PbBr 4 , (PMA) 2 PbBr 4 , and (PEA) 2 PbI 4 . Non-centrosymmetric structures from among these 2D HOIPs were confirmed by piezoresponse force microscopy-especially noteworthy is the structure of (PMA) 2 PbBr 4 , which was previously reported as centrosymmetric. Examination of the impact of organic cation and inorganic layer choice on the exciton absorption/emission properties, among the set of compounds considered, reveals that perovskite layer distortion (i.e., Pb-I-Pb bond angle between adjacent PbI 6 octahedra) has a more global effect on the exciton properties than octahedral distortion (i.e., variation of I-Pb-I bond angles and discrepancy among Pb-I bond lengths within each PbI 6 octahedron). In addition to the characteristic sharp exciton emission for each perovskite, (PMA) 2 PbCl 4 , (PEA) 2 PbCl 4 , (NMA) 2 PbCl 4 , and (PMA) 2 PbBr 4 exhibit separate, broad "white" emission in the long wavelength range. Piezoelectric compounds identified from these 2D HOIPs may be considered for future piezoresponse-type energy or electronic applications.
Fac-Re(bpy)(CO){sub 3}(COOMe): A model metallocarboxylate complex of rhenium with a bipyridyl ligand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, D.H.; Sleadd, B.A.; Vij, A.
1999-05-01
The title compound fac-(2,2{prime}-bipyridyl)(carbomethoxy)rhenium tricarbonyl, crystallizes in the monoclinic system, space group P2{sub 1}/c with the following crystal data: a = 8.37551(1), b = 6.6934(1), c = 26.2098(1) {angstrom}, V({angstrom}{sup 3}) = 1,535.93(3), Z = 4, and {beta} = 90.0971(2). The metal environment is slightly distorted octahedral with a chelating bipyridyl ligand and a facial arrangement of the carbon monoxide ligands.
Effect of Al-doped YCrO3 on structural, electronic and magnetic properties
NASA Astrophysics Data System (ADS)
Durán, A.; Verdín, E.; Conde, A.; Escamilla, R.
2018-05-01
Structural, dielectric and magnetic properties were investigated in the YCr1-xAlxO3 with 0 < x < 0.5 compositions. XRD and XPS studies show that the partial substitution of the Al3+ ion decreases the cell volume of the orthorhombic structure without changes in the oxidation state of the Cr3+ ions. We discuss two mechanisms that could have a significant influence on the magnetic properties. The first is related to local deformation occurring for x < 0.1 of Al content and the second is related to change of the electronic structure. The local deformation is controlled by the inclination of the octahedrons and the octahedral distortion having a strong effect on the TN and the coercive field at low Al concentrations. On the other hand, the decreasing of the magnetization values (Mr and Hc) is ascribed to changes in the electronic structure, which is confirmed by a decreasing of the contribution of Cr 3d states at Fermi level due to increasing Al3+ content. Thus, we analyzed and discussed that both mechanisms influence the electronic properties of the YCr1-xAlxO3 solid solution.
Rondinelli, James M; Coh, Sinisa
2011-06-10
Using first-principles density functional theory calculations, we discover an anomalously large biaxial strain-induced octahedral rotation axis reorientation in orthorhombic perovskites with tendency towards rhombohedral symmetry. The transition between crystallographically equivalent (isosymmetric) structures with different octahedral rotation magnitudes originates from strong strain-octahedral rotation coupling available to perovskites and the energetic hierarchy among competing octahedral tilt patterns. By elucidating these criteria, we suggest many functional perovskites would exhibit the transition in thin film form, thus offering a new landscape in which to tailor highly anisotropic electronic responses.
Octahedral tilt transitions in the relaxor ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Kai-Christian, E-mail: meyer@mm.tu-darmstadt.de; Gröting, Melanie; Albe, Karsten
2015-07-15
The kinetics of octahedral tilt transitions in the lead-free relaxor material sodium bismuth titanate Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) is investigated by electronic structure calculations within density functional theory. Energy barriers for transitions between tetragonal, rhombohedral and orthorhombic tilts in cation configurations with [001]- and [111]-order on the A-sites are determined by nudged elastic band calculations. By tilting entire layers of octahedra simultaneously we find that the activation energy is lower for structures with 001-order compared to such with 111-order. The energetic coupling between differently tilted layers is, however, negligibly small. By introducing a single octahedral defect we create localmore » tilt disorder and find that the deformation energy of the neighboring octahedra is less in a rhombohedral than in a tetragonal structure. By successively increasing the size of clusters of orthorhombic defects in a rhombohedral matrix with 001-order, we determine a critical cluster size of about 40 Å . Thus groups of about ten octahedra can be considered as nuclei for polar nanoregions, which are the cause of the experimentally observed relaxor behavior of NBT. - Graphical abstract: Nine orthorhombic oxygen octahedral tilt defects in a rhombohedral tilt configuration. - Highlights: • Chemical order influences energy barriers of octahedral tilt transitions. • The octahedral deformation energy is lower in rhombohedral phases. • Tilt defect clusters are more likely in rhombohedral structures. • Tilt defect clusters can act as nuclei for polar nanoregions.« less
Parihar, Sanjay; Pathan, Soyeb; Jadeja, R N; Patel, Anjali; Gupta, Vivek K
2012-01-16
1-Phenyl-3-methyl-4-touloyl-5-pyrazolone (ligand) was synthesized and used to prepare an oxovanadium(IV) complex. The complex was characterized by single-crystal X-ray analysis and various spectroscopic techniques. The single-crystal X-ray analysis of the complex shows that the ligands are coordinated in a syn configuration to each other and create a distorted octahedral environment around the metal ion. A heterogeneous catalyst comprising an oxovanadium(IV) complex and hydrous zirconia was synthesized, characterized by various physicochemical techniques, and successfully used for the solvent-free oxidation of styrene. The influence of the reaction parameters (percent loading, molar ratio of the substrate to H(2)O(2), amount of catalyst, and reaction time) was studied. The catalyst was reused three times without any significant loss in the catalytic activity.
An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase.
Wang, S; Scott, R A; Lebioda, L; Zhou, Z H; Brewer, J M
1995-05-15
An x-ray absorption spectroscopy (XAS) study was carried out at pH 7.6 on solutions of Ni2+ and yeast enolase depleted of its physiological cofactor (Mg2+) in the presence or absence of substrate/product, the very strongly bound competitive inhibitor 2-phosphonoacetohydroxamate and Mg2+. Both "conformational" and "catalytic" Ni2+ are distorted octahedral in coordination, in agreement with several spectroscopic studies but in contrast to the coordination in the crystal at pH 6.0. The data are consistent with direct coordination of what must be the catalytic Ni2+ to the phosphate of the substrate, in agreement with some previous data but in disagreement with recent interpretations by other workers. The ligands around the metal ions obtained from the x-ray structure give simulated XAS spectra in good agreement with the observed spectra.
Bis(acesulfamato-kappaO4)diaquabis(3-methylpyridine-kappaN)nickel(II).
Dege, Necmi; Içbudak, Hasan; Adiyaman, Elif
2007-01-01
In the crystal structure of the title compound [systematic name: diaquabis(6-methyl-2,2-dioxo-1,2,3-oxathiazin-4-olato-kappaO4)bis(3-methylpyridine-kappaN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the Ni(II) centre resides on a centre of symmetry and has a distorted octahedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans-oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octahedron are occupied by two N atoms of two trans pyridine ligands. Molecules are stacked in columns running along the a axis. There are pi-pi stacking interactions between the molecules in each column, with a distance of 3.623 (2) A between the centroids of the pyridine rings. There are also O-H...O interactions between the columns.
Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K
2014-11-01
New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki
2013-06-12
The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less
Black, Cameron; Lightfoot, Philip
2017-03-01
Vanadium fluorides with novel crystal-chemical features and interesting physical properties can be prepared by solvothermal synthetic routes. The title compound, guanidinium hexafluoridovanadate(III), has a cubic structure (space group Pa-3), exhibiting isolated regular VF 6 octahedral units, which are hydrogen bonded to protonated guanidinium moieties. Although the VF 6 octahedral units are not linked directly together, there are structural similarities between this crystal structure and those of the wider family of perovskite materials, in particular, hybrid perovskites based on extended ligands such as cyanide. In this context, the octahedral tilt system of the present compound is of interest and demonstrates that unusual tilt systems can be mediated via `molecular' linkers which allow only supramolecular rather than covalent interactions.
New functional materials AC3B4O12 (Review)
NASA Astrophysics Data System (ADS)
Vasil'ev, A. N.; Volkova, O. S.
2007-11-01
The physical properties of perovskites of the type AC3B4O12, whose structure derives from simple perovskites ABO3, are reviewed. The A position is subject to strong structural distortions and splits into two new positions A and C. In the structure of AC3B4O12 vacancies and any cations with a large radius, irrespective of their charge state, can be present in the icosahedral environment of A: Na +, Cd2+, Ca2+, Sr2+, Y3+, Ln3+, and Nd4+. The C position in the square environment of oxygen can be occupied only by the Jahn-Teller cations Cu2+ and Mn3+. Transition and nontransition metal ions—Mn3+, Fe3+, Al3+, Cr3+, Ti4+, Mn4+, Ge4+, Ru4+, Ir4+, Ta5+, Nb5+, Ta5+, Sb5+—can occupy the B position in an octahedral environment. Some members of the family of complex perovskites possess properties which are characteristic for systems with heavy fermions; collinear and noncollinear magnetic structures with high ordering temperatures occur in these materials; tunneling magnetoresistance and high permittivity are observed. The diversity and unique properties make these materials attractive for practical applications.
Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.; ...
2017-12-02
The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less
NASA Astrophysics Data System (ADS)
Chen, Jinglei; Wang, Guanyong; Tang, Yanan; Xu, Jinpeng; Dai, Xianqi; Jia, Jinfeng; Ho, Wingkin; Xie, Maohai
Hexagonal (2H) and distorted octahedral (1T') phases are the two common structures of monolayer MoTe2 showing, respectively, semiconducting and semi-metallic properties. The formation energies between the two structures of MoTe2 are almost equal, so there is a high chance to tune the structures of MoTe2 and to bring in new applications such as phase-change electronics. In this work, we report growth of both 2H and 1T' MoTe2 ML by molecular-beam epitaxy (MBE) and demonstrate the tunability of the structural phases by changing the growth conditions of MBE. We present experimental and theoretical evidences showing the important role of Te surface adsorption in promoting and stabilizing the otherwise metastable 1T'-MoTe2 during MBE. By scanning tunneling microscopy and spectroscopy, we also reveal quantum dot states and quantum inter-valley interference patterns in the 2H and 1T' domains, respectively. RGC(HKU9/CRF/13G), the Ministry of Science and Technology of China(2013CB921902), NSFC (11521404, 11227404), NSFC (11504334 and U1404109).
Akkurt, Mehmet; Khandar, Ali Akbar; Tahir, Muhammad Nawaz; Hosseini-Yazdi, Seyed Abolfazl; Mahmoudi, Ghodrat
2012-07-01
In the title coordination polymer, [Hg₄Cl₄(C₂₆H₂₀N₆)](n), one Hg(II) ion is coordinated by four N atoms from the benzylbis((pyridin-2-yl)methyl-idenehydrazone) ligand and two Cl⁻ ions in a very distorted cis-HgCl₂N₄ octa-hedral geometry. The other Hg(II) ion is coordinated in a distorted tetra-hedral geometry by four Cl⁻ ions. Bridging chloride ions link the Hg(II) ions into a chain propagating in [010]: the Hg-Cl bridging bonds are significantly longer than the terminal bonds. The dihedral angle between the central benzene rings of the ligand is 83.3 (2)°. The packing is consolidated by weak C-H⋯Cl hydrogen bonds and C-H⋯π inter-actions.
An ionic force-field study of monomers, dimers and higher polymers in pentafluoride vapors
NASA Astrophysics Data System (ADS)
Çiçek Önem, Z.; Akdeniz, Z.; Tosi, M. P.
2008-08-01
Pentafluoride compounds such as NbF 5 and TaF 5 have been reported in the literature to admit various states of polymerization coexisting with monomers in their vapor phase, in relative concentrations that vary with temperature and pressure. We construct a microscopic interionic force-field model for the molecular monomer of these compounds (including VF 5, SbF 5 and MoF 5 in addition to NbF 5 and TaF 5), the stable form of the monomer being in the shape of a D 3h trigonal bipyramid in all cases. The model emulates chemical bonds by allowing for electrical and short-range overlap polarizabilities of the fluorines, and is used to evaluate the structure and the stability of (MF 5) n molecules with n running from 2 to 6. The dimer is formed by two distorted edge-sharing octahedral, while the trimer and the higher polymers can form rings of distorted corner-sharing octahedra. A chain-like configuration is also found for the trimer of NbF 5, which consists of a seven-fold coordinated Nb bonded to two distorted octahedra via edge sharing. Comparison of calculated vibrational frequencies and bond lengths with experimental data is made whenever possible. We find that there is a small net gain of energy in the formation of a dimer, while otherwise the static energy of the n-mer is very close to that of n separated monomers. High sensitivity of the state of molecular aggregation to the thermodynamic conditions of the vapor is clearly indicated by our calculations.
Johnson, Atim; Mbonu, Justina; Hussain, Zahid; Loh, Wan-Sin; Fun, Hoong-Kun
2015-06-01
The asymmetric unit of the title compound, [Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O, features 1.5 Co(II) ions (one anionic complex and one half cationic complex) and one water mol-ecule. In the cationic complex, the Co(II) atom is located on an inversion centre and is coordinated by two triazolium cations and four water mol-ecules, adopting an octa-hedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water mol-ecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the Co(II) ion is six-coordinated by two N and four O atoms of the two pyridine-2,6-di-carboxyl-ate anions, exhibiting a slightly distorted octa-hedral coordination geometry in which the mean plane of the two pyridine-2,6-di-carboxyl-ate anions are almost perpendicular to each other, making a dihedral angle of 85.87 (2)°. In the crystal, mol-ecules are linked into a three-dimensional network via C-H⋯O, C-H⋯N, O-H⋯O and N-H⋯O hydrogen bonds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@yandex.ru; Zakirova, R. M.
2016-03-15
Nitrilotris(methylenephosphonato)triaquanickel and tetrasodium nitrilotris(methylenephosphonato) aquanickelate undecahydrate were synthesized and characterized. The crystal of [Ni(H{sub 2}O){sub 3}N(CH{sub 2}PO{sub 3}H){sub 3}] is composed of linear coordination polymers and belongs to sp. gr. P2{sub 1}/c, Z = 4, a = 9.17120(10) Å, b = 16.05700(10) Å, c = 9.70890(10) Å, β = 115.830(2)°. The Ni atom is in an octahedral coordination formed by two oxygen atoms of one phosphonate ligand, one oxygen atom of another ligand molecule, and three water molecules in a meridional configuration. The crystal of Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O has an island dimeric chelate structuremore » and belongs to sp. gr. C2/c, Z = 8, a = 18.7152(2) Å, b = 12.05510(10) Å, c = 21.1266(2) Å, β = 104.4960(10)°. The Ni atom has a slightly distorted octahedral coordination involving one nitrogen atom and closes three five-membered N–C–P–O–Ni rings sharing the Ni–N bond.« less
NASA Astrophysics Data System (ADS)
Hanif, Muhammad; Chohan, Zahid H.
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.
Structural Characterization of Biogenic Manganese Oxides Produced in Sea Water
NASA Astrophysics Data System (ADS)
Webb, S. M.; Bargar, J. R.; Tebo, B. M.
2003-12-01
Manganese oxides have been coined as the "scavengers of the sea" and play important roles in both marine and freshwater systems. Natural manganese oxide nanoparticles and grain coatings are ubiquitous in the environment and profoundly impact the quality of sediments via their ability to degrade and sequester contaminants. These oxides are believed to form dominantly via oxidation of Mn(II) by marine and freshwater bacteria and have extremely high sorptive capacities for heavy metals. We have used XANES, EXAFS, and synchrotron (SR)-XRD techniques to study biogenic manganese oxides produced by spores of the marine Bacillus sp., strain SG-1 in seawater as a function of reaction time under fully in-situ conditions. The primary biogenic solid-phase Mn oxide product is a hexagonal layered phyollomanganate with an oxidation state similar to that in delta-MnO2. XRD data show the biooxides to have a phyllomanganate 10 basal plane spacing, suggesting the interlayer is hydrated and contains calcium. As the experiment continues, the initial biooxide changes to show triclinic symmetry. Fits to these EXAFS spectra suggest the octahedral layers have low Mn octahedral site vacancies in the lattice and the latyers bend to accommodate Jahn-Teller distortions creating the change in symmetry. The oxides observed in this study as models of Mn(II) bio-oxidation may be representative of the most abundant manganese oxide phase suspended in the oxic and sub-oxic zones of the oceanic water column.
Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate at 173 K.
Belai, N; Dickman, M H; Pope, M T
2001-07-01
The title salt, K[Co(C2H8N2)(CO3)2].H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C--C bond, and another along a short K--O (water) bond of 2.600 A (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.
Kona, Fathima; Tao, Peng; Martin, Philip; Xu, Xingjue; Gatti, Domenico L
2009-04-28
Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) is active with a variety of different divalent metal ions bound in the active site. The Cd(2+), Zn(2+), and Cu(2+) substituted enzymes display similar values of k(cat) and similar dependence of K(m)(PEP) and K(m)(A5P) on both substrate and product concentrations. However, the flux-control coefficients for some of the catalytically relevant reaction steps are different in the presence of Zn(2+) or Cu(2+), suggesting that the type of metal bound in the active site affects the behavior of the enzyme in vivo. The type of metal also affects the rate of product release in the crystal environment. For example, the crystal structure of the Cu(2+) enzyme incubated with phosphoenolpyruvate (PEP) and arabinose 5-phosphate (A5P) shows the formed product, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), still bound in the active site in its linear conformation. This observation completes our structural studies of the condensation reaction, which altogether have provided high-resolution structures for the reactants, the intermediate, and the product bound forms of KDO8PS. The crystal structures of the Cd(2+), Zn(2+), and Cu(2+) substituted enzymes show four residues (Cys-11, His-185, Glu-222, and Asp-233) and a water molecule as possible metal ligands. Combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations reveal that the metal centers have a delocalized electronic structure, and that their true geometry is square pyramidal for Cd(2+) and Zn(2+) and distorted octahedral or distorted tetrahedral for Cu(2+). These geometries are different from those obtained by QM optimization in the gas phase (tetrahedral for Cd(2+) and Zn(2+), distorted tetrahedral for Cu(2+)) and may represent conformations of the metal center that minimize the reorganization energy between the substrate-bound and product-bound states. The QM/MM calculations also show that when only PEP is bound to the enzyme the electronic structure of the metal center is optimized to prevent a wasteful reaction of PEP with water.
Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc
2017-04-11
All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.
Crystal structure of bis-(3-bromo-pyridine-κN)bis-(O-ethyl di-thio-carbonato-κ(2) S,S')nickel(II).
Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu
2015-01-01
In the title mol-ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni(2+) cation is located on a centre of inversion and has a distorted octa-hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C-S bond lengths of the thio-carboxyl-ate group are indicative of a delocalized bond and the O-Csp (2) bond is considerably shorter than the O-Csp (3) bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol-ecules is stabilized by C-H⋯S and C-H⋯π inter-actions. In addition, π-π inter-actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol-ecules are arranged in rows along [100], forming layers parallel to (010) and (001).
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13
NASA Astrophysics Data System (ADS)
Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.
1995-11-01
The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.
NASA Astrophysics Data System (ADS)
Mahmood, Rashid; Ahmad, Saeed; Fettouhi, Mohammed; Roisnel, Thierry; Gilani, Mazhar Amjad; Mehmood, Kashif; Murtaza, Ghulam; Isab, Anvarhusein A.
2018-03-01
The present study aims at preparing and carrying out the structural investigation of two polymeric cadmium(II) complexes of imidazolidine-2-thione (Imt) based on sulfate or azide ions, [Cd(Imt)(H2O)2(SO4)]n (1) and [Cd(Imt)2(N3)2]n (2). The structures of the complexes were determined by single crystal X-ray analysis. Both compounds, 1 and 2 crystallize in the form of 2D coordination polymers and the cadmium(II) ion is six-coordinate having a distorted octahedral geometry in each compound. In 1, the metal ion is bonded to one sulfur atom of Imt and five oxygen atoms with two from water and three of bridging sulfate ions. In 2, the cadmium coordination sphere is completed by two Imt molecules binding through the sulfur atoms and four nitrogen atoms of bridging azide ions. The crystal structures are stabilized by intra and intermolecular hydrogen bonding interactions. The complexes were also characterized by IR and NMR spectroscopy and the spectroscopic data is consistent with the binding of the ligands.
Lense, Sheri; Piro, Nicholas A; Kassel, Scott W; Wildish, Andrew; Jeffery, Brent
2016-08-01
The structures of two facially coordinated Group VII metal complexes, fac-[ReCl(C10H8N2O2)(CO)3]·C4H8O (I·THF) and fac-[MnBr(C10H8N2O2)(CO)3]·C4H8O (II·THF), are reported. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ligand, and a 6,6'-dihy-droxy-2,2'-bi-pyridine ligand in a distorted octa-hedral geometry. Both complexes co-crystallize with a non-coordinating tetra-hydro-furan (THF) solvent mol-ecule and exhibit inter-molecular but not intra-molecular hydrogen bonding. In both crystal structures, chains of complexes are formed due to inter-molecular hydrogen bonding between a hy-droxy group from the 6,6'-dihy-droxy-2,2'-bi-pyridine ligand and the halide ligand from a neighboring complex. The THF mol-ecule is hydrogen bonded to the remaining hy-droxy group.
Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V
2015-02-25
A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liao, Bi-Tao; Mei, Yang; Chen, Bo-Wei; Zheng, Wen-Chen
2017-07-01
The optical bands and EPR (or spin-Hamiltonian) parameters (g factors g//, g⊥ and zero-field splitting D) for Mn4+ ions at the trigonal octahedral Ti4+ site of MgTiO3 crystal are uniformly computed by virtue of the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model, where besides the effects of spin-orbit parameter of central dn ion on the spectral data (in the classical crystal field theory), those of ligands are also contained. The computed eight optical and EPR spectral data with four suitable adjustable parameters (note: differing from those in the previous work within cubic symmetry approximation where the used Racah parameters violate the nephelauxetic effect, the present Racah parameters obey the effect and hence are suitable) are rationally coincident with the experimental values. In particular, the calculated ground state splitting 2D, the first excited splitting ΔE(2E) and g-anisotropy Δg (=g//-g⊥) (they depend strongly on the angular distortion of d3 centers) are in excellent agreement with the observed values, suggesting that the angular distortions caused by the impurity-induced local lattice relaxation obtained from the above calculation for the trigonal Mn4+ impurity center in MgTiO3: Mn4+ crystal seem to be acceptable.
NASA Astrophysics Data System (ADS)
Maurya, Deepam; Zhou, Yuan; Priya, Shashank
2013-03-01
This study provides fundamental understanding of the enhanced piezoelectric instability in lead-free piezoelectric (1-x) BaTiO3-xA(Cu1/3Nb2/3) O3(A: Sr, Ba and Ca and x = 0.0-0.03) solid solutions. These compositions were found to exhibit large longitudinal piezoelectric constant (d33) of ~330 pC/N and electromechanical planar coupling constant (kp) ~ 46% at room temperature. The X-ray diffraction coupled with atomic pair distribution functions (PDF)s indicated increase in local polarization. Raman scattering and electron paramagnetic resonance (EPR) analysis revealed that substitutions on A and B-site both substantially perturbed the local octahedral dynamics and resulted in localized nano polar regions with lower symmetry. The presence of nano domains and local structural distortions smears the Curie peak resulting in diffuse order-disorder type phase transitions. The effect of these distortions on the variations in physical property was modeled and analyzed within the context of nanodomains and phase transitions. *spriya@vt.edu The financial support from National Science Foundation and Office of Basic Energy Science, Department of Energy (Microscopy analysis) is gratefully acknowledged. The authors would also like to acknowledge the support from KIMS (new piezoelectric)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nirupama; Niklas, Jens; Poluektov, Oleg
2017-01-01
The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less
NASA Astrophysics Data System (ADS)
Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur
2015-12-01
Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.
2010-08-01
Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.
Upconversion luminescence of CsScF4 crystals doped with erbium and ytterbium
NASA Astrophysics Data System (ADS)
Ikonnikov, D. A.; Voronov, V. N.; Molokeev, M. S.; Aleksandrovsky, A. S.
2016-10-01
Tetragonal CsScF4 crystals doped with (5 at.%) Er and Er/Yb (0.5 at.%/5 at.%) are grown and their crystal structure is determined to belong to Pmmn space group. Er and Yb ions are shown to occupy distorted octahedral Sc sites with the center of inversion. Bright visible upconversion luminescence was observed under 970-980 nm pumping with red (4F9/2), yellow (4S3/2) and green (2H11/2) bands of comparable intensity. UCL tuning curves maximize at 972 nm (CSF:Er) and at 969.7 nm (CSF:Er,Yb) pumping wavelengths. Different ratios between yellow-green and red luminescence intensities in CSF:Er and CSF:Er, Yb are explained by contribution of cross-relaxation in CSF:Er UCL. UC in CSF:Er is a three stage process while UC in CSF:Er, Yb is a two stage process. The peculiarities of power dependences are explained by the power-dependent repopulation between starting levels of UC.
Wang, Lei; Zhou, Yan; Huang, Ya-Xi; Mi, Jin-Xiao
2009-01-01
The title compound, ammonium potassium iron(III) phosphate fluoride, (NH4)0.875K0.125FePO4F, is built from zigzag chains ∞ 1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [01] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octahedra via shared F-atom corners, and are linked by PO4 tetrahedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H⋯O and two N—H⋯F). PMID:21581466
Crystal structure of cis-tetra-aqua-dichlorido-cobalt(II) sulfolane disolvate.
Boudraa, Mhamed; Bouacida, Sofiane; Bouchareb, Hasna; Merazig, Hocine; Chtoun, El Hossain
2015-02-01
In the title compound, [CoCl2(H2O)4]·2C4H8SO2, the Co(II) cation is located on the twofold rotation axis and is coordinated by four water mol-ecules and two adjacent chloride ligands in a slightly distorted octa-hedral coordination environment. The cisoid angles are in the range 83.27 (5)-99.66 (2)°. The three transoid angles deviate significantly from the ideal linear angle. The crystal packing can be described as a linear arrangement of complex units along c formed by bifurcated O-H⋯Cl hydrogen bonds between two water mol-ecules from one complex unit towards one chloride ligand of the neighbouring complex. Two solvent mol-ecules per complex are attached to this infinite chain via O-H⋯O hydrogen bonds in which water mol-ecules act as the hydrogen-bond donor and sulfolane O atoms as the hydrogen-bond acceptor sites.
Swelling Mechanisms of UO2 Lattices with Defect Ingrowths
Günay, Seçkin D.
2015-01-01
The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777
Incorporation of Uranium into Hematite during Crystallization from Ferrihydrite
2014-01-01
Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite. The results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. PMID:24580024
Figueira, João; Rodrigues, João; Valkonen, Arto
2013-04-01
In the title Ru(II) carboxyl-ate compound, [Ru(C2H3O2)(C26H24P2)2](CF3O3S)0.75Cl0.25, the distorted tris-bidentate octa-hedral stereochemistry about the Ru(II) atom in the complex cation comprises four P-atom donors from two 1,2-bis-(diphenyl-phosphan-yl)ethane ligands [Ru-P = 2.2881 (13)-2.3791 (13) Å] and two O-atom donors from the acetate ligand [Ru-O = 2.191 (3) and 2.202 (3) Å]. The disordered counter-anions are located on the same site in the structure in a 3:1 ratio, the expanded formula comprising four complex cations, three trifluoro-methane-sulfonate anions and one chloride anion, with two such formula units in the unit cell.
Ali, Imran; Wani, Waseem A; Khan, Amber; Haque, Ashanul; Ahmad, Aijaz; Saleem, Kishwar; Manzoor, Nikhat
2012-08-01
A pyrazoline based ligand; (5-(4-chlorophenyl)-3-phenyl-4, 5-dihydro-1H-pyrazole-1-carbothioamide) has been synthesized by Claisen-Schmidt condensation of acetophenone with p-chlorobenzaldehyde, followed by sodium hydroxide assisted cyclization of the resulting chalcone with thiosemicarbazide. Metal ion complexes of the synthesized ligand were prepared with Cu(II) and Ni(II) metal ions, separately and respectively. Ligand and the metal complexes were characterized by elemental analysis, FT-IR, UV-Vis, (1)HNMR, ESI-MS and (13)CNMR spectroscopic techniques. Molar conductance measurements in DMSO suggested non-electrolytic nature of the complexes. Tetragonally distorted octahedral geometry for copper and octahedral geometry for the nickel complexes was proposed on the basis of UV-Vis spectroscopic studies and magnetic moment measurements. The complexes were investigated for their ability to kill human fungal pathogen Candida by determining MICs (Minimum inhibitory concentrations), inhibition in solid media and ability to produce a possible synergism with conventional most clinically practiced antifungals by disc diffusion assay and FICI (fractional inhibitory concentration index). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed M.; Mersal, Gaber A. M.; Ramadan, Abdel-Motaleb M.; Shaban, Shaban Y.; Mohamed, Mahmoud A.; Al-Juaid, Salih
2017-06-01
Two oxovanadium(IV) complexes, viz., [VO(Me-IDA)(H2O)2] (1) and NaH[VO(EDTA)]·4H2O (2) (Me-IDA = methyliminodiacetic acid and EDTA = ethylenediaminetetraacetic acid) have been synthesized and characterized by FT-IR, UV-Vis, mass spectrometry, elemental analysis, magnetic moment and thermal analysis, as well as electrochemical measurements including cyclic voltammetry. Both compounds are monomeric with distorted octahedral geometries. Compound 2 has been structurally characterized by using X-ray crystallography. It shows an octahedral V(O)N2O3 coordination geometry, which exhibits chemically significant hydrogen bonding interactions besides showing coordination polymer formation. Compounds 1 and 2 show an irreversible redox peak around +0.80 V versus Ag/AgCl corresponding to one-electron oxidation of V(IV) to V(V). The free radical scavenging activity of compounds 1 and 2 were done using 2,2-diphenyl- 1-picrylhydrazyl (DPPH). Both compounds have shown encouraging ROS scavenging activities. The cytotoxicity effects of both compounds toward two different tumor cells (HePG2 and MCF-7) have been also studied by MTT assay. The IC50 values obtained, after 48 h incubation at 37 °C for HepG2 and MCF-7 cell lines were 74.23 and 42.04 μg/mL for compound 1 and 65.56 and 48.34 μg/mL for compound 2, respectively. Conclusively, the present investigation provides preliminary results which suggest that such compounds can be promising alternative antitumor agents.
Hanif, Muhammad; Chohan, Zahid H
2013-03-01
A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural control of polyhedral compression in synthetic braunite, Mn2+Mn3+6O8SiO4
NASA Astrophysics Data System (ADS)
Miletich, R.; Allan, D. R.; Angel, R. J.
The compression of synthetic braunite, Mn2+Mn3+6O8SiO4, was studied by high-pressure single-crystal X-ray diffraction carried out in a diamond-anvil cell. The equation of state at room temperature (third-order Birch-Murnaghan equation of state: V0=1661.15(8) Å3, K0,298=180.7+/-0.9 GPa, K'=6.5+/-0.3) was determined from unit-cell volume data to 9.18 GPa. Crystal structures were determined at 6 different pressures to 7.69 GPa. Compression of the structure (space group I41/acd) was found to be slightly anisotropic (a0=9.4262(4) Å, Ka=499+/-4 GPa, Ka'=19.7+/-0.9 c0=18.6964(6) Å, Kc=657+/-6 GPa, Kc'=15.7+/-1.4) which can be attributed to the fact that the Mn3+-O bonds, which are the most compressible bonds, are aligned closer to the (001) plane than to the c axis. The large bulk modulus is the result of the structural topology in which 2/3 and 1/2 of the edges of the Mn2+O8 and Mn3+O6 polyhedra share edges with other polyhedra. The Mn2+O8 polyhedra were found to compress isotropically, whereas anisotropic compressional behaviour was observed for all three Mn3+O6 octahedra. Although the polyhedral geometry of all three crystallographically independent Mn3+ sites shows the same type of uniaxially elongated distortion, the compression of the individual octahedral configurations was found to be strongly dependent upon both the geometry of the polyhedron itself and the types of, and the connectivity to, the neighbouring polyhedra. The differences in the configuration of the different oxygen atoms, and therefore the structural topology, is one of the major factors determining the type and degree of the pressure-induced distortion, while the Jahn-Teller effect plays a subordinate role.
VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.
Prakash, P Giri; Rao, J Lakshmana
2005-09-01
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.
EPR and optical investigations of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Vijay, E-mail: vijayjiin2006@yahoo.com; Sivaramaiah, G.; Rao, J.L.
2014-12-15
Graphical abstract: The EPR spectrum of as-prepared LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor at 110 K. - Highlights: • Using the combustion synthesis, LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared in a few minutes. • Optical investigation indicates that Cr{sup 3+} ions are present in octahedral symmetry. • The EPR signals indicate that exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs in weakly distorted sites. - Abstract: The LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared by a low-temperature combustion synthesis method. As-prepared combustion synthesized powder was characterized using powder X-ray diffraction (XRD), diffuse reflectance (DRS), electron paramagnetic resonance (EPR) andmore » photoluminescence (PL) studies. The X-ray diffraction pattern reveals crystalline hexagonal phases. The UV–vis diffuse reflectance spectrum exhibits three broad bands characteristic of Cr{sup 3+} ions in octahedral symmetry. The EPR spectrum exhibits several resonance signals. The signals with the effective g values at g = 4.84, 3.64 and 2.26 have been attributed to the isolated Cr{sup 3+} ions. The signal with the effective g value at g = 1.94 has been attributed to exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs. The PL studies exhibit several bands characteristic of Cr{sup 3+} ions in octahedral symmetry.« less
Liu, Jun-Liang; Yuan, Kang; Leng, Ji-Dong; Ungur, Liviu; Wernsdorfer, Wolfgang; Guo, Fu-Sheng; Chibotaru, Liviu F; Tong, Ming-Liang
2012-08-06
The field-induced blockage of magnetization behavior was first observed in an Yb(III)-based molecule with a trigonally distorted octahedral coordination environment. Ab initio calculations and micro-SQUID measurements were performed to demonstrate the exhibition of easy-plane anisotropy, suggesting the investigated complex is the first pure lanthanide field-induced single-ion magnet (field-induced SIM) of this type. Furthermore, we found the relaxation time obeys a power law instead of an exponential law, indicating that the relaxation process should be involved a direct process rather than an Orbach process.
cis-Bis(O-methyl-dithio-carbonato-κ(2) S,S')bis-(tri-phenyl-phosphane-κP)ruthenium(II).
Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David
2013-01-01
In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the Ru(II) atom is in a distorted octa-hedral coordination by two xanthate anions (CH3OCS2) and two tri-phenyl-phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the Ru(II) atom with two slightly different Ru-S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C-H⋯O and C-H⋯π inter-actions.
Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A
2013-02-07
The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.
Synthesis and structural investigation of new Co1-xNixTeO4 (x = 0, 0.2, 0.5, 0.8 and 1) compounds
NASA Astrophysics Data System (ADS)
Patel, Akhilesh K.; Singh, Harishchandra; Suresh, K. G.
2018-05-01
The new polycrystalline compounds Co1-xNixTeO4 (x = 0, 0.2, 0.5, 0.8 and 1) were prepared by sol-gel method and their structural properties have been studied. Structural investigation through Rietveld method shows monoclinic structure with space group P21/c for all compounds. All compounds polyhedral structure found to be in octahedral form with cations (M) at the center and six oxygen atoms at corner of octahedral structure. The lattice parameters variation with Ni substitution are found to be decreasing with Ni substitution.
NASA Astrophysics Data System (ADS)
Marinova, Delyana; Wildner, Manfred; Bancheva, Tsvetelina; Stoyanova, Radostina; Georgiev, Mitko; Stoilova, Donka G.
2018-03-01
Based on different experimental methods—crystallization processes in aqueous solutions, infrared spectroscopy, single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) and TG-DTA-DSC measurements—it has been established that copper ions are included in sodium cobalt sulfate up to about 18 mol%, thus forming limited solid solutions Na2Co1-x Cu x (SO4)2·4H2O (0 < x ≤ 0.18) with a blödite-type structure. In contrast, cobalt ions are not able to accept the coordination environment of the copper ions in the strongly distorted Cu(H2O)2O4 octahedra, thus resulting in the crystallization of Co-free kröhnkite. The solid solutions were characterized by vibrational and EPR spectroscopy. DSC measurements reveal that the copper concentration increase leads to increasing values of the enthalpy of dehydration (ΔH deh) and decreasing values of the enthalpy of formation (ΔH f). The crystal structures of synthetic kröhnkite, Na2Cu(SO4)2·2H2O, as well as of three Cu2+-bearing mixed crystals of Co-blödite, Na2Co1-x Cu x (SO4)2·4H2O with x (Cu) ranging from 0.03 to 0.15, have been investigated from single-crystal X-ray diffraction data. The new data for the structure of synthetic kröhnkite facilitated to clarify structural discrepancies found in the literature for natural kröhnkite samples, traced back to a mix-up of lattice parameters. The crystal structures of Co-dominant Na2Co1-x Cu x (SO4)2·4H2O solid solutions reveal a comparatively weak influence of the Jahn-Teller-affected Cu2+ guest cations up to the maximum content of x (Cu) = 0.15. The response of the MO2(H2O)4 octahedral shape by increased bond-length distortion with Cu content is clear cut (but limited), mainly concerning the M-OH2 bond lengths, whereas other structural units are hardly affected. However, the specific type of imposed distortion seems to play an important role impeding higher Cu/Co replacement ratios.
Bodine, M.W.
1987-01-01
The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.
2005-06-01
has a layered structure consisting of lithium and cobalt sheets stacked alternatively between oxygen sheets. Li and Co occupy octahedral sites in...cobalt sheets stacked alternatively between ABCABC close-packed oxygen arrays. Li and Co occupy octahedral sites in alternating layers between the oxygen... Co 4.- o 4 Li Figure 1: Crystal structure of LiCoO2. LiCoO2 has a layered structure consisting of lithium and cobalt sheets stacked alternatively
Minato, Takuo; Aravena, Daniel; Ruiz, Eliseo; Yamaguchi, Kazuya; Mizuno, Noritaka; Suzuki, Kosuke
2018-06-01
In this paper, the synthesis and magnetic properties of mononuclear Fe III -containing polyoxometalates (POMs) with different types of heteroatoms, TBA 7 H 10 [(A-α-XW 9 O 34 ) 2 Fe] (II X , X = Ge, Si; TBA = tetra- n-butylammonium), are reported. In these POMs, mononuclear highly distorted six-coordinate octahedral [FeO 6 ] 9- units are sandwiched by two trivacant lacunary units [A-α-XW 9 O 34 ] 10- (X = Ge, Si). These POMs exhibit field-induced slow magnetic relaxation based on the single high-spin Fe III magnetic center ( S = 5/2). Combining experiment and ab initio calculations, we investigated the effect of heteroatoms of the lacunary units on the field-induced slow magnetic relaxation of these POMs. By changing the heteroatoms from Si (II Si ) to Ge (II Ge ), the coordination geometry around the Fe III ion is mildly changed. Concretely, the axial Fe-O bond length in II Ge is shortened compared with that in II Si , and consequently the distortion of the [FeO 6 ] 9- unit in II Ge from the ideal octahedral coordination geometry becomes larger than that in II Si . The effective demagnetization barrier of II Ge (11.4 K) is slightly larger than that of II Si (9.2 K). Multireference ab initio calculations predict zero-field splitting parameters in good agreement with experiment. Although the differences in the coordination geometries and magnetic properties of II Ge and II Si are quite small, ab initio calculations indicate subtle changes in the magnetic anisotropy which are in line with the observed magnetic relaxation properties.
Structural investigations of vanadyl doped Nb2O5·K2O·B2O3 glasses
NASA Astrophysics Data System (ADS)
Anshu; Sanghi, S.; Agarwal, A.; Lather, M.; Bhatnagar, V.; Khasa, S.
2009-07-01
Pottasium nioborate glasses of composition xNb2O5·(30-x)K2O·69B2O3 containing 1 mol % of V2O5 were prepared by melt quench technique (1473K, 1h). The electron paramagnetic resonance spectra of VO2+ in these glasses have been recorded in X- band (v approx 9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameters, P and Fermi contact interaction parameter, K have been calculated. It is found that V4+ ions in these glasses exist as VO2+ in octahedral coordination with a tetragonal distortion. The tetragonality of V4+O6 complex decreases with increasing Nb2O5: K2O ratio and also there is an expansion of 3dXY orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400- 4000 cm-1 depicts the presence of both BO3 and BO4 structural units and Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups.
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-12-01
Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.
Midollini, Stefano; Orlandini, Annabella; Rosa, Patrick; Sorace, Lorenzo
2005-03-21
By hydrothermal reaction of CoCl2 x 6H2O with K2pcc (H2pcc = phenyl(carboxymethyl) phosphinic acid) at 423 K, a novel hybrid material of formula [Co2(pcc)2 (H2O)2] x H2O has been obtained. The compound, which is the first pcc/metal complex reported, exhibits a polymeric arrangement, where cobalt metal ions, linked together by bridging carboxylate and phosphinate oxygens, form infinite chains of edge-shared CoO6 octahedra. The cobalt chains are in turn linked together through important hydrogen-bonding interactions, which create an infinite 2D architecture. The two crystallographically independent cobalt centers, both displaying distorted octahedral coordination, present different environments as one is surrounded by six ligand oxygens and the other by four ligand oxygens and by two water oxygens. Careful magnetic studies performed by a home-built alternating current susceptometer reveal that the system undergoes an antiferromagnetic transition below 2.0 K leading to a canted structure. Field-dependent studies further indicate the occurrence of a metamagnetic transition at a critical field of 650 +/- 50 G.
Structural insight of the charge-ordering phenomena in manganites
NASA Astrophysics Data System (ADS)
Garcia, Joaquin
2005-03-01
Recent experiments using x-ray absorption spectroscopy (XAS) and x-ray resonant scattering (XRS) techniques show that the conventional description of the so-called charge ordering phases of manganites in terms of Mn^3+/Mn^4+ ionic ordering is far from reality. I present here the XRS study of the low temperature phase of Nd0.5Sr0.5MnO3 manganite. Strong resonances are observed in the energy dependent spectra of (300), (030) and (05/20) reflections. Their azimuthal and polarization dependencies are well explained by the anisotropy of the local geometrical structure. Two different Mn sites were found. One of them is surrounded by a tetragonal distorted oxygen octahedron, whereas the other site has a nearly regular octahedral environment. The charge separation between the intermediate valence states is less than 0.2 e-. The analysis performed resolves some of the apparent contradictions with previous XRS and XAS experiments in manganites. These results joined to those recently obtained on the Verwey transition in magnetite indicate that the electronic states in transition-metal oxides need to be described in terms of band states instead of localized ones. Colaborators: G. Sub'ias, J. Blasco, M. G. Proietti, M. S'anchez and J. Herrero-Martin
Argibay-Otero, Saray; Carballo, Rosa; Vázquez-López, Ezequiel M
2017-10-01
The asymmetric unit of the title compound, [ReCl(C 5 H 5 NO) 2 (CO) 3 ]·C 5 H 5 NO, contains one mol-ecule of the complex fac -[ReCl(4-pyOH) 2 (CO) 3 ] (where 4-pyOH represents 4-hy-droxy-pyridine) and one mol-ecule of pyridin-4(1 H )-one (4-HpyO). In the mol-ecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octa-hedral. In the crystal structure, both fragments are associated by hydrogen bonds; two 4-HpyO mol-ecules bridge between two mol-ecules of the complex using the O=C group as acceptor for two different HO- groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N-H groups of the 4-HpyO mol-ecule and the chloride ligands. The chains are further stabilized by π-stacking inter-actions.
Ultrafast switching of the magnetic ground state in d1 titanates though nonlinear phononic coupling
NASA Astrophysics Data System (ADS)
Gu, Mingqiang; Rondinelli, James M.
LaTiO3 and YTiO3 are isostructure d1 titanates, which exhibit distinct magnetic and orbital properties: The former is a G-type antiferromagnet with a 150 K Neel temperature whereas the latter is a rare ferromagnetic (FM) insulator with a 30 K Curie temperature. With first-principles density functional theory calculations, we identify the local structural origin of the magnetic order difference in these orthorhombic perovskites. By increasing the tilt and rotation angles in LaTiO3, respectively, LaTiO3 is predicted to undergo a magnetic phase transition to an FM state. Similarly, decreasing the tilt and rotation angles in YTiO3 leads to a FM-to-AFM phase transition. The underlying physics is attributed to the change in the superexchange coupling between Ti-sites. Last, we propose a route to switch the magnetism in the titanates by controlling the octahedral distortions through dynamical nonlinear phononic coupling. The proposed experiment requires the use of static strain to position the crystal structure in proximity to the structural transition combined with readily achievable fluencies in an ultrafast optical pump-probe geometry The theory work is supported by the U.S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012375.
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura
2013-01-01
A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.
Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Tarasconi, P; Albertini, R; Dall'Aglio, P P; Lunghi, P; Pinelli, S
1995-05-15
The reaction of zinc chloride, acetate, or perchlorate with two bis(thiosemicarbazones) of 2,6-diacetylpyridine [H2daptsc = 2,6-diacetylpyridine bis(thiosemicarbazone) and H2dapipt = 2,6-diacetylpyridine bis(hydrazinopyruvoylthiosemicarbazone)] leads to the formation of four novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the two compounds--[Zn(daptsc)]2.2DMF (1) and [Zn(H2dapipt)(OH2)2](CIO4)2.3H2O (2)--also have been determined by x-ray methods from diffractometer data. Compound (1) is dimeric and the two zinc atoms have a distorted octahedral coordination. The ligand is deprotonated. In compound (2), the coordination geometry about zinc is pentagonal--bipyramidal and the ligand is in the neutral form. The molecular structure of (2) consists of cations [Zn(H2dapipt)(OH2)]2+, CIO4- disordered anions, and three water molecules of solvation. Biological studies have shown that the ligands and the complexes Zn(daptsc).1/2EtOH and Zn(H2daptsc)Cl2 have an effect in vitro on cell proliferation and differentiation (inhibition); both are concentration dependent. [Zn(daptsc)]2.2DMF (1) shows the effects at lower concentration values with respect to other compounds.
NASA Astrophysics Data System (ADS)
Phillips, Patrick J.; Rui, Xue; Georgescu, Alexandru B.; Disa, Ankit S.; Longo, Paolo; Okunishi, Eiji; Walker, Fred; Ahn, Charles H.; Ismail-Beigi, Sohrab; Klie, Robert F.
2017-05-01
Epitaxial strain, layer confinement, and inversion symmetry breaking have emerged as powerful new approaches to control the electronic and atomic-scale structural properties of complex metal oxides. Trivalent rare-earth (RE) nickelate R E NiO3 heterostructures have been shown to be exemplars since the orbital occupancy, degeneracy, and, consequently, electronic/magnetic properties can be altered as a function of epitaxial strain, layer thickness, and superlattice structure. One recent example is the tricomponent LaTiO3-LaNiO3-LaAlO3 superlattice which exhibits charge transfer and orbital polarization as the result of its interfacial dipole electric field. A crucial step towards control of these parameters for future electronic and magnetic device applications is to develop an understanding of both the magnitude and range of the octahedral network's response towards interfacial strain and electric fields. An approach that provides atomic-scale resolution and sensitivity towards the local octahedral distortions and orbital occupancy is therefore required. Here, we employ atomic-resolution imaging coupled with electron spectroscopies and first-principles theory to examine the role of interfacial charge transfer and symmetry breaking in a tricomponent nickelate superlattice system. We find that nearly complete charge transfer occurs between the LaTiO3 and LaNiO3 layers, resulting in a mixed Ni2 +/Ni3 + valence state. We further demonstrate that this charge transfer is highly localized with a range of about 1 unit cell within the LaNiO3 layers. We also show how Wannier-function-based electron counting provides a simple physical picture of the electron distribution that connects directly with formal valence charges. The results presented here provide important feedback to synthesis efforts aimed at stabilizing new electronic phases that are not accessible by conventional bulk or epitaxial film approaches.
NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran
2011-09-01
Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.
NASA Astrophysics Data System (ADS)
Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.
2018-01-01
Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.
Determination of the structural phase and octahedral rotation angle in halide perovskites
NASA Astrophysics Data System (ADS)
dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich
2018-02-01
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.
NASA Astrophysics Data System (ADS)
de la Flor, G.; Malcherek, T.; Gorfman, S.; Mihailova, B.
2017-12-01
Hard-mode Raman spectroscopy was applied to analyze the temperature-induced transformation processes in perovskite-type (ABO3) single crystals of (1 -x ) Na0.5Bi0.5TiO3-x BaTiO3 (NBT-x BT ) in a wide temperature range between 100 and 1010 K and a composition range of x =0 -0.074 across the morphotropic phase boundary (MPB). The results show abundant uncoupled ferroic structural distortions even at 1010 K and coexistence of two types of mesoscopic-scale ferroic order at lower temperatures. Octahedral BO6 tilting is typical of pure NBT, while the incorporation of A-site Ba2 + suppresses the tilting and promotes the off centering of BO6 octahedra. The temperature evolution of the phonon modes clearly reveals the two macroscopically observed critical temperatures Tm and Td as well as, in the case of x ≠0 , two characteristic temperatures T' and T'' preceding the Tm and Td, respectively, which are attributed to mesoscopic-scale antiferroelectric and ferroelectric coupling processes within the A-site-cation subsystem. At x
Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli
2014-08-04
The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1).
Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P
2013-11-01
Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.
Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex
NASA Astrophysics Data System (ADS)
Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.
2002-08-01
Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.
Sreenivasu Mummidivarapu, V V; Hinge, Vijaya Kumar; Rao, Chebrolu Pulla
2015-01-21
A triazole-linked hydroxyethylimino conjugate of calix[4]arene () and its cadmium complex have been synthesized and characterized, and their structures have been established. In the complex, both the Cd(2+) centers are bound by an N2O4 core, and one of it is a distorted octahedral, whereas the other is a trigonal anti-prism. The fluorescence intensity of the di-nuclear Cd(ii) complex is quenched only in the presence of phosphates and not with other anions studied owing to their binding affinities and the nature of the interaction of the phosphates with Cd(2+). These are evident even from their absorption spectra. Different phosphates exhibit changes in both their fluorescence as well as absorption spectra to varying extents, suggesting their differential interactions. Among the six phosphates, H2PO4(-) has higher fluorescence quenching even at low equivalents of this ion, whereas P2O7(4-) shows only 50% quenching even at 10 equivalents. The fluorescence quenching is considerable even at 20 ppb (0.2 μM) of H2PO4(-), whereas all other phosphates require a concentration of 50-580 ppb to exhibit the same effect on fluorescence spectra. Thus, the interaction of H2PO4(-) is more effective by ∼30 fold as compared to that of P2O7(4-). Fluorescence quenching by phosphate is due to the release of from its original cadmium complex via the formation of a ternary species followed by the capture of Cd(2+) by the phosphate, as delineated based on the combination of spectral techniques, such as absorption, emission, (1)H NMR and ESI MS. The relative interactive abilities of the six phosphates differ from each other. The removal of Cd(2+) is demonstrated to be reversible by the repeated addition of the phosphate followed by Cd(2+). The characteristics of the ternary species formed in each of these six phosphates have been computationally modeled using molecular mechanics. The computational study revealed that the coordination between cadmium and -CH2-CH2-OH breaks and new coordination is established through the phosphate oxygens, and as a result the Cd(2+) center acquires a distorted octahedral geometry. The utility of the complex was demonstrated in HeLa cells.
Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina
2009-07-06
The preparation, X-ray crystallography, and magnetic investigation of the compounds [Co(H(2)O)(2)(phda)](n) (1), [Co(phda)](n) (2), and [Co(chda)](n) (3) [H(2)phda = 1,4-phenylenediacetic acid and H(2)chda = 1,1-cyclohexanediacetic acid] are described herein. The cobalt atoms in this series are six- (1) and four-coordinated (2 and 3) in distorted octahedral (CoO(6)) and tetrahedral (CoO(4)) environments. The structures of 1-3 consists of rectangular-grids which are built up by sheets of cobalt atoms linked through anti-syn carboxylate bridges, giving rise to either a three-dimensional structure across the phenyl ring (1 and 2) or to regularly stacked layers with the cyclohexyl groups acting as organic separators (3). The magnetic properties of 1-3 were investigated as a function of the temperature and the magnetic field. Ferromagnetic coupling between the six-coordinate cobalt(II) ions across the anti-syn carboxylate bridge occurs in 1 (J = +1.2 cm(-1)) whereas antiferromagnetic coupling among the tetrahedral cobalt(II) centers within the sheets is observed in 2 and 3 [J = -1.63 (2) and -1.70 cm(-1) (3)] together with a spin-canted structure in 3 giving rise a long-range magnetic ordering (T(c) = 7.5 K).
Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong
2013-04-01
A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val=Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1V1⋯V1AO1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05×10(6)M(-1) and the binding site number n was 1.18. Copyright © 2013 Elsevier B.V. All rights reserved.
Choi, Jong-Ha; Niketić, Svetozar R; Djordjević, Ivana; Clegg, William; Harrington, Ross W
2012-05-01
The crystal structure of [Cr(edda)(acac)] (edda = ethylediamine-N,N'-diacetate; acac = acetylacetonato) has been determined by a single crystal X-ray diffraction study at 150 K. The chromium ion is in a distorted octahedral environment coordinated by two N and two O atoms of chelating edda and two O atoms of acac, resulting in s-cis configuration. The complex crystallizes in the space group P2(1)/c of the monoclinic system in a cell of dimensions a = 10.2588(9), b = 15.801(3), c = 8.7015(11) Å, β =101.201(9)° and Z = 4. The mean Cr-N(edda), Cr-O(edda) and Cr-O(acac) bond distances are 2.0829(14), 1.9678(11) and 1.9477(11) Å while the angles O-Cr-O of edda and O-Cr-O of acac are 171.47(5) and 92.72(5)°, respectively. The crystal structure is stabilized by N-H···O hydrogen bonds linking [Cr(edda)(acac)] molecules in distinct linear strands. The visible electronic and IR spectroscopic properties are also discussed. An improved, physically more realistic force field, Vibrationally Optimized Force Field (VOFF), capable of reproducing structural and vibrational properties of [Cr(edda)(acac)] was developed and its transferability demonstrated on selected chromium(III) complexes with similar ligands.
NASA Astrophysics Data System (ADS)
Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.
2017-12-01
Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.
NASA Astrophysics Data System (ADS)
Marx, R.; Seppelt, K.; Ibberson, R. M.
1996-05-01
A neutron diffraction study on the third-row transition metal hexafluorides MF6 (M≡W, Os, Pt) has been performed using the high resolution neutron powder diffractometer (HRPD) at the spallation source ISIS, England. The previously unknown structures of the low-temperature phases of OsF6 and PtF6 are reported. WF6, OsF6, and PtF6, which exhibit a (5dt2g)0, (5dt2g)2, and (5dt2g)4 electronic configuration, respectively, are found to be isostructural and crystallize in the UF6 structure, space group Pmnb, (No. 62). The geometry of the MF6 molecules is to good approximation octahedral for each compound, the mean M-F bond length increasing only slightly from 182.5 (W) to 185.0 (Pt). For WF6 deviations from ideal octahedral geometry are only marginally significant [181.8(2) to 183.2(2) pm] and may be interpreted on the basis of packing effects. Deviations for the d2 complex OsF6 are somewhat larger [181.5(2) to 184.4(3) pm] and may be assumed to be caused by packing effects essentially the same as for WF6, in addition to a first-order Jahn-Teller effect arising from the (5dt2g)2 electronic configuration. While eliminating the effects of packing by a comparison of individual M-F bond lengths for WF6 and OsF6, the OsF6 molecule shows to have D4h symmetry with two apical M-F bonds about 1.8 pm longer than the four equatorial bonds as a result of the Jahn-Teller distortion. Only small deviations from ideal octahedral geometry [184.4(3) to 185.8(3) pm] are found for the d4 complex PtF6. Within the series W to Pt a substantial shortening of the F...F van der Waals contact distances is observed. This shortening more than compensates for the increase in the M-F bond lengths and leads to unit cell volumes and cell parameters decreasing continuously from W to Pt. The variation of F...F contact distances and M-F bond lengths may be rationalized in terms of polarization of the F-ligands in the field of the highly charged nuclei of the central atoms which are only incompletely shielded by the 5d electrons.
Alborés, Pablo; Seeman, Johanna; Rentschler, Eva
2009-10-07
The synthesis, crystal structure, and magneto-chemical characterization of two new unprecedented -phenoxo--carboxylato heterodinuclear complexes based on the Cr(salen) moiety (salen = N,N-bis(salicylidene)ethylenediamine), [MII(O2C(CH3)3)(OH2)2(mu-O2C(CH3)3)(-salen)CrIII(O2C(CH3)3)], M = Ni (2), Co(3) are reported. The dinuclear complexes were obtained starting from the mononuclear trans-[Cr(salen)(CN)2]PPh4 (1), whose crystal structure is also reported. They show a trans arrangement of the Cr(salen) unit, bridging through the phenolate O atoms to a second metal center. An additional 2-O2-carboxylato bridge and a further monodentating carboxylate ligand complete the roughly octahedral Cr(III) coordination sphere. The highly distorted octahedral M(II) coordination environment is completed by two coordinated water molecules and an additional monodentating carboxylate. Variable-temperature solid-state DC magnetization studies were carried out in the 2.0-300 K range. Ferromagnetic isotropic pairwise exchange parameters were found with values of J = 4.1 cm-1 (2) and J = 2.1 cm-1 (3). Additionally, for complex 3, a ZFS parameter, D, was employed to properly fit the experimental data. Magnetization (M) vs. field (H) and temperature (T) data further support the presence of this anisotropic component and confirm ground states S = 5/2 and S = 3 for 2 and 3, respectively. Broken symmetry DFT calculations properly reproduce the experimental J values supporting the ferromagnetic exchange interaction experimentally observed. No out of phase susceptibility signal was observed in 0 DC magnetic field for both complexes. However, in the case of complex 3 a non-zero is observed when a small external field is applied below 3 K, suggesting slow relaxation of the magnetization which at 0 DC field is suppressed, probably due to efficient tunnelling relaxation pathways. The low symmetry of the Co(II) site in complex 3 may lead to the presence of transversal anisotropic components which could be responsible for the enhanced tunnelling pathway.
NASA Astrophysics Data System (ADS)
Pathak, Sudipta; Chakraborty, Koushik; Ghosh, Surajit; Roy, Kunal; Jana, Barnali; Konar, Saugata
2018-01-01
[Cu(pydc)(apyz)(H2O)2] (1) (where pydcH2 = pyridine-2,6-dicarboxylic acid; apyz = 2- aminopyrazine) has been synthesized and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction techniques. Crystallographic analysis revealed that complex 1 has distorted octahedral geometry with pydcH2 coordinated as tridentate ligands to metal ion through two oxygen atoms of each carboxylate group, nitrogen atom of the pyridine ring and the auxiliary ligand pyrazine nitrogen atom form basal plane and apical positions are occupied by two oxygen atoms of water molecules. In addition, the coordination compounds are connected by a variety of non covalent interactions like OH … π, lone pair … π, π … π and hydrogen bonds. The evaluation of these noncovalent interactions is useful for rationalizing their influence in the crystal packing. In addition, electrical current measured at room temperature on thin film before and after annealed is in the order of 229 μA and 246 μA respectively with bias voltage 1 V.
Gómez-Saiz, Patricia; García-Tojal, Javier; Maestro, Miguel A; Arnaiz, Francisco J; Rojo, Teófilo
2002-03-25
The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-05-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O} n , the Zn(II) cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol-ecules in a distorted N2O4 octa-hedral geometry; among the four coordinate water mol-ecules, two are located on the same twofold rotation axis. The 1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the Zn(II) cations, forming polymeric chains propagating along [201]. In the crystal, O-H⋯O and weak C-H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol-ecules into a three-dimensional supra-molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions.
Choi, Eun-Mi; Kleibeuker, Josée E; MacManus-Driscoll, Judith L
2017-03-03
BiMnO 3 is a promising multiferroic material but it's ferromagnetic T C is well below room temperature and the magnetic phase diagram is unknown. In this work, the relationship between magnetic transition temperature (T C ) and the substrate induced (pseudo-) tetragonal distortion (ratio of out-of-plane to in-plane lattice parameters, c/a) in BiMnO 3 thin films, lightly doped to optimize lattice dimensions, was determined. For c/a > 0.99, hidden antiferromagnetism was revealed and the magnetisation versus temperature curves showed a tail behaviour, whereas for c/a < 0.99 clear ferromagnetism was observed. A peak T C of up to 176 K, more than 70 K higher than for bulk BiMnO 3 , was achieved through precise strain tuning. The T C was maximised for strong tensile in-plane strain which produced weak octahedral rotations in the out-of-plane direction, an orthorhombic-like structure, and strong ferromagnetic coupling.
NASA Astrophysics Data System (ADS)
Boso, Brian; Lang, George; Reed, Christopher A.
1983-03-01
Mössbauer spectra of a polycrystalline form of the six-coordinate high-spin ferrous compound (meso-tetraphenylporphinato) bis(tetrahydrofuran) iron (II) have been recorded over a range of temperatures (4.2-195 K) and magnetic fields (0-6.0 T). Analysis of the spectra using a phenomenological model of the internal magnetic field and using an S=2 spin Hamiltonian, where applicable, yield the sign of Vzz negative, η=0.4, D=6.0 cm-1, E/D=0.1, and Ã*/g*N βN =(-7.2, -7.2, and -24.3 T). These results suggest that the iron experiences an octahedral crystal field, trigonally distorted in the (1, 1, 1) direction, producing a prolate orbital dz2 as the ground state. Crystal field calculations confirm this interpretation by reproducing the spin Hamiltonian parameters listed above. The calculation predicts an orbital doublet 1667 cm-1 above the ground state. Comparisons with deoxyheme proteins and their synthetic analogs suggest some common gross features of the orbital state and structure-related trends in the character of the ground quintet.
Determination of the structural phase and octahedral rotation angle in halide perovskites
dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...
2018-02-12
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Dhers, Sébastien; Küp, Fatma Öztürk; Güllü, Mithat; Ng, Seikweng
2017-11-01
The synthesis of two unsymmetrical N-capped tripodal amines, 2-((4-aminobutyl)(pyridin-2-ylmethyl)amino)ethanol (3) and 3-((2-aminoethyl)(pyridin-2-ylmethyl)amino)propan-1-ol (4) is reported. They feature a longer, 3-hydroxypropyl or butylamino arm than that in the analogues previously employed. All four tripodal amines, 1-4, are equipped with a 2-methylpyridyl-arm, and either an ethylamino-arm (1 and 4), propylamino-arm (2) or butylamino-arm (3). The amines, 3 and 4, have been employed in one pot condensation reactions with salicylaldehyde and its derivatives in the presence of Ni(II) metal ion. A series of new mononuclear complexes, [NiIILaldi](ClO4) or [NiIILaldi(solvent)](ClO4) with different geometry, of Schiff base ligands were generated. X-ray crystal structure determinations of [NiIILOMe3(H2O)](ClO4)·2H2O and [NiIILOMe4](ClO4) revealed them to be mononuclear. The Ni(II) ion in [NiIILOMe4](ClO4) complex is in a distorted square-planar environment whilst this ion is in distorted octahedral environment in [NiIILOMe3(H2O)](ClO4)·2H2O complex despite the longer arm length of L3. While, in related systems in our previous work, they had led to dimeric complexes. These results clearly showed that the variation of the arm lengths of the ligands and metal ions has a remarkable impact on the formation and structure of the complexes. The cleavage of DNA by all synthesised complexes was examined using gel electrophoresis experiments. Also, the antibacterial effects of components were determined against the three Gram-positive bacteria, and against the three Gram-negative bacteria and against the three yeast Candida albicans ATCC 10231, Candida krusei ATCC 1424 and Candida tropicalis ATCC 13803.
Patra, Ayan; Bera, Manindranath
2014-01-30
In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms. Copyright © 2013 Elsevier Ltd. All rights reserved.
First-principles study of the solid solution of hydrogen in lanthanum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoellhammer, Gunther; Herzig, Peter; Wolf, Walter
2011-09-01
Results from first-principles investigations of the energetical, structural, electronic, and vibrational properties of model structures probing the metal-rich region of the lanthanum-hydrogen system, i.e., the region of the solid solution of hydrogen in lanthanum, are presented. We have studied the site preference and the ordering tendency of hydrogen atoms interstitially bonded in close-packed lanthanum. Spatially separated hydrogen atoms have turned out to exhibit an energetical preference for the occupation of octahedral interstitial sites at low temperature. Indications for a reversal of the site preference in favor of the occupation of tetrahedral interstitial sites at elevated temperature have been found. Linearmore » arrangements consisting of pairs of octahedrally and/or tetrahedrally coordinated hydrogen atoms collinearly bonded to a central lanthanum atom have turned out to be energetically favorable structure elements. Further stabilization is achieved if such hydrogen pairs are in turn linked together so that extended chains of La-H bonds are formed. Pair formation and chain linking counteract the energetical preference for octahedral coordination observed for separated hydrogen atoms.« less
Nishimoto, Yoshio; Yokogawa, Daisuke; Yoshikawa, Hirofumi; Awaga, Kunio; Irle, Stephan
2014-06-25
Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM(3-)) clusters [PM12O40](3-) (M = Mo, W) are converted toward their super-reduced POM(27-) state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal-metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a prominently emerging structural feature. The origin of the metal triangle formation during super-reduction stems from the formation of characteristic three-center two-electron bonds in triangular metal atom sites, created under preservation of the POM skeleton via "squeezing out" of oxygen atoms bridging two metal atoms when the underlying metal atoms form covalent bonds. The driving force for this unusual geometrical and electronic structure change is a local Jahn-Teller distortion at individual transition-metal octahedral sites, where the triply degenerate t2 d orbitals become partially filled during reduction and gain energy by distortion of the octahedron in such a way that metal-metal bonds are formed. The bonding orbitals show strong contributions from mixing with metal-oxygen antibonding orbitals, thereby "shuffling away" excess electrons from the cluster center to the outside of the cage. The high density of negatively charged yet largely separated oxygen atoms on the surface of the super-reduced POM(27-) polyanion allows the huge Coulombic repulsion due to the presence of the excess electrons to be counterbalanced by the presence of Li countercations, which partially penetrate into the outer oxygen shell. This "semiporous molecular capacitor" structure is likely the reason for the effective electron uptake in POMs.
NASA Astrophysics Data System (ADS)
Torardi, C. C.; Miao, C. R.; Li, J.
2003-02-01
Potassium hafnium-zirconium phosphates, K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3, are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ˜60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1- xZr x(PO 4) 2. All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission.
Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; ...
2017-07-13
Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas
Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less
Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D
2017-08-16
Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.
A Mixed-Valent Molybdenum Monophosphate with a Layer Structure: KMo 3P 2O 14
NASA Astrophysics Data System (ADS)
Guesdon, A.; Borel, M. M.; Leclaire, A.; Grandin, A.; Raveau, B.
1994-03-01
A new mixed-valent molybdenum monophosphate with a layer structure KMo 3P 2O 14 has been isolated. It crystallizes in the space group P2 1/ m with a = 8.599(2) Å, b = 6.392(2) Å, c = 10.602(1) Å, and β = 111.65(2)°. The layers [Mo 3P 2O 14] ∞ are parallel to (100) and consist of [MoPO 8] ∞ chains running along limitb→ , in which one MoO 6 octahedron alternates with one PO 4 tetrahedron. In fact, four [MoPO 8] ∞ chains share the corners of their polyhedra and the edges of their octahedra, forming [Mo 4P 4O 24] ∞ columns which are linked through MoO 5 bipyramids along limitc→. The K + ions interleaved between these layers are surrounded by eight oxygens, forming bicapped trigonal prisms KO 8. Besides the unusual trigonal bipyramids MoO 5, this structure is also characterized by a tendency to the localization of the electrons, since one octahedral site is occupied by Mo(V), whereas the other octahedral site and the trigonal bipyramid are occupied by Mo(VI). The similarity of this structure with pure octahedral layer structures suggests the possibility of generating various derivatives, and of ion exchange properties.
Sundberg, Markku R.; Laitalainen, Tarja; Bergman, Jan; Uggla, Rolf; Matikainen, Jorma; Kaltia, Seppo
1998-06-01
Tellurium tetrachloride and allylphenyl sulfide react to form (1-thia-2-tellura-1-phenyl-4-chloro)cyclopentane 2,2,2-trichloride. The crystal and molecular structure were determined by single-crystal X-ray techniques. The crystals belong to the monoclinic system, space group P2(1)/c (No. 14) with a = 6.020(3) Å, b = 11.46(1) Å, c = 20.156(2) Å, beta = 97.53(2) degrees, V = 1379(1) Å(3), and Z = 4. The structure was refined to the final R value of 0.036. The coordination around Te(IV) is distorted psi octahedral with three Cl atoms in the equatorial positions. The axial Te(1)-C(1) bond opposite to the lone pair of electrons at the Te(IV) atom completes the coordination polyhedron. The intramolecular Te-S distance is 2.903(3) Å. Symmetric and asymmetric deformation modes were established to describe the plasticity of the Cl-Te-Cl fragments extracted from the Cambridge Structural Database. The hypervalency of Te(IV) manifests itself as plasticity in the equatorial plane of the coordination sphere. The NBO calculations show that all of the equatorial Te-Cl bonds are highly polarized and the electrons reside mainly on the Cl atoms.
Seng, Hoi-Ling; Ong, Han-Kiat Alan; Rahman, Raja Noor Zaliha Raja Abd; Yamin, Bohari M; Tiekink, Edward R T; Tan, Kong Wai; Maah, Mohd Jamil; Caracelli, Ignez; Ng, Chew Hee
2008-11-01
The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature
NASA Astrophysics Data System (ADS)
Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.
2015-11-01
The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.
Interfacial coupling and polarization of perovskite ABO3 heterostructures
NASA Astrophysics Data System (ADS)
Wu, Lijun; Wang, Zhen; Zhang, Bangmin; Yu, Liping; Chow, G. M.; Tao, Jing; Han, Myung-Geun; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Zhu, Yimei
2017-02-01
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. In this article, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) films and La0.67Sr0.33MnO3 (LSMO) films of various thicknesses on SrTiO3 (STO) substrate. In particular, using atomically resolved imaging and electron energy-loss spectroscopy (EELS), we measured interface related local lattice distortion, BO6 octahedral rotation and cation-anion displacement induced polarization. In the very thin PSMO film, an unexpected interface-induced ferromagnetic polaronic insulator phase was observed during the cubic-to-tetragonal phase transition of the substrate STO, due to the enhanced electron-phonon interaction and atomic disorder in the film. On the other hand, for the very thin LSMO films we observed a remarkably deep polarization in non-ferroelectric STO substrate near the interface. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by an electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties of transition metal oxides.
Synthesis and molecular structure of a zinc complex of the vitamin K3 analogue phthiocol
NASA Astrophysics Data System (ADS)
Kathawate, Laxmi; Sproules, Stephen; Pawar, Omkar; Markad, Ganesh; Haram, Santosh; Puranik, Vedavati; Salunke-Gawali, Sunita
2013-09-01
The complex [Zn(phthiocol)2(H2O)2]; 1, where phthiocol is 2-hydroxy-3-methyl-1,4-naphthoquinone, has been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-vis spectroscopy, thermogravimetric (TG) analysis, electrochemical and single crystal X-ray diffraction studies. The νCO stretch shifts to lower frequencies upon complexation of phthiocol to Zn2+. 1H NMR spectra show an upfield shift of the benzenoid ring protons in 1. There is a bathochromic shift of the LMCT band in the UV-vis spectra of 1. Single crystal X-ray structure of 1 show distorted octahedral geometry around Zn2+. Two phthiocol ligands are in plane with the metal, while water molecules are trans to this plane. Coordination of deprotonated phthiocol ligands is 'trans, trans' to Zn2+. Intra as well as intermolecular interactions are observed in 1. Molecules of 1 show three dimensional network through CH⋯O and OH⋯O interactions. Additional anodic peaks are observed in cyclic voltammogram of phthiocol ligand due to oxidation of reduced species formed during reduction. One-electron reduction of 1 is shown to be reversible and DFT studies define this redox event as ligand-centered.
NASA Astrophysics Data System (ADS)
Shahid, M.; Anjuli; Tasneem, Sana; Mantasha, I.; Ahamad, M. Naqi; Sama, Farasha; Fatma, Kehkeshan; Siddiqi, Zafar A.
2017-10-01
The ternary complexes with stoichiometry [M(imda)(bipy)]·6H2O (M = Cu) and [M(imda)(bipy)(H2O)]·4H2O (M = Ni, Co and Mn) where H2imda = iminodiacetic acid and bipy = 2,2‧-bipyridine, are prepared and characterized to exploit as novel antimicrobial agents and SOD mimics. The chemical structures were elucidated by IR, FAB-Mass, 1H, 13C NMR, EPR and spectral techniques. Single crystal X-ray and spectral studies of the complexes (1) and (2) have confirmed a square pyramidal geometry around Cu(II) ion while a saturated six coordinate (distorted octahedral) geometry around the Ni(II), Co(II) and Mn(II) ions due to the additional coordination from water. A supramolecular network is formed by extensive H-bonding in complex (1). The supramolecular assembly in complex (1) is additionally consolidated via the existence of unusual cyclic hexameric water clusters. The antimicrobial activities for the present complexes have been examined against Escherichia coli (K-12), Bacillus subtilis (MTC-121), Staphylococcus aureus (IOASA-22), Salmonella typhymurium (MTCC-98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei. The superoxide dismutase (SOD) activity of the Cu(II) complex (1) is also assessed employing nitrobluetetrazolium (NBT) assay.
Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming
2016-06-29
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.
Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium.
Farias, Manuel J S; Busó-Rogero, Carlos; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Camara, Giuseppe A; Feliu, Juan M
2017-01-31
The knowledge about how CO occupies and detaches from specific surface sites on well-structured Pt surfaces provides outstanding information on both dynamics/mobility of CO ads and oxidation of this molecule under electrochemical conditions. This work reports how the potentiostatic growth of different coverage CO adlayers evolves with time on both cubic and octahedral Pt nanoparticles in acidic medium. Data suggest that during the growth of the CO adlayer, CO ads molecules slightly shift toward low coordination sites only on octahedral Pt nanoparticles, so that these undercoordinated sites are the first filled on octahedral Pt nanoparticles. Conversely, on cubic Pt nanoparticles, adsorbed CO behaves as an immobile species, and low coordinated sites as well as (100) terraces are apparently filled uniformly and simultaneously. However, once the adlayer is complete, irrespectively of whether the CO is oxidized in a single step or in a sequence of different potential steps, results suggest that CO ads behaves as an immobile species during its oxidation on both octahedral and cubic Pt nanoparticles.
Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes.
Rajaratnam, Rajathees; Martin, Elisabeth K; Dörr, Markus; Harms, Klaus; Casini, Angela; Meggers, Eric
2015-08-17
Controlling the relative and absolute configuration of octahedral metal complexes constitutes a key challenge that needs to be overcome in order to fully exploit the structural properties of octahedral metal complexes for applications in the fields of catalysis, materials sciences, and life sciences. Herein, we describe the application of a proline-based chiral tridentate ligand to decisively control the coordination mode of an octahedral rhodium(III) complex. We demonstrate the mirror-like relationship of synthesized enantiomers and differences between diastereomers. Further, we demonstrate, using the established pyridocarbazole pharmacophore ligand as part of the organometallic complexes, the importance of the relative and absolute stereochemistry at the metal toward chiral environments like protein kinases. Protein kinase profiling and inhibition data confirm that the proline-based enantiopure rhodium(III) complexes, despite having all of the same constitution, differ strongly in their selectivity properties despite their unmistakably mutual origin. Moreover, two exemplary compounds have been shown to induce different toxic effects in an ex vivo rat liver model.
Structural and metal-insulator transitions in rhenium-based double perovskites via orbital ordering
NASA Astrophysics Data System (ADS)
Lee, Alex Taekyung; Marianetti, Chris A.
2018-01-01
Re-based double perovskites (DPs) have garnered substantial attention due to their high Curie temperatures (TC) and display of complex interplay of structural and metal-insulator transitions (MIT). Here we systematically study the ground-state electronic and structural properties for a family of Re-based DPs A2B ReO6 (A =Sr, Ca and B =Cr, Fe), which are related by a common low-energy Hamiltonian, using density functional theory +U calculations. We show that the on-site interaction U of Re induces orbital ordering (denoted C-OO), with each Re site having an occupied dx y orbital and a C-type alternation among dx z/dy z , resulting in an insulating state consistent with experimentally determined insulators Sr2CrReO6 , Ca2CrReO6 , and Ca2FeReO6 . The threshold value of UR e for orbital ordering is reduced by inducing Eg octahedral distortions of the same C-type wavelength (denoted C-OD), which serves as a structural signature of the orbital ordering; octahedral tilting also reduces the threshold. The C-OO and the concomitant C-OD are a spontaneously broken symmetry for the Sr-based materials (i.e., a0a0c- tilt pattern), while not for the Ca-based systems (i.e., a-a-b+ tilt pattern). Spin-orbit coupling does not qualitatively change the physics of the C-OO/C-OD, but can induce relevant quantitative changes. We prove that a single set of UC r,UF e,UR e capture the experimentally observed metallic state in Sr2FeReO6 and insulating states in other three systems. We predict that the C-OO is the origin of the insulating state in Sr2CrReO6 , and that the concomitant C-OD may be experimentally observed at sufficiently low temperatures (i.e., space group P 42/m ) in pure samples. Additionally, given our prescribed values of U , we show that the C-OO induced insulating state in Ca2CrReO6 will survive even if the C-OD amplitude is suppressed (e.g., due to thermal fluctuations). The role of the C-OO/C-OD in the discontinuous, temperature driven MIT in Ca2FeReO6 is discussed.
NASA Astrophysics Data System (ADS)
Lalithaphani, A. V.; Srinivas, B.; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.
2018-04-01
Borate glasses containing different concentrations of heavy metal oxide (CdO) with 2mol% of V2O5 as the paramagnetic probe were prepared by the conventional melt quenching technique. The prepared glasses were characterized by XRD to confirm the amorphous nature. EPR and Optical absorption studies were carried out at room temperature. EPR spectra of these glass samples were recorded at X-band frequency with 100 kHz field modulation at room temperature. From the EPR spectra the spin-Hamiltonian parameters were evaluated. The spin-Hamiltonian parameter values indicated that g|| < g┴ < ge [=2.0023] and A∥︀ > A┴. This suggests that VO2+ ions are present in octahedral sites with tetragonal compression and belong to C4v symmetry with dxy being the ground state. The measure of tetragonal distortion (Δg∥︀/Δg┴)varies non-linearly with glass composition indicating change in tetragonal distortion. The covalency rates were estimated. The number of spins participating in the resonance [N] and susceptibility (χ) values were also evaluated.
Transition from Reconstruction toward Thin Film on the (110) Surface of Strontium Titanate
2016-01-01
The surfaces of metal oxides often are reconstructed with a geometry and composition that is considerably different from a simple termination of the bulk. Such structures can also be viewed as ultrathin films, epitaxed on a substrate. Here, the reconstructions of the SrTiO3 (110) surface are studied combining scanning tunneling microscopy (STM), transmission electron diffraction, and X-ray absorption spectroscopy (XAS), and analyzed with density functional theory calculations. Whereas SrTiO3 (110) invariably terminates with an overlayer of titania, with increasing density its structure switches from n × 1 to 2 × n. At the same time the coordination of the Ti atoms changes from a network of corner-sharing tetrahedra to a double layer of edge-shared octahedra with bridging units of octahedrally coordinated strontium. This transition from the n × 1 to 2 × n reconstructions is a transition from a pseudomorphically stabilized tetrahedral network toward an octahedral titania thin film with stress-relief from octahedral strontia units at the surface. PMID:26954064
Local distortion and EPR parameters of copper(II) in borate glasses
NASA Astrophysics Data System (ADS)
Kuang, Min-Quan; Wang, Li-Dan; Duan, Shu-Kai
2017-12-01
The EPR parameters (g and A tensors) of the paramagnetic Cu2+ sites in CaB4O7, LiCaBO3, Li2B4O7, KLiB4O7 glasses are well explained by utilizing the fourth-order perturbation formulas for 3 d9 ions in the tetragonally elongated octahedral [CuO6]10- clusters. The magnitude of the local distortion for the [CuO6]10- clusters suffering the Jahn-Teller effect is denoted by the relative elongation ratio ρ which is proportional to the ratio Δg///Δg⊥ (Δg//= g//-gs and Δg⊥ = g⊥-gs). The g isotropies giso (=(g//+2g⊥)/3) undergo an linear increase with the decline of the covalecny of the glass systems (i.e., the augment of the orbital reduction factor k). The signs of the hyperfine structure constants are determined by computing the quantitative contributions arising from the isotropic and anisotropic copper 3d-3s (4s) orbital admixtures indicated by the core polarization constant κ and the reduction factor H, respectively. The above correlations are proved to be available for analogous borate glasses doping with copper ions, e.g., MRbB4O7 (M = Li, Na and K), 90M2B4O7·9PbO·CuO (M = Li, Na and K), 10MO·30ZnO·60B2O3 (M = Mg, Ca and Sr) and xLi2O·(30-x)Na2O·69.5B2O3 (5 ≤ x ≤ 25 mol%), and all the results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, H. S.; Choi, H. J., E-mail: hjchoi@inha.ac.kr
2015-05-07
Octahedral-shaped Fe{sub 3}O{sub 4} nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe{sub 3}O{sub 4} nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol. % particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves.
Structural and Chemical Evolution of Li- and Mn-rich Layered Cathode Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Xu, Pinghong; Gu, Meng
2015-02-24
Lithium (Li)- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being sufficiently understood. Here we report the detailed phase transformation pathway in the LMR cathode (Li[Li0.2Ni0.2Mn0.6]O2) during cycling for the samples prepared by hydro-thermal assistant method. It is found the transformation pathway of LMR cathode is closely correlated to its initial structure and preparation conditions. The results reveal that LMR cathode prepared by HA approach experiences a phase transformation from the layered structure to a LT-LiCoO2 type defectmore » spinel-like structure (Fd-3m space group) and then to a disordered rock-salt structure (Fm-3m space group). The voltage fade can be well correlated with the Li ion insertion into octahedral sites, rather than tetrahedral sites, in both defect spinel-like structure and disordered rock-salt structure. The reversible Li insertion/removal into/from the disordered rock-salt structure is ascribed to the Li excess environment that can satisfy the Li percolating in the disordered rock-salt structure despite the increased kinetic barrier. Meanwhile, because of the presence of a great amount of oxygen vacancies, a significant decrease of Mn valence is detected in the cycled particle, which is below that anticipated for a potentially damaging Jahn-Teller distortion (+3.5). Clarification of the phase transformation pathway, cation redistribution, oxygen vacancy and Mn valence change undoubtedly provides insights into a profound understanding on the voltage fade, and capacity degradation of LMR cathode. The results also inspire us to further enhance the reversibility of LMR cathode via improving its surface structural stability.« less
The variation of polyhedral compressibilities between structures
NASA Astrophysics Data System (ADS)
Ross, N. L.; Angel, R. J.; Zhao, J.; Vanpeteghem, C.
2006-05-01
In their influential book "Comparative Crystal Chemistry" Hazen and Finger [1] concluded that "a given type of polyhedron has nearly constant bulk modulus within estimated experimental error, independent of structure". Advances in the precision of experimental high-pressure diffraction measurements over the ensuing two decades allow us to re-examine this hypothesis. In particular, the discovery that the response of the perovskite structure to high pressures is controlled by the equipartition of bond-valence strain between the A and B cation sites within the structure [2] explicitly implies that the octahedral compressibility depends not only upon the octahedral cation, but also upon the compressibility of the cation-oxygen bonds of the extra-framework (nominally dodecahedral) site. Thus the octahedral compressibility of a B cation changes with the A cation. For example, the compressibility of the Ga-O bonds in LaGaO3 is 2.43(7) x 10-3 GPa-1, whereas it is 1.81 x 10-3 GPa-1 in NdGaO3. The compressibilities of Al-O bonds in perovskites range between 1.62(9) and 1.87(13) x 10-3 GPa-1. A more extreme example is provided by the difference in octahedral compressibilities between ABO3 perovskites and their protonated analogues AB(OH)6. In CaSnO3 the average compressibility of the Sn- O bonds within the octahedra is 1.61(11) x 10-3 GPa-1, whereas the Sn-O bonds in MnSn(OH)6 are incompressible within the uncertainties of the measurement. References [1] Hazen, Finger (1982) Comparative Crystal Chemistry. John Wiley and Sons [2] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263 [3] Vanpeteghem et al. (2006) Geophys. Res. Letts. 33: L03306. [4] Ross et al. (1990) Amer. Mineral. 75:739
TeX4 (X = F, Cl, Br) as Lewis acids--complexes with soft thio- and seleno-ether ligands.
Hector, Andrew L; Jolleys, Andrew; Levason, William; Reid, Gillian
2012-08-28
TeF(4) reacts with OPR(3) (R = Me or Ph) in anhydrous CH(2)Cl(2) to give the colourless, square based pyramidal 1 : 1 complexes [TeF(4)(OPR(3))] only, in which the OPR(3) is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) Å; R = Ph: d(Te-O) = 2.1849(14) Å). Variable temperature (19)F{(1)H}, (31)P{(1)H} and (125)Te{(1)H} NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe(2) and SeMe(2) show a lower affinity for TeF(4), although unstable, yellow products with spectroscopic features consistent with [TeF(4)(EMe(2))] are obtained by the reaction of TeF(4) in neat SMe(2) or via reaction in CH(2)Cl(2) with SeMe(2). TeX(4) (X = F, Cl or Br) causes oxidation and halogenation of TeMe(2) to form X(2)TeMe(2). The Br(2)TeMe(2) hydrolyses in trace moisture to form [BrMe(2)Te-O-TeMe(2)Br], the crystal structure of which has been determined. TeX(4) (X = Cl or Br) react with the selenoethers SeMe(2), MeSe(CH(2))(3)SeMe or o-C(6)H(4)(SeMe)(2) (X = Cl) in anhydrous CH(2)Cl(2) to give the distorted octahedral monomers trans-[TeX(4)(SeMe(2))(2)], cis-[TeX(4){MeSe(CH(2))(3)SeMe}] and cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], which have been characterised by IR, Raman and multinuclear NMR ((1)H, (77)Se{(1)H} and (125)Te{(1)H}) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1 : 1 and 1 : 2 Te : L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, [Br(3)(tht)Te(μ-Br)(2)TeBr(3)(tht)], by crystallography with the tht ligands anti, whereas the latter are trans-octahedral monomers. Like its selenoether analogue, MeS(CH(2))(3)SMe forms distorted octahedral cis-chelates, [TeX(4){MeS(CH(2))(3)SMe}], whereas the more rigid o-C(6)H(4)(SMe)(2) unexpectedly forms a zig-zag chain polymer in the solid state, [TeCl(4){o-C(6)H(4)(SMe)(2)}](n), in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, o-C(6)H(4)(CH(2)EMe(2))(2) behave differently; the thioether forms cis-chelated [TeX(4){o-C(6)H(4)(CH(2)SMe)(2)}] confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX(4), forming the cyclic selenonium salts, [C(9)H(11)Se](2)[TeX(6)]. The tetrathiamacrocycle, [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane), does not react cleanly with TeCl(4), but forms the very poorly soluble [TeCl(4)([14]aneS(4))](n), shown by crystallography to be a zig-zag polymer with exo-coordinated [14]aneS(4) units linked via alternate S atoms to a cis-TeCl(4) unit. Trends in the (125)Te{(1)H} NMR shifts for this series of Te(IV) halides chalcogenoether complexes are discussed.
Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders
NASA Astrophysics Data System (ADS)
Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.
2014-03-01
Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.
NASA Astrophysics Data System (ADS)
Bhandari, Churna; Lambrecht, Walter R. L.
2018-06-01
While the tetragonal antiferro-electrically distorted (AFD) phase with space group I 4 / mcm is well known for SrTiO3 to occur below 105 K, there are also some hints in the literature of an orthorhombic phase, either at the lower temperature or at high pressure. A previously proposed orthorhombic layered structure of SrTiO3, known as the post-perovskite or CaIrO3 structure with space group Cmcm is shown to have significantly higher energy than the cubic or tetragonal phase and to have its minimum volume at larger volume than cubic perovskite. The Cmcm structure is thus ruled out. We also study an alternative Pnma phase obtained by two octahedral rotations about different axes. This phase is found to have slightly lower energy than the I 4 / mcm phase in spite of the fact that its parent, in-phase tilted P 4 / mbm phase is not found to occur. Our calculated enthalpies of formation show that the I 4 / mcm phase occurs at slightly higher volume than the cubic phase and has a negative transition pressure relative to the cubic phase, which suggests that it does not correspond to the high-pressure tetragonal phase. The enthalpy of the Pnma phase is almost indistinguishable from the I 4 / mcm phase. Alternative ferro-electric tetragonal and orthorhombic structures previously suggested in literature are discussed.
Single crystal structure and SHG of defect pyrochlores CsB{sup V}MoO{sub 6} (B{sup V}=Nb,Ta)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukina, D.G., E-mail: dianafuk@yandex.ru; Suleimanov, E.V.; Yavetskiy, R.P.
2016-09-15
The crystal structure and non-linear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} defect pyrochlores have been studied. The single crystals of these compounds grown by the flux method possess an octahedral faceting and reach up to 50 µm in size. The crystal structures of CsB{sup V}MoO{sub 6} (B{sup V}=Nb, Ta) were investigated by X-ray diffraction method. Both compounds crystallize in the cubic symmetry with noncentrosymmetric space group F-43m. The second harmonic generation of CsNbMoO{sub 6} and CsTaMoO{sub 6}was found to be 1.6×10{sup −2} and 8.5×10{sup −4} of lithium niobate, correspondingly. It has been determined that distortions of [MO{sub 6}]more » polyhedra (M=Nb, Ta, Mo) as well as polarizability and covalency of Nb–O and Ta–O bonds have a great effect on the second harmonic generation. - Highlights: • CsNbMoO{sub 6} and CsTaMoO{sub 6} homogeneous single crystals have been grown. • The crystal structure of CsTaMoO{sub 6} has been studied. • Nonlinear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} have been found. • The microscopic origin of the second harmonic generation (SHG) response have been identified.« less
Slip as the basic mechanism for formation of deformation relief structural elements
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Alfyorova, E. A.
2017-07-01
The experimental results of investigation of the nickel single crystal surface morphology after compression deformation are presented. The quasi-periodic character of the deformation profile, common for shear deformation of different types of relief structural elements, is found. It is demonstrated that the morphological manifestation of these structural elements is determined by local shear systems along octahedral planes. The regularities of the deformation structure in these regions defining the material extrusion and intrusion regions and the specific features of disorientation accumulation are established. If reorientation of local regions takes part in the relief element formation, along with octahedral slip, much stronger growth of the surface area is observed. The possibility of application of two-dimensional and three-dimensional surface roughness parameters for description of deformation relief is considered.
The crystal and magnetic structures of Sr 2LaFe 3O 8
NASA Astrophysics Data System (ADS)
Battle, P. D.; Gibb, T. C.; Lightfoot, P.
1990-02-01
The crystal and magnetic structures of the anion-deficient perovskite Sr 2LaFe 3O 8 (space group Pmma, a = 5.5095(1), b = 11.8845(5), c = 5.6028(1)AÅ) have been refined from X-ray and neutron powder diffraction data collected at room temperature. The crystal structure consists of layers of octahedral (O) and tetrahedral (T) iron-oxygen polyhedra arranged in the stacking sequence … OOTOOT … perpendicular to theyˆaxis of the unit cell. The magnetic structure is that of a G-type antiferromagnet with ordered magnetic moments of 3.77(5) and 3.15(11) μ B at the octahedral and tetrahedral sites, respectively. The low moment at the tetrahedral site is consistent with the observed disorder and magnetic anisotropy.
Gangopadhayay, Shruba; Inerbaev, Talgat; Masunov, Artëm E; Altilio, Deanna; Orlovskaya, Nina
2009-07-01
Mixed ionic-electronic conducting perovskite type oxides with a general formula ABO(3) (where A = Ba, Sr, Ca and B = Co, Fe, Mn) often have high mobility of the oxygen vacancies and exhibit strong ionic conductivity. They are key materials that find use in several energy related applications, including solid oxide fuel cell (SOFC), sensors, oxygen separation membranes, and catalysts. Barium/strontium cobaltite/ferrite (BSCF) Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) was recently identified as a promising candidate for cathode material in intermediate temperature SOFCs. In this work, we perform experimental and theoretical study of the local atomic structure of BSFC. Micro-Raman spectroscopy was performed to characterize the vibrational properties of BSCF. The Jahn-Teller distortion of octahedral coordination around Co(4+) cations was observed experimentally and explained theoretically. Different cations and oxygen vacancies ordering are examined using plane wave pseudopotential density functional theory. We find that cations are completely disordered, whereas oxygen vacancies exhibit a strong trend for aggregation in L-shaped trimer and square tetramer structure. On the basis of our results, we suggest a new explanation for BSCF phase stability. Instead of linear vacancy ordering, which must take place before the phase transition into brownmillerite structure, the oxygen vacancies in BSCF prefer to form the finite clusters and preserve the disordered cubic structure. This structural feature could be found only in the first-principles simulations and can not be explained by the effect of the ionic radii alone.
Mohanty, Debasish; Li, Jianlin; Abraham, Daniel P.; ...
2014-09-30
Discovery of high-voltage layered lithium-and manganese-rich (LMR) composite oxide electrode has dramatically enhanced the energy density of current Li-ion energy storage systems. However, practical usage of these materials is currently not viable because of their inability to maintain a consistent voltage profile (voltage fading) during subsequent charge-discharge cycles. This report rationalizes the cause of this voltage fade by providing the evidence of layer to spinel-like (LSL) structural evolution pathways in the host Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR composite oxide. By employing neutron powder diffraction, and temperature dependent magnetic susceptibility, we show that LSL structural rearrangement in LMR oxidemore » occurs through a tetrahedral cation intermediate via: i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(Li Lioct →Li Litet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [Li TM oct → Li Litet]; and ii) migration of Mn from the octahedral sites of the transition metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [Mn TMoct Mn Litet Mn Lioct)]. The findings opens the door to the potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide cathodes by manipulating the composition/structure for practical use in high-energy-density lithium-ion batteries.« less
Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)
NASA Astrophysics Data System (ADS)
Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.
2014-02-01
In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.
NASA Astrophysics Data System (ADS)
Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun
2017-12-01
This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.
Structural Evolution of Sub-10 nm Octahedral Platinum$-$Nickel Bimetallic Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Qiaowan; Xu, Yuan; Duan, Zhiyuan
Octahedral Pt alloy nanocrystals (NCs) have shown excellent activities as electrocatalysts toward oxygen reduction reaction (ORR). As the activity and stability of NCs are highly dependent on their structure and the elemental distribution, it is of great importance to understand the formation mechanism of octahedral NCs and to rationally synthesize shape-controlled alloy catalysts with optimized ORR activity and stability. However, the factors controlling the structural and compositional evolution during the synthesis have not been well understood yet. Here in this paper, we systematically investigated the structure and composition evolution pathways of Pt–Ni octahedra synthesized with the assistance of W(CO) 6more » and revealed a unique core–shell structure consisting of a Pt core and a Pt–Ni alloy shell. Below 140 °C, sphere-like pure Pt NCs with the diameter of 3–4 nm first nucleated, followed by the isotropic growth of Pt–Ni alloy on the seeds at temperatures between 170 and 230 °C forming Pt@Pt–Ni core–shell octahedra with {111} facets. Owing to its unique structure, the Pt@Pt–Ni octahedra show an unparalleled stability during potential cycling, that is, no activity drop after 10 000 cycles between 0.6 and 1.0 V. This work proposes the Pt@Pt–Ni octahedra as a high profile electrocatalyst for ORR and reveals the structural and composition evolution pathways of Pt-based bimetallic NCs.« less
Structural Evolution of Sub-10 nm Octahedral Platinum$-$Nickel Bimetallic Nanocrystals
Chang, Qiaowan; Xu, Yuan; Duan, Zhiyuan; ...
2017-05-11
Octahedral Pt alloy nanocrystals (NCs) have shown excellent activities as electrocatalysts toward oxygen reduction reaction (ORR). As the activity and stability of NCs are highly dependent on their structure and the elemental distribution, it is of great importance to understand the formation mechanism of octahedral NCs and to rationally synthesize shape-controlled alloy catalysts with optimized ORR activity and stability. However, the factors controlling the structural and compositional evolution during the synthesis have not been well understood yet. Here in this paper, we systematically investigated the structure and composition evolution pathways of Pt–Ni octahedra synthesized with the assistance of W(CO) 6more » and revealed a unique core–shell structure consisting of a Pt core and a Pt–Ni alloy shell. Below 140 °C, sphere-like pure Pt NCs with the diameter of 3–4 nm first nucleated, followed by the isotropic growth of Pt–Ni alloy on the seeds at temperatures between 170 and 230 °C forming Pt@Pt–Ni core–shell octahedra with {111} facets. Owing to its unique structure, the Pt@Pt–Ni octahedra show an unparalleled stability during potential cycling, that is, no activity drop after 10 000 cycles between 0.6 and 1.0 V. This work proposes the Pt@Pt–Ni octahedra as a high profile electrocatalyst for ORR and reveals the structural and composition evolution pathways of Pt-based bimetallic NCs.« less
DFT+U Study of Chemical Impurities in PuO 2
Hernandez, Sarah C.; Holby, Edward F.
2016-05-24
In this paper, we employ density functional theory to explore the effects of impurities in the fluorite crystal structure of PuO 2. The impurities that were considered are known impurities that exist in metallic δ-phase Pu, including H, C, Fe, and Ga. These impurities were placed at various high-symmetry sites within the PuO 2 structure including an octahedral interstitial site, an interstitial site with coordination to two neighboring O atoms, an O substitutional site, and a Pu substitutional site. Incorporation energies were calculated to be energetically unfavorable for all sites except the Pu substitutional site. When impurities were placed inmore » a Pu substitutional site, complexes incorporating the impurities and O formed within the PuO 2 structure. The observed defect-oxygen structures were OH, CO 3, FeO 5, and GaO 3. The presence of these defects led to distortion of the surrounding O atoms within the structure, producing long-range disorder of O atoms. In contrast, perturbations of Pu atoms had a relatively short-range effect on the relaxed structures. These effects are demonstrated via radial distribution functions for O and Pu vacancies. Calculated electronic structure revealed hybridization of the impurity atom with the O valence states and a relative decrease in the Pu 5f states. Minor differences in band gaps were observed for the defected PuO 2 structures containing H, C, and Ga. Finally, Fe-containing structures, however, were calculated to have a significantly decreased band gap, where the implementation of a Hubbard U parameter on the Fe 3d orbitals will maintain the calculated PuO 2 band gap.« less
Local atomic arrangement and scintillation properties of Eu- and Ce-doped NaYP{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novais, S.M.V., E-mail: suellen.mvn@gmail.com; Macedo, Z.S.
2016-01-15
Direct determination of rare earth location and local environment in NaYP{sub 2}O{sub 7} are presented. Undoped and Ln-doped NaYP{sub 2}O{sub 7} (Ln=Eu, Ce) were produced via PVA-assisted sol–gel method. Lattice parameters were determined from Rietveld refinement, showing monoclinic structure. XAS results suggested Eu{sup 3+} and Ce{sup 3+} are incorporated into NaYP{sub 2}O{sub 7} host in substitution to Y{sup 3+} site, with first coordination shell formed by six oxygen ions. Measurements at Eu edge showed a single peak in R space for Eu–O distribution. In this case, uniform interatomic distances implied to absence of significant disorder. Analysis at Ce edge presentedmore » different behavior, with Ce–O distribution characterized by a split peak in R space. Nearest neighborhood was found to be distributed with Ce occupying an off-center position in Y site. Under X-ray excitation, {sup 5}D{sub 0}→{sup 7}F{sub J} emission lines of Eu{sup 3+} were identified for NaYP{sub 2}O{sub 7}:Eu. NaYP{sub 2}O{sub 7}:Ce presented a broad emission formed by 5d→{sup 2}F{sub J} transitions of Ce{sup 3+}, with the superposition attributed to the effect of distorted oxygen octahedra around the dopant ions. - Graphical abstract: EuO{sub 6} and CeO{sub 6} octahedral arrangement relative to Y site in NaYP{sub 2}O{sub 7} host, and XEOL emission of corresponding doped samples. - Highlights: • Lattice parameters of NaYP{sub 2}O{sub 7} undoped sample confirmed monoclinic structure. • Dopants Eu and Ce are incorporated in the trivalent state. • Local order of Eu{sup 3+} and Ce{sup 3+} dopants substituting Y{sup 3+} consist of octahedral symmetry. • Off-center displacement in the case of Ce{sup 3+} position was discussed. • Luminescent properties under X-ray excitation may allow practical applications.« less
NASA Astrophysics Data System (ADS)
Anantharamaiah, P. N.; Joy, P. A.
2017-11-01
The influence of size and crystallographic site preference of three non-magnetic isovalent metal ions of larger (In3+), comparable (Ga3+) and smaller (Al3+) sizes, substituted for Fe3+ in the spinel lattice of CoFe2O4 on its magnetostrictive properties is compared. For the different compositions in CoFe2-x M x O4 (M = In3+, Ga3+, Al3+ and 0 ⩽ x ⩽ 0.3), significant changes in the structural and magnetic parameters are observed with the degree of substitution, due to the size and site preferences. Magnetic and Raman spectral studies revealed that Al3+ is substituted for Fe3+ at both octahedral and tetrahedral sites for all compositions, whereas In3+ and Ga3+ are substituted for Fe3+ at the tetrahedral site only for x ⩽ 0.2 and partly at the octahedral site for x > 0.2. Regardless of the differences in the ionic size, site preference and the magnetic properties, compositions in all three series with x = 0.1 showed almost equal magnitude of maximum magnetostriction (λ max = ~230 ppm), marginally higher than that of x = 0 (217 ppm). However, at higher substituted compositions, λ max is decreased with x, but the decrease is much faster for the Al-substituted compositions. The maximum strain sensitivity, [dλ/dH]max, is also found to be comparable for all three compositions. The comparable magnetostriction characteristics and high strain at low magnetic fields for different substituted compositions at low levels of substitution are attributed to the local structural distortions associated with the inhomogeneous distribution of the substituted ions in the spinel ferrite lattice. The studies suggest ways to optimise the magnetostriction properties of properly substituted sintered cobalt ferrite for applications in sensors and actuators.
Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.
2016-08-16
A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs + at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of themore » octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs + and the structure and thermodynamics of Cs + adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs + adsorption; notably, Cs + adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs + and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge located in the octahedral sheet) was favored over muscovite (layer charge located in the tetrahedral sheet) due to the increased distance with surface potassium ions.« less
The Changing Nature of the Chemical Bond
NASA Astrophysics Data System (ADS)
Angel, R. J.; Ross, N. L.; Zhao, J.
2006-12-01
It is commonly assumed that the relationship between bond strength and bond length for a particular pair of atoms is a simple and single-valued one for a given coordination environment; longer bonds are weaker. This is the basis of the concept of bond valence, for example. Indeed, in strongly-bonded oxide minerals, the range of bond lengths found for a given cation-anion polyhedron is so small that it was long thought that the polyhedral bulk moduli were essentially independent of structure type and thus the environment of the polyhedron. This view is incompatible with the discovery that the response of the perovskite structure to high pressures is controlled by the equipartition of bond-valence strain between the A and B cation sites within the structure [1]. The same appears to be true, within experimental uncertainties, for all framework structures with rigid-unit modes. In perovskites, this explicitly implies that the octahedral compressibility depends not only upon the octahedral cation, but also upon the compressibility of the cation-oxygen bonds of the extra-framework (nominally dodecahedral) site. Thus the octahedral compressibility of a B cation site must change as the A- site cation is changed, whether or not the B-O bond lengths change as a result of the substitution on the A site. The strength of bonds is thus dependent upon the crystal environment and not solely upon the bond length. The observation of a plateau effect in the variation of octahedral compressibilities in perovskite solid solutions suggests that the bond-valence matching principle is followed not just globally, but on a local scale as well. Such observations should allow the change with pressure of the excess thermodynamic properties of solid solutions to be directly related to the microscopic (atomic scale) evolution of the structure. [1] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263
Tetrachlorido[(diphenylphosphino)diphenylphosphine oxide-κO]zirconium(IV) benzene monosolvate
Ogawa, Takahiko; Kajita, Yuji; Masuda, Hideki
2009-01-01
In the title centrosymmetric mononuclear ZrIV compound, [ZrCl4{P(O)(C6H5)2P(C6H5)2}2]·C6H6, the central ZrIV ion is coordinated by two O atoms from two symmetry-related (diphenylphosphino)diphenylphosphine ligands and four Cl atoms in a distorted octahedral geometry with the four Cl atoms in the equatorial positions. The molecule lies about a center of inversion and the benzene solvent molecule about another center of inversion. The P=O bond [1.528 (2) Å] is slightly longer than a typical P=O double bond (average 1.500 ). PMID:21577468
Adhikari, Birendra Babu; To, Cuong-Alexander; Iwasawa, Tetsuo; Schramm, Michael P.
2015-01-01
Calix[6]arene hexacarboxylic acid binds instantly and with low symmetry to Pb, Sr and Ba. Later a highly symmetric up-down alternating conformation emerges. The solution structures are identical to their p-tert-butylcalix[6]arene hexacarboxylic acid counterparts. With either receptor an octahedral cage is formed around the metal. The transformation from low to high symmetry however proceeds at significantly faster rates for the de-t-butylated host. PMID:26752941
Two-Dimensional Lead Halide Perovskites Templated by a Conjugated Asymmetric Diammonium.
Hautzinger, Matthew P; Dai, Jun; Ji, Yujin; Fu, Yongping; Chen, Jie; Guzei, Ilia A; Wright, John C; Li, Youyong; Jin, Song
2017-12-18
We report novel two-dimensional lead halide perovskite structures templated by a unique conjugated aromatic dication, N,N-dimethylphenylene-p-diammonium (DPDA). The asymmetrically substituted primary and tertiary ammoniums in DPDA facilitate the formation of two-dimensional network (2DN) perovskite structures incorporating a conjugated dication between the PbX 4 2- (X = Br, I) layers. These 2DN structures of (DPDA)PbI 4 and (DPDA)PbBr 4 were characterized by single-crystal X-ray diffraction, showing uniquely low distortions in the Pb-X-Pb bond angle for 2D perovskites. The Pb-I-Pb bond angle is very close to ideal (180°) for a 2DN lead iodide perovskite, which can be attributed to the ability of the rigid diammonium DPDA to insert into the PbX 6 2- octahedral pockets. Optical characterization of (DPDA)PbI 4 shows an excitonic absorption peak at 2.29 eV (541 nm), which is red-shifted in comparison to similar 2DN lead iodide structures. Temperature-dependent photoluminescence of both compounds reveals both a self-trapped exciton and free exciton emission feature. The reduced exciton absorption energy and emission properties are attributed to the dication-induced structural order of the inorganic PbX 4 2- layers. DFT calculation results suggest mixing of the conjugated organic orbital component in the valence band of these 2DN perovskites. These results demonstrate a rational new strategy to incorporate conjugated organic dications into hybrid perovskites and will spur spectroscopic investigations of these compounds as well as optoelectronic applications.
NASA Astrophysics Data System (ADS)
Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.
2015-05-01
Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.
Thermal expansion and phase transitions of α-AlF{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morelock, Cody R.; Hancock, Justin C.; Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu
ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppmmore » K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.« less
Transition from reconstruction toward thin film on the (110) surface of strontium titanate
Wang, Z.; Loon, A.; Subramanian, A.; ...
2016-03-08
The surfaces of metal oxides often are reconstructed with a geometry and composition that is considerably different from a simple termination of the bulk. Such structures can also be viewed as ultrathin films, epitaxed on a substrate. Here, the reconstructions of the SrTiO 3 (110) surface are studied combining scanning tunneling microscopy (STM), transmission electron diffraction, and X-ray absorption spectroscopy (XAS), and analyzed with density functional theory calculations. Whereas SrTiO 3 (110) invariably terminates with an overlayer of titania, with increasing density its structure switches from n × 1 to 2 × n. At the same time the coordination ofmore » the Ti atoms changes from a network of corner-sharing tetrahedra to a double layer of edge-shared octahedra with bridging units of octahedrally coordinated strontium. Furthermore, this transition from the n × 1 to 2 × n reconstructions is a transition from a pseudomorphically stabilized tetrahedral network toward an octahedral titania thin film with stress-relief from octahedral strontia units at the surface.« less
NASA Astrophysics Data System (ADS)
Uçar, İbrahim; Bulut, Ahmet; Karadağ, Ahmet; Kazak, Canan
2007-06-01
Two new dipicolinate complexes of cobalt, [Co(dpc)(na)(H 2O) 2]·H 2O ( 1) and [Co(dpc)(ina)(H 2O) 2] ( 2) [dpc is dipicolinate or pyridine-2,6-dicarboxylate, na is nicotinamide and ina is isonicotinamide], have been prepared and characterized by thermal analysis, IR spectroscopy and X-ray diffraction techniques. The complex ( 1) crystallizes in triclinic system, whereas the complex ( 2) crystallizes in monoclinic system. The Co(II) ion in both complexes is bonded to dpc ligand through pyridine N atom together with one O atom of each carboxylate group, two aqua ligands and N pyridine atom of na ( 1) or ina ( 2), forming the distorted octahedral geometry. The complex molecules ( 1) and ( 2) are connected via N sbnd H⋯O and O sbnd H⋯O hydrogen bonds. The voltammetric behaviour of complexes ( 1) and ( 2) was also investigated in DMSO (dimethylsulfoxide) solution by cyclic voltammetry using n-Bu 4NClO 4 supporting electrolyte. The complexes exhibit only metal centered electroactivity in the potential ±1.25 V versus Ag/AgCl reference electrode.
NASA Astrophysics Data System (ADS)
Siddiqi, Zafar A.; Sharma, Prashant K.; Shahid, M.; Kumar, Sarvendra; Anjuli; Siddique, Armeen
The present ternary complexes [Cu(ada)(phen)(H2O)]·2H2O (1), [Co2(ada)2(phen)2(H2O)2] (2) and [{Cu(ada)3(bipy)}n·3nH2O] (3) (H2ada = adipic acid, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine) obtained under varying experimental conditions were characterized by spectral, electrochemical and thermal studies. The bonding modes and the spatial arrangements of the carboxylate dianion around the metal ions have been investigated employing FTIR, EPR and X-ray crystallographic studies. Present data revealed a six coordinate distorted octahedral geometry for 2 with a = 8.068, b = 9.788, c = 11.788 Å, α = 70.464, β = 75.109, γ = 72.063° and a five coordinate square pyramidal geometry for 3 with a = 9.509, b = 9.912, c = 12.656 Å, α = 70.486, β = 73.604, γ = 75.162°. The superoxide dismutase (SOD) mimic activities of the complexes are in the order 1 > 3 > 2.
Kharlova, Marharyta I; Piletska, Kseniia O; Domasevitch, Kostiantyn V; Shtemenko, Alexander V
2017-04-01
In the title compound, [ReBr(C 16 H 16 N 4 O 3 )(CO) 3 ]·CH 3 OH, the Re I atom adopts a distorted octa-hedral coordination sphere with a facial arrangement of the three carbonyl ligands. Two N atoms of the chelating 5-(3,4,5-tri-meth-oxy-phen-yl)-3-(pyridin-2-yl)-1 H -1,2,4-triazole ligand and two carbonyl ligands define the equatorial plane of the complex, with the third carbonyl ligand and the bromide ligand in axial positions. Conventional hydrogen bonds including the methanol solvent mol-ecules assemble the complex mol-ecules through mutual N-H⋯O-H⋯Br links [N⋯O = 2.703 (3) Å and O⋯Br = 3.255 (2) Å] into centrosymmetric dimers, whereas weaker C-H⋯O and C-H⋯Br hydrogen bonds [C⋯O = 3.215 (3)-3.390 (4) Å and C⋯Br = 3.927 (3) Å] connect the dimers into double layers parallel to the (111) plane.
Kavitha, P; Saritha, M; Laxma Reddy, K
2013-02-01
Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL(1)), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL(2)), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL(3)) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL(4)). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands. Copyright © 2012 Elsevier B.V. All rights reserved.
Nicholson, T L; Mahmood, A; Refosco, F; Tisato, F; Müller, P; Jones, A G
2009-08-01
The nitrosyl complex H[TcNOCl(4)] reacts with the tridentate ligand bis[(2-diphenylphosphino)propyl]amine (PNPpr) to yield a mixture of the mer or fac isomers of [TcCl(2)(NO)(PNPpr)]. In acetonitrile, where the ligand is freely soluble, reaction occurs at room temperature to yield mostly the mer isomer with the linear nitrosyl ligand cis to the amine ligand; and the phosphine ligands arranged in a mutually trans orientation. The reaction in methanol requires reflux to dissolve the lipophilic ligand and generates the fac isomer of [TcCl2(NO)(PNPpr)] as the major product, with the tridentate ligand in a facial arrangement, leaving the chlorides and nitrosyl ligand in the remaining facial sites. The steric bulk of the tridentate ligand's diphenylphophino- moieties results in a significant distortion from octahedral geometry, with the P-Tc-P bond angle expanded to 99.48(4)°. The infrared spectra display absorptions from these nitrosyl ligands in the 1700 and 1800 cm(-1) regions for the fac and mer isomers respectively. The ESI(+) mass spectra each display the parent ion at 647 m/z.
NASA Astrophysics Data System (ADS)
Rao, M. V. Sambasiva; Kumar, A. Suneel; Ram, G. Chinna; Tirupataiah, Ch.; Rao, D. Krishna
2018-01-01
Multi-component glass ceramics composition Na2O-PbO-Bi2O3-SiO2 doped with different concentrations of Fe2O3 as nucleating agent were characterised by XRD, SEM (scanning electron microscope) and DTA (differential thermal analysis) techniques. Optical absorption, EPR, FTIR and Raman studies are also carried out on these glass ceramics. Absorption bands observed at about 457, 489, 678 and 820 nm are the characteristics of Fe3+ ions whereas the band observed at about 964 nm is due to Fe2+ ions. EPR studies suggested that Fe3+ ions entered in the lattice as tetragonally distorted octahedral symmetry or rhombic sites at low concentration of Fe2O3, whereas at higher concentration of Fe2O3 (beyond 1 mol%), the super exchange type of interactions between multivalency iron ions begin to dominate. FTIR and Raman spectra have revealed the behaviour of various structural units in the glass ceramic matrix. The analysis of these spectroscopic studies indicates that iron ions do exist in Fe3+ and Fe2+ state.
NASA Astrophysics Data System (ADS)
Kushawaha, S. K.; Dani, R. K.; Bharty, M. K.; Chaudhari, U. K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.
2014-04-01
A new Zn(II) complex [Zn(pbth)2] (where Hpbth = N-picolinoyl-N‧-benzothioylhydrazide) has been synthesized and characterized by elemental analyses, IR, UV-Visible and single crystal X-ray data. The distorted octahedral complex [Zn(pbth)2] crystallizes in monoclinic system with space group C2/c and is stabilized by various types of inter and intramolecular extended hydrogen bonding providing supramolecular framework. The optimized molecular geometry of N-picolinoyl-N‧-benzothioylhydrazide (Hpbth) and the zinc complex in the ground state have been calculated by using the DFT method using B3LYP functional with 6-311 G(d,p){C,H,N,O,S}/Lanl2DZ basis set. The results of the optimized molecular geometry are presented and compared with the experimental X-ray diffraction data. In addition, quantum chemical calculations of Hpbth and the complex, molecular electrostatic potential (MEP), contour map and frontier molecular orbital analysis were performed. The solid state electrical conductivity and thermal behaviour (TGA) of the complex were investigated. The bioefficacy of the complex has been examined against the growth of bacteria in vitro to evaluate its anti-microbial potential.
NASA Astrophysics Data System (ADS)
Rathi, Parveen; Singh, D. P.
2015-08-01
Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.
Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2
NASA Astrophysics Data System (ADS)
Kim, Sera; Kim, Jung Ho; Kim, Dohyun; Hwang, Geunwoo; Baik, Jaeyoon; Yang, Heejun; Cho, Suyeon
2017-06-01
Monoclinic group 6 transition metal dichalcogenides (TMDs) have been extensively studied for their intriguing 2D physics (e.g. spin Hall insulator) as well as for ohmic homojunction contacts in 2D device applications. A critical prerequisite for those applications is thickness control of the monoclinic 2D materials, which allows subtle engineering of the topological states or electronic bandgaps. Local thickness control enables the realization of clean homojunctions between different electronic states, and novel device operation in a single material. However, conventional fabrication processes, including chemical methods, typically produce non-homogeneous and relatively thick monoclinic TMDs, due to their distorted octahedral structures. Here, we report on a post-patterning technique using laser-irradiation to fabricate homojunctions between two different thickness areas in monoclinic MoTe2. A thickness-dependent electronic change from a metallic to semiconducting state, resulting in an electronic homojunction, was realized by the optical patterning of pristine MoTe2 flakes, and a pre-patterned device channel of monoclinic MoTe2 with a thickness-resolution of 5 nm. Our work provides insight on an optical post-process method for controlling thickness, as a promising approach for fabricating impurity-free 2D TMDs homojunction devices.
Size-dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins
NASA Astrophysics Data System (ADS)
Lee, Eunsook; Kim, D. H.; Hwang, Jihoon; Lee, Kiho; Yoon, Sungwon; Suh, B. J.; Hyun Kim, Kyung; Kim, J.-Y.; Jang, Z. H.; Kim, Bongjae; Min, B. I.; Kang, J.-S.
2013-04-01
The structural identity of the biomineralized iron core nanoparticles in Helicobacter pylori ferritins (Hpf's) has been determined by employing soft x-ray absorption spectroscopy and soft x-ray magnetic circular dichroism. Valence states of Fe ions are nearly trivalent in all Hpf's, indicating that the amount of magnetite (Fe3O4) is negligible. With increasing filling of Fe ions, the local configurations of Fe3+ ions change from the mixture of the tetrahedral and octahedral symmetries to the octahedral symmetry. These results demonstrate that the biomineralization of the ferritin core changes from maghemite-like (γ-Fe2O3) formation to hematite-like (α-Fe2O3) formation with increasing Fe content.
Structural and Dynamical Properties of 2:1 Phyllosilicates Edges and Nanoparticles
NASA Astrophysics Data System (ADS)
Newton, A. G.; Sposito, G.
2012-12-01
Classical mechanics simulations of bulk 2:1 phyllosilicate minerals provide atomic scale perspectives of the macroscopic sorption and diffusion phenomena in interlayer nanopores. An equivalent perspective of these interfacial phenomena in macropores bounded by the edges of stacked phyllosilicate particles is not possible due to the absence of a forcefield for the edges of phyllosilicate minerals. A valid forcefield to describe the phyllosilicate edge is essential to link the quantum and continuum mechanical models. The inherently disordered edge of 2:1 phyllosilicate minerals and rarity of well-crystallized samples further complicates the task of validating a forcefield for the phyllosilicate edge. Periodic bond chain theory identifies three tetrahedral-octahedral-tetrahedral (TOT) structures that parallel the edge faces of pseudohexagonal phyllosilicate particles. These TOT structures are the basis of atomistic models of the dominant edge interface and nanoparticles. The CLAYFF forcefield describes all pairwise atomic interactions with only minimal partial charge adjustments to maintain model neutrality, where necessary. Atomistic simulations in the isobaric-isothermal ensemble at nanosecond timescales predict equilibrium edge structures and dynamical properties of the aqueous interface. The CLAYFF forcefield and the limited adjustments to parameters predict edge and particle structures that are consistent with the results of ab initio MD simulations, support macroscopic observations of phyllosilicate reactivity, and provide legitimacy for disordered models of 2:1 phyllosilicates. The heterogeneous edge structures can be explained by the chemistry of the octahedral cation and surface charge anisotropy. In the plane of the octahedral sheet, the cations of the octahedral layer can assume four-, five-, and six-coordinate polyhedral geometries at the edge interface. These disordered edge structures create alternate alignments in the tetrahedral sheet. The structural and dynamical properties of the phyllosilicate edge interface differ from those of the 2:1 phyllosilicate basal surface. The non-planar surface structure and abundant oxygen atoms and hydroxyl groups at the edge order the water layers such that a steep gradient in the water self-diffusion coefficient exists near the surface. Isolated phyllosilicate nanoparticles maintain the original crystal habit; disordered edge structures emerge upon stacking of the particles. These simulations validate CLAYFF as a general forcefield for 2:1 phyllosilicate edges and nanoparticles and demonstrate a powerful method for future investigations of geologic media at the mesoscale.
NASA Astrophysics Data System (ADS)
Arthi, P.; Shobana, S.; Srinivasan, P.; Mitu, L.; Kalilur Rahiman, A.
2015-05-01
A series of bis(phenoxo) bridged binuclear manganese(II) complexes of the type [Mn2L1-3](ClO4)2 (1-3) containing 3,5-dinitrobenzoyl pendant-arms have been synthesized by cyclocondensation of 2,6-diformyl-4-R-phenols (where R = sbnd CH3, sbnd C(CH3)3 or sbnd Br) with 2,2‧-3,5-dinitrobenzoyliminodi(ethylamine) trihydrochloride in the presence of manganese(II) perchlorate. The IR spectra of complexes indicate the presence of uncoordinated perchlorate anions. The UV-Vis spectra of complexes suggest the distorted octahedral geometry around manganese(II) nuclei. The EPR spectra of Mn(II) complexes show a broad signal with g value 2.03-2.04, which is characteristic for octahedral high spin Mn2+ complex. The observed room temperature magnetic moment values of the Mn(II) complexes (5.60-5.62 B.M.) are less than the normal value (5.92 B.M.), indicating weak antiferromagnetic coupling interaction between the two metal ions. Electrochemical studies of the complexes show two distinct quasi-reversible one electron transfer processes in the cathodic (E1pc = -0.73 to -0.76 V, E2pc = -1.30 to -1.36 V), and anodic (E1pa = 1.02-1.11 V, E2pa = 1.32-1.79 V) potential regions. Antibacterial efficacy of complexes have been screened against four Gram (-ve) and two Gram (+ve) bacterial strains. The DNA interaction studies suggest that these complexes bind with CT-DNA by intercalation, giving the binding affinity in the order 1 > 2 > 3. All the complexes display significant cleavage activity against circular plasmid pBR322 DNA. Docking simulation was performed to insert complexes into the crystal structure of EGFR tyrosine kinase and B-DNA at active site to determine the probable binding mode.
NASA Astrophysics Data System (ADS)
Gövdeli, Nezafet; Karakaş, Duran
2018-07-01
Quantum chemical calculations at B3LYP/LANL2DZ/6-31G(d) level were made on anti-eclipsed, anti-staggered, syn-eclipsed, syn-staggered conformers of hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes in the gas phase. The most stable conformer of the complexes was found to be anti-staggered according to the total energy values calculated at given level. Structural parameters, vibration spectra, charge distributions, molecular orbital energy diagrams, contour diagrams of frontier orbitals, molecular electrostatic potential maps and some electronic structure descriptors were obtained for the most stable conformers. NMR spectra of the most stable conformers were calculated at GIAO/B3LYP/LANL2DZ level. The most stable conformer geometry was found to be distorted octahedral. IR and NMR spectra of the complexes are consistent with their geometry. HOMOs of the complexes were found to be center-atomic character and LUMOs were carbene-carbon character. From the calculated charge analysis and molecular electrostatic potential maps, it is found that carbene-carbon acts as electrofil and metal center nucleophile. It is suggested that the catalytic properties of the carbene complexes may be due to the fact that the carbene-carbon behave as electrophile and metal center nucleophile. Some electronic structure descriptors of the complexes were calculated and the molecular properties were estimated.
Kianfar, Ali Hossein; Mahmood, Wan Ahmad Kamil; Dinari, Mohammad; Azarian, Mohammad Hossein; Khafri, Fatemeh Zare
2014-06-05
The [Co(Me(2)Salen)(PBu(3))(OH(2))]BF4 and [Co(Me(2)Salen)(PPh(3))(Solv)]BF(4), complexes were synthesized and characterized by FT-IR, UV-Vis, (1)H NMR spectroscopy and elemental analysis techniques. The coordination geometry of [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) was determined by X-ray crystallography. It has been found that the complex is containing [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) and [Co(Me(2)Salen)(PPh(3))(EtOH)]BF(4) hexacoordinate species in the solid state. Cobalt atom exhibits a distorted octahedral geometry and the Me(2)Salen ligand has the N2O2 coordinated environment in the equatorial plane. The [Co(Me(2)Salen)(PPh(3))(H(2)O)]BF(4) complex shows a dimeric structure via hydrogen bonding between the phenolate oxygen and hydrogens of coordinated H2O molecule. These complexes were incorporated into Montmorillonite-K10 nanoclay. The modified clays were identified by FT-IR, XRD, EDX, TGA/DTA, SEM and TEM techniques. According to the XRD results of the new nanohybrid materials, the Schiff base complexes are intercalated in the interlayer spaces of the clay. SEM and TEM micrographs show that the resulting hybrid nanomaterials have layer structures. Also, TGA/DTG results show that the intercalation reaction was taken place successfully. Copyright © 2014. Published by Elsevier B.V.
Park, Gi Tae; Jo, Donghui; Ahn, Nak Ho; Cho, Jung; Hong, Suk Bong
2017-07-17
The structure-directing effects of a series of polymethylimidazolium cations with different numbers of methyl groups as organic structure-directing agents (OSDAs) in the synthesis of aluminophosphate (AlPO 4 )-based molecular sieves in both fluoride and hydroxide media are investigated. On the one hand, among the OSDAs studied here, the smallest 1,3-dimethylimidazolium and the largest 1,2,3,4,5-pentamethylimidazolium cations were found to direct the synthesis of a new variant of the triclinic chabazite (CHA)-type AlPO 4 material, designated AlPO 4 -34(t) V , and the one-dimensional small-pore silicoaluminophosphate (SAPO) molecular sieve STA-6 in hydroxide media, respectively. On the other hand, the intermediate-sized 1,2,3,4-tetramethylimidazolium cation gave SSZ-51, a two-dimensional large-pore SAPO material, in fluoride media. Synchrotron powder X-ray diffraction and Rietveld analyses reveal that as-made AlPO 4 -34(t) V contains penta-coordinated framework Al species connected by hydroxyl groups, as well as tetrahedral framework Al, which contrasts with the distortions arising from the two F - or OH - bridges between octahedral Al atoms in all already known AlPO 4 -34 materials. The presence of Al-OH-Al linkages in this triclinic AlPO 4 -34 molecular sieve has been further corroborated by thermal analysis, variable-temperature IR,27Al magic-angle spinning NMR, and dispersion-corrected density functional theory calculations.
NASA Astrophysics Data System (ADS)
Ravindran, P.; Vidya, R.; Fjellvåg, H.; Kjekshus, A.
2008-04-01
Recently, using density-functional theoretical calculations, we have reported [Phys. Rev. B 74, 054422 (2006)] that formal Fe3+ ions reside at the square-pyramidal site and Fe4+ ions in the octahedral site in Sr4Fe4O11 . Based on the interpretation of experimental structural and Mössbauer data from the literature, Adler concludes that our previous first-principles results disagree with experiments on the assignment of oxidation states to Fe in the square-pyramidal and octahedral environments in Sr4Fe4O11 . From a critical examination of the structure data for Sr4Fe4O11 and related oxides with Fe in different oxidation states and theoretically simulated Mössbauer parameters (hyperfine field, isomer shift, and quadrupole splitting), here we show that information on charges residing on the different constituents cannot be directly derived either from experimental structure or Mössbauer data. From additional analyses of the chemical bonding on the basis of charge density, charge transfer, electron localization function, crystal orbital Hamilton population, Born effective charge, and partial density of states, we substantiate our previous assignment of formal Fe3+ and Fe4+ to the square-pyramidal and octahedral sites, respectively, in Sr4Fe4O11 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Chuan; Hu, Mary Y.; Jaegers, Nicholas R.
The metal-support interaction in γ-Al2O3 supported WOX catalysts is investigated by a combination of high field quantitative single pulse (SP) 27Al MAS NMR spectroscopy, 2D MQMAS, 1H-27Al CP/MAS, and electronic structure calculations. NMR allows the observation of at least seven different Al sites, including a pentahedral Al site, three different tetrahedral Al sites, and three octahedral Al sites. It is found that the penta-coordinated Al (AlP) site density decreases monotonically with an increased WOX loading while the octahedral Al (AlO) site density increases concurrently. This suggests that the Alp sites are the preferred surface anchoring positions for the WOX species.more » Importantly, the AlP site isotropic chemical shift observed for the unsupported γ-Al2O3 at about 38 ppm migrates into the octahedral region with a new isotropic chemical shift value appearing near 7 ppm when the Alp site is anchored by WOX species. Density functional theory (DFT) computational modeling of the NMR parameters on proposed cluster models is carried out to accurately interpret the dramatic chemical shift changes from which the detailed anchoring mechanisms are obtained. It is found that tungsten dimers and monomers are the preferred supported surface species on γ-Al2O3, wherein one monomeric and several dimeric structures are identified as the most likely surface anchoring structures.« less
Ferroelectricity in d0 double perovskite fluoroscandates
NASA Astrophysics Data System (ADS)
Charles, Nenian; Rondinelli, James M.
2015-08-01
Ferroelectricity in strain-free and strained double perovskite fluorides, Na3ScF6 and K2NaScF6 , is investigated using first-principles density functional theory. Although the experimental room temperature crystal structures of these fluoroscandates are centrosymmetric, i.e., Na3ScF6 (P 21/n ) and K2NaScF6 (F m 3 ¯m ), lattice dynamical calculations reveal that soft polar instabilities exist in each prototypical cubic phase and that the modes harden as the tolerance factor approaches unity. Thus the double fluoroperovskites bear some similarities to A B O3 perovskite oxides; however, in contrast, these fluorides exhibit large acentric displacements of alkali metal cations (Na, K) rather than polar displacements of the transition metal cations. Biaxial strain investigations of the centrosymmetric and polar Na3ScF6 and K2NaScF6 phases reveal that the paraelectric structures are favored under compressive strain, whereas polar structures with in-plane electric polarizations (˜5 -18 μ C cm-2 ) are realized at sufficiently large tensile strains. The electric polarization and stability of the polar structures for both chemistries are found to be further enhanced and stabilized by a coexisting single octahedral tilt system. Our results suggest that polar double perovskite fluorides may be realized by suppression of octahedral rotations about more than one Cartesian axis; structures exhibiting in- or out-of-phase octahedral rotations about the c axis are more susceptible to polar symmetries.
NASA Astrophysics Data System (ADS)
Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He
2016-08-01
The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba
NASA Astrophysics Data System (ADS)
Fayed, Ahmed M.; Elsayed, Shadia A.; El-Hendawy, Ahmed M.; Mostafa, Mohamed R.
2014-08-01
New cis-dioxomolybdenum(VI) and oxovanadium(IV) complexes of the Schiff base, derived from S-methyl dithiocarbazate and 2,3-dihydroxybenzaldehyde (H2dhsm), have been synthesized. The complexes of the type cis-[MoO2(dhsm)] (1a), cis-[MoO2(dhsm)(D)] (1b-1d) [D = neutral monodentate ligand; EtOH, pyridine (py) or imidazole (imz)], [VO(dhsm)(Nsbnd N)] (2a, 2b) [Nsbnd N = 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)] and [VO(dhsm)] (2c) have been isolated, characterized by 1H NMR, IR, UV-Vis and EPR spectral studies and investigated by cyclic voltammetry. The X-ray crystal structure of cis-[MoO2(dhsm)(EtOH)] (1b) has been determined and shows that the complex has a distorted octahedral geometry in which the H2dhsm behaves as a dianionic ONS tridentate ligand coordinating via phenoxide oxygen, hydrazinic nitrogen and thiolate sulfur. The oxomolybdenum(IV) complex [MoO(dhsm)] (1e) has obtained from dioxomolybdenum(VI) complex (1b) by oxo abstraction with PPh3. The reactivity of the complexes toward catalytic oxidation of alcohols in the presence of H2O2 and t-BuOOH as co-oxidants under solvent free conditions is reported.
Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.
1996-04-01
We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.
NASA Astrophysics Data System (ADS)
Fu, Sheng; Tan, Jin; Bai, Xin; Yang, Shanjie; You, Lei; Du, Zhengkang
2018-01-01
As candidates for display and lighting materials, a series of gallium-substituted cerium-doped yttrium aluminum garnet (Y3(GaxAl1-x)5O12: Ce3+) phosphors were synthesized by high temperature solid-state reaction. The phases, morphology, luminescence spectra and thermal stability of the phosphors were investigated. The volatilization of Ga2O3 induces the constituents out of stoichiometric ratio and different impurities in the system. The excitation and emission spectra occur red shift (339 nm - 351 nm) and blue shift (465 nm - 437 nm), and blue shift (541 nm - 517 nm), respectively. The spectra have no further blue shift and the luminescence intensity decrease with x over 0.4. Combining crystal structure with PL spectrum, the distortion of dodecahedron and crystal field splitting of 5d level of Ce3+ are influenced by Ga3+ in octahedral coordination polyhedron rather than tetrahedron. The crystalline perfection and Ga3+ occupying the tetrahedron induce less garnet phase formation, more impurities and the 5d level located in the conductive bands, thus accounting for the x = 0.4 turning points of the PL and PLE intensity. Based on the thermal quenching and CIE, the Y3(GaxAl1-x)5O12: Ce3+0.06 phosphors have great potential for use on the w-LED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya
Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr 1/3Fe 1/3Mn 1/3O 2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g –1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) →more » (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na + deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+ can be effectively suppressed by Fe 3+ and Mn 4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO 6 octahedral distortion and recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya
Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway formore » NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.« less
Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya; ...
2017-02-14
Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr 1/3Fe 1/3Mn 1/3O 2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g –1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) →more » (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na + deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr 4+ to Cr 3+ and Cr 6+ can be effectively suppressed by Fe 3+ and Mn 4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO 6 octahedral distortion and recovery.« less
NASA Astrophysics Data System (ADS)
Dai, Jianhong; Yin, Yunyu; Wang, Xiao; Shen, Xudong; Liu, Zhehong; Ye, Xubin; Cheng, Jinguang; Jin, Changqing; Zhou, Guanghui; Hu, Zhiwei; Weng, Shihchang; Wan, Xiangang; Long, Youwen
2018-02-01
A new pyrochlore oxide C d2I r2O7 with an I r5 + charge state was prepared by high-pressure techniques. Although strong spin-orbit coupling (SOC) dominates the electronic states in most iridates so that a SOC-Mott state is proposed in S r2Ir O4 in the assumption of an undistorted Ir O6 octahedral crystalline field, the strongly distorted one in the current C d2I r2O7 exhibits a competing interaction with the SOC. Unexpected from a strong SOC limit, C d2I r2O7 deviates from a nonmagnetic and insulating J =0 ground state. It displays short-range ferromagnetic correlations and metallic electrical transport properties. First-principles calculations well reproduce the experimental observation, revealing the large mixture between the jeff=1 /2 and jeff=3 /2 bands near the Fermi surface due to the significant distortion of Ir O6 octahedra. This work sheds light on the critical role of a noncubic crystalline field in electronic properties which has been ignored in past studies of 5 d -electron systems.
Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M
2010-01-04
A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2) (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)(2).2H(2)O]. An Fe(II) complex of 3-Hfl, [(6-Ph(2)TPA)Fe(3-Hfl)]ClO(4) (8), was isolated and characterized by elemental analysis, FTIR, UV-vis, (1)H NMR, cyclic voltammetry, and a magnetic moment measurement. This complex reacts with O(2) to produce the diiron(III) mu-oxo compound [(6-Ph(2)TPAFe(3Hfl))(2)(mu-O)](ClO(4))(2) (6).
NASA Astrophysics Data System (ADS)
Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh
2011-05-01
Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Hökelek, Tuncer
2017-02-01
Three new cadmium(II)-metal(II) cyanide complexes, [Cd(4aepy)2(H2O)2][Ni(CN)4] (1), [Cd(4aepy)2(H2O)2][Pd(CN)4] (2) and [Cd(4aepy)2(H2O)2][Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine], have been synthesized and characterized by elemental, thermal, FT-IR and Raman spectral analyses. The crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction technique, in which they crystallize in the monoclinic system and C2/c space group. The M(II) [M(II) = Ni(II), Pd(II) and Pt(II)] ions are coordinated with the carbon atoms of the four cyanide groups in the square planar geometries and the [M(CN)4]2- ions act as counter ions. The Cd(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. 3D supramolecular structures of 1 and 2 were occurred by M⋯π and hydrogen bonding (Nsbnd H⋯N and Osbnd H⋯N) interactions. Vibrational assignments of all the observed bands were given and the spectral properties were also supported the crystal structures of the complexes. A possible decompositions of the complexes were investigated in the temperature range 30-800 °C in the static atmosphere.
Spin structure, magnetism, and cation distributions of NiFe2-xAlxO4 solid solutions
NASA Astrophysics Data System (ADS)
Kamali, Saeed
2017-07-01
Low temperature Mössbauer spectroscopy together with isothermal magnetization and zero-field-cooled and field-cooled measurements have been used to perform a systematic investigation of the cation distributions and magnetic properties of solid solutions of NiFe2-xAlxO4 with x = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0. Mössbauer spectroscopy for the starting member of the series, NiFe2O4, shows that nickel atoms occupy the octahedral sites and are in 2+ oxidation state, while iron atoms, all in 3+ oxidation state, occupy equally the tetrahedral and the octahedral sites. When low concentration of aluminum, x = 0.4, is incorporated into the system, they substitute preferentially iron atoms in the octahedral sites. As the concentration of aluminum is increased, there are distributions of them in both the tetrahedral and octahedral sites leading to complex cation distributions. The magnetic characters of iron and nickel atoms and the diamagnetic nature of aluminum atoms and the complex cation distributions result in interesting magnetic properties for this class of materials. As the concentration of aluminum increases, the saturation magnetization decreases drastically and then gradually increases. In the end member of the series, NiAl2O4, the absent of any super-exchange interaction between the A-sites and the B-sites due to presence of Ni ions as the only magnetic atoms in the B-sites results in a paramagnetic structure and a magnetization close to zero although the nickel atoms have a spin moment of 2μB . This paramagnetic feature makes this compound to be considered as a magnetic resonant imaging agent. Another very interesting feature is the back and forth switching of the dominance of the magnetic moments in the tetrahedral sites and the octahedral sites as aluminum concentration increases.
Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P
2008-07-25
Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.
FT-IR and FT-Raman spectra of cimetidine and its metallocomplexes
NASA Astrophysics Data System (ADS)
Barańska, M.; Proniewicz, L. M.
1999-11-01
We present vibrational spectra of three stable, well-reproducible, polymorphic forms of cimetidine ( cim), a drug which is a powerful histamine H 2-receptor antagonist used in the treatment of peptic ulcer and the Zollinger-Ellison syndrome. Assignments of Raman and IR bands are made using semiempirical methods: MNDO, AM1 and PM3. We also describe the synthesis of Me( cim) 2(ClO 4) 2, where Me=Cu(II), Cd(II), Co(II) and Ni(II), and present their vibrational data. We show that the obtained complexes are isostructural, however a metal ion that occupies a center of octahedral unit introduces some distortions that can be seen in the spectra. We also make tentative assignment of metal-ligand stretching modes observed in low frequency range.
Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.
Wang, Jian-Fei; Lin, Jian-Li
2010-09-30
In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.
NASA Technical Reports Server (NTRS)
Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.
2007-01-01
2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Frances N.; Um, Wooyong; Taylor, Christopher D.
2016-05-17
Iron oxides and oxyhydroxides play an important role in minimizing the mobility of redox-sensitive elements in engineered and natural environments. For the radionuclide technetium-99 (Tc), these phases hold promise as primary hosts for increasing Tc loading into glass waste form matrices, or as secondary sinks during the long-term storage of nuclear materials. Recent experiments show that the inverse spinel, magnetite [Fe(II)Fe(III)2O4], can incorporate Tc(IV) into its octahedral sub-lattice, and in that same class of materials, trevorite [Ni(II)Fe(III)2O4] is also being investigated for its ability to host Tc(IV). However, questions remain regarding the most energetically favorable charge-compensation mechanism for Tc(IV) incorporationmore » in each structure, which will affect Tc behavior under changing waste processing or storage conditions. Here, quantum-mechanical methods were used to evaluate incorporation energies and optimized lattice bonding environments for three different, charge-balanced Tc(IV) incorporation mechanisms in magnetite and trevorite. In both cases, the removal of two octahedral Fe(II) or Ni(II) ions upon the addition of Tc(IV) to an octahedral site is the most stable mechanism, relative to the creation of octahedral Fe(III) defects or increasing octahedral Fe(II) content. Following hydration-energy corrections, Tc(IV) incorporation into magnetite is energetically favorable while an energy barrier exists for trevorite.« less
Röska, B; Park, S-H; Behal, D; Hess, K-U; Günther, A; Benka, G; Pfleiderer, C; Hoelzel, M; Kimura, T
2018-06-13
Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, [Formula: see text] [Formula: see text]. Its honeycomb-like H-bond network running without interruption along the crystallographic [Formula: see text] axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by [Formula: see text] cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature [Formula: see text]-83 K could be determined from the structure analysis with neutron diffraction data at 25 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Min; Pennycook, Stephen J.; Borisevich, Albina Y.
Octahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this study, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts. While optimal conditions for BF imaging are more restricted with respect to sample thickness and defocus, we find that BF imaging with an aberration-corrected microscopemore » with the accelerating voltage of 300 kV gives us the most accurate quantitative measurement of the oxygen column positions. Using the tilted perovskite structure of BiFeO 3 (BFO) as our test sample, we simulate BF and ABF images in a wide range of conditions, identifying the optimal imaging conditions for each mode. Finally, we show that unlike ABF imaging, BF imaging remains directly quantitatively interpretable for a wide range of the specimen mistilt, suggesting that it should be preferable to the ABF STEM imaging for quantitative structure determination.« less
Kim, Young-Min; Pennycook, Stephen J.; Borisevich, Albina Y.
2017-04-29
Octahedral tilt behavior is increasingly recognized as an important contributing factor to the physical behavior of perovskite oxide materials and especially their interfaces, necessitating the development of high-resolution methods of tilt mapping. There are currently two major approaches for quantitative imaging of tilts in scanning transmission electron microscopy (STEM), bright field (BF) and annular bright field (ABF). In this study, we show that BF STEM can be reliably used for measurements of oxygen octahedral tilts. While optimal conditions for BF imaging are more restricted with respect to sample thickness and defocus, we find that BF imaging with an aberration-corrected microscopemore » with the accelerating voltage of 300 kV gives us the most accurate quantitative measurement of the oxygen column positions. Using the tilted perovskite structure of BiFeO 3 (BFO) as our test sample, we simulate BF and ABF images in a wide range of conditions, identifying the optimal imaging conditions for each mode. Finally, we show that unlike ABF imaging, BF imaging remains directly quantitatively interpretable for a wide range of the specimen mistilt, suggesting that it should be preferable to the ABF STEM imaging for quantitative structure determination.« less
Nguyen, Michelle A; Bedford, Nicholas M; Ren, Yang; Zahran, Elsayed M; Goodin, Robert C; Chagani, Fatima F; Bachas, Leonidas G; Knecht, Marc R
2015-06-24
We report a synthetic approach to form octahedral Cu2O microcrystals with a tunable edge length and demonstrate their use as catalysts for the photodegradation of aromatic organic compounds. In this particular study, the effects of the Cu(2+) and reductant concentrations and stoichiometric ratios were carefully examined to identify their roles in controlling the final material composition and size under sustainable reaction conditions. Varying the ratio and concentrations of Cu(2+) and reductant added during the synthesis determined the final morphology and composition of the structures. Octahedral particles were prepared at selected Cu(2+):glucose ratios that demonstrated a range of photocatalytic reactivity. The results indicate that material composition, surface area, and substrate charge effects play important roles in controlling the overall reaction rate. In addition, analysis of the post-reacted materials revealed photocorrosion was inhibited and that surface etching had preferentially occurred at the particle edges during the reaction, suggesting that the reaction predominately occurred at these interfaces. Such results advance the understanding of how size and composition affect the surface interface and catalytic functionality of materials.
NASA Astrophysics Data System (ADS)
Krivovichev, Sergey V.; Zhitova, Elena S.; Ismagilova, Rezeda M.; Zolotarev, Andrey A.
2018-05-01
Philipsburgite, Cu5Zn((As,P)O4)2(OH)6·H2O, from the Middle Pit, Gold Hill Mine, Tooele Co., Utah, USA, was studied by single-crystal X-ray diffraction and scanning electron microscopy. The empirical formula of the studied sample is (Cu4.69Zn1.23)(As0.86P0.18O4)2(OH)5.61·H2O, which agrees well with the previous reports on the mineral. Philipsburgite is monoclinic, P21/c, a = 12.385(6), b = 9.261(4), c = 10.770(5) Å, β = 97.10(1)o, V = 1225.7(9) Å3 (at 100 K), and Z = 4. The crystal structure was refined to R 1 = 0.046 for 2563 unique observed reflections with |F o| ≥ 4σ F . The crystal structure of philipsburgite is isotypic to that of kipushite and can be considered as a complex three-dimensional framework consisting of two types of layers stacked parallel to the a-axis. The A-type layer is formed by the edge-sharing Jahn-Teller-distorted Cuφ6 octahedra [φ = O2-, (OH)-, H2O]. Two adjacent octahedral layers are linked via (As2O4) tetrahedra. The B-type layer is built by corner-sharing (ZnO4) and (As1O4) tetrahedra and is formed by the four- and eight-membered tetrahedral rings. The A:B ratio of the A and B layers is equal to 2:1. The hydrogen bonding network in philipsburgite is rather complex and consists of two- and three-center hydrogen bonds. The As1 site accommodates ca. 18% of P and is a preferable position for the P substitution in philipsburgite. The observed selectivity of the As1 site for P may indicate that, for the intermediate compositions with the P:As ratios close to 1:1, there is a fully ordered species with P prevalent at the As1 site and As prevalent at the As2 site. The intermediate composition would, therefore, be Cu5Zn(AsO4)(PO4)(OH)6·H2O and such a mineral can be considered as a separate species, according to the rules of the International Mineralogical Association (IMA). Philipsburgite should be considered as structurally complex with the Shannon information contents of 4.954 bits/atom and 614.320 bits/cell. The obvious reason for the structural complexity of the mineral is its modularity, i.e., the presence of two structurally distinct modules, the octahedral-tetrahedral (A) and tetrahedral (B) layers.
Interesting Inclusions From Podiform Chromitites in Luobusa Ophiolite, Tibet
NASA Astrophysics Data System (ADS)
Yamamoto, S.; Komiya, T.; Hirose, K.; Maruyama, S.
2003-12-01
For the past decade, diamonds and unusual mineral asemblages were reported in podiform chromitites of the Luobusa ophiolite, southern Tibet, China (Bai 1993, Bai 2000, Yan 2001). These minerals were found from heavy mineral separation of chromitites. These minerals include (1) native elements, (2) alloys, (3) carbide (SiC, CrC), (4) platinium group elements (PGE) and arsenides, (5) silicates (Ol, Opx, Cpx, Amp, Srp, Chl, Uv, Prp, Alm, Wo, Zrn, Ap, Bt, Spn, Rt, Pl, Kfs, Phl, Sil, Qz and octahedral serpentine (possible pseduomorph after ringwoodite?), (5) oxide (corundum and chromite), (6) carbonates. Despite many questions as to these minerals above still remain open, these mineral inclusions would provide us the important infomation on the formation of the podiform chromitites. In this study, octahedral serpentine was discovered both on a thin section and from the heavy mineral separation. These octahedral inclusions exist within chromites, forming a line. These minerals are approximately 5-15μ m in diameter and have well octahedral morphology. EPMA, laser raman spectrometer and transmission electron microscopy (TEM) were used to determine the structure and chemical composition of this crystal. For the present, there are several interpretations of this octahedral silicate. One possibility is that if the octahedral structuer is euhedral so this octahedral serpentine may be pseudomorph after ringwoodite because of its chemical composition and octahedral crystal shape. Another is that ocahedral minerals are melt inclusions. Linear occurrence of octahedral minerals is similar to that of fuluid inclusions. If the octahedral structuer is negative crystal shape reflecting octahedral crystal of cromian spinel, then octahedral inclusions may be melt inclusions judging from linear occurrence. At the same time, zircons were obtained from the mineral separation from chromitites. U-Pb dating of these zircons by LA-ICP-MS yielded two different ages. One group has relatively younger age 107-534 Ma, which nearly plots on a concordia line. Another group has older age 1460-1822 Ma, which plots off the concordia line. Cathode luminescence images of these zircons indicate that some zircons have clear oscillatory zoning whereas other zircons show apparent homogeneous overgrowth. But any correlation between CL image and the U-Pb age was not identified in particular. Luobusa ophiolite has been recognized as fragment of Tethys oceanic crust formed in Cretaceous at 100-120 Ma (Allegre et al. 1984). The minimum age 107 Ma corresponds to the age of the formation of Luobusa ophiolite and all other age of zircons in chromitites is much older than that of ophiolite. In addition, the inclusions in the zircons were analyzed by EPMA and laser raman spectrometer. Several zircons contain some inclusions, which are quartz, feldsper, mica, apatite, titanite and others. These inclusions are the minerals composed of crustal material, which means that these zircons were crystalized in the low pressuer crustal condition. On the other hand, Yu et al. (2001) reported that zircons from chromitites in Luobusa ophiolite have shorter inter-atomic distances for Zr-O and Si-O bonds. They concluded that Tibetan-zircons were derived from the high-pressure mantle environment. Judging from the line of evidence mentioned avobe, it is highly possible that these zircons captured by chromitites were originated from recycled crustal materials convecting through upper mantle.
Sun, Ying-Ji; Huang, Qian-Qian; Zhang, Jian-Jun
2014-03-17
A series of mononuclear Co(II)-flavonolate complexes [Co(II)L(R)(fla)] (L(R)H = 2-{[bis(pyridin-2-ylmethyl)amino]methyl}-p/m-R-benzoic acid; R = p-OMe (1), p-Me (2), m-Br (4), and m-NO2 (5); fla = flavonolate) were designed and synthesized as structural and functional models for the ES (enzyme-substrate) complexes to mimic the active site of the Co(II)-containing quercetin 2,3-dioxygenase (Co-2,3-QD). The metal center Co(II) ion in each complex shows a similar distorted octahedral geometry. The model complexes display high enzyme-type dioxygenation reactivity (oxidative O-heterocyclic ring opening of the coordinated substrate flavonolate) at low temperature, presumably due to the attached carboxylate group in the ligands. The reactivity exhibits a substituent group dependent order of -OMe (1) > -Me (2) > -H (3)14b > -Br (4) > -NO2 (5), and the Hammett plot is linear (ρ = -0.78). This can be explained as the electronic nature of the substituent group in the ligands may influence the conformation and redox potential of the bound flavonolate and finally bring different reactivity. The structures, properties, and reactivity of the model complexes show some dependence on the substituent group in the supporting model ligands, and there is some relationship among them. This study is the first example of a series of structural and functional ES models of Co-2,3-QD, with focus on the effects of the electronic nature of substituted groups and the carboxylate group of the ligands to the dioxygenation reactivity, that will provide important insights into the structure-property-reactivity relationship and the catalytic role of Co-2,3-QD.
NASA Astrophysics Data System (ADS)
Tancret, N.; Obbade, S.; Bettahar, N.; Abraham, F.
1996-07-01
The mixed-valence PbPt2O4compound was synthesized both by solid state reaction between stoichiometric amounts of PbO and Pt heated at 650-750°C for 1 week and by chemical attack of Pb2PtO4. It decomposes to PbO and Pt at 750°C. The crystal structure was completely solved from direct methods and difference Fourier maps from powder X-ray diffraction data. The unit cell is triclinic (space groupP1,Z= 2) witha= 6.1161(2) Å,b= 6.6504(2) Å,c= 5.5502(2) Å, α = 97.178(2)°, β = 108.803(2)°, and γ = 115.241(2)°. The structural model was refined using the Rietveld profile technique and led to the reliability factorsRwp= 0.118,Rp= 0.086,RBragg= 0.029,RF= 0.018, and χ2= 1.51. The structure of PbPt2O4appears to be a unique one involving both Pt4+in octahedral coordination and Pt2+or partially oxidized platinum in square-planar coordination. The PbPt2O4structure consists of columnar-stacked PtO4groups extending along thecaxis of the unit cell. These columnar stacks are held by other planar PtO4groups to constitute Pt3O8sheets. These sheets are linked together by PtO6octahedra to form a three-dimensional framework. Lead atoms are surrounded by six oxygens forming a distorted octahedron. Metallic conductivity in PbPt2O4is consistent with short Pt-Pt bonds in the columnar stacks of PtO4groups along thecaxis direction (dPt-Pt= 2.78 Å).
NASA Astrophysics Data System (ADS)
Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.
1995-12-01
Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.
Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj
2016-01-01
Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.
Hughes, J.M.; Bloodaxe, E.S.; Hanchar, J.M.; Foord, E.E.
1997-01-01
The atomic arrangement of a natural rare-earth-rich titanite and two synthetic rare-earth-doped titanites have been refined in space group A2/a, and the atomic arrangement of an undoped P21/a synthetic titanite was also refined for comparison. Previous work has shown that titanite possesses a domain structure, with domains formed of like-displaced Ti atoms in the [100] octahedral chains. P21/a titanite results when the crystal is formed of a single domain, but as Ti-reversal sites occur in the octahedral chain the apparent A2/a structure results from the average of antiphase domains. Antiphase boundaries occur at O1, which is alternately overbonded or underbonded at the boundaries, depending on the displacement of the neighboring Ti atoms. Type 2 antiphase boundaries exist where two Ti atoms are displaced away from the intervening O1 atom and are energetically unfavorable because of underbonding of that O1 atom. However, substitution of a trivalent rare earth element in the adjacent Ca2+ site relieves that underbonding, favoring the creation of type 2 antiphase boundaries and stabilization of the A2/a dimorph. The results of high-precision crystal structure analyses demonstrate that rare earth substituents for Ca stabilize the A2/a dimorph at lower substitution levels than required for octahedral substitutions.
Coupling of emergent octahedral rotations to polarization in (K,Na)NbO3 ferroelectrics.
Levin, I; Krayzman, V; Cibin, G; Tucker, M G; Eremenko, M; Chapman, K; Paul, R L
2017-11-15
Perovskite potassium sodium niobates, K 1-x Na x NbO 3 , are promising lead-free piezoelectrics. Their dielectric and piezoelectric characteristics peak near x = 0.5, but the reasons for such property enhancement remain unclear. We addressed this uncertainty by analyzing changes in the local and average structures across the x = 0.5 composition, which have been determined using simultaneous Reverse Monte Carlo fitting of neutron and X-ray total-scattering data, potassium EXAFS, and diffuse-scattering patterns in electron diffraction. Within the A-sites, Na cations are found to be strongly off-centered along the polar axis as a result of oversized cube-octahedral cages determined by the larger K ions. These Na displacements promote off-centering of the neighboring Nb ions, so that the Curie temperature and spontaneous polarization remain largely unchanged with increasing x, despite the shrinking octahedral volumes. The enhancement of the properties near x = 0.5 is attributed to an abrupt increase in the magnitude and probability of the short-range ordered octahedral rotations, which resembles the pre-transition behavior. These rotations reduce the bond tension around Na and effectively soften the short Na-O bond along the polar axis - an effect that is proposed to facilitate reorientation of the polarization as external electric field is applied.
NASA Astrophysics Data System (ADS)
Shu, Shaoming; Wang, Chao; Liu, Shantang
2018-05-01
Uniform and monodisperse ZnSn(OH)6 perfect octahedrons have been synthesized by a facile coprecipitation reaction process. The particle size of the asprepared ZnSn(OH)6 octahedral structure can be readily controlled by adjusting the reaction temperature (T), and the side length of ZnSn(OH)6 octahedrons was tailored from 3 μm (40°C) to 4 μm (60°C) and 5 μm (80°C). The ethanol sensing properties of ZnSn(OH)6 octahedrons were carefully investigated. The gas sensing experimental data show that the sensor based on ZnSn(OH)6 (40°C) has good selectivity, fast response/recovery time and the highest response (R a/R g = 23.8) to 200 ppm ethanol at relatively low optimum operating temperature (200°C) compared to sensors based on ZnSn(OH)6 (60°C) and ZnSn(OH)6 (80°C), which might result from different specific surface areas. The study demonstrated that perfect octahedral ZnSn(OH)6 with controlled crystalline size and desirable sensing performance can be synthesized by a simple fabrication procedure, and the octahedral ZnSn(OH)6 could be a highly promising material for high-performance sensors.
NASA Astrophysics Data System (ADS)
Shu, Shaoming; Wang, Chao; Liu, Shantang
2018-06-01
Uniform and monodisperse ZnSn(OH)6 perfect octahedrons have been synthesized by a facile coprecipitation reaction process. The particle size of the as-prepared ZnSn(OH)6 octahedral structure can be readily controlled by adjusting the reaction temperature ( T), and the side length of ZnSn(OH)6 octahedrons was tailored from 3 μm (40°C) to 4 μm (60°C) and 5 μm (80°C). The ethanol sensing properties of ZnSn(OH)6 octahedrons were carefully investigated. The gas sensing experimental data show that the sensor based on ZnSn(OH)6 (40°C) has good selectivity, fast response/recovery time and the highest response ( R a/ R g = 23.8) to 200 ppm ethanol at relatively low optimum operating temperature (200°C) compared to sensors based on ZnSn(OH)6 (60°C) and ZnSn(OH)6 (80°C), which might result from different specific surface areas. The study demonstrated that perfect octahedral ZnSn(OH)6 with controlled crystalline size and desirable sensing performance can be synthesized by a simple fabrication procedure, and the octahedral ZnSn(OH)6 could be a highly promising material for high-performance sensors.
NASA Astrophysics Data System (ADS)
Heiba, Zein K.; Mohamed, Mohamed Bakr; Ahmed, S. I.
2017-11-01
Nanoparticles cobalt ferrite, vacancies defective through vanadium substitution for iron, were synthesized by a sol-gel method. Two systems CoFe2-xVxO4 (0.0 ≤ x ≤ 0.25) and CoFe2-1.67xVxO4 (x = 0.1, 0.2) were prepared. The crystal structure, microstructure and magnetic properties were investigated using XRD, SEM and VSM magnetometer. The occupancy of tetrahedral and octahedral sites by different cations was determined by Rietveld analysis and correlated with magnetic measurements. Vanadium resides at octahedral sites up to x = 0.10, while for higher values it resides mainly at octahedral sites with a lesser amount at the tetrahedrons. Upon increasing the vanadium content, the cell parameter decreases and the bond lengths of the tetrahedral and octahedral sites change opposite to each other. The change in the coercivity and saturation magnetization is correlated with cation distribution. For the same amount of doping x, the iron deficient samples CoFe2-1.67xVxO4 have saturation magnetization obviously reduced than the corresponding samples in CoFe2-xVxO4. The spin canting between cations in A- and B- sites was discussed in details based on Yafet-Kittel triangular arrangement model.
Co/Cr co-doped MgGa{sub 2}O{sub 4} nanoparticles: Microstructure and optical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Xiulan, E-mail: xlduan@sdu.edu.cn; Liu, Jian; Yu, Fapeng
2016-01-15
Graphical abstract: The Ga 2p{sub 3/2} spectra consist of two peaks, corresponding to Ga{sup 3+} ions placed at octahedral and tetrahedral sites, respectively. The fraction of tetrahedral Ga{sup 3+} ions (∼1117 eV) increases with increasing doping concentration. - Highlights: • Structural and properties of Co{sup 2+}/Cr{sup 3+}: MgGa{sub 2}O{sub 4} nanoparticles were characterized. • The distribution of cations was studied using XPS. • The inversion degree increased with increasing content of doping ions. • The doping concentration has also effect on absorption and emission properties. • Optical properties of nanoparticles were discussed based on the structural results. - Abstract: MgGa{submore » 2}O{sub 4} nanoparticles co-doped with Co{sup 2+}/Cr{sup 3+} ions were prepared by a citrate sol–gel method. Their microstructure and optical properties were studied using X-ray powder diffraction (XRD), infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), absorption and fluorescence spectroscopy. MgGa{sub 2}O{sub 4} nanoparticles with the size of 10–30 nm were obtained when the precursor was annealed at 800 °C. Results indicated that Ga{sup 3+} and Mg{sup 2+} cations occupied the octahedral sites as well as the tetrahedral sites in samples. The inversion degree of Ga or Mg increased with increasing content of doping ions. Absorption spectra indicated that Co{sup 2+} and Cr{sup 3+} ions entered both the tetrahedral and octahedral sites of spinel structure by substituting Mg{sup 2+} and Ga{sup 3+} ions, respectively. Emission spectra of the co-doped MgGa{sub 2}O{sub 4} showed a broad emission band peaking at 700 and 680 nm, relevant to the emission characteristic of octahedral Cr{sup 3+} and tetrahedral Co{sup 2+} ions.« less
Stuffed Derivatives of Close-Packed Structures
ERIC Educational Resources Information Center
Douglas, Bodie E.
2007-01-01
Decades ago Buerger described and later Palmer reviewed stuffed silica crystal structures widely used by mineralogists. Many publications and books have discussed common crystal structures in terms of close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites. Douglas and Ho described…
NASA Astrophysics Data System (ADS)
Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian
2015-11-01
High-order perturbation formulas for a 3d9 ion in rhombically elongated octahedral was applied to calculate the electron paramagnetic resonance (EPR) parameters (the g factors, gi, and the hyperfine structure constants Ai, i = x, y, z) of the rhombic Cu2+ center in CoNH4PO4.6H2O. In the calculations, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the EPR parameters with the local structure of the rhombic Cu2+ center. Based on the calculations, the ligand octahedral (i.e. [Cu(H2O)6]2+ cluster) are found to experience the local bond length variations ΔZ (≈0.213 Å) and δr (≈0.132 Å) along axial and perpendicular directions due to the Jahn-Teller effect. Theoretical EPR parameters based on the above local structure are in good agreement with the observed values; the results are discussed.
Structural and magnetic phase transitions in EuTi 1-xNb xO 3
Li, Ling; Morris, James R.; Koehler, Michael R.; ...
2015-07-30
Here, we investigate the structural and magnetic phase transitions in EuTi 1-xNb xO 3 (0≤x≤0.3) with synchrotron powder x-ray diffraction, resonant ultrasound spectroscopy, and magnetization measurements. Upon Nb doping, the Pmmore » $$\\bar{3}$$m ↔ I4/mcm structural transition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long-range ferromagnetic order is observed in the samples with x≥0.1. Moreover, the structural transition in pure and doped compounds is marked by a dramatic step-like softening of the elastic moduli near T S, which resembles that of SrTiO 3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO 3.« less
NASA Astrophysics Data System (ADS)
Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz
2017-11-01
Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2006-10-17
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2003-07-22
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides
NASA Astrophysics Data System (ADS)
Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu
2016-06-01
Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).
NASA Astrophysics Data System (ADS)
Hurtado, John; Ibarra, Laura; Yepes, David; García-Huertas, Paola; Macías, Mario A.; Triana-Chavez, Omar; Nagles, Edgar; Suescun, Leopoldo; Muñoz-Castro, Alvaro
2017-10-01
The reaction of CrCl36H2O with the ligand bis(3,5-dimethylpyrazol-1-yl)methane (L) yielded the cationic complex [(Cr(L)(H2O)2Cl2]+, which crystallized as the chloride trihydrate [(Cr(L)(H2O)2Cl2]Cl·3H2O. The chromium complex was characterized by elemental analysis, electrical conductivity, Infrared and Ultraviolet/Visible spectroscopy. The crystal structure determination using single-crystal X-ray diffraction showed a chromium center in a distorted octahedral coordination sphere. In the crystal, the packing was directed by Osbnd H⋯(O,Cl) hydrogen bonds and weak Csbnd H⋯O interactions to build a monoclinic P21/c supramolecular structure. The complex showed excellent properties as an initiator for the ring opening polymerization of є-caprolactone (CL) under solvent-free conditions. The obtained polymer showed high crystallinity (89.9%) and a decomposition temperature above 475 °C. In addition, the new complex was evaluated against epimastigotes from Trypanosoma cruzi (T. cruzi) strains. The results indicated that this complex has a high activity against this parasite with a minimum inhibitory concentration 50 (MIC50) of 1.08 μg/mL. Interestingly, this compound showed little effect on erythrocytes, indicating that it is not cytotoxic. These results provide interesting contributions to the design of metal complexes by using simple and accessible ligands with activity against T. cruzi and with potential applications in the polymerization of CL.
NASA Astrophysics Data System (ADS)
Sarkar, Bhola Nath; Bhar, Kishalay; Kundu, Subhasis; Fun, Hoong-Kun; Ghosh, Barindra Kumar
2009-11-01
Two hexacoordinated mononuclear cobalt(II)thiocyanate complexes of general formula [Co(LL) 2(NCS) 2]. nH 2O [LL = 2,2'-dipyridylamine (dpa), n = 1, 1; LL = N-((pyridin-2-yl)benzylidene)benzylamine (pbba), n = 0, 2] have been prepared and characterized using microanalytical, spectroscopic and other physicochemical results. The compounds are non-electrolytes and behave as three-electron paramagnets. Structures of 1 and 2 are solved by X-ray diffraction measurements. Structural analyses show that each metal center in 1 and 2 adopts a distorted octahedral geometry with a CoN 6 chromophore ligated through four N atoms of two bidentate LL units; the hexacoordination is completed by two N atoms of terminal thiocyanates in mutual cis orientation. The mononuclear units in 1 are engaged in weak intermolecular N-H…S and C-H…S hydrogen bonds to give a 2D sheet structure, which is further stabilized by π…π interactions among the pyridine rings of dpa units. In the long-range form, two mononuclear units of 2 are locked by weak doubly C-H…S hydrogen bonds producing a dimeric unit, which packs through C-H…π interaction leading to a 2D continuum. In MeCN solutions, the compounds show a nearly reversible one-electron oxidative response corresponding to cobalt(III)-cobalt(II) couple. The complexes display intraligand 1(π-π∗) fluorescence at room temperature and intraligand 3(π-π∗) phosphorescence in glassy solutions (DMF at 77 K).
Cibian, Mihaela; Bessette, André; O'Connor, Andrew; Ferreira, Janaina G; Hanan, Garry S
2015-02-01
The crystal structures of fac-(acetonitrile-κN)(2-{[3,5-bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN(1)]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN(1))tricarbonylrhenium(I)-hexane-acetonitrile (2/1/2), [Re(C36H30N3O4)(CH3CN)(CO)3]·0.5C6H14·CH3CN, (2), and fac-(2-{[3,5-bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN(1)]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN(1))tricarbonyl(dimethyl sulfoxide-κO)rhenium(I), [Re(C36H30N3O4)(C2H6OS)(CO)3], (3), at 150 K are reported. Both complexes display a distorted octahedral geometry, with a fac-Re(CO)3 arrangement and one azadipyrromethene (ADPM) chelating ligand in the equatorial position. One solvent molecule completes the coordination sphere of the Re(I) centre in the remaining axial position. The ADPM ligand shows high flexibility upon coordination, while retaining its π-delocalized nature. Bond length and angle analyses indicate that the differences in the geometry around the Re(I) centre in (2) and (3), and those found in three reported fac-Re(CO)3-ADPM complexes, are dictated mainly by steric factors and crystal packing. Both structures display intramolecular C-H...N hydrogen bonding. Intermolecular interactions of the Csp(2)-H...π and Csp(2)-H...O(carbonyl) types link the discrete monomers into extended chains.
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes
ERIC Educational Resources Information Center
Mohamadou, Aminou; Haudrechy, Arnaud
2008-01-01
Octahedral transition-metal complexes are involved in a number of reactions and octahedral coordination geometry, frequently observed for metallic centers, includes important topographical stereochemistry. Depending on the number and nature of different ligands, octahedral coordination units with at least two different monodentate ligands give…
EPR investigation of the trivalent chromium complexes in SrTiO3
NASA Astrophysics Data System (ADS)
Azamat, D. V.; Dejneka, A.; Lančok, J.; Jastrabik, L.; Trepakov, V. A.; Bryknar, Z.; Neverova, E. V.; Badalyan, A. G.
2014-02-01
The trivalent chromium centers were investigated by means of electron paramagnetic resonance (EPR) in SrTiO3 single crystals grown using the Verneuil technique. It was shown that the charge compensation of the Cr3+-VO dominant centers in octahedral environment is due to the remote oxygen vacancy located on the axial axis of the center. In order to provide insight into spin-phonon relaxation processes the studies of axial distortion of Cr3+-VO centers have been performed as function of temperature. The analysis of the trigonal Cr3+ centers found in SrTiO3 indicates the presence of the nearest-neighbor strontium vacancy. The next-nearest-neighbor exchange-coupled pairs of Cr3+ in SrTiO3 has been analyzed from the angular variation of the total electron spin of S=2 resonance lines.
Aqua-(3-fluoro-benzoato-κO)(3-fluoro-benzoato-κO,O')(1,10-phenanthroline-κN,N')cobalt(II).
Wang, Xiao-Hui; Sun, Li-Mei
2012-01-01
In the title compound, [Co(C(7)H(4)FO(2))(2)(C(12)H(8)N(2))(H(2)O)], the Co(II) ion is coordinated by two O atoms from one 3-fluoro-benzoate (fb) ligand and one O atom from another fb ligand, two N atoms from the 1,10-phenanthroline ligand and a water mol-ecule in a distorted octa-hedral geometry. An intra-molecular O-H⋯O hydrogen bond occurs. Inter-molecular O-H⋯O hydrogen bonds link pairs of mol-ecules into centrosymmetric dimers. Weak inter-molecular C-H⋯O and C-H⋯F hydrogen bonds and π-π inter-actions between the aromatic rings [shortest centroid-centroid distance = 3.4962 (2) Å] further stabilize the crystal packing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P., E-mail: pkistaiah@yahoo.com
Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties ismore » discussed.« less
Sun, Junshan
2014-11-01
The title salt, [Co(C8H4F3O3)(C12H8N2)(H2O)3](C8H4F3O3), was obtained under solvothermal conditions by the reaction of 2,4,5-tri-fluoro-3-meth-oxy-benzoic acid with CoCl2 in the presence of 1,10-phenanthroline (phen). The Co(II) ion is octa-hedrally coordinated by two N atoms [Co-N = 2.165 (2) and 2.129 (2) Å] from the phen ligand, by one carboxyl-ate O atom [Co-O = 2.107 (1) Å] and by three O atoms from water mol-ecules [Co-O = 2.093 (1), 2.102 (1) and 2.114 (1) Å]. The equatorial positions of the slightly distorted octa-hedron are occupied by the N atoms, the carboxyl-ate O and one water O atom. An intra- and inter-molecular O-H⋯O hydrogen-bonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].
A systematic probe in the properties of spray coated mixed spinel films of cobalt and manganese
NASA Astrophysics Data System (ADS)
Grace Victoria, S.; Moses Ezhil Raj, A.
2018-01-01
The multiple oxidation states of manganese and cobalt in cobalt manganese oxides play a crucial role in shaping up the vivid properties thus evoking curiosity among researchers. In the present work, mixed spinel films of CoMn(CoMn)2O4 were coated on glass substrates by the spray pyrolysis technique with different precursor concentrations of the acetate salts of the metals in ethyl alcohol. XRD investigations revealed an intermediate tetragonal spinel structure between cubic MnCo2O4 and tetragonal Mn3O4 (JCPDS 18-0410) with predominant orientation along (311) plane. The tetragonal distortion from cubic symmetry may be due to high Mn2+ ion content at octahedral sites. Raman spectroscopy highlighted two typical emission peaks characteristic of the deposited mixed spinel oxides. Functional groups were assigned with the aid of FTIR spectral analysis to the observed absorption bands. The binding energies of the photo-electron peaks observed for the transition metal ions and the oxygenated ions were recorded by XPS. The results indicated that the divalent and trivalent ions of cobalt co-existed with the divalent manganese ions. AFM images revealed vertically aligned columnar grains. The electrical measurements indicated conduction mechanism through jumps of polarons. Optical absorption revealed wide band gap energy of 3.76 eV.
Structural and optical properties of CuO in zinc phosphate glasses and effects of gamma irradiation
NASA Astrophysics Data System (ADS)
Ouis, M. A.; ElBatal, H. A.; Abdelghany, A. M.; Hammad, Ahmed H.
2016-01-01
Collective optical and infrared measurements have been employed to investigate the state of increasing copper ions in host 0.5ZnO-0.5P2O5 glass composition. The same spectral measurements were repeated after gamma irradiation with a dose of 20 and 80 KGy. Optical absorption spectra reveal strong UV absorption due to trace ferric ions present as unavoidable impurities within the chemicals used in the preparation of the glasses. Copper containing glasses show an additional broad visible-near infrared band due to distorted octahedrally coordinated Cu2+ ions which at high CuO contents exhibit splitting to several component absorption peaks. Gamma irradiation causes several variations between the response of the base host zinc phosphate glass and effect of increasing CuO. These changes are correlated with both the formation of induced defects through suggested photochemical reactions in the UV region and some shielding effects with increasing CuO in the visible-near infrared spectrum. Infrared absorption spectra reveal repetitive vibrational bands due to phosphate groups mainly from metaphosphate units and the spectra show some variations with the increase of CuO content visualize by the increase of the intensity of the mid broad band extending in the range 800-1500 cm-1.
Ab initio calculations of supramolecular complexes of fullerene C60 with CdTe and CdS
NASA Astrophysics Data System (ADS)
Kvyatkovskii, O. E.; Zakharova, I. B.; Ziminov, V. M.
2014-06-01
This paper presents the results of ab initio quantum-chemical calculations of supramolecular complexes C60CdHal, [C60]4CdHal, and [C60]6CdHal (Hal = S, Te), which simulate the defects forming in fullerite during the absorption or adsorption of cadmium telluride (sulfide). Calculations of the electronic structure of complexes with inclusion of their relaxation to the equilibrium state have been performed in terms of the density functional theory with the B3LYP hybrid functional. The obtained enthalpies of formation of complexes show that their formation leads to the energy gain of the order of 0.5-1.5 eV depending on the complex type. It has been shown that the formation of tetrahedral complexes [C60]4CdTe with the intercalated CdTe molecule is possible only with a considerable distortion of the tetrahedral void. The energy spectrum of low-lying excited electron states for the linear and octahedral complexes has been calculated. It has been found that a decrease in symmetry with the formation of complexes leads to the appearance of excited states of allowed singlet transitions in the electron spectrum, which are forbidden in optical spectra of initial components.
Ab initio DFT+U study of He atom incorporation into UO(2) crystals.
Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene
2009-09-07
We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; ...
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Wemore » find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.
2015-01-01
A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.
CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand
NASA Astrophysics Data System (ADS)
Srisittipokakun, N.; Ruangtaweep, Y.; Rachniyom, W.; Boonin, K.; Kaewkhao, J.
In this research, glass productions from rice husk ash (RHA) and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g) due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration) in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm) and Fe2+ (1050 nm) ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction.
Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh
2011-05-01
Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (μ(eff)∼5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Devi, Jai; Batra, Nisha; Malhotra, Rajesh
2012-11-01
New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.
NASA Astrophysics Data System (ADS)
Zhao, Hai-Yan; Yang, Fu-Li; Li, Na; Wang, Xiao-Jing
2017-11-01
Two new dinuclear Cd(II) complexes, [CdL1Cl2]2·H2O (1) and [CdL1(N3)2]2·CH3OH (2) and one dicyanamide bridged one-dimensional polynuclear network [CdL1(μ1,5-dca)dca]n (3) of the potentially tridentate NNN-donor Schiff base 2-((1H-benzimidazol-2-yl-ethylimino)-methyl)pyridine (L1) and another dinucler Cd(II) complex [CdL2Cl(dca)]2 (4) of a similar NNN-donor Schiff base ligand 2-((1H-benzimidazol-2-yl-propylimino)-methyl)pyridine (L2), have been synthesized and characterized by elemental analyses, IR and single crystal X-ray crystallography. The ligands L1 and L2 are [1 + 1] condensation products of pyridine-2-carbaldehyde with 2-aminoethyl-1H-benzimidazole and 2-aminopropyl-1H-benzimidazole, respectively. In the complexes 1 and 4 the two Cd(II) centers are held together by the bridged chloride ligands, while in 2 the two Cd(II) centers are bridged by μ1,1-azide ions. Complex 3 has a one-dimensional infinite chain structure in which Cd(II) ions are bridged by single dicyanamide groups in end-to-end fashion. All the metal centers have a distorted octahedral geometry and H-bonding or π⋯π interactions are operative to bind the complex units in the solid state. Furthermore, these complexes have been investigated by thermogravimetric analyses and fluorescence spectra.
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-09-01
Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.
Enhanced charge ordering transition in doped CaFeO3 through steric templating
NASA Astrophysics Data System (ADS)
Jiang, Lai; Saldana-Greco, Diomedes; Schick, Joseph T.; Rappe, Andrew M.
2014-06-01
We report a density functional theory investigation of B-site doped CaFeO3, a prototypical charge ordered perovskite. At 290 K, CaFeO3 undergoes a metal-insulator transition and a charge disproportionation reaction 2Fe4+→Fe5++Fe3+. We observe that when Zr dopants occupy a (001) layer, the band gap of the resulting solid solution increases to 0.93 eV due to a two-dimensional Jahn-Teller-type distortion, where FeO6 cages on the xy plane elongate along x and y alternatively between neighboring Fe sites. Furthermore, we show that the rock-salt ordering of the Fe5+ and Fe3+ cations can be enhanced when the B-site dopants are arranged in a (111) plane due to a collective steric effect that facilitates the size discrepancy between the Fe5+O6 and Fe3+O6 octahedra and therefore gives rise to a larger band gap. The enhanced charge disproportionation in these solid solutions is verified by rigorously calculating the oxidation states of the Fe cations with different octahedral cage sizes. We therefore predict that the corresponding transition temperature will increase due to the enhanced charge ordering and larger band gap. The compositional, structural, and electrical relationships exploited in this paper can be extended to a variety of perovskites and nonperovskite oxides, providing guidance in the structural manipulation of electrical properties of functional materials.
Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction
Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.
2014-10-29
Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less
Synthesis, structure, and physicochemical investigations of the new α Cu 0.50TiO(PO 4) oxyphosphate
NASA Astrophysics Data System (ADS)
Benmokhtar, S.; Belmal, H.; El Jazouli, A.; Chaminade, J. P.; Gravereau, P.; Pechev, S.; Grenier, J. C.; Villeneuve, G.; de Waal, D.
2007-02-01
The room-temperature crystal structure of a new Cu(II) oxyphosphate— α Cu 0.50IITiO(PO 4)—was determined from X-ray single crystals diffraction data, in the monoclinic system, space group P2 1/c. The refinement from 5561 independent reflections lead to the following parameters: a=7.5612(4)Å, b=7.0919(4)Å, c=7.4874(4)Å, β=122.25(1)°, Z=4, with the final R=0.0198, wR=0.0510. The structure of α Cu 0.50IITiO(PO 4) can be described as a TiOPO 4 framework constituted by chains of tilted corner-sharing [TiO 6] octahedra running parallel to the c-axis and cross linked by phosphate [PO 4] tetrahedra, where one-half of octahedral cavities created are occupied by Cu atoms. Ti atoms are displaced from the center of octahedra units in alternating long (2.308 Å) and short (1.722 Å) Ti-O(1) bonds along chains. Such O(1) atoms not linked to P atoms justify the oxyphosphate formulation α Cu 0.50TiO(PO 4). The divalent cations Cu 2+ occupy a Jahn-Teller distorted octahedron sharing two faces with two [TiO 6] octahedra. EPR and optical measurements are in good agreement with structural data. The X-ray diffraction results are supported by Raman and infrared spectroscopy studies that confirmed the existence of the infinite chains -Ti-O-Ti-O-Ti-. α Cu 0.50TiO(PO 4) shows a Curie-Weiss paramagnetic behavior in the temperature range 4-80 K.
Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.
Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less
A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bette, Sebastian; Dinnebier, Robert E.; Röder, Christian
2015-08-15
For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these twomore » metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes. • Substitution of Ni{sup 2+} by Mg{sup 2+} results in systematic Raman and IR band shifts. • α-Polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+}, … as described in literature do not exist.« less
NASA Astrophysics Data System (ADS)
Röska, B.; Park, S.-H.; Behal, D.; Hess, K.-U.; Günther, A.; Benka, G.; Pfleiderer, C.; Hoelzel, M.; Kimura, T.
2018-06-01
Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, . Its honeycomb-like H-bond network running without interruption along the crystallographic axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature –83 K could be determined from the structure analysis with neutron diffraction data at 25 K.
NASA Technical Reports Server (NTRS)
Farber, Danial L.; Williams, Quentin
1992-01-01
The structure of liquid Na2Ge2O5-H2O, a silicate melt analog, has been studied with Raman spectroscopy to pressures of 2.2 gigapascals. Upon compression, a peak near more than 240 wavenumbers associated with octahedral GeO6 groups grows relative to a peak near 500 wavenumbers associated with tetrahedral GeO4 groups. This change corresponds to an increase in octahedral germanium in the liquid from near 0 percent at ambient pressures to more than 50 percent at a pressure of 2.2 gigapascals. Silicate liquids pausibly undergo similar coordination changes at depth in the earth. Such structural changes may generate decreases in the fusion slopes of silicates at high pressures as well as neutrally buoyant magmas within the transition zone of the earth's mantle.
The structure and optical properties of Sr{sub 1−x}Ca{sub x}MoO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, H.A.; Macphee, D.E.; Mclaughlin, A.C., E-mail: a.c.mclaughlin@abdn.ac.uk
2016-10-15
The solid solution Sr{sub 1−x}Ca{sub x}MoO{sub 3} (x=0.00, 0.05, 0.10, 0.13, 0.15 and 0.17) has successfully been synthesised and X-ray Powder diffraction has revealed the occurrence of structural phase transitions, from cubic Pm−3m to tetragonal I4/mcm, and then to orthorhombic Imma as the value of x increased. Discontinuities were observed in the cell parameters and bond lengths and angles at the transition from tetragonal to orthorhombic symmetry as a result of the switching of the octahedral rotation axis at the tetragonal to orthorhombic transition. The increased octahedral tilting could also be linked to the decrease in the band gap frommore » 2.20 eV to 2.10 eV as x increased from 0 to 0.17. - Graphical abstract: Table of Contents Figure Caption: Ultraviolet-visible absorbance spectra for Sr{sub 1−x}Ca{sub x}MoO{sub 3} showing a reduction in band gap upon increasing x as a result of increased octahedral tilting. - Highlights: • The solid solution Sr{sub 1−x}Ca{sub x}MoO{sub 3} has been synthesised. • Structural phase transitions are observed. • Discontinuities were observed in the cell parameters and bond lengths and angles. • Upon increasing x from 0 to 0.17 the band gap reduces from 2.20 eV to 2.10 eV.« less
Reconciling Local Structure Disorder and the Relaxor State in (Bi1/2Na1/2)TiO3-BaTiO3
NASA Astrophysics Data System (ADS)
Groszewicz, Pedro B.; Gröting, Melanie; Breitzke, Hergen; Jo, Wook; Albe, Karsten; Buntkowsky, Gerd; Rödel, Jürgen
2016-08-01
Lead-based relaxor ferroelectrics are key functional materials indispensable for the production of multilayer ceramic capacitors and piezoelectric transducers. Currently there are strong efforts to develop novel environmentally benign lead-free relaxor materials. The structural origins of the relaxor state and the role of composition modifications in these lead-free materials are still not well understood. In the present contribution, the solid-solution (100-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT), a prototypic lead-free relaxor is studied by the combination of solid-state nuclear magnetic resonance (NMR) spectroscopy, dielectric measurements and ab-initio density functional theory (DFT). For the first time it is shown that the peculiar composition dependence of the EFG distribution width (ΔQISwidth) correlates strongly to the dispersion in dielectric permittivity, a fingerprint of the relaxor state. Significant disorder is found in the local structure of BNT-xBT, as indicated by the analysis of the electric field gradient (EFG) in 23Na 3QMAS NMR spectra. Aided by DFT calculations, this disorder is attributed to a continuous unimodal distribution of octahedral tilting. These results contrast strongly to the previously proposed coexistence of two octahedral tilt systems in BNT-xBT. Based on these results, we propose that considerable octahedral tilt disorder may be a general feature of these oxides and essential for their relaxor properties.
ERIC Educational Resources Information Center
Michmerhuizen, Anna; Rose, Karine; Annankra, Wentiirim; Vander Griend, Douglas A.
2017-01-01
Making optimal pedagogical and predictive use of the radius ratio rule to distinguish between solid state structures that feature tetrahedral, octahedral and cubic holes requires several updated insights. A comparative analysis of the Born-Landé equation for lattice energy is developed to show that the rock salt structure is a suitable choice for…
NASA Astrophysics Data System (ADS)
Morzyk-Ociepa, Barbara; Szmigiel, Ksenia; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta
2016-11-01
Two new complexes of Cd(II) with an O-deprotonated anion of 5-methoxyindole-2-carboxylic acid (5-MeOI2CA), of the formulas [Cd(5-MeOI2CA)2(H2O)2]n (1) and [Cd3(5-MeOI2CA)6(H2O)4(DMSO)4]ṡ2DMSO (2) were synthesized. In the polymeric complex 1, the 5-MeOI2CA anion acts as a bidentate bridging ligand and the coordination environment around the Cd(II) ion can be described as a distorted octahedron. Single crystal X-ray diffraction analysis of 2 has revealed that this complex is a trimer and it crystallizes in the monoclinic system (space group P21/c with a = 20.3403(4), b = 14.3079(2), c = 15.0603(3) Å, β = 92.4341(17)°, V = 4379.00(14) Å3 and Z = 2). In 2, the 5-MeOI2CA anions act as bidentate bridging and bidentate chelating ligands. The asymmetric unit of 2 contains two crystallographically independent Cd(II) cations. One of the cations is coordinated to six oxygen atoms and shows an octahedral geometry with a rhombic deformation. The other Cd(II) cation adopts a distorted seven-coordinate pentagonal-bipyramidal geometry involving seven oxygen atoms. In 2, the DMSO solvent molecules play a key role in the formation of metal-organic frameworks by filling voids, which are created by the bridging and chelating 5-MeOI2CA anions, the cadmium cations and the other DMSO molecules coordinated to cadmium. Comprehensive theoretical calculations (including the optimized structural parameters, harmonic frequencies and vibrational intensities) were performed for 2 using the B3LYP method with the 6-311++G(d,p)/LanL2DZ basis sets. The infrared and Ramana spectra were measured and a detailed assignment of the experimental spectra of 2 was performed. All cadmium-oxygen stretching vibrations occur in the range below 400 cm-1.
Interface-engineered oxygen octahedral coupling in manganite heterostructures
NASA Astrophysics Data System (ADS)
Huijben, M.; Koster, G.; Liao, Z. L.; Rijnders, G.
2017-12-01
Control of the oxygen octahedral coupling (OOC) provides a large degree of freedom to manipulate physical phenomena in complex oxide heterostructures. Recently, local tuning of the tilt angle has been found to control the magnetic anisotropy in ultrathin films of manganites and ruthenates, while symmetry control can manipulate the metal insulator transition in nickelate thin films. The required connectivity of the octahedra across the heterostructure interface enforces a geometric constraint to the 3-dimensional octahedral network in epitaxial films. Such geometric constraint will either change the tilt angle to retain the connectivity of the corner shared oxygen octahedral network or guide the formation of a specific symmetry throughout the epitaxial film. Here, we will discuss the control of OOC in manganite heterostructures by interface-engineering. OOC driven magnetic and transport anisotropies have been realized in LSMO/NGO heterostructures. Competition between the interfacial OOC and the strain further away from the interface leads to a thickness driven sharp transition of the anisotropic properties. Furthermore, octahedral relaxation leading to a change of p-d hybridization driven by interfacial OOC appears to be the strongest factor in thickness related variations of magnetic and transport properties in epitaxial LSMO films on NGO substrates. The results unequivocally link the atomic structure near the interfaces to the macroscopic properties. The strong correlation between a controllable oxygen network and the functionalities will have significant impact on both fundamental research and technological application of correlated perovskite heterostructures. By controlling the interfacial OOC, it is possible to pattern in 3 dimensions the magnetization to achieve non-collinear magnetization in both in-plane and out of plane directions, thus making the heterostructures promising for application in orthogonal spin transfer devices, spin oscillators, and low field sensors.
Study on Octahedral Spherical Hohlraum
NASA Astrophysics Data System (ADS)
Lan, Ke; Liu, Jie; Huo, Wenyi; Li, Zhichao; Yang, Dong; Li, Sanwei; Ren, Guoli; Chen, Yaohua; Jiang, Shaoen; He, Xian-Tu; Zhang, Weiyan
2015-11-01
In this talk, we report our recent study on octahedral spherical hohlraum which has six laser entrance holes (LEHs). First, our study shows that the octahedral hohlraums have robust high symmetry during the capsule implosion at hohlraum-to- capsule radius ratio larger than 3.7 and have potential superiority on low backscatter without supplementary technology. Second, we study the laser arrangement and constraints of the octahedral hohlraums and give their laser arrangement design for ignition facility. Third, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. Fourth, we study the sensitivity of capsule symmetry inside the octahedral hohlraums to laser power balance, pointing accuracy, deviations from the optimal position and target fabrication accuracy, and compare the results with that of tradiational cylinders and rugby hohlraums. Finally, we present our recent experimental studies on the octahedral hohlraums on SGIII prototype laser facility.
Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh
2015-01-01
SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257
[Synthesis and spectral characteristic of Ga-Fe3O4 at room temperature].
Wang, Jing; Deng, Tong; Yang, Cai-Qin; Lin, Yu-Long; Wang, Wei; Wu, Hai-Yan
2008-03-01
Gallium bearing ferrites with different gallium content were synthesized by oxidation of ferrous and gallium ions under alkaline condition and room temperature. The samples were subjected to IR, XRD, Mossbauer spectral analysis and magnetization characterization. The results indicated that the green-rust intermediate phase would be produced during the procedure of Ga-Fe3O4 formation, and the green-rust intermediate phase was converted to ferrites with spinel structure during the drying under hot-N2 atmosphere. With the introduction of gallium into the spinel structure, the interplanar crystal spacing of the spinel structure decreased, as indicated from XRD spectra, and the lattice vibration of M(T)-O-M(o) moved to the high-frequency resulting from IR spectra. A small amount gallium introduction entered the tetrahedral sites preferentially rather than the octahedral sites, and increasing gallium introduction would enhance the occupation of octahedral sites. Furthermore, a small content of gallium in the initial solution could prevent the formation of non-magnetic Fe2O3.
Krakowiak, Joanna; Lundberg, Daniel
2012-01-01
The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen donor solvents water, dimethylsulfoxide (dmso) and N,N′-dimethylpropyleneurea (dmpu) has been studied in solution by EXAFS and large angle X-ray scattering (LAXS) and in solid state by single crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and dimethylsulfoxide solvated oxovanadium(IV) ions vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O=V-Operp bond angle is ca. 98°. In the dmpu solvated oxovanadium(IV) ion, the space demanding properties of the dmpu molecule leaving no solvent molecule in the trans position to the oxo group which reduces the coordination number to 5. The O=V-O bond angle is consequently much larger, 106°, and the mean V=O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and dimethylsulfoxide solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in cis position with mean V=O bond distances of 1.6 Å and a O=V=O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen donor ligands. PMID:22950803
NASA Astrophysics Data System (ADS)
Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong
2018-04-01
We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.
Nordhei, Camilla; Ramstad, Astrid Lund; Nicholson, David G
2008-02-21
Nanophase cobalt, nickel and zinc ferrites, in which the crystallites are in the size range 4-25 nm, were synthesised by coprecipitation and subsequent annealing. X-Ray absorption spectroscopy using synchrotron radiation (supported by X-ray powder diffraction) was used to study the effects of particle size on the distributions of the metal atoms over the tetrahedral and octahedral sites of the spinel structure. Deviations from the bulk structure were found which are attributed to the significant influence of the surface on very small particles. Like the bulk material, nickel ferrite is an inverse spinel in the nanoregime, although the population of metals on the octahedral sites increases with decreasing particle size. Cobalt ferrite and zinc ferrite take the inverse and normal forms of the spinel structure respectively, but within the nanoregime both systems show similar trends in being partially inverted. Further, in zinc ferrite, unlike the normal bulk structure, the nanophase system involves mixed coordinations of zinc(ii) and iron(iii) consistent with increasing partial inversion with size.
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer
NASA Astrophysics Data System (ADS)
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-01
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr3 monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr - Br6 units. As an example, we further show that (CrBr3)2Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).
Reiss, Guido J
2013-05-01
In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer.
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-06
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
Carbon diffusion in bulk hcp zirconium: A multi-scale approach
NASA Astrophysics Data System (ADS)
Xu, Y.; Roques, J.; Domain, C.; Simoni, E.
2016-05-01
In the framework of the geological repository of the used fuel claddings of pressurized water reactor, carbon behavior in bulk zirconium is studied by periodic Density Functional Theory calculations. The C interstitial sites were investigated and it was found that there are two possible carbon interstitial sites: a distorted basal tetragonal site and an octahedral site. There are four types of possible atomic jumps between them. After calculating the migration energies, the attempt frequencies and the jump probabilities for each possible migration path, kinetic Monte Carlo (KMC) simulations were performed to simulate carbon diffusion at the macroscopic scale. The results show that carbon diffusion in pure Zr bulk is extremely limited at the storage temperature (50 °C). Since there are defects in Zr bulk, in a second step, the effect of atomic vacancy was studied and it was proved that vacancies cannot increase carbon diffusion.
Improper origin of polar displacements at CaTiO3 and CaMnO3 twin walls
NASA Astrophysics Data System (ADS)
Barone, Paolo; Di Sante, Domenico; Picozzi, Silvia
2014-04-01
Recent interest in novel functionalities arising at domain walls of ferroic materials naturally calls for a microscopic understanding. To this end, first-principles calculations have been performed in order to provide solid evidence of polar distortions in the twin walls of nonpolar CaTiO3 and magnetic CaMnO3. We show that such polar displacements arise from rotation and/or tilting octahedral distortions—cooperatively acting at the twin wall in both considered systems—rather than from a proper secondary ferroelectric instability, as often believed. Our results are in excellent agreement with experimental observations of domain walls in CaTiO3. In addition, we show that magnetic properties at the twin wall in CaMnO3 are also modified, thus suggesting an unexplored route to achieve and detect multiferroic ordering in a single-phase material.
Zhang, Bin; Zhang, Yan; Zhang, Jinbiao; Li, Junchao; Zhu, Daoben
2008-10-07
Solvothermal synthesis of FeCl(2).4H2O and H2C2O(4).2H2O in methanol at 120 degrees C yielded yellow plate-like crystals of [Fe(C2O4)(CH3OH)]n. Each iron atom is in a distorted octahedral environment, being bonded to four oxygen atoms from two bisbidentate oxalate anions, one O atom of a chelating oxalate anion and one O atom from a methanol molecule as an oxalate group bridging ligand in a five-coordination mode. The neutral layer of [Fe(C2O4)(CH3OH)]n with a [4,4] net along the ac plane. There is no interaction between layers. A long range magnetic ordering with spin canting at TN approximately 23 K was observed and confirmed by AC susceptibility measurements.
Optical and EPR studies of barium alumino borate glasses containing Cu2+ ions
NASA Astrophysics Data System (ADS)
Ahmed, Mohamad Raheem; Phani, A. V. Lalitha; Narsimha Chary, M.; Shareefuddin, Md.
2018-05-01
Glass containing Cu2+ ions in (30-x) BaO-xAl2O3-69.5B2O3-0.5CuO (0 ≤ x ≤ 15 mol %) were prepared by the conventional melt quenching technique. Peak free X-ray diffractograms confirmed the amorphous nature of the glass samples. Spectroscopic studies such as optical absorption, EPR were studied to understand the effect of modifier oxide and CuO dopant. From EPR spectra the spin-Hamiltonian parameter were evaluated. The ground state of Cu2+ is dx2-y2 (2B1g state) and the site symmetry around Cu2+ is tetragonally distorted octahedral. A broad optical absorption band was observed for all the glasses containing Cu2+ ions corresponding to the 2B1g → 2B2g transition. The optical band gap and Urbach energy values are calculated.
(Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.
Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria
2011-04-01
In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.
Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals
Kerns, Raymond L.; Mankin, Charles J.
1968-01-01
Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.
The Jahn-Teller distortion influenced ferromagnetic order in Pr1-xLaxMnO3
NASA Astrophysics Data System (ADS)
He, Feifei; Mao, Zhongquan; Tang, Lingyun; Zhang, Jiang; Chen, Xi
2018-06-01
The structural and magnetic properties of Pr1-xLaxMnO3 (0 ≤ x ≤ 1) polycrystalline powders are investigated. A structural phase transition from a large Jahn-Teller (J-T) distorted orthorhombic structure to a small J-T distorted orthorhombic phase is found at x = 0.70, while the LaMnO3 is showed to have a rhombohedral structure. All the samples exhibit ferromagnetic ordering, and meanwhile, a reentrant spin glass behavior at low temperature. The relationship between J-T distortions and the ferromagnetic order is discussed.
(In) Sensitivity to spatial distortion in natural scenes
Bex, Peter J.
2010-01-01
The perception of object structure in the natural environment is remarkably stable under large variation in image size and projection, especially given our insensitivity to spatial position outside the fovea. Sensitivity to periodic spatial distortions that were introduced into one quadrant of gray-scale natural images was measured in a 4AFC task. Observers were able to detect the presence of distortions in unfamiliar images even though they did not significantly affect the amplitude spectrum. Sensitivity depended on the spatial period of the distortion and on the image structure at the location of the distortion. The results suggest that the detection of distortion involves decisions made in the late stages of image perception and is based on an expectation of the typical structure of natural scenes. PMID:20462324
NASA Astrophysics Data System (ADS)
Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Shintani, T.; Tominaga, J.; Uruga, T.
2014-10-01
AIVBVI crystals are believed to possess a rhombohedral (ferroelectric) structure at low temperature that changes to the rocksalt (paraelectric) structure above the Curie temperature. For GeTe it has been recently demonstrated that locally the structure retains the subsets of the shorter and longer bonds across the ferroelectric-to-paraelectric transition despite acquiring the cubic structure on average. Nothing is known about the existence of local distortions in SnTe, a prototypical topological crystalline insulator, where the crystal symmetry plays a crucial role. In this work we report the results of x-ray absorption measurements. We find that the structure is locally rhombohedrally distorted, and the distortions increase at T >100K, breaking the rocksalt average symmetry. Our density functional theory simulations performed at 0 K indicate that the role of spin-orbit coupling in the formation of the local structure of SnTe at low temperature is negligibly small. The small stochastic distortions do not affect the intrinsic band inversion of SnTe.
NASA Astrophysics Data System (ADS)
Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.
2018-02-01
Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.
ERIC Educational Resources Information Center
Hong, Y. S.; And Others
1980-01-01
Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)
Kinematic modeling of a double octahedral Variable Geometry Truss (VGT) as an extensible gimbal
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1994-01-01
This paper presents the complete forward and inverse kinematics solutions for control of the three degree-of-freedom (DOF) double octahedral variable geometry truss (VGT) module as an extensible gimbal. A VGT is a truss structure partially comprised of linearly actuated members. A VGT can be used as joints in a large, lightweight, high load-bearing manipulator for earth- and space-based remote operations, plus industrial applications. The results have been used to control the NASA VGT hardware as an extensible gimbal, demonstrating the capability of this device to be a joint in a VGT-based manipulator. This work is an integral part of a VGT-based manipulator design, simulation, and control tool.
A Paramagnetic Copper(III) Complex Containing an Octahedral CuIII S6 Coordination Polyhedron.
Krebs, Carsten; Glaser, Thorsten; Bill, Eckhard; Weyhermüller, Thomas; Meyer-Klaucke, Wolfram; Wieghardt, Karl
1999-02-01
Only the second octahedral, paramagnetic copper(III) complex (S=1) has now been synthesized and characterized. Six thiolato bridging ligands in the heterotrinuclear species [LCo III Cu III Co III L](ClO 4 ) 3 ⋅2 Me 2 CO (L=1,4,7-tris(4-tert-butyl-2-sulfidobenzyl)-1,4,7-triazacyclononane) stabilize this rare electron configuration. A section of the structure of the reduced form (Cu II , S=½) is shown. XAS, EXAFS, and EPR spectroscopy prove unambiguously that the one-electron oxidation to the copper(III) is metal- rather than ligand-centered. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Rietveld refinement and FTIR analysis of bulk ceramic Co3-xMnxO4 compositions
NASA Astrophysics Data System (ADS)
Meena, P. L.; Kumar, Ravi; Sreenivas, K.
2013-02-01
Co3-xMnxO4 (x = 0.0, 0.6, 1.2) prepared by solid state reaction method and characterized by powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR). Lattice parameters (a), oxygen parameter (u), and ionic radii of cations have been determined through Rietveld analysis. Both a and u parameters are related to expansion of octahedral site as Mn content in Co3O4. Analysis of XRD data show that Mn (x ≤ 1.2) is accommodated at the octahedral site, while retaining the cubic spinel structure. FTIR results also confirm the same and signify strong interactions due to overlapping of Co and Mn octahedra.
Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain
NASA Astrophysics Data System (ADS)
Strečka, Jozef; Richter, Johannes; Derzhko, Oleg; Verkholyak, Taras; Karľová, Katarína
2018-05-01
Low-temperature magnetization curves and thermodynamics of a spin-1/2 Heisenberg octahedral chain with the intra-plaquette and monomer-plaquette interactions are examined within a two-component lattice-gas model of hard-core monomers, which takes into account all low-lying energy modes in a highly frustrated parameter space involving the monomer-tetramer, localized many-magnon and fully polarized ground states. It is shown that the developed lattice-gas model satisfactorily describes all pronounced features of the low-temperature magnetization process and the magneto-thermodynamics such as abrupt changes of the isothermal magnetization curves, a double-peak structure of the specific heat or a giant magnetocaloric effect.
Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity
Huang, Shuping; Wilson, Benjamin E.; Wang, Bo; ...
2015-08-11
We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less
Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shuping; Wilson, Benjamin E.; Wang, Bo
We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less
Rein, Francisca N; Chen, Weizhong; Scott, Brian L; Rocha, Reginaldo C
2015-09-01
We report the structural characterization of [6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine](2,2'-bi-pyridine)-chlorido-ruthenium(II) hexa-fluorido-phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2'-bi-pyridine (bpy) and the tridendate ligand 6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine (tpy-tpy). The [RuCl(bpy)(tpy-tpy)](+) monocation has a distorted octa-hedral geometry at the central Ru(II) ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru-N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru-Cl. For tpy-tpy, the mean Ru-N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru-Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy-tpy adopts a trans,trans conformation about the inter-annular C-C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π-π stacking inter-actions based on tpy-tpy. The crystal structure reported here is the first for a tpy-tpy complex of ruthenium.
NASA Astrophysics Data System (ADS)
Bagdatli, Emine; Altuntas, Eylem; Sayin, Ulku
2017-01-01
Four novel o-hydroxy substituted aryl-(msbnd H, sbnd Cl, sbnd Br, sbnd CH3) azo-5-pyrazolone compounds (2a-d, respectively) were synthesized as azo-group containing ligands by diazotization of aryl amines then coupled with 1-(4-chlorophenyl)-3-isopropyl-1H-pyrazol-5(4H)-one (1) and the structures were confirmed by FTIR, UV-Visible, GC-MS or ESI-LCMS and NMR spectroscopic techniques. As a result, the first synthesis of azo-5-pyrazolone based oxovanadium(IV) complexes (3a-d) was achieved by interaction of 2a-d with half equivalent of vanadyl sulphate pentahydrate in a methanolic medium with moderate to high yields (67, 74, 60, 71 for 3a-d, respectively). The resulting complexes were characterized using FTIR, UV-Visible, ESI-LCMS and EPR spectroscopic techniques as well as with thermogravimetric (TG/DTG) analysis. They have the composition [VO(L)2]·H2O; (3a-c) or [VO(L)2]·CH3OH; (3d) where LH is an azo-5-pyrazolone compound as the ligand (2a-d). The electronic spectra of the complexes are typical of oxovanadium(IV) complexes showing a low intensity band near 500 nm. Spectroscopic results have shown that azo-5-pyrazolone compounds have acted bidendate and the coordination sites are hydroxyl-substituent on the -azo phenyl-aromatic ring and the pyrazolone carbonyl-moiety. The thermal data confirm that the complexes have methanol (3a-c) or water (3d) molecule outside the coordination sphere and the complexes show similar thermogravimetric decomposition fragments which are consistent with the proposed structures. A distorted octahedral geometry has been proposed for these complexes mainly with EPR and the other spectral techniques.
NASA Astrophysics Data System (ADS)
Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.
2014-11-01
Multicopper oxidases are fundamental in a variety of biological processes in bacteria, fungi and vertebrates. The catalytic center in these enzymes is formed basically by three copper ions, bridged by oxygen bonds. In order to get insights into the reactivity of these complex systems, biomimetic compounds are usually synthesized. Accordingly, in this work, we studied structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative, as well as its corresponding mononuclear and trinuclear copper(II)-coordinated complexes by means of density functional theory. The calculations are compared with experimental results using measurements of the infrared spectra. It is obtained that the molecular configuration of the pseudoephedrine amino-alcohol derivative is stabilized by hydrogen bonding Osbnd H⋯N and by Csbnd H⋯π interactions that are not present in the mononuclear and trinuclear compounds. The coordination compounds show octahedral and square pyramid geometries, respectively, which are slightly distorted by Jahn-Teller effects. The analysis of their theoretical and experimental IR spectra reveals signals related with hydrogen bonding as well as metal-ligand vibrational modes. Regarding the electronic structure, the density of states was calculated in order to analyze the atomic orbital contributions present in these compounds. This analysis would provide useful insights about the optical behavior, for example, in the visible region of the spectrum of the coordinated compounds. At these energies, the optical absorption would be influenced by the orbital interaction of the Cu2+d orbitals with sp ones of the ligand, reflecting a decrease of the HOMO-LUMO gap of the organic ligand due to the presence of the copper(II) ions.
Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail
2015-01-25
The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.
Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem
2015-02-05
A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L(1)-L(4)), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL(1)⋅DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO
Triki, S; Bérézovsky, F; Sala Pala, J; Coronado, E; Gómez-García, C J; Clemente, J M; Riou, A; Molinié, P
2000-08-21
A new series of homo- and heterometallic oxalato-bridged dinuclear compounds of formulas [Et4N]4[MM'(ox)(NCS)8] ([Et4N]+ = [(C2H5)4N]+; ox = C2O4(2-)) with MM' = Cr(III)-Cr(III) (1), Fe(III)-Fe(III) (2), and Cr(III)-Fe(III) (3) is reported. They have been structurally characterized by infrared spectra and single-crystal X-ray diffraction. The three compounds are isostructural and crystallize in the orthorhombic space group Cmca with Z = 8, a = 16.561(8) A, b = 13.481(7) A, and c = 28.168(8) A for 1, a = 16.515(2) A, b = 13.531(1) A, and c = 28.289(4) A for 2, a = 16.664(7) A, b = 13.575(6) A, and c = 28.386(8) A for 3. The structure of 3 is made up of a discrete dinuclear anion [CrFe(ox)(NCS)8]4- and four disordered [Et4N]+ cations, each of them located on special positions. The anion, in a crystallographically imposed C2h symmetry, contains metal cations in distorted octahedral sites. The Cr(ox)Fe group, which is planar within 0.02 A, presents an intramolecular metal-metal distance of 5.43 A. Magnetic susceptibility measurements indicate antiferromagnetic pairwise interactions for 1 and 2 with J = -3.23 and -3.84 cm-1, respectively, and ferromagnetic Cr-Fe coupling with J = 1.10 cm-1 for 3 (J being the parameter of the exchange Hamiltonian H = -2JS1S2). The ESR spectra at different temperatures confirm the magnetic susceptibility data.
Najafpour, Mohammad Mahdi
2011-06-01
In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Cai-Xia; Zhang, Jian-Guo, E-mail: zjgbit@bit.edu.cn; Yin, Xin
2015-03-15
A series of zero- to two-dimensional Cd(II) coordination compounds have been synthesized by the reaction of Cd(II) salts and 3-hydrazino-4-amino-1,2,4-triazole di-hydrochloride (HATr·2HCl). [CdCl{sub 2}(HATr){sub 2}] (1) and [Cd{sub 2}Cl{sub 4}(HATr){sub 2}(H{sub 2}O){sub 2}] (2) have discrete mononuclear and binuclear structures, respectively. [Cd(HATr){sub 2}(ClO{sub 4}){sub 2}]{sub n} (3) presents polymeric 1-D chain and [Cd{sub 2}(NO{sub 3}){sub 2}Cl{sub 2}(HATr){sub 2}]{sub n} (4) shows 2-D frameworks. All Cd(II) ions exhibit distorted octahedral configurations in 1–3, whilst both hexa and heptacoordinated Cd(II) are formed in 4. The HATr ligands adopt chelating coordinated mode in 1, while tri-dentate bridging–chelating mode in 2–4. The chloride ionmore » is a mono-coordinated ligand in 1 and 2, but it bridges two adjacent metal ions in 4. Furthermore, thermal behaviors have been investigated and the results reveal that all complexes have good thermal stability. The impact sensitivity test indicates that complex 3 is sensitive to impact stimuli. - Graphical abstract: Four Cd(II) complexes based on 3-hydrazino-4-amino-1,2,4-triazole ligands exhibit diverse structures from mononuclear to 2D networks. - Highlights: • Cd(II) complexes containing 3-hydrazino-4-amino-1,2,4-triazole ligands. • Mononuclear, binuclear, 1-D and 2-D structures. • Good thermal stability. • Thermal decomposition kinetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
dos Reis, Roberto; Yang, Hao; Ophus, Colin
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Ni doped Fe3O4 magnetic nanoparticles.
Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J
2012-03-01
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.
Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo
2016-01-21
Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.
Theoretical prediction of welding distortion in large and complex structures
NASA Astrophysics Data System (ADS)
Deng, De-An
2010-06-01
Welding technology is widely used to assemble large thin plate structures such as ships, automobiles, and passenger trains because of its high productivity. However, it is impossible to avoid welding-induced distortion during the assembly process. Welding distortion not only reduces the fabrication accuracy of a weldment, but also decreases the productivity due to correction work. If welding distortion can be predicted using a practical method beforehand, the prediction will be useful for taking appropriate measures to control the dimensional accuracy to an acceptable limit. In this study, a two-step computational approach, which is a combination of a thermoelastic-plastic finite element method (FEM) and an elastic finite element with consideration for large deformation, is developed to estimate welding distortion for large and complex welded structures. Welding distortions in several representative large complex structures, which are often used in shipbuilding, are simulated using the proposed method. By comparing the predictions and the measurements, the effectiveness of the two-step computational approach is verified.
Effect of pressure on the tetragonal distortion in TiH2: a first-principles study
NASA Astrophysics Data System (ADS)
de Coss, R.; Quijano, R.; Singh, D. J.
2009-03-01
The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.
NASA Astrophysics Data System (ADS)
Zaky, R. R.; Ibrahim, K. M.; Gabr, I. M.
2011-10-01
Schiff base complexes of Cu(II), Ni(II) and Zn(II) with the o-hydroxyacetophenone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H 2o-HAHNH) containing N and O donor sites have been synthesized. Both ligand and its metal complexes were characterized by different physicochemical methods, elemental analysis, molar conductivity ( 1H NMR, 13C NMR, IR, UV-visible, ESR, MS spectra) and also thermal analysis (TG and DTG) techniques. The discussion of the outcome data of the prepared complexes indicates that the ligand behave as a bidentate and/or tridentate ligand. The electronic spectra of the complexes as well as their magnetic moments suggest octahedral geometries for all isolated complexes. The room temperature solid state ESR spectrum of the Cu(II) complex shows d x2- y2 as a ground state, suggesting tetragonally distorted octahedral geometry around Cu(II) centre. The molar conductance measurements proved that the complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E#, Δ H#, Δ G#, Δ S# are calculated from the DTG curves, for the [Ni(H O-HAHNH) 2] and [Zn(H 2 O-HAHNH)(OAc) 2]·H 2O complexes using the Coats-Redfern equation. Also, the antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The [Cu(H o-HAHNH)(OAc)(H 2O) 2] complex was the most active against all strains, including Aspergillus sp., Stemphylium sp. and Trichoderma sp. Fungi; E. coli and Clostridium sp. Bacteria.
Wang, Yang; Sui, Yu; Ren, Peng; Wang, Lan; Wang, Xianjie; Su, Wenhui; Fan, Hong Jin
2010-04-05
Detailed structures and thermoelectric (TE) properties are investigated for the perovskite La(1-x)Ca(x)CoO(3) and La(1-x)Sr(x)CoO(3) with 0
Li, Jie; Zu, Lianhai; Li, Ying; Jin, Chao; Qin, Yao; Shi, Donglu; Yang, Jinhu
2014-07-15
Novel spinous TiO2 and Au@TiO2 octahedral nanocages have been prepared through a well-designed three-step strategy including templated TiO2 wet coating, subsequent structural ripening and final template removal or transformation. The strategy is built on an amorphisity-to-crystallinity transition-driven surface structural construction, which emphasizes the critical steps of crystallization-controlled TiO2 coating and consequent structural ripening. The influence of some key parameters, such as coating temperature, ripening temperature and ripening time, on the structure and morphology of the spinous TiO2 and Au@TiO2 nanocages have been investigated. In addition, in photocatalytic measurements, the prepared spinous TiO2-based nanocages exhibit enhanced photocatalytic efficiency relative to spinousless TiO2-based nanocages as well as P-25, owing to their structure advantages resulting from spinous surfaces. The photocatalytic activity of these TiO2 based photocatalysts has been systematically studied through the corresponding ·OH radical measurements. The synthetic strategy may work as a general method, through similarly designing, to realize surface structure engineering for various materials such as metals, hydroxide and other oxides besides TiO2. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun
2016-06-01
The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI
2000-07-13
The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decompositionmore » and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.« less
Mitzi, D B
2000-12-25
Thin sheetlike crystals of the metal-deficient perovskites (H2AEQT)M2/3I4 [M = Bi or Sb; AEQT = 5,5"'-bis-(aminoethyl)-2,2':5',2'':5'',2'''-quaterthiophene] were formed from slowly cooled ethylene glycol/2-butanol solutions containing the bismuth(III) or antimony(III) iodide and AEQT.2HI salts. Each structure was refined in a monoclinic (C2/m) subcell, with the lattice parameters a = 39.712(13) A, b = 5.976(2) A, c = 6.043(2) A, beta = 92.238(5) degrees, and Z = 2 for M = Bi and a = 39.439(7) A, b = 5.952(1) A, c = 6.031(1) A, beta = 92.245(3) degrees, and Z = 2 for M = Sb. The trivalent metal cations locally adopt a distorted octahedral coordination, with M-I bond lengths ranging from 3.046(1) to 3.218(3) A (3.114 A average) for M = Bi and 3.012(1) to 3.153(2) A (3.073 A average) for M = Sb. The new organic-inorganic hybrids are the first members of a metal-deficient perovskite family consisting of (Mn+)2/nV(n-2)/nX4(2-) sheets, where V represents a vacancy (generally left out of the formula) and the metal cation valence, n, is greater than 2. The organic layers in the AEQT-based organic-inorganic hybrids feature edge-to-face aromatic interactions among the rigid, rodlike quaterthiophene moieties, which may help to stabilize the unusual metal-deficient layered structures.
Crystal structure and chemistry of lithium-bearing trioctahedral micas-3T
Brigatti, M.F.; Kile, D.E.; Poppi, L.
2003-01-01
Chemical analyses and crystal structure refinements were performed on lithian siderophyllite-3T crystals from granitic pegmatites of the anorogenic Pikes Peak batholith (Colorado) to characterize the crystal chemistry and relations with trioctahedral lithium-bearing micas showing different stacking sequences. Chemical data show that the studied samples fall on the siderophyllite-polylithionite join, closer to the siderophyllite end-member. Single-crystal X-ray refinements were carried out on three samples (two of which were taken from core and rim of the same crystal) in space-group P31 12 (the agreement factor, Robs, varies between 0.034 and 0.036). Mean bond distances and mean electron counts of M1, M2 and M3 octahedral sites indicate an ordered cation distribution with M1 and M3 positions substantially larger than M2. In the sample with the largest iron content, the M2 mean electron count increases as well as the mean distance, whereas remains smaller than or . The tetrahedral cation-oxygen atom mean distances range from 1.614 to 1.638 A and from 1.663 to 1.678 A for T1 and T2 sites, respectively, being consistent with Al3+ enrichment in the T2 sites. The tetrahedral rotation angle, α, is generally small (3.1 ≤ α ≤ 4.6) and decreases with siderophyllite content. As Fe increases, the T1 tetrahedron becomes flatter (112.4 ≤ t1 ≤ 110.5??), whereas T2 tetrahedron distortion appears unchanged (110.7 ≤ T2 ≤ 110.9).
NASA Astrophysics Data System (ADS)
Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad
2015-08-01
A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.
Kang, Youngjin; Park, Ki-Min; Kim, Jinho
2017-12-01
The asymmetric unit of the title compound, [Ir(C 17 H 11 F 2 N 2 ) 3 ]·0.5CH 3 (CH 2 ) 4 CH 3 ·0.5CH 2 Cl 2 , comprises one Ir III atom, three 2,6-di-fluoro-3-[5-(2-fluoro-phen-yl)pyridin-2-yl]pyridin-4-yl ligands and half each of an n -hexane and a di-chloro-methane solvent mol-ecule located about crystallographic inversion centres. The Ir III atom displays a distorted octa-hedral coordination geometry, having three C , N -chelating 2,6-di-fluoro-3-[5-(2-fluoro-phen-yl)pyridin-2-yl]pyridin-4-yl ligands arranged in a meridional manner. The Ir III ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. The average distance [2.041 (3) Å] of Ir-C bonds is slightly shorter than that [2.076 (3) Å] of Ir-N bonds. A variety of intra- and inter-molecular C-H⋯F and C-H⋯π hydrogen bonds, as well as inter-molecular C-F⋯π inter-actions, contribute to the stabilization of the mol-ecular and crystal structures, and result in the formation of a two-dimensional network parallel to the ab plane. No inter-actions between n -hexane solvent mol-ecules and the other components in the title compound are observed.
NASA Astrophysics Data System (ADS)
Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata
2018-05-01
Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.
Sadoc, Aymeric; Biswal, Mamata; Body, Monique; Legein, Christophe; Boucher, Florent; Massiot, Dominique; Fayon, Franck
2014-01-01
The relationship between the experimental (19)F isotropic chemical shift and the (19)F isotropic shielding calculated using the gauge including projector augmented-wave (GIPAW) method with PBE functional is investigated in the case of GaF3, InF3, TlF and several AlF3 polymorphs. It is shown that the linear correlation between experimental and DFT-PBE calculated values previously established on alkali, alkaline earth and rare earth of column 3 basic fluorides (Sadoc et al., Phys. Chem. Chem. Phys. 13 (2011) 18539-18550) remains valid in the case of column 13 metal fluorides, indicating that it allows predicting (19)F solid state NMR spectra of a broad range of crystalline fluorides with a relatively good accuracy. For the isostructural α-AlF3, GaF3 and InF3 phases, PBE-DFT geometry optimization leads to noticeably overbended M-F-M bond angles and underestimated (27)Al, (71)Ga and (115)In calculated quadrupolar coupling constants. For the studied compounds, whose structures are built of corner shared MF6 octahedra, it is shown that the electric field gradient (EFG) tensor at the cationic sites is not related to distortions of the octahedral units, in contrast to what previously observed for isolated AlF6 octahedra in fluoroaluminates. Copyright © 2014 Elsevier Inc. All rights reserved.
EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses
NASA Astrophysics Data System (ADS)
Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md
2018-03-01
Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.
Residence time effects on technetium reduction in slag-based cementitious materials.
Arai, Yuji; Powell, Brian A; Kaplan, D I
2018-01-15
A long-term disposal of technetium-99 ( 99 Tc) has been considered in a type of cementitious formulation, slag-based grout, at the U.S. Department of Energy, Savannah River Site, Aiken SC, U.S.A. Blast furnace slag, which contains S and Fe electron donors, has been used in a mixture with fly ash, and Portland cement to immobilize 99 Tc(VII)O 4 - (aq) in low level radioactive waste via reductive precipitation reaction. However the long-term stability of Tc(IV) species is not clearly understood as oxygen gradually diffuses into the solid structure. In this study, aging effects of Tc speciation were investigated as a function of depth (<2.5cm) in slag-based grout using X-ray absorption spectroscopy. All of Fe(II) in solids was oxidized to Fe(III) after 117d. However, elemental S, sulfide, and sulfoxide persists at the 0-8mm depths even after 485d, suggesting the presence of a reduced zone below the surface few millimeters. Pertechnetate was successfully reduced to Tc(IV) after 29d. Distorted hydrolyzed Tc(IV) octahedral molecules were partially sulfidized and or polymerized at all depths (0-8mm) and were stable in 485d aged sample. The results of this study suggest that variable S species contribute to stabilize the partially sulfidized Tc(IV) species in aged slag-based grout. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite (Pv) SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1-xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic phase at TN ≥ 225 K. The continuous change of the cell volume as detected by X-ray diffraction andmore » the l-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less
Upender, G; Babu, J Chinna; Mouli, V Chandra
2012-04-01
X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC), infrared (IR), Raman, electron paramagnetic resonance (EPR) and optical absorption studies on 10Li2O-xP2O5-(89-x)TeO2-1CuO glasses (where x=5, 10, 15, 20 and 25 mol%) have been carried out. The amorphous nature of the glasses was confirmed using XRD and FESEM measurements. The glass transition temperature (Tg) of glass samples have been estimated from DSC traces and found that the Tg increases with increasing P2O5 content. Both the IR and Raman studies have been showed that the present glass system consists of [TeO3], [TeO4], [PO3] and [PO4] units. The spin-Hamiltonian parameters such as g∥, g⊥, and A∥ have been determined from EPR spectra and it was found that the Cu2+ ion is present in tetragonal distorted octahedral site with [Formula: see text] as the ground state. Bonding parameters and bonding symmetry of Cu2+ ions have been calculated by correlating EPR and optical data and were found to be composition dependent. Copyright © 2012 Elsevier B.V. All rights reserved.
Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling.
Cui, Q; Cheng, J-G; Fan, W; Taylor, A E; Calder, S; McGuire, M A; Yan, J-Q; Meyers, D; Li, X; Cai, Y Q; Jiao, Y Y; Choi, Y; Haskel, D; Gotou, H; Uwatoko, Y; Chakhalian, J; Christianson, A D; Yunoki, S; Goodenough, J B; Zhou, J-S
2016-10-21
The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225 K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.
Transient Signal Distortion and Coupling in Multilayer Multiconductor MIC Microstrips
1990-05-22
cess.ar1 and identify by block number) I FIELD GROUP I $..)3-{; ’\\0-:: Transient signals, distortion, dispersion, microstrip J 1 i nes , multi...printed circuit design; complex microstrip structures {multiple lines and/or dielectric layers), coupling between lines, distortion of non -periodic...signals on complex structures, and a new method to control coupling on multilayer structures, as well as presenting numerical results for each of these
NASA Astrophysics Data System (ADS)
Zolotarev, Andrey A.; Zhitova, Elena S.; Gabdrakhmanova, Faina A.; Krzhizhanovskaya, Maria G.; Zolotarev, Anatoly A.; Krivovichev, Sergey V.
2017-12-01
The crystal structure of batisite, Na2BaTi2 (Si4O12)O2, from the Inagli massif (Aldan, Yakutia, Russia) was refined to R 1 = 0.032 for 1449 unique observed reflections. The mineral is orthorhombic, Imma, a = 8.0921(5), b = 10.4751(7), c = 13.9054(9) Å, V = 1178.70(13) Å3. The mineral is based upon three-dimensional titanosilicate framework consisting of chains of corner-sharing MO6 octahedra ( M = Ti, Nb, Fe and Zr) and vierer chains of corner-sharing SiO4 tetrahedra. Both chains are parallel to the a axis and are linked by sharing peripheral O atoms. The octahedral chains display disorder of M atoms and bridging O sites related to the out-of-center distortion of octahedral geometry around Ti4+ cations. Electron microprobe analysis gives SiO2 39.46, TiO2 24.66, BaO 21.64, Na2O 7.56, K2O 4.38, Fe2O3 0.90, ZrO2 0.66, Nb2O5 0.36, (H2O)calc 0.58, sum 99.76 wt%. The seven strongest X-ray powder-diffraction lines [listed as d in Å (I) hkl] are: 8.39 (94) 011, 3.386 (56) 031, 3.191 (36) 123, 2.910 (46) 222, 2.896 (100) 024, 2.175 (45) 035, 1.673 (57) 055. The thermal behaviour of batisite in the temperature range from 25 to 950 °C was studied using high-temperature powder X-ray diffraction. The thermal expansion coefficients along the principal crystallographic axes are: α a = 14.4 × 10-6, α b = 8.7 × 10-6, α c = 8.4 × 10-6, α V = 31.5 °C-1 for the temperature range 25-500 °C and α a = 19.6 × 10-6, α b = 9.1 × 10-6, α c = 8.8 × 10-6, α V = 37.6 °C-1 for the temperature range 500-900 °C. The direction of maximal thermal expansion is parallel to the chains of both MO6 octahedra and SiO4 tetrahedra, which can be explained by the stretching of silicate chains due to the increasing thermal vibrations of the Ba2+ cations. At 1000 °C, the titanosilicate framework in batisite collapses with the formation of fresnoite, Ba2TiSi2O7O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozinsek, Matic; Bunic, Tina; Goreshnik, Evgeny, E-mail: evgeny.goreshnik@ijs.s
2009-10-15
In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen fluoride (aHF) a compound Ba(BF{sub 4})(PF{sub 6}) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF{sub 4})(PF{sub 6}) crystallizes in a hexagonal P6-bar2m space group with a=10.2251(4) A, c=6.1535(4) A, V=557.17(5) A{sup 3} at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF{sub 4}{sup -} and PF{sub 6}{sup -} anions. In the analogous system with AsF{sub 5} instead of PF{sub 5} the compound Ba(BF{sub 4})(AsF{sub 6}) was isolated and characterized.more » It crystallizes in an orthorhombic Pnma space group with a=10.415(2) A, b=6.325(3) A, c=11.8297(17) A, V=779.3(4) A{sup 3} at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF{sub 6}{sup -} and four F atoms from BF{sub 4}{sup -} anions. When the system BaF{sub 2}/BF{sub 3}/AsF{sub 5}/aHF is made basic with an extra addition of BaF{sub 2}, the compound Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}) was obtained. It crystallizes in a hexagonal P6{sub 3}/mmc space group with a=6.8709(9) A, c=17.327(8) A, V=708.4(4) A{sup 3} at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF{sub 4}{sup -}, three AsF{sub 6}{sup -} and three H{sub 3}F{sub 4}{sup -} anions. All F atoms, except the central atom in H{sub 3}F{sub 4} moiety, act as mu{sub 2}-bridges yielding a complex 3-D structural network. - Graphical abstract: The first three compounds, containing simultaneously tetrahedral BF{sub 4}{sup -} and octahedral AF{sub 6}{sup -} (A=P, As) anions have been synthesized and characterized by Raman spectroscopy and X-ray single crystal diffraction. In the system BaF{sub 2}/BF{sub 3}/PF{sub 5}/anhydrous hydrogen fluoride (aHF) the compound Ba(BF{sub 4})(PF{sub 6}) was isolated. In the analogous system with AsF{sub 5} instead of PF{sub 5} the compound Ba(BF{sub 4})(AsF{sub 6}) was obtained. When the system BaF{sub 2}/BF{sub 3}/AsF{sub 5}/aHF is made basic with an extra addition of BaF{sub 2}, the compound Ba{sub 2}(BF{sub 4}){sub 2}(AsF{sub 6})(H{sub 3}F{sub 4}) was prepared.« less
NASA Astrophysics Data System (ADS)
Avdeev, Georgi; Petrov, Kostadin; Mitov, Ivan
2007-12-01
LiFe 0.5Ti 1.5O 4 was synthesized by solid-state reaction carried out at 900 °C in flowing argon atmosphere, followed by rapid quenching of the reaction product to room temperature. The compound has been characterized by X-ray powder diffraction (XRD) and 57Fe Mössbauer effect spectroscopy (MES). It crystallizes in the space group P4 332, a = 8.4048(1) Å. Results from Rietveld structural refinement indicated 1:3 cation ordering on the octahedral sites: Li occupies the octahedral (4 b) sites, Ti occupies the octahedral (12 d) sites, while the tetrahedral (8 c) sites have mixed (Fe/Li) occupancy. A small, about 5%, inversion of Fe on the (4 b) sites has been detected. The MES data is consistent with cation distribution and oxidation state of Fe, determined from the structural data. The title compound is thermally unstable in air atmosphere. At 800 °C it transforms to a mixture of two Fe 3+ containing phases - a face centred cubic spinel Li (1+ y)/2 Fe (5-3 y)/2 Ti yO 4 and a Li ( z-1)/2 Fe (7-3 z)/2 Ti zO 5 - pseudobrookite. The major product of thermal treatment at 1000 °C is a ramsdellite type lithium titanium iron(III) oxide, accompanied by traces of rutile and pseudobrookite.
Datt, Gopal; Sen Bishwas, Mousumi; Manivel Raja, M; Abhyankar, A C
2016-03-07
Magnetic anomalies corresponding to the Verwey transition and reorientation of anisotropic vacancies are observed at 151 K and 306 K, respectively, in NiCoFe2O4 nanoparticles (NPs) synthesized by a modified-solvothermal method followed by annealing. Cationic disorder and spherical shape induced non-stoichiometry suppress the Verwey transition in the as-synthesized NPs. On the other hand, reorientation of anisotropic vacancies is quite robust. XRD and electron microscopy investigations confirm a single phase spinel structure and the surface morphology of the as-synthesized NPs changes from spherical to octahedral upon annealing. Rietveld analysis reveals that the Ni(2+) ions migrate from tetrahedral (A) to octahedral (B) sites upon annealing. The Mössbauer results show canted spins in both the NPs and the strength of superexchange is stronger in Co-O-Fe than Ni-O-Fe. Magnetic force images show that the as-synthesised NPs are single-domain whereas the annealed NPs are multi-domain octahedral particles. The FMR study reveals that both the NPs have a broad FMR line-width; and resonance properties are consistent with the random anisotropy model. The broad inhomogeneous FMR line-width, observation of the Verwey transition, tuning of the magnetic domain structure as well as the magnetic properties suggest that the NiCoFe2O4 ferrite NPs may be promising for future generation spintronics, magneto-electronics, and ultra-high-density recording media as well as for radar absorbing applications.
Lowest-energy structures of (C60)nX (X=Li+,Na+,K+,Cl-) and (C60)nYCl (Y=Li,Na,K) clusters for n=13.
Hernández-Rojas, J; Bretón, J; Gomez Llorente, J M; Wales, D J
2004-12-22
Basin-hopping global optimization is used to find likely candidates for the lowest minima on the potential energy surface of (C(60))(n)X (X=Li(+),Na(+),K(+),Cl(-)) and (C(60))(n)YCl (Y=Li,Na,K) clusters with n=13. The energy is evaluated using the Girifalco form for the C(60) intermolecular potential along with a polarization potential, which depends on the first few nonvanishing C(60) multipole polarizabilities. We find that the ions occupy interstitial sites of a (C(60))(n) cluster, the coordination shell being triangular for Li(+), tetrahedral for Na(+) and K(+), and octahedral for Cl(-). When the required coordination site does not exist in the corresponding (C(60))(n) global minimum, the lowest minimum of the doped system may be based on an alternative geometry. This situation is particularly common in the Cl(-) complexes, where the (C(60))(n) global minima with icosahedral packing change into decahedral or closed-packed forms for the ions. In all the ions we find a significant binding energy for the doped cluster. In the alkali chloride complexes the preferred coordination for the diatomic moiety is octahedral and is basically determined by the Cl(-) ion. However, the smaller polarization energies in this case mean that a change in structure from the (C(60))(n) global minimum does not necessarily occur if there is no octahedral site. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Snyder, J. E.; Harris, V. G.; Koon, N. C.; Sui, X.; Kryder, M. H.
1996-10-01
Anisotropic local structure has been observed around both the Fe and Ba ions in the amorphous precursor to Ba-hexaferrite thin films, using polarization-dependent extended x-ray-absorption fine structure. This anisotropic local structure, consisting mainly of a network of Fe-O octahedra, determines the orientation of the fast-growing basal planes during crystallization, and thus the directions of the c axes and the resulting magnetic anisotropy.
Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F
2010-11-04
Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.
Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith
NASA Astrophysics Data System (ADS)
Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.
2003-12-01
Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (<1 m) regolith appears to have water abundances of up to ˜13 wt%. Water ice is predicted to be unstable at the present time at all depths below the surface in these equatorial regions. If present in hydrous silicate minerals such as clays or zeolites, which may contain water in abundances of ˜10-20% at Martian surface conditions, the Odyssey data require a regolith very enriched in hydrous silicates - an unlikely proposition. Viking X-ray fluorescence data and alteration assemblages in martian meteorites suggest the presence of sulfate salts in martian regolith. Viking data from excavated duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e.g., epsomite, pentahydrite) lose that excess readily. Experiments with epsomite and hexahydrite indicate great sensitivity to environmental conditions; epsomite is not stable at 295 K at relative humidity (RH) values less than about 55%, below which hexahydrite is the observed phase. More importantly, hexahydrite - with all water coordinated to Mg in octahedral sites - is unstable at pressures less than ˜20 mtorr. X-ray diffraction analysis of hexahydrite held at 20 mtorr for six hours shows that structural degradation is slow at 100 K but becomes obvious in 1 hour at 273 K. Thermogravimetric analysis of this amorphous solid shows that it contains ˜26% H2O (compared with 47% in crystalline hexahydrite), and its observed macroscopic expansion behavior suggests that it can reversibly hydrate and dehydrate. Although neither epsomite nor hexahydrite is likely to be stable near the surface of Mars, their amorphous derivatives or crystalline forms of the lower hydrates might be present (preliminary thermogravimetric data indicate that kieserite is likely to be stable). However, the limited rehydration of structurally degraded hexahydrite indicates that unrealistically large amounts ( ˜50%) would be required in the upper meter of regolith to account for the higher water contents ( ˜13%) suggested for some martian equatorial regions; even larger amounts of kieserite ( ˜100%) would be required. A more important role for sulfates may be in the formation of a low-permeability salt crust that could restrict dewatering of underlying soil horizons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Sinkov, Sergey I.; Krause, Jeanette A.
2016-01-27
The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO– anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di-(2-ethylhexyl)phosphoric acid (HA) is saturated withmore » Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.« less
NASA Astrophysics Data System (ADS)
Scholtzová, Eva; Smrčok, Ľubomír
2005-09-01
Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1 T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1 T and 2 H 1, up to 30% in the 2 H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.
Spectroscopic features of Ni(2+) ion in PbO-Bi2O3-SiO2 glass system.
Suresh, B; Srinivasa Reddy, M; Siva Sesha Reddy, A; Gandhi, Y; Ravi Kumar, V; Veeraiah, N
2015-04-15
Glasses of the composition (30-x)PbO-5Bi2O3-65SiO2: xNiO (with x ranging from 0 to 1.0 mol%) were synthesized. A variety of spectroscopic studies, viz., IR, Raman optical absorption and luminescence properties of these glasses have been carried out as a function of NiO concentration. The analysis of results of all these studies has indicated that the nickel ions occupy both octahedral and tetrahedral positions. However, with the increase of NiO concentration the octahedral occupancy of Ni(2+) ions prevailed over the tetrahedral ions. The luminescence spectra of these glasses have exhibited a broad NIR emission band in region 1100-1500 nm. This band is identified as being due to (3)T2(3F)→(3)A2(3F) octahedral transition of Ni(2+) ions. The luminescence efficiency and cross section have been found to be the highest for the glass containing the highest concentration of NiO. The reasons for such high luminescence efficiency have been discussed in the light of structural variations taking place in the host glass network. Copyright © 2015 Elsevier B.V. All rights reserved.
Lumetta, Gregg J; Sinkov, Sergey I; Krause, Jeanette A; Sweet, Lucas E
2016-02-15
The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO(-) anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di(2-ethylhexyl)phosphoric acid (HA) is saturated with Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.
NASA Astrophysics Data System (ADS)
Rastsvetaeva, R. K.; Rozenberg, K. A.; Chukanov, N. V.; Möckel, S.
2009-07-01
The iron-rich variety of zanazziite Ca2[Mg0.65Fe0.35□1.0][Mg1.90Fe1.25Al0.5Mn0.35]Σ4Be4(PO4)6(OH)4(H2O,OH)2 · 4H2O, which is a heteropolyhedral framework roscherite-group beryllophos-phate from the Sapucaia pegmatite (Minas Gerais, Brazil), was studied by X-ray diffraction. The refinement was carried out in the triclinic and monoclinic systems. It was found that the cation distribution on octahedral sites in the crystal structure is in better agreement with the monoclinic symmetry ( a = 15.876 Å, b = 11.860 Å, c = 6.607 Å, β = 95.49°, sp. gr. C2/ c). In the sample under study, no ordering of Mg or Fe atoms in octahedral sites is observed in sp. gr. P bar 1 , unlike the more iron-rich member of the roscherite group (atencioite).
Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide
2013-01-01
Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709
NASA Astrophysics Data System (ADS)
Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.
2017-04-01
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E
2017-04-21
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Structure of thallium(III) chloride, bromide, and cyanide complexes in aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blixt, J.; Glaser, J.; Sandstroem, M.
1995-05-10
The structures of the hydrated thallium(III) halide and pseudohalide complexes, [TlX{sub n}(OH{sub 2}){sub m}]{sup (3-d)+}, X = Cl, Br, CN, in aqueous solution have been studied by a combination of X-ray absorption fine structure spectroscopy (XAFS), large-angle X-ray scattering (LAXS), and vibrational spectroscopic (Raman and IR) techniques including far-infrared studies of aqueous solutions and some solid phases with known structures. The vibrational Tl-X frequencies of all complexes are reported, force constants are calculated using normal coordinate analysis, and assignments are given. The structural results are consistent with octahedral six-coordination for the cationic complexes Tl(OH{sub 2}){sub 6}{sup 3$PLU}, TlX(OH{sub 2}){sub 5}{supmore » 2+}, and trans-TlX{sub 2}(OH{sub 2}){sub 4}{sup +}. The coordination geometry changes to trigonal bipyramidal for the neutral TlBr{sub 3}(OH{sub 2}){sub 2} complex and possibly also for TlCl{sub 3}(OH{sub 2}){sub 2}. The TlX{sub 4}{sup -} complexes are all tetrahedral. Higher chloride complexes, TlCl{sub 5}(OH{sub 2}){sup 2-} and TlCl{sub 6}{sup 3-}, are formed and have again octahedral coordination geometry. 65 refs., 7 figs., 5 tabs.« less
Engineered Multifunctional Nanophotonic Materials for Ultrafast Optical Switching
2012-11-02
and Co3 + placed at tetrahedral and octahedral sites, respectively. Single -layer thin films of Co3O4 nanoparticles have large optical nonlinearity and...the first two methodologies in systems having weakly resonant structures, including 3-D and/or 1-D photonic crystal structures (i.e. nonlinear Bragg...Nonlinear optical transmission of lead phthalocyanine-doped nematic liquid crystal composites for multiscale nonlinear switching from nanosecond to
Functional modulation of a protein folding landscape via side-chain distortion
Kelch, Brian A.; Salimi, Neema L.; Agard, David A.
2012-01-01
Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results in a ∼6° distortion along the side-chain, estimated to cost 4 kcal/mol. By contrast, in the closely related protease Streptomyces griseus Protease B (SGPB), the equivalent Phe adopts a different rotamer and is undistorted. Here, we report that the αLP Phe side-chain distortion is both functional and conserved in proteases with large pro regions. Sequence analysis of the αLP serine protease family reveals a bifurcation separating those sequences expected to induce distortion and those that would not, which correlates with the extent of kinetic stability. Structural and folding kinetics analyses of family members suggest that distortion of this side-chain plays a role in increasing kinetic stability within the αLP family members that use a large Pro region. Additionally, structural and kinetic folding studies of mutants demonstrate that strain alters the folding free energy landscape by destabilizing the transition state (TS) relative to the native state (N). Although side-chain distortion comes at a cost of foldability, it suppresses the rate of unfolding, thereby enhancing kinetic stability and increasing protein longevity under harsh extracellular conditions. This ability of a structural distortion to enhance function is unlikely to be unique to αLP family members and may be relevant in other proteins exhibiting side-chain distortions. PMID:22635267
X-Ray Absorption Spectroscopy of Fe-Substituted Allophane and Imogolite
NASA Astrophysics Data System (ADS)
Baker, L. L.; Strawn, D. G.; Nickerson, R. D.; McDaniel, P.
2011-12-01
Martian rocks and sediments contain weathering products including clay minerals formed as a result of interaction between rocks and water, and these materials can act as important indicators of past surface conditions on Mars. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals, including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which may affect their spectral and physical properties as well as their eventual recrystallization products. Detection and quantification of such minerals in natural environments on Earth is difficult due to their variable chemical composition and lack of long-range crystalline order. Their accurate detection and quantification on Mars requires a better understanding of how composition affects their spectral properties and evolution to more crystalline phases. Aluminosilicate nanoparticles of varying composition were synthesized with isomorphically substituted Fe at Fe:Al ratios of 1:100. Allophanes were synthesized with Al:Si ratios of 2:1, 1:1, and 1:3. The substituted Fe was probed using Fe K-edge X-ray absorption fine structure spectroscopy (XAFS). The XAFS spectrum contains information about the molecular environment surrounding the target atom, and is an ideal technique for studying poorly crystalline materials that are difficult to characterize using bulk methods such as XRD. The near-edge (XANES) and extended (EXAFS) portions of the XAFS spectrum were examined, and allophane backscattering paths were fit using coordinates for a modified nanoball model (1). XANES spectra rule out ferrihydrite in the synthetic samples, suggesting all Fe was incorporated into the aluminosilicate structure. The XAFS results suggest that Fe substituted into the allophane structure is present as Fe(III) in octahedral coordination in a well-ordered sheet. Some Fe substitution in tetrahedral sites occurs in allophane with Al:Si = 2:1, but not in higher-Si compositions. These results support the nanoball model for allophane (1) based on a rolled octahedral sheet and indicate that sheet is well ordered. They do not support proposed models of an incomplete octahedral sheet in high-Si allophanes. Analysis of Fe distribution suggests considerable Fe clustering in the octahedral sheet which increases with sample aging. This clustering could lead to eventual nucleation of a separate Fe (oxyhydr)oxide phase. (1) Creton et al. (2008) J Phys Chem C 112, 358.
Basu Baul, Tushar S; Kehie, Pelesakuo; Duthie, Andrew; Guchhait, Nikhil; Raviprakash, Nune; Mokhamatam, Raveendra B; Manna, Sunil K; Armata, Nerina; Scopelliti, Michelangelo; Wang, Ruimin; Englert, Ulli
2017-03-01
Five new organotin(IV) complexes of compositions [Me 2 SnL 1 ] (1), [Me 2 SnL 2 ] n (2), [Me 2 SnL 3 ] (3), [Ph 3 SnL 1 H] n (4) and [Ph 3 SnL 3 H] (5) (where L 1 =(2S)-2-((E)-((Z)-4-hydroxypent-3-en-2-ylidene)amino)-3-(1H-indol-3-yl)propanoate, L 2 =(2S)-(E)-2-((2-hydroxybenzylidene)amino)-3-(1H-indol-3-yl)propanoate and L 3 =(2S)-(E)-2-((1-(2-hydroxyphenyl)ethylidene)amino)-3-(1H-indol-3-yl)propanoate were synthesized and spectroscopically characterized. The crystal structures of 1-4 were determined. For the dimethyltin derivative 2, a polymeric chain structure was observed as a result of a long Sn∙∙∙O contact involving the exocyclic carbonyl oxygen-atom from the tridentate ligand of a neighboring Sn-complex unit. The tin atom in this complex has a distorted octahedral coordination geometry, in which the long Sn-O bond is almost trans to the tridentate ligand nitrogen-atom. In contrast, the dimethyltin(IV) complexes 1 and 3 displayed discrete monomeric structures where the tin atom has distorted trigonal-bipyramidal geometry with the two coordinating L oxygen atoms defining the axial positions. On the other hand, 4 is a chain polymer in the solid state. The ligand-bridged Sn atoms adopt a trans-Ph 3 SnO 2 trigonal-bipyramidal configuration with equatorial phenyl groups. A carboxylato oxygen atom from one and the hydroxyl oxygen of the successive ligand in the chain occupy the axial positions. The solution structures were predicted by the use of 119 Sn NMR chemical shifts. The photophysical properties of the complexes were investigated in the solid and in solution. The triphenyltin(IV) compound 4 was tested in detail ex vivo against A375 (human melanoma) cell line, exhibiting an IC 50 value of 261nM to induce cell death as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay without significant alteration of cytolysis as determined by lactate dehydrogenase (LDH) assay. Compound 4-mediated potent cell death was also determined by Live and Dead assay and caspase-mediated cleavage of poly-ADP ribose polymerase (PARP). Potent cell death activity was not observed in primary cells, like blood-derived peripheral mononuclear cells (PBMC). Compound 4 inhibited the diphenyl hexatriene (DPH) binding to cells and decreased the micro viscosity in a dose-dependent manner. Additionally, the ability of 4 and cyclodextrin (CD) to interact was determined by molecular modelling. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zordok, W. A.; Sadeek, S. A.
2018-04-01
Seven new complexes of2-oxo-4,6-diphenyl-1,2-dihyropyridine-3-carbonitrile (L) with Fe(III), Co(II), Cu(II), Zn(II), Y(III), Zr(IV) and La(III) were synthesized. The isolated solid compounds were elucidated from micro analytical, IR, electronic, mass, 1H NMR, magnetic susceptibility measurements and TG/DTG, DTA analyses. The intensity of ν(Ctbnd N) was changed to strong and shifted to around 2200 cm-1. Also, the ν(Cdbnd O) was shifted to higher frequency value (1644 cm-1). The spectra of the complexes indicate that the free ligand is coordinated to the metal ions via nitrogen of carbonitrile group and oxygen of keto group. From DFT calculations the Cu(II) and Fe(III) complexes behave as regular octahedral, while other complexes are distorted octahedral. The value of energy gap of the free ligand (ΔE = 0.3343 eV) is greater than all new complexes, so they are more reactive than free ligand, also the Fe(III) complex (ΔE = 0.0985 eV) is the most reactive complex, while Cu(II) complex (ΔE = 0.3219 eV) is the least reactive complex. The LMCT in case of Zr(IV) complex was resulted from transitions from HOMO-2 (62%), HOMO-1 (16%)and HOMO (25%), while the d-d transition in Fe(III) complex was resulted from HOMO-1(30%), HOMO-2(62%) and HOMO(30%). Also, the metal complexes exhibit antibacterial activity for Gram-positive and Gram-negative and antifungal activity. The Y(III) and Cu(II) complexes are highly significant for Escherichia coli and salmonella typhimurium.
AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition
Pham, Joyce; Miller, Gordon J.
2018-04-02
Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less
AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Joyce; Miller, Gordon J.
Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, B.W.; Reibenspies, J.; Martell, A.E.
1993-03-17
The complexes of ReO[sub 2][sup +] and ReO(OH)[sup 2+] with 1,4,8,11-tetraazacyclotetradecane (cyclam) and 1,4,8,11-tetraazacyclotetradecan-2-one (O[sub 1]cyclam) have been synthesized and characterized. The complexes were prepared by ligand exchange reactions of the macrocycles with a variety of starting compounds including ReOCl[sub 3](PPh[sub 3])[sub 2] and ReO[sub 2](en)[sub 2]Cl. The ReO(OH)[sup 2+] complexes have been structurally characterized. ReO(OH)(H[sub [minus]1]O[sub 1]cyclam)ReO[sub 4] crystallizes in the monoclinic P2[sub 1]/n space group with a = 10.308(3) [Angstrom], b = 9.527(2) [Angstrom], c = 17.808(3) [Angstrom], and [beta] = 106.57(2)[degrees]. ReO(OH)(cyclam)(ClO[sub 4])[sub 2] crystallizes in the monoclinic C2/c space group with a = 9.734(4) [Angstrom], bmore » = 16.999(5) [Angstrom], c = 12.187(5) [Angstrom], and [beta] = 106.36[degrees]. The complex ReO(OH)(H[sub [minus]1]O[sub 1]cyclam)ReO[sub 4] has a distorted octahedral structure with one short ReO(oxo) bond and one long ReO(hydroxo) bond (1.685(8) vs 1.970(8) [Angstrom]). The deprotonated amide ReN(sp[sup 2]) bond is shorter than the other three ReN(sp[sup 3]) bond lengths (1.98(1) vs 2.13(3) [Angstrom] (average)). The structure of the ReO(OH)(cyclam)(ClO[sub 4])[sub 2] complex shows no distinction between the lengths of the two ReO(oxo and hydroxo) bonds (1.766(5) [Angstrom]) due to disorder of the oxo and hydroxo groups. Spectroscopic evidence is reported to confirm the presence of both oxo and hydroxo groups coordinated to rhenium. 38 refs., 7 figs., 6 tabs.« less
Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling
2016-02-01
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.
Long- and Short-Range Structure of Ferrimagnetic Iron-Chromium Maghemites.
García-Guaderrama, Marco; Montero-Cabrera, María E; Morán, Emilio; Alario-Franco, Miguel A; Fuentes-Cobas, Luis E; Macías-Ríos, Edgar; Esparza-Ponce, Hilda E; Fuentes-Montero, María E
2015-12-07
Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).
NASA Astrophysics Data System (ADS)
Huang, Qiu-Ying; Zheng, Ze-Bao; Diao, Yun-Peng
2015-05-01
A new complex of Cd(II) with (E)-1-(5-chloro-2-hydroxybenzylideneamino)-pyrrolidin-2-one [Cd(L)2ṡ2DMF] was synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. Where the HL ligand is formed in situ by the intramolecular nucleophilic substitution of (E)-N‧-(5-chloro-2-hydroxybenzyli-dene)-4-(quinolin-8-yloxy)butanehydrazide (H2L‧). The cadmium(II) ion is hexacoordinated by two tridentate L- ligands and giving a distorted octahedral coordination geometry. A cytotoxicity of [Cd(L)2ṡ2DMF] against liver (SMMC-7721) and cervical (HeLa) cancer cells have been studied. The results revealed that this cadmium(II) complex exhibited an effective and selective anticancer activity against HeLa over SMMC-7721 cell line with IC50 of 1.54 ± 0.25 and 31.02 ± 3.76 μmol/dm-3.
NASA Astrophysics Data System (ADS)
Raja, N.; Ramesh, R.
2010-02-01
Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.
Hyperfine interaction in K 2Ba[Fe(NO 2) 6
NASA Astrophysics Data System (ADS)
Padmakumar, K.; Manoharan, P. T.
2000-04-01
Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.
(Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.
Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam
2012-04-01
In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.
Zhang, Zhen-Ya; Wu, Shao-Yi; Zhang, Fu; Zhang, Cheng-Xi; Qin, Rui-Jie; Gao, Han
2018-03-01
The local distortions and electron paramagnetic resonance parameters for Cu 2+ in the mixed alkali borate glasses xNa 2 O-(30-x)K 2 O-70B 2 O 3 (5 ≤ x ≤ 25 mol%) are theoretically studied with distinct modifier Na 2 O compositions x. Owing to the Jahn-Teller effect, the octahedral [CuO 6 ] 10- clusters show significant tetragonal elongation ratios p ~19% along the C 4 axis. With the increase of composition x, the cubic field parameter Dq and the orbital reduction factor k exhibit linearly and quasi-linearly decreasing tendencies, respectively, whereas the relative tetragonal elongation ratio p has quasi-linearly increasing rule with some fluctuations, leading to the minima of g factors at x = 10 mol%. The composition dependences of the optical spectra and the electron paramagnetic resonance parameters are suitably reproduced by the linear or quasi-linear relationships of the relevant quantities (i.e., Dq, k, and p) with x. The above composition dependences are analyzed from mixed alkali effect, which brings forward the modifications of the local crystal-fields and the electronic cloud distribution around Cu 2+ with the variation of the composition of Na 2 O. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Righter, K.
2001-01-01
Highly siderophile elements Re, Ru and Ir partition strongly into spinel structures with large octahedral sites. New experimental results for both magmatic and silicate spinels will be presented with a few planetary implications. Additional information is contained in the original extended abstract.
Magnetization and anisotropy of cobalt ferrite thin films
NASA Astrophysics Data System (ADS)
Eskandari, F.; Porter, S. B.; Venkatesan, M.; Kameli, P.; Rode, K.; Coey, J. M. D.
2017-12-01
The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kA m-1 , which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 μB that is associated with the octahedrally coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (Ti O2 , MgO, MgA l2O4 , SrTi O3 , LSAT, LaAl O3 ) and as a function of temperature (500 -700 °C) and oxygen pressure (10-4-10 Pa ) . Magnetization at room-temperature ranges from 60 to 440 kA m-1 , and uniaxial substrate-induced anisotropy ranges from +220 kJ m-3 for films on deposited on MgO (100) to -2100 kJ m-3 for films deposited on MgA l2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kA m-1 , and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed.
Transformation and Alignment in Similarity
ERIC Educational Resources Information Center
Hodgetts, Carl J.; Hahn, Ulrike; Chater, Nick
2009-01-01
This paper contrasts two structural accounts of psychological similarity: structural alignment (SA) and Representational Distortion (RD). SA proposes that similarity is determined by how readily the structures of two objects can be brought into alignment; RD measures similarity by the complexity of the transformation that "distorts" one…
Local lattice distortion in high-entropy alloys
NASA Astrophysics Data System (ADS)
Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian
2017-07-01
The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.
NASA Astrophysics Data System (ADS)
Narayanan, Jayanthi; Carlos-Alberto, Aguilar H.; Arturo, Lazarini M.; Höpfl, Herbert; Enrique-Fernando, Velazquez C.; Fernando, Rocha A.; Fernando-Toyohiko, Wakida K.; Velazquez-Lopez, José E.; Lesli, Arroyo O.
2018-03-01
Chromium (III) complex [Cr (hq)3;C2H5OH] of 8-hydroxyquinoline (hq) was prepared and its structure was resolved by X-ray diffraction analysis at low-temperature, showing that Cr3+ ion presents in distorted octahedral geometry, and it is consistent with the DFT optimized structure. It was observed that solvent ethanol is involved a hydrogen bond with 8-hydroxyquinoline anion. Furthermore, the molecular orbital contributions to spectral bands observed for the complex were determined by TD-DFT. The interaction of [Cr (hq)3;C2H5OH] with glutamine (Gln) or asparagine (Asn) shows that the complex binds effectively with glutamine through hydrogen bonding (H2N+-HṡṡṡOethanol) to form a possible stable adduct [Cr (hq)3;C2H5OH)Gln], yielding its binding constant 10,000 times greater (1.4315 M-1) than that for Asn (5.0 × 10-4 M-1). This is apparently due to the formation of stable secondary coordination sphere through the hydrogen bond between the metal complex with Gln. This observation is good agreement with the total molecular energy as well as with the molecular orbital study, i.e. in the DFT calculation, a lower total molecular energy (-8299,549.441 kcal/mmol) for [Cr (hq)3;C2H5OH) Gln] was obtained than that resulted for [Cr (hq)3;C2H5OH)Asn] (-8194,799.867 kcal/mmol), establishing ethanol effectively stabilizes the interaction between glutamine and the complex. Finally, antibacterial properties of [Cr (hq)3;C2H5OH] against Gram positive Bacillus cereus and Gram negative Escherichia coli was also studied, and compared its bacterial growths for its adducts of glutamine or of asparagine.
NASA Astrophysics Data System (ADS)
Sclauzero, Gabriele; Dymkowski, Krzysztof; Ederer, Claude
2016-12-01
We investigate the effect of epitaxial strain on the Mott metal-insulator transition (MIT) in perovskite systems with d1 and d2 electron configurations of the transition metal (TM) cation. We first discuss the general trends expected from the changes in the crystal-field splitting and in the hopping parameters that are induced by epitaxial strain. We argue that the strain-induced crystal-field splitting generally favors the Mott-insulating state, whereas the strain-induced changes in the hopping parameters favor the metallic state under compressive strain and the insulating state under tensile strain. Thus the two effects can effectively cancel each other under compressive strain, while they usually cooperate under tensile strain, in this case favoring the insulating state. We then validate these general considerations by performing electronic structure calculations for several d1 and d2 perovskites, using a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT). We isolate the individual effects of strain-induced changes in either hopping or crystal-field by performing DMFT calculations where we fix one type of parameter to the corresponding unstrained DFT values. These calculations confirm our general considerations for SrVO3 (d1) and LaVO3 (d2), whereas the case of LaTiO3 (d1) is distinctly different, due to the strong effect of the octahedral tilt distortion in the underlying perovskite crystal structure. Our results demonstrate the possibility to tune the electronic properties of correlated TM oxides by using epitaxial strain, which allows to control the strength of electronic correlations and the vicinity to the Mott MIT.
Effect of Ni and Ti substitutions on Li1.05Mn2O4-δ electrical conductivities at high temperature
NASA Astrophysics Data System (ADS)
Abe, Satoko; Iwasaki, Shoko; Shimonishi, Yuta; Komine, Shigeki; Munakata, Fumio
2016-10-01
Samples of Li1.05Mn2O4-δ, Li1.05Mn1.5Ni0.5O4-δ, and Li1.05Mn1.0Ni0.5Ti0.5O4-δ were prepared by a solid-state reaction technique and ultimately refined to a space group Fd-3m of spinel structure by the Rietveld method using synchrotron powder X-ray diffraction data. Comparison of lattice constants suggested that Ni-substitution increased the covalency in the bonding of MO6 (M: metal ion at 16d site) octahedrals, but Ni/Ti co-substitution decreased the covalency of M-O bonds and introduced structural distortion. Electrical conductivity measurements by a four-probe method resulted in the determination that electrical conduction (within all samples) exhibits a nonadiabatic hopping process at high temperatures. The activation energies of Li1.05Mn2O4-δ and Li1.05Mn1.5Ni0.5O4-δ were found to be of similar values. The Ni/Ti co-substituted sample of Li1.05Mn1.0Ni0.5Ti0.5O4-δ, on the other hand, showed the highest activation energy among all the measured samples. Substitution reduced the electrical conductivity relative to Li1.05Mn2O4-δ; furthermore, both the substituted samples (Li1.05Mn1.5Ni0.5O4-δ and Li1.05Mn1.0Ni0.5Ti0.5O4-δ) were found to exhibit functional independence from oxygen partial pressure (PO2).
Structural, thermal and optical properties of TeO2-ZnO-CdO-BaO glasses doped with VO(2+).
Sreenivasulu, V; Upender, G; Chandra Mouli, V; Prasad, M
2015-09-05
The glasses with composition 64TeO2-15ZnO-(20-x)CdO-xBaO-1V2O5 (0⩽x⩽20 mol%) were prepared by conventional melt quenching technique. X-ray diffraction analysis was used to confirm the amorphous nature of the glasses. The optical absorption studies revealed that the cut-off wavelength (λα) decreases while optical band gap energy (Eopt) and Urbach energy (ΔE) values increase with an increase of BaO content. Refractive index (n) evaluated from Eopt was found to decrease with an increase of BaO content. The physical parameters such as density (ρ), molar volume (Vm), oxygen packing density (OPD), optical basicity (Λ), molar refraction (Rm), and metallization criterion (M) evaluated and discussed. FTIR and Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1/TeO3 and ZnO4 units as basic structural units. The glass transition temperature (Tg) of glass sample, onset crystallization temperature (To) and thermal stability ΔT were determined from Differential Scanning Calorimetry (DSC). Using electron paramagnetic resonance (EPR) spectra of vanadium glasses the spin Hamiltonian parameters and dipolar hyperfine coupling parameters of VO(2+) ions were calculated. It was found that V(4+) ions in these glasses exist as VO(2+) in octahedral coordination with a tetragonal distortion and have C4V symmetry with ground state dxy. Tetragonality (Δg∥/Δg⊥) of vanadium ion sites exhibited non-linear variation with BaO content. Copyright © 2015 Elsevier B.V. All rights reserved.
Semiconductor-to-metal phase change in MoTe2 layers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Davydov, Albert V.; Krylyuk, Sergiy; Kalish, Irina; Meshi, Louisa; Beams, Ryan; Kalanyan, Berc; Sharma, Deepak K.; Beck, Megan; Bergeron, Hadallia; Hersam, Mark C.
2016-09-01
Molybdenum ditelluride (MoTe2), which can exist in a semiconducting prismatic hexagonal (2H) or a metallic distorted octahedral (1T') phases, is one of the very few materials that exhibit metal-semiconductor transition. Temperature-driven 2H - 1T' phase transition in bulk MoTe2 occurs at high temperatures (above 900 °C) and it is usually accompanied by Te loss. The latter can exacerbate the control over reversibility of the phase transition. Here, we study effects of high-temperature annealing on phase transition in MoTe2 single crystals. First, MoTe2 were grown in sealed evacuated quartz ampoules from polycrystalline MoTe2 powder in an iodine-assisted chemical vapor transport process at 1000 °C. The 2H and 1T' phases were stabilized by controlling the cooling rate after the growth. In particular, slow cooling at 10 °C/h rate yielded the 2H phase whereas the 1T' phase was stabilized by ice-water quenching. Next, the phase conversion was achieved by annealing MoTe2 single crystals in vacuum-sealed ampoules at 1000 °C with or without additional poly-MoTe2 powder followed by fast or slow cooling. Similarly to the CVT growth, slow cooling and quenching consistently produced 2H and 1T' phases, respectively, regardless of the initial MoTe2 crystal structure. We will discuss structural and optical properties of the as-grown and phase-converted MoTe2 single crystals using TEM, SEM/EDS, XRD, XPS and Raman. Electrical characteristics of two-terminal devices made from metallic 1T' and bottom-gated FETs made from 2H exfoliated crystals will also be presented.
Liu, Runqiang; Zhao, Ning; Liu, Ping; An, Caixia; Lian, Zhaoxun
2016-05-01
π-Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4'-Phenyl-2,2':6',2''-terpyridine (PTP) is an important N-heterocyclic ligand involving π-conjugated systems, however, studies concerning the third-order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine Co(II) complex, bis(μ-4,4'-oxydibenzoato)-κ(3)O,O':O'';κ(3)O'':O,O'-bis[(4'-phenyl-2,2':6',2''-terpyridine-κ(3)N,N',N'')cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each Co(II) cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry-related monodentate 4,4'-oxydibenzoate (ODA(2-)) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)](2+) units are bridged by ODA(2-) ligands to form a ring-like structure. The third-order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z-scan technique. The title compound shows a strong third-order NLO saturable absorption (SA), while PTP exhibits a third-order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is -37.3 × 10(-7) m W(-1), which is larger than that (8.96 × 10(-7) m W(-1)) of PTP. The third-order NLO susceptibility χ((3)) values are calculated as 6.01 × 10(-8) e.s.u. for (1) and 1.44 × 10(-8) e.s.u. for PTP.
NASA Astrophysics Data System (ADS)
Ettoumi, Houda; Bulou, Alain; Suñol, Joan Josep; Mhiri, Tahar
2015-11-01
The study reports on the synthesis, single-crystal X-ray structure, and infrared and polarized Raman spectra of a new metal phosphate. The chemical formula of the compound K2Cu(HPO4)2·6H2O resembled that of Tutton salts. The compound crystallized in the monoclinic system, space group P21/c, with a = 6.166(9), b = 12.118(19), c = 9.077(14) Å, β = 104.33(2), and Z = 2. The compound consisted of transition metal cations octahedrally coordinated by six water molecules, [Cu(H2O)6]2+, HPO4 pseudo-tetrahedra, and KO8 polyhedra. The KO8 polyhedra shared two edges with two HPO4 groups, two corners with the two other HPO4 groups, and two corners with Cu(H2O)6. The connection between [Cu(H2O)6]2+ octahedral and (HPO4)2- pseudo-tetrahedra was reinforced by hydrogen bonds formed between the water molecules and other oxygen atoms linked to the P atom. These structural results were corroborated by infrared and polarized Raman spectroscopy.
Vilaplana, R.; Romero, M. A.; Quirós, M.; Salas, J. M.
1995-01-01
A novel complex formed by ruthenium (III) and the sequestering ligand 1,2-propylenediaminetetraacetic acid (PDTA) has been synthetized and characterized. The structure of the monomeric compound, studied by X-ray diffraction , shows an almost symmetric octahedral geometry around the metal ion, with two chlorine atoms in a cis conformation. The antitumour activity against a variety of murine and human cancers is reported. PMID:18472768
Anharmonicity and Octahedral Tilting in Hybrid Vacancy-Ordered Double Perovskites
Maughan, Annalise E.; Ganose, Alex M.; Candia, Andrew M.; ...
2017-11-30
The advantageous performance of hybrid organic-inorganic perovskite halide semiconduc- tors in optoelectronic applications motivates studies of their fundamental crystal-chemistry. In particular, recent studies have sought to understand how dipolar, dynamic, and organic cations, such as methylammonium (CH 3 NH 3 + ) and formamidinium (CH(NH 2 ) 2 + ) affect physical properties such as light absorption and charge transport. Here, to probe the influence of organic- inorganic coupling on charge transport, we have prepared the series of vacancy-ordered double perovskite derivatives, A 2SnI 6, where A = Cs +, CH 3NH 3 +, and CH(NH 2) 2 +. Despitemore » nearly identical cubic structures by powder X-ray diffraction, replacement of Cs + with CH 3NH 3 + or CH(NH 2) 2 + reduces conductivity through a reduction in both carrier concentration and carrier mobility. We attribute the trends in electronic behavior to anharmonic lattice dynamics from the formation of hydrogen bonds that yield coupled organic-inorganic dynamics. This anharmonicity manifests as asymmetry of the inter-octahedral I-I pair correlations in the X-ray pair distribution function of the hybrid compounds, which can be modeled by large atomistic ensembles with random rotations of rigid [SnI 6] octahedral units. The presence of soft, anharmonic lattice dynamics holds implications for electron-phonon interactions, as supported by calculation of electron-phonon coupling strength that indicates the formation of more tightly-bound polarons and reduced electron mobilities with increasing cation size. Finally, by exploiting the relatively decoupled nature of the octahedral units in these defect-ordered perovskite variants, we can interrogate the impact of organic-inorganic coupling and lattice anharmonicity on the charge transport behavior of hybrid perovskite halide semiconductors.« less
Bowman, David N; Bondarev, Alexey; Mukherjee, Sriparna; Jakubikova, Elena
2015-09-08
Fe(II) polypyridines are an important class of pseudo-octahedral metal complexes known for their potential applications in molecular electronic switches, data storage and display devices, sensors, and dye-sensitized solar cells. Fe(II) polypyridines have a d(6) electronic configuration and pseudo-octahedral geometry and can therefore possess either a high-spin (quintet) or a low-spin (singlet) ground state. In this study, we investigate a series of complexes based on [Fe(tpy)2](2+) (tpy = 2,2';6',2″-terpyridine) and [Fe(dcpp)2](2+) (dcpp = 2,6-bis(2-carboxypyridyl)pyridine). The ligand field strength in these complexes is systematically tuned by replacing the central pyridine with five-membered (N-heterocyclic carbene, pyrrole, furan) or six-membered (aryl, thiazine-1,1-dioxide, 4-pyrone) moieties. To determine the impact of ligand substitutions on the relative energies of metal-centered states, the singlet, triplet, and quintet states of the Fe(II) complexes were optimized in water (PCM) using density functional theory at the B3LYP+D2 level with 6-311G* (nonmetals) and SDD (Fe) basis sets. It was found that the dcpp ligand scaffold allows for a more ideal octahedral coordination environment in comparison to the tpy ligand scaffold. The presence of six-membered central rings also allows for a more ideally octahedral coordination environment relative to five-membered central rings, regardless of the ligand scaffold. We find that the ligand field strength in the Fe(II) polypyridines can be tuned by altering the donor atom identity, with C donor atoms providing the strongest ligand field.
NASA Astrophysics Data System (ADS)
Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun
2018-01-01
In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.
NASA Astrophysics Data System (ADS)
Garling, Jennifer; Assenmacher, Wilfried; Schmid, Herbert; Longo, Paolo; Mader, Werner
2018-02-01
The hitherto unknown compound (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series with general formula ARO3(ZnO)m (A,R = trivalent metal cation), was prepared by solid state methods from the binary oxides in sealed Pt-tubes. The structure of (Sb1/3Zn2/3)GaO3(ZnO)3 has been determined by X-ray diffraction from flux-grown single crystals (R 3 ̅ m , Z = 3, aR = 3.2387(7) Å, cR = 41.78(1) Å. The analysis revealed that (Sb1/3Zn2/3)GaO3(ZnO)m is isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced by Sb5+ and Zn2+ in a ratio of 1:2, preserving an average charge of 3+. (Sb1/3Zn2/3)GaO3(ZnO)3 was furthermore analyzed by electron diffraction, High Angle Annular Dark Field (HAADF) scanning TEM, and high precision EELS spectroscopic imaging, where a periodic ordering of SbO6 octahedra connected via edge sharing to six ZnO6 octahedra in the octahedral layers in a honeycomb motif is found. Due to the large lateral distance of ca. 1.4 nm between adjacent octahedral layers, electrostatic interaction might hardly dictate Sb and Zn positions in neighbouring layers, and hence is a characteristic of the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. A structure model of the compound in space group P3112 (Nr. 151) with strictly ordered and discrete Sb and Zn positions is derived by crystallographic transformations as closest approximant for the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. UV-vis measurements confirm this compound to be a transparent oxide with an optical band gap in the UV region with Eg = 3.15 eV.
Camilo, Mariana R; Martins, Felipe T; Malta, Valéria R S; Ellena, Javier; Carlos, Rose M
2013-02-01
In the title complex, [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](PF(6))(2)·CH(3)CN, the Ru(II) atom is bonded to two α-diimine ligands, viz. 2,2'-bipyridine, in a cis configuration and to two 4-amino-pyridine (4Apy) ligands in the expected distorted octa-hedral configuration. The compound is isostructural with [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](ClO(4))(2)·CH(3)CN [Duan et al. (1999 ▶). J. Coord. Chem.46, 301-312] and both structures are stabilized by classical hydrogen bonds between 4Apy ligands as donors and counter-ions and acetonitrile solvent mol-ecules as acceptors. Indeed, N-H⋯F inter-actions give rise to an inter-molecularly locked assembly of two centrosymmetric complex mol-ecules and two PF(6) (-) counter-ions, which can be considered as the building units of both crystal architectures. The building blocks are connected to one another through hydrogen bonds between 4Apy and the connecting pieces made up of two centrosymmetric motifs with PF(6) (-) ions and acetonitrile mol-ecules, giving rise to ribbons running parallel to [011]. 2(1)-Screw-axis-related complex mol-ecules and PF(6) (-) counter-ions alternate in helical chains formed along the a axis by means of these contacts.
NASA Astrophysics Data System (ADS)
Rozilah, R.; Ibrahim, N.; Mohamed, Z.; Yahya, A. K.; Khan, Nawazish A.; Khan, M. Nasir
2017-09-01
Polycrystalline Pr0.75Na0.25-xKxMnO3 (x = 0, 0.05, 0.10, 0.15 and 0.20) ceramics were prepared using conventional solid-state method and their structural, magnetic and electrical transport properties were investigated. Magnetization versus temperature measurements showed un-substituted sample exhibited paramagnetic behavior with charge-ordered temperature, TCO around 218 K followed by antiferromagnetic behavior at transition temperature, TN ∼ 170 K. K+-substitution initially weakened CO state for x = 0.05-0.10 then successfully suppressed the CO state for x = 0.15-0.20 and inducing ferromagnetic-paramagnetic transition with Curie temperature, TC increased with x. In addition, deviation of the temperature dependence of inverse magnetic susceptibility curves from the Curie-Weiss law suggests the existence of Griffiths phase-like increased with x. Magnetization versus magnetic field curves show existence of hysteresis loops at T < 260 K (x = 0) and T < 180 K (x = 0.05-0.10), which related to metamagnetic transition occurring at critical field. Electrical resistivity measurements showed an insulating behavior for x = 0 sample while for x = 0.05-0.20 samples showed metal-insulator transition and transition temperature, TMI increased with x. The increased in TC and TMI are attributed to the increase in tolerance factor which indicates reduction in MnO6 octahedral distortion consequently enhanced double exchange interaction.
NASA Astrophysics Data System (ADS)
Nbili, W.; Kaabi, K.; Ferenc, W.; Cristovão, B.; Lefebvre, F.; Jelsch, Christian; Ben Nasr, Cherif
2017-02-01
A new Cu(II) complex with the bridge bidentate ligand 4-amino-6-methoxypyrimidine, [Cu(C5H7N3O)(H2O)(NO3)2], has been prepared at room temperature and characterized by single crystal X-ray diffraction and IR spectroscopy. The compound crystallizes in the monoclinic space group C2/c with lattice parameters a = 17.783 (4), b = 11.131 (3), c = 12.594 (3) Å, β = 117.616 (3)°, V = 2209.0 (9) Å3 and Z = 8. The Cu(II) cation is hexa-coordinated, in distorted octahedral fashion, by two nitrogen atoms of two 4-amino-6-methoxypyrimidine ligands, one water oxygen atom and three oxygen atoms of two nitrate anions. In the atomic arrangement, the organic ligands and the 6-connected Cu centers are linked with each other to give a 1-D corrugated chain running along the b-axis direction. The chains are interconnected via Osbnd H⋯O, Csbnd H⋯O, Nsbnd H⋯O hydrogen bonds to form a three dimensional network. The analysis of contacts on the Hirshfeld surface shows that the crystal packing is driven mainly by the electrostatic interactions: the coordination of Cu(II) by O and N as well as strong hydrogen bonds. The vibrational absorption bands were identified by infrared spectroscopy. Magnetic properties were also studied to characterize the complex.