Alvarez, Santiago; Menjón, Babil; Falceto, Andrés; Casanova, David; Alemany, Pere
2014-11-17
To each coordination polyhedron we can associate a normalized coordination polyhedron that retains the angular orientation of the central atom-ligand bonds but has all the vertices at the same distance from the center. The use of shape measures of these normalized coordination polyhedra provides a simple and efficient way of discriminating angular and bond distance distortions from an ideal polyhedron. In this paper we explore the applications of such an approach to analyses of several stereochemical problems. Among others, we discuss how to discern the off-center displacement of the metal from metal-ligand bond shortening distortions in families of square planar biscarbene and octahedral dioxo complexes. The normalized polyhedron approach is also shown to be very useful to understand stereochemical trends with the help of shape maps, minimal distortion pathways, and ligand association/dissociation pathways, illustrated by the Berry and anti Berry distortions of triple-bonded [X≡ML4] complexes, the square pyramidal geometries of Mo coordination polyhedra in oxido-reductases, the coordination geometries of actinyl complexes, and the tetrahedricity of heavy atom-substituted carbon centers.
Dong, Xiu-Yan; Zhao, Qing; Wei, Zhi-Li; Mu, Hao-Ran; Zhang, Han; Dong, Wen-Kui
2018-04-25
A novel heterotrinuclear complex [Cu₂(L)Na( µ -NO₃)]∙CH₃OH∙CHCl₃ derived from a symmetric bis(salamo)-type tetraoxime H₄L having a naphthalenediol unit, was prepared and structurally characterized via means of elemental analyses, UV-Vis, FT-IR, fluorescent spectra and single-crystal X-ray diffraction. The heterobimetallic Cu(II)⁻Na(I) complex was acquired via the reaction of H₄L with 2 equivalents of Cu(NO₃)₂·2H₂O and 1 equivalent of NaOAc. Clearly, the heterotrinuclear Cu(II)⁻Na(I) complex has a 1:2:1 ligand-to-metal (Cu(II) and Na(I)) ratio. X-ray diffraction results exhibited the different geometric behaviors of the Na(I) and Cu(II) atoms in the heterotrinuclear complex; the both Cu(II) atoms are sited in the N₂O₂ coordination environments of fully deprotonated (L) 4− unit. One Cu(II) atom (Cu1) is five-coordinated and possesses a geometry of slightly distorted square pyramid, while another Cu(II) atom (Cu2) is four-coordination possessing a square planar coordination geometry. Moreover, the Na(I) atom is in the O₆ cavity and adopts seven-coordination with a geometry of slightly distorted single triangular prism. In addition, there are abundant supramolecular interactions in the Cu(II)⁻Na(I) complex. The fluorescence spectra showed the Cu(II)⁻Na(I) complex possesses a significant fluorescent quenching and exhibited a hypsochromic-shift compared with the ligand H₄L.
Chloridotetrakis(pyridine-4-carbaldehyde-κN)copper(II) chloride
Meng, Xiu-Jin; Zhang, Shu-Hua; Yang, Ge-Ge; Huang, Xue-Ren; Jiang, Yi-Min
2009-01-01
In the molecular structure of the title compound, [CuCl(C6H5NO)4]Cl, the CuII atom is coordinated by four N atoms of four pyridine-4-carboxaldehyde ligands and one chloride anion in a slightly distorted square-pyramidal coordination geometry. There is also a non-coordinating Cl− anion in the crystal structure. The CuII atom and both Cl atoms are situated on fourfold rotation axes. A weak C—H⋯Cl interaction is also present. PMID:21578129
Asatryan, Rubik; Ruckenstein, Eli; Hachmann, Johannes
2017-08-01
This paper provides a first-principles theoretical investigation of the polytopal rearrangements and fluxional behavior of five-coordinate d 7 -transition metal complexes. Our work is primarily based on a potential energy surface analysis of the iron tetracarbonyl hydride radical HFe˙(CO) 4 . We demonstrate the existence of distorted coordination geometries in this prototypical system and, for the first time, introduce three general rearrangement mechanisms, which account for the non-ideal coordination. The first of these mechanisms constitutes a modified version of the Berry pseudorotation via a square-based pyramidal C 4v transition state that connects two chemically identical edge-bridged tetrahedral stereoisomers of C 2v symmetry. It differs from the classical Berry mechanism, which involves two regular D 3h equilibrium structures and a C 4v transition state. The second mechanism is related to the famous "tetrahedral jump" hypothesis, postulated by Muetterties for a number of d 6 HML 4 and H 2 ML 4 complexes. Here, our study suggests two fluxional rearrangement pathways via distinct types of C 2v transition states. Both pathways of this mechanism can be described as a single-ligand migration to a vacant position of an "octahedron", thus interchanging (switching) the apical and basal ligands of the initial quasi-square pyramidal isomer, which is considered as an idealized octahedron with a vacancy. Accordingly, we call this mechanism "octahedral switch". The third mechanism follows a butterfly-type isomerization featuring a key-angle deformation, and we thus call it "butterfly isomerization". It connects the quasi-square pyramidal and edge-bridged tetrahedral isomers of HFe˙(CO) 4 through a distorted edge-bridged tetrahedral transition state of C s symmetry. Our paper discusses the overall features of the isomers and rearrangement mechanisms as well as their implications. We rationalize the existence of each stationary point through an electronic structure analysis and argue their relevance for isolobal analogues of HFe˙(CO) 4 .
Zinc ascorbate: a combined experimental and computational study for structure elucidation
NASA Astrophysics Data System (ADS)
Ünaleroǧlu, C.; Zümreoǧlu-Karan, B.; Mert, Y.
2002-03-01
The structure of Zn(HA)2·4H2O (HA=ascorbate) has been examined by a number of techniques (13C NMR, 1H NMR, IR, EI/MS and TGA) and also modeled by the semi-empirical PM3 method. The experimental and computational results agreed on a five-fold coordination around Zn(II) where one ascorbate binds monodentately, the other bidentately and two water molecules occupy the remaining sites of a distorted square pyramid.
Coordination polyhedron and chemical vapor deposition of Cu(hfacac)2(t-BuNH2).
Woo, Kyoungja; Paek, Hojeong; Lee, Wan In
2003-10-06
A new pentacoordinate Cu(II) complex, Cu(hfacac)(2)(t-BuNH(2)) [hfacac = CF(3)C(O)CHC(O)CF(3)(-), t-BuNH(2) = tert-butylamine], has been synthesized and structurally characterized. Interestingly, the structure of a single crystal occurred as square pyramidal with one O atom at the apical position and one N and three O atoms at the basal positions, showing a serious degree of distortion. This contrasts with the square-pyramidal structure of Cu(hfacac)(2)L (L = H(2)O and pyrazine), which has the L ligand at the axial position. In the Cu(hfacac)(2)(t-BuNH(2)) complex, the t-BuNH(2) ligand is placed at an equatorial position with a lowered angle by 19.9(2) degrees from the basal plane. This distortion seems to reduce sigma influence and steric hindrance and so stabilizes the square-pyramidal geometry. This precursor has a lower melting point and superior stability to air, moisture, and heat than the Cu(hfacac)(2)(xH(2)O) precursor. The deposition rate of copper oxide film on a Pt layer above 450 degrees C was nearly constant with increasing temperature, indicating a mass transport limited reaction. Therefore it would be a useful metal organic chemical vapor deposition precursor for the fabrication of copper oxide film or superconducting materials. Crystal data for Cu(hfacac)(2)(t-BuNH(2)): 293(2) K, a = 9.6699(4) A, b = 18.0831(10) A, c = 12.8864(11) A, beta = 111.839(5) degrees, monoclinic, space group P2(1)/c, Z = 4.
XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-08-01
X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.
Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali
2018-01-01
In the crystal of the title complex, [Cu(C 7 H 6 NO 4 S) 2 (C 6 H 6 N 2 O) 2 (H 2 O)], the Cu II cation and the O atom of the coordinated water mol-ecule reside on a twofold rotation axis. The Cu II ion is coordinated by two carboxyl-ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol-ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol-ecules are linked via O-H⋯O and N-H⋯O hydrogen bonds with R 2 2 (8) and R 2 2 (18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter-actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Tsapkov, V. I., E-mail: vtsapkov@gmail.com; Antosyak, B. Ya.
Nitrato-4-bromo-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper and nitrato-4-chloro-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper were synthesized and studied by X-ray diffraction. The crystals are isostructural. The coordination polyhedron of the copper atom can be described as a distorted square pyramid whose basal plane is formed by the phenolic and alcoholic oxygen atoms and the nitrogen atom of the monodeprotonated tridentate azomethine molecule and the imidazole nitrogen atom. The apex of the copper polyhedron is occupied by the oxygen atom of the nitrato group. The complexes are linked together by hydrogen bonds with the participation of the nitrato groups to form a three-dimensional framework.
Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe
2013-03-04
Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.
Enemark, John H
2017-10-10
Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Alavipour, Ehsan
2015-11-01
Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.
The crystal structures of potassium and cesium trivanadates
Evans, H.T.; Block, S.
1966-01-01
Potassium and cesium trivanadates are monoclinic and isomorphous, space group P21/m, with the following dimensions (Z = 2): KV3O8, a = 7.640 A, b = 8.380 A, c = 4.979 A, ??= 96?? 57???; CsV3O8, a = 8.176 A, b = 8.519 A, c = 4.988 A, ?? = 95?? 32???. The crystal structure of KV3O8 has been determined from hk0, 0kl, and h0l Weissenberg data with an R factor of 0.15. The structure of CsV3O8 has been refined with 1273 hkl Weissenberg data to an R factor of 0.089. The structures consist of corrugated sheets based on a linkage of distorted VO6, octahedra. Two of the vanadium atoms lie in double, square-pyramid groups V2O8, which are linked through opposite basal corners into chains along the b axis. The chains are joined laterally along the c axis into sheets by the third vanadium atom in VO groups, also forming part of a square-pyramid coordination. Various aspects of these structures are compared with other known oxovanadate structures.
Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali
2018-01-01
In the crystal of the title complex, [Cu(C7H6NO4S)2(C6H6N2O)2(H2O)], the CuII cation and the O atom of the coordinated water molecule reside on a twofold rotation axis. The CuII ion is coordinated by two carboxylate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) molecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the molecules are linked via O—H⋯O and N—H⋯O hydrogen bonds with R 2 2(8) and R 2 2(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) interactions. PMID:29416889
NASA Astrophysics Data System (ADS)
Solanki, Dina; Hogarth, Graeme
2015-11-01
Reaction of CuCl2·2H2O and K2[Ni(CN)4]·2H2O in aqueous ammonia gave blue rod-like crystals of [Cu(NH3)4][Ni(CN)4]. An X-ray crystallographic reveals that square-planar anions and cations are weakly associated through coordination of a cis pair of cyanide ligands to copper, with one short and one long contact and thus the copper centre is best described as a square-based pyramid. Crystals lose ammonia readily upon removal from the solvent and this has been probed by TGA and DSC measurements. For comparison we have also re-determined the structure of the related ethylenediamine (en) complex [Cu(en)2][Ni(CN)4] at 150 K. This consists of a 1D chain in which a trans pair of cyanide ligands bind to copper such that the latter has an overall tetragonally distorted octahedral coordination geometry.
NASA Astrophysics Data System (ADS)
Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.
2018-03-01
Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.
Manzanera-Estrada, Mayra; Flores-Alamo, Marcos; Grevy M., Jean-Michel; Ruiz-Azuara, Lena; Ortiz-Frade, Luis
2012-01-01
In the title compound, [Cu(C16H20N2S2)(H2O)](NO3)2·CH3CN, the CuII atom displays a distorted square-pyramidal coordination, in which a water molecule occupies the apical position and the basal plane is formed by two N atoms and two S atoms of a 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane ligand. The crystal packing is stabilized by O—H⋯O and C—H⋯O hydrogen bonds. PMID:22346819
NASA Astrophysics Data System (ADS)
Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.
2018-01-01
Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.
NASA Astrophysics Data System (ADS)
Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri
2014-08-01
Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.
Tris(O-cyclo-hexyl dithio-carbonato-κS)anti-mony(III).
Li, Wenkuan; Yin, Handong; Wen, Liyuan; Wang, Daqi
2008-12-10
In the mol-ecule of the title compound, [Sb(C(7)H(11)OS(2))(3)], the anti-mony(III) is coordinated by the S atoms of three O-alkyl xanthate groups acting as monodentate ligands, forming a distorted trigonal-pyramidal coordination.
Liu, Jing; Pan, Zhi-Quan; Zhou, Hong; Li, Yi-Zhi
2008-11-08
In the centrosymmetric and dinuclear title complex, [Mn(2)(C(22)H(22)N(4)O(2))(ClO(4))(2)], the two Mn atoms are bridged by two phenolate O atoms of the N(4)O(2) macrocycle with an Mn⋯Mn distance of 2.9228 (11) Å. The distorted square-pyramidal N(2)O(3) coordination geometry is completed by an O atom derived from a perchlorate anion.
Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea
NASA Technical Reports Server (NTRS)
Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John
2003-01-01
A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.
Sánchez-Lombardo, Irma; Alvarez, Santiago; McLauchlan, Craig C; Crans, Debbie C
2015-06-01
Shape analysis of coordination complexes is well-suited to evaluate the subtle distortions in the trigonal bipyramidal (TBPY-5) geometry of vanadium coordinated in the active site of phosphatases and characterized by X-ray crystallography. Recent studies using the tau (τ) analysis support the assertion that vanadium is best described as a trigonal bipyramid, because this geometry is the ideal transition state geometry of the phosphate ester substrate hydrolysis (C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans, Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2014.12.012 ; D.C. Crans, M.L. Tarlton, C.C. McLauchlan, Eur. J. Inorg. Chem. 2014, 4450-4468). Here we use continuous shape measures (CShM) analysis to investigate the structural space of the five-coordinate vanadium-phosphatase complexes associated with mechanistic transformations between the tetrahedral geometry and the five-coordinate high energy TBPY-5 geometry was discussed focusing on the protein tyrosine phosphatase 1B (PTP1B) enzyme. No evidence for square pyramidal geometries was observed in any vanadium-protein complexes. The shape analysis positioned the metal ion and the ligands in the active site reflecting the mechanism of the cleavage of the organic phosphate in a phosphatase. We identified the umbrella distortions to be directly on the reaction path between tetrahedral phosphate and the TBPY-5-types of high-energy species. The umbrella distortions of the trigonal bipyramid are therefore identified as being the most relevant types of transition state structures for the phosphoryl group transfer reactions for phosphatases and this may be related to the possibility that vanadium is an inhibitor for enzymes that support both exploded and five-coordinate transition states. Copyright © 2015 Elsevier Inc. All rights reserved.
Tris(O-cyclohexyl dithiocarbonato-κS)antimony(III)
Li, Wenkuan; Yin, Handong; Wen, Liyuan; Wang, Daqi
2009-01-01
In the molecule of the title compound, [Sb(C7H11OS2)3], the antimony(III) is coordinated by the S atoms of three O-alkyl xanthate groups acting as monodentate ligands, forming a distorted trigonal-pyramidal coordination. PMID:21581504
NASA Astrophysics Data System (ADS)
Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad
2015-04-01
A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Azimi, Saeid; Molaei, Atefeh; Hatami, Masoud; Notash, Behrouz
2017-10-01
A new Schiff base ligand HL, 1,3-bis(2-((Z)-(2-aminoethylimino)methyl)phenoxy)ethylene di amine, has been synthesized from the reaction of a new aldehyde and ethylenediamine. After preparation the Schiff base, a new dinuclear Cu(II) complex with two different geometry for each metal ion was synthesized. Single crystal X-ray structure analysis of the complex Cu(II) showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. The crystal structure studying shows, a perchlorate ion has been coordinated to the two Cu(II) metal centers as bridged and another perchlorate coordinated to the one of Cu(II) ion as terminal. However, two interesting structures square pyramidal and distorted octahedral Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, we had a theoretical study to have a comparison of experimental and theoretical results we determined the HOMO and LUMO orbitals.
Poly[[di-μ-aqua-(μ-4-formyl-2-methoxyphenolato)disodium] 4-formyl-2-methoxyphenolate
Asghar, Muhammad Nadeem; Şahin, Onur; Arshad, Muhammad Nadeem; Mazhar, Uzma; Khan, Islam Ullah; Büyükgüngör, Orhan
2010-01-01
In the title coordination polymer, {[Na2(C8H7O3)(H2O)4](C8H7O3)}n, all the non-H atoms except the water O atoms lie on a crystallographic mirror plane. One sodium cation is bonded to four water O atoms and one vanillinate O atom in a distorted square-based pyramidal arrangement; the other Na+ ion is six-coordinated by four water O atoms and two vanillinate O atoms in an irregular geometry. One of the vanillinate anions is directly bonded to two sodium ions, whilst the other only interacts with the polymeric network by way of hydrogen bonds. In the crystal, a two-dimensional polymeric array is formed; this is reinforced by O—H⋯O hydrogen bonds, which generate R 2 1(6) and R 2 2(20) loops. PMID:21579628
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Duraj, Stan A.; Fanwic, Phillp E.; Hepp, Aloysius F.; Martuch, Robert A.
2003-01-01
The synthesis and structural characterization of a novel ionic Ga(III) five coordinate complex [{CH3(C5H4N)}Ga(SCH2(CO)O)2]-[(4-MepyH)]+, (4-Mepy = CH3(C5H5N)) from the reaction between Ga2Cl4 with sodium mercapto-acetic acid in 4-methylpyridine is described. Under basic reaction conditions the mercapto ligand is found to behave as a 2e- bidentate ligand. Single crystal X-ray diffraction studies show the complex to have a distorted square pyramidal geometry with the [(-SCH2(CO)CO-)] ligands in a trans conformation. The compound crystallizes in the P2(sub 1)/c (No. 14) space group with a = 7.7413(6) A, b = 16.744(2) A, c = 14.459(2) A, V = 1987.1(6) A(sup 3), R(F) = 0.032 and R(sub w) = 0.038.
[15]aneN4S: synthesis, thermodynamic studies and potential applications in chelation therapy.
Torres, Nuno; Gonçalves, Sandrina; Fernandes, Ana S; Machado, J Franco; de Brito, Maria J Villa; Oliveira, Nuno G; Castro, Matilde; Costa, Judite; Cabral, Maria F
2014-01-03
The purpose of this work was to synthesize and characterize the thiatetraaza macrocycle 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN4S). Its acid-base behaviour was studied by potentiometry at 25 °C and ionic strength 0.10 M in KNO3. The protonation sequence of this ligand was investigated by 1H-NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of [15]aneN4S with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ metal ions were further performed under the same experimental conditions. The results demonstrated that this compound has a higher selectivity and thermodynamic stability for Hg2+ and Cu2+, followed by Ni2+. The UV-visible-near IR spectroscopies and magnetic moment data for the Co(II) and Ni(II) complexes indicated a tetragonal distorted coordination geometry for both metal centres. The value of magnetic moment and the X-band EPR spectra of the Cu(II) complex are consistent with a distorted square pyramidal geometry.
Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.
van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan
2002-03-01
The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.
NASA Astrophysics Data System (ADS)
Christidis, Panayiotis C.; Georgousis, Zacharias D.; Hadjipavlou-Litina, Dimitra; Bolos, Christos A.
2008-01-01
The reaction of sodium salt of 2-thiophenecarboxylic acid (tpca), 2-thiopheneacetic acid (tpaa), 2-furoic acid (fa) and picolinic acid (pica), with [Cu(Me 5dien)(ClO 4) 2] ( 1) (Me 5dien = N, N, N', N″ N″-pentamethyldiethylenetriamine) in a 1:1 molar ratio, afforded new mixed-ligand compounds of the type [Cu(Me 5dien)(tpca)(H 2O)](ClO 4) ( 2), [Cu(Me 5dien)(tpaa)(H 2O)](ClO 4) ( 3), [Cu(Me 5dien)(fa)](BPh 4) ( 4) and [Cu(Me 5dien)(pica)](ClO 4) ( 5). The new mixed-ligand complexes are mononuclear, paramagnetic, conductive compounds with a distorted square pyramidal geometry. The square pyramidal stereochemistry proposed by spectroscopic (IR, UV-vis) data was further confirmed by the X-ray structure analysis of the compound ( 3) in which the Cu atom is coordinated by the three N atoms from the Me 5dien ligand, one O atom from the mono-carboxylate anion, lying on the equatorial square plane, and one O atom from the water molecule, occupying the axial position. The two Cu sbnd O bond distances are 1.955(2) and 2.212(2) Ǻ, respectively. The complexes were tested for antioxidant/anti-inflammatory activity. Complex 4 is the most active against soybean lipoxygenase with IC 50 = 100 μM. The presence of a furoic ring leads to higher lipoxygenase inhibition, whereas the picolinyl-ring supports scavenging activity.
Rusanova, Julia A; Semenaka, Valentina V; Dyakonenko, Viktoriya V; Shishkin, Oleg V
2015-09-01
The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal Cu(II)/Cr(III) complex. The mol-ecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thio-cyanato ligands. The Cu(II) ion adopts a distorted square-pyramidal coordination while the Cr(III) ion has a distorted octa-hedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O-H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two -CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).
NASA Astrophysics Data System (ADS)
Lavrenyuk, H.; Mykhalichko, O.; Zarychta, B.; Olijnyk, V.; Mykhalichko, B.
2015-09-01
The crystals of a new aqua-(diethylenetriamine-N, N‧, N‧‧)-copper(II) sulfate monohydrate have been synthesized by direct interaction of solid copper(II) sulfate pentahydrate with diethylenetriamine (deta). The crystal structure of [Cu(deta)H2O]SO4ṡH2O (1) has been determined by X-ray diffraction methods at 100 K and characterized using X-ray powder diffraction pattern: space group P 1 bar, a = 7.2819(4), b = 8.4669(4), c = 8.7020(3) Å, α = 83.590(3), β = 89.620(4), γ = 84.946(4)°, Z = 2. The environment of the Cu(II) atom is a distorted, elongated square pyramid which consists of three nitrogen atoms of the deta molecule and oxygen atom of the water molecule in the basal plane of the square pyramid (the average lengths of the in-plane Cu-N and Cu-O bonds are 2.00 Å). The apical position of the coordination polyhedron is occupied by complementary oxygen atom of the sulfate anion (the length of the axial Cu-O bond is 2.421(1) Å). The crystal packing is governed by strong hydrogen bonds of O-H⋯O and N-H⋯O types. The ab initio quantum-chemical calculations have been performed by the restricted Hartree-Fock method with a basis set 6-31∗G using the structural data of [Cu(deta)H2O]SO4ṡH2O. It has been ascertained that the degenerate d-orbitals of the Cu2+ ion split under the co-action of both the square-pyramidal coordination and the chelation. It is significant that visually observed crystals color (blue-violet) of the [Cu(deta)H2O]SO4ṡH2O complex is in good agreement with the calculated value of wavelength of visible light (λ = 5735 Å) which is closely related to the energy of the absorbed photon (Δ = 2.161 eV). Furthermore, the stereo-chemical aspect of influence of the CuSO4 upon combustibility of modified epoxy-amine polymers has been scrutinized.
Bromidotetra-kis-(2-isopropyl-1H-imidazole-κN)copper(II) bromide.
Godlewska, Sylwia; Socha, Joanna; Baranowska, Katarzyna; Dołęga, Anna
2011-10-01
The Cu(II) atom in the title salt, [CuBr(C(6)H(10)N(2))(4)]Br, is coordinated in a square-pyramidal geometry by four imidazole N atoms and one bromide anion that is located at the apex of the pyramid. The cations and the anions form a two-dimensional network parallel to (001) through N-H⋯Br hydrogen bonds.
Aqua{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)
Guo, Zhenghua; Li, Lianzhi; Xu, Tao; Li, Jinghong; Wang, Daqi
2009-01-01
The title complex, [Ni(C18H18N2O4)(H2O)], lies on a mirror plane with the NiII ion coordinated by two N and two O atoms of a tetradentate Schiff base ligand and one water O atom in a distorted square-pyramidal enviroment. The –CH2–CH2– group of the ligand is disordered equally over two sites about the mirror plane. The dihedral angle between the mean planes of the two symmetry-related chelate rings is 37.16 (6)°. In the crystal structure, intermolecular O—H⋯O hydrogen bonds link complex molecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak intermolecular C—H⋯O hydrogen bonds into a two-dimensional network. PMID:21577698
Bromidotetrakis(2-isopropyl-1H-imidazole-κN 3)copper(II) bromide
Godlewska, Sylwia; Socha, Joanna; Baranowska, Katarzyna; Dołęga, Anna
2011-01-01
The CuII atom in the title salt, [CuBr(C6H10N2)4]Br, is coordinated in a square-pyramidal geometry by four imidazole N atoms and one bromide anion that is located at the apex of the pyramid. The cations and the anions form a two-dimensional network parallel to (001) through N—H⋯Br hydrogen bonds. PMID:22064905
Rusanova, Julia A.; Semenaka, Valentina V.; Dyakonenko, Viktoriya V.; Shishkin, Oleg V.
2015-01-01
The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal CuII/CrIII complex. The molecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thiocyanato ligands. The CuII ion adopts a distorted square-pyramidal coordination while the CrIII ion has a distorted octahedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two –CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1). PMID:26396853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nirupama; Niklas, Jens; Poluektov, Oleg
2017-01-01
The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less
NASA Astrophysics Data System (ADS)
Mahmoudi, Ghodrat; Chowdhury, Habibar; Ghosh, Barindra K.; Lofland, Samuel E.; Maniukiewicz, Waldemar
2018-05-01
One-pot reactions of pre-assigned molar ratios of appropriate metal (II) salts and HL1 (2-acetylpyridine nicotinoylhydrazone) or HL2 (2-acetylpyridine isonicotinoylhydrazone) in MeOH solutions at room temperature afford 1D coordination polymeric chain [Cu(μ-L1) (Cl)]n (1) and a mononuclear complex [Ni(L2)2] (2). The compounds (1) and (2) were characterized using elemental analyses, spectral and other physicochemical methods. Single crystal X-ray diffraction measurements for (1) and (2) have been made to define the molecular aggregates and crystalline architectures. In (1), each copper (II) center adopts a distorted square pyramidal geometry with a CuN3OCl chromophore linked through μ-L1 to form the 1D polymeric chain. While in (2) each Ni(II) cation is six-coordinate with octahedral structure having NiN4O2 chromophore containing two L2 units each functioning as a classical tridentate (N,N,O) chelator. Different weak non-covalent interactions promote dimensionalities in the compounds. A Hirshfeld surface analysis was employed to gain additional insight into interactions responsible for packing of (1) and (2). Magnetic susceptibility measurement of (1) in the 4-300 K range reveals simple paramagnetism.
Preparation and Anti-Tumour Activity of Some Arylbismuth(III) Oxine Complexes
Smith, Katharine A.; Deacon, Glen B.; Jackson, W. Roy; Tiekink, Edward R. T.; Rainone, Silvina; Webster, Lorraine K.
1998-01-01
New arylbismuth(lll) oxinates, PhBi(MeOx)2, (p-MeC6H4)Bi(Ox)2, (p-MeC6H4)Bi(MeOx)2, (p-ClC6H4)Bi(Ox)2, and (p-ClC6H4)Bi(MeOx)2 (Ox− = quinolin-8-olate and MeOx−=2-methylquinolin-8-olate) have been prepared by reaction of the appropriate diarylbismuth chlorides with Na(Ox) or Na(MeOx) in the presence of 15-crown-5. An X-ray crystallographic study has shown PhBi(MeOx)2 to be a five coordinate monomer with distorted square pyramidal stereochemistry. Chelating MeOx ligands have a cisoid arrangement in the square plane and the phenyl group is apical. The lattice is stabilised by significant π-π interactions between centrosymmetric molecules. A range of these complexes has been shown to have high in vitro biological activity (comparable with or better than cisplatin) against L1210 leukaemia, the corresponding cisplatin resistant line, and a human ovarian cell line, SKOV-3. However, initial in vivo testing against a solid mouse plasmacytoma (PC6) and P388 leukaemia has not revealed significant activity. PMID:18475861
NASA Astrophysics Data System (ADS)
Siddiqi, Zafar A.; Sharma, Prashant K.; Shahid, M.; Kumar, Sarvendra; Anjuli; Siddique, Armeen
The present ternary complexes [Cu(ada)(phen)(H2O)]·2H2O (1), [Co2(ada)2(phen)2(H2O)2] (2) and [{Cu(ada)3(bipy)}n·3nH2O] (3) (H2ada = adipic acid, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine) obtained under varying experimental conditions were characterized by spectral, electrochemical and thermal studies. The bonding modes and the spatial arrangements of the carboxylate dianion around the metal ions have been investigated employing FTIR, EPR and X-ray crystallographic studies. Present data revealed a six coordinate distorted octahedral geometry for 2 with a = 8.068, b = 9.788, c = 11.788 Å, α = 70.464, β = 75.109, γ = 72.063° and a five coordinate square pyramidal geometry for 3 with a = 9.509, b = 9.912, c = 12.656 Å, α = 70.486, β = 73.604, γ = 75.162°. The superoxide dismutase (SOD) mimic activities of the complexes are in the order 1 > 3 > 2.
Singh, D P; Malik, Vandna; Kumar, Ramesh; Singh, Jitender
2009-10-01
A new series of macrocyclic complexes of type [M(TML)X]X(2), where M = Cr(III), Mn(III), or Fe(III), TML is tetradentate macrocyclic ligand, and X = Cl(-), NO(3)(-), CH(3)COO(-) for Cr(III), Fe(III) and X = CH(3)COO(-) for Mn (III), has been synthesized by condensation of benzil and succinyldihydrazide in the presence of metal salt. The complexes have been so formulated due to the 1:2 electrolytic nature of these complexes as shown by conductivity measurements. The complexes have been characterized with the help of various physicochemical techniques such as elemental analysis, molar conductance, electronic and infrared spectral studies, and magnetic susceptibility. On the basis of these studies, a five-coordinate distorted square pyramidal geometry, in which two nitrogens and two carbonyl oxygen atoms are suitably placed for coordination toward the metal ion, has been proposed for all the complexes. The complexes have been tested for their in vitro antibacterial activity. Some of the complexes show remarkable antibacterial activities against some selected bacterial strains. The minimum inhibitory concentrations shown by these complexes have been compared with those shown by some standard antibiotics such as linezolid and cefaclor.
Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P
2013-11-01
Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.
Di-tert-butyl-chlorido(N,N-dibenzyl-dithio-carbamato)tin(IV).
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R T
2011-02-26
The Sn(IV) atom in the title diorganotin dithio-carbamate, [Sn(C(4)H(9))(2)(C(15)H(14)NS(2))Cl], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl atom and two C atoms of the Sn-bound tert-butyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former.
NASA Astrophysics Data System (ADS)
Gönül, İlyas; Ay, Burak; Karaca, Serkan; Şahin, Onur; Serin, Selahattin
2018-03-01
In the present study, we describe the synthesis and characterization of two tridentate N2O donor ligands, namely, (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-methoxyphenol (HL1) and (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-ethoxyphenol (HL2), and their copper(II) complexes, [Cu(L1)(CH3COO)] (1), [Cu(L2)(CH3COO)] (2). They have been synthesized under conventional methods and characterized by elemental analysis, FTIR, 1H and 13C NMR, ICP-OES, TGA and GC/MS analysis. For the morphological analysis field emission scanning electron microscopy (FESEM) was used. The geometry of the copper(II) complexes was determined by single crystal X-ray diffraction analysis. The copper(II) ions are in distorted square-pyramidal coordination environments. Complexes crystallize in monoclinic space group, P21/c. The electrical conductivity and luminescence properties of 1-2 have been investigated.
Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna
2017-06-01
The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].
[Cu(aq)]2+ is structurally plastic and the axially elongated octahedron goes missing
NASA Astrophysics Data System (ADS)
Frank, Patrick; Benfatto, Maurizio; Qayyum, Munzarin
2018-05-01
High resolution (k = 18 Å-1 or k = 17 Å-1) copper K-edge EXAFS and MXAN (Minuit X-ray Absorption Near Edge) analyses have been used to investigate the structure of dissolved [Cu(aq)]2+ in 1,3-propanediol (1,3-P) or 1,5-pentanediol (1,5-P) aqueous frozen glasses. EXAFS analysis invariably found a single axially asymmetric 6-coordinate (CN6) site, with 4×Oeq = 1.97 Å, Oax1 = 2.22 Å, and Oax2 = 2.34 Å, plus a second-shell of 4×Owater = 3.6 Å. However, MXAN analysis revealed that [Cu(aq)]2+ occupies both square pyramidal (CN5) and axially asymmetric CN6 structures. The square pyramid included 4×H2O = 1.95 Å and 1×H2O = 2.23 Å. The CN6 sites included either a capped, near perfect, square pyramid with 5×H2O = 1.94 ± 0.04 Å and H2Oax = 2.22 Å (in 1,3-P) or a split axial configuration with 4×H2O = 1.94, H2Oax1 = 2.14 Å, and H2Oax2 = 2.28 Å (in 1,5-P). The CN6 sites also included an 8-H2O second-shell near 3.7 Å, which was undetectable about the strictly pyramidal sites. Equatorial angles averaging 94° ± 5° indicated significant departures from tetragonal planarity. MXAN assessment of the solution structure of [Cu(aq)]2+ in 1,5-P prior to freezing revealed the same structures as previously found in aqueous 1M HClO4, which have become axially compressed in the frozen glasses. [Cu(aq)]2+ in liquid and frozen solutions is dominated by a 5-coordinate square pyramid, but with split axial CN6 appearing in the frozen glasses. Among these phases, the Cu-O axial distances vary across 1 Å, and the equatorial angles depart significantly from the square plane. Although all these structures remove the dx2-y2, dz2 degeneracy, no structure can be described as a Jahn-Teller (JT) axially elongated octahedron. The JT-octahedral description for dissolved [Cu(aq)]2+ should thus be abandoned in favor of square pyramidal [Cu(H2O)5]2+. The revised ligand environments have bearing on questions of the Cu(i)/Cu(ii) self-exchange rate and on the mechanism for ligand exchange with bulk water. The plasticity of dissolved Cu(ii) complex ions falsifies the foundational assumption of the rack-induced bonding theory of blue copper proteins and obviates any need for a thermodynamically implausible protein constraint.
NASA Astrophysics Data System (ADS)
Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra
2015-03-01
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.
Di-tert-butylchlorido(N,N-dibenzyldithiocarbamato)tin(IV)
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R. T.
2011-01-01
The SnIV atom in the title diorganotin dithiocarbamate, [Sn(C4H9)2(C15H14NS2)Cl], is pentacoordinated by an asymmetrically coordinating dithiocarbamate ligand, a Cl atom and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. PMID:21522304
2015-01-01
Electrospray ionization (ESI) in the negative ion mode was used to create anionic, gas-phase oxo-molybdenum complexes with dithiolene ligands. By varying ESI and ion transfer conditions, both doubly and singly charged forms of the complex, with identical formulas, could be observed. Collision-induced dissociation (CID) of the dianion generated exclusively the monoanion, while fragmentation of the monoanion involved decomposition of the dithiolene ligands. The intrinsic structure of the monoanion and the dianion were determined by using wavelength-selective infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory calculations. The IRMPD spectrum for the dianion exhibits absorptions that can be assigned to (ligand) C=C, C–S, C—C≡N, and Mo=O stretches. Comparison of the IRMPD spectrum to spectra predicted for various possible conformations allows assignment of a pseudo square pyramidal structure with C2v symmetry, equatorial coordination of MoO2+ by the S atoms of the dithiolene ligands, and a singlet spin state. A single absorption was observed for the oxidized complex. When the same scaling factor employed for the dianion is used for the oxidized version, theoretical spectra suggest that the absorption is the Mo=O stretch for a distorted square pyramidal structure and doublet spin state. A predicted change in conformation upon oxidation of the dianion is consistent with a proposed bonding scheme for the bent-metallocene dithiolene compounds [Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc.1976, 98, 1729−1742], where a large folding of the dithiolene moiety along the S···S vector is dependent on the occupancy of the in-plane metal d-orbital. PMID:24988369
(N-Benzyl-N-ethyl-dithio-carbamato)di-tert-butyl-chloridotin(IV).
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R T
2011-02-26
The Sn(IV) atom in the title diorganotin dithio-carbamate, [Sn(C(4)H(9))(2)Cl(C(10)H(12)NS(2))], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C-H⋯π contacts link centrosymmetrically related mol-ecules into dimeric aggregates.
NASA Astrophysics Data System (ADS)
Shahid, M.; Anjuli; Tasneem, Sana; Mantasha, I.; Ahamad, M. Naqi; Sama, Farasha; Fatma, Kehkeshan; Siddiqi, Zafar A.
2017-10-01
The ternary complexes with stoichiometry [M(imda)(bipy)]·6H2O (M = Cu) and [M(imda)(bipy)(H2O)]·4H2O (M = Ni, Co and Mn) where H2imda = iminodiacetic acid and bipy = 2,2‧-bipyridine, are prepared and characterized to exploit as novel antimicrobial agents and SOD mimics. The chemical structures were elucidated by IR, FAB-Mass, 1H, 13C NMR, EPR and spectral techniques. Single crystal X-ray and spectral studies of the complexes (1) and (2) have confirmed a square pyramidal geometry around Cu(II) ion while a saturated six coordinate (distorted octahedral) geometry around the Ni(II), Co(II) and Mn(II) ions due to the additional coordination from water. A supramolecular network is formed by extensive H-bonding in complex (1). The supramolecular assembly in complex (1) is additionally consolidated via the existence of unusual cyclic hexameric water clusters. The antimicrobial activities for the present complexes have been examined against Escherichia coli (K-12), Bacillus subtilis (MTC-121), Staphylococcus aureus (IOASA-22), Salmonella typhymurium (MTCC-98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei. The superoxide dismutase (SOD) activity of the Cu(II) complex (1) is also assessed employing nitrobluetetrazolium (NBT) assay.
Basu Baul, Tushar S; Kundu, Sajal; Singh, Palwinder; Shaveta; Guedes da Silva, M Fátima C
2015-02-07
The amyloid beta precursor protein (APP) and its neurotoxic cleavage product amyloid beta (Aβ) are a cause of Alzheimer's disease and appear essential for neuronal development and cell homeostasis. Proteolytic processing of APP is influenced by metal ions and protein ligands, however the structural and functional mechanism of APP regulation is not known so far. In this context, molecular modeling studies were performed to understand the molecular behavior of (E)-N-(pyridin-2-ylmethylene)arylamines (LR) with an E2 domain of the APP in its complex with zinc (APP; PDB ID: ). Docking results indeed confirmed that the LR interacts with Zn in the binding site of the protein between two α-helical chains. In view of these findings, LR was further investigated for complexation reactions with Zn(2+) in order to establish the structural models in solution and in the solid state. Five new Zn(2+) complexes of compositions viz. [Zn(Br)2(L2-Me)] (), [Zn(Br)2(L2-OMe)] (), [Zn(i)2(L2-OMe)] (), [Zn(NO3)2(L2-OMe)(H2O)] () and [Zn(L4-Me)2(H2O)2](NO3)2 () were synthesized and their structures were ascertained by microanalysis, IR and (1)H NMR spectroscopy, and single-crystal X-ray diffraction. The zinc atom in complex exhibits a distorted tetrahedral geometry while the crystal structures of complexes and show distorted square pyramidal geometries. The zinc cation in and has an octahedral coordination environment, but in the zinc coordination geometry is less distorted. The Zn(ii) cations take part in one ( and ) or two () 5-membered metallacycles imposed by the NN or NNO chelation modes of LR. The significant intermolecular ππ interactions are also discussed.
Jayakumar, K; Sithambaresan, M; Aiswarya, N; Kurup, M R Prathapachandra
2015-03-15
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N(4)-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ=0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g||>g⊥>2.0023 and the g values in frozen DMF are consistent with the d(x2-y2) ground state. The thermal stabilities of some of the complexes were also determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Dai, Yu-Mei; Tang, En; Huang, Jin-Feng; Yang, Qiu-Yan
2008-10-01
The asymmetric unit of the title compound, {[Cu(CO(3))(C(14)H(14)N(4))(1.5)] x 0.5 C(14)H(14)N(4) x 5 H(2)O}(n), contains one Cu(II) cation in a slightly distorted square-pyramidal coordination environment, one CO(3)(2-) anion, one full and two half 1,4-bis(imidazol-1-ylmethyl)benzene (bix) ligands, one half-molecule of which is uncoordinated, and five uncoordinated water molecules. One of the coordinated bix ligands and the uncoordinated bix molecule are situated about centers of symmetry, located at the centers of the benzene rings. The coordinated bix ligands link the copper(II) ions into a [Cu(bix)(1.5)](n) molecular ladder. These molecular ladders do not form interpenetrated ladders but are arranged in an ABAB parallel terrace, i.e. with the ladders arranged one above another, with sequence A translated with respect to B by 8 A. To best of our knowledge, this arrangement has not been observed in any of the molecular ladder frameworks synthesized to date. The coordination environment of the Cu(II) atom is completed by two O atoms of the CO(3)(2-) anion. The framework is further strengthened by extensive O-H...O and O-H...N hydrogen bonds involving the water molecules, the O atoms of the CO(3)(2-) anion and the N atoms of the bix ligands. This study describes the first example of a molecular ladder coordination polymer based on bix and therefore demonstrates further the usefulness of bix as a versatile multidentate ligand for constructing coordination polymers with interesting architectures.
Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M
2010-01-04
A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2) (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)(2).2H(2)O]. An Fe(II) complex of 3-Hfl, [(6-Ph(2)TPA)Fe(3-Hfl)]ClO(4) (8), was isolated and characterized by elemental analysis, FTIR, UV-vis, (1)H NMR, cyclic voltammetry, and a magnetic moment measurement. This complex reacts with O(2) to produce the diiron(III) mu-oxo compound [(6-Ph(2)TPAFe(3Hfl))(2)(mu-O)](ClO(4))(2) (6).
Gómez-Saiz, Patricia; García-Tojal, Javier; Maestro, Miguel A; Arnaiz, Francisco J; Rojo, Teófilo
2002-03-25
The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).
NASA Astrophysics Data System (ADS)
Merzougui, Moufida; Ouari, Kamel; Weiss, Jean
2016-09-01
The oxovanadium (IV) complex ;VOL; of a tetradentate Schiff base ligand derived from the condensation of diaminoethane and 2-hydroxy-1-naphthaldehyde was efficiently prepared via ultrasound irradiation and the template effect of VO(acac)2. The resulting product was characterized by elemental analysis, infrared, electronic absorption and molar conductance measurement. Single X-ray structure analysis showed that the complex is a monomeric five-coordinate with a distorted square pyramidal geometry. It crystallizes in monoclinic system having unit cell parameters a = 8.3960 (5) Å; b = 12.5533 (8) Å and c = 18.7804 (11) Å; α = γ = 90°; β = 104.843°(2), with P 21/c space group. Cyclic voltammetry of the complex, carried out on a glassy carbon (GC) electrode in DMF, showed reversible cyclic voltammograms response in the potential range 0.15-0.60 V involving a single electron redox wave VV/VIV, the diffusion coefficient is determinedusing GC rotating disk electrode. The Levich plot Ilim = f(ω1/2), was used to calculate the diffusion-convection controlled currents.
Bromidotetra-kis-(2-ethyl-1H-imidazole-κN (3))copper(II) bromide.
Godlewska, Sylwia; Kelm, Harald; Krüger, Hans-Jörg; Dołęga, Anna
2012-12-01
The Cu(II) ion in the title mol-ecular salt, [CuBr(C5H8N2)4]Br, is coordinated in a square-pyramidal geometry by four N atoms of imidazole ligands and one bromide anion in the apical position. In the crystal, the ions are linked by N-H⋯Br hydrogen bonds involving both the coordinating and the free bromide species as acceptors. A C-H⋯Br inter-action is also observed. Overall, a three-dimensional network results.
Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl: A rare example of Ti(IV) in a square pyramidal oxygen coordination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batuk, Maria, E-mail: Maria.Batuk@uantwerpen.be; Batuk, Dmitry; Abakumov, Artem M.
A new oxychloride Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5–550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is a new n=4 member of the oxychloride perovskite-based homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. The structure is built of truncated Pb{submore » 3}Fe{sub 3}TiO{sub 11} quadruple perovskite blocks separated by CsCl-type Pb{sub 2}Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O{sub 6} octahedra sandwiched between two layers of (Fe,Ti)O{sub 5} square pyramids. The Ti{sup 4+} cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti{sup 4+} in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μ{sub B} and 3.86(5) μ{sub B} on the octahedral and square-pyramidal sites, respectively. - Highlights: • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. • The structure has been refined using neutron powder diffraction data at 1.5–550 K. • It is a new n=4 member of the perovskite-related homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. • Ti{sup 4+} cations have both octahedral and square-pyramidal coordination environment. • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below T{sub N}≈450 K.« less
Equilibrium between Different Coordination Geometries in Oxidovanadium(IV) Complexes
ERIC Educational Resources Information Center
Ugone, Valeria; Garribba, Eugenio; Micera, Giovanni; Sanna, Daniele
2015-01-01
In this laboratory activity, the equilibrium between square pyramidal and octahedral V(IV)O[superscript 2+] complexes is described. We propose a set of experiments to synthesize and characterize two types of V(IV)O[superscript 2+] complexes. The experiment allows great flexibility and may be effectively used at a variety of levels and the activity…
(N-Benzyl-N-ethyldithiocarbamato)di-tert-butylchloridotin(IV)
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Tiekink, Edward R. T.
2011-01-01
The SnIV atom in the title diorganotin dithiocarbamate, [Sn(C4H9)2Cl(C10H12NS2)], is pentacoordinated by an asymmetrically coordinating dithiocarbamate ligand, a Cl and two C atoms of the Sn-bound tert-butyl groups. The resulting C2ClS2 donor set defines a coordination geometry intermediate between square pyramidal and trigonal bipyramidal with a slight tendency towards the former. In the crystal structure, C—H⋯π contacts link centrosymmetrically related molecules into dimeric aggregates. PMID:21522295
Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction
Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.
2014-10-29
Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less
Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.
Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less
The molecular structure of the isopoly complex ion, decavanadate (V10O286-)
Evans, H.T.
1966-01-01
The structure of the decavanadate ion V10O286- has been found by a determination of the crystal structure of K2Zn2V10O28?? 16H2O. The soluble, orange crystals are triclinic with space group P1 and have a unit cell with a = 10.778 A, b = 11.146 A, c = 8.774 A, ?? = 104?? 57???, ?? = 109?? 3???', and ?? = 65?? 0??? (Z = 1). The structure was solved from a three-dimensional Patterson map based on 5143 Weissenberg-film data. The full-matrix, least-squares refinement gave R = 0.094 and ?? for V-O bond lengths of 0.008 A. The unit cell contains one V10O286- unit, two Zn(H2O)62+ groups, two K+ ions, and four additional water molecules. The decavanadate ion is an isolated group of ten condensed VO6 octahedra, six in a rectangular 2 x 3 array sharing edges, and four more, two fitted in above and two below by sharing sloping edges. The structure, which is based on a sodium-chloride-like arrangement of V and O atoms, has a close relationship to other isopoly complex molybdates, niobates, and tantalates. Strong distortions in the VO6 octahedra are analogous to square-pyramid and other special coordination features known in other vanadate structures.
Rhoda, Hannah M; Crandall, Laura A; Geier, G Richard; Ziegler, Christopher J; Nemykin, Victor N
2015-05-18
A series of metallocorroles were investigated by UV-vis and magnetic circular dichroism spectroscopies. The diamagnetic distorted square-pyramidal main-group corrole Ga(tpfc)py (2), the diamagnetic distorted octahedral transition-metal adduct Co(tpfc)(py)2 (3), and paramagnetic distorted octahedral transition-metal complex Fe(tpfc)(py)2 (4) [H3tpfc = tris(perfluorophenyl)corrole] were studied to investigate similarities and differences in the electronic structure and spectroscopy of the closed- and open-shell metallocorroles. Similar to the free-base H3tpfc (1), inspection of the MCD Faraday B-terms for all of the macrocycles presented in this report revealed that a ΔHOMO < ΔLUMO [ΔHOMO is the energy difference between two highest energy corrole-centered π-orbitals and ΔLUMO is the energy difference between two lowest energy corrole-centered π*-orbitals originating from ML ± 4 and ML ± 5 pairs of perimeter] condition is present for each complex, which results in an unusual sign-reversed sequence for π-π* transitions in their MCD spectra. In addition, the MCD spectra of the cobalt and the iron complexes were also complicated by a number of charge-transfer states in the visible region. Iron complex 4 also exhibits a low-energy absorption in the NIR region (1023 nm). DFT and TDDFT calculations were used to elaborate the electronic structures and provide band assignments in UV-vis and MCD spectra of the metallocorroles. DFT and TDDFT calculations predict that the orientation of the axial pyridine ligand(s) has a very minor influence on the calculated electronic structures and absorption spectra in the target systems.
Algarra, Andrés G; Basallote, Manuel G; Castillo, Carmen E; Clares, M Paz; Ferrer, Armando; García-España, Enrique; Llinares, José M; Máñez, M Angeles; Soriano, Conxa
2009-02-02
A ligand (L1) (bis(aminoethyl)[2-(4-quinolylmethyl)aminoethyl]amine) containing a 4-quinolylmethyl group attached to one of the terminal amino groups of tris(2-aminoethyl)amine (tren) has been prepared, and its protonation constants and stability constants for the formation of Cu(2+) complexes have been determined. Kinetic studies on the formation of Cu(2+) complexes in slightly acidic solutions and on the acid-promoted complex decomposition strongly suggest that the Cu(2+)-L1 complex exists in solution as a mixture of two species, one of them showing a trigonal bipyramidal (tbp) coordination environment with an absorption maximum at 890 nm in the electronic spectrum, and the other one being square pyramidal (sp) with a maximum at 660 nm. In acidic solution only a species with tbp geometry is formed, whereas in neutral and basic solutions a mixture of species with tbp and sp geometries is formed. The results of density functional theory (DFT) calculations indicate that these results can be rationalized by invoking the existence of an equilibrium of hydrolysis of the Cu-N bond with the amino group supporting the quinoline ring so that CuL1(2+) would be actually a mixture of tbp [CuL1(H(2)O)](2+) and sp [CuL1(H(2)O)(2)](2+). As there are many Cu(2+)-polyamine complexes with electronic spectra that show two overlapping bands at wavelengths close to those observed for the Cu(2+)-L1 complex, the existence of this kind of equilibrium between species with two different geometries can be quite common in the chemistry of these compounds. A correlation found between the position of the absorption maximum and the tau parameter measuring the distortion from the idealized tbp and sp geometries can be used to estimate the actual geometry in solution of this kind of complex.
Bromidotetrakis(2-ethyl-1H-imidazole-κN 3)copper(II) bromide
Godlewska, Sylwia; Kelm, Harald; Krüger, Hans-Jörg; Dołęga, Anna
2012-01-01
The CuII ion in the title molecular salt, [CuBr(C5H8N2)4]Br, is coordinated in a square-pyramidal geometry by four N atoms of imidazole ligands and one bromide anion in the apical position. In the crystal, the ions are linked by N—H⋯Br hydrogen bonds involving both the coordinating and the free bromide species as acceptors. A C—H⋯Br interaction is also observed. Overall, a three-dimensional network results. PMID:23468738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, Iwan; Kremer, Reinhard K.; Johnsson, Mats, E-mail: mats.johnsson@mmk.su.se
The new compounds Mn{sub 4}(TeO{sub 3})(SiO{sub 4})X{sub 2} (X=Br, Cl) were synthesized by solid state reactions in sealed evacuated silica tubes. The compounds crystallize in the monoclinic space group P2{sub 1}/m with the unit cell parameters a=5.5463(3) Å (5.49434(7) Å), b=6.4893(4) Å (6.44184(9) Å), c=12.8709(7) Å (12.60451(18) Å), β=93.559(5)° (94.1590(12)°) and Z=2 for the respective Br and Cl analogues. Manganese adopts various distorted coordination polyhedra; [MnO{sub 6}] octahedra, [MnO{sub 5}] tetragonal pyramids and [MnO{sub 2}X{sub 2}] tetrahedra. Other building blocks are [SiO{sub 4}] tetrahedra and [TeO{sub 3}] trigonal pyramids. The structure is made up from layers having no net chargemore » that are connected via weak Van der Waal interactions. The layers that are parallel to (1 1 0) consist of two manganese oxide sheets which are separated by [SiO{sub 4}] tetrahedra. On the outer sides of the sheets are the [MnO{sub 2}X{sub 2}] tetrahedra and the [TeO{sub 3}] trigonal pyramids connected so that the halide ions and the stereochemically active lone pairs on the tellurium atoms protrude from the layers. Magnetic susceptibility measurements reveal a Curie law with a Weiss temperature of θ=−153(3) K for temperatures ≥100 K and indicate antiferromagnetic ordering at T{sub N} ∼4 K. Possible structural origins of the large frustration parameter of f=38 are discussed. - Graphical abstract: Table of contents caption. The new compounds Mn{sub 4}(TeO{sub 3})(SiO{sub 4})X{sub 2} (X=Br, Cl) are layered with weak Van der Waal interactions in between the layers. Manganese adopts various distorted coordination polyhedral, other building blocks are [SiO{sub 4}] tetrahedra and [TeO{sub 3}] trigonal pyramids. Magnetic susceptibility measurements indicate antiferromagnetic ordering at low temperatures and a large frustration parameter. - Highlights: • Two new isostructural oxohalide compounds are described. • The compounds are the first examples of oxohalides containing both Te{sup 4+} and Si{sup 4+}. • Both compounds display the unusual coordination polyhedron MnO{sub 2}X{sub 2} (X=Cl, Br). • The compounds are made up of charge neutral layers connected via weak interactions. • The compounds are antiferromagnetic and display a large frustration parameter.« less
Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling
2016-02-01
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.
NASA Astrophysics Data System (ADS)
Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.
2014-11-01
Multicopper oxidases are fundamental in a variety of biological processes in bacteria, fungi and vertebrates. The catalytic center in these enzymes is formed basically by three copper ions, bridged by oxygen bonds. In order to get insights into the reactivity of these complex systems, biomimetic compounds are usually synthesized. Accordingly, in this work, we studied structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative, as well as its corresponding mononuclear and trinuclear copper(II)-coordinated complexes by means of density functional theory. The calculations are compared with experimental results using measurements of the infrared spectra. It is obtained that the molecular configuration of the pseudoephedrine amino-alcohol derivative is stabilized by hydrogen bonding Osbnd H⋯N and by Csbnd H⋯π interactions that are not present in the mononuclear and trinuclear compounds. The coordination compounds show octahedral and square pyramid geometries, respectively, which are slightly distorted by Jahn-Teller effects. The analysis of their theoretical and experimental IR spectra reveals signals related with hydrogen bonding as well as metal-ligand vibrational modes. Regarding the electronic structure, the density of states was calculated in order to analyze the atomic orbital contributions present in these compounds. This analysis would provide useful insights about the optical behavior, for example, in the visible region of the spectrum of the coordinated compounds. At these energies, the optical absorption would be influenced by the orbital interaction of the Cu2+d orbitals with sp ones of the ligand, reflecting a decrease of the HOMO-LUMO gap of the organic ligand due to the presence of the copper(II) ions.
Ohta, Takehiro; Chakrabarty, Sarmistha; Lipscomb, John D; Solomon, Edward I
2008-02-06
Near-IR MCD and variable temperature, variable field (VTVH) MCD have been applied to naphthalene 1,2-dioxygenase (NDO) to describe the coordination geometry and electronic structure of the mononuclear nonheme ferrous catalytic site in the resting and substrate-bound forms with the Rieske 2Fe2S cluster oxidized and reduced. The structural results are correlated with the crystallographic studies of NDO and other related Rieske nonheme iron oxygenases to develop molecular level insights into the structure/function correlation for this class of enzymes. The MCD data for resting NDO with the Rieske center oxidized indicate the presence of a six-coordinate high-spin ferrous site with a weak axial ligand which becomes more tightly coordinated when the Rieske center is reduced. Binding of naphthalene to resting NDO (Rieske oxidized and reduced) converts the six-coordinate sites into five-coordinate (5c) sites with elimination of a water ligand. In the Rieske oxidized form the 5c sites are square pyramidal but transform to a 1:2 mixture of trigonal bipyramial/square pyramidal sites when the Rieske center is reduced. Thus the geometric and electronic structure of the catalytic site in the presence of substrate can be significantly affected by the redox state of the Rieske center. The catalytic ferrous site is primed for the O2 reaction when substrate is bound in the active site in the presence of the reduced Rieske site. These structural changes ensure that two electrons and the substrate are present before the binding and activation of O2, which avoids the uncontrolled formation and release of reactive oxygen species.
Borthakur, R; Kumar, A; Lal, R A
2015-10-05
Synthesis, structural characterization and redox properties of three heterobimetallic complexes with formule {[NiCu(L(n))(CH3OH)3]·CH3OH} using [Cu(H2L(n))(H2O)] as metalloligand have been demonstrated in the present paper. Electronic spectroscopy suggests that the copper center has a pseudo square pyramidal stereochemistry in all the complexes while the nickel center has a distorted octahedral stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anđelković, Katarina; Pevec, Andrej; Grubišić, Sonja; Turel, Iztok; Čobeljić, Božidar; Milenković, Milica R.; Keškić, Tanja; Radanović, Dušanka
2018-06-01
The mixed chloride-azide [ZnL(N3)1.65Cl0.35] (1) and chloride-isocyanate [CdL(NCO)1.64Cl0.36] (2) complexes with the condensation product of 2-quinolinecarboxaldehyde and trimethylammonium acetohydrazide chloride (Girard's T reagent) (HLCl) have been prepared and characterized by X-ray crystallography. In complexes 1 and 2, Zn1 and Cd1 ions, respectively, are five-coordinated in a distorted square based pyramidal geometry with NNO set of donor atoms of deprotonated hydrazone ligand and two monodentate ligands N3- and/or N3- and Cl- in the case of 1 and OCN- and/or OCN- and Cl- in the case of 2. The structural parameters of 1 and 2 have been discussed in relation to those of previously reported M(II) complexes with the same hydrazone ligand. Density functional theory calculations have been employed to study the interaction between the Zn2+ and Cd2+ ions and ligands. High affinity of ligands towards the Zn2+ and Cd2+ ions are predicted for both complexes.
Onwudiwe, Damian C; Strydom, Christien A; Oluwafemi, Oluwatobi S; Hosten, Eric; Jordaan, Anine
2014-06-21
The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compounds undergo fast weight loss, and the temperature at maximum rate of decomposition is at 277 °C and 265 °C respectively, to give the metal (Zn or Cd) sulphide residues. These compounds were used as single molecule precursors to produce nanocrystalline MS (M = Zn, Cd) after thermolysis in hexadecylamine. The morphological and optical properties of the resulting MS nanocrystallites were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis absorption and photoluminescence (PL) spectroscopy, and powdered X-ray diffraction (XRD). By varying the growth time, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samain, Louise; Amshoff, Philipp; Biendicho, Jordi J.
2015-07-15
Ruddlesden–Popper n=2 member phases Sr{sub 3−x}Y{sub x}Fe{sub 1.25}Ni{sub 0.75}O{sub 7−δ}, 0≤x≤0.75, have been investigated by X-ray and neutron powder diffraction, thermogravimetry and Mössbauer spectroscopy. Both samples as-prepared at 1300 °C under N{sub 2}(g) flow and samples subsequently air-annealed at 900 °C were studied. The as-prepared x=0.75 phase is highly oxygen deficient with δ=1, the O1 atom site being vacant, and the Fe{sup 3+}/Ni{sup 2+} ions having a square pyramidal coordination. For as-prepared phases with lower x values, the Mössbauer spectral data are in good agreement with the presence of both 5- and 4-coordinated Fe{sup 3+} ions, implying in addition amore » partial occupancy of the O3 atom sites that form the basal plane of the square pyramid. The air-annealed x=0.75 sample has a δ value of 0.61(1) and the structure has Fe/Ni ions in both square pyramids and octahedra. Mössbauer spectroscopy shows the phase to contain only Fe{sup 3+}, implying that all Ni is present as Ni{sup 3+}. Air-annealed phases with lower x values are found to contain both Fe{sup 3+} and Fe{sup 4+}. For both the as-prepared and the air-annealed samples, the Y{sup 3+} cations are found to be mainly located in the perovskite block. The high-temperature thermal expansion of as-prepared and air-annealed x=0.75 phases were investigated by high-temperature X-ray diffraction and dilatometry and the linear thermal expansion coefficient determined to be 14.4 ppm K{sup −1}. Electrical conductivity measurements showed that the air-annealed samples have higher conductivity than the as-prepared ones. - Highlights: • Ruddlesden–Popper, n=2, Sr{sub 3−x}Y{sub x}Fe{sub 1.25}Ni{sub 0.75}O{sub 7−δ}, 0≤x≤0.75, have been synthesised. • The crystal structures of the phases have been determined. • Sr{sub 2.25}Y{sub 0.75}Fe{sub 1.25}Ni{sub 0.75}O{sub 6}, made in N{sub 2}(g) has Fe{sup 3+}/Ni{sup 2+} in square pyramides. • Sr{sub 2.25}Y{sub 0.75}Fe{sub 1.25}Ni{sub 0.75}O{sub 6.4}, made in air has Fe{sup 3+}/Ni{sup 3+} in square pyramides and octahedra. • Air annealed samples have higher electrical conductivity than N{sub 2}(g) annealed.« less
Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A.; Jiménez-Pulido, Sonia B.; Moreno-Carretero, Miguel N.
2010-01-01
The title compound, [Cu(C11H12N4O3)(C18H15P)2]PF6, is the third example reported in the literature of a five-coordinated CuIP2NO2 system. The metal is coordinated to both PPh3 molecules through the P atoms and to the pyrazine ring of the lumazine molecule through an N atom in a trigonal–planar arrangement; two additional coordinated O atoms, at Cu—O distances longer than 2.46 Å, complete the coordination. The coordination environment can be described as an intermediate square-pyramidal/trigonal–bipyramidal (SP/TBP) polyhedron. PMID:21579625
Growth and Electronic Structure Characterization of (SrCoOx)n :(SrTiO3)1 Superlattices
NASA Astrophysics Data System (ADS)
Cook, Say Young; Andersen, Tassie; Rosenberg, Richard; Hong, Hawoong; Marks, Laurence; Fong, Dillon
We report on the synthesis of a (SrCoOx)1 :(SrTiO3)1 superlattice by oxide molecular beam epitaxy and the characterization of its electronic structure by soft x-ray spectroscopy. X-ray photoelectron and absorption spectroscopy reveal that Ti remains octahedrally coordinated with a 4 + oxidation state, while the Co oxidation state is intermediate of 3 + and 4 +. Despite having the same half an oxygen vacancy per Co atom found in brownmillerite SrCoO2.5, which consists of alternating tetrahedral and octahedral layers of Co, the confinement of oxygen vacancies to isolated single atomic layers of SrCoOx stabilizes square pyramidal coordination of Co, as observed by the linear dichroism in the Co 2p-3d x-ray absorption. The corresponding stabilization of Co4+ along with Co3 + within the square pyramidal SrCoO2.5 layers gives rise to a Fermi-edge step observed at strong Co 2p-3d resonance in the resonant photoemission spectroscopy of the valence band, and reveals a band gap of 1.7 eV. Comparisons with a Sr(Co,Ti)Ox alloy and a (SrCoOx)2 :(SrTiO3)1 superlattice also will also be presented. The obtained results demonstrate artificial superlattices as effective means to defect engineer complex oxides by harnessing the confinement of oxygen vacancies to control the oxygen coordination environment of the transition metal.
Patra, Ayan; Bera, Manindranath
2014-01-30
In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Weilun; Ran, Jingwen
2015-05-01
The title compound, [Cu4(C11H13NO4)4]·CH3CH2OH·2.5H2O, is an electronically neutral tetra-nuclear copper(II) complex with a cubane-like Cu4O4 core. The complete molecule has point group symmetry 2. The phenol hy-droxy group and one of the three alcohol hy-droxy groups of each 2-{[tris-(hy-droxy-meth-yl)meth-yl]imino-meth-yl}phenol ligand are depro-ton-ated, while the secondary amine and the other two hy-droxy groups remain unchanged. The Cu(II) atoms in the Cu4O4 core are connected by four μ3-O atoms from the deprotonated alcohol hy-droxy groups. Each of the penta-coordinated Cu(II) ions has an NO4 distorted square-pyramidal environment through coordination to the tridentate Schiff base ligands. The Cu-N/O bond lengths span the range 1.902 (4)-1.955 (4) Å, similar to values reported for related structures. There are O-H⋯O hydrogen-bond inter-actions between the complex molecules and the ethanol and water solvent molecules, leading to the formation of a three-dimensional network. The ethanol solvent molecule is disordered about a twofold rotation axis. One of the two independent water molecules is also located on this twofold rotation axis and shows half-occupancy.
NASA Astrophysics Data System (ADS)
Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham
2018-05-01
Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.
NASA Astrophysics Data System (ADS)
Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed
2017-07-01
Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.
Tsujimoto, Yoshihiro; Nakano, Satoshi; Ishimatsu, Naoki; Mizumaki, Masaichiro; Kawamura, Naomi; Kawakami, Takateru; Matsushita, Yoshitaka; Yamaura, Kazunari
2016-01-01
We report a novel pressure-driven spin crossover in layered cobalt oxyfluoride Sr2CoO3F with a distorted CoO5 square pyramid loosely bound with a fluoride ion. Upon increasing pressure, the spin state of the Co(III) cation gradually changes from a high spin state (S = 2) to a low spin state (S = 0) accompanied by a anomalously large volume contraction (bulk modulus, 76.8(5) GPa). The spin state change occurs on the CoO5 pyramid in a wide pressure range, but the concomitant gradual shrinkage of the Co–F bond length with pressure gives rise to a polyhedral transformation to the CoO5F octahedron without a structural phase transition, leading to the full conversion to the LS state at 12 GPa. The present results provide new effective strategy to fine-tune electronic properties of mixed anion systems by controlling the covalency in metal-ligand bonds under pressure. PMID:27805031
NASA Astrophysics Data System (ADS)
Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey
2015-03-01
The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.
(N-Benzyl-N-isopropyl-dithio-carbamato)chloridodiphenyl-tin(IV).
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Ng, Seik Weng; Tiekink, Edward R T
2010-08-11
The Sn(IV) atom in the title organotin dithio-carbamate, [Sn(C(6)H(5))(2)(C(11)H(14)NS(2))Cl], is penta-coordinated by an asymmetrically coordinating dithio-carbamate ligand, a Cl and two ispo-C atoms of the Sn-bound phenyl groups. The resulting C(2)ClS(2) donor set defines a coordination geometry inter-mediate between square-pyramidal and trigonal-bipyramidal with a slight tendency towards the latter. The formation of close intra-molecular C-H⋯Cl and C-H⋯S contacts precludes the Cl and S atoms from forming significant inter-molecular contacts. The presence of C-H⋯π contacts leads to the formation of supra-molecular arrays that stack along the b axis.
Nasri, Soumaya; Amiri, Nesrine; Turowska-Tyrk, Ilona; Daran, Jean-Claude; Nasri, Habib
2016-01-01
In the title compound, [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2 or [Zn(TPBP)(4-CNpy]·(4-CNpy) [where TPBP and 4-CNpy are 5,10,15,20-(tetraphenylbenzoate)porphyrinate and 4-cyanopyridine, respectively], the ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn—N(pyrrole) bond length is 2.060 (6) Å and the Zn—N(4-CNpy) bond length is 2.159 (2) Å. The zinc cation is displaced by 0.319 (1) Å from the N4C20 mean plane of the porphyrinate anion toward the 4-cyanopyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP)(4-CNpy)] complex molecules are linked together via weak C—H⋯N, C—H⋯O and C—H⋯π interactions, forming supramolecular channels parallel to the c axis. The non-coordinating 4-cyanopyridine molecules are located in the channels and linked with the complex molecules, via weak C—H⋯N interactions and π-π stacking or via weak C—H⋯O and C—H⋯π interactions. The non-coordinating 4-cyanopyridine molecule is disordered over two positions with an occupancy ratio of 0.666 (4):0.334 (4). PMID:26958379
Findlater, Michael; Cartwright-Sykes, Alison; White, Peter S; Schauer, Cynthia K; Brookhart, Maurice
2011-08-10
Syntheses of the olefin hydride complexes [(POCOP)M(H)(olefin)][BAr(f)(4)] (6a-M, M = Ir or Rh, olefin = C(2)H(4); 6b-M, M = Ir or Rh, olefin = C(3)H(6); POCOP = 2,6-bis(di-tert-butylphosphinito)benzene; BAr(f) = tetrakis(3,5-trifluoromethylphenyl)borate) are reported. A single-crystal X-ray structure determination of 6b-Ir shows a square-pyramidal coordination geometry for Ir, with the hydride ligand occupying the apical position. Dynamic NMR techniques were used to characterize these complexes. The rates of site exchange between the hydride and the olefinic hydrogens yielded ΔG(++) = 15.6 (6a-Ir), 16.8 (6b-Ir), 12.0 (6a-Rh), and 13.7 (6b-Rh) kcal/mol. The NMR exchange data also established that hydride migration in the propylene complexes yields exclusively the primary alkyl intermediate arising from 1,2-insertion. Unexpectedly, no averaging of the top and bottom faces of the square-pyramidal complexes is observed in the NMR spectra at high temperatures, indicating that the barrier for facial equilibration is >20 kcal/mol for both the Ir and Rh complexes. A DFT computational study was used to characterize the free energy surface for the hydride migration reactions. The classical terminal hydride complexes, [M(POCOP)(olefin)H](+), are calculated to be the global minima for both Rh and Ir, in accord with experimental results. In both the Rh ethylene and propylene complexes, the transition state for hydride migration (TS1) to form the agostic species is higher on the energy surface than the transition state for in-place rotation of the coordinated C-H bond (TS2), while for Ir, TS2 is the high point on the energy surface. Therefore, only for the case of the Rh complexes is the NMR exchange rate a direct measure of the hydride migration barrier. The trends in the experimental barriers as a function of M and olefin are in good agreement with the trends in the calculated exchange barriers. The calculated barriers for the hydride migration reaction in the Rh complexes are ∼2 kcal/mol higher than for the Ir complexes, despite the fact that the energy difference between the olefin hydride ground state and the agostic alkyl structure is ∼4 kcal/mol larger for Ir than for Rh. This feature, together with the high barrier for interchange of the top and bottom faces of the complexes, is proposed to arise from the unique coordination geometry of the agostic complexes and the strong preference for a cis-divacant octahedral geometry in four-coordinate intermediates. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
El-Metwaly, Nashwa M.; Refat, Moamen S.
2011-01-01
This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.
Hydration of copper(II): new insights from density functional theory and the COSMO solvation model.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2008-09-25
The hydrated structure of the Cu(II) ion has been a subject of ongoing debate in the literature. In this article, we use density functional theory (B3LYP) and the COSMO continuum solvent model to characterize the structure and stability of [Cu(H2O)n](2+) clusters as a function of coordination number (4, 5, and 6) and cluster size (n = 4-18). We find that the most thermodynamically favored Cu(II) complexes in the gas phase have a very open four-coordinate structure. They are formed from a stable square-planar [Cu(H2O)8](2+) core stabilized by an unpaired electron in the Cu(II) ion d(x(2)-y(2)) orbital. This is consistent with cluster geometries suggested by recent mass-spectrometric experiments. In the aqueous phase, we find that the more compact five-coordinate square-pyramidal geometry is more stable than either the four-coordinate or six-coordinate clusters in agreement with recent combined EXAFS and XANES studies of aqueous solutions of Cu(II). However, a small energetic difference (approximately 1.4 kcal/mol) between the five- and six-coordinate models with two full hydration shells around the metal ion suggests that both forms may coexist in solution.
DFT Study of Optical Properties of Pt-based Complexes
NASA Astrophysics Data System (ADS)
Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.
2010-01-01
We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.
Arakawa, Takatoshi; Kawano, Yoshiaki; Kataoka, Shingo; Katayama, Yoko; Kamiya, Nobuo; Yohda, Masafumi; Odaka, Masafumi
2007-03-09
Thiocyanate hydrolase (SCNase) of Thiobacillus thioparus THI115 is a cobalt(III)-containing enzyme catalyzing the degradation of thiocyanate to carbonyl sulfide and ammonia. We determined the crystal structures of the apo- and native SCNases at a resolution of 2.0 A. SCNases in both forms had a conserved hetero-dodecameric structure, (alphabetagamma)(4). Four alphabetagamma hetero-trimers were structurally equivalent. One alphabetagamma hetero-trimer was composed of the core domain and the betaN domain, which was located at the center of the molecule and linked the hetero-trimers with novel quaternary interfaces. In both the apo- and native SCNases, the core domain was structurally conserved between those of iron and cobalt-types of nitrile hydratase (NHase). Native SCNase possessed the post-translationally modified cysteine ligands, gammaCys131-SO(2)H and gammaCys133-SOH like NHases. However, the low-spin cobalt(III) was found to be in the distorted square-pyramidal geometry, which had not been reported before in any protein. The size as well as the electrostatic properties of the substrate-binding pocket was totally different from NHases with respect to the charge distribution and the substrate accessibility, which rationally explains the differences in the substrate preference between SCNase and NHase.
(N-Benzyl-N-isopropyldithiocarbamato)chloridodiphenyltin(IV)
Abdul Muthalib, Amirah Faizah; Baba, Ibrahim; Mohamed Tahir, Mohamed Ibrahim; Ng, Seik Weng; Tiekink, Edward R. T.
2010-01-01
The SnIV atom in the title organotin dithiocarbamate, [Sn(C6H5)2(C11H14NS2)Cl], is penta-coordinated by an asymmetrically coordinating dithiocarbamate ligand, a Cl and two ispo-C atoms of the Sn-bound phenyl groups. The resulting C2ClS2 donor set defines a coordination geometry intermediate between square-pyramidal and trigonal-bipyramidal with a slight tendency towards the latter. The formation of close intramolecular C–H⋯Cl and C–H⋯S contacts precludes the Cl and S atoms from forming significant intermolecular contacts. The presence of C–H⋯π contacts leads to the formation of supramolecular arrays that stack along the b axis. PMID:21588504
The Crystal Structure of Ba 17Sm 10Cl 64
NASA Astrophysics Data System (ADS)
Liu, Guo; Eick, Harry A.
1999-08-01
The structure of Ba17Sm10Cl64, prepared by solvolytic extraction of a program-cooled 1:1 BaCl2:SmCl3 molar mixture sealed in a quartz tube and heated to 750°C, was determined from single-crystal X-ray diffraction data. The compound exhibits cubic symmetry, space group Pa3 (No. 205) with a=21.366(2) Å and Z=4. Refinement effected with I>2σ(I) yielded R1= 0.0926 and wR2=0.216. One Ba atom is 12-coordinated by Cl atoms in a distorted icosahedral arrangement; the three other Ba atoms are 10-coordinated in a distorted bicapped cubic arrangement. There are two Sm atom sites. The coordination around one Sm atom is best described as square antiprismatic, but one Sm-Cl distance is too long for effective bonding. The other Sm atom site, occupied statistically by {1}/{3}Ba and {2}/{3}Sm atoms, is 9-coordinated by Cl atoms in a monocapped square antiprismatic arrangement. The two types of Sm sites combine to form an M6Cl37 cuboctahedral cluster of the composition BaSm5Cl37. It is shown that the cβ phase identified previously in the Yb-F and related fluoride systems is probably isostructural with Ba17Sm10Cl64.
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2018-03-01
The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Kumar, Anil
2007-12-01
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.
Crystal structure of bis(μ-N-hydroxypicolinamidato)bis[bis(N-hydroxypicolinamide)sodium
Safyanova, Inna S.; Ohui, Kateryna A.; Omelchenko, Irina V.
2017-01-01
The title compound, [Na2(C6H5N2O2)2(C6H6N2O2)4], is a centrosymmetric coordination dimer based on the sodium(I) salt of N-hydroxypicolinamide. The molecule has an {Na2O6(μ-O)2} core with two bridging carbonyl O atoms and two hydroxamate O atoms of two mono-deprotonated residues of N-hydroxypicolinamide, while two neutral N-hydroxypicolinamide molecules are coordinated in a monodentate manner to each sodium ion via the carbonyl O atoms [the Na—O distances range from 2.3044 (2) to 2.3716 (2) Å]. The pentacoordinated sodium ion exhibits a distorted trigonal–pyramidal coordination polyhedron. In the crystal, the coordination dimers are linked into chains along the c axis via N—H⋯O and N—H⋯N hydrogen bonds; the chains are linked into a two-dimensional framework parallel to (100) via weak C—H⋯O and π–π stacking interactions. PMID:28083127
Ateş, Bürke Meltem; Ercan, Filiz; Svoboda, Ingrid; Fuess, Hartmut; Atakol, Orhan
2008-01-01
The title linear trinuclear copper(II) complex, [Cu3(C17H20N2O2)2Cl2], was obtained from N,N′-bis(2-hydroxybenzyl)-1,3-propanediamine and CuCl2. The overall charge of the three Cu2+ ions is balanced by four deprotonated phenol groups and two Cl− ligands. The complex is centrosymmetric with the central Cu2+ occupying a special position (). This Cu2+ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu2+ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl− ligands occupying the fifth coordination site. PMID:21201868
Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry
Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; ...
2014-10-07
The structure of a nanospheric polyhydrido copper cluster, [Cu 20(H) 11{S 2P(O iPr) 2} 9], was determined by single-crystal neutron diffraction. Cu 20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu 2H 5} 3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ 3-hydrides in pyramidal geometry, two μ 4-hydrides in tetrahedral cavity, and three μ 4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal ofmore » the size 0.20 mm x 0.50 mm x 0.65 mm for seven days using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimokawa, T.; Shinomoto, S. Yano, T.; Gouda, N.
2009-09-01
For the purpose of determining the celestial coordinates of stellar positions, consecutive observational images are laid overlapping each other with clues of stars belonging to multiple plates. In the analysis, one has to estimate not only the coordinates of individual plates, but also the possible expansion and distortion of the frame. This problem reduces to a least-squares fit that can in principle be solved by a huge matrix inversion, which is, however, impracticable. Here, we propose using Kalman filtering to perform the least-squares fit and implement a practical iterative algorithm. We also estimate errors associated with this iterative method and suggest a design of overlapping plates to minimize the error.
NASA Astrophysics Data System (ADS)
Al-Noaimi, Mousa; Awwadi, Firas F.; Al-Razagg, Raiid; Esmadi, Fatima T.
2016-12-01
Flexible unsymmetrical Schiff base ligand (L) which is derived from the half unit Y = C6H5COCH2C(Ndbnd CH2C6H4NH2)CH3 (obtained from the reaction of benzoylacetone and 2-aminobenzylamine) and 2- quinolinecarboxaldehyde have been successfully co-assembled with Cu(ClO4)2 to give out the [Cu(L)]ClO4 complex. The complex crystallizes in two different space groups; P21/n and P-1. The crystal structure of the P-1 phase indicates the presence of tunnels; the volume of these tunnels is 157 Å3 which is big enough to accommodate solvent molecules. The X-ray data indicates that these tunnels are most probably filled by highly disordered solvent molecules or solvent molecules with partial occupancy. The tunneled structure is stabilized via π-π stacking interactions to give a supramolecular MOF with 1D rhomboidal tunnels array. The copper(II) atom assumes a distorted-square pyrimidal coordination geometry where the perchlorate is located on the apex of the pyramide. In addition, this work presents and discusses the spectroscopic (IR, UV/vis), electro-chemical (cyclic voltammetry) behavior of the Cu(II) complexes. The Cu(II) oxidation state is stabilized by the novel tetradentate ligands, showing Cu(I/II) couple around 0.1 vs. Cp2Fe/Cp2Fe+.
Pulimamidi, Rabindra Reddy; Nomula, Raju; Pallepogu, Raghavaiah; Shaik, Hussain
2014-05-22
In view of the importance of picolinic acid (PA) in preventing cell growth and arresting cell cycle, new PA based metallonucleases were designed with a view to study their DNA binding and cleavage abilities. Three new Cu(II) complexes [Cu(II)(DPPA)].4H2O (1),[Cu(II)(DPPA)(bpy)].5H2O (2) and [Cu(II)(DPPA)(phen)].5H2O (3), were synthesized using a picolinic acid based bifunctional ligand (DPPA) and heterocyclic bases (where DPPA: Pyridine-2-carboxylic acid {2-phenyl-1-[(pyridin-2-ylmethyl)-carbonyl]-ethyl}-amide; bpy: 2, 2'-bipyridine and phen: 1, 10-phenanthroline). DPPA was obtained by coupling 2-picolinic acid and 2-picolyl amine with l-phenylalanine through amide bond. Complexes were structurally characterized by a single crystal X-ray crystallography. The molecular structure of 1 shows Cu(II) center essentially in a square planar coordination geometry, while complex 2 shows an approximate five coordinated square-pyramidal geometry. Eventhough we could not isolate single crystal for complex (3), its structure was established based on other techniques. The complex (3) also exhibits five coordinate square pyramidal geometry. The complexes show good binding affinity towards CT-DNA. The binding constants (Kb) decrease in the order 1.35 ± 0.01 × 10(5) (3) > 1.23 ± 0.01 × 10(5) (2) > 8.3 ± 0.01 × 10(4) (1) M(-1). They also exhibit efficient nuclease activity towards supercoiled pUC19 DNA both in the absence and presence of external agent (H2O2). The kinetic studies reveal that the hydrolytic cleavage reactions follow the pseudo first-order rate constant and the hydrolysis rates are in the range of (5.8-8.0) × 10(7) fold rate enhancement compared to non-catalyzed double stranded DNA (3.6 × 10(-8) h(-1)). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
μ-Carbonato-bis(bis{2-[(diethylamino)methyl]phenyl}bismuth(III))
Soran, Albert P.; Nema, Mihai G.; Breunig, Hans J.; Silvestru, Cristian
2011-01-01
The molecular structure of the title compound, [Bi2(C11H16N)4(CO3)], consists of a symmetrically bridging carbonato group which binds two [2-Et2NCH2C6H4]2Bi units that are crystallographically related via a twofold rotation axis bisecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bismuth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)2CO3 system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi—N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intramolecular interaction [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intramolecular N→Bi interactions per metal atom are considered, the overall coordination geometry at bismuth becomes distorted square-pyramidal [(C,N)2BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intramolecular Bi⋯O interactions are also present [3.796 (8)–4.020 (9) Å]. Intermolecular associations through weak η6⋯Bi interactions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supramolecular association. PMID:21522836
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali
2017-09-01
This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.
μ-Carbonato-bis-(bis-{2-[(diethyl-amino)-meth-yl]phen-yl}bis-muth(III)).
Soran, Albert P; Nema, Mihai G; Breunig, Hans J; Silvestru, Cristian
2011-01-12
The mol-ecular structure of the title compound, [Bi(2)(C(11)H(16)N)(4)(CO(3))], consists of a symmetrically bridging carbonato group which binds two [2-Et(2)NCH(2)C(6)H(4)](2)Bi units that are crystallographically related via a twofold rotation axis bis-ecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bis-muth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)(2)CO(3) system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi-N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intra-molecular inter-action [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intra-molecular N→Bi inter-actions per metal atom are considered, the overall coordination geometry at bis-muth becomes distorted square-pyramidal [(C,N)(2)BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intra-molecular Bi⋯O inter-actions are also present [3.796 (8)-4.020 (9) Å]. Inter-molecular associations through weak η(6)⋯Bi inter-actions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supra-molecular association.
A multi-focus image fusion method via region mosaicking on Laplacian pyramids
Kou, Liang; Zhang, Liguo; Sun, Jianguo; Han, Qilong; Jin, Zilong
2018-01-01
In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets. PMID:29771912
NASA Astrophysics Data System (ADS)
Batool, Syeda Shahzadi; Gilani, Syeda Rubina; Tahir, Muhammad Nawaz; Rüffer, Tobias
2017-11-01
Two ternary copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine (tmen = C6H16N2) with benzoic acid and p-aminobenzoic acid, having the formula [Cu(tmen)(BA)2(H2O)2] (1), and [Cu(tmen)(pABA)2]. 1/2 CH3OH (2) {(Where BA1- = benzoate1- (C6H5CO21-), pABA1- = p-aminobenzoate1- (p-H2NC6H5CO21-)} have been prepared and characterized by elemental combustion analysis, Uv-Visible spectroscopy, FT-IR spectroscopy, thermal, and single crystal X-ray diffraction analyses. The complex 1 is a monomer with distorted octahedral geometry. In its CuN2O4 chromophore, the Cu(II) centre is coordinated by two N atoms of a symmetrically chelating tmen ligand, by two carboxylate-O atoms from two monodentate benzoate1- anions, and by two apical aqua-O atoms, which define the distorted octahedral structure. The complex 2 is a monomer with a distorted square planar coordination geometry. In CuN2O2 chromophore, tmen is coordinated to Cu(II) ion in a chelating bidentate fashion, while the two p-aminobenzoate1- anions coordinate to Cu(II) centre through their carboxylate-O atoms in a monodentate manner, forming a square planar structure. The observed difference between asymmetric ѵas(OCO) and symmetric ѵs(OCO) stretching IR vibrations of the carboxylate moieties for 1 and 2 is 220 cm-1 and 232 cm-1, respectively, which suggests monodentate coordination mode (Δν OCO>200) of the carboxylate groups to Cu(II) ion. Thermogravimetric studies of 1 indicates removal of two water molecules at 171 °C, elimination of a tmen upto 529 °C and of two benzoate groups upto 931 °C. In tga curve of 2, methanol is lost upto 212 °C, while tmen is lost from 212 to 993 °C. The antibacterial activities of these new compounds against various bacterial strains were also investigated.
Crystal structure of (pyridine-κN)bis(quinolin-2-olato-κ2 N,O)copper(II) monohydrate
Hawks, Benjamin; Yan, Jingjing; Basa, Prem; Burdette, Shawn
2015-01-01
The title complex, [Cu(C9H6NO)2(C5H4N)]·H2O, adopts a slightly distorted square-pyramidal geometry in which the axial pyridine ligand exhibits a long Cu—N bond of 2.305 (3) Å. The pyridine ligand forms dihedral angles of 79.5 (5) and 88.0 (1)° with the planes of the two quinolin-2-olate ligands, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The water molecule connects adjacent copper complexes through O—H⋯O hydrogen bonds to phenolate O atoms, forming a network interconnecting all the complexes in the crystal lattice. PMID:25878845
Klingele, Julia; Prikhod'ko, Alexander I; Leibeling, Guido; Demeshko, Serhiy; Dechert, Sebastian; Meyer, Franc
2007-05-28
The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x
Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F
2017-07-01
OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.
Poly[[[μ3-N′-(carboxymethyl)ethylenediamine-N,N,N′-triacetato]dysprosium(III)] trihydrate
Zhuang, Xiaomei; Long, Qingping; Wang, Jun
2010-01-01
In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carboxymethyl)ethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H⋯O hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network. PMID:21588859
Bis(2,4-dibromo-6-formylphenolato-κ2 O,O′)copper(II)
Li, Guang Zhao; Zhang, Shu Hua; Liu, Zheng
2008-01-01
In the title compound, [Cu(C7H3Br2O2)2], the CuII atom, which lies on an inversion centre, is coordinated by four O atoms from two chelating bidentate 2,4-dibromo-6-formylphenolate ligands in a slightly distorted square-planar coordination geometry. In the crystal structure, short intermolecular Br⋯Br [3.516 (4) and 3.653 (4) Å] and Cu⋯Br [3.255 (1) Å] contacts together with C—H⋯O hydrogen bonds generate a three-dimensional network. PMID:21200624
Shebl, Magdy
2008-09-01
A tetradentate N2O2 donor Schiff base ligand, H2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl-, NO3-, AcO-, ClO4- and SO42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO(4)(-) anion as compared to the strongly coordinating power of SO42- and Cl- anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.
Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre
2011-07-04
The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system. © 2011 American Chemical Society
Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Fernández-Liencres, M Paz; Fernández-Gómez, Manuel; Moreno-Carretero, Miguel N
2013-01-14
The oxime derived from 6-acetyl-1,3,7-trimethyllumazine (1) ((E-6-(hydroxyimino)ethyl)-1,3,7-trimethylpteridine-2,4(1H,3H)-dione, DLMAceMox) has been prepared and its molecular and crystal structure determined from spectral and XRD data. The oxime ligand was reacted with silver nitrate, perchlorate, thiocyanate, trifluoromethylsulfonate and tetrafluoroborate to give complexes with formulas [Ag(2)(DLMAceMox)(2)(NO(3))(2)](n) (2), [Ag(2)(DLMAceMox)(2)(ClO(4))(2)](n) (3), [Ag(2)(DLMAceMox)(2)(SCN)(2)] (4), [Ag(2)(DLMAceMox)(2)(CF(3)SO(3))(2)(CH(3)CH(2)OH)]·CH(3)CH(2)OH (5) and [Ag(DLMAceMox)(2)]BF(4) (6). Single-crystal XRD studies show that the asymmetrical residual unit of complexes 2, 3 and 5 contains two quite different but connected silver centers (Ag1-Ag2, 2.9-3.2 Å). In addition to this, the Ag1 ion displays coordination with the N5 and O4 atoms from both lumazine moieties and a ligand (nitrato, perchlorato or ethanol) bridging to another disilver unit. The Ag2 ion is coordinated to the N61 oxime nitrogens, a monodentate and a (O,O)-bridging nitrato/perchlorato or two monodentate O-trifluoromethylsulfonato anions. The coordination polyhedra can be best described as a strongly distorted octahedron (around Ag1) and a square-based pyramid (around Ag2). The Ag-N and Ag-O bond lengths range between 2.22-2.41 and 2.40-2.67 Å, respectively. Although the structure of 4 cannot be resolved by XRD, it is likely to be similar to those described for 2, 3 and 5, containing Ag-Ag units with S-thiocyanato terminal ligands. Finally, the structure of the tetrafluoroborate compound 6 is mononuclear with a strongly distorted tetrahedral AgN(4) core (Ag-N, 2.27-2.43 Å). Always, the different Ag-N distances found clearly point to the more basic character of the oxime N61 nitrogen atom when compared with the pyrazine N5 one. A topological analysis of the electron density within the framework provided by the quantum theory of atoms in molecules (QTAIM) using DFT(M06L) levels of theory has been performed. Every Ag-Ag and Ag-ligand interaction has been characterized in terms of Laplacian of the electron density, [nabla](2)ρ(r), and the total energy density, H(r).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Tsai, Chi-Jou; Chang, Ching-Yun
A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere ofmore » metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.« less
Effect of housing rats within a pyramid on stress parameters.
Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna
2003-11-01
The Giza pyramids of Egypt have been the subject of much research. Pyramid models with the same base to height ratio as of the Great Pyramid of Giza, when aligned on a true north-south axis, are believed to generate, transform and transmit energy. Research done with such pyramid models has shown that they induced greater relaxation in human subjects, promoted better wound healing in rats and afforded protection against stress-induced neurodegnerative changes in mice. The present study was done to assess the effects of housing Wistar rats within the pyramid on the status of oxidative damage and antioxidant defense in their erythrocytes and cortisol levels in their plasma. Rats were housed in cages under standard laboratory conditions. Cages were left in the open (normal control), under a wooden pyramid model (experimental rats) or in a cubical box of comparable dimensions (6 hr/day for 14 days). Erythrocyte malondialdehyde and plasma cortisol levels were significantly decreased in rats kept within the pyramid as compared to the normal control and those within the square box. Erythrocyte reduced glutathione levels, erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly increased in the rats kept in the pyramid as compared to the other two groups. There was no significant difference in any of the parameters between the normal control and rats kept in the square box. The results showed that exposure of adult female Wistar rats to pyramid environment reduces stress oxidative stress and increases antioxidant defense in them.
Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo
2013-02-18
A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.
Synthesis and decomposition of a novel carboxylate precursor to indium oxide
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Andras, Maria T.; Duraj, Stan A.; Clark, Eric B.; Hehemann, David G.; Scheiman, Daniel A.; Fanwick, Phillip E.
1994-01-01
Reaction of metallic indium with benzoyl peroxide in 4-1 methylpyridine (4-Mepy) at 25 C produces an eight-coordinate mononuclear indium(III) benzoate, In(eta(sup 2)-O2CC6H5)3(4-Mepy)2 4H2O (I), in yields of up to 60 percent. The indium(III) benzoate was fully characterized by elemental analysis, spectroscopy, and X-ray crystallography; (I) exists in the crystalline state as discrete eight-coordinate molecules; the coordination sphere around the central indium atom is best described as pseudo-square pyramidal. Thermogravimetric analysis of (I) and X-ray diffraction powder studies on the resulting pyrolysate demonstrate that this new benzoate is an inorganic precursor to indium oxide. Decomposition of (I) occurs first by loss of 4-methylpyridine ligands (100 deg-200 deg C), then loss of benzoates with formation of In2O3 at 450 C. We discuss both use of carboxylates as precursors and our approach to their preparation.
Structural diversity of silver (I) azine complexes - Effect of substituents and counter anions
NASA Astrophysics Data System (ADS)
Patra, Goutam Kumar; Mukherjee, Anindita; Mitra, Partha; Adarsh, N. N.
2011-08-01
Three new Ag(I) complexes, 1, 2, and 3 of two azine ligands diacetyl dihydrazone ( L1) and benzil dihydrazone ( L2) have been synthesized and characterized by single crystal X-ray diffraction studies (for 2 and 3), X-ray powder diffraction studies( 1 and 2), elemental analyses, IR and UV-VIS spectroscopy and TGA analysis. They represent one-dimensional polymeric assemblies and discrete dinuclear Ag(I) complex depending on functionality of the ligands and the counter anions. Tetrahedral as well as square pyramidal coordination motifs of the silver (I) ions have been observed in the supramolecular designing of such hybrid organic-inorganic materials.
Fondo, Matilde; García-Deibe, Ana M; Corbella, Monstserrat; Ruiz, Eliseo; Tercero, Javier; Sanmartín, Jesús; Bermejo, Manuel R
2005-07-11
The new tetranuclear carbonate complex [Cu2L)2(CO3)] x 8H2O (1 x 8H2O) (H3L = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) has been obtained by two different synthetic routes and fully characterized. Recrystallization of 1 x 8H2O in methanol yields single crystals of {[(Cu2L)2(CO3)]}2 x 12H2O (1 x 6H2O), suitable for X-ray diffraction studies. The crystal structure of 1 x 6H2O shows two crystallographically different tetranuclear molecules in the asymmetric unit, 1a and 1b. Both molecules can be understood as self-assembled from two dinuclear [Cu2L]+ cations, joined by a mu4-eta(2):eta(1):eta(1) carbonate ligand. The copper atoms of each crystallographically different [(Cu2L)2(CO3)] molecule present miscellaneous coordination polyhedra: in both 1a and 1b, two metal centers are in square pyramidal environments, one displays a square planar chromophore and the other one has a geometry that can be considered as an intermediate between square pyramid and trigonal bipyramid. Magnetic studies reveal net intramolecular ferromagnetic coupling between the metal atoms. Density functional calculations allow the assignment of the different magnetic coupling constants and explain the unexpected ferromagnetic behavior, because of the presence of an unusual NCN bridging moiety and countercomplementarity of the phenoxo (or carbonate) and NCN bridges.
A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes
Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean
2008-01-01
Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475
Optical design of infrared pyramid wavefront sensor for the MMT
NASA Astrophysics Data System (ADS)
Chen, Shaojie; Sivanandam, Suresh; Liu, Siqi; Veran, Jean-Pierre; Hinz, Phil; Mieda, Etsuko; Hardy, Tim; Lardiere, Olivier
2017-09-01
We report the optical design of an infrared (0.85-1.8 μm) pyramid wavefront sensor (IRPWFS) that is designed for the 6.5m MMT on telescope adaptive optics system using the latest developments in low-noise infrared avalanche photodiode arrays. The comparison between the pyramid and the double-roof prism based wavefront sensors and the evaluation of their micro pupils' quality are presented. According to our analysis, the use of two double-roof prisms with achromatic materials produces the competitive performance when compared to the traditional pyramid prism, which is difficult to manufacture. The final micro pupils on the image plane have the residual errors of pupil position, chromatism, and distortion within 1/10 pixel over the 2×2 arcsecond field of view, which meet the original design goals.
Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc
2016-05-01
The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.
Uzunova, Ellie L
2011-03-03
The trioxide clusters with stoichiometry MO3, and the structural isomers with side-on and end-on bonded oxygen atoms, are studied by DFT with the B1LYP functional. For the first half of the 3d elements row (Sc to Cr), pyramidal or distorted pyramidal structures dominate among the trioxide and oxoperoxide ground states, while the remaining elements form planar trioxides, oxoperoxides, oxosuperoxides, and ozonides. Low-lying trioxide clusters are formed by Ti, V, Cr, and Mn, among which the distorted pyramidal VO3 in the (2)A'' state, the pyramidal CrO3 in the (1)A1 state, and the planar MnO3 in the (2)A1' state are global minima. With the exception of the middle-row elements Mn, Fe, and Co, the magnetic moment of the ground-state clusters is formed with a major contribution from unpaired electrons located at the oxygen atoms. The stability of trioxides and oxoperoxides toward release of molecular oxygen is significantly higher for Sc, Ti, and V than for the remaining elements of the row. A trend of increasing the capability to dissociate one oxygen molecule is observed from Cr to Cu, with the exception of OFe(O2) being more reactive than OCo(O2). A gradual increase of reactivity from Ti to Cu is observed for the complete fragmentation reaction M + O + O2.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Duraj, Stan A.; Fanwick, Philip E.; Hepp, Aloysius F.; Martock, Robert A.
2004-01-01
The synthesis and structural characterization of a novel In(III) complex is described. The reaction between InCl3 with sodium mercapto-acetic acid, (NaSCH2(CO)OH) in 4-methylpyridine, (CH3(C5H5N), (4-Mepy)) at 25 C affords [ClIn(SCH2(CO)O)2]2- [(4-MepyH)2]2+. X-ray diffraction studies show it to have a distorted square pyramidal geometry, with the [(-SCH2(CO)CO-)] ligands in a trans conformation. The compound crystallizes in the P(raised dash) 1 (No. 2) space group with a = 7.8624 Angstrom, b = 9.950 Angstrom, c = 13.793 Angstrom, alpha = 107.60 degrees, beta= 90.336 degrees, gamma = 98.983 degrees, V = 1014.3 Angstroms (sup 3), R(F(raised circle)) = 0.037, and R(sub w) = 0.048.
Strautmann, Julia B H; George, Serena DeBeer; Bothe, Eberhard; Bill, Eckhard; Weyhermüller, Thomas; Stammler, Anja; Bögge, Hartmut; Glaser, Thorsten
2008-08-04
The ligand L (2-) (H 2L = N, N'-dimethyl- N, N'-bis(3,5-di- t-butyl-2-hydroxybenzyl)-1,2-diaminoethane) has been employed for the synthesis of two mononuclear Fe (III) complexes, namely, [LFe(eta (2)-NO 3)] and [LFeCl]. L (2-) is comprised of four strongly electron-donating groups (two tert-amines and two phenolates) that increase the electron density at the coordinated ferric ions. This property should facilitate oxidation of the complexes, that is, stabilization of the oxidized species. The molecular structures in the solid state have been established by X-ray diffraction studies. [LFeCl] is five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation, while [LFe(eta (2)-NO 3)] is six-coordinate in a distorted octahedral environment with the ligand in a beta-cis conformation. The electronic structures have been studied using magnetization, EPR, Mossbauer (with and without applied field), UV-vis-NIR, and X-ray absorption spectroscopies, which demonstrate highly anisotropic covalency from the strong sigma- and pi-donating phenolates. This analysis is supported by DFT calculations on [LFeCl]. The variations of the well-understood spectroscopic data in the solid state to the spectroscopic data in solution have been used to obtain insight in the molecular structure of the two complexes in solution. While the molecular structures of the solid states are retained in solutions of nonpolar aprotic solvents, there is, however, one common molecular structure in all protic polar solvents. The analysis of the LMCT transitions and the rhombicity E/ D clearly establish that both compounds exhibit a beta-cis conformation in these protic polar solvents. These two open coordination sites, cis to each other, allow access for two potential ligands in close proximity. Electrochemical analysis establishes two reversible oxidation waves for [LFeCl] at +0.55 V and +0.93 V vs Fc (+)/Fc and one reversible oxidation wave at +0.59 V with an irreversible oxidation at +1.07 V vs Fc (+)/Fc for [LFe(eta (2)-NO 3)]. The one- and the two-electron oxidations of [LFeCl] by chronoamperometry have been followed spectroscopically. The increase of a strong band centered at 420 nm indicates the formulation of [LFeCl] (+) as a Fe (III) monophenoxyl radical complex and of [LFeCl] (2+) as a Fe (III) bisphenoxyl radical complex. These studies imply that the ligand L (2-) is capable of providing a flexible coordination geometry with two binding sites for substrates and the allocation of two oxidation equivalents on the ligand.
Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda
2015-03-05
This study investigates chromotropism of newly synthesized 3,3'-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the CuO to CuN bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the CuN/CuO isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the CuO isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghanbari Niyaky, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.
2017-03-01
In this paper, a combined experimental and theoretical study on a new CdLBr2 complex (L = N1-(2-bromobenzylidene)-N2-(2-((E)-(2-bromobenzylidene) amino)ethyl) ethane-1,2-diamine) synthesized via template method, is described. The crystal structure analysis of the complex indicates that, the Cd(II) ion is centered in a distorted square pyramidal space constructed by three iminic nitrogens of the ligand as well as two bromide anions. More analysis of crystal packing proposed a supramolecular structure stabilized by some non-covalent interactions such as Br⋯Br and Xsbnd H⋯Br (X = N and C) in solid state. Furthermore, 3D Hirshfeld surface analyses and DFT studies were applied for theoretical investigation of the complexes. Theoretical achievements were found in a good agreement with respect to the experimental data. To evaluate the nature of bonding and the strength of the intra and inter-molecular interactions a natural bond orbital (NBO) analysis on the complex structure was performed. Time dependent density functional theory (TD-DFT) was also applied to predict the electronic spectral data of the complex as compared with the experimental ones. CdLBr2 complex as nano-structure compound was also prepared under ultrasonic conditions and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Finally, it was found that the cadmium complex can be used as a suitable precursor for preparation of CdO nanoparticles via calcination process at 600 °C under air atmosphere.
NASA Astrophysics Data System (ADS)
Beristain, Sergio
2003-10-01
Teotihuacan, the largest archaeological site nearby Mexico City, is also a place where traditions are maintained through some ceremonies on specific dates, by the Sun and Moon pyramids, and history telling by the pyramids in day to day light and sound shows. This enormous site has a large square in the south known as The Citadel (La Ciudadela), a place some 200×300 meters (m), surrounded by 2.2 m high pyramid basements, and two pyramids to the East (one in front of the main one dedicated to the good Quetzalcoatl). Near the center of this large square sits a 2.2 m basement 18×20 m where some special sound events (theatre, dance, music, etc.) are occasionally presented. Sound level measurements have proved that due to the site conditions, the sound level decreases 3-4 dB on the average per doubling distance, which makes it suitable for large audiences with the only problem of some minor echoes in small portions of the audience area.
Clipping polygon faces through a polyhedron of vision
NASA Technical Reports Server (NTRS)
Florence, Judit K. (Inventor); Rohner, Michel A. (Inventor)
1980-01-01
A flight simulator combines flight data and polygon face terrain data to provide a CRT display at each window of the simulated aircraft. The data base specifies the relative position of each vertex of each polygon face therein. Only those terrain faces currently appearing within the pyramid of vision defined by the pilots eye and the edges of the pilots window need be displayed at any given time. As the orientation of the pyramid of vision changes in response to flight data, the displayed faces are correspondingly displaced, eventually moving out of the pyramid of vision. Faces which are currently not visible (outside the pyramid of vision) are clipped from the data flow. In addition, faces which are only partially outside of pyramid of vision are reconstructed to eliminate the outside portion. Window coordinates are generated defining the distance between each vertex and each of the boundary planes forming the pyramid of vision. The sign bit of each window coordinate indicates whether the vertex is on the pyramid of vision side of the associated boundary panel (positive), or on the other side thereof (negative). The set of sign bits accompanying each vertex constitute the outcode of that vertex. The outcodes (O.C.) are systematically processed and examined to determine which faces are completely inside the pyramid of vision (Case A--all signs positive), which faces are completely outside (Case C--All signs negative) and which faces must be reconstructed (Case B--both positive and negative signs).
NASA Astrophysics Data System (ADS)
Oki, Sae; Suzuki, Ryosuke O.
2017-05-01
The performance of a flat-plate thermoelectric (TE) module consisting of square truncated pyramid elements is simulated using commercial software and original TE programs. Assuming that the temperatures of both the hot and cold surfaces are constant, the performance can be varied by changing the element shape and element alignment pattern. When the angle between the edge and the base is 85° and the small square surfaces of all n-type element faces are connected to the low-temperature surface, the efficiency becomes the largest among all the 17 examined shapes and patterns. By changing the shape to match the temperature distribution, the performance of the TE module is maximized.
Crystal structure of dimanganese(II) zinc bis[orthophosphate(V)] monohydrate
Alhakmi, Ghaleb; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen
2015-01-01
The title compound, Mn2Zn(PO4)2·H2O, was obtained under hydrothermal conditions. The structure is isotypic with other transition metal phosphates of the type M 3− xM′x(PO4)2·H2O, but shows no statistical disorder of the three metallic sites. The principal building units are distorted [MnO6] and [MnO5(H2O)] octahedra, a distorted [ZnO5] square pyramid and two regular PO4 tetrahedra. The connection of the polyhedra leads to a framework structure. Two types of layers parallel to (-101) can be distinguished in this framework. One layer contains [Zn2O8] dimers linked to PO4 tetrahedra via common edges. The other layer is more corrugated and contains [Mn2O8(H2O)2] dimers and [MnO6] octahedra linked together by common edges. The PO4 tetrahedra link the two types of layers into a framework structure with channels parallel to [101]. The H atoms of the water molecules point into the channels and form O—H⋯O hydrogen bonds (one of which is bifurcated) with framework O atoms across the channels. PMID:25878806
Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.
2014-01-01
The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131
Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu
2016-06-01
A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
Photogrammetric Method and Software for Stream Planform Identification
NASA Astrophysics Data System (ADS)
Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.
2013-12-01
Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of the same square location. Planform data from multiple photos (and multiple square locations) are combined using weighting functions that mitigate the error stemming from the markup-process, imperfect camera calibration, etc. We have used our (beta) software to mark and process over 100 photos, yielding an average error of only 1.5% relative to our 88 measured lengths. Next we plan to translate the MATLAB scripts into Python and release their source code, at which point only free software, consumer-grade digital cameras, and inexpensive building materials will be needed for others to replicate this method at new field sites. Three sample photographs of the square with the created planform and control points
NASA Astrophysics Data System (ADS)
Emara, Adel A. A.
2010-09-01
The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.
Bromidotetra-kis-(1H-2-ethyl-5-methyl-imidazole-κN)copper(II) bromide.
Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Dołęga, Anna
2011-12-01
The Cu(II) ion in the title compound, [CuBr(C(6)H(10)N(2))(4)]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the Cu(II) and Br(-) atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C(6)H(10)N(2))(4)](+) complex cations are linked to the uncoordinated Br(-) anions (site symmetry [Formula: see text]) by N-H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8).
Tetrakis(1,1,1-trifluoroacetylacetonato-κ2 O,O′)hafnium(IV) toluene disolvate
Viljoen, J. Augustinus; Muller, Alfred; Roodt, Andreas
2008-01-01
In the title compound, [Hf(C5H4F3O2)4]·2C7H8, the HfIV atom, lying on a twofold rotation axis, is coordinated by eight O atoms from four 1,1,1-trifluoroacetylacetonate ligands with an average Hf—O distance of 2.173 (1) Å and O—Hf—O bite angles of 75.69 (5) and 75.54 (5)°. The coordination polyhedron shows a slightly distorted Archimedean square antiprismatic geometry. The asymmetric unit contains a toluene solvent molecule. The crystal structure involves C—H⋯.F hydrogen bonds. PMID:21202519
NASA Astrophysics Data System (ADS)
Ghasemi, Fatemeh; Rezvani, Ali Reza; Ghasemi, Khaled; Graiff, Claudia
2018-02-01
Complexes [VO(dipic) (H2O)2]·2H2O (1), [H2Met][V2O4(dipic)2] (2) and [HGly][VO2(dipic)] (3), where H2dipic = 2,6-pyridinedicarboxylic acid, Met = Metformin (N,N-dimethylbiguanide) and Gly = glycine, were synthesized. The three complexes were characterized by elemental analysis, FTIR, 1H and 13C NMR, and UV-Vis spectroscopy. Solid-state structures of (2) and (3) were determined by single-crystal X-ray diffraction analysis. The coordination geometry around the vanadium atoms in 2 is octahedral, while the coordination geometry in 3 is between trigonal bipyramidal and squared pyramidal. In the binuclear complex 2 and mononuclear complex 3, metformin and glycine are diprotonated and monoprotonated respectively, and act as a counter ion. The redox behavior of the complexes was also investigated by cyclic voltammetry.
Chohan, Zahid H; Sumrra, Sajjad H
2010-10-01
A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.
Photoinduced Cobalt(III)-Trifluoromethyl Bond Activation Enables Arene C-H Trifluoromethylation.
Harris, Caleb F; Kuehner, Christopher S; Bacsa, John; Soper, Jake D
2018-01-26
Visible-light capture activates a thermodynamically inert Co III -CF 3 bond for direct C-H trifluoromethylation of arenes and heteroarenes. New trifluoromethylcobalt(III) complexes supported by a redox-active [OCO] pincer ligand were prepared. Coordinating solvents, such as MeCN, afford green, quasi-octahedral [( S OCO)Co III (CF 3 )(MeCN) 2 ] (2), but in non-coordinating solvents the complex is red, square pyramidal [( S OCO)Co III (CF 3 )(MeCN)] (3). Both are thermally stable, and 2 is stable in light. But exposure of 3 to low-energy light results in facile homolysis of the Co III -CF 3 bond, releasing . CF 3 radical, which is efficiently trapped by TEMPO . or (hetero)arenes. The homolytic aromatic substitution reactions do not require a sacrificial or substrate-derived oxidant because the Co II by-product of Co III -CF 3 homolysis produces H 2 . The photophysical properties of 2 and 3 provide a rationale for the disparate light stability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-01-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-06-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
Shaltout, I; Mohamed, Tarek A
2007-06-01
Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).
Ancient Pyramids Help Students Learn Math Concepts
ERIC Educational Resources Information Center
Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.
2010-01-01
This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…
Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon.
Wang, George; Rahman, A K Fazlur; Wang, Bin
2018-04-25
Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C 6 (CH 3 ) 6 2+ , in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C 7 H 7 ) 3+ , in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C 8 H 8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage. Graphical abstract Possible structural transformations of stable configurations of (C 7 H 7 ) 3+ , which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.
NASA Astrophysics Data System (ADS)
Oylumluoglu, Gorkem; Coban, Mustafa Burak; Kocak, Cagdas; Aygun, Muhittin; Kara, Hulya
2017-10-01
Two new lanthanide-based coordination complexes, [Dy(2-stp).2(H2O)]n (1) and {[Ho(2-stp).3(H2O)]·(H2O)}n (2) [2-stp = 2-sulfoterephthalic acid] were synthesized by hydrothermal reaction and characterized by elemental analysis, UV, IR, single crystal X-ray diffraction and solid state photoluminescence. DyIII and HoIII atoms are eight-coordinated and adopt a distorted square-antiprismatic geometry in complexes 1 and 2, respectively. In compound 1, Dy atoms are coordinated by four bridging 2-stp ligands forming two-dimensional (2D) layer, while Ho atoms by three bridging 2-stp ligands creating one dimensional (1D) double chains in 2. In addition, complexes 1 and 2 display in the solid state and at room temperature an intense yellow emission, respectively; this photoluminescence is achieved by an indirect process (antenna effect). The excellent luminescent performances make these complexes very good candidates for potential luminescence materials.
MacInnis, Morgan C; McDonald, Robert; Ferguson, Michael J; Tobisch, Sven; Turculet, Laura
2011-08-31
Unprecedented diamagnetic, four-coordinate, formally 14-electron (Cy-PSiP)RuX (Cy-PSiP = [κ(3)-(2-R(2)PC(6)H(4))(2)SiMe](-); X = amido, alkoxo) complexes that do not require agostic stabilization and that adopt a highly unusual trigonal pyramidal coordination geometry are reported. The tertiary silane [(2-Cy(2)PC(6)H(4))(2)SiMe]H ((Cy-PSiP)H) reacted with 0.5 [(p-cymene)RuCl(2)](2) in the presence of Et(3)N and PCy(3) to afford [(Cy-PSiP)RuCl](2) (1) in 74% yield. Treatment of 1 with KO(t)Bu led to the formation of (Cy-PSiP)RuO(t)Bu (2, 97% yield), which was crystallographically characterized and shown to adopt a trigonal pyramidal coordination geometry in the solid state. Treatment of 1 with NaN(SiMe(3))(2) led to the formation of (Cy-PSiP)RuN(SiMe(3))(2) (3, 70% yield), which was also found to adopt a trigonal pyramidal coordination geometry in the solid state. The related anilido complexes (Cy-PSiP)RuNH(2,6-R(2)C(6)H(3)) (4, R = H; 5, R = Me) were also prepared in >90% yields by treating 1 with LiNH(2,6-R(2)C(6)H(3)) (R = H, Me) reagents. The solid state structure of 5 indicates a monomeric trigonal pyramidal complex that features a C-H agostic interaction. Complexes 2 and 3 were found to react readily with 1 equiv of H(2)O to form the dimeric hydroxo-bridged complex [(Cy-PSiP)RuOH](2) (6, 94% yield), which was crystallographically characterized. Complexes 2 and 3 also reacted with 1 equiv of PhOH to form the new 18-electron η(5)-oxocyclohexadienyl complex (Cy-PSiP)Ru(η(5)-C(6)H(5)O) (7, 84% yield). Both amido and alkoxo (Cy-PSiP)RuX complexes reacted with H(3)B·NHRR' reagents to form bis(σ-B-H) complexes of the type (Cy-PSiP)RuH(η(2):η(2)-H(2)BNRR') (8, R = R' = H; 9, R = R' = Me; 10, R = H, R' = (t)Bu), which illustrates that such four-coordinate (Cy-PSiP)RuX (X = amido, alkoxo) complexes are able to undergo multiple E-H (E = main group element) bond activation steps. Computational methods were used to investigate structurally related PCP, PPP, PNP, and PSiP four-coordinate Ru complexes and confirmed the key role of the strongly σ-donating silyl group of the PSiP ligand set in enforcing the unusual trigonal pyramidal coordination geometry featured in complexes 2-5, thus substantiating a new strategy for the synthesis of low-coordinate Ru species. The mechanism of the activation of ammonia-borane by such low-coordinate (R-PSiP)RuX (X = amido, alkoxo) species was also studied computationally and was determined to proceed most likely in a stepwise fashion via intramolecular deprotonation of ammonia and subsequent borane B-H bond oxidative addition steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Paladi, L. G.; Antosyak, B. Ya.
2011-03-15
Nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper (I) and nitrato-(2-hydroxybenzaldehydo)(2,2 Prime -bipyridyl)copper (II) were synthesized and characterized by X-ray diffraction. The coordination polyhedron of the central copper atom in complex I can be described as a distorted tetragonal pyramid whose base is formed by the phenol and carbonyl oxygen atoms of the monodeprotonated 2-hydroxy-5nitrobenzaldehyde molecule and the nitrogen atoms of the 2,2 Prime -bipyridyl ligand and whose apex is occupied by the oxygen atom of the nitrato group. In the crystal structure, complexes I are linked by the acido ligands and the NO{sub 2} groups of the aldehyde molecule into infinite chains. In complexmore » II, the central copper atom is coordinated by 2-hydroxybenzaldehyde, 2,2 Prime -bipyridyl, and the nitrato group, resulting in the formation of centrosymmetric dimers. The coordination polyhedron of the central copper atom can be described as a bipyramid (4 + 1 + 1) with the same base as in complex I. The axial vertices of the bipyramid are occupied by the oxygen atom of the nitrato group and the bridging phenol oxygen atom of the adjacent complex related to the initial complex by a center of symmetry. In the crystal structure, complexes II are hydrogen bonded into infinite chains.« less
Synthesis and Structure of A New Perovskite, SrCuO 2.5
NASA Astrophysics Data System (ADS)
Chen, Bai-Hao; Walker, Dave; Scott, Bruce A.; Mitzi, David B.
1996-02-01
A new oxygen-deficient perovskite, SrCuO2.5, was prepared at 950°C and 100 kbar pressure in a multianvil apparatus. Rietveld profile analysis, using X-ray powder diffraction data, was employed for the structural determination. SrCuO2.5is orthorhombic,Pbam(No. 55),Z= 4,a= 5.424(2) Â,b= 10.837(4) Â, andc= 3.731(1) Â, which is related to the perovskite subcell by root{2}ap× 2root{2}ap×ap, whereapis the simple cubic perovskite lattice parameter. It consists of corner-shared CuO5square pyramids with oxygen vacancy ordering in the CuO2layers. The ordered oxygen vacancies create parallel pseudo-hexagonal tunnels where the Sr atoms reside, forming SrO10polyhedra. Structural features with respect to oxygen vacancies, superstructures, and distortions are analogous to the type of ordering observed in Sr2CuO3+δ. Superconductivity was not observed in SrCuO2.5down to 5 K.
NASA Astrophysics Data System (ADS)
Mondal, Apurba Sau; Pramanik, Ajoy Kumar; Patra, Lakshman; Manna, Chandan Kumar; Mondal, Tapan Kumar
2017-10-01
A new zinc(II) complex, [Zn(L)(H2O)](ClO4) (1) with azo-thioether containing NSNO donor ligand, 3-(2-(2-((pyridin-2-ylmethyl)thio)phenyl)hydrazono)pentane-2,4-dione (HL) is synthesized and characterized by several spectroscopic techniques. The distorted square based pyramidal (DSBP) geometry is confirmed by single crystal X-ray structure. The ability of the complex to bind with CT DNA is investigated by UV-vis method and the binding constant is found to be 4.16 × 104 M-1. Competitive binding study with ethidium bromide (EB) by fluorescence method suggests that the zinc(II) complex efficiently displaces EB from EB-DNA. The Stern-Volmer dynamic quenching constant, Ksv is found to be 1.2 × 104 M-1. Theoretical calculations by DFT and TDDFT/CPCM methods are used to interpret the electronic structure and UV-vis spectrum of the complex.
Aksenov, Sergey M; Rastsvetaeva, Ramiza K; Chukanov, Nikita V; Kolitsch, Uwe
2014-08-01
Calcinaksite, KNa[Ca(H2O)][Si4Ol0], a new natural member of the litidionite group, was found in a calcic xenolith from alkaline basalt of the Bellerberg volcano, Eastern Eifel region, Rhineland-Palatinate, Germany. The crystal structure has been studied based on single-crystal X-ray diffraction data. Triclinic unit-cell parameters are: a = 7.021 (2), b = 8.250 (3), c = 10.145 (2) Å, α = 102.23 (2), β = 100.34 (2), γ = 115.09 (3)°, space group P1. The structure model was determined by the `charge-flipping' method and refined to R = 0.0527 in anisotropic approximation using 3057 I > 3σ(I). Calcinaksite is a hydrous calcium-dominant litidionite-group mineral. The crystal structure of calcinaksite (like other litidionite-group minerals and related compounds) is based on a heteropolyhedral framework and is characterized by the presence of several types of channels. Calcium forms distorted CaO5Ø (Ø = H2O) octahedra while Na forms NaO5 square pyramids. Nine-coordinated K atoms are located in a channel extending along [010]. Water molecules occupy a channel running along the [100] direction and are characterized by a rather high equivalent isotropic displacement parameter of 0.053 (2) Å(2). In calcinaksite, there are three short distances between the water molecule and oxygen atoms, Ow...O3 [2.844 (5) Å], Ow...O9 [2.736 (4) Å] and Ow...Ow [2.843 (7) Å]. These distances correspond to three hydrogen bonds detected by IR data (the bands at 3340, 3170 and 3540 cm(-1)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagoubi, S.; Groupe de Radiochimie, Institut de Physique Nucleaire d'Orsay, Universite Paris-Sud XI, 91406 Orsay Cedex; Obbade, S., E-mail: said.obbade@phelma.grenoble-inp.f
2011-05-15
A new caesium uranyl molybdate belonging to the M{sub 6}U{sub 2}Mo{sub 4}O{sub 21} family has been synthesized by solid-state reaction and its structure determined from single-crystal X-ray diffraction data. Contrary to the other alkali uranyl molybdates of this family (A=Na, K, Rb) where molybdenum atoms adopt only tetrahedral coordination and which can be formulated A{sub 6}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}], the caesium compound Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 21} should be written Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] with molybdenum atoms in tetrahedral and square pyramidal environments. Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] crystallizes in the triclinic symmetry withmore » space group P1-bar and a=10.4275(14) A, b=15.075(2) A, c=17.806(2) A, {alpha}=70.72(1){sup o}, {beta}=80.38(1){sup o} and {gamma}=86.39(1){sup o}, V=2604.7(6) A{sup 3}, Z=4, {rho}{sub mes}=5.02(2) g/cm{sup 3} and {rho}{sub cal}=5.08(3) g/cm{sup 3}. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R{sub 1}=0.0464 and wR{sub 2}=0.0950 for 596 parameters with 6964 independent reflections with I{>=}2{sigma}(I) collected on a BRUKER AXS diffractometer with Mo(K{alpha}) radiation and a CCD detector. The crystal structure of Cs compound is characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} parallels chains built from U{sub 2}O{sub 13} dimeric units, MoO{sub 4} tetrahedra and MoO{sub 5} square pyramids, whereas, Na, K and Rb compounds are characterized by {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}O(MoO{sub 4}){sub 4}]{sup 6-} parallel chains formulated simply of U{sub 2}O{sub 13} units and MoO{sub 4} tetrahedra. Infrared spectroscopy measurements using powdered samples synthesized by solid-state reaction, confirm the structural results. The thermal stability and the electrical conductivity are also studied. The four compounds decompose at low temperature (between 540 and 610 {sup o}C). -- Graphical abstract: The staking of {sub {infinity}}{sup 1}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})]{sup 6-} infinite uranyl molybdate ribbons in the Cs{sub 6}[(UO{sub 2}){sub 2}(MoO{sub 4}){sub 3}(MoO{sub 5})] structure. Display Omitted Highlights: {yields} Cs{sub 6}U{sub 2}Mo{sub 4}O{sub 2} a new compound with bidimensional crystal structure, characterized by infinite uranyl molybdate chains. {yields} Crystal structure similar to these of the compounds containing Na, K, Rb. {yields} Molybdenum atoms surrounded by five oxygen atoms to form an original and strongly distorted MoO{sub 5} environment. {yields} The chains arrangement illustrates the key role of the alkaline ionic radius, in the crystal structure distortion for Cs compound.« less
Analysis of tractable distortion metrics for EEG compression applications.
Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando
2012-07-01
Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio.
Illán-Cabeza, Nuria A; Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Peña-Ruiz, Tomás; Quirós-Olozábal, Miguel; Moreno-Carretero, Miguel N
2016-11-28
2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(ii), cadmium(ii) and mercury(ii) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X 2 ]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis. The structure of seven complexes has been obtained by single crystal X-ray diffraction. In all the cases, the metal is (2 + 2 + 1)-five-coordinated by two halide ligands, two nitrogen atoms from pyrazine and diazepine rings and a carbonyl oxygen from a pteridine ring. The coordinated-metal environment is a square-based pyramid, with increasing trigonality from Hg(ii) to Zn(ii) complexes. To coordinate the metals, the ligand folds itself, establishing four intramolecular σ-π interactions with the pyrimidine and pyrazine rings. A topological analysis of the electron density using the Quantum Theory of Atoms in Molecules and the complexes stability has been performed.
Rao, Guruprasad; Murthy, K. Dilip; Bhat, P. Gopalakrishna
2007-01-01
The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC) housed in home cage and left in the laboratory; restrained rats (with three subgroups) subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC) having their restrainers kept in the laboratory; restrained pyramid rats (RP) being kept in the pyramid; and restrained square box rats (RS) in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA) and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH) levels, erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats. PMID:17342239
Cationic aza-macrocyclic complexes of germanium(II) and silicon(IV).
Everett, Matthew; Jolleys, Andrew; Levason, William; Light, Mark E; Pugh, David; Reid, Gillian
2015-12-28
[GeCl2(dioxane)] reacts with the neutral aza-macrocyclic ligands L, L = Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), Me4cyclen (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) or Me4cyclam (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and two mol. equiv. of Me3SiO3SCF3 in thf solution to yield the unusual and hydrolytically very sensitive [Ge(L)][O3SCF3]2 as white solids in moderate yield. Using shorter reaction times [Ge(Me3tacn)]Cl2 and [Ge(Me3tacn)]Cl[O3SCF3] were also isolated; the preparation of [Ge(Me4cyclen)][GeCl3]2 is also described. The structures of the Me3tacn complexes show κ(3)-coordination of the macrocycle, with the anions interacting only weakly to produce very distorted five- or six-coordination at germanium. In contrast, the structure of [Ge(Me4cyclen)][O3SCF3]2 shows no anion interactions, and a distorted square planar geometry at germanium from coordination to the tetra-aza macrocycle. Crystal structures of the Si(iv) complexes, [SiCl3(Me3tacn)]Y (Y = O3SCF3, BAr(F); [B{3,5-(CF3)2C6H3}4]) and [SiHCl2(Me3tacn)][BAr(F)], obtained from reaction of SiCl4 or SiHCl3 with Me3tacn, followed by addition of either Me3SiO3SCF3 or Na[BAr(F)], contain distorted octahedral cations, with facialκ(3)-coordinated Me3tacn. The open-chain triamine, Me2NCH2CH2N(Me)CH2CH2NMe2 (pmdta), forms [SiCl3(pmdta)][BAr(F)] and [SiBr3(pmdta)][BAr(F)] under similar conditions, containing mer-octahedral cations.
Poly[bis[μ2-1,4-bis(1H-imidazol-1-yl)butane]dichloridonickel(II)
Zhang, Jia; Song, Jiang-Feng
2011-01-01
The asymmetric unit of the title compound, [NiCl2(C10H14N4)2]n, consists of one Ni2+ ion which is located on an inversion center, one 1,4-bis(imidazol-1-yl)butane (bimb) and one chloride ion. The Ni2+ ion exhibits a distorted octahedral coordination environment defined by four N atoms from four bimb ligands in the equatorial plane and two chloride ions in axial positions. The bridging coordination mode of the bimb ligands leads to the formation of interpenetrating square Ni4(bimb)4 units that are arranged parallel to (001). The separation between the Ni atoms in these units is 13.740 (3) Å. PMID:22219855
Bromidotetrakis(1H-2-ethyl-5-methylimidazole-κN 3)copper(II) bromide
Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Dołęga, Anna
2011-01-01
The CuII ion in the title compound, [CuBr(C6H10N2)4]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the CuII and Br− atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C6H10N2)4]+ complex cations are linked to the uncoordinated Br− anions (site symmetry ) by N—H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8). PMID:22199662
The architectonic encoding of the minor lunar standstills in the horizon of the Giza pyramids.
NASA Astrophysics Data System (ADS)
Hossam, M. K. Aboulfotouh
The paper is an attempt to show the architectonic method of the ancient Egyptian designers for encoding the horizontal-projections of the moon's declinations during two events of the minor lunar standstills, in the design of the site-plan of the horizon of the Giza pyramids, using the methods of descriptive geometry. It shows that the distance of the eastern side of the second Giza pyramid from the north-south axis of the great pyramid encodes a projection of a lunar declination, when earth's obliquity-angle was ~24.10°. Besides, it shows that the angle of inclination of the causeway of the second Giza pyramid, of ~13.54° south of the cardinal east, encodes the projection of another lunar declination when earth's obliquity-angle reaches ~22.986°. In addition, it shows the encoded coordinate system in the site-plan of the horizon of the Giza pyramids.
Sulway, Scott A; Collison, David; McDouall, Joseph J W; Tuna, Floriana; Layfield, Richard A
2011-03-21
Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.
Ellipsoidal analysis of coordination polyhedra
Cumby, James; Attfield, J. Paul
2017-01-01
The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules. PMID:28146146
Almond, Philip M; Albrecht-Schmitt, Thomas E
2002-03-11
The transition metal, alkali metal, and main group uranyl selenites, Ag(2)(UO(2))(SeO(3))(2) (1), K[(UO(2))(HSeO(3))(SeO(3))] (2), Rb[(UO(2))(HSeO(3))(SeO(3))] (3), Cs[(UO(2))(HSeO(3))(SeO(3))] (4), Tl[(UO(2))(HSeO(3))(SeO(3))] (5), and Pb(UO(2))(SeO(3))(2) (6), have been prepared from the hydrothermal reactions of AgNO(3), KCl, RbCl, CsCl, TlCl, or Pb(NO(3))(2) with UO(3) and SeO(2) at 180 degrees C for 3 d. The structures of 1-5 contain similar [(UO(2))(SeO(3))(2)](2-) sheets constructed from pentagonal bipyramidal UO(7) units that are joined by bridging SeO(3)(2-) anions. In 1, the selenite oxo ligands that are not utilized within the layers coordinate the Ag(+) cations to create a three-dimensional network structure. In 2-5, half of the selenite ligands are monoprotonated to yield a layer composition of [(UO(2))(HSeO(3))(SeO(3))](1-), and coordination of the K(+), Rb(+), Cs(+), and Tl(+) cations occurs through long ionic contacts. The structure of 6 contains a uranyl selenite layered substructure that differs substantially from those in 1-5 because the selenite anions adopt both bridging and chelating binding modes to the uranyl centers. Furthermore, the Pb(2+) cations form strong covalent bonds with these anions creating a three-dimensional framework. These cations occur as distorted square pyramidal PbO(5) units with stereochemically active lone pairs of electrons. These polyhedra align along the c-axis to create a polar structure. Second-harmonic generation (SHG) measurements revealed a response of 5x alpha-quartz for 6. The diffuse reflectance spectrum of 6 shows optical transitions at 330 and 440 nm. The trailing off of the 440 nm transition to longer wavelengths is responsible for the orange coloration of 6.
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.
2012-11-01
Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.
Quadratic elongation: A quantitative measure of distortion in coordination polyhedra
Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.
1971-01-01
Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.
Lasztóczi, Bálint; Tukker, John J.; Somogyi, Peter; Klausberger, Thomas
2015-01-01
Hippocampal oscillations reflect coordinated neuronal activity on many timescales. Distinct types of GABAergic interneuron participate in the coordination of pyramidal cells over different oscillatory cycle phases. In the CA3 area, which generates sharp waves and gamma oscillations, the contribution of identified GABAergic neurons remains to be defined. We have examined the firing of a family of cholecystokinin-expressing interneurons during network oscillations in urethane-anesthetized rats and compared them with firing of CA3 pyramidal cells. The position of the terminals of individual visualized interneurons was highly diverse, selective, and often spatially coaligned with either the entorhinal or the associational inputs to area CA3. The spike timing in relation to theta and gamma oscillations and sharp waves was correlated with the innervated pyramidal cell domain. Basket and dendritic-layer-innervating interneurons receive entorhinal and associational inputs and preferentially fire on the ascending theta phase, when pyramidal cell assemblies emerge. Perforant-path-associated cells, driven by recurrent collaterals of pyramidal cells fire on theta troughs, when established pyramidal cell assemblies are most active. In the CA3 area, slow and fast gamma oscillations occurred on opposite theta oscillation phases. Perforant-path-associated and some COUP-TFII-positive interneurons are strongly coupled to both fast and slow gamma oscillations, but basket and dendritic-layer-innervating cells are weakly coupled to fast gamma oscillations only. During sharp waves, different interneuron types are activated, inhibited, or remain unaffected. We suggest that specialization in pyramidal cell domain and glutamatergic input-specific operations, reflected in the position of GABAergic terminals, is the evolutionary drive underlying the diversity of cholecystokinin-expressing interneurons. PMID:22159120
NASA Astrophysics Data System (ADS)
Grant-Jacob, James A.; Zin Oo, Swe; Carpignano, Francesca; Boden, Stuart A.; Brocklesby, William S.; Charlton, Martin D. B.; Melvin, Tracy
2016-02-01
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
Grant-Jacob, James A; Oo, Swe Zin; Carpignano, Francesca; Boden, Stuart A; Brocklesby, William S; Charlton, Martin D B; Melvin, Tracy
2016-02-12
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
Liu, Yang; Feng, Yong-Lan; Kuang, Dai-Zhi
2012-01-01
In the binuclear title compound, [Cu2(C8H4O4)Cl(C10H8N2)2(H2O)3]NO3·H2O, the two crystallographically independent CuII ions have similar coordination environments. One of the CuII ions has a square-pyramidal arrangement, which is defined by a water molecule occupying the apical position, with the equatorial ligators consisting of two N atoms from a 2,2′-bipyridine molecule, one carboxylate O atom from a terephthalate ligand and one O atom from a water molecule. The other CuII ion has a similar coordination environment, except that the apical position is occupied by a chloride ligand instead of a water molecule. An O—H⋯O and O—H⋯Cl hydrogen-bonded three-dimensional network is formed between the components. PMID:22719307
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Paholnitcaia, A. Yu.; Petrenko, P. A.
Two crystal modifications of nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper (I and II) and two modifications of chloro-(2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) copper (III and IV) have been synthesized and studied by X-ray diffraction. In structures I and II, the copper atoms coordinate a monodeprotonated molecule of the organic ligand, nitrate ions, and a water molecule. In crystals of I, the complexes are monomeric, whereas complexes II are linked via nitrate ions to form polymeric chains. In both structures the coordination polyhedron of the copper atom can be described as a distorted tetragonal bipyramid—(4 + 1 + 1) in I and (4 + 2) in II. These coordinationmore » polyherdra have different compositions. In structures III and IV, the metal atoms coordinate a monodeprotonated (2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazole molecule and chloride ions. In III the complex-forming ion has square-planar coordination geometry, whereas structure IV consists of centrosymmetric dimers with two bridging chlorine atoms. It was found that nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper possesses antitumor activity.« less
Structure and reactivity of a mononuclear gold(II) complex
NASA Astrophysics Data System (ADS)
Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja
2017-12-01
Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.
NASA Astrophysics Data System (ADS)
Ravindran, P.; Vidya, R.; Fjellvåg, H.; Kjekshus, A.
2008-04-01
Recently, using density-functional theoretical calculations, we have reported [Phys. Rev. B 74, 054422 (2006)] that formal Fe3+ ions reside at the square-pyramidal site and Fe4+ ions in the octahedral site in Sr4Fe4O11 . Based on the interpretation of experimental structural and Mössbauer data from the literature, Adler concludes that our previous first-principles results disagree with experiments on the assignment of oxidation states to Fe in the square-pyramidal and octahedral environments in Sr4Fe4O11 . From a critical examination of the structure data for Sr4Fe4O11 and related oxides with Fe in different oxidation states and theoretically simulated Mössbauer parameters (hyperfine field, isomer shift, and quadrupole splitting), here we show that information on charges residing on the different constituents cannot be directly derived either from experimental structure or Mössbauer data. From additional analyses of the chemical bonding on the basis of charge density, charge transfer, electron localization function, crystal orbital Hamilton population, Born effective charge, and partial density of states, we substantiate our previous assignment of formal Fe3+ and Fe4+ to the square-pyramidal and octahedral sites, respectively, in Sr4Fe4O11 .
Singh, D P; Kumar, Ramesh; Singh, Jitender
2009-06-01
A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.
NASA Astrophysics Data System (ADS)
Saini, Surender Singh; Sardana, Harish Kumar; Pattnaik, Shyam Sundar
2017-06-01
Conventional image editing software in combination with other techniques are not only difficult to apply to an image but also permits a user to perform some basic functions one at a time. However, image processing algorithms and photogrammetric systems are developed in the recent past for real-time pattern recognition applications. A graphical user interface (GUI) is developed which can perform multiple functions simultaneously for the analysis and estimation of geometric distortion in an image with reference to the corresponding distorted image. The GUI measure, record, and visualize the performance metric of X/Y coordinates of one image over the other. The various keys and icons provided in the utility extracts the coordinates of distortion free reference image and the image with geometric distortion. The error between these two corresponding points gives the measure of distortion and also used to evaluate the correction parameters for image distortion. As the GUI interface minimizes human interference in the process of geometric correction, its execution just requires use of icons and keys provided in the utility; this technique gives swift and accurate results as compared to other conventional methods for the measurement of the X/Y coordinates of an image.
A 2 epoch proper motion catalogue from the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Smith, Leigh; Lucas, Phil; Burningham, Ben; Jones, Hugh; Pinfield, David; Smart, Ricky; Andrei, Alexandre
2013-04-01
The UKIDSS Large Area Survey (LAS) began in 2005, with the start of the UKIDSS program as a 7 year effort to survey roughly 4000 square degrees at high galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of 2-epoch J band observations, with epoch baselines ranging from 2 to 7 years. We present a proper motion catalogue for the 1500 square degrees of the 2 epoch LAS data, which includes some 800,000 sources with motions detected above the 5σ level. We developed a bespoke proper motion pipeline which applies a source-unique second order polynomial transformation to UKIDSS array coordinates of each source to counter potential local non-uniformity in the focal plane. Our catalogue agrees well with the proper motion data supplied in the current WFCAM Science Archive (WSA) DR9 catalogue where there is overlap, and in various optical catalogues, but it benefits from some improvements. One improvement is that we provide absolute proper motions, using LAS galaxies for the relative to absolute correction. Also, by using unique, local, 2nd order polynomial tranformations, as opposed to the linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by their pipeline.
Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing
Henkel, Patrick
2017-01-01
Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform’s coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing. PMID:28594369
Calibration of Magnetometers with GNSS Receivers and Magnetometer-Aided GNSS Ambiguity Fixing.
Henkel, Patrick
2017-06-08
Magnetometers provide compass information, and are widely used for navigation, orientation and alignment of objects. As magnetometers are affected by sensor biases and eventually by systematic distortions of the Earth magnetic field, a calibration is needed. In this paper, a method for calibration of magnetometers with three Global Navigation Satellite System (GNSS) receivers is presented. We perform a least-squares estimation of the magnetic flux and sensor biases using GNSS-based attitude information. The attitude is obtained from the relative positions between the GNSS receivers in the North-East-Down coordinate frame and prior knowledge of these relative positions in the platform's coordinate frame. The relative positions and integer ambiguities of the periodic carrier phase measurements are determined with an integer least-squares estimation using an integer decorrelation and sequential tree search. Prior knowledge on the relative positions is used to increase the success rate of ambiguity fixing. We have validated the proposed method with low-cost magnetometers and GNSS receivers on a vehicle in a test drive. The calibration enabled a consistent heading determination with an accuracy of five degrees. This precise magnetometer-based attitude information allows an instantaneous GNSS integer ambiguity fixing.
Light-induced charge separation across bio-inorganic interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, N. M.; Rajh, T.; De La Garza, L.
Rational design of hybrid biomolecule - nanoparticulate semiconductor conjugates enables coupling of functionality of biomolecules with the capability of semiconductors for solar energy capture, that can have potential application in energy conversion, sensing and catalysis. The particular challenge is to obtain efficient charge separation analogous to the natural photosynthesis process. The synthesis of axially anisotropic TiO{sub 2} nano-objects such as tubes, rods and bricks, as well as spherical and faceted nanoparticles has been developed in our laboratory. Depending on their size and shape, these nanostructures exhibit different domains of crystallinity, surface areas and aspect ratios. Moreover, in order to accommodatemore » for high curvature in nanoscale regime, the surfaces of TiO{sub 2} nano-objects reconstructs resulting in changes in the coordination of surface Ti atoms from octahedral (D{sub 2d}) to square pyramidal structures (C{sub 4v}). The formation of these coordinatively unsaturated Ti atoms, thus depends strongly on the size and shape of nanocrystallites and affects trapping and reactivity of photogenerated charges. We have exploited these coordinatively unsaturated Ti atoms to coupe electron-donating (such as dopamine) and electron-accepting (pyrroloquinoline quinone) conductive linkers that allow wiring of biomolecules and proteins resulting in enhanced charge separation which increases the yield of ensuing chemical transformations.« less
NASA Astrophysics Data System (ADS)
Tripathi, Garima; Ramanathan, Gurunath
2018-03-01
The N, N‧-dicyclohexylurea-capped benzo-12-crown-4 (compound 1) has been synthesized. The coordination behaviour of this compound (1) has been studied by crystallizing it with KI (2) and Cu(ClO4)2 (3) salts. The crystallographic studies were performed with all three compounds. The presence of metal ions significantly affects the crystal packing of the compound 1. The crystal lattice of compound 1 was stabilized by Csbnd H⋯π and Cdbnd O⋯Hsbnd N hydrogen bonding. The presence of KI in compound 2 results in a dimer structure in which iodide anion behaves as a bridging ligand. The K+ forms a perching structure with the crown ring. In the compound 3, Cu2+ ion and ligand molecule (1) crystallized independently. They were connected through hydrogen bonding. Interestingly, Cu2+ adopts two different geometries with the coordination number 5 and 6. The centre Cu2+ (Cu1) adopted an octahedral geometry whereas the terminal Cu2+ (Cu2) acquired square pyramidal geometry. The coordination sphere of Cu2+ contains ClO4- anion and water molecules. Cu2+ ion forms a chain structure through ClO4- anion and water molecules involve in hydrogen bonding with the ligand molecule.
Numerical study on the mechanisms of the SERS of gold-coated pyramidal tip substrates.
Li, Rui; Wang, Qiao; Li, Hong; Liu, Kun; Pan, Shi; Zhan, Weishen; Chen, Maodu
2016-06-29
In this paper, the physical enhancement mechanisms of the surface-enhanced Raman scattering (SERS) of pyramidal tip substrates are studied theoretically. We structure the periodic square-based arrays of adjacent nanometer pyramidal gold-coated tips on silicon. In order to determine the contribution of plasmonic or diffraction effects on the SERS, three-dimensional (3D) numerical simulations are implemented by taking into account the substrate coated with a gold thin film or a perfect electrical conductor thin film. The tip distance, metal coating thickness and incident light polarization angle are also optimized to investigate whether the further SERS signal can be enhanced.
NASA Astrophysics Data System (ADS)
Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.
2017-06-01
A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.
Evidence for multisensory spatial-to-motor transformations in aiming movements of children.
King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E
2009-01-01
The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.
Method of orthogonally splitting imaging pose measurement
NASA Astrophysics Data System (ADS)
Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong
2018-01-01
In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.
Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand.
Tatematsu, Ryo; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki
2016-04-18
A novel nickel(II) complex [Ni(L)2 Cl]Cl with a bidentate phosphinopyridyl ligand 6-((diphenylphosphino)methyl)pyridin-2-amine (L) was synthesized as a metal-complex catalyst for hydrogen production from protons. The ligand can stabilize a low Ni oxidation state and has an amine base as a proton transfer site. The X-ray structure analysis revealed a distorted square-pyramidal Ni(II) complex with two bidentate L ligands in a trans arrangement in the equatorial plane and a chloride anion at the apex. Electrochemical measurements with the Ni(II) complex in MeCN indicate a higher rate of hydrogen production under weak acid conditions using acetic acid as the proton source. The catalytic current increases with the stepwise addition of protons, and the turnover frequency is 8400 s(-1) in 0.1 m [NBu4 ][ClO4 ]/MeCN in the presence of acetic acid (290 equiv) at an overpotential of circa 590 mV. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa
2015-11-01
A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.
Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj
2014-01-01
Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493
Dichlorido[2-(phenyliminomethyl)quinoline-N,N′]palladium(II)
Motswainyana, William M.; Onani, Martin O.; Madiehe, Abram M.
2012-01-01
In the title complex, [PdCl2(C16H12N2)], the PdII ion is coordinated by two N atoms [Pd—N 2.039 (2), 2.073 (2) Å] from a bidentate ligand and two chloride anions [Pd—Cl 2.2655 (7), 2.2991 (7) Å] in a distorted square-planar geometry. In the crystal, π–π interactions between the six-membered rings of the quinoline fragments [centroid–centroid distances = 3.815 (5), 3.824 (5) Å] link two molecules into centrosymmetric dimers. PMID:22589771
[1,1′-Diphenyl-3,3′-(propane-1,3-diyldinitrilo)dibut-1-enolato]copper(II)
Salehi, Mehdi; Meghdadi, Soraia; Amirnasr, Mehdi; Mereiter, Kurt
2009-01-01
The title compound, [Cu(C23H24N2O2)] or [Cu{(BA)2pn}], where (BA)2pn is 1,1′-diphenyl-3,3′-(propane-1,3-diyldinitrilo)dibut-1-enolate, is a mononuclear copper(II) complex, located on a twofold axis. The four-coordinate CuII atom is in a tetrahedrally distorted square plane defined by the N and O atoms of the Schiff base ligand. In the tetradentate ligand, the two chelate rings are twisted relative to each other, making a dihedral angle of 36.57 (3)°. PMID:21581795
Liu, Huanyu; Shen, Dongsheng
2009-01-01
There are two independent PdII complex molecules in the asymmetric unit of the title compound, [PdCl2{Fe(C5H5)(C24H19NP)}]·0.5CH2Cl2. One ferrocenyl ring of one complex molecule is disordered over two sites with half-occupancy for each component. Both PdII cations adopt a distorted square-planar coordination geometry with a bidentate [2-(diphenylphosphino)phenyliminomethyl]ferrocene ligand and two chloride anions. PMID:21581545
[1,2-Bis(diisopropyl-phosphan-yl)ethane-κ(2) P,P'](carbonato-κ(2) O,O')nickel(II).
Morales-Becerril, Illan; Flores-Alamo, Marcos; Garcia, Juventino J
2013-04-01
In the crystal of the title compound, [Ni(CO3)(C14H32P2)], the metal center in each of three independent mol-ecules shows slight tetra-hedral distortion from ideal square-planar coordination geometry, with angles between the normals to the planes defined by the cis-P-Ni-P and cis-O-Ni-O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° in the three mol-ecules. In the crystal, there are inter-molecular C-H⋯O hydrogen bonds that show a laminar growth in the ab plane.
A method to correct coordinate distortion in EBSD maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.
2014-10-15
Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less
Shen, Yue-Ling; Mao, Jiang-Gao
2005-07-25
Solid-state reactions of lanthanide(III) oxide (and lanthanide(III) oxyhalide), transition metal halide (and transition metal oxide), and TeO(2) at high temperature lead to six new lanthanide transition metal tellurium(IV) oxyhalides with three different types of structures, namely, DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, ErCuTe(2)O(6)Br, Sm(2)Mn(Te(5)O(13))Cl(2), Dy(2)Cu(Te(5)O(13))Br(2), and Nd(4)Cu(TeO(3))(5)Cl(3). Compounds DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, and ErCuTe(2)O(6)Br are isostructural. The lanthanide(III) ion is eight-coordinated by eight oxygen atoms, and the copper(II) ion is five-coordinated by four oxygens and a halide anion in a distorted square pyramidal geometry. The interconnection of Ln(III) and Cu(II) ions by bridging tellurite anions results in a three-dimensional (3D) network with tunnels along the a-axis; the halide anion and the lone-pair electrons of the tellurium(IV) ions are oriented toward the cavities of the tunnels. Compounds Sm(2)Mn(Te(5)O(13))Cl(2) and Dy(2)Cu(Te(5)O(13))Br(2) are isostructural. The lanthanide(III) ions are eight-coordinated by eight oxygens, and the divalent transition metal ion is octahedrally coordinated by six oxygens. Two types of polymeric tellurium(IV) oxide anions are formed: Te(3)O(8)(4)(-) and Te(4)O(10)(4)(-). The interconnection of the lanthanide(III) and divalent transition metal ions by the above two types of polymeric tellurium(IV) oxide anions leads to a 3D network with long, narrow-shaped tunnels along the b-axis. The halide anions remain isolated and are located at the above tunnels. Nd(4)Cu(TeO(3))(5)Cl(3) features a different structure. All five of the Nd(III) ions are eight-coordinated (NdO(8) for Nd(1), Nd(2), Nd(4), and Nd(5) and NdO(7)Cl for Nd(3)), and the copper(I) ion is tetrahedrally coordinated by four chloride anions. The interconnection of Nd(III) ions by bridging tellurite anions resulted in a 3D network with large tunnels along the b-axis. The CuCl(4) tetrahedra are interconnected into a 1D two-unit repeating (zweier) chain via corner-sharing. These 1D copper(I) chloride chains are inserted into the tunnels of the neodymium(III) tellurite via Nd-Cl-Cu bridges. Luminescent studies show that ErCuTe(2)O(6)Cl and Nd(4)Cu(TeO(3))(5)Cl(3) exhibit strong luminescence in the near-IR region. Magnetic measurements indicate the antiferromagnetic interactions between magnetic centers in these compounds.
NASA Astrophysics Data System (ADS)
Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang
2015-12-01
Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.
Shoshani, Manar M; Beck, Robert; Wang, Xiaoping; McLaughlin, Matthew J; Johnson, Samuel A
2018-03-05
Tetranuclear Ni complexes were synthesized with bonding to BH, NR, and O in atypical surface-like geometries. The previously reported electron-deficient cluster [( i Pr 3 P)Ni] 5 H 6 (1) reacts with N-methylmorpholine oxide to give [( i Pr 3 P)Ni] 4 H 4 (μ 4 -O) (2), which contains O coordinated in the center of a square-plane arrangement of Ni atoms. Reaction of 1 with benzonitrile gave the square-planar tetranuclear Ni cluster [( i Pr 3 P)Ni] 4 H 4 (μ 4 -NCH 2 Ph) (3), which contains an imido donor in a square-based-pyramidal geometry. This reaction also gives [( i Pr 3 P)Ni(N≡CPh)] 3 (4), with bridging benzonitrile ligands. Trimer 4 was independently synthesized from the reaction of Ni(COD) 2 , i Pr 3 P, and PhC≡N. The addition of dihydrogen to a 1:1 mixture of [( i Pr 3 P) 2 Ni] 2 (N 2 ) and ( i Pr 3 P) 2 NiCl 2 yielded [( i Pr 3 P)Ni] 4 (μ 3 -H) 4 (μ 2 -Cl) 2 (5), with a tetrahedral Ni core, in contrast to the square-planar geometries of 2 and 3. The solid-state structure of 5 was determined using both X-ray and neutron diffraction. Reaction of 5 with LiBH 4 gave [( i Pr 3 P)Ni] 4 H 4 (μ 4 -BH) 2 ] (6) via loss of LiCl and H 2 .
Abila, P.P.; Okello-Onen, J.; Okoth, J.O.; Matete, G.O.; Wamwiri, F.; Politzar, H.
2007-01-01
Several trap designs have been used for sampling and control of the tsetse fly, Glossina fuscipes fuscipes, Newstead (Diptera: Glossinidae) based on preferences of individual researchers and program managers with little understanding of the comparative efficiency and cost-effectiveness of trap designs. This study was carried out to evaluate the cost-effectiveness of four commonly used trap designs: monoscreen, modified pyramidal and pyramidal, relative to the standard biconical trap. The study was performed under high tsetse challenge on Buvuma Island, Lake Victoria, Uganda, using a 4 × 4 Latin square design replicated 3 times, so as to separate the trap positions and day effects from the treatment effect. A total of 12 trap positions were tested over 4 days. The monoscreen trap caught significantly higher numbers of G. f. fuscipes (P<0.05) followed by biconical, modified pyramidal and pyramidal traps. Analysis of variance showed that treatment factor was a highly significant source of variation in the data. The index of increase in trap catches relative biconical were O.60 (pyramidal), 0.68 (modified pyramidal) and 1.25 (monoscreen). The monoscreen trap was cheaper (US$ 2.61) and required less material to construct than pyramidal trap (US$ 3.48), biconical and the modified pyramidal traps (US$ 4.06 each). Based on the number of flies caught per meter of material, the monoscreen trap proved to be the most cost-effective (232 flies/m) followed by the biconical trap (185 flies/m). The modified pyramidal and the pyramidal traps caught 112 and 125 flies/m, respectively. PMID:20345292
NASA Astrophysics Data System (ADS)
Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.
2014-05-01
Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.
Grids in topographic maps reduce distortions in the recall of learned object locations.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2014-01-01
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.
NASA Astrophysics Data System (ADS)
Rathi, Parveen; Sharma, Kavita; Singh, Dharam Pal
2014-09-01
Macrocyclic complexes of the type [MLX]X2; where L is (C30H28N4), a macrocyclic ligand, M = Cr(III) and Fe(III) and X = Cl-, CH3COO- or NO3-, have been synthesized by template condensation reaction of 1,8-diaminonaphthalene and acetylacetone in the presence of trivalent metal salts in a methanolic medium. The complexes have been formulated as [MLX]X2 due to 1:2 electrolytic nature of these complexes. The complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, electronic, infrared, far infrared, Mass spectral studies and molecular modelling. Molecular weight of these complexes indicates their monomeric nature. On the basis of all these studies, a five coordinated square pyramidal geometry has been proposed for all these complexes. These metal complexes have also been screened for their in vitro antimicrobial activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong-Ng, Winnie; Culp, Jeffrey T.; Chen, Yu-S.
The chartreuse monoclinic Ni-dpbz (Ni(L)[Ni(CN) 4], (L = 1,4-Bis(4-pyridyl)benzene, or dpbz) crystal assumes a pillared structure with layers defined by 2-D Ni[Ni(CN) 4] n nets and dpbz ligands as pillars, linking between coordinated Ni sites. In addition to the hysteretic adsorption/desorption feature of Ni-dpbz, in half of the parallelepiped-shape space enclosed by the pillars and nets, an additional dpbz ligand was found to link between the open ends of two four-fold Ni sites. This arrangement results in an unusual 5-fold pseudo square-pyramid environment for Ni and a significantly long Ni–N distance of 2.369(4) Å. The presence of disordered dimethyl sulfoxidemore » (DMSO) solvent molecules give rise to the formula of Ni(dpbz)[Ni(CN) 4]·½dpbz·0.44DMSO. Sorption isotherms showed flexible behavior during the adsorption and desorption of CO 2.« less
Singh, D P; Kumar, Ramesh; Singh, Jitender
2009-04-01
A new series of complexes have been synthesized by template condensation of oxalyldihydrazide and benzil in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type [M(C(32)H(24)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(3)(-1), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry has been proposed for all these complexes. The biological activities of the metal complexes have been tested in vitro against a number of pathogenic bacteria to assess their inhibiting potential. Some of these complexes have been found to exhibit remarkable antibacterial activities.
Zaitsev, Kirill V.; Kuchuk, Ekaterina A.; Karlov, Sergey S.; Zaitseva, Galina S.; Churakov, Andrei V.
2013-01-01
In the title compound, [Al(C16H14N2O2)(C3H7O)]·0.5CH2Cl2, the salen complex is monomeric and the dichlormethane solvent molecule lies on a crystallographic twofold axis. The central Al atom is fivefold coordinated and possesses a square-based pyramidal environment. The Al—OAlk(ipropyl) bond [1.7404 (14) Å] is much shorter than the Al—OAr(salen) bond lengths [1.7974 (15) and 1.8094 (14) Å]. The isopropyloxo group forms an intramolecular C—H⋯N hydrogen bond. In the crystal, the complex molecules are linked by weak C—H⋯O interactions. PMID:24454153
Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee
2012-10-01
Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer
2010-05-01
A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 × 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.
NASA Astrophysics Data System (ADS)
Yadav, Reena; Awasthi, Mahendra Kumar; Singh, Amita; Kociok-Köhn, Gabriele; Trivedi, Manoj; Prasad, Rajendra; Shahid, Mohammad; Kumar, Abhinav
2017-10-01
Three new chlorodiorganotin(IV) methylferrocenyl dithiocarbamate complexes viz. [(FcCH2)(CH2CH2OH)NCS2SnMe2(Cl)] (1), [(FcCH2)(CH2CH2OH)NCS2SnnBu2(Cl)] (2) and [(FcCH2)(CH2CH2OH)NCS2SnPh2(Cl)] (3) have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H, 13C and 119Sn NMR spectroscopy and X-ray crystallography. The crystal structure of 1 indicates that the coordination geometries around the tin(IV) center is intermediate between ideal trigonal-bipyramidal and square pyramidal coordination polyhedra bonded through two sulfur atoms of the dithiocarbamate ligand in an isobidentate mode, two CH3 groups and one chlorine atom. Since, in 2 and 3 only alkyl and aryl fragments have been changed we infer that both 2 and 3 would also have the same behaviors in the solution state as observed in 1. Ionic interactions abilities of 1-3 are examined in acetonitrile through UV-vis absorption spectroscopy which offers reasonably good selectivity and sensitivity towards the detection of the acetate ion. Compounds 1-3 exhibit a bathochromic shift with the acetate ion with a moderate association constant.
Formation, stability and crystal structure of mullite-type Al{sub 6−x}B{sub x}O{sub 9}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de; Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße/NW2, Universität Bremen, D-28359 Bremen; Hooper, T.J.N.
2016-11-15
Mullite-type Al{sub 6−x}B{sub x}O{sub 9} compounds were studied by means of powder diffraction and spectroscopic methods. The backbones of this structure are chains of edge-connected AlO{sub 6} octahedra crosslinked by AlO- and BO-polyhedra. Rietveld refinements show that the a and b lattice parameters can be well resolved, thus representing an orthorhombic metric. A continuous decrease of the lattice parameters most pronounced in c-direction indicates a solid solution for Al{sub 6−x}B{sub x}O{sub 9} with 1.09≤x≤2. A preference of boron in 3-fold coordination is confirmed by {sup 11}B MAS NMR spectroscopy and Fourier calculations based on neutron diffraction data collected at 4more » K. Distance Least Squares modeling was performed to simulate a local geometry avoiding long B-O distances linking two octahedral chains by planar BO{sub 3} groups yielding split positions for the oxygen atoms and a strong distortion in the octahedral chains. The lattice thermal expansion was calculated using the Grüneisen first-order equation of state Debye-Einstein-Anharmonicity model. - Graphical abstract: Local distortion induced by boron linking the octahedral chains. - Highlights: • Decreasing lattice parameters indicate a solid solution for Al{sub 6−x}B{sub x}O{sub 9} (1.09≤x≤2). • B-atoms induce a local distortion of neighboring AlO{sub 6} octahedra. • A preference of boron in BO{sub 3} coordination is confirmed by {sup 11}B MAS NMR spectroscopy. • An optimized structural model for Al{sub 6−x}B{sub x}O{sub 9} is presented.« less
[1,2-Bis(diisopropylphosphanyl)ethane-κ2 P,P′](carbonato-κ2 O,O′)nickel(II)
Morales-Becerril, Illan; Flores-Alamo, Marcos; Garcia, Juventino J.
2013-01-01
In the crystal of the title compound, [Ni(CO3)(C14H32P2)], the metal center in each of three independent molecules shows slight tetrahedral distortion from ideal square-planar coordination geometry, with angles between the normals to the planes defined by the cis-P—Ni—P and cis-O—Ni—O fragments of 3.92 (17), 0.70 (16) and 2.17 (14)° in the three molecules. In the crystal, there are intermolecular C—H⋯O hydrogen bonds that show a laminar growth in the ab plane. PMID:23633999
Diaquabis(4-methoxybenzoato-κO 1)bis(nicotinamide-κN 1)cobalt(II) dihydrate
Hökelek, Tuncer; Dal, Hakan; Tercan, Barış; Tenlik, Erdinç; Necefoğlu, Hacali
2010-01-01
In the mononuclear title compound, [Co(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2O, the CoII ion is located on a crystallographic inversion center. The asymmetric unit is completed by one 4-methoxybenzoate anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water molecule. All ligands act in a monodentate mode. The four O atoms in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxylate group and the attached benzene ring is 6.47 (7)°, while the pyridine and benzene rings are oriented at a dihedral angle of 72.80 (4)°. An O—H⋯O hydrogen bond links the uncoordinated water molecule to one of the carboxylate groups. In the crystal structure, intermolecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three-dimensional network. PMID:21588149
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-01-01
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-12-25
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.
Gaur, Ruchi; Choubey, Diksha Kumari; Usman, Mohammad; Ward, Benzamin D; Roy, Jagat Kumar; Mishra, Lallan
2017-08-01
Nitrato briged dinuclear complexes of type [Cu 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 1 and [Zn 2 (L) 2 (bpy) 2 (NO 3 )](NO 3 )·4H 2 O, 2 (L=deprotonated form of free ligand LH, [1-(2-hydroxyphenyl)-3-(9-anthracenyl) propenone; bpy=2,2'bipyridine] are synthesized and characterized using a battery of physicochemical techniques and X-ray crystallography. A distorted square pyramidal geometry is assigned to them with N 2 O 3 coordination core around the metal ion. The co-ligand L binds the metal ions through its O,O' atoms in anti-syn mode. The metal centers in complexes 1 and 2 are separated via bridging nitrato group at a distance of 6.073Å and 5.635Å respectively. Their structures and absorption spectra are supported by the computational studies using density functional theory (DFT) and TD-DFT. Both complexes exhibit nuclease activity and cleave supercoiled (form I) DNA. The complex 1 preferentially binds major groove of DNA and follows an oxidative pathway whereas complex 2 binds with minor groove of DNA via hydrolytic pathway. Both complexes inhibit topoisomerase I relaxation activity with IC 50 values of 7 and 35μM. Molecular docking studies support the groove binding and topoisomerase I binding of the complexes. The complex 1 showed a significant cytotoxicity against HeLa cell lines (a cervical cancer cell lines) in vitro with IC 50 value calculated as 2.9±0.021μM as compared to 28.2±0. 044μΜ for complex 2. Complex 2 induces the cell apoptosis at a later-stage as compared to complex 1. The cell apoptosis and topoisomerase inhibition by complexes enable them to be potential candidates as future anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Mugnaioli, Enrico; Gemmi, Mauro; Merlini, Marco; Gregorkiewitz, Michele
2016-01-01
(Nax□1 − x)5[MnO2]13 has been synthesized with x = 0.80 (4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (χ2 = 0.690, R wp = 0.051, R p = 0.037, R F2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199 (6), b = 2.83987 (6), c = 14.8815 (4) Å, β = 105.0925 (16)°, V = 918.90 (4) Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,□)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn—O distances and Jahn–Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures. PMID:27910840
Shamsudin, Norzianah; Tan, Ai Ling; Wimmer, Franz L; Young, David J; Tiekink, Edward R T
2015-09-01
The asymmetric unit of the title compound, 2[Zn(C32H16N8)(C7H9N)]·3C7H9N, comprises two independent complex mol-ecules and three benzyl-amine solvent mol-ecules. Each complex mol-ecule features a penta-coordinated Zn(2+) ion within a square-pyramidal geometry, whereby the N5 donor set is defined by four atoms of the phthalocyaninate dianion (PC) and an N-bound benzyl-amine mol-ecule; it is the relative orientations of the latter that differentiate between the independent complex mol-ecules. The uncoordinated benzyl-amine mol-ecules display different conformations in the structure, with syn-Car-Car-Cm-N (ar = aromatic, m = methyl-ene) torsion angles spanning the range -28.7 (10) to 35.1 (14)°. In the crystal, N-H⋯N and N-H⋯π inter-actions lead to supra-molecular layers in the ab plane. The layers have a zigzag topology, have the coordinating and non-coordinating benzyl-amine mol-ecules directed to the inside, and present the essentially flat PC resides to the outside. This arrangement enables adjacent layers to associate via π-π inter-actions [inter-centroid distance between pyrrolyl and fused-benzene rings = 3.593 (2) Å] so that a three-dimensional architecture is formed.
NASA Astrophysics Data System (ADS)
Chavez, R. E.; Tejero, A.; Cifuentes, G.; Garcia-Serrano, A.; Argote-Espino, D. L.; HernaNdez-Quintero, J. E.; Ortega, V.
2017-12-01
The Pyramid of La Luna is found within the archaeological site of Teotihuacan, located to the NE of Mexico City. This pre-Hispanic city was developed between 250 AD and 450 AD, with a population of 100,000 people. The most important edifices are the pyramids of El Sol and La Luna. The pyramid of El Sol is one of the largest pre-Hispanic structures found nowadays in Mexico (a square basement of approximately 200m X 225 m). The pyramid of La Luna (with a base of 140m X 150m), smaller in size is located towards the northern portion of this ancient city. At its front, a big plaza is found surrounded by pyramids of different ages. Previous archaeological studies carried out within the plaza, discovered small shallow pipes for water discharge. Then, it is possible to find deeper structures within the Square. A geophysical work was carried out in the Plaza of La Luna employing the ERT-3D to build a 3D resistivity model. Four ERT profiles were deployed in the area in the E-W direction, with a length of 80 m each; electrodes were inserted 3 m apart. A roll-along technique was employed to obtain a 3D view of the plaza subsoil. Gradient (G), Equatorial (Eq), and Minimum Coupling (MC) arrays were applied. A total of 2,600 apparent resistivity observations were acquired. Also, the pyramid was surrounded with 105 electrodes to illuminate this structure subsoil, employing the 'L' and 'Corner' arrays and the already mentioned settings. Electrodes were separated 5 m for the E and N sides, and 6 m for the W and S sides, topographic correction was added to the interpretation. 7,200 apparent resistivity values were obtained. Processing of the data included noise filtering, real electrode position and removing of spikes. Finally, the data were inverted to compute a 3D resistivity distribution of the subsoil. Preliminary results obtained indicate the presence of high resistivity anomalies probably associated to infill or archaeological features. However, an interesting resistivity signature was determined at 8m deep, which possesses a SW-NE direction and apparently ends beneath the NE portion of the Pyramid of La Luna. Beneath the pyramid's center, the resistivity model interpreted depicts an important resistivity anomaly (about 350 Ohm-m and 10 m in diameter), which may indicate the presence of a cavity(?).
NASA Astrophysics Data System (ADS)
Lin, Cheng-Hsiao; Tsai, Yan-Chr
2002-07-01
Within the Tersoff approximation, we obtain an analytic expression for the elastic self-energy of a truncated hut which is more general than that of a truncated pyramid [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73]. A pyramidal cluster studied previously can be treated as a square-based hut within the present formalism. The previous results [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996; Phys. Rep. 324 (2000) 271] were obtained on the assumptions of neglecting the adsorbate-substrate interfacial energy and the equilibrium cluster forming with a square base. They predicted that when the volume of a cluster is above some critical value, it preferably forms as a pyramid rather than a platelet in the absence of other strained clusters. Instead, in this paper, we take the interfacial energy into account, based on the work by Korutcheva et al. [I. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal Growth Epitaxy, World Scientific, Singapore, 1995; Phys. Rev. B 61 (2000) 16890]. Besides, we start with the consideration of a hut cluster probably forming with a rectangular base instead of a square one [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996]. By employing the derived analytic expression of the surface and elastic energies, we find that the two- to three- dimensional (2D-3D) transition with the inclusion of the adsorbate-substrate interfacial energy is quantitatively modified. It should provide more accurate predicted values of the critical volume in 2D-3D transitions. Furthermore, in the absence of other clusters on a substrate, a pyramid forms above the critical volume and calculations also show that at equilibrium a single cluster forms with a square base for a given cluster volume, which justifies the previous assumption [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996; Phys. Rep. 324 (2000) 271].
Russia’s Contribution as a Partner in the War on Terrorism
2014-07-01
pyramid ,” which sets out the relevant authority structure. The monograph first examines the roles of coordinating bodies such as the Security...Jordan, Egypt , and Saudi Arabia. Some of the Russian Islamic scholars were taught in the Middle East or North Africa.12 By 1999, in Dagestan alone...anti-terrorist operations (Article 22).18 THE RUSSIAN SECURITY PYRAMID The Russian president, in accordance with Article 5 of Nr 35-F3, defines the
Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection
NASA Astrophysics Data System (ADS)
Wang, Chao; Ma, Ziji; Li, Yanfu; Zeng, Jiuzhen; Jin, Tan; Liu, Hongli
2017-10-01
Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x-y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear.
Linear energy relationships for the octahedral preference of Mg, Ca and transition metal ions.
Pontikis, George; Borden, James; Martínek, Václav; Florián, Jan
2009-04-16
The geometry, atomic charges, force constants, and relative energies of the symmetric and distorted M(2+)(H(2)O)(4)(F(-))(2), M(3+)(H(2)O)(4)(F(-))(2), M(2+)(H(2)O)(3)(F(-))(2), and M(3+)(H(2)O)(3)(F(-))(2) metal complexes, M = Mg, Ca, Co, Cu, Fe, Mn, Ni, Zn, Cr, V, were calculated by using the B3LYP/TZVP density functional method in both gas phase and aqueous solution, modeled using the polarized continuum model. The deformation energy associated with moving one water ligand 12 degrees from the initial "octahedral" arrangement, in which all O-M-O, O-M-F, and F-M-F angles are either 90 degrees or 180 degrees, was calculated to examine the angular ligand flexibility. For all M(2+)(H(2)O)(4)(F(-))(2) complexes, this distortion increased the energy of the complex in proportion to the electrostatic potential-derived (ESP) charge of the metal, and in proportion to D(-10), where D is the distance from the distorted ligand to its closest neighbor. The octahedral stability was further examined by calculating the energies for the removal of a water ligand from the octahedral complex to form a square-pyramidal or trigonal-bipyramidal complex. The octahedral preference, defined as the negative of the corresponding binding energy of the ligand, was found to linearly correlate with the ESP charge of the metal in both the gas phase and aqueous solution. The obtained results indicate that quantum-mechanical covalent effects are of secondary importance for both the flexibility and the octahedral preference of M(2+)(H(2)O)(4)(F(-))(2) and M(3+)(H(2)O)(4)(F(-))(2) complexes. This conclusion and supporting data are important for the development of consistent molecular mechanical force fields of the studied metal ions.
Lipowska, Malgorzata; Hayes, Brittany L.; Hansen, Lory; Taylor, Andrew; Marzilli, Luigi G.
1996-07-03
The compounds RNHC(=S)NH(CH(2))(n)()NHC(=S)NHR were prepared in a search for new, relatively small N(2)S(2) ligands. These dithiourea (DTU) ligands are the first chelates containing two potentially bidentate thiourea moieties. A one-step reaction of 1,3-diaminopropane (1) with aryl or alkyl isothiocyanates or of 1,2-diaminoethane (2) with phenyl isothiocyanate afforded the target ligands in excellent yields (95-98%). The Re(V)=O complexes of RNHC(=S)NH(CH(2))(3)NHC(=S)NHR ligands were obtained through ligand exchange reactions with Re(V) precursors. The chemistry required neither protection of the sulfur atoms for ligand synthesis nor deprotection prior to metal complexation. The structure of (1-phenyl-3-(3-phenylthioureido)propyl]thioureato)oxorhenium(V) (7a), determined by X-ray diffraction methods, revealed the expected pseudo-square-pyramidal geometry with an N(2)S(2) basal and an apical oxo donor set. Both coordinated N's (N(c)) were deprotonated. One uncoordinated N (N(u)) was deprotonated, producing a neutral complex containing an unexpected new type of dianionic, four-membered N,S chelate. In the crystal, the N(u) atoms, N(3)H and N(4), of one complex each formed an H-bond with N(4) and N(3)H, respectively, of a symmetry-related complex. The N(c)-C-S bond angles (106.1(6) and 101.5(6) degrees ) were severely distorted from the 120 degrees expected for an sp(2)-hybridized C. However, these small bite angles and the large N-Re-N bond angle (86.1(3) degrees ) allowed for the formation of two four-membered chelate rings with normal Re-N and Re-S bond distances. Attempts to prepare complexes with the PhNHC(=S)NH(CH(2))(2)NHC(=S)NHPh ligand were unsuccessful. These results suggest that a central five-membered chelate ring is too small to accommodate bidentate coordination of both thiourea moieties. NMR studies in methanol established that the neutral complex with one uncoordinated N deprotonated was the favored form in neutral and basic solutions. However, under acidic conditions, a cationic form with both uncoordinated N's protonated was favored.
Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad
2016-09-01
Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This should be mentioned that both theoretical methods calculated the Kb values in the same sequence and are in a good agreement with the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Li-Jin; Wang, Yueh-Jan; Chen, Jeng-Rung; Tseng, Guo-Fang
2017-07-01
Hydrocephalus is a common neurological disorder in children characterized by abnormal dilation of cerebral ventricles as a result of the impairment of cerebrospinal fluid flow or absorption. Clinical presentation of hydrocephalus varies with chronicity and often shows cognitive dysfunction. Here we used a kaolin-induction method in rats and studied the effects of hydrocephalus on cerebral cortex and hippocampus, the two regions highly related to cognition. Hydrocephalus impaired rats' performance in Morris water maze task. Serial three-dimensional reconstruction from sections of the whole brain freshly froze in situ with skull shows that the volumes of both structures were reduced. Morphologically, pyramidal neurons of the somatosensory cortex and hippocampus appear to be distorted. Intracellular dye injection and subsequent three-dimensional reconstruction and analyses revealed that the dendritic arbors of layer III and V cortical pyramid neurons were reduced. The total dendritic length of CA1, but not CA3, pyramidal neurons was also reduced. Dendritic spine densities on both cortical and hippocampal pyramidal neurons were decreased, consistent with our concomitant findings that the expressions of both synaptophysin and postsynaptic density protein 95 were reduced. These cortical and hippocampal changes suggest reductions of excitatory connectivity, which could underlie the learning and memory deficits in hydrocephalus. © 2016 International Society of Neuropathology.
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, Shi Ling
2014-10-01
Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. However, the camera lens is never perfect and the lens distortion does influence the accuracy of the measurement result, which is often overlooked in the existing real-time 3-D shape measurement systems. To this end, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. The out-of-plane height is obtained firstly and the acquisition for the two corresponding in-plane coordinates follows on the basis of the solved height. Besides, a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the generated LUTs, a 3-D reconstruction speed of 92.34 frames per second can be achieved.
NASA Astrophysics Data System (ADS)
Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai
2015-02-01
A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.
Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Landgrebe, A. J.
1983-01-01
Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, I.; LaPlaca, S.J.; Korp, J.
The structure of (+)/sub 579/-(eta/sup 5/-C/sub 5/H/sub 5/Mo(CO)/sub 2/(NN*))PF/sub 6/ with NN* = the Schiff base derived from pyridine-2-carbaldehyde and (S)-(--)-..cap alpha..-phenylethylamine was determined using standard single-crystal x-ray diffraction methods. The absolute configuration was determined by refinement of the data using the anomalous scattering contributions of Mo and P to a final R(F) = 0.056 for 2634 independent reflections having I greater than 3 sigma (I). The substance crystallizes in the space group P2/sub 1/2/sub 1/2/sub 1/ with unit cell dimensions of a = 12.249 (4), b = 9.236 (3), and c = 20.692 (9) A and Z = 4more » molecules/unit cell. The square-pyramidal coordination of the Mo atom is defined by two carbonyl carbons and two Schiff base nitrogens occupying the four basal plane sites and the five carbons of the eta/sup 5/-C/sub 5/H/sub 5/ ligand in the axial position. The Mo--ligand distances and the bond lengths and angles within the ligands are normal and compare closely with those of recent structure determinations of comparable precision. The Mo atom is 0.95 A above the plane formed by the four basal plane ligands. The conformation of the (S)-..cap alpha..-phenylethyl group with respect to the ligand plane, defined by the pyridine ring, the imine system, and the Mo atom, is discussed. The configuration at the metal atom in the (+)/sub 579/ isomer is specified as (S). The PF/sub 6//sup -/ anion executes large amplitude torsional motion in the lattice, as is commonly the case for this anion when not hydrogen bonded.« less
Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A
2010-10-14
The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.
NASA Astrophysics Data System (ADS)
Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.
2017-09-01
A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.
Here, we report on the synthesis, stability, and local structure of In 2O 3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In 2O 3 deposited onto (001)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski–Krastanov growth mode at a temperature of 850°C, resulting in epitaxial, truncated square pyramids with (111) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In 2O 3 from the magnetron source. Lastly, we also find that the internal lattice structure of onemore » such pyramid is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In 2O 3 nanostructures and films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.
Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]{sub n} neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure ofmore » 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)]{sub n} chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group.« less
Tie Points Extraction for SAR Images Based on Differential Constraints
NASA Astrophysics Data System (ADS)
Xiong, X.; Jin, G.; Xu, Q.; Zhang, H.
2018-04-01
Automatically extracting tie points (TPs) on large-size synthetic aperture radar (SAR) images is still challenging because the efficiency and correct ratio of the image matching need to be improved. This paper proposes an automatic TPs extraction method based on differential constraints for large-size SAR images obtained from approximately parallel tracks, between which the relative geometric distortions are small in azimuth direction and large in range direction. Image pyramids are built firstly, and then corresponding layers of pyramids are matched from the top to the bottom. In the process, the similarity is measured by the normalized cross correlation (NCC) algorithm, which is calculated from a rectangular window with the long side parallel to the azimuth direction. False matches are removed by the differential constrained random sample consensus (DC-RANSAC) algorithm, which appends strong constraints in azimuth direction and weak constraints in range direction. Matching points in the lower pyramid images are predicted with the local bilinear transformation model in range direction. Experiments performed on ENVISAT ASAR and Chinese airborne SAR images validated the efficiency, correct ratio and accuracy of the proposed method.
Clot, Eric; Eisenstein, Odile; Jones, William D.
2007-01-01
Density functional calculations with the B3PW91 functional have been carried out on the TpRh(CNMe) species [Tp = HB(pyrazolyl)3] as a model for Tp′Rh(CNCH2CMe3) [Tp′ = HB(3,5-dimethylpyrazolyl)3] in interaction with propane. Two σ complexes have been found as minima coordinated through either a methyl or a methylene CH bond, the former being more stable. The approach of the alkane to TpRh(CNMe) has been studied. Although no transition state could be located, study of this path reveals the key importance of the partial decoordination of one pyrazole ring. The full coordination of the alkane can only be achieved when the metal is essentially in a square pyramid coordination with one of the three pyrazole groups only weakly interacting with Rh. The main reaction of the methyl σ complex is oxidative addition, leading to the n-propyl hydride complex. In contrast, two reactions are found for the methylene σ complex: (i) oxidative addition to give the isopropyl complex and (ii) exchange between the secondary and primary CH bonds to convert the methylene complex of propane into a methyl complex of propane. This latter reaction has a much lower barrier than the oxidative addition at the methylene CH bond. The results account well for most of the experimental results obtained from kinetic studies. Steric factors are found to control the energy barriers between these various processes, disfavoring any process that brings the central carbon into close proximity to Rh. PMID:17412834
Keller, Simone K; Schulz, Peter J
2011-06-01
In the light of increasing childhood obesity, the role of food advertisements relayed on television (TV) is of high interest. There is evidence of food commercials having an impact on children's food preferences, choices, consumption and obesity. We describe the product categories advertised during kids programmes, the type of food promoted and the characteristics of food commercials targeting children. A content analysis of the commercials aired during the kids programmes of six Swiss, one German and one Italian stations was conducted. The commercials were collected over a 6-month period in 2006. Overall, 1365 h of kids programme were recorded and 11 613 advertisements were found: 3061 commercials (26.4%) for food, 2696 (23.3%) promoting toys, followed by those of media, cleaning products and cosmetics. Regarding the broadcast food advertisements, 55% were for fast food restaurants or candies. The results of the content analysis suggest that food advertising contributes to the obesity problem: every fourth advertisement is for food, half of them for products high in sugar and fat and hardly any for fruit or vegetables. Long-term exposure to this distortion of the pyramid of recommended food should be considered in the discussion of legal restrictions for food advertising targeting children.
Gradient-based multiresolution image fusion.
Petrović, Valdimir S; Xydeas, Costas S
2004-02-01
A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.
NASA Astrophysics Data System (ADS)
Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet; Büyükgüngör, Orhan
2007-05-01
The (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate complex was synthesized and characterized by spectroscopic (IR, UV/Vis, EPR), thermal (TG/DTA) and electrochemical methods. X-ray structural analysis of the title complex revealed that the copper ion can be considered to have two coordination spheres. In the first coordination sphere the copper ion forms distorted square-planar geometry with trans-N 2O 2 donor set, and also the metal ion is weakly bonded to the amino-nitrogen in the layer over and to the carboxylic oxygen in the layer underneath in the second coordination sphere. The second coordination environment on the copper ion is attributed to pseudo octahedron. The powder EPR spectra of Cu(II) complex at room and liquid nitrogen temperature were recorded. The calculated g and A parameters have indicated that the paramagnetic centre is axially symmetric. The molecular orbital bond coefficients of the Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centered electroactivity in the potential range -1.25 to 1.5 V versus Ag/AgCl reference electrode.
Exciton binding energy in a pyramidal quantum dot
NASA Astrophysics Data System (ADS)
Anitha, A.; Arulmozhi, M.
2018-05-01
The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area a× a and height of the pyramid H=a/2. The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.
Bis(2,1,3-benzoselenadiazole-κN)dibromidocopper(II)
Fun, Hoong-Kun; Goh, Jia Hao; Maity, Annada C.; Goswami, Shyamaprosad
2011-01-01
In the title complex, [CuBr2(C6H4N2Se)2], the CuII ion is tetracoordinated by two bromide anions and two N atoms in a distorted square-planar geometry. The two essentially planar 2,1,3-benzoselenadiazole ligands [maximum deviations = 0.012 (2) and 0.030 (2) Å] are approximately coplanar [dihedral angle = 6.14 (6)°]. In the crystal, short intermolecular Se⋯Br, Se⋯N and N⋯N interactions are observed. These short interactions and intermolecular C—H⋯Br hydrogen bonds link the complex molecules into two-dimensional arrays parallel to the ac plane. PMID:21522854
NASA Astrophysics Data System (ADS)
Ibrahim, Mohamed M.; Ramadan, Abd El-Motaleb M.; Shaban, Shaban Y.; Mersal, Gaber A. M.; El-Shazly, Samir A.; Al-Juaid, Salih
2017-04-01
A series of mixed-ligand complexes, viz., [CuLL'X]Y {L = bipyridine; L' = glycine; X = 0, Y = ClO4- (1); X = Cl, Y = 2H2O (2); X = H2O, Y = NO3- (3); X = CH3COO-, Y = H2O (4)} and {[Cu(Gly)(BPy)]2-μ-(SO4)}(5)} have been synthesized and characterized by means of elemental analysis, spectroscopic (FT-IR, UV-Vis and ESR), and thermal analysis, as well as magnetic moment measurements. Spectral and X-ray structural features led to the conclusion that complexes 2-5 have square-pyramidal environments around copper(II) center with coordination chromophores CuN3OCl and CuN3O2, respectively. Whereas complex 1 displays square planar geometry. The quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. Additionally, the antioxidant (superoxide dismutase and catalase) biomimetic catalytic activities of the obtained complexes have been tested and found to be promising candidates as dual functional mimic enzyme to serve for complete reactive oxygen species (ROS) detoxification, both with respect to the superoxide radicals and the related peroxides.
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.; Serag El-Din, Azza A.
2014-11-01
Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.
NASA Technical Reports Server (NTRS)
Leick, Alfred; Vangelder, Boudewijn H. W.
1975-01-01
Models used in geodesy to transform two sets of coordinates are studied and distortions in geodetic networks are investigated. Commonly used transformation models are first reviewed and most of them are interpreted. Differences between various models are discussed. Pitfalls in partial solutions are then considered. It is shown that only as many chords and/or directional elements can be used in the computation as are needed to completely determine the size or shape of the polyhedron implied in the set of Cartesian coordinates. Each additional element causes the normal matrix to be singular provided that all correlations between the chords are used. A number of tables and maps indicating distortions in the NAD 27, Precise Traverse M-R '72, AUS, and SAD 69 geodetic datums are also included. The residuals of the coordinates are scanned for systematic patterns after transforming each geodetic system to the NWL9D Doppler system. Also, an attempt is made to show scale distortions in the NAD 27.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian
To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less
Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian
2017-09-28
To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less
Wang, Ruiqi; Zhang, Xian; He, Jianqiao; Bu, Kejun; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang
2018-02-05
Six isostructural antiperovskite-derived chalcohalides, Ba 2 MQ 3 X (M = As, Sb; Q = S, Se; X = Cl, Br, I), crystallizing in the space group Pnma, have been synthesized by solid-state reactions. The crystal structure features a 3D framework with the [XBa 5 ] 9+ disordered square pyramids as building blocks and [MQ 3 ] 3- units filling the interspace. [XBa 5 ] 9+ disordered square pyramids are edge-sharing along [010], derived from the fusing of the two pyramids in octahedral [XBa 6 ] 11+ . Surprisingly, Ba 2 AsS 3 X (X = Cl, Br, I) show almost the same optical band gap of 2.80 eV, and Ba 2 AsSe 3 X (X = Br, I) also have a similar band gap of 2.28 eV. The optical band gap of Ba 2 SbS 3 I is 2.64 eV. First-principles calculations reveal that the optical absorption is attributed to the transitions between Q np at the valence band maximum (VBM) and M np-Q np at the conduction band minimum (CBM). These compounds also possess interesting photoluminescence properties with splitting emission peaks on excitation at 200 nm.
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-12-01
Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Lattice distortion of square iron nitride monolayers induced by changing symmetry of substrate
NASA Astrophysics Data System (ADS)
Hattori, Takuma; Iimori, Takushi; Miyamachi, Toshio; Komori, Fumio
2018-04-01
Rectangular iron nitride monatomic layers are fabricated on the threefold symmetric Cu(111) substrate by taking advantage of the stability of the square nitride film. Two different ordered structures are observed on the Cu(111) substrate by scanning tunneling microscopy after annealing at 510 K and 580 K. Their chemical composition and lattice symmetry are investigated by x-ray photoelectron spectroscopy and low energy electron diffraction. The monolayer film prepared at 580 K is a distorted Fe2N monolayer analogous to a ferromagnetic square Fe2N monolayer with a clock reconstruction on the Cu(001) substrate. The lattice deformation of the square Fe2N monolayer is induced by using Cu(111) with threefold symmetry.
Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands.
Muthuramalingam, Sethuraman; Khamrang, Themmila; Velusamy, Marappan; Mayilmurugan, Ramasamy
2017-11-28
New copper(ii) complexes, [Cu(L1) 2 (H 2 O)](ClO 4 ) 2 , 1 [L1 = 2-pyridin-2-yl-quinoline], [Cu(L2) 2 (H 2 O)](ClO 4 ) 2 , 2 [L2 = 2-pyridin-2-yl-quinoxaline], [Cu(L3) 2 (H 2 O)](ClO 4 ) 2 , 3 [L3 = 6,7-dimethyl-2-pyridin-2-yl-quinoxaline], [Cu(L4) 2 (H 2 O)](ClO 4 ) 2 , 4 [L4 = 4-phenyl-2-pyridin-2-yl-quinoline] and [Cu(L5) 2 (H 2 O)](ClO 4 ) 2 , 5 [L5 = 4-phenyl-2-pyridin-2-yl-quinazoline], were synthesized and characterized as catalysts for selective fixation of atmospheric CO 2 . The molecular structure of 2 was determined by single-crystal X-ray studies and shown to have an unusual trigonal bipyramid geometry (τ, 0.936) around the copper(ii) center, with the coordination of two ligand units and a water molecule. The Cu-N quin (2.040, 2.048 Å) bonds are slightly longer than the Cu-N pyr (1.987 Å) bonds but shorter than the Cu-O water bond (2.117 Å). Well-defined Cu(ii)/Cu(i) redox potentials of around 0.352 to 0.401 V were observed for 1-5 in acetonitrile. The electronic absorption spectra of 1-5 showed ligand-based transitions at around 208-286 nm with a visible shoulder at around 342-370 nm. The d-d transitions appeared at around 750-800 and 930-955 nm in acetonitrile. The rhombic EPR spectra of 1-5 exhibited three different g values g x , 2.27-2.34; g y , 2.06-2.09; and g z , 1.95-1.98 at 70 K. Atmospheric CO 2 was successfully fixed by 1-5 using Et 3 N as a sacrificial reducing agent, resulting in CO 3 2- -bound complexes of type [Cu(L)CO 3 (H 2 O)] that display an absorption band at around 614-673 nm and a ν st at 1647 cm -1 . This CO 3 2- -bound complex of 1 was crystallized from the reaction mixture and it displayed a distorted square pyramidal geometry (τ, 0.369) around the copper(ii) center via the coordination of only one ligand unit, a carbonate group, and water molecules. Furthermore, treatment of the carbonate-bound Cu(ii) complexes with one equivalent of H + under N 2 atmosphere resulted in the liberation of bicarbonate (HCO 3 - ) and regenerated the parent complexes. These regenerated catalysts were active enough to fix CO 2 in eight repeating cycles without any change in efficiency. The fixation of CO 2 possibly occurs via the formation of Cu(i)-species, which is accompanied by the formation of an MLCT band at around 450-500 nm. The rates of Cu(i)-species formation, k obs , were determined and found to be 5.41-10.31 × 10 -3 s -1 in the presence of Et 3 N in acetonitrile at 25 °C. Interestingly, the copper(i)-species of 3 has been successfully crystallized and displayed a distorted tetrahedral geometry through the coordination of two units of ligand L3.
Pyramidal space frame and associated methods
Clark, Ryan Michael; White, David; Farr, Jr, Adrian Lawrence
2016-07-19
A space frame having a high torsional strength comprising a first square bipyramid and two planar structures extending outward from an apex of the first square bipyramid to form a "V" shape is disclosed. Some embodiments comprise a plurality of edge-sharing square bipyramids configured linearly, where the two planar structures contact apexes of all the square bipyramids. A plurality of bridging struts, apex struts, corner struts and optional internal bracing struts increase the strength and rigidity of the space frame. In an embodiment, the space frame supports a solar reflector, such as a parabolic solar reflector. Methods of fabricating and using the space frames are also disclosed.
Accuracy of the HST Standard Astrometric Catalogs w.r.t. Gaia
NASA Astrophysics Data System (ADS)
Kozhurina-Platais, V.; Grogin, N.; Sabbi, E.
2018-02-01
The goal of astrometric calibration of the HST ACS/WFC and WFC3/UVIS imaging instruments is to provide a coordinate system free of distortion to the precision level of 0.1 pixel 4-5 mas or better. This astrometric calibration is based on two HST astrometric standard fields in the vicinity of the globular clusters, 47 Tuc and omega Cen, respectively. The derived calibration of the geometric distortion is assumed to be accurate down to 2-3 mas. Is this accuracy in agreement with the true value? Now, with the access to globally accurate positions from the first Gaia data release (DR1), we found that there are measurable offsets, rotation, scale and other deviations of distortion parameters in two HST standard astrometric catalogs. These deviations from the distortion-free and properly aligned coordinate system should be accounted and corrected for, so that the high precision HST positions are free of any systematic errors. We also found that the precision of the HST pixel coordinates is substantially better than the accuracy listed in the Gaia DR1. Therefore, in order to finalize the components of distortion in the HST standard catalogs, the next release of Gaia data is needed.
Enemark, John H; Astashkin, Andrei V; Raitsimring, Arnold M
2008-12-01
SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. (17)O, (33)S, (35)Cl and (37)Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using (33)S (I=3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children.
Surface determination through atomically resolved secondary-electron imaging
Ciston, J.; Brown, H. G.; D'Alfonso, A. J.; Koirala, P.; Ophus, C.; Lin, Y.; Suzuki, Y.; Inada, H.; Zhu, Y.; Allen, L. J.; Marks, L. D.
2015-01-01
Unique determination of the atomic structure of technologically relevant surfaces is often limited by both a need for homogeneous crystals and ambiguity of registration between the surface and bulk. Atomically resolved secondary-electron imaging is extremely sensitive to this registration and is compatible with faceted nanomaterials, but has not been previously utilized for surface structure determination. Here we report a detailed experimental atomic-resolution secondary-electron microscopy analysis of the c(6 × 2) reconstruction on strontium titanate (001) coupled with careful simulation of secondary-electron images, density functional theory calculations and surface monolayer-sensitive aberration-corrected plan-view high-resolution transmission electron microscopy. Our work reveals several unexpected findings, including an amended registry of the surface on the bulk and strontium atoms with unusual seven-fold coordination within a typically high surface coverage of square pyramidal TiO5 units. Dielectric screening is found to play a critical role in attenuating secondary-electron generation processes from valence orbitals. PMID:26082275
NASA Astrophysics Data System (ADS)
Kumar, Gajendra; Devi, Shoma; Kumar, Dharmendra
2016-03-01
The paper presents the synthesis of macrocyclic complexes [{M(C52H36N12O4)X}X2] of Cr(III), Mn(III) and Fe(III) with Schiff base ligand (C52H36N12O4) obtained through the condensation of 1,4-dicarbonyl phenyl dihydrazide with 1,2-di(1H-indol-1-yl)ethane-1,2-dione. The newly formed Schiff base and its complexes have been characterized with the help of elemental analysis, condensation measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS) techniques. The electronic spectra of the complexes indicate a five coordinate square pyramidal geometry of the center metal ion. These metal complexes and ligand were tested for their anti-inflammation and antimicrobial inhibiting potential and compared with standard drugs Phenyl butazone (anti-inflammation), Imipenem (antibacterial) and Miconazole (antifungal).
NASA Astrophysics Data System (ADS)
Rathi, Parveen; Singh, D. P.
2015-11-01
The macrocyclic complexes of pharmaceutical importance with trivalent transition metals have been synthesized by [1 + 1] condensation of succinyldihydrazide and thiophenedicarboxaldehyde, via template method, resulting in the formation of the complex [MLX] X2; where L is (C10H10N4O2S), a macrocyclic ligand, M = Cr (III) and Fe (III) and X = Cl-, CH3COO- or NO3- . These complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, ultraviolet, infrared, far infrared, electron spin resonance, mass spectral studies and powder x-ray diffraction analysis. On the basis of all these studies, mononuclear complexes having 1:2 electrolytic nature with a five coordinated square pyramidal geometry have been proposed. Powder diffraction XRD indicates the presence of triclinic crystal system with p bravais lattice for the representative complex. All the metal complexes have also been explored for their in vitro antimicrobial and antioxidant activities.
Surface determination through atomically resolved secondary-electron imaging
Ciston, J.; Brown, H. G.; D’Alfonso, A. J.; ...
2015-06-17
We report that unique determination of the atomic structure of technologically relevant surfaces is often limited by both a need for homogeneous crystals and ambiguity of registration between the surface and bulk. Atomically resolved secondary-electron imaging is extremely sensitive to this registration and is compatible with faceted nanomaterials, but has not been previously utilized for surface structure determination. Here we show a detailed experimental atomic-resolution secondary-electron microscopy analysis of the c(6 x 2) reconstruction on strontium titanate (001) coupled with careful simulation of secondary-electron images, density functional theory calculations and surface monolayer-sensitive aberration-corrected plan-view high-resolution transmission electron microscopy. Our workmore » reveals several unexpected findings, including an amended registry of the surface on the bulk and strontium atoms with unusual seven-fold coordination within a typically high surface coverage of square pyramidal TiO 5 units. Lastly, dielectric screening is found to play a critical role in attenuating secondary-electron generation processes from valence orbitals.« less
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-01
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, 1H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.
Near real-time stereo vision system
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)
1993-01-01
The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.
Improving the performance of a pyramid wavefront sensor with modal sensitivity compensation.
Korkiakoski, Visa; Vérinaud, Christophe; Le Louarn, Miska
2008-01-01
We describe a solution to increase the performance of a pyramid wavefront sensor (P-WFS) under bad seeing conditions. We show that most of the issues involve a reduced sensitivity that depends on the magnitude of the high frequency atmospheric distortions. We demonstrate in end-to-end closed loop adaptive optics simulations that with a modal sensitivity compensation method a high-order system with a nonmodulated P-WFS is robust in conditions with the Fried parameter r 0 at 0.5 microm in the range of 0.05-0.10 m. We also show that the method makes it possible to use a modal predictive control system to reach a total performance improvement of 0.06-0.45 in Strehl ratio at 1.6 microm. Especially at r 0=0.05 m the gain is dramatic.
López-Torres, Elena; Mendiola, Ma Antonia; Pastor, César J; Pérez, Beatriz Souto
2004-08-23
Reactions of benzil bis(thiosemicarbazone), LH(6), with M(NO(3))(2).nH(2)O (M = Zn, Cd, and Ni), in the presence of LiOH.H(2)O, show the versatile behavior of this molecule. The structure of the ligand, with the thiosemicarbazone moieties on opposite sides of the carbon backbone, changes to form complexes by acting as a chelating molecule. Complexes of these metal ions with empirical formula [MLH(4)] were obtained, although they show different molecular structures depending on their coordinating preferences. The zinc complex is the first example of a crystalline coordination polymer in which a bis(thiosemicarbazone) acts as bridging ligand, through a nitrogen atom, giving a 1D polymeric structure. The coordination sphere is formed by the imine nitrogen and sulfur atoms, and the remaining position, in a square-based pyramid, is occupied by an amine group of another ligand. The cadmium derivative shows the same geometry around the metal ion but consists of a dinuclear structure with sulfur atoms acting as a bridge between the metal ions. However, in the nickel complex LH(6) acts as a N(2)S(2) ligand yielding a planar structure for the nickel atom. The ligand and its complexes have been characterized by X-ray crystallography, microanalysis, mass spectrometry, IR, (1)H, and (13)C NMR spectroscopies and for the cadmium complex by (113)Cd NMR in solution and in the solid state.
Pousaneh, Elaheh; Korb, Marcus; Dzhagan, Volodymyr; Weber, Marcus; Noll, Julian; Mehring, Michael; Zahn, Dietrich R T; Schulz, Stefan E; Lang, Heinrich
2018-06-19
The synthesis of ketoiminato copper(ii) complexes [Cu(OCRCHC(CH3)NCH2CH2X)(μ-OAc)]2 (X = NMe2: 4a, R = Me; 4b, R = Ph. X = OMe: 5, R = Me) and [Cu(OCRCHCMeNCH2CH2NEt2)(OAc)] (6, R = Me) from RC(O)CHC(CH3)N(H)CH2CH2X (X = NMe2: 1a, R = Me; 1b, R = Ph. X = NEt2: 1c, R = Me. X = OMe: 2, R = Me) and [Cu(OAc)2·H2O] (3) is reported. The molecular solid-state structures of 4-6 were determined by single crystal X-ray diffraction studies, showing that 4a,b and 5 are dimers which are set up by two [{Cu(μ-OAc)L}] (L = ketoiminato ligand) units featuring a square-planar Cu2O2 core with a distorted square-pyramidal geometry at Cu(ii). In contrast, 6 is monomeric with a tridentate-coordinated OCMeCHCMeNCH2CH2NEt2 ligand and a σ-bonded acetate group, thus inducing a square-planar environment around Cu(ii). The thermal behavior of all complexes was studied by TG (Thermogravimetry) and DSC (Differential Scanning Calorimetry) under an atmosphere of Ar and O2. Complex 4b shows the highest first onset temperature at 213 °C (under O2) and 239 °C (Ar). PXRD studies confirmed the formation of CuO under an atmosphere of O2 and Cu/Cu2O under Ar. TG-MS studies, exemplarily carried out with 4a, indicate the elimination of the ketoiminato ligands with detectable fragments such as m/z = 15, 28, 43, 44, 45, and 60 at a temperature above 250 °C. Vapor pressure measurements displayed that 5 shows the highest volatility of 3.6 mbar at 70 °C (for comparison, 4a, 1.4; 4b, 1.3; 6, 0.4 mbar) and hence 4a and 5 were used as MOCVD precursors for Cu/Cu2O deposition on Si/SiO2 at substrate temperatures of 450 °C and 510 °C. The deposition experiments were carried out under an atmosphere of nitrogen as well as oxygen. The as-obtained layers were characterized by SEM, EDX, XPS, and PXRD, showing that with oxygen as the reactive gas a mixture of metallic copper and copper(i) oxide without carbon impurities was formed, while under N2 Cu films with 53-68 mol% C contamination were produced. In a deposition experiment using precursor 5 at 510 °C under N2 a pure copper film was obtained.
Bitzenhofer, Sebastian H; Ahlbeck, Joachim; Wolff, Amy; Wiegert, J. Simon; Gee, Christine E.; Oertner, Thomas G.; Hanganu-Opatz, Ileana L.
2017-01-01
Coordinated activity patterns in the developing brain may contribute to the wiring of neuronal circuits underlying future behavioural requirements. However, causal evidence for this hypothesis has been difficult to obtain owing to the absence of tools for selective manipulation of oscillations during early development. We established a protocol that combines optogenetics with electrophysiological recordings from neonatal mice in vivo to elucidate the substrate of early network oscillations in the prefrontal cortex. We show that light-induced activation of layer II/III pyramidal neurons that are transfected by in utero electroporation with a high-efficiency channelrhodopsin drives frequency-specific spiking and boosts network oscillations within beta–gamma frequency range. By contrast, activation of layer V/VI pyramidal neurons causes nonspecific network activation. Thus, entrainment of neonatal prefrontal networks in fast rhythms relies on the activation of layer II/III pyramidal neurons. This approach used here may be useful for further interrogation of developing circuits, and their behavioural readout. PMID:28216627
NASA Astrophysics Data System (ADS)
Schwarz, Michael; Wendorff, Marco; Röhr, Caroline
2012-12-01
The title compounds Ba3ZnHg10 and BaZn0.6Hg3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba3ZnHg10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 44 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl4. The flat pyramids are connected via Hg-Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M-M distances (273-301 pm; CN 9-11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317-348 pm) to their Zn/Hg neighbours. In the structure of BaZn0.6Hg3.4 (cubic, cI320, space group I4bar3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba3ZnHg10, the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6)4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4)2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb3Hg20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations relate the two title compounds.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hironori; Tamekuni, Yusuke; Iwasaki, Yoshiki; Otsuka, Rei; Hosokoshi, Yuko; Kida, Takanori; Hagiwara, Masayuki
2017-06-01
We successfully synthesize single crystals of the verdazyl radical α -2 ,3 ,5 -Cl3 -V. Ab initio molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α =J2/J1≃0.56 ), form an S =1 /2 distorted square lattice. We explain the magnetic properties based on the S =1 /2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the S =1 /2 square lattice Heisenberg antiferromagnet.
NASA Technical Reports Server (NTRS)
Gennery, D. B.
1998-01-01
A method is described for calibrating cameras including radial lens distortion, by using known points such as those measured from a calibration fixture. The distortion terms are relative to the optical axis, which is included in the model so that it does not have to be orthogonal to the image sensor plane.
Ground mapping resolution accuracy of a scanning radiometer from a geostationary satellite.
Stremler, F G; Khalil, M A; Parent, R J
1977-06-01
Measures of the spatial and spatial rate (frequency) mapping of scanned visual imagery from an earth reference system to a spin-scan geostationary satellite are examined. Mapping distortions and coordinate inversions to correct for these distortions are formulated in terms of geometric transformations between earth and satellite frames of reference. Probabilistic methods are used to develop relations for obtainable mapping resolution when coordinate inversions are employed.
Fernández-Anca, Damián; García-Seijo, M Inés; García-Fernández, M Esther
2013-07-28
The reactivity of the unusual d(8) trigonal-bipyramidal systems [MX(PP3)]X (X = Cl: M = Pd(1a), Pt(2a); X = Br: M = Pd(3a), Pt(4a); X = I: M = Pd(5a), Pt(6a); PP3 = tris[2-(diphenylphosphino)ethyl]phosphine) in CHCl3-CH3OH, the square-pyramidal compounds [MCl(NP3)]Cl (M = Pd(7a); Pt(8a); NP3 = tris[2-(diphenylphosphino)ethyl]amine) in CD3OD-DMF and the distorted square-planar mononuclear [MX(PNP)]X (M = Pd: X = Cl(10a); M = Pt: X = I(10b); PNP = bis[2-(diphenylphosphino)ethyl]amine) and the heteronuclear [PdAu2X4(PP3)] [X = I(9a), Cl(14a), Br(15a)] and [MAuX2(PP3)]X [M = Pd: X = Cl(16a); M = Pt: X = Cl(17a), Br(18a)] species in CDCl3 with PPh3 + SnX2 has been explored to establish the factors that influence the nature of the products. With the mononuclear precursors the course of the reaction is strongly dependent on the tripodal or linear arrangement of the polydentate ligand and in the former case on the halogen. Thus, while for chlorides (1a-2a, 7a-8a) and bromides (3a-4a) the reaction led to the trigonal-bipyramidal compounds [M(SnCl3)(AP3)][SnCl3] [A = P: M = Pd(1), Pt(2); A = N: M = Pd(7), Pt(8)], [MBr(PP3)][SnBr3] [M = Pd(4), Pt(6)] containing M-Sn and M-Br bonds, respectively, for iodides (5a-6a) resulted in the unknown neutral square-planar compounds [MI2(PP(PO)2)(SnI2)2] [M = Pd(9) and Pt(10)] bearing two dangling P=O-SnI2 units and P2MI2 environments. However, complexes of the type [PtCl(PP2PO)X]X' [X = SnCl2, X' = [SnCl3](-)(11)] and [M(PP(PO)2)2X4]X'2 [X = SnCl2, X' = [SnCl3](-): M = Pd(12), Pt(13)] showing P=O-SnCl2 arms were obtained by direct reaction of [PtCl(PP2PO)]Cl (11a) and [M(PP(PO)2)2]Cl2 [M = Pd(12a), Pt(13a)] with SnCl2 in CH3OH. Although complex 9 was also prepared by interaction of the heteronuclear iodide 9a with PPh3 + SnI2 in CDCl3, the use of the neutral and ionic heteronuclear chlorides and bromides (14a-18a) as starting materials afforded the distorted square-planar ionic systems [MAuX'(PP3)(PPh3)][SnX3]2 [M = Pd: X = Cl, X' = SnCl3(-)(14); X = Br, X' = SnBr3(-)(15); M = Pt: X = Cl, X' = SnCl3(-)(17); X = Br, X' = SnBr3(-)(18)] containing M-SnX3 and P-Au-PPh3 functionalities. It was found that these reactions where the heteronuclear species are the precursors proceed via the trigonal-bipyramidal halides not only with X = Cl and Br(1a-4a) but also I(5a). When the precursors were 10a and 10b the reaction occurred with formation of [Pd(PNP)(PPh3)][SnCl3]2 (23) and [Pt(PNP)(PPh3)][SnCl2I]2 (24) showing M-PPh3 units and trihalostannato counter anions.
In-situ Synchrotron X-ray Studies of the Microstructure and Stability of In 2O 3 Epitaxial Films
Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.; ...
2017-10-16
Here, we report on the synthesis, stability, and local structure of In 2O 3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In 2O 3 deposited onto (001)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski–Krastanov growth mode at a temperature of 850°C, resulting in epitaxial, truncated square pyramids with (111) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In 2O 3 from the magnetron source. Lastly, we also find that the internal lattice structure of onemore » such pyramid is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In 2O 3 nanostructures and films.« less
Luo, Feng; Yan, Changsheng; Dang, Lilong; Krishna, Rajamani; Zhou, Wei; Wu, Hui; Dong, Xinglong; Han, Yu; Hu, Tong-Liang; O'Keeffe, Michael; Wang, Lingling; Luo, Mingbiao; Lin, Rui-Biao; Chen, Banglin
2016-05-04
A new metal-organic framework Zn2(H2O)(dobdc)·0.5(H2O) (UTSA-74, H4dobdc = 2,5-dioxido-1,4-benzenedicarboxylic acid), Zn-MOF-74/CPO-27-Zn isomer, has been synthesized and structurally characterized. It has a novel four coordinated fgl topology with one-dimensional channels of about 8.0 Å. Unlike metal sites in the well-established MOF-74 with a rod-packing structure in which each of them is in a five coordinate square pyramidal coordination geometry, there are two different Zn(2+) sites within the binuclear secondary building units in UTSA-74 in which one of them (Zn1) is in a tetrahedral while another (Zn2) in an octahedral coordination geometry. After activation, the two axial water molecules on Zn2 sites can be removed, generating UTSA-74a with two accessible gas binding sites per Zn2 ion. Accordingly, UTSA-74a takes up a moderately high and comparable amount of acetylene (145 cm(3)/cm(3)) to Zn-MOF-74. Interestingly, the accessible Zn(2+) sites in UTSA-74a are bridged by carbon dioxide molecules instead of being terminally bound in Zn-MOF-74, so UTSA-74a adsorbs a much smaller amount of carbon dioxide (90 cm(3)/cm(3)) than Zn-MOF-74 (146 cm(3)/cm(3)) at room temperature and 1 bar, leading to a superior MOF material for highly selective C2H2/CO2 separation. X-ray crystal structures, gas sorption isotherms, molecular modeling, and simulated and experimental breakthroughs comprehensively support this result.
Bolotin, Dmitrii S.; Bokach, Nadezha A.; Haukka, Matti
2014-01-01
In the title compound, [PtCl2(C13H21N5)]·0.5CH3NO2, the PtII atom is coordinated in a slightly distorted square-planar geometry by two Cl atoms and two N atoms of the bidentate ligand. The (1,3,5-triazapentadiene)PtII metalla ring is slightly bent and does not conjugate with the aromatic ring. In the crystal, N—H⋯Cl hydrogen bonds link the complex molecules, forming chains along [001]. The nitromethane solvent molecule shows half-occupancy and is disordered over two sets of sites about an inversion centre. PMID:24826095
NASA Astrophysics Data System (ADS)
Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet
2018-01-01
New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.; Shao, K.-J.; Xiao, Y.-C.
2015-12-15
The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.
Crystal structure and crystal chemistry of melanovanadite, a natural vanadium bronze.
Konnert, J.A.; Evans, H.T.
1987-01-01
The crystal structure of melanovanadite from Minas Ragra, Peru, has been determined in space group P1. The triclinic unit cell (non-standard) has a 6.360(2), b 18.090(9), c 6.276(2) A, alpha 110.18(4)o, beta 101.62(3)o, gamma 82.86(4)o. A subcell with b' = b/2 was found by crystal-structure analysis to contain CaV4O10.5H2O. The subcell has a layer structure in which the vanadate sheet consists of corner-shared tetrahedral VO4 and double square-pyramidal V2O8 groups, similar to that previously found in synthetic CsV2O5. Refinement of the full structure (R = 0.056) showed that the Ca atom, which half-occupies a general position in the subcell, is 90% ordered at one of these sites in the whole unit cell. Bond length-bond strength estimates indicate that the tetrahedra contain V5+, and the square pyramids, V4+.-J.A.Z.
NASA Technical Reports Server (NTRS)
Anuta, P. E.
1975-01-01
Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.
Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D
2012-02-15
Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.
Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi
2013-06-01
Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulo, Fakhili; Samal, Saroj L.; Corbett, John D.
The new trail-breaking compound Ca6PtCd11 has been synthesized and its structural and bonding properties investigated. This unusual phase features an unprecedented degree of cadmium aggregation, including linear chains, novel Cd7 PBP aggregates, and edge-shared chains of PtCd4/2 square pyramids. Manifestations of this chemistry elsewhere has evidently been precluded in earlier work by the inclusion of larger amounts of the strong d-metal bonding Au or Pt. Under the right conditions Cd seems quite effective as an open s,p-band metal.
Inhibition and oxygen activation in copper amine oxidases.
Shepard, Eric M; Dooley, David M
2015-05-19
Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.
Size effects on rhodium nanoparticles related to hydrogen-storage capability.
Song, Chulho; Yang, Anli; Sakata, Osami; Kumara, L S R; Hiroi, Satoshi; Cui, Yi-Tao; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi
2018-06-06
To unveil the origin of the hydrogen-storage properties of rhodium nanoparticles (Rh NPs), we investigated the electronic and crystal structures of the Rh NPs using various synchrotron based X-ray techniques. Electronic structure studies revealed that the hydrogen-storage capability of Rh NPs could be attributed to their more unoccupied d-DOSs than that of the bulk near the Fermi level. Crystal structure studies indicated that lattice distortion and mean-square displacement increase while coordination number decreases with decreasing particle size and the hydrogen-absorption capability of Rh NPs improves to a greater extent with increased structural disorder in the local structure than with that in the mean structure. The smallest Rh NPs, having the largest structural disorder/increased vacancy spaces and the smallest coordination number, exhibited excellent hydrogen-storage capacity. Finally, from the bond-orientational order analysis, we confirmed that the localized disordering is distributed more over the surface part than the core part and hydrogen can be trapped on the surface part of Rh NPs which increases with a decrease in NP diameter.
Dyakonenko, Viktorita V; Zholob, Olga O; Orysyk, Svitlana I; Pekhnyo, Vasily I
2015-01-01
In the title compound, [PdCl2(C5H7N3OS)], the Pd(II) atom adopts a distorted square-planar coordination sphere defined by two N atoms of the bidentate ligand and two Cl atoms. The mean deviation from the coordination plane is 0.029 Å. The methyl group is not coplanar with the plane of the metallacycle [torsion angle C-O-N-C = 20.2 (4)°]. Steric repulsion between the methyl group and atoms of the metallacycle is manifested by shortened intra-molecular H⋯C contacts of 2.27, 2.38 and 2.64 Å, as compared with the sum of the van der Waals radii of 2.87 Å. The amino group participates via one H atom in the formation of an intra-molecular N-H⋯Cl hydrogen bond. In the crystal, the other H atom of the amino group links mol-ecules via bifurcated N-H⋯(Cl,O) hydrogen bonds into chains parallel to [001].
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
A spherical harmonic analysis program is being tested which takes magnetic data in universal time from a set of arbitrarily space observatories and calculates a value for the instantaneous magnetic field at any point on the globe. The calculation is done as a least mean-squares value fit to a set of spherical harmonics up to any desired order. The program accepts as a set of input the orbit position of a satellite coordinates it with ground-based magnetic data for a given time. The output is a predicted time series for the magnetic field on the Earth's surface at the (r, theta) position directly under the hypothetically orbiting satellite for the duration of the time period of the input data set. By tracking the surface magnetic field beneath the satellite, narrow-band averages crosspowers between the spatially coordinated satellite and the ground-based data sets are computed. These crosspowers are used to calculate field transfer coefficients with minimum noise distortion. The application of this technique to calculating the vector response function W is discussed.
NASA Astrophysics Data System (ADS)
Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko
2017-04-01
Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.
Dhayal, Rajendra S.; Liao, Jian-Hong; Wang, Xiaoping; ...
2015-11-09
A polyhydrido copper nanocluster, [Cu 20H 11{Se 2P(OiPr) 2} 9] (2 H), which exhibits an intrinsically chiral inorganic core of C-3 symmetry, was synthesized from achiral [Cu 20H 11{S 2P(OiPr) 2} 9] (1(H)) of C-3h symmetry by a ligand-exchange method. Likewise, the structure has a distorted cuboctahedral Cu-13 core, two triangular faces of which are capped along the C-3 axis, one by a Cu-6 cupola and the other by a single Cu atom. The Cu-20 framework is further stabilized by 9 diselenophosphate and 11 hydride ligands. The number of hydride, phosphorus, and selenium resonances and their splitting patterns in multinuclearmore » NMR spectra of 2(H) indicate that the chiral Cu20H11 core retains its C-3 symmetry in solution. Moreover, the 11 hydride ligands were located by neutron diffraction experiments and shown to be capping (3)-H and interstitial (5)-H ligands (in square-pyramidal and trigonal-bipyramidal cavities), as supported by DFT calculations on [Cu 20H 11(Se 2PH 2) 9] (2 H') as a simplified model.« less
Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry
2013-05-20
A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.
Current pulse amplifier transmits detector signals with minimum distortion and attenuation
NASA Technical Reports Server (NTRS)
Bush, N. E.
1967-01-01
Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.
Simultaneous adaptation to size, distance, and curvature underwater.
Vernoy, M W
1989-02-01
Perceptual adaptation to underwater size, distance, and curvature distortion was measured for four different adaptation conditions. These conditions consisted of (a) playing Chinese checkers underwater, (b) swimming with eyes open underwater, (c) viewing a square underwater, and (d) an air control. Significant adaptation to underwater distortions was recorded in all except the air control condition. In the viewing square condition a positive correlation between size and distance adaptation was noted. It was suggested that adaptation to curvature may have mediated the positive correlation. Possible applications for the training of divers are discussed.
Development of quadrilateral spline thin plate elements using the B-net method
NASA Astrophysics Data System (ADS)
Chen, Juan; Li, Chong-Jun
2013-08-01
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
Shebl, Magdy
2009-07-15
A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.
Crystal structure and chemical bonding of the high-temperature phase of AgN3.
Schmidt, Carsten L; Dinnebier, Robert; Wedig, Ulrich; Jansen, Martin
2007-02-05
The crystal structure of silver azide (AgN3) in its high-temperature (HT) modification was determined from X-ray powder diffraction data, recorded at T = 170 degrees C and was further refined by the Rietveld method. The structure is monoclinic (P21/c (No. 14), a = 6.0756(2) A, b = 6.1663(2) A, c = 6.5729(2) A, beta = 114.19(0) degrees, V = 224.62(14) A3, Z = 4) and consists of two-dimensional Ag and N containing layers in which the silver atoms are coordinated by four nitrogen atoms exhibiting a distorted square coordination environment. These sheets are linked together by weaker perpendicular Ag-N contacts, thus forming a 4 + 2 coordination geometry around the silver atoms. The phase transition has been characterized by DTA, DSC, and measurement of the density, as well as of the ionic conductivity. Both, the room-temperature and the HT phase are electrically insulating. This fact is getting support by DFT band structure calculations within the generalized gradient approximation, using the PBE functional. On the basis of the DFT band structure, the bonding characteristics of both phases are essentially the same. Finally, the implication of the existence of a low-symmetry HT-phase in a crystalline explosive concerning decomposition mechanisms is discussed.
Wang, G Q; Gong, X H; Chen, Y J; Huang, J H; Lin, Y F; Luo, Z D; Huang, Y D
2017-05-23
Two novel red phosphors KBaEu(XO 4 ) 3 (X = Mo, W) have been synthesized by high-temperature solid-state reactions and the crystal structures were determined for the first time. Single-crystal X-ray diffraction data reveal that their space groups are C2/c. The crystalline structure is constituted of K/BaO 8 distorted square antiprisms and distorted EuO 8 polyhedra which form chains lying along the c-axis and two kinds of distorted XO 4 tetrahedra. This high disorder of K/Ba which might lower the crystal field symmetry around Eu 3+ results in the high purity of red emission around 615 nm originating from 5 D 0 → 7 F 2 transition under near-ultraviolet (NUV) excitation. With increasing temperature, the luminescence of KBaEu(XO 4 ) 3 (X = Mo, W) phosphors decreases almost linearly with subtle alteration for the CIE coordinate. As the temperature reaches 550 K, the red emission intensity decreases to 37.3% and 50.7% of that at 300 K for KBaEu(MoO 4 ) 3 and KBaEu(WO 4 ) 3 , respectively. The analysis of the decay curves of the 5 D 0 → 7 F 2 emission at variable temperatures indicates the weak cross relaxation and non-radiative energy transfer between Eu 3+ ions. These results demonstrate that the investigated phosphors are attractive for application in high power NUV excited white LEDs.
NASA Astrophysics Data System (ADS)
Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael
2013-12-01
In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.
Approximate direct georeferencing in national coordinates
NASA Astrophysics Data System (ADS)
Legat, Klaus
Direct georeferencing has gained an increasing importance in photogrammetry and remote sensing. Thereby, the parameters of exterior orientation (EO) of an image sensor are determined by GPS/INS, yielding results in a global geocentric reference frame. Photogrammetric products like digital terrain models or orthoimages, however, are often required in national geodetic datums and mapped by national map projections, i.e., in "national coordinates". As the fundamental mathematics of photogrammetry is based on Cartesian coordinates, the scene restitution is often performed in a Cartesian frame located at some central position of the image block. The subsequent transformation to national coordinates is a standard problem in geodesy and can be done in a rigorous manner-at least if the formulas of the map projection are rigorous. Drawbacks of this procedure include practical deficiencies related to the photogrammetric processing as well as the computational cost of transforming the whole scene. To avoid these problems, the paper pursues an alternative processing strategy where the EO parameters are transformed prior to the restitution. If only this transition was done, however, the scene would be systematically distorted. The reason is that the national coordinates are not Cartesian due to the earth curvature and the unavoidable length distortion of map projections. To settle these distortions, several corrections need to be applied. These are treated in detail for both passive and active imaging. Since all these corrections are approximations only, the resulting technique is termed "approximate direct georeferencing". Still, the residual distortions are usually very low as is demonstrated by simulations, rendering the technique an attractive approach to direct georeferencing.
Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.
Xu, Jingquan; Qin, SiYi; Liu, Chen; Fu, Songnian; Liu, Deming
2018-06-15
In order to calibrate the spatial phase response nonuniformity of liquid crystal on silicon (LCoS), we propose to use a Twyman-Green interferometer to characterize the wavefront distortion, due to the inherent curvature of the device. During the characterization, both the residual carrier frequency introduced by the Fourier transform evaluation method and the lens aberration are error sources. For the tilted phase error introduced by residual carrier frequency, the least mean square fitting method is used to obtain the tilted phase error. Meanwhile, we use Zernike polynomials fitting based on plane mirror calibration to mitigate the lens aberration. For a typical LCoS with 1×12,288 pixels after calibration, the peak-to-valley value of the inherent wavefront distortion is approximately 0.25λ at 1550 nm, leading to a half-suppression of wavefront distortion. All efforts can suppress the root mean squares value of the inherent wavefront distortion to approximately λ/34.
Compression asphyxia from a human pyramid.
Tumram, Nilesh Keshav; Ambade, Vipul Namdeorao; Biyabani, Naushad
2015-12-01
In compression asphyxia, respiration is stopped by external forces on the body. It is usually due to an external force compressing the trunk such as a heavy weight on the chest or abdomen and is associated with internal injuries. In present case, the victim was trapped and crushed under the falling persons from a human pyramid formation for a "Dahi Handi" festival. There was neither any severe blunt force injury nor any significant pathological natural disease contributing to the cause of death. The victim was unable to remove himself from the situation because his cognitive responses and coordination were impaired due to alcohol intake. The victim died from asphyxia due to compression of his chest and abdomen. Compression asphyxia resulting from the collapse of a human pyramid and the dynamics of its impact force in these circumstances is very rare and is not reported previously to the best of our knowledge. © The Author(s) 2015.
Real-time 3D measurement based on structured light illumination considering camera lens distortion
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing
2014-12-01
Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.
ERIC Educational Resources Information Center
Wilson, Celia M.
2010-01-01
Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-25
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Yingxiang; Li, Zhipan; Xia, Dingguo; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia
2015-09-01
Three different pentacoordinate iron phthalocyanine (FePc) electrocatalysts with an axial ligand (pyridyl group, Py) anchored to multi-walled carbon nanotubes (MWCNTs) are prepared by a microwave method as high performance composite electrocatalysts (FePc-Py/MWCNTs) for the oxygen reduction reaction (ORR). For comparison, tetracoordinate FePc electrocatalysts without an axial ligand anchored to MWCNTs (FePc/MWCNTs) are assembled in the same way. Ultraviolet-visible spectrophotometry (UV-Vis), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HRTEM) are used to characterize the obtained electrocatalysts. The electrocatalytic activity of the samples is measured by linear sweep voltammetry (LSV), and the onset potential of all of the FePc-Py/MWCNTs electrocatalysts is found to be more positive than that of their FePc/MWCNTs counterparts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy are employed to elucidate the relationship between molecular structure and electrocatalytic activity. XPS indicates that higher concentrations of Fe3+ and pyridine-type nitrogen play critical roles in determining the electrocatalytic ORR activity of the samples. XAFS spectroscopy reveals that the FePc-Py/MWCNTs electrocatalysts have a coordination geometry around Fe that is closer to the square pyramidal structure, a higher concentration of Fe3+, and a smaller phthalocyanine ring radius compared with those of FePc/MWCNTs.
NASA Astrophysics Data System (ADS)
Jafari-Moghaddam, Faezeh; Beyramabadi, S. Ali; Khashi, Maryam; Morsali, Ali
2018-02-01
Three oxovanadium(IV) complexes of the pyridoxal Schiff bases have been newly synthesized and characterized. The used Schiff bases were N,N‧-dipyridoxyl(ethylenediamine), N,N‧-dipyridoxyl(1,3-propanediamine) and N,N‧-dipyridoxyl(1,2-benzenediamine). Also, the optimized geometry, assignment of the IR bands and the Natural Bond Orbital (NBO) analysis of the complexes have been computed using the density functional theory (DFT) methods. Dianionic form of the Schiff bases (L2-) acts as a tetradentate N2O2 ligand. The coordinating atoms of the Schiff base are the phenolate oxygens and imine nitrogens, which occupy four base positions of the square-pyramidal geometry of the complexes. The oxo ligand occupies the apical position of the [VO(L)] complexes. In the optimized geometry of the complexes, the coordinated Schiff bases have more planar structure than their free form. Due to the high-energy gaps, all of the complexes are predicted to be stable. Good agreement between the experimental values and the DFT-computed results supports suitability of the optimized geometries for the complexes. The investigated complexes show high catalytic activities in synthesis of the tetrahydrobenzo[b]pyrans through a three-component cyclocondensation reaction of dimedone, malononitrile and some aromatic aldehydes. The complexes catalyzed the reaction in solvent free conditions and the catalysts were found to be reusable.
Generic distortion model for metrology under optical microscopes
NASA Astrophysics Data System (ADS)
Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng
2018-04-01
For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.
NASA Astrophysics Data System (ADS)
Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.
2018-02-01
Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.
Measuring bacterial cells size with AFM
Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto
2012-01-01
Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837
Ohki, Yasuhiro; Yasumura, Kazunari; Ando, Masaru; Shimokata, Satoko; Tatsumi, Kazuyuki
2010-01-01
A [NiFe] hydrogenase model compound having a distorted trigonal-pyramidal nickel center, (CO)3Fe(μ-StBu)3Ni(SDmp), 1 (Dmp = C6H3-2,6-(mesityl)2), was synthesized from the reaction of the tetranuclear Fe-Ni-Ni-Fe complex [(CO)3Fe(μ-StBu)3Ni]2(μ-Br)2, 2 with NaSDmp at -40 °C. The nickel site of complex 1 was found to add CO or CNtBu at -40 °C to give (CO)3Fe(StBu)(μ-StBu)2Ni(CO)(SDmp), 3, or (CO)3Fe(StBu)(μ-StBu)2Ni(CNtBu)(SDmp), 4, respectively. One of the CO bands of 3, appearing at 2055 cm-1 in the infrared spectrum, was assigned as the Ni-CO band, and this frequency is comparable to those observed for the CO-inhibited forms of [NiFe] hydrogenase. Like the CO-inhibited forms of [NiFe] hydrogenase, the coordination of CO at the nickel site of 1 is reversible, while the CNtBu adduct 4 is more robust. PMID:20147622
Providing solid angle formalism for skyshine calculations.
Gossman, Michael S; Pahikkala, A Jussi; Rising, Mary B; McGinley, Patton H
2010-08-17
We detail, derive and correct the technical use of the solid angle variable identified in formal guidance that relates skyshine calculations to dose-equivalent rate. We further recommend it for use with all National Council on Radiation Protection and Measurements (NCRP), Institute of Physics and Engineering in Medicine (IPEM) and similar reports documented. In general, for beams of identical width which have different resulting areas, within ± 1.0 % maximum deviation the analytical pyramidal solution is 1.27 times greater than a misapplied analytical conical solution through all field sizes up to 40 × 40 cm². Therefore, we recommend determining the exact results with the analytical pyramidal solution for square beams and the analytical conical solution for circular beams.
Yamamura, Masaki; Albrecht, Marcel; Albrecht, Markus; Nishimura, Yoshinobu; Arai, Tatsuo; Nabeshima, Tatsuya
2014-02-03
A dipyrrin complex has been one of the most utilized fluorescent dyes, and a variety of dipyrrin complexes show intriguing functions based on the various coordination structures of the central element. We now report the synthesis, structure, and photophysical properties of germanium and stannane complexes of the N2O2-type tetradentate dipyrrin, L·Ge and L·Sn, which are heavier analogues of the previously reported dipyrrin silicon complex, L·Si. The central group-14 atoms of the monomeric complexes have geometries close to trigonal bipyramidal (TBP), in which the contribution of the square-pyramidal (SP) character becomes higher as the central atom is heavier. Interestingly, L·Sn formed a dimeric structure in the crystal. All complexes L·Si, L·Ge, and L·Sn showed a fluorescence in the red/NIR region. Fluorescence quantum yields of L·Ge and L·Sn are higher than that of L·Si. These results indicated that the central atom on the dipyrrin complexes contributes not only to the geometry difference but also to tuning the fluorescence properties.
The mammalian neocortex new pyramidal neuron: a new conception.
Marín-Padilla, Miguel
2014-01-06
The new cerebral cortex (neocortex) and the new type of pyramidal neuron are mammalian innovations that have evolved for operating their increasing motor capabilities while essentially using analogous anatomical and neural makeups. The human neocortex starts to develop in 6-week-old embryos with the establishment of a primordial cortical organization, which resembles the primitive cortices of amphibian and reptiles. From the 8th to the 15th week of age, new pyramidal neurons, of ependymal origin, are progressively incorporated within this primordial cortex forming a cellular plate that divides its components into those above it (neocortex first layer) and those below it (neocortex subplate zone). From the 16th week of age to birth and postnatally, the new pyramidal neurons continue to elongate functionally their apical dendrite by adding synaptic membrane to incorporate the needed sensory information for operating its developing motor activities. The new pyramidal neuron' distinguishing feature is the capacity of elongating anatomically and functionally its apical dendrite (its main receptive surface) without losing its original attachment to first layer or the location of its soma and, hence, retaining its essential nature. The number of pyramidal cell functional strata established in the motor cortex increases and reflects each mammalian species motor capabilities: the hedgehog needs two pyramidal cell functional strata to carry out all its motor activities, the mouse 3, cat 4, primates 5 and humans 6. The presence of six pyramidal cell functional strata distinguish the human motor cortex from that of others primates. Homo sapiens represent a new evolutionary stage that have transformed his primate brain for operating his unique motor capabilities, such as speaking, writing, painting, sculpturing and thinking as a premotor activity. Words used in language are the motor expression of thoughts and represent sounds produced by maneuvering the column of expiratory air by coordinated motor quivering as it passes through the larynx, pharynx, mouth, tongue, and lips. Homo sapiens cerebrum has developed new motor centers to communicate mental thoughts (and/or intention) through motor actions.
The Volume of a Stretched Tetrahedron; The Easy Way?
ERIC Educational Resources Information Center
Griffiths, Martin
2015-01-01
We consider here a number of ideas for the classroom or lecture theatre associated with the mensuration of solids. In particular, the volumes of various tetrahedra are obtained in an indirect manner (by way of prisms and square-based pyramids). This activity develops problem-solving skills, spatial visualization and a from-first-principles…
Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D
2015-01-01
This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentzen, W.; Song, X.Z.; Shelnutt, J.A.
1997-02-27
The X-ray crystal structures of synthetic and protein-bound metalloporphyrins are analyzed using a new normal structural decomposition method for classifying and quantifying their out-of-plane and in-plane distortions. These distortions are characterized in terms of equivalent displacements along the normal coordinates of the D{sub 4h}-symmetric porphyrin macrocycle (normal deformations). It is shown that the macrocyclic structure is, even in highly distorted porphyrins, accurately represented by displacements along only the lowest-frequency normal coordinates. Accordingly, the macrocyclic structure obtained from just the out-of-plane normal deformations of the saddling (sad, B{sub 2u})-, ruffling (ruf, B{sub 1u})-, doming (dom, A{sub 2u})-, waving [wav(x), wav(y); E{submore » g}]-, and propellering (pro, A{sub 1u})-type essentially simulates the out-of-plane distortion of the X-ray crystal structure. Similarly, the observed in-plane distortions are decomposed into in-plane normal deformations corresponding to the lowest-frequency vibrational modes including macrocycle stretching in the direction of the meso-carbon atoms (meso-str, B{sub 2g}), stretching in the direction of the nitrogen atoms (N-str, B{sub 1g}), x and y pyrrole translations [trn(x), trn(y); E{sub u}], macrocycle breathing (bre, A{sub 1g}), and pyrrole rotation (rot, A{sub 2g}). 71 refs., 9 figs., 4 tabs.« less
Baumgarten, Clement; Zhao, Yulong; Sauleau, Paul; Malrain, Cecile; Jannin, Pierre; Haegelen, Claire
2016-04-01
Deep brain stimulation of the medial globus pallidus (GPm) is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning-based method called PyMAN (PTSE model based on artificial neural network) accounting for the current used in stimulation, the three-dimensional electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the GPm have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was 0.78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.
Evaluation of lens distortion errors in video-based motion analysis
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo
1993-01-01
In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.
Use of zerotree coding in a high-speed pyramid image multiresolution decomposition
NASA Astrophysics Data System (ADS)
Vega-Pineda, Javier; Cabrera, Sergio D.; Lucero, Aldo
1995-03-01
A Zerotree (ZT) coding scheme is applied as a post-processing stage to avoid transmitting zero data in the High-Speed Pyramid (HSP) image compression algorithm. This algorithm has features that increase the capability of the ZT coding to give very high compression rates. In this paper the impact of the ZT coding scheme is analyzed and quantified. The HSP algorithm creates a discrete-time multiresolution analysis based on a hierarchical decomposition technique that is a subsampling pyramid. The filters used to create the image residues and expansions can be related to wavelet representations. According to the pixel coordinates and the level in the pyramid, N2 different wavelet basis functions of various sizes and rotations are linearly combined. The HSP algorithm is computationally efficient because of the simplicity of the required operations, and as a consequence, it can be very easily implemented with VLSI hardware. This is the HSP's principal advantage over other compression schemes. The ZT coding technique transforms the different quantized image residual levels created by the HSP algorithm into a bit stream. The use of ZT's compresses even further the already compressed image taking advantage of parent-child relationships (trees) between the pixels of the residue images at different levels of the pyramid. Zerotree coding uses the links between zeros along the hierarchical structure of the pyramid, to avoid transmission of those that form branches of all zeros. Compression performance and algorithm complexity of the combined HSP-ZT method are compared with those of the JPEG standard technique.
Least-squares model-based halftoning
NASA Astrophysics Data System (ADS)
Pappas, Thrasyvoulos N.; Neuhoff, David L.
1992-08-01
A least-squares model-based approach to digital halftoning is proposed. It exploits both a printer model and a model for visual perception. It attempts to produce an 'optimal' halftoned reproduction, by minimizing the squared error between the response of the cascade of the printer and visual models to the binary image and the response of the visual model to the original gray-scale image. Conventional methods, such as clustered ordered dither, use the properties of the eye only implicitly, and resist printer distortions at the expense of spatial and gray-scale resolution. In previous work we showed that our printer model can be used to modify error diffusion to account for printer distortions. The modified error diffusion algorithm has better spatial and gray-scale resolution than conventional techniques, but produces some well known artifacts and asymmetries because it does not make use of an explicit eye model. Least-squares model-based halftoning uses explicit eye models and relies on printer models that predict distortions and exploit them to increase, rather than decrease, both spatial and gray-scale resolution. We have shown that the one-dimensional least-squares problem, in which each row or column of the image is halftoned independently, can be implemented with the Viterbi's algorithm. Unfortunately, no closed form solution can be found in two dimensions. The two-dimensional least squares solution is obtained by iterative techniques. Experiments show that least-squares model-based halftoning produces more gray levels and better spatial resolution than conventional techniques. We also show that the least- squares approach eliminates the problems associated with error diffusion. Model-based halftoning can be especially useful in transmission of high quality documents using high fidelity gray-scale image encoders. As we have shown, in such cases halftoning can be performed at the receiver, just before printing. Apart from coding efficiency, this approach permits the halftoner to be tuned to the individual printer, whose characteristics may vary considerably from those of other printers, for example, write-black vs. write-white laser printers.
Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Park, J. H.
1984-01-01
An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, S.L.; Song, X.Z.; Ma, J.G.
1998-08-24
Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance Raman evidence for these conformers was given previously.« less
A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes
NASA Astrophysics Data System (ADS)
Wang, Shuai; Hang, Xudeng; Yuan, Guangwei
2017-12-01
In this paper, a new cell-centered finite volume scheme is proposed for three-dimensional diffusion equations on polyhedral meshes, which is called as pyramid scheme (P-scheme). The scheme is designed for polyhedral cells with nonplanar cell-faces. The normal flux on a nonplanar cell-face is discretized on a planar face, which is determined by a simple optimization procedure. The resulted discrete form of the normal flux involves only cell-centered and cell-vertex unknowns, and is free from face-centered unknowns. In the case of hexahedral meshes with skewed nonplanar cell-faces, a quite simple expression is obtained for the discrete normal flux. Compared with the second order accurate O-scheme [31], the P-scheme is more robust and the discretization cost is reduced remarkably. Numerical results are presented to show the performance of the P-scheme on various kinds of distorted meshes. In particular, the P-scheme is shown to be second order accurate.
Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset
2017-06-21
Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.
Di-μ-acetato-bis[(acetato-κ2 O,O′)bis(isonicotinamide-κN)copper(II)
Perec, Mireille; Baggio, Ricardo
2010-01-01
The title centrosymmetric bimetallic complex, [Cu2(C2H3O2)4(C6H6N2O)4], is composed of two copper(II) cations, four acetate anions and four isonicotinamide (INA) ligands. The asymmetric unit contains one copper cation to which two acetate units bind asymmetrically; one of the Cu—O distances is rather long [2.740 (2) Å], almost at the limit of coordination. These Cu—O bonds define an equatorial plane to which the Cu—N bonds to the INA ligands are almost perpendicular, the Cu—N vectors subtending angles of 2.4 (1) and 2.3 (1)° to the normal to the plane. The metal coordination geometry can be described as a slightly distorted trigonal bipyramid if the extremely weak Cu—O bond is disregarded, or as a highly distorted square bipyramid if it is not. The double acetate bridge between the copper ions is not coplanar with the CuO4 equatorial planes, the dihedral angle between the (O—C—O)2 and O—Cu—O groups being 34.3 (1)°, resulting in a sofa-like conformation for the 8-member bridging loop. In the crystal, N—H⋯O hydrogen bonds occur, some of which generate a head-to tail-linkage between INA units, giving raise to chains along [101]; the remaining ones make inter-chain contacts, defining a three-dimensional network. There are in addition a number of C—H⋯O bonds involving aromatic H atoms. Probably due to steric hindrance, the aromatic rings are not involved in significant π⋯π interactions. PMID:21580223
Initiatives (Part 3): Food Pyramid Juggle; Transportation Initiative Circuit.
ERIC Educational Resources Information Center
Kilty, Katie; Klag, Bill
2001-01-01
Presents two group activities for ages 10 and up; one instructs about food groups and reinforces healthy eating habits, while the other is a multitask physical activity stressing cooperation and coordination. Includes target group, group size, time and space needs, activity level, overview, goals, props, instructions, suggestions for framing and…
New oxyfluorotellurates(IV): MTeO3F (M = FeIII, GaIII and CrIII).
Laval, Jean Paul; Jennene Boukharrata, Nefla; Thomas, Philippe
2008-02-01
The crystal structures of the new isomorphous compounds iron(III) oxyfluorotellurate(IV), FeTeO(3)F, gallium(III) oxyfluorotellurate(IV), GaTeO(3)F, and chromium(III) oxyfluorotellurate(IV), CrTeO(3)F, consist of zigzag chains of MO(4)F(2) distorted octahedra alternately sharing O-O and F-F edges and connected via TeO(3) trigonal pyramids. A full O/F anionic ordering is observed and the electronic lone pair of the Te(IV) cation is stereochemically active.
Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys
NASA Astrophysics Data System (ADS)
Balakrishna, Ananya Renuka; Carter, W. Craig
2018-04-01
Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
O'Brien, Patrick; Zeller, Matthias; Lee, Wei-Tsung
2018-04-01
The title compound, [NiBr(C 25 H 29 N 2 O)], contains an Ni II atom with a slightly distorted square-planar coordination environment defined by one O and two N atoms from the 2-{[(8-aminona-phthalen-1-yl)imino]-meth-yl}-4,6-di- tert -butyl-phenolate ligand and a bromide anion. The Ni-O and Ni-N bond lengths are slightly longer than those observed in the phenyl backbone counterpart, which can be attributed to the larger steric hindrance of the naphthyl group in the structure of the title compound. The mol-ecule as a whole is substanti-ally distorted, with both the planar naphthalene-1,8-di-amine and imino-meth-yl-phenolate substitutents rotated against the NiN 2 OBr plane by 38.92 (7) and 37.22 (8)°, respectively, giving the mol-ecule a twisted appearance. N-H⋯Br hydrogen bonds and N-H⋯C(π) contacts connect the mol-ecules into dimers, and additional C-H⋯Br contacts, C-H⋯π inter-actions, and an offset stacking inter-action between naphthyl units inter-connect these dimers into a three-dimensional network.
Kitto, Heather J; Rae, A David; Webster, Richard D; Willis, Anthony C; Wild, S Bruce
2007-09-17
The ligand (S,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (S,S)-tetraphos, reacts with hexa(aqua)nickel(II) chloride in the presence of trimethylsilyl triflate (TMSOTf) in dichloromethane to give the yellow square-planar complex [Ni{(R,R)-tetraphos}](OTf)2, which has been crystallographically characterized as the square-pyramidal, acetonitrile adduct [Ni(NCMe){(R,R)-tetraphos}]OTf. Cyclic voltammograms of the nickel(II) complex in dichloromethane and acetonitrile at 20 degrees C showed two reduction processes at negative potentials with oxidative (E(p)(ox)) and reductive (E(p)(red)) peak separations similar to those observed for ferrocene/ferrocenium under identical conditions, suggesting two one-electron steps. The cyclic voltammetric data for the divalent nickel complex in acetonitrile at temperatures below -20 degrees C were interpreted according to reversible coordination of acetonitrile to the nickel(I) and nickel(0) complexes. The divalent palladium and platinum complexes [M{(R,R)-tetraphos}](PF6)2 and [M2{(R,R)-tetraphos}2](OTf)4 have been prepared. The reduction potentials for the complexes [M{(R,R)-tetraphos}](PF6)2 increase in the order nickel(II) < palladium(II) < platinum(II). The reaction of (S,S)-tetraphos with bis(cycloocta-1,5-diene)nickel(0) in benzene affords orange [Ni{(R,R)-tetraphos}], which slowly rearranges into the thermodynamically more stable, yellow, double-stranded helicate [Ni2{(R,R)-tetraphos}2]; the crystal structures of both complexes have been determined. The reactions of (S,S)-tetraphos with [M(PPh3)4] in toluene (M = Pd) or benzene (M = Pt) furnish the double-stranded helicates [M2{(R,R)-tetraphos}2]; the palladium complex crystallizes from hot benzene as the 2-benzene solvate and was structurally characterized by X-ray crystallography. In each of the three zerovalent complexes, the coordinated (R,R)-tetraphos stereospecifically generates tetrahedral M(PP)2 stereocenters of M configuration.
Musale, P K; Mujawar, S A V
2014-04-01
This in vitro study aimed to evaluate the efficacy of rotary ProFile, ProTaper, Hero Shaper and K-files in shaping ability, cleaning efficacy, preparation time and instrument distortion in primary molars. Sixty extracted primary mandibular second molars were divided into four equal groups: Group I K-file, Group II ProFile, Group III ProTaper file and Group IV Hero Shaper file. The shaping ability was determined by comparing pre- and post-instrumentation CBCT scans and data analysed with SPSS program using the Chi-square test. Cleaning efficacy was evaluated by the degree of India ink removal from the canal walls under stereomicroscopy. Instrumentation times were calculated for each tooth and instrument distortion was visually checked and duly noted. The cleaning efficacy and instrumentation time were determined using ANOVA with Tukey's correction. Instrument distortion was analysed using Chi-square test. The canal taper was significantly more conical for rotary files as compared to K-files with Chi-square test (p < 0.05). Cleaning efficacy of rotary files with average scores (Groups II- 0.68, III- 0.48 and IV- 0.58) was significantly better than K-files (Group I- 0.93) (p < 0.05). Mean instrumentation time with K-file (20.7 min) was significantly higher than rotary files (Groups II 8.9, III 5.6, and IV 8.1 min) (p < 0.05). Instrument distortion was observed in Group I (4.3%), while none of the rotary files were distorted. Rotary files prepared more conical canals in primary teeth than manual instruments. Reduced preparation time with rotary files enhances patient cooperation especially in young children.
Ha, Kwang
2012-01-01
The asymmetric unit of the title compound, K2[Pd(NCS)4]·2[Pd(NCS)2(C8H6N4)], contains two crystallographically independent half-molecules of the anionic PdII complex, two K+ cations and two independent neutral PdII complexes; an inversion centre is located at the centroid of each anionic complex. In the anionic complexes, each PdII ion is four-coordinated in an almost regular square-planar environment by four S atoms from four SCN− anions, and the PdS4 unit is exactly planar. In the neutral complexes, the PdII ion has a slightly distorted square-planar coordination environment defined by two pyrimidine N atoms derived from a chelating 2,2′-bipyrimidine ligand and two mutually cis S atoms from two SCN− anions. Both 2,2′-bipyrimidine ligands are almost planar [dihedral angle between the rings = 3.98 (16) and 4.57 (17)°] and also chelate to a potassium ion from their other two N atoms. In the crystal, the K+ ions interact with various S and N atoms of the ligands, forming a three-dimensional polymeric network, in which the shortest K⋯K contacts between the KN7S polyhedra are 4.4389 (17) and 4.4966 (18) Å. Intra- and intermolecular C—H⋯S and C—H⋯N hydrogen bonds are also observed. PMID:22590117
Hung, Sheng-Wei; Yang, Fuh-An; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2008-08-18
The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.
Altaf, Muhammad; Stoeckli-Evans, Helen
2017-10-01
Tranexamic acid [systematic name: trans -4-(amino-meth-yl)cyclo-hexane-1-carb-oxy-lic acid], is an anti-fibrinolytic amino acid that exists as a zwitterion [ trans -4-(ammonio-meth-yl)cyclo-hexane-1-carboxyl-ate] in the solid state. Its reaction with copper chloride leads to the formation of a compound with a copper(II) paddle-wheel structure that crystallizes as a hexa-hydrate, [Cu 2 Cl 2 (C 8 H 15 NO 2 ) 4 ] 2+ ·2Cl - ·6H 2 O. The asymmetric unit is composed of a copper(II) cation, two zwitterionic tranexamic acid units, a coordinating Cl - anion and a free Cl - anion, together with three water mol-ecules of crystallization. The whole structure is generated by inversion symmetry, with the Cu⋯Cu axle of the paddle-wheel dication being located about a center of symmetry. The cyclo-hexane rings of the zwitterionic tranexamic acid units have chair conformations. The carboxyl-ate groups that bridge the two copper(II) cations are inclined to one another by 88.4 (8)°. The copper(II) cation is ligated by four carboxyl-ate O atoms in the equatorial plane and by a Cl - ion in the axial position. Hence, it has a fivefold O 4 Cl coordination sphere with a perfect square-pyramidal geometry and a τ 5 index of zero. In the crystal, the paddle-wheel dications are linked by a series of N-H⋯Cl hydrogen bonds, involving the coordinating and free Cl - ions, forming a three-dimensional network. This network is strengthened by a series of N-H⋯O water , O water -H⋯Cl and O water -H⋯O hydrogen bonds.
Linear trichromium complexes with the anion of 2,6-di(phenylimino)piperidine.
Clérac, R; Cotton, F A; Daniels, L M; Dunbar, K R; Murillo, C A; Zhou, H C
2000-07-24
The anion of 2,6-di(phenylimino)piperidine (DPhIP) has been found to support linear chains of three metal atoms. Three new compounds, [Cr3(DPhIP)4Cl]Cl.(1).5CH2Cl2.0.5H2O (1.1.5CH2Cl2.0.5H2O), [Cr3(DPhIP)4(CH3CN)]- (PF6)2.H2O.4CH3CN (2.H2O.4CH3CN), and [Cr3(DPhIP)4(F)(CH3CN)](BF4)2.5CH3CN (3.5CH3CN), have been synthesized and characterized by X-ray crystallography. Compound 1 has a linear chain of three chromium atoms arranged in an unsymmetrical fashion, with two of them forming a quadruply bonded unit (Cr-Cr distance 1.932(2) A) and the third being a non-metal-metal-bound 5-coordinate unit (Cr...Cr distance 2.659(2) A). The fifth coordination site is occupied by a chloride ion, and another chloride ion is located in the interstices of the crystal. The trimetal unit in compound 2 is structurally similar to that in compound 1 except that the axial ligand in 2 is a CH3CN molecule. Compound 3 is an oxidation product prepared by reaction of 1 with AgBF4. Here, a square pyramidal CrIII unit, FCrN4, and a Cr-Cr quadruply bonded (Cr-Cr distance 1.968(2) A) unit, with an axially coordinated acetonitrile molecule, form the trichromium chain. The CrIII...CrII separation of 2.594(2) A in 3 is too long to be considered a bonding interaction.
NASA Technical Reports Server (NTRS)
Chen, Fang-Jenq
1997-01-01
Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.
NASA Astrophysics Data System (ADS)
Harit, Tarik; Abouloifa, Houssam; Tillard, Monique; Eddike, Driss; Asehraou, Abdeslam; Malek, Fouad
2018-07-01
The synthesis of new bipyrazolic ligands functionalized by carboxyl groups, namely 3-Bis(3‧-carboxyl-5‧-methyl-l'-pyrazolyl) propan-2-ol (L1) and 1,3-Bis(3‧-carboxyl-5‧-methyl-l '-pyrazolyl),2-methyl propane (L2) is reported. Their corresponding [C13H15CuN4O5] (CuL1) and [C14H16CuN4O4] (CuL2) copper (II) complexes are also elaborated and characterized by elemental analysis, FTIR an UV-visible spectroscopy. The crystal structure of the CuL1 complex confirms that copper atom is 4-coordinated, in a distorted square planar geometry within the molecule, and achieves its coordination through weak intermolecular interactions leading to two dimensional slabs. This geometry is in agreement with UV-visible results which also evidence that structure of complexes are affected in DMSO in contrast to methanol. No antibacterial activity against all the tested bacterial strains has been found for the Cu (II) complexes. By contrast, CuL1 is characterized with good catalytic properties in the air-oxidation of catechol substrate to quinone.
Argibay-Otero, Saray; Carballo, Rosa; Vázquez-López, Ezequiel M
2017-10-01
The asymmetric unit of the title compound, [ReCl(C 5 H 5 NO) 2 (CO) 3 ]·C 5 H 5 NO, contains one mol-ecule of the complex fac -[ReCl(4-pyOH) 2 (CO) 3 ] (where 4-pyOH represents 4-hy-droxy-pyridine) and one mol-ecule of pyridin-4(1 H )-one (4-HpyO). In the mol-ecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octa-hedral. In the crystal structure, both fragments are associated by hydrogen bonds; two 4-HpyO mol-ecules bridge between two mol-ecules of the complex using the O=C group as acceptor for two different HO- groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N-H groups of the 4-HpyO mol-ecule and the chloride ligands. The chains are further stabilized by π-stacking inter-actions.
Redetermination of (2,2'-bipyridine-κN,N')dichlorido-palladium(II) dichloro-methane solvate.
Kim, Nam-Ho; Hwang, In-Chul; Ha, Kwang
2009-05-07
In the title compound, [PdCl(2)(C(10)H(8)N(2))]·CH(2)Cl(2), the Pd(2+) ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the 2,2'-bipyridine (bipy) ligand and two chloride ions. The compound displays intra-molecular C-H⋯Cl hydrogen bonds and pairs of complex mol-ecules are connected by inter-molecular C-H⋯Cl hydrogen bonds. Inter-molecular π-π inter-actions are present between the pyridine rings of the ligand, the shortest centroid-centroid distance being 4.096 (3) Å. As a result of the electronic nature of the chelate ring, it is possible to create π-π inter-actions to its symmetry-related counterpart [3.720 (2) Å] and also with a pyridine ring [3.570 (3) Å] of the bipy unit. The present structure is a redetermination of a previous structure [Vicente et al. (1997 ▶). Private communication (refcode PYCXMN02). CCDC, Cambridge, England]. In the new structure refinement all H atoms were located in a difference Fourier synthesis. Their coordinates were refined freely, together with isotropic displacement parameters.
NASA Astrophysics Data System (ADS)
Coban, Mustafa Burak
2018-06-01
A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.
High-precision method of binocular camera calibration with a distortion model.
Li, Weimin; Shan, Siyu; Liu, Hui
2017-03-10
A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.
Synthesis and crystal structure of the iridium(I) carbene complex with a pair of hydrogen wing tips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.-Y.; Chen, Z.-M.; Wang, Y.
The iridium(I) cyclooctadiene complex with two (3-tert-butylimidazol-2-ylidene) ligands [(H-Im{sup t}Bu){sub 2}Ir(COD)]{sup +}PF{sub 6}{sup −} (C{sub 22}H{sub 32}PF{sub 6}IrN{sub 4}) has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal atom, which is coordinated by two H-Im{sup t}Bu ligands and one cyclooctadiene group. The new iridium carbene complex has a pair of hydrogen wing tips. The Ir−C{sub carbene} bond lengths are 2.066(5) and 2.052(5) Å, and the bond angle C−Ir−C between these bonds is 95.54(19)°. The dihedral angle between two imidazol-2-ylidene rings is 86.42°.
NASA Astrophysics Data System (ADS)
Patel, R. N.; Singh, Nripendra; Gundla, V. L. N.; Chauhan, U. K.
2007-03-01
A series of ternary copper(II) complexes containing same coordination sphere but difference in the counter ions, viz., [Cu(PMDT)(OAc)]PF 6(1); [Cu(PMDT)(OAc)]ClO 4(2); [Cu(PMDT)(OAc)]BF 4(3) and [Cu(PMDT)(OAc)]BPh 4(4) where PMDT = N, N, N', N″, N″-pentamethyldiethylenetriamine, OAc = Acetate ion were synthesized and characterized by means of spectroscopic, magnetic and cyclic voltammetric measurements. In frozen solution e.p.r. spectra, an interesting relation g|| > g⊥ has been observed which is a typical of the axially symmetric d 9 Cu II ( SCu = 1/2) having an unpaired electron in a d orbital. Single crystal X-ray analysis of (1) has revealed the presence of distorted square planar geometry. The influence of the counter ion on the complexes has been examined by performing some biological experiments like superoxide dismutase and anti-microbial activity.
Chebout, Oussama; Boudraa, Mhamed; Bouacida, Sofiane; Merazig, Hocine; Boudaren, Chaouki
2016-01-01
The title compound, {(C7H6NS)2[Sb2Cl6O]}n, contains two benzothiazolidium cations and one tri-μ-chlorido-trichlorido-μ-oxido-diantimonate(III) anion. The structure of the inorganic cation may be described as as being built up from two polyhedra, i.e. a square-pyramidal SbCl4O and a distorted octahedral SbOCl5 unit, sharing a common face (comprising the O atom and two Cl atoms). The two benzothiazole cations are quasi-planar and subtend a dihedral angle of 19.93 (5)°. The crystal packing can be described by alternating (100) layers and [001] chains of the organic cations and inorganic anions connected through an extensive three-dimensional network of N—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds. This is consolidated by slipped π–π stacking, with centroid-to-centroid distances between the benzothiazole rings of 3.7111 (18)–3.8452 (16) Å. These interactions link the molecules within the layers and also link the layers together and reinforce the cohesion of the ionic structure. PMID:26958390
NASA Astrophysics Data System (ADS)
Abou-Hussein, Azza A.; Linert, Wolfgang
2014-01-01
Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.
NASA Astrophysics Data System (ADS)
Abdel Aziz, Ayman A.; Badr, Ibrahim H. A.; El-Sayed, Ibrahim S. A.
2012-11-01
Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)2·2H2O and anhydrous AlCl3 with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L1) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L2). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, 1H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.
Abdel Aziz, Ayman A; Badr, Ibrahim H A; El-Sayed, Ibrahim S A
2012-11-01
Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)(2).2H(2)O and anhydrous AlCl(3) with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H(2)L(1)) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H(2)L(2)). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.
Crystal structures of two mixed-valence copper cyanide complexes with N-methylethylenediamine
Sabatino, Alexander
2017-01-01
The crystal structures of two mixed-valence copper cyanide compounds involving N-methylethylenediamine (meen), are described. In compound (I), poly[bis(μ3-cyanido-κ3 C:C:N)tris(μ2-cyanido-κ2 C:N)bis(N-methylethane-1,2-diamine-κ2 N,N′)tricopper(I)copper(II)], [Cu4(CN)5(C3H10N2)2] or Cu4(CN)5meen2, cyanide groups link CuI atoms into a three-dimensional network containing open channels parallel to the b axis. In the network, two tetrahedrally bound CuI atoms are bonded by the C atoms of two end-on bridging CN groups to form Cu2(CN)6 moieties with the Cu atoms in close contact at 2.560 (1) Å. Other trigonally bound CuI atoms link these units together to form the network. The CuII atoms, coordinated by two meen units, are covalently linked to the network via a cyanide bridge, and project into the open network channels. In the molecular compound (II), [(N-methylethylenediamine-κ2 N,N′)copper(II)]-μ2-cyanido-κ2 C:N-[bis(cyanido-κC)copper(I)] monohydrate, [Cu2(CN)3(C3H10N2)2]·H2O or Cu2(CN)3meen2·H2O, a CN group connects a CuII atom coordinated by two meen groups with a trigonal–planar CuI atom coordinated by CN groups. The molecules are linked into centrosymmetric dimers via hydrogen bonds to two water molecules. In both compounds, the bridging cyanide between the CuII and CuI atoms has the N atom bonded to CuII and the C atom bonded to CuI, and the CuII atoms are in a square-pyramidal coordination. PMID:28217329
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2017-04-01
Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.
Rosales-Vázquez, Luis D; Sánchez-Mendieta, Víctor; Dorazco-González, Alejandro; Martínez-Otero, Diego; García-Orozco, Iván; Morales-Luckie, Raúl A; Jaramillo-Garcia, Jonathan; Téllez-López, Antonio
2017-09-26
Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H 2 O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H 2 O} n (1); [Cd 2 (H 2 O) 2 (e,a-cis-1,4-chdc) 2 (4,4'-dmb) 2 ] n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H 2 O·CH 3 OH} n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH 3 OH} n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd 2 O 2 ) as nodes to generate larger cycles made up of four dinuclear units, a Cd 4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λ em = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 μmol L -1 .
Cutting Solid Figures by Plane--Analytical Solution and Spreadsheet Implementation
ERIC Educational Resources Information Center
Benacka, Jan
2012-01-01
In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and…
The trigonal prism in coordination chemistry.
Cremades, Eduard; Echeverría, Jorge; Alvarez, Santiago
2010-09-10
Herein we analyze the accessibility of the trigonal-prismatic geometry to metal complexes with different electron configurations, as well as the ability of several hexadentate ligands to favor that coordination polyhedron. Our study combines i) a structural database analysis of the occurrence of the prismatic geometry throughout the transition-metal series, ii) a qualitative molecular orbital analysis of the distortions expected for a trigonal-prismatic geometry, and iii) a computational study of complexes of several transition-metal ions with different hexadentate ligands. Also the tendency of specific electron configurations to present a cis bond-stretch Jahn-Teller distortion is analyzed.
Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation
NASA Astrophysics Data System (ADS)
Baumgarten, C.; Zhao, Y.; Sauleau, P.; Malrain, C.; Jannin, P.; Haegelen, C.
2016-03-01
Deep brain stimulation of the medial globus pallidus is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The lack of side-effect predictive model leads the neurologist to secure an optimal electrode placement by iterating clinical testing on an awake patient during the surgical procedure. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning based method called PyMAN (for Pyramidal tract side effect Model based on Artificial Neural network) that accounted for the current of the stimulation, the 3D electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the medial globus pallidus have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was .78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.
Vibration measurement with nonlinear converter in the presence of noise
NASA Astrophysics Data System (ADS)
Mozuras, Almantas
2017-10-01
Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on the measurement results. The greater is the nonlinearity the lower is noise. This method enables the use of the converters that are normally not suitable due to the high nonlinearity.
How They (Should Have) Built the Pyramids
NASA Astrophysics Data System (ADS)
Gallagher, Gregory; West, Joseph; Waters, Kevin
2014-03-01
A novel ``polygon method'' is proposed for moving large stone blocks. The method is implemented by the attachment of rods of analytically chosen radii to the block by means of rope. The chosen rods are placed on each side of the square-prism block in order to transform the square prism into a prism of higher order polygon, i.e. octagon, dodecagon etc. Experimental results are presented and compared to other methods proposed by the authors, including a dragging method and a rail method which includes the idea of dragging the block on rails made from arbitrarily chosen rod-shaped ``tracks,'' and to independent work by another group which utilized wooden attachments providing a cylindrical shape. It is found that the polygon method when used on small scale stone blocks across level open ground has an equivalent of a coefficient of friction order of 0.1. For full scale pyramid blocks, the wooden ``rods'' would need to be of order 30 cm in diameter, certainly within reason, given the diameter of wooden masts used on ships in that region during the relevant time period in Egypt. This project also inspired a ``spin-off'' project in which the behavior or rolling polygons is investigated and preliminary data is presented.
Chirality in distorted square planar Pd(O,N)2 compounds.
Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi
2013-10-01
Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.
Processing techniques development, volume 3
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Anuta, P. E.; Hixson, M. M.; Swain, P. H.
1978-01-01
The author has identified the following significant results. Analysis of the geometric characteristics of the aircraft synthetic aperture radar (SAR) relative to LANDSAT indicated that relatively low order polynominals would model the distortions to subpixel accuracy to bring SAR into registration for good quality imagery. Also the area analyzed was small, about 10 miles square, so this is an additional constraint. For the Air Force/ERIM data, none of the tested methods could achieve subpixel accuracy. Reasons for this is unknown; however, the noisy (high scintillation) nature of the data and attendent unrecognizability of features contribute to this error. It is concluded that the quadratic model would adequately provide distortion modeling for small areas, i.e., 10 to 20 miles square.
Kona, Fathima; Tao, Peng; Martin, Philip; Xu, Xingjue; Gatti, Domenico L
2009-04-28
Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) is active with a variety of different divalent metal ions bound in the active site. The Cd(2+), Zn(2+), and Cu(2+) substituted enzymes display similar values of k(cat) and similar dependence of K(m)(PEP) and K(m)(A5P) on both substrate and product concentrations. However, the flux-control coefficients for some of the catalytically relevant reaction steps are different in the presence of Zn(2+) or Cu(2+), suggesting that the type of metal bound in the active site affects the behavior of the enzyme in vivo. The type of metal also affects the rate of product release in the crystal environment. For example, the crystal structure of the Cu(2+) enzyme incubated with phosphoenolpyruvate (PEP) and arabinose 5-phosphate (A5P) shows the formed product, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), still bound in the active site in its linear conformation. This observation completes our structural studies of the condensation reaction, which altogether have provided high-resolution structures for the reactants, the intermediate, and the product bound forms of KDO8PS. The crystal structures of the Cd(2+), Zn(2+), and Cu(2+) substituted enzymes show four residues (Cys-11, His-185, Glu-222, and Asp-233) and a water molecule as possible metal ligands. Combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations reveal that the metal centers have a delocalized electronic structure, and that their true geometry is square pyramidal for Cd(2+) and Zn(2+) and distorted octahedral or distorted tetrahedral for Cu(2+). These geometries are different from those obtained by QM optimization in the gas phase (tetrahedral for Cd(2+) and Zn(2+), distorted tetrahedral for Cu(2+)) and may represent conformations of the metal center that minimize the reorganization energy between the substrate-bound and product-bound states. The QM/MM calculations also show that when only PEP is bound to the enzyme the electronic structure of the metal center is optimized to prevent a wasteful reaction of PEP with water.
Reger, Daniel L; Pascui, Andrea E; Foley, Elizabeth A; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew
2014-02-17
The reactions of M(ClO4)2·xH2O and the ditopic ligands m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) or m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (Lm*) in the presence of triethylamine lead to the formation of monohydroxide-bridged, dinuclear metallacycles of the formula [M2(μ-OH)(μ-Lm)2](ClO4)3 (M = Fe(II), Co(II), Cu(II)) or [M2(μ-OH)(μ-Lm*)2](ClO4)3 (M = Co(II), Ni(II), Cu(II)). With the exception of the complexes where the ligand is Lm and the metal is copper(II), all of these complexes have distorted trigonal bipyramidal geometry around the metal centers and unusual linear (Lm*) or nearly linear (Lm) M-O-M angles. For the two solvates of [Cu2(μ-OH)(μ-Lm)2](ClO4)3, the Cu-O-Cu angles are significantly bent and the geometry about the metal is distorted square pyramidal. All of the copper(II) complexes have structural distortions expected for the pseudo-Jahn-Teller effect. The two cobalt(II) complexes show moderate antiferromagnetic coupling, -J = 48-56 cm(-1), whereas the copper(II) complexes show very strong antiferromagnetic coupling, -J = 555-808 cm(-1). The largest coupling is observed for [Cu2(μ-OH)(μ-Lm*)2](ClO4)3, the complex with a Cu-O-Cu angle of 180°, such that the exchange interaction is transmitted through the dz(2) and the oxygen s and px orbitals. The interaction decreases, but it is still significant, as the Cu-O-Cu angle decreases and the character of the metal orbital becomes increasingly d(x(2)-y(2)). These intermediate geometries and magnetic interactions lead to spin Hamiltonian parameters for the copper(II) complexes in the EPR spectra that have large E/D ratios and one g matrix component very close to 2. Density functional theory calculations were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with the experiments.
More flexibility in representing geometric distortion in astronomical images
NASA Astrophysics Data System (ADS)
Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir
2012-09-01
A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.
Internal process: what is abstraction and distortion process?
NASA Astrophysics Data System (ADS)
Fiantika, F. R.; Budayasa, I. K.; Lukito, A.
2018-03-01
Geometry is one of the branch of mathematics that plays a major role in the development of science and technology. Thus, knowing the geometry concept is needed for students from their early basic level of thinking. A preliminary study showed that the elementary students have difficulty in perceiving parallelogram shape in a 2-dimention of a cube drawing as a square shape. This difficulty makes the students can not solve geometrical problems correctly. This problem is related to the internal thinking process in geometry. We conducted the exploration of students’ internal thinking processes in geometry particularly in distinguishing the square and parallelogram shape. How the students process their internal thinking through distortion and abstraction is the main aim of this study. Analysis of the geometrical test and deep interview are used in this study to obtain the data. The result of this study is there are two types of distortion and abstraction respectively in which the student used in their internal thinking processes.
Castro, Isabel; Calatayud, M Luisa; Barros, Wdeson P; Carranza, José; Julve, Miguel; Lloret, Francesc; Marino, Nadia; De Munno, Giovanni
2014-06-02
A novel series of heteroleptic copper(II) compounds of formulas {[Cu2(μ-H2O)(μ-pz)2(μ-bpm)(ClO4)(H2O)]ClO4·2H2O}n (1), {[Cu2(μ-H2O)(μ-3-Mepz)2(μ-bpm)](ClO4)2·2H2O}n (2), and {[Cu2(μ-OH)(μ-3,5-Me2pz)(μ-bpm)(H-3,5-Me2pz)2](ClO4)2}n (3) [bpm = 2,2'-bipyrimidine, Hpz = pyrazole, H-3-Mepz = 3-methylpyrazole, and H-3,5-Me2pz = 3,5-dimethylpyrazole] have been synthesized and structurally characterized by X-ray diffraction methods. The crystal structures of 1 and 2 consist of copper(II) chains with regular alternating bpm and bis(pyrazolate)(aqua) bridges, whereas that of 3 is made up of copper(II) chains with regular alternating bpm and (pyrazolate)(hydroxo) bridges. The copper centers are six- (1) or five-coordinate (2) in axially elongated, octahedral (1) or square-pyramidal (2) environments in 1 and 2, whereas they are five-coordinate in distorted trigonal-bipyramidal surroundings in 3. The values of the copper-copper separations across the bpm/pyrazolate bridges are 5.5442(7)/3.3131(6) (1), 5.538(1)/3.235(1) (2), and 5.7673(7)/3.3220(6) Å (3). The magnetic properties of 1-3 have been investigated in the temperature range of 25-300 K. The analysis of their magnetic susceptibility data through the isotropic Hamiltonian for an alternating antiferromagnetic copper(II) chain model [H = -J∑i=1-n/2 (S2i·S2i-1 + αS2i·S2i+1), with α = J'/J and Si = SCu = 1/2] reveals the presence of a strong to moderate antiferromagnetic coupling through the bis(pyrazolate)(aqua) [-J = 217 (1) and 215 cm(-1) (2)] and (pyrazolate)(hydroxo) bridges [-J = 153 cm(-1) (3)], respectively, whereas a strong to weak antiferromagnetic coupling occurs through the bis-bidentate bpm [-J' = 211 (1), 213 (2), and 44 cm(-1) (3)]. A simple orbital analysis of the magnetic exchange interaction within the bpm- and pyrazolate-bridged dicopper(II) fragments of 1-3 visualizes the σ-type pathways involving the (dx(2)-y(2)) (1 and 2) or d(z(2)) (3) magnetic orbitals on each metal ion, which account for the variation of the magnetic properties in these three novel examples of one-dimensional copper(II) compounds with regular alternating intrachain antiferromagnetic interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kussainova, Ardak M.; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716; Akselrud, Lev G.
2016-01-15
The series of quaternary sulfides with general formula Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi) have been synthesized by solid-state reactions. Three representative members have been structurally characterized by single-crystal X-ray diffraction. La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46), Z=4, a=13.401(2) Å, b=7.592(1) Å, c=7.598(1) Å, V=773.1(3) Å{sup 3}). The bismuth analogs of composition La{sub 2}CuBiS{sub 5} and Ce{sub 2}CuBiS{sub 5} crystallize with the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62), Z=4). Lattice parameters for La{sub 2}CuBiS{sub 5}: a=11.9213(5) Å, b=3.9967(2) Å, c=17.0537(8) Å, V=812.56(7) Å{sup 3}; lattice parameters formore » Ce{sub 2}CuBiS{sub 5}: a=11.9179(15) Å, b=3.9596(5) Å, c=16.955(2) Å, V=800.13(17) Å{sup 3}). The similarities and the differences between the two structures are discussed. Electronic structure calculations for La{sub 2}CuSbS{sub 5} and La{sub 2}CuBiS{sub 5} are also presented; they suggest semiconducting behavior with energy gaps exceeding 1.7 eV. - Graphical abstract: La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46). Its bismuth analog La{sub 2}CuBiS{sub 5} crystallizes in the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62)). Z=4, a=11.9213(5) Å, b=3.9967(2) Å, c=17.0536(10) Å, V=813.53(10) Å{sup 3}). The structures are based on rare-earth metal atoms coordinated by S atoms in a trigonal-prismatic and/or square-antiprismatic fashion, Cu-centered tetrahedra, and pnictogen atoms in pyramidal or distorted octahedral coordination. - Highlights: • Ln{sub 2}CuSbS{sub 5} are complex quarternary phases crystallizing in their own structure type. • Ln{sub 2}CuSbS{sub 5} and Ce{sub 2}CuBiS{sub 5} are new compound in the respective ternary phase diagrams. • Ln{sub 2}CuSbS{sub 5} on one side, and Ln{sub 2}CuBiS{sub 5} on the other are not isotypic.« less
The Assessment of Distortion in Neurosurgical Image Overlay Projection.
Vakharia, Nilesh N; Paraskevopoulos, Dimitris; Lang, Jozsef; Vakharia, Vejay N
2016-02-01
Numerous studies have demonstrated the superiority of neuronavigation during neurosurgical procedures compared to non-neuronavigation-based procedures. Limitations to neuronavigation systems include the need for the surgeons to avert their gaze from the surgical field and the cost of the systems, especially for hospitals in developing countries. Overlay projection of imaging directly onto the patient allows localization of intracranial structures. A previous study using overlay projection demonstrated the accuracy of image coregistration for a lesion in the temporal region but did not assess image distortion when projecting onto other anatomical locations. Our aim is to quantify this distortion and establish which regions of the skull would be most suitable for overlay projection. Using the difference in size of a square grid when projected onto an anatomically accurate model skull and a flat surface, from the same distance, we were able to calculate the degree of image distortion when projecting onto the skull from the anterior, posterior, superior, and lateral aspects. Measuring the size of a square when projected onto a flat surface from different distances allowed us to model change in lesion size when projecting a deep structure onto the skull surface. Using 2 mm as the upper limit for distortion, our results show that images can be accurately projected onto the majority (81.4%) of the surface of the skull. Our results support the use of image overlay projection in regions with ≤2 mm distortion to assist with localization of intracranial lesions at a fraction of the cost of existing methods. © The Author(s) 2015.
Health Care Reform, Care Coordination, and Transformational Leadership.
Steaban, Robin Lea
2016-01-01
This article is meant to spur debate on the role of the professional nurse in care coordination as well as the role of nursing leaders for defining and leading to a future state. This work highlights the opportunity and benefits associated with transformation of professional nursing practice in response to the mandates of the Affordable Care Act of 2010. An understanding of core concepts and the work of care coordination are used to propose a model of care coordination based on the population health pyramid. This maximizes the roles of nurses across the continuum as transformational leaders in the patient/family and nursing relationship. The author explores the role of the nurse in a transactional versus transformational relationship with patients, leading to actualization of the nurse in care coordination. Focusing on the role of the nurse leader, the challenges and necessary actions for optimization of the professional nurse role are explored, using principles of transformational leadership.
Pluto's Atmospheric Figure from the P131.1 Stellar Occultation
NASA Astrophysics Data System (ADS)
Person, M. J.; Elliot, J. L.; Clancy, K. B.; Kern, S. D.; Salyk, C. V.; Tholen, D. J.; Pasachoff, J. M.; Babcock, B. A.; Souza, S. P.; Ticehurst, D. R.; Hall, D.; Roberts, L. C., Jr.; Bosh, A. S.; Buie, M. W.; Dunham, E. W.; Olkin, C. B.; Taylor, B.; Levine, S. E.; Eikenberry, S. S.; Moon, D.-S.; Osip, D. J.
2003-05-01
The stellar occultation by Pluto of the 15th magnitude star designated P131.1 (McDonald and Elliot, AJ, 119, 1999) on 2002 August 21 (UT) provided the first significant chance to compare Pluto's atmospheric structure to that determined from the 1988 occultation of P8 (Millis, et al., Icarus, 105, 282). The P131.1 occultation was observed from several stations in Hawaii and the western United States (Elliot et al., Nature, in press, 2003). Numerous occultation chords were obtained enabling us to examine Pluto's atmospheric figure. The light curves from the observations were analyzed together in the occultation coordinate system of Elliot et al., (AJ, 106, 2544). The Mauna Kea and Lick datasets straddle the center of Pluto's figure, providing strong constraints on model fits to cross sections of the atmospheric shape. In 1988, Millis (et al., Icarus, 105, 282) did not report any deviation from sphericity in Pluto's atmospheric figure. From the 2002 data, Pluto;s isobars at the radii probed by the occultation ( 1250 km) appear to be distorted from a circular cross-section. Least-squares fits to this cross-section by elliptical models reveal ellipticities in the range 0.05-0.08 although the shape may be more complex than ellipsoidal. The orientation of the distortion appears uncorrelated with Pluto;s rotational axis. Taken at face value, this ellipticity could imply wind speeds of up to twice the sonic speed ( 200 m/s), which would be difficult to explain. Similar distortions have been reported for Triton's atmosphere (Elliot, J. L., et al., Icarus 148, 347). This work has been supported in part by Research Corporation, the Air Force Research Laboratory, NSF, and NASA.
NASA Astrophysics Data System (ADS)
Koch, Angira; Phukan, Arnab; Chanu, Oinam B.; Kumar, A.; Lal, R. A.
2014-02-01
Five manganese(IV) complexes [Mn(L)(bpy)] (1) and heterobimetallic complexes [MMn(L)Cl2(H2O)4]·1.5H2O (M = ZnII(2), CuII(3)) and [MnM(L)(bpy)Cl2] (M = ZnII(4), CuII(5)] have been synthesized from bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4L) in methanol medium. The composition of the complexes have been established based on the data obtained from analytical, thermoanalytical and mass spectral studies. The structures of the complexes have been discussed in the light of molar conductance, magnetic moment, electronic, EPR, IR, FT-IR spectroscopic studies and transmission electron microscopies. The molar conductance values of these complexes in DMSO suggest their non-electrolytic nature. The μeff value for the complexes (1), (2) and (4) fall in the range 3.82-4.12 BM characteristic of the presence of the manganese(IV) in them. The complex (3) has μeff value of 3.70 BM at RT indicating considerable antiferromagnetic interaction between Mn(IV) and Cu(II). The μeff value of 4.72 BM for complex (5) is slightly lower than 4.90 BM for S = 2 ground state. In the complex (1) to (3), the ligand is coordinated to the metal centres as tetradentate ligand while in the complexes (4) and (5) as hexadentate ligand. Manganese(IV) has distorted octahedral stereochemistry in all complexes. Copper(II) has distorted octahedral and square planar stereochemistry in complexes (3) and (5) while zinc has distorted octahedral and tetrahedral stereochemistry, respectively. EPR studies of the complexes are also reported. The electron transfer reactions of the complexes have also been investigated by cyclic voltammetry.
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Fletcher, Lauren; Klute, Glenn K.
1994-01-01
Video-based motion analysis systems are widely employed to study human movement, using computers to capture, store, process, and analyze video data. This data can be collected in any environment where cameras can be located. One of the NASA facilities where human performance research is conducted is the Weightless Environment Training Facility (WETF), a pool of water which simulates zero-gravity with neutral buoyance. Underwater video collection in the WETF poses some unique problems. This project evaluates the error caused by the lens distortion of the WETF cameras. A grid of points of known dimensions was constructed and videotaped using a video vault underwater system. Recorded images were played back on a VCR and a personal computer grabbed and stored the images on disk. These images were then digitized to give calculated coordinates for the grid points. Errors were calculated as the distance from the known coordinates of the points to the calculated coordinates. It was demonstrated that errors from lens distortion could be as high as 8 percent. By avoiding the outermost regions of a wide-angle lens, the error can be kept smaller.
Akkurt, Mehmet; Khandar, Ali Akbar; Tahir, Muhammad Nawaz; Hosseini-Yazdi, Seyed Abolfazl; Mahmoudi, Ghodrat
2012-07-01
In the title coordination polymer, [Hg₄Cl₄(C₂₆H₂₀N₆)](n), one Hg(II) ion is coordinated by four N atoms from the benzylbis((pyridin-2-yl)methyl-idenehydrazone) ligand and two Cl⁻ ions in a very distorted cis-HgCl₂N₄ octa-hedral geometry. The other Hg(II) ion is coordinated in a distorted tetra-hedral geometry by four Cl⁻ ions. Bridging chloride ions link the Hg(II) ions into a chain propagating in [010]: the Hg-Cl bridging bonds are significantly longer than the terminal bonds. The dihedral angle between the central benzene rings of the ligand is 83.3 (2)°. The packing is consolidated by weak C-H⋯Cl hydrogen bonds and C-H⋯π inter-actions.
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang
2008-01-01
Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis[orthophosphate(V)] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978
Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model
2017-01-01
Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369
Pyramidal pits created by single highly charged ions in BaF{sub 2} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Said, A. S.; Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura; Heller, R.
2010-07-15
In various insulators, the impact of individual slow highly charged ions (eV-keV) creates surface nanostructures, whose size depends on the deposited potential energy. Here we report on the damage created on a cleaved BaF{sub 2} (111) surface by irradiation with 4.5xq keV highly charged xenon ions from a room-temperature electron-beam ion trap. Up to charge states q=36, no surface topographic changes on the BaF{sub 2} surface are observed by scanning force microscopy. The hidden stored damage, however, can be made visible using the technique of selective chemical etching. Each individual ion impact develops into a pyramidal etch pits, as canmore » be concluded from a comparison of the areal density of observed etch pits with the applied ion fluence (typically 10{sup 8} ions/cm{sup 2}). The dimensional analysis of the measured pits reveals the significance of the deposited potential energy in the creation of lattice distortions/defects in BaF{sub 2}.« less
Structural and optical properties of lead-boro-tellurrite glasses induced by gamma-ray.
Mustafa, Iskandar Shahrim; Kamari, Halimah Mohamed; Yusoff, Wan Mohd Daud Wan; Aziz, Sidek Abdul; Rahman, Azhar Abdul
2013-02-04
Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO(4) bi-pyramidal arrangement and TeO(3+1) (or distorted TeO(4)) is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb(3)TeO(6) consisting of TeO(3) trigonal pyramid connected by PbO(4) tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, E(opt) were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach's energy can be considered as being due to an increase in defects within glass network.
Structural and Optical Properties of Lead-Boro-Tellurrite Glasses Induced by Gamma-Ray
Mustafa, Iskandar Shahrim; Kamari, Halimah Mohamed; Yusoff, Wan Mohd Daud Wan; Aziz, Sidek Abdul; Rahman, Azhar Abdul
2013-01-01
Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO4 bi-pyramidal arrangement and TeO3+1 (or distorted TeO4) is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb3TeO6 consisting of TeO3 trigonal pyramid connected by PbO4 tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, Eopt were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach’s energy can be considered as being due to an increase in defects within glass network. PMID:23380963
Founie, Alan
2004-01-01
The earliest known use of gypsum as a building material was in Anatolia (in what is now Turkey) around 6000 B.C. It has been found on the interiors of the great pyramids in Egypt, which were erected in about 3700 B.C. Now an average new American home contains more than 7 metric tons of gypsum in the form of more than 6,000 square feet of wallboard.
Saud, K; Cánovas, J; Lopez, C I; Berndt, F A; López, E; Maass, J C; Barriga, A; Kukuljan, M
2017-04-01
The development of the cerebral cortex requires the coordination of multiple processes ranging from the proliferation of progenitors to the migration and establishment of connectivity of the newborn neurons. Epigenetic regulation carried out by the COREST/LSD1 complex has been identified as a mechanism that regulates the development of pyramidal neurons of the cerebral cortex. We now identify the association of the multifunctional RNA-binding protein SFPQ to LSD1 during the development of the cerebral cortex. In vivo reduction of SFPQ dosage by in utero electroporation of a shRNA results in impaired radial migration of newborn pyramidal neurons, in a similar way to that observed when COREST or LSD1 expressions are decreased. Diminished SFPQ expression also associates to decreased proliferation of progenitor cells, while it does not affect the acquisition of neuronal fate. These results are compatible with the idea that SFPQ, plays an important role regulating proliferation and migration during the development of the cerebral cortex. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vishwakarma, Ashok K.; Kumari, Reema; Ghalsasi, Prasanna S.; Arulsamy, Navamoney
2017-08-01
The synthesis, thermal analysis, crystal structure and magnetic properties of (2-aminobenzothiazolium)2CuCl4, organic-inorganic hybrid compound, have been described. The compound crystallizes in the monoclinic space group P21/c with two formula units in a unit cell of dimensions a = 6.9522(4) Å, b = 9.6979(4) Å, c = 13.9633(6) Å, β = 97.849(3)° and volume 930.83(8) Å3 at 150(2) K. The structure consists of isolated nearly square planer [CuC14]2- units, with somewhat longer than normal Cusbnd Cl bond lengths [Cusbnd Cl (average) = 2.2711 Å]. The magnetic measurements of (2-aminobenzothiazolium)2CuCl4 using SQUID magnetometer show paramagnetic nature of the compound. Thermal measurements (TG-DTA and DSC) on this compound showed reversible phase transition at 83 °C. This transition is accompanied by the reversible change in colour of the prismatic crystal from green to dark brown, thermochromic behaviour. Temperature dependent EPR measurements on powdered sample ascertain change in coordination sphere around Cu(II) with shift in g|| = 2.150 and g⊥ = 2.071 at room temperature, typical of square planar, to g|| = 2.201 and g⊥ = 2.182 at 170 °C, typical of distorted tetrahedral geometry.
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-09-01
Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.
Tatsumoto, Hideki; Ishii, Yuichi; Machida, Motoi; Taki, Kazuo
2004-05-11
An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.
Hernández-Molina, María; Ruiz-Pérez, Catalina; López, Trinidad; Lloret, Francesc; Julve, Miguel
2003-09-08
The novel gadolinium(III) complex of formula [Gd(2)(mal)(3)(H(2)O)(6)] (1) (H(2)mal = 1,3-propanedioic acid) has been prepared and characterized by X-ray diffraction analysis. Crystal data for 1: monoclinic, space group I2/a, a = 11.1064(10) A, b = 12.2524(10) A, c =13.6098(2) A, beta = 92.925(10) degrees, U = 1849.5(3) A(3), Z = 4. Compound 1 is a three-dimensional network made up of malonate-bridged gadolinium(III) ions where the malonate exhibits two bridging modes, eta(5)-bidentate + unidentate and eta(3):eta(3) + bis(unidentate). The gadolinium atom is nine-coordinate with three water molecules and six malonate oxygen atoms from three malonate ligands forming a distorted monocapped square antiprism. The shortest metal-metal separations are 4.2763(3) A [through the oxo-carboxylate bridge] and 6.541(3) A [through the carboxylate in the anti-syn coordination mode]. The value of the angle at the oxo-carboxylate atom is 116.8(2) degrees. Variable-temperature magnetic susceptibility measurements reveal the occurrence of a significant ferromagnetic interaction through the oxo-carboxylate pathway (J = +0.048(1) cm(-1), H = -JS(Gd(1)) x S(Gd(1a))).
Least squares reconstruction of non-linear RF phase encoded MR data.
Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E
2016-09-01
The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highland, M. J.; Hruszkewycz, S. O.; Fong, D. D.
We report on the synthesis, stability, and local structure of In2O3 thin films grown via rf-magnetron sputtering and characterized by in-situ x-ray scattering and focused x-ray nanodiffraction. We find that In2O3 deposited onto (0 0 1)-oriented single crystal yttria-stabilized zirconia substrates adopts a Stranski-Krastanov growth mode at a temperature of 850 degrees C, resulting in epitaxial, truncated square pyramids with (1 1 1) side walls. We find that at this temperature, the pyramids evaporate unless they are stabilized by a low flux of In2O3 from the magnetron source. We also find that the internal lattice structure of one such pyramidmore » is made up of differently strained volumes, revealing local structural heterogeneity that may impact the properties of In2O3 nanostructures and films.« less
Trends Among the States in Governance and Coordination of Higher Education.
ERIC Educational Resources Information Center
Chambers, M. M.
There has been a trend in state government toward tighter and tighter centralization that, though done in the name of greater economy and efficiency, is in large part a reach for political power. Not all services of the state can be performed well if integrated into a single monolithic administrative pyramid with all other state services and…
Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding
NASA Astrophysics Data System (ADS)
Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner
2017-04-01
Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.
Synthesis of square-planar aluminum(III) complexes.
Thompson, Emily J; Myers, Thomas W; Berben, Louise A
2014-12-15
The synthesis of two four-coordinate and square planar (SP) complexes of aluminum(III) is presented. Reaction of a phenyl-substituted bis(imino)pyridine ligand that is reduced by two electrons, Na2((Ph)I2P(2-)), with AlCl3 afforded five-coordinate [((Ph)I2P(2-))Al(THF)Cl] (1). Square-planar [((Ph)I2P(2-))AlCl] (2) was obtained by performing the same reaction in diethyl ether followed by lyphilization of 2 from benzene. The four-coordinate geometry index for 2, τ4, is 0.22, where 0 would be a perfectly square-planar molecule. The analogous aluminum hydride complex, [((Ph)I2P(2-))AlH] (3), is also square-planar, and was characterized crystallographically and has τ4=0.13. Both 2 and 3 are Lewis acidic and bind 2,6-lutidine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Akkurt, Mehmet; Khandar, Ali Akbar; Tahir, Muhammad Nawaz; Hosseini-Yazdi, Seyed Abolfazl; Mahmoudi, Ghodrat
2012-01-01
In the title coordination polymer, [Hg2Cl4(C26H20N6)]n, one HgII ion is coordinated by four N atoms from the benzylbis((pyridin-2-yl)methylidenehydrazone) ligand and two Cl− ions in a very distorted cis-HgCl2N4 octahedral geometry. The other HgII ion is coordinated in a distorted tetrahedral geometry by four Cl− ions. Bridging chloride ions link the HgII ions into a chain propagating in [010]: the Hg—Cl bridging bonds are significantly longer than the terminal bonds. The dihedral angle between the central benzene rings of the ligand is 83.3 (2)°. The packing is consolidated by weak C—H⋯Cl hydrogen bonds and C—H⋯π interactions. PMID:22807743
NASA Astrophysics Data System (ADS)
Mandal, Susmita; Mondal, Monojit; Biswas, Jayanta Kumar; Cordes, David B.; Slawin, Alexandra M. Z.; Butcher, Ray J.; Saha, Manan; Chandra Saha, Nitis
2018-01-01
Herein, we report the syntheses and structures of Ni(II) complexes, [Ni(MPzOATA)2] (Cl) (PF6) (I), [Ni(MPzOATA)2](ClO4)2.CH3CN (II) & [Ni(MPzOATA)2](BF4)2.H2O (III); Cd(II) complex, [Cd(MPzOATA)Cl2]2 (IV) and a Hg(II) complex, [Hg(MPzOATA)Cl2] (V), of a pyrazole based 'NNS' donor ligand, 5-methylpyrazole-3yl-N-(2‧-methylthiophenyl)methyleneimine, (MPzOATA). The complexes are characterized by elemental analyses, electronic, IR, 1H- NMR (only for IV &V) spectral parameters, conductivity and fluorescence measurements. X-ray crystallographic data of the complexes reveal that the Ni(II) complexes have NiN4S2 octahedral coordination, one of them is a mixed-anion complex having Cl- and PF6- as counter anions; the Cd(II) complex is a chloro bridged binuclear complex with octahedral coordination environment around each metal centre, while the Hg(II) complex is a square pyramidal one. Among the reported complex species, the Ni(II) complexes are non-fluorescent, while the Cd(II) and Hg(II) complexes can be used as potential photoactive materials as indicated from their characteristic emission properties. The reported complexes are screened for their antimicrobial activities against some Gram positive and Gram negative microbial strains, and they are found to be potential antimicrobial agents in broad spectrum against both Gram positive and Gram negative bacteria.
Cryo-Trapping the Distorted Octahedral Reaction Intermediate of Manganese Superoxide Dismutase
NASA Technical Reports Server (NTRS)
Borgstahl, Gloria; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Superoxide dismutase protects organisms from potentially damaging oxygen radicals by catalyzing the disproportion of superoxide to oxygen and hydrogen peroxide. We report the use of cryogenic temperatures to kinetically trap the 6th ligand bound to the active site of manganese superoxide dismutase. Using cryocrystallography and synchrotron radiation, we describe at 1.55A resolution the six-coordinate, distorted octahedral geometry assumed by the active site during catalysis and compare it to the room temperature, five-coordinate trigonal-bipyramidal active site. Gateway residues Tyr34, His30 and a tightly bound water molecule are implicated in closing off the active site and blocking the escape route of superoxide during dismutation.
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.; Ybarra, A. H.; Bencze, D. P.
1975-01-01
An inexpensive method is developed to determine the extreme values of instantaneous inlet distortion. This method also provides insight into the basic mechanics of unsteady inlet flow and the associated engine reaction. The analysis is based on fundamental fluid dynamics and statistical methods to provide an understanding of the turbulent inlet flow and quantitatively relate the rms level and power spectral density (PSD) function of the measured time variant total pressure fluctuations to the strength and size of the low pressure regions. The most probable extreme value of the instantaneous distortion is then synthesized from this information in conjunction with the steady state distortion. Results of the analysis show the extreme values to be dependent upon the steady state distortion, the measured turbulence rms level and PSD function, the time on point, and the engine response characteristics. Analytical projections of instantaneous distortion are presented and compared with data obtained by a conventional, highly time correlated, 40 probe instantaneous pressure measurement system.
A microstructure-based model for shape distortion during liquid phase sintering
NASA Astrophysics Data System (ADS)
Upadhyaya, Anish
Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.
Multi-element array signal reconstruction with adaptive least-squares algorithms
NASA Technical Reports Server (NTRS)
Kumar, R.
1992-01-01
Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.
Charge Fluctuations in the NdO1-xFxBiS2 Superconductors
NASA Astrophysics Data System (ADS)
Athauda, Anushika; Mizuguchi, Yoshikazu; Nagao, Masanori; Neuefeind, Joerg; Louca, Despina
2017-12-01
The local atomic structure of superconducting NdO1-xFxBiS2 (x = 0.2 and 0.4) is investigated using neutron diffraction and the pair density function analysis technique. In the non-superconducting x = 0.2 composition, ferrodistortive displacements of the pyramidal sulfur ions break the tetragonal symmetry and a superlattice structure emerges with peaks appearing at h + k odd reflections superimposed on the even reflections of the P4/nmm symmetry. In the superconducting x = 0.4 composition, similar ferrodistortive displacements are observed but with different magnitudes coupled with in-plane Bi distortions which are indicative of charge fluctuations.
NASA Astrophysics Data System (ADS)
Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun
2016-12-01
Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.
Bukvetskii, B V; Mirochnik, A G; Zhikhareva, P A
2017-05-01
The atomic structure of crystals of the [Eu(NО 3 ) 3 (HMPA) 3 ] [hexamethylphosphotriamide (HMPA)] complex characterized by an intensive luminescence and triboluminescence was determined using X-ray structural analysis. Noncentrosymmetric crystals have a monoclinic syngony: a = 16.0686 (3), b = 11.0853 (2), c = 20.9655 Å (4), β = 93.232° (1), space group P2 1 , Z = 4, ρ calc = 1.560 g/cm 3 . The crystal structure is represented by individual С 18 Н 54 EuN 12 O 12 P 3 complexes linked through van der Waals interactions with clearly expressed cleavage planes. The Eu(III) atom coordination polyhedron reflected the state of a distorted square antiprism. Structural aspects of the suggested model, including formation of triboluminescence properties, were considered and the role of the cleavage planes was discussed. Copyright © 2016 John Wiley & Sons, Ltd.
The influence of asymmetric force requirements on a multi-frequency bimanual coordination task.
Kennedy, Deanna M; Rhee, Joohyun; Jimenez, Judith; Shea, Charles H
2017-01-01
An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N=20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task. Copyright © 2016 Elsevier B.V. All rights reserved.
Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias
2008-08-04
In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.
Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai
2016-04-01
We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of inlet flow distortion and turbulence effects on compressor stability
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.
1973-01-01
The effect of steady state circumferential total pressure distortion on the loss in compressor stall pressure ratio has been established by analytical techniques. Full scale engine and compressor/fan component test data were used to provide direct evaluation of the analysis. Specifically, since a circumferential total pressure distortion in an inlet system will result in unsteady flow in the coordinate system of the rotor blades, analysis of this type distortion must be performed from an unsteady aerodynamic point of view. By application of the fundamental aerothermodynamic laws to the inlet/compressor system, parameters important in the design of such a system for compatible operation have been identified. A time constant, directly related to the compressor rotor chord, was found to be significant, indicating compressor sensitivity to circumferential distortion is directly dependent on the rotor chord.
Latin-square three-dimensional gage master
Jones, L.
1981-05-12
A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.
Latin square three dimensional gage master
Jones, Lynn L.
1982-01-01
A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.
Kim, Minsoo; Jung, Na Young; Park, Chang Kyu; Chang, Won Seok; Jung, Hyun Ho; Chang, Jin Woo
2018-06-01
Stereotactic procedures are image guided, often using magnetic resonance (MR) images limited by image distortion, which may influence targets for stereotactic procedures. The aim of this work was to assess methods of identifying target coordinates for stereotactic procedures with MR in multiple phase-encoding directions. In 30 patients undergoing deep brain stimulation, we acquired 5 image sets: stereotactic brain computed tomography (CT), T2-weighted images (T2WI), and T1WI in both right-to-left (RL) and anterior-to-posterior (AP) phase-encoding directions. Using CT coordinates as a reference, we analyzed anterior commissure and posterior commissure coordinates to identify any distortion relating to phase-encoding direction. Compared with CT coordinates, RL-directed images had more positive x-axis values (0.51 mm in T1WI, 0.58 mm in T2WI). AP-directed images had more negative y-axis values (0.44 mm in T1WI, 0.59 mm in T2WI). We adopted 2 methods to predict CT coordinates with MR image sets: parallel translation and selective choice of axes according to phase-encoding direction. Both were equally effective at predicting CT coordinates using only MR; however, the latter may be easier to use in clinical settings. Acquiring MR in multiple phase-encoding directions and selecting axes according to the phase-encoding direction allows identification of more accurate coordinates for stereotactic procedures. © 2018 S. Karger AG, Basel.
A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.
2014-01-01
A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.
36 CFR 910.56 - Coordinated planning area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... area means a Square, portion of a Square, or group of Squares that is composed of one or more development parcels and is treated as a unit under Square Guidelines in order to achieve comprehensive...
36 CFR 910.56 - Coordinated planning area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... area means a Square, portion of a Square, or group of Squares that is composed of one or more development parcels and is treated as a unit under Square Guidelines in order to achieve comprehensive...
36 CFR 910.56 - Coordinated planning area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... area means a Square, portion of a Square, or group of Squares that is composed of one or more development parcels and is treated as a unit under Square Guidelines in order to achieve comprehensive...
36 CFR § 910.56 - Coordinated planning area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... area means a Square, portion of a Square, or group of Squares that is composed of one or more development parcels and is treated as a unit under Square Guidelines in order to achieve comprehensive...
36 CFR 910.56 - Coordinated planning area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... area means a Square, portion of a Square, or group of Squares that is composed of one or more development parcels and is treated as a unit under Square Guidelines in order to achieve comprehensive...
"Nile River Delta, Cairo and the Pyramids taken from Atlantis during STS-106"
2000-09-09
STS106-701-025 (8-20 September 2000) --- One of the STS-106 crew members on board the Space Shuttle Atlantis used a handheld 70mm camera to photograph this image of Cairo, Egypt, the largest city in Africa. Its population is nearly 16 million, a figure which translates to approximately 130,000 people per square mile. Metropolitan Cairo shows as a gray area in the green of the Nile River valley at the apex of the Delta. The shadows of the three major pyramids at Giza on the Western edge of the city are visible. They are right below the bright new road construction. This side of the metropolitan area is experiencing rapid growth. According to geologists who have been studying shuttle-to-Earth imagery for many years, this photograph documents some of the many changes in land use in the Western Desert.
Providing solid angle formalism for skyshine calculations
Pahikkala, A. Jussi; Rising, Mary B.; McGinley, Patton H.
2010-01-01
We detail, derive and correct the technical use of the solid angle variable identified in formal guidance that relates skyshine calculations to dose‐equivalent rate. We further recommend it for use with all National Council on Radiation Protection and Measurements (NCRP), Institute of Physics and Engineering in Medicine (IPEM) and similar reports documented. In general, for beams of identical width which have different resulting areas, within ±1.0% maximum deviation the analytical pyramidal solution is 1.27 times greater than a misapplied analytical conical solution through all field sizes up to 40×40 cm2. Therefore, we recommend determining the exact results with the analytical pyramidal solution for square beams and the analytical conical solution for circular beams. PACS number(s): 87.52.‐g, 87.52.Df, 87.52.Tr, 87.53.‐j, 87.53.Bn, 87.53.Dq, 87.66.‐a, 89., 89.60.+x
NASA Astrophysics Data System (ADS)
Roscioli, Jerome D.; Ghosh, Soumen; Bishop, Michael M.; Lafountain, Amy M.; Frank, Harry A.; Beck, Warren F.
Transient grating spectroscopy was used to study the dynamics of nonradiative decay of the S1 (21Ag-) state in ß-carotene and peridinin after optical preparation of the S2) state. The kinetics of the recovery of the absorption and dispersion components of the third-order signal exhibit significantly different time constants. For β-carotene in benzonitrile, the absorption and dispersion recovery time constants are 11.6 and 10.2 ps. For peridinin in methanol, the time constants are 9.9 and 7.4 ps. These results indicate that the initial product of the decay of the S1 state is a conformationally displaced structure. The decay rate for the S1 state and the conformational relaxation rate are both slowed in peridinin as the polarity of the solvent decreases; in ethyl acetate, the conformational relaxation time constant is 45 ps, which rules out a dominant contribution from vibrational cooling. These results indicate that the S1 state develops intramolecular charge transfer character owing to distortions along torsional and out-of-plane coordinates, with a pyramidal structure favored as the most stable conformation. Recovery of the photoselected ground state conformation involves a reverse charge-transfer event followed by relaxation to a planar structure. Work supported by Photosynthetic Systems Program of the U.S. Department of Energy under Grant DE-SC0010847.
Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5
NASA Astrophysics Data System (ADS)
Lindén, J.; Lindroos, F.; Karen, P.
2017-08-01
Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.
NASA Technical Reports Server (NTRS)
Katow, S. M.
1979-01-01
The computer analysis of the 34-m HA-DEC antenna by the IDEAS program provided the rms distortions of the surface panels support points for full gravity loadings in the three directions of the basic coordinate system of the computer model. The rms distortions for the gravity vector not in line with any of the three basic directions were solved and contour plotted starting from three surface panels setting declination angle. By inspections of the plots, it was concluded that the setting or rigging angle of -15 degrees declination minimized the rms distortions for sky coverage of plus or minus 22 declination angles to 10 degrees of ground mask.
Maritime Adaptive Optics Beam Control
2010-09-01
Liquid Crystal LMS Least Mean Square MIMO Multiple- Input Multiple-Output MMDM Micromachined Membrane Deformable Mirror MSE Mean Square Error...determine how the beam is distorted, a control computer to calculate the correction to be applied, and a corrective element, usually a deformable mirror ...during this research, an overview of the system modification is provided here. Using additional mirrors and reflecting the beam to and from an
Pratter, Sarah M; Light, Kenneth M; Solomon, Edward I; Straganz, Grit D
2014-07-02
Mononuclear nonheme Fe(II) (MNH) and α-ketoglutarate (α-KG) dependent halogenases activate O2 to perform oxidative halogenations of activated and nonactivated carbon centers. While the mechanism of halide incorporation into a substrate has been investigated, the mechanism by which halogenases prevent oxidations in the absence of chloride is still obscure. Here, we characterize the impact of chloride on the metal center coordination and reactivity of the fatty acyl-halogenase HctB. Stopped-flow kinetic studies show that the oxidative transformation of the Fe(II)-α-KG-enzyme complex is >200-fold accelerated by saturating concentrations of chloride in both the absence and presence of a covalently bound substrate. By contrast, the presence of substrate, which generally brings about O2 activation at enzymatic MNH centers, only has an ∼10-fold effect in the absence of chloride. Circular dichroism (CD) and magnetic CD (MCD) studies demonstrate that chloride binding triggers changes in the metal center ligation: chloride binding induces the proper binding of the substrate as shown by variable-temperature, variable-field (VTVH) MCD studies of non-α-KG-containing forms and the conversion from six-coordinate (6C) to 5C/6C mixtures when α-KG is bound. In the presence of substrate, a site with square pyramidal five-coordinate (5C) geometry is observed, which is required for O2 activation at enzymatic MNH centers. In the absence of substrate an unusual trigonal bipyramidal site is formed, which accounts for the observed slow, uncoupled reactivity. Molecular dynamics simulations suggest that the binding of chloride to the metal center of HctB leads to a conformational change in the enzyme that makes the active site more accessible to the substrate and thus facilitates the formation of the catalytically competent enzyme-substrate complex. Results are discussed in relation to other MNH dependent halogenases.
Scanner imaging systems, aircraft
NASA Technical Reports Server (NTRS)
Ungar, S. G.
1982-01-01
The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.
NASA Astrophysics Data System (ADS)
Majumdar, Dhrubajyoti; Surendra Babu, M. S.; Das, Sourav; Biswas, Jayanta Kumar; Mondal, Monojit; Hazra, Suman
2017-06-01
A unique thiocyanato linked 1D chain of Zn(II) coordination polymer [Zn2L1(μ1,3-SCN)(η1SCN)]n (1) has been synthesized using potential multisite compartmental N,O donor Schiff base blocker ligand (L1H2) in presence of Zn(OAc)2 and KSCN. The Schiff base ligand [N, N‧-bis(3-methoxysalicylidenimino)-1,3-daminopropane] (L1H2) is 2:1 M ratio condensation product of O-vaniline and 1,3-diaminopropane in methanol medium. The characterization of Complex 1 was accomplished by means of different micro analytical techniques like elemental analyses, IR, UV-Vis, 1H NMR, emission spectroscopy and Single X-ray crystallographic study. Complex 1 crystallizes in Orthorhombic system, space group Pbca, with values a = 11.579(2), b = 18.538(3), and c = 22.160(4) Å; α = β = γ = 90.00°; V = 4756.6(14) and Z = 8. The single crystal X-ray revealed that the one dimensional chain system with the repeating unit [Zn2(μ1,3-SCN)(η1SCN)(L1)]n bridge by an end to end μ1,3 thiocyanate anion. Within each repeating unit two different types of Zn(II) ions are present. One of these is five-coordinate in a square pyramidal geometry while the other is six-coordinate in an octahedral geometry. A brief but lucid comparative approach has been demonstrated in between Schiff base (L1H2) and complex 1 with respect to their photoluminescence activities. Active luminescence behavior of complex 1 in presence of ligand (L1H2) is due to quenching of PET process which is mediated by 'chelating effect'. Complex 1 exhibits strong antimicrobial efficacy against some important Gram + ve and Gram -ve bacteria. Apart from antimicrobial potential, a combined experimental and theoretical investigation has been performed via DFT on molecular structure of complex 1 with respect to Hirshfeld surface analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keates, Adam C.; Wang, Qianlong; Weller, Mark T., E-mail: m.t.weller@bath.ac.uk
2014-02-15
Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen,more » as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.« less
Dem Generation with WORLDVIEW-2 Images
NASA Astrophysics Data System (ADS)
Büyüksalih, G.; Baz, I.; Alkan, M.; Jacobsen, K.
2012-07-01
For planning purposes 42 km coast line of the Black Sea, starting at the Bosporus going in West direction, with a width of approximately 5 km, was imaged by WorldView-2. Three stereo scenes have been oriented at first by 3D-affine transformation and later by bias corrected RPC solution. The result is nearly the same, but it is limited by identification of the control points in the images. Nevertheless after blunder elimination by data snooping root mean square discrepancies below 1 pixel have been reached. The root mean square discrepancy at control point height reached 0.5 m up to 1.3 m with a base to height relation between 1:1.26 and 1:1.80. Digital Surface models (DSM) with 4 m spacing have been generated by least squares matching with region growing, supported by image pyramids. A higher percentage of the mountainous area is covered by forest, requiring the approximation based on image pyramids. In the forest area the approximation just by region growing leads to larger gaps in the DSM. Caused by the good image quality of WorldView-2 the correlation coefficients reached by least squares matching are high and even in most forest areas a satisfying density of accepted points was reached. Two stereo models have an overlapping area of 1.6 km times 6.7 km allowing an accuracy evaluation. Small, but nevertheless significant differences in scene orientation have been eliminated by least squares shift of both overlapping height models to each other. The root mean square differences of both independent DSM are 1.06m or as a function of terrain inclination 0.74 m + 0.55 m tangent (slope). The terrain inclination in the average is 7° with 12% exceeding 17°. The frequency distribution of height discrepancies is not far away from normal distribution, but as usual, larger discrepancies are more often available as corresponding to normal distribution. This also can be seen by the normalized medium absolute deviation (NMAS) related to 68% probability level of 0.83m being significant smaller as the root mean square differences. Nevertheless the results indicate a standard deviation of the single height models of 0.75 m or 0.52 m + 0.39* tangent (slope), corresponding to approximately 0.6 pixels for the x-parallax in flat terrain, being very satisfying for the available land cover. An interpolation over 10 m enlarged the root mean square differences of both height models nearly by 50%.
Paschalidis, Damianos G.; Harrison, William T. A.
2016-01-01
The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) monohydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thiocyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thiocyanate ion, a bidentate nitrate ion and a water molecule to generate a distorted NdN5O5 bicapped square antiprism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385
Linear Least Squares for Correlated Data
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1988-01-01
Throughout the literature authors have consistently discussed the suspicion that regression results were less than satisfactory when the independent variables were correlated. Camm, Gulledge, and Womer, and Womer and Marcotte provide excellent applied examples of these concerns. Many authors have obtained partial solutions for this problem as discussed by Womer and Marcotte and Wonnacott and Wonnacott, which result in generalized least squares algorithms to solve restrictive cases. This paper presents a simple but relatively general multivariate method for obtaining linear least squares coefficients which are free of the statistical distortion created by correlated independent variables.
Rusanova, Julia A; Semenaka, Valentyna V; Omelchenko, Irina V
2016-04-01
The tetra-nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The Cr(III) ion is coordinated in a distorted octa-hedron, which involves two N atoms of one bidentate ligand and one thio-cyanate anion, two μ2-O atoms of 2-(di-methyl-amino)-ethano-late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the Pb(II) ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter-actions involving the coordinating and non-coordinating thio-cyanate anions are observed. In the crystal, the complex cations are linked through the thio-cyanate anions via the Pb⋯S inter-actions and O-H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto-nitrile mol-ecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9-18] procedure in PLATON. The solvent is included in the reported mol-ecular formula, weight and density.
Three-dimensional accuracy of a digitally coded healing abutment implant impression system.
Ng, Simon D; Tan, Keson B; Teoh, K H; Cheng, Ansgar C; Nicholls, Jack I
2014-01-01
This study examined the three-dimensional (3D) accuracy of the Encode Impression System (EN) in transferring the locations of two implants from master models to test models and compared this to the direct impression (DI) technique. The effect of interimplant angulation on the 3D accuracy of both impression techniques was also evaluated. Seven sectional polymethyl methacrylate mandibular arch master models were fabricated with implants in the first premolar and first molar positions. The implants were placed parallel to each other or angulated mesiodistally or buccolingually with total divergent angles of 10, 20, or 30 degrees. Each master model was secured onto an aluminum block containing a gauge block, which defined the local coordinate references. Encode healing abutments were attached to the implants before impressions were made for the EN test models; pickup impression copings were attached for the DI test models. For the seven test groups of each impression technique, a total of 70 test models were fabricated (n = 5). The EN test models were sent to Biomet 3i for implant analog placement. The centroid of each implant or implant analog and the angular orientation of the long axis relative to the x- and y-axes were measured with a coordinate measuring machine. Statistical analyses were performed. Impression technique had a significant effect on y distortion, global linear distortion, and absolute xz and yz angular distortions. Interimplant angulation had significant effects on x and y distortions. However, neither impression technique nor interimplant angulation had a significant effect on z distortion. Distortions were observed with both impression techniques. However, the results suggest that EN was less accurate than DI.
Automatic orientation and 3D modelling from markerless rock art imagery
NASA Astrophysics Data System (ADS)
Lerma, J. L.; Navarro, S.; Cabrelles, M.; Seguí, A. E.; Hernández, D.
2013-02-01
This paper investigates the use of two detectors and descriptors on image pyramids for automatic image orientation and generation of 3D models. The detectors and descriptors replace manual measurements and are used to detect, extract and match features across multiple imagery. The Scale-Invariant Feature Transform (SIFT) and the Speeded Up Robust Features (SURF) will be assessed based on speed, number of features, matched features, and precision in image and object space depending on the adopted hierarchical matching scheme. The influence of applying in addition Area Based Matching (ABM) with normalised cross-correlation (NCC) and least squares matching (LSM) is also investigated. The pipeline makes use of photogrammetric and computer vision algorithms aiming minimum interaction and maximum accuracy from a calibrated camera. Both the exterior orientation parameters and the 3D coordinates in object space are sequentially estimated combining relative orientation, single space resection and bundle adjustment. The fully automatic image-based pipeline presented herein to automate the image orientation step of a sequence of terrestrial markerless imagery is compared with manual bundle block adjustment and terrestrial laser scanning (TLS) which serves as ground truth. The benefits of applying ABM after FBM will be assessed both in image and object space for the 3D modelling of a complex rock art shelter.
NASA Astrophysics Data System (ADS)
Surati, Kiran R.
2011-06-01
The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO 4 was synthesized by reaction of Mn(OAc) 3·2H 2O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO 4 with ethylenediamine, ethanolamine and glycine (where HPMFP = 1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy = 2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and 1H and 13C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change Δ S*, enthalpy change Δ H* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.
NASA Astrophysics Data System (ADS)
El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.
2015-01-01
The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.
Santana, M Dolores; García-Bueno, Rocío; García, Gabriel; Pérez, José; García, Luis; Monge, Miguel; Laguna, Antonio
2010-02-21
A series of heteroleptic quinolinolate pentacoordinated nickel(ii) complexes, [Ni(mcN(3))(R(1),R(2),R(3)-8-hq)](PF(6)), were synthesized and characterized by spectroscopic methods. Single-crystal X-ray diffraction studies for [(Me(3)-mcN(3))Ni(N,O-2-CN-8-hq)][PF(6)] (6a), [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] (2b) and [(Me(4)-mcN(3))Ni(N,O-5,7-I(2)-8-hq)][PF(6)] (5b) indicate that these complexes consist of a square-pyramidal ligand arrangement containing one chelating quinolinolate and one macrocyclic ligand (mcN(3)). Variation of the substituents on quinolinolate ligands imposes obvious electronic or structural effects on the nickel atom. These chromophores absorb moderately in the visible region and emit in the yellowish-green spectral region from a quinolinolate-centered intraligand charge-transfer excited state. The emission maxima are in the range 520-548 nm, with quantum yields between 0.11 and 1.63%, in deoxygenated organic solvents at room temperature. TD-DFT calculations allow exploration of the photophysical properties of complex [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] and reveal the influence of the quinolinolate ligand on the HOMO/LUMO energies and oscillator strengths.
Okamoto, Ken; Matsumoto, Koji; Hille, Russ; Eger, Bryan T.; Pai, Emil F.; Nishino, Takeshi
2004-01-01
Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the crystal structure of the key intermediate in the hydroxylation reaction of xanthine oxidoreductase with a slow substrate, in which the carbon–oxygen bond of the product is formed, yet the product remains complexed to the molybdenum. This intermediate displays a stable broad charge–transfer band at ≈640 nm. The crystal structure of the complex indicates that the catalytically labile Mo—OH oxygen has formed a bond with a carbon atom of the substrate. In addition, the Mo⋕S group of the oxidized enzyme has become protonated to afford Mo—SH on reduction of the molybdenum center. In contrast to previous assignments, we find this last ligand at an equatorial position in the square-pyramidal metal coordination sphere, not the apical position. A water molecule usually seen in the active site of the enzyme is absent in the present structure, which probably accounts for the stability of this intermediate toward ligand displacement by hydroxide. PMID:15148401
C[squared] = Creative Coordinates
ERIC Educational Resources Information Center
McHugh, Shelley R.
2007-01-01
"C[squared] = Creative Coordinates" is an engaging group of tasks that fosters the integration of mathematics and art to create meaningful understanding. The project lets students illustrate of find an image, then plot points to map their design on a grid. The project usually takes about a week to complete. When it is finished, students who are…
Effects of atmospheric turbulence on the imaging performance of optical system
NASA Astrophysics Data System (ADS)
Al-Hamadani, Ali H.; Zainulabdeen, Faten Sh.; Karam, Ghada Sabah; Nasir, Eman Yousif; Al-Saedi, Abaas
2018-05-01
Turbulent effects are very complicated and still not entirely understood. Light waves from an astronomical object are distorted as they pass through the atmosphere. The refractive index fluctuations in the turbulent atmosphere induce an optical path difference (OPD) between different parts of the wavefront, distorted wavefronts produce low-quality images and degrade the image beyond the diffraction limit. In this paper the image degradation due to 2-D Gaussian atmospheric turbulence is considered in terms of the point spread function (PSF), and Strehl ratio as an image quality criteria for imaging systems with different apertures using the pupil function teqneque. A general expression for the degraded PSF in the case of circular and square apertures (with half diagonal = √{π/2 } , and 1) diffraction limited and defocused optical system is considered. Based on the derived formula, the effect of the Gaussian atmospheric turbulence on circular and square pupils has been studied with details. Numerical results show that the performance of optical systems with square aperture is more efficient at high levels of atmospheric turbulence than the other apertures.
Coordination Mechanism in Fast Human Movements - Experimental and Modelling Studies. Volume 1.
1982-02-01
journal, possible the Journal of Motor Behavior of Experimental Brain Research. I. Proposed Experimental Studies - Year 3 At the present time we are...stimulation regimens must be devised to produce sensory imparted learning which manipulates each of these brain control mechanisms. Following the...movement center in the brain , presumably via the pyramidal tract from the cerebellum to the brainstem and spinal cord (cf. Miles and Evarts, 1979
NASA Astrophysics Data System (ADS)
Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali
2018-05-01
This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.
Xu, Guan; Yuan, Jing; Li, Xiaotao; Su, Jian
2017-08-01
Vision measurement on the basis of structured light plays a significant role in the optical inspection research. The 2D target fixed with a line laser projector is designed to realize the transformations among the world coordinate system, the camera coordinate system and the image coordinate system. The laser projective point and five non-collinear points that are randomly selected from the target are adopted to construct a projection invariant. The closed form solutions of the 3D laser points are solved by the homogeneous linear equations generated from the projection invariants. The optimization function is created by the parameterized re-projection errors of the laser points and the target points in the image coordinate system. Furthermore, the nonlinear optimization solutions of the world coordinates of the projection points, the camera parameters and the lens distortion coefficients are contributed by minimizing the optimization function. The accuracy of the 3D reconstruction is evaluated by comparing the displacements of the reconstructed laser points with the actual displacements. The effects of the image quantity, the lens distortion and the noises are investigated in the experiments, which demonstrate that the reconstruction approach is effective to contribute the accurate test in the measurement system.
NASA Technical Reports Server (NTRS)
Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.
1996-01-01
We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.
NASA Astrophysics Data System (ADS)
Wang, Lei; Shi, Zhan; Li, Guanghua; Fan, Yong; Fu, Wensheng; Feng, Shouhua
2004-01-01
A new three-dimensional metal-organic polymer, [NaZn(1,2,4-BTC)] (where 1,2,4-BTC=1,2,4-benzenetricarboxylate), has been prepared under solvothermal conditions and characterized by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2 1/ c, with cell parameters: a=9.7706(4) Å, b=12.3549(5) Å, c=6.8897(3) Å, β=91.640(2)°, V=831.35(6) Å 3 and Z=4. In the three-dimensional structure of the compound, each Zn atom is five-coordinated in distorted trigonal bipyramidal geometry, while the sixfold coordination of Na corresponds to a slightly distorted triangular prism. The organic ligand, 1,2,4-BTC, shows a novel and unprecedented coordination mode: 11 bonds to 10 metals with each carboxylate function exhibiting different linkages. It remains stable when desolvated and when heated up to 410 °C.
Quasi-static shape adjustment of a 15 meter diameter space antenna
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Herstrom, Catherine L.; Edighoffer, Harold H.
1987-01-01
A 15 meter diameter Hoop-Column antenna has been analyzed and tested to study shape adjustment of the reflector surface. The Hoop-Column antenna concept employs pretensioned cables and mesh to produce a paraboloidal reflector surface. Fabrication errors and thermal distortions may significantly reduce surface accuracy and consequently degrade electromagnetic performance. Thus, the ability to adjust the surface shape is desirable. The shape adjustment algorithm consisted of finite element and least squares error analyses to minimize the surface distortions. Experimental results verified the analysis. Application of the procedure resulted in a reduction of surface error by 38 percent. Quasi-static shape adjustment has the potential for on-orbit compensation for a variety of surface shape distortions.
The structure and stability of Si60 and Ge60 cages: a computational study.
Chen, Zhongfang; Jiao, Haijun; Seifert, Gotthard; Horn, Anselm H C; Yu, Dengke; Clark, Tim; Thiel, Walter; von Ragué Schleyer, Paul
2003-06-01
Structural studies of fullerene-like Si(60) and Ge(60) cages using ab initio methods were augmented by density functional tight-binding molecular dynamics (DFTB-MD) simulations of finite temperature effects. Neither the perfect I(h) symmetry nor the distorted T(h) structures are true minima. The energies of both are high relative to distorted, lower symmetry minima, C(i) and T, respectively, which still preserve C(60)-type connectivity. Both Si(60) and Ge(60) favor C(i) symmetry cages in which Si and Ge vertexes exhibit either near-trigonal or pyramidal geometries. These structural variations imply significant reactivity differences between different positions. The small magnetic shielding effects (NICS) indicate that aromaticity is not important in these systems. The inorganic fullerene cages have lower stabilities compared with their carbon analogs. Si(60) is stable towards spontaneous disintegration up to 700 K according to DFTB-MD simulations, and thus has potential for experimental observation. In contrast, Ge(60) preserves its cage structure only up to 200 K. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 948-953, 2003
ARGOS Testbed: Study of Multidisciplinary Challenges of Future Spaceborne Interferometric Arrays
2004-09-01
optimized ex- tensively by ZEMAX . One drawback of the cemented dou- blet is that it has bonded glasses, therefore if there is a change of temperature, the...residual aberrations @root mean square ~rms! wavefront errors predicted by ZEMAX #. The final FK51- BaK2 design achieves 271.6 mm chromatic focal shift...of ZEMAX , a complete ARGOS optics layout is constructed based on the optical specifications of a subaperture, pyramidal mirror, and the beam combining
Zhang, Guo-Fang; Cai, Mei-Yu; Jing, Ping; He, Chong; Li, Ping; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng
2010-01-01
Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) Å, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) Å, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon. PMID:20526419
Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B
2010-07-01
A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Smith Pellizzeri, Tiffany M.; McGuire, Michael A.; McMillen, Colin D.; ...
2018-01-24
In this study, two new halide-containing cesium manganese vanadates have been synthesized by a high-temperature (580 °C) hydrothermal synthetic method from aqueous brine solutions. One compound, Cs 3Mn(VO 3) 4Cl, (1) was prepared using a mixed cesium hydroxide/chloride mineralizer, and crystallizes in the polar noncentrosymmetric space group Cmm2, with a = 16.7820(8) Å, b = 8.4765(4) Å, c = 5.7867(3) Å. This structure is built from sinusoidal zig-zag (VO 3) n chains that run along the b-axis and are coordinated to Mn 2+ containing (MnO 4Cl) square-pyramidal units that are linked together to form layers. The cesium cations reside betweenmore » the layers, but also coordinate to the chloride ion, forming a cesium chloride chain that also propagates along the b-axis. The other compound, Cs 2Mn(VO 3) 3F, (2) crystallizes in space group Pbca with a = 7.4286(2) Å, b = 15.0175(5) Å, c = 19.6957(7) Å, and was prepared using a cesium fluoride mineralizer. The structure is comprised of corner sharing octahedral Mn 2+ chains, with trans fluoride ligands acting as bridging units, whose ends are capped by (VO 3) n vanadate chains to form slabs. The cesium atoms reside between the manganese vanadate layers, and also play an integral part in the structure, forming a cesium fluoride chain that runs along the b-axis. Both compounds were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and single-crystal Raman spectroscopy. Additionally, the magnetic properties of 2 were investigated. Lastly, above 50 K, it displays behavior typical of a low dimensional system with antiferromagnetic interactions, as to be expected for linear chains of manganese(II) within the crystal structure.« less
The role of diffusion tensor imaging tractography for Gamma Knife thalamotomy planning.
Gomes, João Gabriel Ribeiro; Gorgulho, Alessandra Augusta; de Oliveira López, Amanda; Saraiva, Crystian Wilian Chagas; Damiani, Lucas Petri; Pássaro, Anderson Martins; Salvajoli, João Victor; de Oliveira Siqueira, Ludmila; Salvajoli, Bernardo Peres; De Salles, Antônio Afonso Ferreira
2016-12-01
OBJECTIVE The role of tractography in Gamma Knife thalamotomy (GK-T) planning is still unclear. Pyramidal tractography might reduce the risk of radiation injury to the pyramidal tract and reduce motor complications. METHODS In this study, the ventralis intermedius nucleus (VIM) targets of 20 patients were bilaterally defined using Iplannet Stereotaxy Software, according to the anterior commissure-posterior commissure (AC-PC) line and considering the localization of the pyramidal tract. The 40 targets and tractography were transferred as objects to the GammaPlan Treatment Planning System (GP-TPS). New targets were defined, according to the AC-PC line in the functional targets section of the GP-TPS. The target offsets required to maintain the internal capsule (IC) constraint of < 15 Gy were evaluated. In addition, the strategies available in GP-TPS to maintain the minimum conventional VIM target dose at > 100 Gy were determined. RESULTS A difference was observed between the positions of both targets and the doses to the IC. The lateral (x) and the vertical (z) coordinates were adjusted 1.9 mm medially and 1.3 mm cranially, respectively. The targets defined considering the position of the pyramidal tract were more medial and superior, based on the constraint of 15 Gy touching the object representing the IC in the GP-TPS. The best strategy to meet the set constraints was 90° Gamma angle (GA) with automatic shaping of dose distribution; this was followed by 110° GA. The worst GA was 70°. Treatment time was substantially increased by the shaping strategy, approximately doubling delivery time. CONCLUSIONS Routine use of DTI pyramidal tractography might be important to fine-tune GK-T planning. DTI tractography, as well as anisotropy showing the VIM, promises to improve Gamma Knife functional procedures. They allow for a more objective definition of dose constraints to the IC and targeting. DTI pyramidal tractography introduced into the treatment planning may reduce the incidence of motor complications and improve efficacy. This needs to be validated in a large clinical series.
Towards deep learning with segregated dendrites
Guerguiev, Jordan; Lillicrap, Timothy P
2017-01-01
Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations—the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons. PMID:29205151
Towards deep learning with segregated dendrites.
Guerguiev, Jordan; Lillicrap, Timothy P; Richards, Blake A
2017-12-05
Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations-the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons.
Cutting solid figures by plane - analytical solution and spreadsheet implementation
NASA Astrophysics Data System (ADS)
Benacka, Jan
2012-07-01
In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.
Categorical and Coordinate Relations in Faces, or Fechner's Law and Face Space Instead?
ERIC Educational Resources Information Center
McKone, Elinor; Aitkin, Alex; Edwards, Mark
2005-01-01
E. E. Cooper and T. J. Wojan (2000) applied the categorical-coordinate relations distinction to faces on the basis of a finding that two-eyes-up versus one-eye-up distortions had opposite effects in between-class (face normality) and within-class (face identity) tasks. However, Cooper and Wojan failed to match amount of metric change between their…
New Geometric-distortion Solution for STIS FUV-MAMA
NASA Astrophysics Data System (ADS)
Sohn, S. Tony
2018-04-01
We derived a new geometric distortion solution for the STIS FUV-MAMA detector. To do this, positions of stars in 89 FUV-MAMA observations of NGC 6681 were compared to an astrometric standard catalog created using WFC3/UVIS imaging data to derive a fourth-order polynomial solution that transforms raw (x, y) positions to geometrically- corrected (x, y) positions. When compared to astrometric catalog positions, the FUV- MAMA position measurements based on the IDCTAB showed residuals with an RMS of â¼ 30 mas in each coordinate. Using the new IDCTAB, the RMS is reduced to â¼ 4 mas, or 0.16 FUV-MAMA pixels, in each coordinate. The updated IDCTAB is now being used in the HST STIS pipeline to process all STIS FUV-MAMA images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jing, E-mail: jinjing_crystal@126.com; Chen, Chong; Gao, Yan
Six Ln–Ag coordination polymers {[LnAg_2(IN)_4(H_2O)_5]·NO_3·2H_2O}{sub n} (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg_2(IN)_4(H_2O)_2]·NO_3·H_2O}{sub n} (3), [LnAg(pdc){sub 2}]{sub n} (Ln=Eu(4) and Pr (5), H{sub 2}pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc){sub 2}(H{sub 2}O){sub 4}]{sub n} (6) (H{sub 2}bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or inmore » the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions.« less
Novel quantitative assessment of metamorphopsia in maculopathy.
Wiecek, Emily; Lashkari, Kameran; Dakin, Steven C; Bex, Peter
2014-11-18
Patients with macular disease often report experiencing metamorphopsia (visual distortion). Although typically measured with Amsler charts, more quantitative assessments of perceived distortion are desirable to effectively monitor the presence, progression, and remediation of visual impairment. Participants with binocular (n = 33) and monocular (n = 50) maculopathy across seven disease groups, and control participants (n = 10) with no identifiable retinal disease completed a modified Amsler grid assessment (presented on a computer screen with eye tracking to ensure fixation compliance) and two novel assessments to measure metamorphopsia in the central 5° of visual field. A total of 81% (67/83) of participants completed a hyperacuity task where they aligned eight dots in the shape of a square, and 64% (32/50) of participants with monocular distortion completed a spatial alignment task using dichoptic stimuli. Ten controls completed all tasks. Horizontal and vertical distortion magnitudes were calculated for each of the three assessments. Distortion magnitudes were significantly higher in patients than controls in all assessments. There was no significant difference in magnitude of distortion across different macular diseases. There were no significant correlations between overall magnitude of distortion among any of the three measures and no significant correlations in localized measures of distortion. Three alternative quantifications of monocular spatial distortion in the central visual field generated uncorrelated estimates of visual distortion. It is therefore unlikely that metamorphopsia is caused solely by retinal displacement, but instead involves additional top-down information, knowledge about the scene, and perhaps, cortical reorganization. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.
2014-02-01
Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.
Perec, Mireille; Garland, Maria Teresa; Baggio, Ricardo
2008-01-01
The title compound {[Cu2Ho2(C4H5O2)10(H2O)4]·3H2O}n, is a one-dimensional 3d/4f organic–inorganic hybrid complex, the HoIII member of the isotypic lanthanoid series with Ln = GdIII, ErIII and YIII. The structure shows an alternation of Cu2 and Ho2 dinuclear units bridged by the ligands and hydrogen bonds only. The chains are composed of Cu2 classical dinuclear η1:η1:μ2 fourfold bridges [Cu⋯Cu = 2.6417 (9) Å] and of Ho2 units bridged by two η2:η1:μ2 carboxylate units. This results in distorted square-based pyramidal CuO5 units and irregular HoO9 units. The alternating Cu2 and Ho2 units are bridged into linear arrays along the a axis by a set of one η2:η1:μ2 carboxylate O atom and two hydrogen bonds with Cu⋯Ho separations of 4.4883 (10) and 4.5086 (10) Å. The distance between adjacent chains, as calculated by the closest and furthest distances between two chains, covers the range 10–14 Å. The H atoms of the water molecules could not be located, but the O⋯O separations for these species suggest the presence of O—H⋯O hydrogen bonds. PMID:21580901
NASA Astrophysics Data System (ADS)
Koch, Angira; Kumar, Arvind; De, Arjun K.; Phukan, Arnab; Lal, Ram A.
2014-08-01
Three new homotrinuclear copper(II) complexes [Cu3(slmh)(μ-Cl)2(CH3OH)3]ṡ0.5CH3OH (1), [Cu3(slmh)(NO3)2(CH3OH)5]ṡ1.5CH3OH (2) and [Cu3(slmh)(μ-ClO4)2(CH3OH)3]ṡ2CH3OH (3) from disalicylaldehyde malonoyldihydrazone have been synthesized and characterized. The composition of the complexes has been established on the basis of data obtained from analytical and thermoanalytical data. The structure of the complexes has been discussed in the light of molar conductance, electronic, FT-IR and far-IR spectral data, magnetic moment and EPR spectral studies. The molar conductance values for the complexes in DMSO solution indicate that all of them are non-electrolyte. The magnetic moment values for the complexes suggest considerable metal-metal intramolecular interaction between metal ions in the structural unit of the complexes. The EPR spectral features reveal that at RT, the ground state for the complexes is a mixture of the quartet state (S = 3/2) and doublet state (S = ½). At lower temperature, the ground state for the complexes is dx2-y2 with considerable contribution from dz2 orbital. Dihydrazone ligand is present in enol form in all of the complexes. The complexes have distorted square pyramidal stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Hydrogen peroxide mediated oxidation of benzyl alcohol catalyzed by complex 1 has been studied.
Jiang, Kuosheng; Xu, Guanghua; Liang, Lin; Tao, Tangfei; Gu, Fengshou
2014-07-29
In this paper a stochastic resonance (SR)-based method for recovering weak impulsive signals is developed for quantitative diagnosis of faults in rotating machinery. It was shown in theory that weak impulsive signals follow the mechanism of SR, but the SR produces a nonlinear distortion of the shape of the impulsive signal. To eliminate the distortion a moving least squares fitting method is introduced to reconstruct the signal from the output of the SR process. This proposed method is verified by comparing its detection results with that of a morphological filter based on both simulated and experimental signals. The experimental results show that the background noise is suppressed effectively and the key features of impulsive signals are reconstructed with a good degree of accuracy, which leads to an accurate diagnosis of faults in roller bearings in a run-to failure test.
Ball-morph: definition, implementation, and comparative evaluation.
Whited, Brian; Rossignac, Jaroslaw Jarek
2011-06-01
We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.
Georeferencing CAMS data: Polynomial rectification and beyond
NASA Astrophysics Data System (ADS)
Yang, Xinghe
The Calibrated Airborne Multispectral Scanner (CAMS) is a sensor used in the commercial remote sensing program at NASA Stennis Space Center. In geographic applications of the CAMS data, accurate geometric rectification is essential for the analysis of the remotely sensed data and for the integration of the data into Geographic Information Systems (GIS). The commonly used rectification techniques such as the polynomial transformation and ortho rectification have been very successful in the field of remote sensing and GIS for most remote sensing data such as Landsat imagery, SPOT imagery and aerial photos. However, due to the geometric nature of the airborne line scanner which has high spatial frequency distortions, the polynomial model and the ortho rectification technique in current commercial software packages such as Erdas Imagine are not adequate for obtaining sufficient geometric accuracy. In this research, the geometric nature, especially the major distortions, of the CAMS data has been described. An analytical step-by-step geometric preprocessing has been utilized to deal with the potential high frequency distortions of the CAMS data. A generic sensor-independent photogrammetric model has been developed for the ortho-rectification of the CAMS data. Three generalized kernel classes and directional elliptical basis have been formulated into a rectification model of summation of multisurface functions, which is a significant extension to the traditional radial basis functions. The preprocessing mechanism has been fully incorporated into the polynomial, the triangle-based finite element analysis as well as the summation of multisurface functions. While the multisurface functions and the finite element analysis have the characteristics of localization, piecewise logic has been applied to the polynomial and photogrammetric methods, which can produce significant accuracy improvement over the global approach. A software module has been implemented with full integration of data preprocessing and rectification techniques under Erdas Imagine development environment. The final root mean square (RMS) errors for the test CAMS data are about two pixels which are compatible with the random RMS errors existed in the reference map coordinates.
Leavitt, M.A.; Lutz, I.C.
1958-08-01
An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.
Rusanova, Julia A.; Semenaka, Valentyna V.; Omelchenko, Irina V.
2016-01-01
The tetranuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octahedron, which involves two N atoms of one bidentate ligand and one thiocyanate anion, two μ2-O atoms of 2-(dimethylamino)ethanolate ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S interactions involving the coordinating and non-coordinating thiocyanate anions are observed. In the crystal, the complex cations are linked through the thiocyanate anions via the Pb⋯S interactions and O—H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent acetonitrile molecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported molecular formula, weight and density. PMID:27375871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com; Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020; Domagalski, Marcin J.
Conformational differences between myoglobin structures are studied. Most structural differences in whale myoglobin beyond the uncertainty threshold can be correlated with a few specific structural factors. There are always exceptions and a search for additional factors is needed. The results might have serious implications for biological insights from conformational differences. Validation of general ideas about the origins of conformational differences in proteins is critical in order to arrive at meaningful functional insights. Here, principal component analysis (PCA) and distance difference matrices are used to validate some such ideas about the conformational differences between 291 myoglobin structures from sperm whale, horsemore » and pig. Almost all of the horse and pig structures form compact PCA clusters with only minor coordinate differences and outliers that are easily explained. The 222 whale structures form a few dense clusters with multiple outliers. A few whale outliers with a prominent distortion of the GH loop are very similar to the cluster of horse structures, which all have a similar GH-loop distortion apparently owing to intermolecular crystal lattice hydrogen bonds to the GH loop from residues near the distal histidine His64. The variations of the GH-loop coordinates in the whale structures are likely to be owing to the observed alternative intermolecular crystal lattice bond, with the change to the GH loop distorting bonds correlated with the binding of specific ‘unusual’ ligands. Such an alternative intermolecular bond is not observed in horse myoglobins, obliterating any correlation with the ligands. Intermolecular bonds do not usually cause significant coordinate differences and cannot be validated as their universal cause. Most of the native-like whale myoglobin structure outliers can be correlated with a few specific factors. However, these factors do not always lead to coordinate differences beyond the previously determined uncertainty thresholds. The binding of unusual ligands by myoglobin, leading to crystal-induced distortions, suggests that some of the conformational differences between the apo and holo structures might not be ‘functionally important’ but rather artifacts caused by the binding of ‘unusual’ substrate analogs. The causes of P6 symmetry in myoglobin crystals and the relationship between crystal and solution structures are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Pifu; University of the Chinese Academy of Sciences, Beijing 100049; Luo, Siyang
A new alkali tin(II) halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na{sup +} cations, Cl{sup −} anions and the isolated [SnF{sub 3}]{sup -} trigonal pyramids in which the stereochemically active 5s{sup 2} lone pair electrons are attached to the Sn{sup 2+} cations. Interestingly, the [SnF{sub 3}]{sup −} trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na{submore » 3}Sn{sub 2}F{sub 6}Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C. - Graphical abstract: A zero-dimensional alkaline tin halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. Interestingly, both the anions and cations coordinating polyhedra exhibit order arranged with the [SnF{sub 3}]{sup -} trigonal pyramids rotating along the c- axis.« less
Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.
Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong
2018-06-01
Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sang, Xiahan; LeBeau, James M
2014-03-01
We report the development of revolving scanning transmission electron microscopy--RevSTEM--a technique that enables characterization and removal of sample drift distortion from atomic resolution images without the need for a priori crystal structure information. To measure and correct the distortion, we acquire an image series while rotating the scan coordinate system between successive frames. Through theory and experiment, we show that the revolving image series captures the information necessary to analyze sample drift rate and direction. At atomic resolution, we quantify the image distortion using the projective standard deviation, a rapid, real-space method to directly measure lattice vector angles. By fitting these angles to a physical model, we show that the refined drift parameters provide the input needed to correct distortion across the series. We demonstrate that RevSTEM simultaneously removes the need for a priori structure information to correct distortion, leads to a dramatically improved signal-to-noise ratio, and enables picometer precision and accuracy regardless of drift rate. Copyright © 2013 Elsevier B.V. All rights reserved.
Multipolar electrostatics based on the Kriging machine learning method: an application to serine.
Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A
2014-04-01
A multipolar, polarizable electrostatic method for future use in a novel force field is described. Quantum Chemical Topology (QCT) is used to partition the electron density of a chemical system into atoms, then the machine learning method Kriging is used to build models that relate the multipole moments of the atoms to the positions of their surrounding nuclei. The pilot system serine is used to study both the influence of the level of theory and the set of data generator methods used. The latter consists of: (i) sampling of protein structures deposited in the Protein Data Bank (PDB), or (ii) normal mode distortion along either (a) Cartesian coordinates, or (b) redundant internal coordinates. Wavefunctions for the sampled geometries were obtained at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory, prior to calculation of the atomic multipole moments by volume integration. The average absolute error (over an independent test set of conformations) in the total atom-atom electrostatic interaction energy of serine, using Kriging models built with the three data generator methods is 11.3 kJ mol⁻¹ (PDB), 8.2 kJ mol⁻¹ (Cartesian distortion), and 10.1 kJ mol⁻¹ (redundant internal distortion) at the HF/6-31G(d,p) level. At the B3LYP/apc-1 level, the respective errors are 7.7 kJ mol⁻¹, 6.7 kJ mol⁻¹, and 4.9 kJ mol⁻¹, while at the MP2/cc-pVDZ level they are 6.5 kJ mol⁻¹, 5.3 kJ mol⁻¹, and 4.0 kJ mol⁻¹. The ranges of geometries generated by the redundant internal coordinate distortion and by extraction from the PDB are much wider than the range generated by Cartesian distortion. The atomic multipole moment and electrostatic interaction energy predictions for the B3LYP/apc-1 and MP2/cc-pVDZ levels are similar, and both are better than the corresponding predictions at the HF/6-31G(d,p) level.
Comparison of methods for quantitative evaluation of endoscopic distortion
NASA Astrophysics Data System (ADS)
Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua
2015-03-01
Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.
An Accurate Projector Calibration Method Based on Polynomial Distortion Representation
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-01-01
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247
Computer-assisted map projection research
Snyder, John Parr
1985-01-01
Computers have opened up areas of map projection research which were previously too complicated to utilize, for example, using a least-squares fit to a very large number of points. One application has been in the efficient transfer of data between maps on different projections. While the transfer of moderate amounts of data is satisfactorily accomplished using the analytical map projection formulas, polynomials are more efficient for massive transfers. Suitable coefficients for the polynomials may be determined more easily for general cases using least squares instead of Taylor series. A second area of research is in the determination of a map projection fitting an unlabeled map, so that accurate data transfer can take place. The computer can test one projection after another, and include iteration where required. A third area is in the use of least squares to fit a map projection with optimum parameters to the region being mapped, so that distortion is minimized. This can be accomplished for standard conformal, equalarea, or other types of projections. Even less distortion can result if complex transformations of conformal projections are utilized. This bulletin describes several recent applications of these principles, as well as historical usage and background.
Mokthar, Khalisah Asilah; Shamsuddin, Mustaffa; Rosli, Mohd Mustaqim; Fun, Hoong-Kun
2012-01-01
In the title compound, [PdBr(C27H23N3OPS)]·C3H6O, the coordination geometry about the PdII atom is distorted square-planar, arising from the attached Br, S, P and N atoms (N and Br are trans), the maximum deviation from the plane being 0.2053 (4) Å for the N atom. The three benzene rings attached to the P atom make dihedral angles of 69.78 (7), 87.05 (7) and 77.50 (7)° with each other. An intramolecular C—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, the complex molecules form infinite chains along the a-axis direction through C—H⋯Br interactions, and a C—H⋯O interaction links the main molecule with the acetone solvent molecule. PMID:22807805
Cadastral Database Positional Accuracy Improvement
NASA Astrophysics Data System (ADS)
Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.
2017-10-01
Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.
2015-03-01
Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.
Oudahmane, Abdelghani; El-Ghozzi, Malika; Avignant, Daniel
2012-04-01
Single crystals of Ca(5)Zr(3)F(22), penta-calcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF(2) and ZrF(4) in the presence of AgF. The structure of the title compound is isotypic with that of Sr(5)Zr(3)F(22) and can be described as being composed of layers with composition [Zr(3)F(20)](8-) made up from two different [ZrF(8)](4-) square anti-prisms (one with site symmetry 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca(2+) cations, forming a three-dimensional network. Amongst the four crystallographically different Ca(2+) ions, three are located on twofold rotation axes. The Ca(2+) ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca(2+) ions occupy inter-stices between the layers whereas the other two are located in void spaces of the [Zr(3)F(20)](8-) layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.
TeX4 (X = F, Cl, Br) as Lewis acids--complexes with soft thio- and seleno-ether ligands.
Hector, Andrew L; Jolleys, Andrew; Levason, William; Reid, Gillian
2012-08-28
TeF(4) reacts with OPR(3) (R = Me or Ph) in anhydrous CH(2)Cl(2) to give the colourless, square based pyramidal 1 : 1 complexes [TeF(4)(OPR(3))] only, in which the OPR(3) is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) Å; R = Ph: d(Te-O) = 2.1849(14) Å). Variable temperature (19)F{(1)H}, (31)P{(1)H} and (125)Te{(1)H} NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe(2) and SeMe(2) show a lower affinity for TeF(4), although unstable, yellow products with spectroscopic features consistent with [TeF(4)(EMe(2))] are obtained by the reaction of TeF(4) in neat SMe(2) or via reaction in CH(2)Cl(2) with SeMe(2). TeX(4) (X = F, Cl or Br) causes oxidation and halogenation of TeMe(2) to form X(2)TeMe(2). The Br(2)TeMe(2) hydrolyses in trace moisture to form [BrMe(2)Te-O-TeMe(2)Br], the crystal structure of which has been determined. TeX(4) (X = Cl or Br) react with the selenoethers SeMe(2), MeSe(CH(2))(3)SeMe or o-C(6)H(4)(SeMe)(2) (X = Cl) in anhydrous CH(2)Cl(2) to give the distorted octahedral monomers trans-[TeX(4)(SeMe(2))(2)], cis-[TeX(4){MeSe(CH(2))(3)SeMe}] and cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], which have been characterised by IR, Raman and multinuclear NMR ((1)H, (77)Se{(1)H} and (125)Te{(1)H}) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1 : 1 and 1 : 2 Te : L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, [Br(3)(tht)Te(μ-Br)(2)TeBr(3)(tht)], by crystallography with the tht ligands anti, whereas the latter are trans-octahedral monomers. Like its selenoether analogue, MeS(CH(2))(3)SMe forms distorted octahedral cis-chelates, [TeX(4){MeS(CH(2))(3)SMe}], whereas the more rigid o-C(6)H(4)(SMe)(2) unexpectedly forms a zig-zag chain polymer in the solid state, [TeCl(4){o-C(6)H(4)(SMe)(2)}](n), in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, o-C(6)H(4)(CH(2)EMe(2))(2) behave differently; the thioether forms cis-chelated [TeX(4){o-C(6)H(4)(CH(2)SMe)(2)}] confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX(4), forming the cyclic selenonium salts, [C(9)H(11)Se](2)[TeX(6)]. The tetrathiamacrocycle, [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane), does not react cleanly with TeCl(4), but forms the very poorly soluble [TeCl(4)([14]aneS(4))](n), shown by crystallography to be a zig-zag polymer with exo-coordinated [14]aneS(4) units linked via alternate S atoms to a cis-TeCl(4) unit. Trends in the (125)Te{(1)H} NMR shifts for this series of Te(IV) halides chalcogenoether complexes are discussed.
Trilithium thioarsenate octahydrate
Mereiter, Kurt
2013-01-01
The title compound, Li3AsS4·8H2O, is built up from infinite cationic [Li3(H2O)8]3+ chains which extend along [001] and are cross-linked by isolated tetrahedral AsS4 3− anions via O—H⋯S hydrogen bonds. Two Li and two As atoms lie on special positions with site symmetries -1 (1 × Li) and 2 (1 × Li and 2 × As). The [Li3(H2O)8]3+ chain contains four independent Li atoms of which two are in octahedral and two in tetrahedral coordination by water O atoms. An outstanding feature of this chain is a linear group of three edge-sharing LiO6 octahedra to both ends of which two LiO4 tetrahedra are attached by face-sharing. Such groups of composition Li5O16 are linked into branched chains by means of a further LiO4 tetrahedron sharing vertices with four adjacent LiO6 octahedra. The Li—O bonds range from 1.876 (5) to 2.054 (6) Å for the LiO4 tetrahedra and from 2.026 (5) to 2.319 (5) Å for the LiO6 octahedra. The two independent AsS4 3− anions have As—S bond lengths ranging from 2.1482 (6) to 2.1677 (6) Å [
Outlier Resistant Predictive Source Encoding for a Gaussian Stationary Nominal Source.
1987-09-18
breakdown point and influence function . The proposed sequence of predictive encoders attains strictly positive breakdown point and uniformly bounded... influence function , at the expense of increased mean difference-squared distortion and differential entropy, at the Gaussian nominal source.
Conformation and hydrogen bonding in 4-Aminobutanol
NASA Astrophysics Data System (ADS)
Khalil, Andrew S.; Duguay, Taylor M.; Lavrich, Richard J.
2017-06-01
Rotational spectra of the most abundant and four 13C isotopomers of 4-aminobutanol have been recorded in natural abundance using a Fourier-transform microwave spectrometer. For the most abundant isotopomer, 56 hyperfine components from the fifteen a- and b-type transitions measured were fit to the quadupole coupling constants, χaa = -3.843(3) MHz, χbb = 1.971(3) MHz. Rotational and centrifugal distortion constants determined from fits of the resulting unsplit line centers to the Watson A-reduction Hamiltonian are A = 4484.893(3) MHz, B = 2830.721(1) MHz, C = 1942.9710(3) MHz, ΔJ = 0.98(3) kHz, ΔJK = 1.4(1) kHz, ΔK = - 2.6(5) kHz, δJ = 0.27(1) kHz, and δK = 1.7(1) kHz. Between nine and eleven rotational transitions were measured for the 13C isotopes and rotational constants were determined by fixing the distortion constants to the values found for the normal isotope. The five sets of moments of inertia were used to determine the 4-aminobutanol substitution structure as well to perform a least-squares fit of the lowest energy ab initio structure. The heavy atom coordinates determined from these two methods are in excellent agreement. The conformation of 4-aminobutanol is stabilized by an intramolecular hydrogen bond from the alcohol proton to amino nitrogen with a resulting hydrogen bond distance of 1.891 Å. The experimental structure is consistent with the lowest energy ab initio [MP2/6-311++G(d,p)] structure.
Damianos, Konstantina; Ferrando, Riccardo
2012-02-21
The structural modifications of small supported gold clusters caused by realistic surface defects (steps) in the MgO(001) support are investigated by computational methods. The most stable gold cluster structures on a stepped MgO(001) surface are searched for in the size range up to 24 Au atoms, and locally optimized by density-functional calculations. Several structural motifs are found within energy differences of 1 eV: inclined leaflets, arched leaflets, pyramidal hollow cages and compact structures. We show that the interaction with the step clearly modifies the structures with respect to adsorption on the flat defect-free surface. We find that leaflet structures clearly dominate for smaller sizes. These leaflets are either inclined and quasi-horizontal, or arched, at variance with the case of the flat surface in which vertical leaflets prevail. With increasing cluster size pyramidal hollow cages begin to compete against leaflet structures. Cage structures become more and more favourable as size increases. The only exception is size 20, at which the tetrahedron is found as the most stable isomer. This tetrahedron is however quite distorted. The comparison of two different exchange-correlation functionals (Perdew-Burke-Ernzerhof and local density approximation) show the same qualitative trends. This journal is © The Royal Society of Chemistry 2012
Puszyńska-Tuszkanow, Mariola; Grabowski, Tomasz; Daszkiewicz, Marek; Wietrzyk, Joanna; Filip, Beata; Maciejewska, Gabriela; Cieślak-Golonka, Maria
2011-01-01
Coordination polymers [Ag(L(1,3))](n) (L(1)=hydantoin, L(3)=5,5-dimethylhydantoin), {[Ag(L(2))](.)0.5H(2)O}(n) (L(2)=1-methylhydantoin) and [Ag(NH(3))(L(4))](n) (L(4)=allantoin) were prepared and characterized by elemental analysis, spectroscopic (IR, FTIR and NMR), thermal and mass spectrometry methods. The crystal structure of {[Ag(1-methylhydantoin)]·0,5H(2)O}(n) was determined and analyzed. Three 1-methylhydantoinate ligands create a T-shape (CN=3) coordination sphere around the Ag(+) ion. Additionally, a short Ag⋯Ag distance of 2.997Å was found in the structure resulting in the expanded [3+2] environment of a distorted square shape. The [Ag(L(2))] entities are bound to each other by the bridging organic ligands. Thus a two-dimensional coordination polymer is created with water molecules located between the layers. In contrast to hydantoins, the allantoin complex contains an additional ammonia molecule in the coordination sphere. Moreover, in the Ag-alla complex the M-organic ligand binding site is shifted to the N-atom of the ureid chain. Free ligands are cytotoxically inactive against human MCF-7 and A549 cancer cell lines and mouse fibroblasts Balb/3T3. The silver hydantoin complexes exhibit a very strong activity against these lines. (The introduction of the methyl groups to the ring slightly increases resistance only against the A549 cell line.) In contrast, the silver complex of allantoin shows only a weak activity which may be related to the presence of the cytotoxic ammonia group in the composition of the compound and/or the different binding site of the ligand. Calculated in silico physiochemical parameters are promising for the future application of the complexes as drugs. Copyright © 2010 Elsevier Inc. All rights reserved.
High level continuity for coordinate generation with precise controls
NASA Technical Reports Server (NTRS)
Eiseman, P. R.
1982-01-01
Coordinate generation techniques with precise local controls have been derived and analyzed for continuity requirements up to both the first and second derivatives, and have been projected to higher level continuity requirements from the established pattern. The desired local control precision was obtained when a family of coordinate surfaces could be uniformly distributed without a consequent creation of flat spots on the coordinate curves transverse to the family. Relative to the uniform distribution, the family could be redistributed from an a priori distribution function or from a solution adaptive approach, both without distortion from the underlying transformation which may be independently chosen to fit a nontrivial geometry and topology.
Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.
1987-01-01
The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.
Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan
2016-01-28
The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.
NASA Astrophysics Data System (ADS)
Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan
2016-01-01
The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.
The research on calibration methods of dual-CCD laser three-dimensional human face scanning system
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong
2013-09-01
In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.
Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1989-01-01
Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.
NASA Astrophysics Data System (ADS)
de Villiers, Jason; Jermy, Robert; Nicolls, Fred
2014-06-01
This paper presents a system to determine the photogrammetric parameters of a camera. The lens distortion, focal length and camera six degree of freedom (DOF) position are calculated. The system caters for cameras of different sensitivity spectra and fields of view without any mechanical modifications. The distortion characterization, a variant of Brown's classic plumb line method, allows many radial and tangential distortion coefficients and finds the optimal principal point. Typical values are 5 radial and 3 tangential coefficients. These parameters are determined stably and demonstrably produce superior results to low order models despite popular and prevalent misconceptions to the contrary. The system produces coefficients to model both the distorted to undistorted pixel coordinate transformation (e.g. for target designation) and the inverse transformation (e.g. for image stitching and fusion) allowing deterministic rates far exceeding real time. The focal length is determined to minimise the error in absolute photogrammetric positional measurement for both multi camera systems or monocular (e.g. helmet tracker) systems. The system determines the 6 DOF position of the camera in a chosen coordinate system. It can also determine the 6 DOF offset of the camera relative to its mechanical mount. This allows faulty cameras to be replaced without requiring a recalibration of the entire system (such as an aircraft cockpit). Results from two simple applications of the calibration results are presented: stitching and fusion of the images from a dual-band visual/ LWIR camera array, and a simple laboratory optical helmet tracker.
NASA Astrophysics Data System (ADS)
Husain, Ahmad; Nami, Shahab A. A.; Siddiqi, K. S.
2010-04-01
A mononuclear precursor complex, [(CH 3) 2Sn(tpdtc)] and several of its heterobimetallic derivatives of the type, [(CH 3) 2Sn(tpdtc)]MCl 2 have been synthesized by the simple addition reaction of transition metal chlorides, MCl 2· nH 2O where tpdtc = tetraethylenepentamine bis(dithiocarbamate) anion, M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II). The synthesized complexes have been systematically characterized by the physicochemical and spectroscopic techniques. A square-pyramidal geometry has been proposed for all the transition metal atoms with chloride ions occupying the axial while the three nitrogen atoms occupying the equatorial positions. A symmetrical bidentate coordination has been observed for the dithiocarbamato moiety leading to the formation of 18 member cavity. The thermal studies reveal that the mononuclear complex decomposes in three stages while its heterobimetallic analog exhibits a simple two-stage profile. The conductivity measurement data (1 mmol solution) implies a non-electrolytic behavior for all the complexes as evident by their low conductivity values obtained at room temperature. The heterobimetallic complexes have also been tested against the bacterial ( Escherichia coli and Pseudomonas aeruginosa) and antifungal strains ( Aspergillus niger and Fusarium oxysporum). All the complexes were found to be active against the test organisms and maximum activity was found for [(CH 3) 2Sn(tpdtc)]CuCl 2 complex.
Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS)
NASA Astrophysics Data System (ADS)
Zainun, Noor Yasmin; Rahman, Ismail Abdul; Azwana Rothman, Rosfazreen
2016-11-01
Illegal dumping of solid waste not only affecting the environment but also social life of communities, hence authorities should have an effective system to cater this problem. Malaysia is experiencing extensive physical developments and this has led to an increase of construction waste illegal dumping. However, due to the lack of proper data collection, the actual figure for construction waste illegal dumping in Malaysia are not available. This paper presents a mapping of construction waste illegal dumping in Kluang district, Johor using Geographic Information System (GIS) software. Information of the dumped waste such as coordinate, photos, types of material and quantity of waste were gathered manually through site observation for three months period. For quantifying the dumped waste, two methods were used which are the first method is based on shape of the waste (pyramids or squares) while the second method is based weighing approach. All information regarding the waste was assigned to the GIS for the mapping process. Results indicated a total of 12 types of construction waste which are concrete, tiles, wood, gypsum board, mixed construction waste, brick and concrete, bricks, sand, iron, glass, pavement and tiles, and concrete at 64 points locations of illegal dumping on construction waste in Kluang. These wastes were accounted to an estimated volume of 427.2636 m3. Hopefully, this established map will assist Kluang authority to improve their solid waste management system in Kluang.
Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas
2013-12-15
The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.
NASA Astrophysics Data System (ADS)
Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.
2014-11-01
A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.
NASA Astrophysics Data System (ADS)
Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang
2008-03-01
The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.
NASA Astrophysics Data System (ADS)
Binzet, Gun; Gumus, Ilkay; Dogen, Aylin; Flörke, Ulrich; Kulcu, Nevzat; Arslan, Hakan
2018-06-01
We synthesized four new N,N-dialkyl-N‧-3-chlorobenzoylthiourea ligands (Alkyl: Dimethyl, diethyl, di-n-propyl and di-n-butyl) and their metal complexes with copper and nickel atoms. The structure of all synthesized compounds was fully characterized by physicochemical, spectroscopic and single crystal X-ray diffraction analysis techniques. The physical, spectral and analytical data of the newly synthesized metal complexes have shown the formation of 1:2 (metal:ligand) ratio. The benzoylthiourea ligands coordinate with metal atoms through oxygen and sulphur atoms. The metal atoms are in slightly distorted square-planar coordination geometry in Ni(II) or Cu(II) complex. Two oxygen and two sulphur atoms are mutually cis to each other in Ni(II) or Cu(II) complex. The intermolecular contacts in the compounds, which are HL1 and HL3, were examined by Hirshfeld surfaces and fingerprint plots using the data obtained from X-ray single crystal diffraction measurement. Besides these, their antimicrobial activities against Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and anti-yeast activity (Candida glabrata, Candida parapsilosis and Candida albicans) were investigated. This exhibited some promising results towards testing organism. Among all the compounds, Ni(L1)2 complex showed high activity against Bacillus subtilis with MIC values at 7.81 μg/mL.
NASA Astrophysics Data System (ADS)
Gavilan, Elisabeth; Audebrand, Nathalie; Jeanneau, Erwann
2007-11-01
A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) has been prepared. The crystal structures have been solved from single-crystal and powder diffraction data. The isotypical compounds crystallise with space group P2 1/ c (No. 14). The structures consist of honeycomb layers formed by eight-fold coordinated metals, in a distorted square-based antiprismatic conformation, connected together via oxalates which act as bidentate ligands and also as monodentate in a less-common μ3-bridging mode. Sheets are built from two shifted honeycomb layers and linked to each other through a hydrogen network. The resulting frameworks of the series display a compact two-dimensional arrangement of polyhedra MO 8 and M'O 8. Weakly-bonded water molecules are located between and within the sheets. Comparisons with the 3D open-framework structures of related metal oxalates are made. The dehydration processes occur in three or four steps. The final products are MO, M'O 2 and PbZrO 3 resulting from the sublimation of PbO in air. The size of PbZrO 3 crystallites, which are on average isotropic, has been evaluated to be 1055 Å from line-broadening analysis.
Electromagnetic tracking system with reduced distortion using quadratic excitation.
Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg
2014-03-01
Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.
Tris(4,4′-bi-1,3-thiazole-κ2 N,N′)iron(II) tetrabromidoferrate(III) bromide
Abedi, Anita; Amani, Vahid; Safari, Nasser
2011-01-01
In the [Fe(4,4′-bit)3]2+ (4,4′-bit is 4,4′-bi-1,3-thiazole) cation of the title compound, [Fe(C6H4N2S2)3][FeBr4]Br, the FeII atom (3 symmetry) is six-coordinated in a distorted octahedral geometry by six N atoms from three 4,4′-bit ligands. In the [FeBr4]− anion, the FeIII atom (3 symmetry) is four-coordinated in a distorted tetrahedral geometry. In the crystal, intermolecular C—H⋯Br hydrogen bonds and Br⋯π interactions [Br⋯centroid distances = 3.562 (3) and 3.765 (2) Å] link the cations and anions, stabilizing the structure. PMID:21522247
Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A
2003-11-26
DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.
X-ray and simulation studies of water
NASA Astrophysics Data System (ADS)
Nilsson, A.; Schlesinger, D.; G. M. Pettersson, L.
Here we present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid-liquid critical point hypothesis in supercooled water corresponding to high-density liquid (HDL) and low-density liquid (LDL). We demonstrate that the HDL local structure deviates from a tetrahedral coordination not only through a collapse of the 2nd shell but also through severe distortions around the 1st coordination shell.
Principles of disaster management lesson. 12: structuring organizations.
Cuny, F C
2001-01-01
This lesson discusses various structures for organizations that have functional roles in disaster responses, relief, and/or management activities. It distinguishes between pyramidal and matrix structures, and notes the advantages and disadvantages of each in relation to disasters. Span of control issues are dissected including the impact of the "P" factor on the performance of disaster managers and workers including its relationship to the coordination and control function. The development of a Table of Organization and how it relates to departmentalization within an organization also is provided.
Behavior-dependent specialization of identified hippocampal interneurons
Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas
2012-01-01
A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613
Katona, Linda; Lapray, Damien; Viney, Tim J.; Oulhaj, Abderrahim; Borhegyi, Zsolt; Micklem, Benjamin R.; Klausberger, Thomas; Somogyi, Peter
2014-01-01
Summary Neuropeptides acting on pre- and postsynaptic receptors are coreleased with GABA by interneurons including bistratified and O-LM cells, both expressing somatostatin but innervating segregated dendritic domains of pyramidal cells. Neuropeptide release requires high-frequency action potentials, but the firing patterns of most peptide/GABA-releasing interneurons during behavior are unknown. We show that behavioral and network states differentiate the activities of bistratified and O-LM cells in freely moving rats. Bistratified cells fire at higher rates during sleep than O-LM cells and, unlike O-LM cells, strongly increase spiking during sharp wave-associated ripples (SWRs). In contrast, O-LM interneurons decrease firing during sleep relative to awake states and are mostly inhibited during SWRs. During movement, both cell types fire cooperatively at the troughs of theta oscillations but with different frequencies. Somatostatin and GABA are differentially released to distinct dendritic zones of CA1 pyramidal cells during sleep and wakefulness to coordinate segregated glutamatergic inputs from entorhinal cortex and CA3. PMID:24794095
Prefrontal Parvalbumin Neurons in Control of Attention
Kim, Hoseok; Ährlund-Richter, Sofie; Wang, Xinming; Deisseroth, Karl; Carlén, Marie
2016-01-01
Summary While signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing. PMID:26771492
New characterization techniques for LSST sensors
Nomerotski, A.
2015-06-18
Fully depleted, thick CCDs with extended infra-red response have become the sensor of choice for modern sky surveys. The charge transport effects in the silicon and associated astrometric distortions could make mapping between the sky coordinates and sensor coordinates non-trivial, and limit the ultimate precision achievable with these sensors. Two new characterization techniques for the CCDs, which both could probe these issues, are discussed: x-ray flat fielding and imaging of pinhole arrays.
A collection of edge-based elements
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Edge-based elements have proved useful in solving electromagnetic problems since they are nondivergent. Previous authors have presented several two and three dimensional elements. Herein, we present four types of elements which are suitable for modeling several types of three dimensional geometries. Distorted brick and triangular prism elements are given in cartesian coordinates as well as the specialized cylindrical shell and pie-shaped prism elements which are suitable for problems best described in polar cylindrical coordinates.
Chlorine-induced assembly of a cationic coordination cage with a μ5-carbonato-bridged Mn(II)24 core.
Xiong, Ke-Cai; Jiang, Fei-Long; Gai, Yan-Li; Yuan, Da-Qiang; Han, Dong; Ma, Jie; Zhang, Shu-Quan; Hong, Mao-Chun
2012-04-27
Chlorine caged in! The chlorine-induced assembly of six shuttlecock-like tetranuclear Mn(II) building blocks generated in situ based on p-tert-butylthiacalix[4]arene and facial anions gave rise to a novel truncated distorted octahedral cationic coordination cage with a μ(5)-carbonato-bridged Mn(II)(24) core. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Haiquan; Zhang, Jiashu
2009-04-01
This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.
Thermal emergence of laser-induced spin dynamics for a Ni4 cluster
NASA Astrophysics Data System (ADS)
Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.
2018-05-01
We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.
SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Meyer, J; Sandison, G
2015-06-15
Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database weremore » included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.« less
A Study of Derivative Filters Using the Discrete Fourier Transform. Final Report M. S. Thesis
NASA Technical Reports Server (NTRS)
Ioup, G. E.
1980-01-01
Important properties of derivative (difference) filters using the discrete Fourier transform are investigated. The filters are designed using the derivative theorem of Fourier analysis. Because physical data are generally degraded by noise, the derivative filter is modified to diminish the effects of the noise, especially the noise amplification which normally occurs while differencing. The basis for these modifications is the reduction of those Fourier components for which the noise most dominates the data. The various filters are tested by applying them to find differences of two-dimensional data to which various amounts of signal dependent noise, as measured by a root mean square value, have been added. The modifications, circular and square ideal low-pass filters and a cut-off pyramid filter, are all found to reduce noise in the derivative without significantly degrading the result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripuramallu, Bharat Kumar; Das, Samar K., E-mail: skdsc@uohyd.ernet.in
2013-01-15
Two new compounds [Co (2,2 Prime -bipy) (H{sub 2}dbp)]{sub n} (1) and [Ni (2,2 Prime -bipy){sub 2}(H{sub 2}dbp)(H{sub 2}O)]{center_dot}H{sub 2}O (2) based on the flexible ligand 4,4 Prime -dimethylenebiphenyldiphosphonic acid (H{sub 4}dbp) with 2,2 Prime -bipyridine as secondary ligand have been synthesized under hydrothermal conditions. Both the compounds are well characterized by routine elemental analysis, IR, electronic spectroscopies, thermogravimetric analysis and finally by single crystal X-ray diffraction analysis. Compound 1 is a 1D extended coordination polymer and 2 is a discrete molecular compound. A comparative study between the geometries of H{sub 4}dbp ligand (in compounds 1 and 2, present study)more » and p-xylylenediphosphonic acid (H{sub 4}pxp) ligand (in previously reported compounds [Cu(2,2 Prime -bipy)(H{sub 2}pxp)]{center_dot}nH{sub 2}O (1A) and Ni(2,2 Prime -bipy){sub 2}H{sub 4}pxp]{sub n}[H{sub 2}pxp]{sub n} (2A), see text) demonstrate the effect of the twisting in the benzene rings in changing higher dimensional H{sub x}pxp (x refers to number of protonated hydroxyl groups) compounds to lower dimensional H{sub x}dbp compounds. The eight membered Co-dimer rings formed in compound 1 represents the simple and isolated Co-dimer, exhibiting weak antiferromagnetic exchange between metal centers through OPO bridges. - Graphical abstract: Two new compounds based on the dimethylenebiphenyldiphosphonic acid have been synthesized. The effect of twisting of benzene rings in the biphenyl spacer containing multidentate ligands alters dimensionality of final compounds. Highlights: Black-Right-Pointing-Pointer Cobalt containing coordination polymer and a nickel discrete compound have been synthesized. Black-Right-Pointing-Pointer Flexible ligand 4,4'-dimethylenebiphenyldiphosphonic acid has been employed. Black-Right-Pointing-Pointer Co(II) and Ni(II) ions are square pyramidal and octahedral respectively. Black-Right-Pointing-Pointer The effect of the twisting in the benzene rings in the associated ligand has been demonstrated.« less
Chavan, S S; Sawant, V A; Jadhav, A N
2014-01-03
Some copper(II) complexes of the type [Cu(L1-3)(phen]·CH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]·CH2Cl2 (1b-3b) (where L1=N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2=N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3=N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen=1,10-phenanthroline, bipy=2,2'-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]·CH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group=P21/n, a=11.5691(16) Å, b=11.0885(15) Å, c=24.890(4) Å, V=3166.2(8) Å(3), Z=4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π→π(*)) emission excited state. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chavan, S. S.; Sawant, V. A.; Jadhav, A. N.
2014-01-01
Some copper(II) complexes of the type [Cu(L1-3)(phen]ṡCH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]ṡCH2Cl2 (1b-3b) (where L1 = N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2 = N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3 = N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen = 1,10-phenanthroline, bipy = 2,2‧-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]ṡCH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group = P21/n, a = 11.5691(16) Å, b = 11.0885(15) Å, c = 24.890(4) Å, V = 3166.2(8) Å3, Z = 4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π → π∗) emission excited state.
TCNQ molecular semiconductor of the Cu(II)TAAB macrocycle: Optical and electrical properties.
Sánchez Vergara, M E; Salcedo, R; Molina, Bertha; Carrera-Téllez, R; Álvarez-Bada, J R; Hernández-García, A; Gómez-Vidales, V
2018-07-05
The present study reports the doping of a semiconducting molecular material through the formation of hydrogen bonds between the macrocycle Cu(II)(TAAB) and the electronic acceptor TCNQ. According to density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) analysis, the doped compound has the shape of a distorted square pyramid, with four nitrogen atoms in the equatorial position and the apical oxygen atom from the water ligands. These water molecules can generate strong hydrogen bonds with TCNQ and the TAAB metallic complex. Thin films of copper molecular material were obtained through high vacuum evaporation and were structurally characterized by IR spectroscopy, EPR and scanning electron microscopy (SEM). Additionally, the absorption coefficient (α) and photon energy (hν) were calculated from UV-vis spectroscopy and used to determine the optical activation energy in each film, from which its semiconducting behavior was established. An important aspect to consider is that the presence of hydrogen bonds is essential to establish the semiconducting nature of these species; this chemical behavior, as well as the resulting electronic mobility, have been studied by DFT theoretical calculations, which reinforce the experimental conclusion of a relationship between Cu(II)TAAB and TCNQ moieties generated by a weak bond. Finally, I-V characteristics have been obtained from a glass/ITO/doped molecular semiconductor/Ag device using Ag and ITO electrodes. Results for the copper-based device show that, at low voltages, the conduction process is of an ohmic nature while, at higher voltages, space-charge-limited current (SCLC) is found. It is highly probable that the doping effect in TCNQ favors electronic transport due to the formation of conduction channels caused by dopant-favored anisotropy. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mathan Kumar, Shanmugaiah; Kesavan, Mookkandi Palsamy; Vinoth Kumar, Gujuluva Gangatharan; Sankarganesh, Murugesan; Chakkaravarthi, Ganesan; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban
2018-02-01
A thiosemicarbazone ligand HL appended new Zn(II) complexes [Zn(L)(bpy)] (1) and [Zn(L)(phen)] (2) (where, HL = {2-(3-bromo-5-chloro-2-hydroxybenzylidene)-N-phenylhydrazinecarbothioamide}, bpy = 2, 2‧-bipyridine and phen = 1, 10-phenanthroline) have been synthesized and well characterized using conventional spectroscopic techniques viz.,1H NMR, FTIR and UV-Vis spectra. The crystal structures of complexes 1 and 2 have been determined by single crystal X-ray diffraction studies. Both the complex 1 (τ = 0.5) and 2 (τ = 0.37) possesses square based pyramidally distorted trigonal bipyramidal geometry. The ground state electronic structures of complexes 1 and 2 were investigated by DFT/B3LYP theoretical analysis using 6-311G (d,p) and LANL2DZ basis set level. The superior DNA binding ability of complex 2 has been evaluated using absorption and fluorescence spectral titration studies. Antimicrobial evaluation reveals that complex 2 endowed better screening than HL and complex 1 against both bacterial as well as fungal species. Consequently, complex 2 possesses highest antibacterial screening against Staphylococcus aureus (MIC = 3.0 ± 0.23 mM) and antifungal screening against Candida albicans (MIC = 6.0 ± 0.11 mM). Furthermore, the anticancer activity of the ligand HL, complexes 1 and 2 have been examined against the MCF-7 cell line (Human breast cancer cell line) using MTT assay. It is remarkable that complex 2 (12 ± 0.67 μM) show highest anticancer activity than HL (25.0 ± 0.91 μM) and complex 1 (15 ± 0.88 μM) due to the presence of phen ligand moiety.
Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone
2011-01-17
Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA cleavage by C2 is twice that measured for [Cu(tacn)(OH2)2](2+), suggesting some degree of cooperativity between the copper center and guanidinium pendants in the hydrolysis of the phosphate ester linkages of DNA. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed either in the presence of various radical scavengers or under anaerobic conditions.
Moon, Dohyun; Choi, Jong-Ha
2015-01-01
The structure of the title compound, [CrCl(C12H8N2)2(H2O)][ZnCl4]·H2O, has been determined from synchrotron data. The CrIII ion is bonded to four N atoms from two 1,10-phenanthroline (phen) ligands, one water molecule and a Cl atom in a cis arrangement, displaying an overall distorted octahedral coordination environment. The Cr—N(phen) bond lengths are in the range of 2.0495 (18) to 2.0831 (18) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2734 (7) and 1.9986 (17) Å, respectively. The tetrahedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with coordinating and non-coordinating water molecules. The two types of water molecules also interact through O—H⋯O hydrogen bonds. The observed hydrogen-bonding pattern leads to the formation of a three-dimensional network structure. PMID:25844190