NASA Astrophysics Data System (ADS)
Ghorbani, Omid; Ghanbari-Adivi, Ebrahim
2017-12-01
A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.
Single ionization and capture cross sections from biological molecules by bare projectile impact*
NASA Astrophysics Data System (ADS)
Quinto, Michele A.; Monti, Juan M.; Montenegro, Pablo D.; Fojón, Omar A.; Champion, Christophe; Rivarola, Roberto D.
2017-02-01
We report calculations on single differential and total cross sections for single ionization and single electron capture from biological targets, namely, vapor water and DNA nucleobasese molecules, by bare projectile impact: H+, He2+, and C6+. They are performed within the Continuum Distorted Wave - Eikonal Initial State approximation and compared to several existing experimental data. This study is oriented to the obtention of a reliable set of theoretical data to be used as input in a Monte Carlo code destined to micro- and nano- dosimetry.
Eikonal approximation for proton-helium electron-capture processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, K.; Toshima, N.; Ishihara, T.
1985-09-01
We calculate the capture cross sections for H/sup +/+He..-->..H+He/sup +/, treating the passive electron explicitly in a distorted-wave formalism based on the eikonal approximation. It is found that the shape of the differential cross sections is influenced considerably by the interaction between the passive electron and the incident proton, while the integrated cross sections are much less sensitive to that. The differential cross section at 293 keV agrees well with the experimental data except at extremely small scattering angles. The forward peak is reproduced well at higher energies. The integrated cross sections are in excellent agreement with experiments for themore » incident energy above 250 keV.« less
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.
2018-04-01
We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.
Multiple electron processes of He and Ne by proton impact
NASA Astrophysics Data System (ADS)
Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto
2016-05-01
A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.
Differential cross sections for ionizations of H and H2 by 75 keV proton impact
NASA Astrophysics Data System (ADS)
Igarashi, A.; Gulyás, L.
2018-02-01
We have calculated total, partial and fully differential cross sections (FDCSs) for ionizations of H and H2 by 75 keV proton impact within the framework of the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) approximation. Applying the single active electron model, the interaction between the projectile and the target ion is taken into account in the impact parameter picture. Extension of the CDW-EIS model to the molecular target is performed using the two-effective center approximation. The obtained results are compared with those of experimental and other theoretical data when available. The agreements between the theories and the experimental data are generally reasonable except for some cases of the FDCSs.
Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.
Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J
2001-11-26
The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.
NASA Astrophysics Data System (ADS)
Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.
2010-10-01
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkar, A. H.; Kadhane, U.; Misra, D.
2010-10-15
We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less
High Frequency Acoustic Propagation using Level Set Methods
2007-01-01
solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed
Nonlinear Localized Dissipative Structures for Long-Time Solution of Wave Equation
2009-07-01
are described in this chapter. These details are required to compute interference. WC can be used to generate constant arrival time ( Eikonal phase...complicated using Eikonal schemes. Some recent developments in Eikonal methods [2] can treat multiple arrival times but, these methods require extra
Topics in electron capture by fast ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsin, S.H.
1987-01-01
The post-collision interaction (PCI) model was applied, together with the eikonal approximation, to study the (n = 2,3) capture cross sections in p + H(ls) collisions. The results indeed improve the previous eikonal calculations for l = 0 cases, and agree quite well with present experimental data. Calculations using the strong-potential Born (SPB) approximation, with the Sil and McGuire technique, for capture into the np, nd levels are also presented. While these cross sections are smaller than cross sections for capture into the ns levels at high velocities, nevertheless the Thomas peak is clearly evident in both the absolute valuemore » m = 2, absolute value m = 1 and m = 0 magnetic substates in p + H(ls) collisions. Also calculated were corrections to the SPB using the Distorted-Wave Born formalism of Taulbjerg and Briggs. In the sense of a plane-wave Born expansion, all terms of the third Born approximation and all single switching fourth Born terms are included, but a peaking approximation is needed to reduce the calculation to tractable form. Effects of the higher terms are most visible in the valley between the Thomas peak and the forward peak. The Thomas peak is visible in the correction term, even though it includes no second Born contributions.« less
NASA Astrophysics Data System (ADS)
Montanari, C. C.; Miraglia, J. E.
2018-01-01
In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.
Water versus DNA: New insights into proton track-structure modeling in radiobiology and radiotherapy
Champion, Christophe; Quinto, Michele A.; Monti, Juan M.; ...
2015-09-25
Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well asmore » their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Thus the consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.« less
Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Weck, P F; Fojón, O A; Hanssen, J; Rivarola, R D
2015-10-21
Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.
Integration of an Acoustic Modem onto a Wave Glider Unmanned Surface Vehicle
2012-06-01
of the wave and ωτ represents the phase of the wave. After some amount of math and taking the limit as ω →∞ , we arrive at a form of the eikonal ...the phase front. (5.5) 22 0A Aτ τ∇ ⋅∇ + ∇ = The transport equation and the eikonal equation can be solved by using multiple methods to give
Modeling a 400 Hz Signal Transmission Through the South China Sea Basin
2009-03-01
TRACING ..........................8 1. General Ray Theory and the Eikonal Approximation .....................8 2. Hamiltonian Ray Tracing...HAMILTONIAN RAY TRACING 1. General Ray Theory and the Eikonal Approximation In general, modeling acoustic propagation through the ocean necessitates... eikonal and represents the phase component of the solution. Since solutions of constant phase represent wave fronts, and rays travel in a direction
2007-09-01
terms on the RHS). The wave number k is obtained from the eikonal equations (e.g. Dingemans, 1993): ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ −= ∂ ∂ + ∂ ∂ y k x k c xt...components and ω represents the absolute radial frequency. The RHS of the eikonal equations ensures the irrotationality of wave number vector field (pers
Signal Processing and Preliminary Results in the 1988 Monterey Bay Tomography Experiment
1989-06-01
are averaged and kept in databases in order to predict sound propagation through the oceans and this 25 type of data was used in the initial ray...equation is known as the Eikonal equation. The limits placed on the sound speed structure can be described as:[Ref. 16] 1. The amplitude of the wave
NASA Astrophysics Data System (ADS)
Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong
2017-12-01
First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.
Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
Fully differential cross sections for Li2+-impact ionization of Li(2s) and Li(2p)
NASA Astrophysics Data System (ADS)
Ghorbani, Omid; Ghanbari-Adivi, Ebrahim; Fabian Ciappina, Marcelo
2018-05-01
A semiclassical impact parameter version of the continuum distorted wave-Eikonal initial state theory is developed to study the differential ionization of Li atoms in collisions with Li2+ ions. Both post and prior forms of the transition amplitude are considered. The fully differential cross sections are calculated for the lithium targets in their ground and their first excited states and for the projectile ions at 16 MeV impact energy. The role of the inter-nuclear interaction as well as the significance of the post-prior discrepancy in the ejected electron spectra are investigated. The obtained results for ejection of the electron into the azimuthal plane are compared with the recent measurements and with their corresponding values obtained using a fully quantum mechanical version of the theory. In most of the cases, the consistency of the present approach with the experimental and the quantum theoretical data is reasonable. However, for 2p-state ionization, in the cases where no experimental data exist, there is a considerable difference between the two theoretical approaches. This difference is questionable and further experiments are needed to judge which theory makes a more accurate description of the collision dynamics.
Energy and angular distribution of electrons ejected from water by the impact of fast O8+ ion beams
NASA Astrophysics Data System (ADS)
Bhattacharjee, Shamik; Bagdia, Chandan; Chowdhury, Madhusree Roy; Monti, Juan M.; Rivarola, Roberto D.; Tribedi, Lokesh C.
2018-01-01
Double differential cross sections (DDCS) of electrons emitted from vapor water molecules (in vapor phase) by 2.0 MeV/u and 3.75 MeV/u bare oxygen ion impact have been measured by continuum electron spectroscopy technique. The ejected electrons were detected by an electrostatic hemispherical deflection analyzer over an energy range of 1-600 eV and emission angles from 20∘ to 160∘. The DDCS data has been compared with the continuum-distorted-wave-eikonal-initial state (CDW-EIS) approximation and a reasonable agreement was found with both version of the models i.e. post and prior version. By numerical integration of the DDCS data, the single differential cross section (SDCS) and total ionization cross section (TCS) were obtained. The obtained TCS results were compared with other available TCS results for water target within the same energy range. The total ionization cross sections values are seen to saturate as the projectile charge state ( q p ) increases, which is in contrast to the first-Born predicted q p 2 dependence. This is also in contrast to the prediction of the CDW-EIS models.
Considerations of the Use of 3-D Geophysical Models to Predict Test Ban Monitoring Observables
2007-09-01
predict first P arrival times. Since this is a 3-D model, the travel times are predicted with a 3-D finite-difference code solving the eikonal equations...for the eikonal wave equation should provide more accurate predictions of travel-time from 3D models. These techniques and others are being
Elastic Differential Cross Sections
NASA Technical Reports Server (NTRS)
Werneth, Charles M.; Maung, Khin M.; Ford, William P.; Norbury, John W.; Vera, Michael D.
2014-01-01
The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A less than or equal to 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon- nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability.
Nuclear Cross Sections for Space Radiation Applications
NASA Technical Reports Server (NTRS)
Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.
2015-01-01
The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.
Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan
2016-08-01
A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.
Analytical approximations for spiral waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less
Comparison of exact solution with Eikonal approximation for elastic heavy ion scattering
NASA Technical Reports Server (NTRS)
Dubey, Rajendra R.; Khandelwal, Govind S.; Cucinotta, Francis A.; Maung, Khin Maung
1995-01-01
A first-order optical potential is used to calculate the total and absorption cross sections for nucleus-nucleus scattering. The differential cross section is calculated by using a partial-wave expansion of the Lippmann-Schwinger equation in momentum space. The results are compared with solutions in the Eikonal approximation for the equivalent potential and with experimental data in the energy range from 25A to 1000A MeV.
1985-10-01
can monitor a larger region and provide a larger database with fewer moorings, and its averaging (integrating) process can filter out undesirable small...as the eikonal equation, relating o to the perturbed sound-speed field Z+6c and the flow field v during ,*.. a transmission by .= (c*-v VO) 2 /(F+6c...should consult Spiesberger et al. (1980) for ray identifications. Ugincius (1970) solved the eikonal equation using the method of -. characteristics
McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe
2007-04-01
Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.
Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams.
Galassi, M E; Champion, C; Weck, P F; Rivarola, R D; Fojón, O; Hanssen, J
2012-04-07
Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons,whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.
Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams
NASA Astrophysics Data System (ADS)
Galassi, M. E.; Champion, C.; Weck, P. F.; Rivarola, R. D.; Fojón, O.; Hanssen, J.
2012-04-01
Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons, whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.
Evaluation of Two Numerical Wave Models with Inlet Physical Model
2005-07-01
GHOST in inlets and near structures compared slightly better with measurements. DOI: 10.1061/~ASCE!0733-950X~2005!131:4~149! CE Database subject headings...full directional spectrum. GHOST represents wave diffraction by implementing a formulation of the Eikonal equation ~Rivero et al. 1997a, b!, whereas
A Review of Methods for Moving Boundary Problems
2009-07-01
the bound- ary value problem for the eikonal equation: ‖∇u‖ = 1 for x ∈ Ω (29) u = 0 for x ∈ Γ (30) ERDC/CHL TR-09-10 8 where ‖ ‖ is the Euclidean norm...Solutions of the eikonal equation can in turn be characterized as steady state solutions of the initial value prob- lem ut + sgn(u0)(‖∇u‖ − 1) = 0...LS using the eikonal equation and use the NCI equation for the LS dynam- ics. The complete system of equations in weak form is ∫ Ω (‖∇u‖ − 1)wdV = 0
Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K
2008-07-01
To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Hui
2018-05-01
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.
Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746
High Energy Scattering in the AdS/CFT Correspondence
NASA Astrophysics Data System (ADS)
Penedones, Joao
2007-12-01
This work explores the celebrated AdS/CFT correspondence in the regime of high energy scattering in Anti--de Sitter (AdS) spacetime. In particular, we develop the eikonal approximation to high energy scattering in AdS and explore its consequences for the dual Conformal Field Theory (CFT). Using position space Feynman rules, we rederive the eikonal approximation for high energy scattering in flat space. Following this intuitive position space perspective, we then generalize the eikonal approximation for high energy scattering in AdS and other spacetimes. Remarkably, we are able to resum, in terms of a generalized phase shift, ladder and cross ladder Witten diagrams associated to the exchange of an AdS spin j field, to all orders in the coupling constant. By the AdS/CFT correspondence, the eikonal amplitude in AdS is related to the four point function of CFT primary operators in the regime of large 't Hooft coupling, including all terms of the 1/N expansion. We then show that the eikonal amplitude determines the behavior of the CFT four point function for small values of the cross ratios in a Lorentzian regime and that this controls its high spin and dimension conformal partial wave decomposition. These results allow us to determine the anomalous dimension of high spin and dimension double trace primary operators, by relating it to the AdS eikonal phase shift. Finally we find that, at large energies and large impact parameters in AdS, the gravitational interaction dominates all other interactions, as in flat space. Therefore, the anomalous dimension of double trace operators, associated to graviton exchange in AdS, yields a universal prediction for CFT's with AdS gravitational duals.
Eikonal Tomography of the Southern California Plate Boundary Region
NASA Astrophysics Data System (ADS)
Qiu, H.; Ben-Zion, Y.; Zigone, D.; Lin, F. C.
2016-12-01
We use eikonal tomography to derive directionally-dependent phase velocities of surface waves for the plate boundary region in southern CA sensitive to the approximate depth range 1-20 km. Seismic noise data recorded by 346 stations in the area provide a spatial coverage with 5-25 km typical station spacing and period range of 1-20 s. Noise cross-correlations are calculated for vertical component data recorded in year 2014. Rayleigh wave group and phase travel times between 2 and 13 sec period are derived for each station pair using frequency-time analysis. For each common station, all available phase travel time measurements with sufficient signal to noise ratio and envelope peak amplitude are used to construct a travel time map for a virtual source at the common station location. By solving the eikonal equation, both phase velocity and propagation direction are evaluated at each location for each virtual source. Isotropic phase velocities and 2-psi azimuthal anisotropy and their uncertainties are determined statistically using measurements from different virtual sources. Following the method of Barmin et al. (2001), group velocities are also inverted using all the group travel times that pass quality criteria. The obtained group and phase dispersions of Rayleigh waves are then inverted on a 6 x 6 km2 grid for local 1D piecewise shear wave velocity structures using the procedure of Herrmann (2013). The results agree well with previous observations of Zigone et al. (2015) in the overlapping area. Clear velocity contrasts and low velocity zones are seen for the San Andreas, San Jacinto, Elsinore and Garlock faults. We also find 2-psi azimuthal anisotropy with fast directions parallel to geometrically-simple fault sections. Details and updated results will be presented in the meeting.
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Berczynski, Pawel; Bliokh, Konstantin Yu; Kravtsov, Yuri A; Stateczny, Andrzej
2006-06-01
We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.
A distorted-wave methodology for electron-ion impact excitation - Calculation for two-electron ions
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.
1977-01-01
A distorted-wave program is being developed for calculating the excitation of few-electron ions by electron impact. It uses the exchange approximation to represent the exact initial-state wavefunction in the T-matrix expression for the excitation amplitude. The program has been implemented for excitation of the 2/1,3/(S,P) states of two-electron ions. Some of the astrophysical applications of these cross sections as well as the motivation and requirements of the calculational methodology are discussed.
NASA Technical Reports Server (NTRS)
Similon, Philippe L.; Sudan, R. N.
1989-01-01
The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.
Analysis of unsteady wave processes in a rotating channel
NASA Technical Reports Server (NTRS)
Larosiliere, L. M.; Mawid, M.
1993-01-01
The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.
Analysis of unsteady wave processes in a rotating channel
NASA Astrophysics Data System (ADS)
Larosiliere, Louis M.; Mawid, M.
1993-06-01
The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.
Fast sweeping method for the factored eikonal equation
NASA Astrophysics Data System (ADS)
Fomel, Sergey; Luo, Songting; Zhao, Hongkai
2009-09-01
We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and a fast sweeping strategy are designed for the equation of the correction part. The key idea is to enforce the causality of the original eikonal equation during the Gauss-Seidel iterations. Using extensive numerical examples we demonstrate that (1) the convergence behavior of the fast sweeping method for the factored eikonal equation is the same as for the original eikonal equation, i.e., the number of iterations for the Gauss-Seidel iterations is independent of the mesh size, (2) the numerical solution from the factored eikonal equation is more accurate than the numerical solution directly computed from the original eikonal equation, especially for point sources.
NASA Astrophysics Data System (ADS)
Del Dotto, A.; Kaptari, L. P.; Pace, E.; Salmè, G.; Scopetta, S.
2017-12-01
The semi-inclusive deep-inelastic electron scattering off transversely polarized 3He, i.e., the process e +3He ⃗→e'+h +X , with h being a detected fast hadron, is studied beyond the plane-wave impulse approximation. To this end, a distorted spin-dependent spectral function of a nucleon inside an A =3 nucleus is actually evaluated through a generalized eikonal approximation, in order to take into account the final state interactions between the hadronizing system and the (A -1 ) nucleon spectator one. Our realistic description of both nuclear target and final state is a substantial step forward for achieving a reliable extraction of the Sivers and Collins single spin asymmetries of the free neutron. To illustrate how and to what extent the model dependence due to the treatment of the nuclear effects is under control, we apply our approach to the extraction procedure of the neutron single spin asymmetries from those measured for 3He for values of the kinematical variables relevant both for forthcoming experiments at Jefferson Laboratory and, with an exploratory purpose, for the future Electron Ion Collider.
2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach
We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...
Evaluation of Acoustic Propagation Paths into the Human Head
2005-04-01
pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult...optics, rays are used to depict the path or paths taken as a light wave travels through a lens. However, in optics, the eikonal equation can be solved
Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.
2009-01-01
Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-05-01
The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.
Coincidence studies of He ionized by C{sup 6+}, Au{sup 24+}, and Au{sup 53+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGovern, M.; Walters, H. R. J.; Assafrao, D.
2010-04-15
A recently developed [Phys. Rev. A 79, 042707 (2009)] impact parameter coupled pseudostate approximation (CP) is applied to calculate triple differential cross sections for single ionization of He by C{sup 6+}, Au{sup 24+}, and Au{sup 53+} projectiles at impact energies of 100 and 2 MeV/amu for C{sup 6+} and 3.6 MeV/amu for Au{sup 24+} and Au{sup 53+}. For C{sup 6+}, satisfactory, but not perfect, agreement is found with experimental measurements in coplanar geometry, but there is substantial disagreement with data taken in a perpendicular plane geometry. The CP calculations firmly contradict a projectile-nucleus interaction model which has been used tomore » support the perpendicular plane measurements. For Au{sup 24+} and Au{sup 53+}, there is a complete lack of accord with the available experiments. However, for Au{sup 24+} the theoretical position appears to be quite firm with clear indications of convergence in the CP approximation and very good agreement between CP and the completely different three-distorted-waves eikonal-initial-state (3DW-EIS) approximation. The situation for Au{sup 53+} is different. At the momentum transfers at which the measurements were made, there are doubts about the convergence of the CP approximation and a factor of 2 difference between the CP and 3DW-EIS predictions. The discord between theory and experiment is even greater with the experiment giving cross sections a factor of 10 larger than the theory. A study of the convergence of the CP approximation shows that it improves rapidly with reducing momentum transfer. As a consequence, lower-order cross sections than the triple are quite well converged and present an opportunity for a more reliable test of the experiment.« less
Theoretical derivation of laser-dressed atomic states by using a fractal space
NASA Astrophysics Data System (ADS)
Duchateau, Guillaume
2018-05-01
The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
2015-01-15
The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less
NASA Astrophysics Data System (ADS)
Gordeev, E. V.; Kuskov, V. V.; Razenkov, I. A.; Shesternin, A. N.
2017-11-01
The quality of adaptive suppression of initial aberrations of the wave front of a main laser beam with the use of the method of aperture sensing by the signal of atmospheric backscattering of the additional (sensing) laser radiation at a different wavelength has been studied experimentally. It is shown that wavefront distortions of the main laser beam were decreased significantly during the setup operation.
Direct Numerical Simulation of the Influence of Plasmas on Turbulent Flows
2006-12-31
studying the ability of plasmas to directly influence the turbulent fluctuations in the interior of flows. Laser energy deposition has been considered...background turbulence . Signifi- cant expansion is observed in the turbulent core. "* The blast wave is initially very strong and is not distorted by the...enough to get distorted through interaction with the turbulence . "* Statistics computed for turbulent kinetic energy and divergence of velocity
A fast marching algorithm for the factored eikonal equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC
The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less
Pacemakers in large arrays of oscillators with nonlocal coupling
NASA Astrophysics Data System (ADS)
Jaramillo, Gabriela; Scheel, Arnd
2016-02-01
We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.
NASA Astrophysics Data System (ADS)
Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.
2018-03-01
The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.
Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
Suga, Mikio; Matsuda, Tetsuya; Minato, Kotaro; Oshiro, Osamu; Chihara, Kunihiro; Okamoto, Jun; Takizawa, Osamu; Komori, Masaru; Takahashi, Takashi
2003-07-01
Magnetic resonance elastography (MRE) is a method that can visualize the propagating and standing shear waves in an object being measured. The quantitative value of a shear modulus can be calculated by estimating the local shear wavelength. Low-frequency mechanical motion must be used for soft, tissue-like objects because a propagating shear wave rapidly attenuates at a higher frequency. Moreover, a propagating shear wave is distorted by reflections from the boundaries of objects. However, the distortions are minimal around the wave front of the propagating shear wave. Therefore, we can avoid the effect of reflection on a region of interest (ROI) by adjusting the duration of mechanical vibrations. Thus, the ROI is often shorter than the propagating shear wavelength. In the MRE sequence, a motion-sensitizing gradient (MSG) is synchronized with mechanical cyclic motion. MRE images with multiple initial phase offsets can be generated with increasing delays between the MSG and mechanical vibrations. This paper proposes a method for measuring the local shear wavelength using MRE multiple initial phase patchwork offsets that can be used when the size of the object being measured is shorter than the local wavelength. To confirm the reliability of the proposed method, computer simulations, a simulated tissue study and in vitro and in vivo studies were performed.
Research on ambient noise tomography in Fenwei Fault array
NASA Astrophysics Data System (ADS)
Xu, H.; Luo, Y.; Yin, X.
2016-12-01
From June 2014 to May 2015, 561 Empirical Green's functions (EGFs) between two station pairs are obtained by processing continuous ambient noise observed at 34 stations from Fenwei Fault array. All available vertical component series are utilized to extract the Rayleigh waves. The signal-to-noise ratio (SNR) at different periods and the azimuth distribution of the interstation pairs with high SNR are discussed. The azimuth distributions of the ambient noise source are investigated by analyzing the beamforming output. Although seasonal variations are observed from the beamforming output, the source distribution at 10-25 S is almost uniformly distributed in all directions, which allows us to perform the following detailed tomography safely. From these EGFs, surface wave travel times in the period range of 5 to 40 S are measured by Frequency-Time Analysis technique (FTAN). Then, eikonal tomography is adopted to construct Rayleigh wave phase velocity maps and estimate the phase velocity uncertainties. Finally, we invert the obtained phase velocity dispersion curves for 1D shear velocity profiles and then assemble these 1D profiles to construct a 3D shear velocity model. Major velocity features of our 3D model are correlated well with the known geological features. In the shallow, the shear velocity of the fault is low-speed which is related to sedimentary basins, and the surrounding ridges is high-speed. References Lin, F., Ritzwoller, M.H. and Snieder, R., 2009. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophysical Journal International, 177(3): 1091-1110.
Hybridized Multiscale Discontinuous Galerkin Methods for Multiphysics
2015-09-14
discontinuous Galerkin method for the numerical solution of the Helmholtz equation , J. Comp. Phys., 290, 318–335, 2015. [14] N.C. NGUYEN, J. PERAIRE...approximations of the Helmholtz equation for a very wide range of wave frequencies. Our approach combines the hybridizable discontinuous Galerkin methodology...local approximation spaces of the hybridizable discontinuous Galerkin methods with precomputed phases which are solutions of the eikonal equation in
Analysis of corrections to the eikonal approximation
NASA Astrophysics Data System (ADS)
Hebborn, C.; Capel, P.
2017-11-01
Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.
Electron Beam Transport in Advanced Plasma Wave Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L
2013-01-31
The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less
NASA Astrophysics Data System (ADS)
Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart
2018-04-01
We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.
Dynamics and Stability of Acoustic Wavefronts in the Ocean
2012-09-30
has been developed to solve the eikonal equation and calculate wavefront and ray trajectory displacements, which are required to be small over a...solution of the eikonal equation lies in the eikonal (and acoustic travel time) being a multi-valued function of position. A number of computational...approaches to solve the eikonal equation without ray tracing have been developed in mathematical and seismological communities (Vidale, 1990; Sava and
Dynamics and Stability of Acoustic Wavefronts in the Ocean
2011-09-01
developed to solve the eikonal equation and calculate wavefront and ray trajectory displacements, which are required to be small over a correlation length...with a direct modeling of acoustic wavefronts in the ocean through numerical solution of the eikonal equation lies in the eikonal (and acoustic...travel time) being a multi-valued function of position. A number of computational approaches to solve the eikonal equation without ray tracing have been
Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Wouchuk, J. G.; Huete Ruiz de Lira, C.
The response of a shock front to small preshock nonuniformities of density, pressure, and velocity is studied theoretically and numerically. These preshock nonuniformities emulate imperfections of a laser target, due either to its manufacturing, like joints or feeding tubes, or to preshock perturbation seeding/growth, as well as density fluctuations in foam targets, ''thermal layers'' near heated surfaces, etc. Similarly to the shock-wave interaction with a small nonuniformity localized at a material interface, which triggers a classical Richtmyer-Meshkov (RM) instability, interaction of a shock wave with periodic or localized preshock perturbations distributed in the volume distorts the shape of the shockmore » front and can cause a RM-type instability growth. Explicit asymptotic formulas describing distortion of the shock front and the rate of RM-type growth are presented. These formulas are favorably compared both to the exact solutions of the corresponding initial-boundary-value problem and to numerical simulations. It is demonstrated that a small density modulation localized sufficiently close to a flat target surface produces the same perturbation growth as an 'equivalent' ripple on the surface of a uniform target, characterized by the same initial areal mass modulation amplitude.« less
Ray Modeling Methods for Range Dependent Ocean Environments
1983-12-01
the eikonal equation, gives rise to equations for ray paths which are perpendicular to the wave fronts. Equation II.4, the transport equation, leads... databases for use by MEDUSA. The author has assisted in the installation of MEDUSA at computer facilities which possess databases containing archives of...sound velocity profiles, bathymetry, and bottom loss data. At each computer site, programs convert the archival data retrieved by the database system
Dispersive distortions of a radio-wave pulse in a double-resonance gaseous medium
NASA Astrophysics Data System (ADS)
Strelkov, G. M.
2017-03-01
The problem on dispersive distortions of an electromagnetic pulse in a gaseous medium with two isolated resonant frequencies is solved analytically. The solution is obtained directly in the time region and, thus, is not the result of calculations of the Fourier integral. Without introducing additional assumptions, it is possible to study the regularities and the features of the process of propagation of pulses caused by variations of both their initial characteristics and the parameters of the propagation medium. As an example, the solution is applied to describe the distortions of the two-frequency pulse of subnanosecond duration in the terrestrial atmosphere.
NASA Astrophysics Data System (ADS)
Hilditch, David; Harms, Enno; Bugner, Marcus; Rüter, Hannes; Brügmann, Bernd
2018-03-01
A long-standing problem in numerical relativity is the satisfactory treatment of future null-infinity. We propose an approach for the evolution of hyperboloidal initial data in which the outer boundary of the computational domain is placed at infinity. The main idea is to apply the ‘dual foliation’ formalism in combination with hyperboloidal coordinates and the generalized harmonic gauge formulation. The strength of the present approach is that, following the ideas of Zenginoğlu, a hyperboloidal layer can be naturally attached to a central region using standard coordinates of numerical relativity applications. Employing a generalization of the standard hyperboloidal slices, developed by Calabrese et al, we find that all formally singular terms take a trivial limit as we head to null-infinity. A byproduct is a numerical approach for hyperboloidal evolution of nonlinear wave equations violating the null-condition. The height-function method, used often for fixed background spacetimes, is generalized in such a way that the slices can be dynamically ‘waggled’ to maintain the desired outgoing coordinate lightspeed precisely. This is achieved by dynamically solving the eikonal equation. As a first numerical test of the new approach we solve the 3D flat space scalar wave equation. The simulations, performed with the pseudospectral bamps code, show that outgoing waves are cleanly absorbed at null-infinity and that errors converge away rapidly as resolution is increased.
Photoionization of Atoms and Molecules using a Configuration-Average Distorted-Wave Method
NASA Astrophysics Data System (ADS)
Pindzola, M. S.; Balance, C. P.; Loch, S. D.; Ludlow, J. A.
2011-05-01
A configuration-average distorted-wave method is applied to calculate the photoionization cross section for the outer subshells of the C atom and the C2 diatomic molecule. Comparisions are made with previous R-matrix and Hartree- Fock distorted-wave calculations.
Software for simulation of a computed tomography imaging spectrometer using optical design software
NASA Astrophysics Data System (ADS)
Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.
2000-11-01
Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.
Physical Oceanography Program Science Abstracts.
1985-04-01
substantial part of the database used by the U.S. Navy and the U.S. National Weather Service to generate, in real-time, subsurface tempera- ture maps...quality, 1ST database which incorporates GTS bathymessagss and on-sbip recordings from the Pacific for the period 1979 through 1983. Access to these data...Investigator: Stanley M. FlattE Frank S. Henyey INTERNAL-WAVE NONLINEAR INTERACTIONS BY THE EIKONAL METHOD We have been involved in the study of
Bäckström, G; Galassi, M E; Tilly, N; Ahnesjö, A; Fernández-Varea, J M
2013-06-01
The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.
NASA Astrophysics Data System (ADS)
Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.
2018-03-01
Accurate numerical computation of wave traveltimes in heterogeneous media is of major interest for a large range of applications in seismics, such as phase identification, data windowing, traveltime tomography and seismic imaging. A high level of precision is needed for traveltimes and their derivatives in applications which require quantities such as amplitude or take-off angle. Even more challenging is the anisotropic case, where the general Eikonal equation is a quartic in the derivatives of traveltimes. Despite their efficiency on Cartesian meshes, finite-difference solvers are inappropriate when dealing with unstructured meshes and irregular topographies. Moreover, reaching high orders of accuracy generally requires wide stencils and high additional computational load. To go beyond these limitations, we propose a discontinuous-finite-element-based strategy which has the following advantages: (1) the Hamiltonian formalism is general enough for handling the full anisotropic Eikonal equations; (2) the scheme is suitable for any desired high-order formulation or mixing of orders (p-adaptivity); (3) the solver is explicit whatever Hamiltonian is used (no need to find the roots of the quartic); (4) the use of unstructured meshes provides the flexibility for handling complex boundary geometries such as topographies (h-adaptivity) and radiation boundary conditions for mimicking an infinite medium. The point-source factorization principles are extended to this discontinuous Galerkin formulation. Extensive tests in smooth analytical media demonstrate the high accuracy of the method. Simulations in strongly heterogeneous media illustrate the solver robustness to realistic Earth-sciences-oriented applications.
Modeling of High-Frequency Acoustic Propagation in Shallow Water
2007-06-01
is a product of a phase function, called the eikonal equation, and an amplitude function, called the transport equation. To solve the eikonal ... eikonal equation in the ray coordinate system. Expanding Equation (2.6), 2 1 c =∇⋅∇ ττ , (2.14) so that substituting the value of τ∇ from
Distorted-wave methods for electron capture in ion-atom collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgdoerfer, J.; Taulbjerg, K.
1986-05-01
Distorted-wave methods for electron capture are discussed with emphasis on the surface term in the T matrix and on the properties of the associated integral equations. The surface term is generally nonvanishing if the distorted waves are sufficiently accurate to include parts of the considered physical process. Two examples are considered in detail. If distorted waves of the strong-potential Born-approximation (SPB) type are employed the surface term supplies the first-Born-approximation part of the T matrix. The surface term is shown to vanish in the continuum-distorted-wave (CDW) method. The integral kernel is in either case free of the dangerous disconnected termsmore » discussed by Greider and Dodd but the CDW theory is peculiar in the sense that its first-order approximation (CDW1) excludes a specific on-shell portion of the double-scattering term that is closely connected with the classical Thomas process. The latter is described by the second-order term in the CDW series. The distorted-wave Born approximation with SPB waves is shown to be free of divergences. In the limit of asymmetric collisions the DWB suggests a modification of the SPB approximation to avoid the divergence problem recently identified by Dewangan and Eichler.« less
NASA Astrophysics Data System (ADS)
Vasko, I.; Agapitov, O. V.; Mozer, F.; Bonnell, J. W.; Krasnoselskikh, V.; Artemyev, A.; Drake, J. F.
2017-12-01
Chorus waves observed in the Earth inner magnetosphere sometimes exhibit significantly distorted (nonharmonic) parallel electric field waveform. In spectrograms these waveform features show up as overtones of chorus wave. In this work we show that the chorus wave parallel electric field is distorted due to finite temperature of electrons. The distortion of the parallel electric field is described analytically and reproduced in the numerical fluid simulations. Due to this effect the chorus energy is transferred to higher frequencies making possible efficient scattering of low ( a few keV) energy electrons.
Computational modeling of the generation and propagation of distortion products in the inner ear
NASA Astrophysics Data System (ADS)
Bowling, Thomas; Wen, Haiqi; Meaud, Julien
2018-05-01
Distortion product otoacoustic emissions are used in both clinical and research settings to assess cochlear function although there are still questions for how the distortion products propagate in the cochlea from their generation location to the middle ear. Here, a physiologically based computational model of the gerbil ear is used to investigate distortion product propagation. The fluid is modeled in three dimensions and includes two ducts. Simulations of the distortion products in the cochlear fluid pressure and basilar membrane are compared with published experimental data. Model results are consistent with measurements from Ren and colleagues which indicated that the intracochlear distortion product is dominated by a forward traveling wave at a low primary frequency ratio, although backward traveling waves become apparent when other ratios are considered. The magnitude and phase of both basilar membrane and spatial variations of the distortion product fluid pressure are qualitatively similar to the expected response of a slowly propagating backward traveling wave. These results combined suggest that distortion products propagate primarily as a slow wave both when the cochlea is driven by intracochlear sources and an acoustic stimulus in the ear canal.
Acoustic droplet vaporization is initiated by superharmonic focusing.
Shpak, Oleksandr; Verweij, Martin; Vos, Hendrik J; de Jong, Nico; Lohse, Detlef; Versluis, Michel
2014-02-04
Acoustically sensitive emulsion droplets composed of a liquid perfluorocarbon have the potential to be a highly efficient system for local drug delivery, embolotherapy, or for tumor imaging. The physical mechanisms underlying the acoustic activation of these phase-change emulsions into a bubbly dispersion, termed acoustic droplet vaporization, have not been well understood. The droplets have a very high activation threshold; its frequency dependence does not comply with homogeneous nucleation theory and localized nucleation spots have been observed. Here we show that acoustic droplet vaporization is initiated by a combination of two phenomena: highly nonlinear distortion of the acoustic wave before it hits the droplet and focusing of the distorted wave by the droplet itself. At high excitation pressures, nonlinear distortion causes significant superharmonics with wavelengths of the order of the droplet size. These superharmonics strongly contribute to the focusing effect; therefore, the proposed mechanism also explains the observed pressure thresholding effect. Our interpretation is validated with experimental data captured with an ultrahigh-speed camera on the positions of the nucleation spots, where we find excellent agreement with the theoretical prediction. Moreover, the presented mechanism explains the hitherto counterintuitive dependence of the nucleation threshold on the ultrasound frequency. The physical insight allows for the optimization of acoustic droplet vaporization for therapeutic applications, in particular with respect to the acoustic pressures required for activation, thereby minimizing the negative bioeffects associated with the use of high-intensity ultrasound.
Acoustic droplet vaporization is initiated by superharmonic focusing
Shpak, Oleksandr; Verweij, Martin; Vos, Hendrik J.; de Jong, Nico; Lohse, Detlef; Versluis, Michel
2014-01-01
Acoustically sensitive emulsion droplets composed of a liquid perfluorocarbon have the potential to be a highly efficient system for local drug delivery, embolotherapy, or for tumor imaging. The physical mechanisms underlying the acoustic activation of these phase-change emulsions into a bubbly dispersion, termed acoustic droplet vaporization, have not been well understood. The droplets have a very high activation threshold; its frequency dependence does not comply with homogeneous nucleation theory and localized nucleation spots have been observed. Here we show that acoustic droplet vaporization is initiated by a combination of two phenomena: highly nonlinear distortion of the acoustic wave before it hits the droplet and focusing of the distorted wave by the droplet itself. At high excitation pressures, nonlinear distortion causes significant superharmonics with wavelengths of the order of the droplet size. These superharmonics strongly contribute to the focusing effect; therefore, the proposed mechanism also explains the observed pressure thresholding effect. Our interpretation is validated with experimental data captured with an ultrahigh-speed camera on the positions of the nucleation spots, where we find excellent agreement with the theoretical prediction. Moreover, the presented mechanism explains the hitherto counterintuitive dependence of the nucleation threshold on the ultrasound frequency. The physical insight allows for the optimization of acoustic droplet vaporization for therapeutic applications, in particular with respect to the acoustic pressures required for activation, thereby minimizing the negative bioeffects associated with the use of high-intensity ultrasound. PMID:24449879
Long-wave instabilities of two interlaced helical vortices
NASA Astrophysics Data System (ADS)
Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.
2016-09-01
We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.
Improved Regional Seismic Event Locations Using 3-D Velocity Models
1999-12-15
regional velocity model to estimate event hypocenters. Travel times for the regional phases are calculated using a sophisticated eikonal finite...can greatly improve estimates of event locations. Our algorithm calculates travel times using a finite difference approximation of the eikonal ...such as IASP91 or J-B. 3-D velocity models require more sophisticated travel time modeling routines; thus, we use a 3-D eikonal equation solver
Strong potential wave functions with elastic channel distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macek, J.; Taulbjerg, K.
1989-06-01
The strong-potential Born approximation is analyzed in a channel-distorted-wave approach. Channel-distorted SPB wave functions are reduced to a conventional form in which the standard off-energy-shell factor /ital g/ has been replaced by a modified factor ..gamma.., which represents a suitable average of /ital g/ over the momentum distribution of the distorted-channel function. The modified factor is evaluated in a physically realistic model for the distortion potential, and it is found that ..gamma.. is well represented by a slowly varying phase factor. The channel-distorted SPB approximation is accordingly identical to the impulse approximation if the phase variation of ..gamma.. can bemore » ignored. This is generally the case in applications to radiative electron capture and to a good approximation for ordinary capture at not too small velocities.« less
Zhang, Dongsheng; Wang, Shiyu; Xiu, Jie
2017-11-01
Elastic wave quality determines the operating performance of traveling wave ultrasonic motor (TWUM). The time-variant circumferential force from the shrink of piezoelectric ceramic is one of the factors that distort the elastic wave. The distorted waveshape deviates from the ideal standard sinusoidal fashion and affects the contact mechanics and driving performance. An analytical dynamic model of ring ultrasonic motor is developed. Based on this model, the piezoelectric parametric effects on the wave distortion and contact mechanics are examined. Multi-scale method is employed to obtain unstable regions and distorted wave response. The unstable region is verified by Floquét theory. Since the waveshape affects the contact mechanism, a contact model involving the distorted waveshape and normal stiffness of the contact layer is established. The contact model is solved by numerical calculation. The results verify that the deformation of the contact layer deviates from sinusoidal waveshape and the pressure distribution is changed, which influences the output characteristics directly. The surface speed within the contact region is averaged such that the rotor speed decreases for lower torque and increases for larger torque. The effects from different parametric strengths, excitation frequencies and pre-pressures on pressure distribution and torque-speed relation are compared. Copyright © 2017 Elsevier B.V. All rights reserved.
2007-08-01
In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods
Hanada, Eisuke; Itoga, Shuuya; Takano, Kyoko; Kudou, Takato
2007-06-01
Medical devices driven by electric power have come to be commonly used in hospitals, and rapid changes of voltage or current can easily cause them to fail. A stable and high quality power supply is indispensable in order to maintain safety in the modern clinical setting. Therefore, we investigated the quality of the power supply in a hospital and determined the tolerance of 13 pieces of medical equipment to voltage dips. The results showed little distortion of the voltage wave. However, we found an approximately 7% momentary voltage dip caused by lightening and other problems, such as 2 to 5% periodic drops in voltage and voltage wave distortions caused by incorrect grounding. In a tolerance test, the settings of some medical devices were changed at the time of automatic reboot after a disturbance. For another device, trend information was initialized.
Optical distortion in the field of a lithotripter shock wave
NASA Astrophysics Data System (ADS)
Carnell, M. T.; Emmony, D. C.
1995-10-01
The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.
Active-Controlled Fluid Film Based on Wave-Bearing Technology
NASA Technical Reports Server (NTRS)
Dimofte, Florin; Hendricks, Robert C.
2011-01-01
It has been known since 1967 that the steady-state and dynamic performance, including the stability of a wave bearing, are highly dependent on the wave amplitude. A wave-bearing profile can be readily obtained by elastically distorting the stationary bearing sleeve surface. The force that distorts the elastic sleeve surface could be an applied force or pressure. The magnitude and response of the distorting force would be defined by the relation between the bearing surface stiffness and the bearing pressure, or load, in a feedback loop controller. Using such devices as piezoelectric or other electromechanical elements, one could step control or fully control the bearing. The selection between these systems depends on the manner in which the distortion forces are applied, the running speed, and the reaction time of the feedback loop. With these techniques, both liquid- (oil-) or gas- (air-) lubricated wave bearings could be controlled. This report gives some examples of the dependency of the bearing's performance on the wave amplitude. The analysis also was proven experimentally.
Gamberg, Leonard; Schlegel, Marc
2010-01-18
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less
NASA Astrophysics Data System (ADS)
Krishnamurthy, K. S.; Kumar, Pramoda
2007-11-01
We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in f , f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as f to a peak at ˜50Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM.
On the Eikonal equation in the pedestrian flow problem
NASA Astrophysics Data System (ADS)
Felcman, J.; Kubera, P.
2017-07-01
We consider the Pedestrian Flow Equations (PFEs) as the coupled system formed by the Eikonal equation and the first order hyperbolic system with the source term. The hyperbolic system consists of the continuity equation and momentum equation of fluid dynamics. Specifying the social and pressure forces in the momentum equation we come to the assumption that each pedestrian is trying to move in a desired direction (e.g. to the exit in the panic situation) with a desired velocity, where his velocity and the direction of movement depend on the density of pedestrians in his neighborhood. In [1] we used the model, where the desired direction of movement is given by the solution of the Eikonal equation (more precisely by the gradient of the solution). Here we avoid the solution of the Eikonal equation, which is the novelty of the paper. Based on the fact that the solution of the Eikonal equation has the meaning of the shortest time to reach the exit, we define explicitly such a function in the framework of the Dijkstra's algorithm for the shortest path in the graph. This is done at the discrete level of the solution. As the graph we use the underlying triangulation, where the norm of each edge is density depending and has the dimension of the time. The numerical examples of the solution of the PFEs with and without the solution of the Eikonal equation are presented.
NASA Astrophysics Data System (ADS)
Treanor, C. E.; Hall, J. G.
1982-10-01
The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.
2008-09-01
algorithms that have been proposed to accomplish it fall into three broad categories. Eikonal solvers (e.g., Vidale, 1988, 1990; Podvin and Lecomte, 1991...difference eikonal solvers, the FMM algorithm works by following a wavefront as it moves across a volume of grid points, updating the travel times in...the grid according to the eikonal differential equation, using a second-order finite-difference scheme. We chose to use FMM for our comparison because
Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction
2010-01-01
1996; Elgart and Kamenev, 2004). Instead, in this article, we will employ an eikonal approximation to recast the problem in terms of an effective...a control strategy on the extinction rate can be determined by its effect on the optimal path (Dykman et al., 2008). Through the use of the eikonal ...the solution of Eqs. (6a)–(6b) in the eikonal form (Elgart and Kamenev, 2004; Doering et al., 2005; Kubo et al., 1973; Wentzell, 1976; Gang, 1987
2012-12-01
acoustics One begins with Eikonal equation for the acoustic phase function S(t,x) as derived from the geometric acoustics (high frequency) approximation to...zb(x) is smooth and reasonably approximated as piecewise linear. The time domain ray (characteristic) equations for the Eikonal equation are ẋ(t)= c...travel time is affected, which is more physically relevant than global error in φ since it provides the phase information for the Eikonal equation (2.1
2005-12-31
are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for
Weakly and strongly coupled Belousov-Zhabotinsky patterns.
Weiss, Stephan; Deegan, Robert D
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Weakly and strongly coupled Belousov-Zhabotinsky patterns
NASA Astrophysics Data System (ADS)
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
The portrait of eikonal instability in Lovelock theories
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Zhidenko, A.
2017-05-01
Perturbations and eikonal instabilities of black holes and branes in the Einstein-Gauss-Bonnet theory and its Lovelock generalization were considered in the literature for several particular cases, where the asymptotic conditions (flat, dS, AdS), the number of spacetime dimensions D, non-vanishing coupling constants (α1, α2, α3 etc.) and other parameters have been chosen in a specific way. Here we give a comprehensive analysis of the eikonal instabilities of black holes and branes for the most general Lovelock theory, not limited by any of the above cases. Although the part of the stability analysis is performed here purely analytically and formulated in terms of the inequalities for the black hole parameters, the most general case is treated numerically and the accurate regions of instabilities are presented. The shared Mathematica® code allows the reader to construct the regions of eikonal instability for any desired values of the parameters.
A second order discontinuous Galerkin fast sweeping method for Eikonal equations
NASA Astrophysics Data System (ADS)
Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai
2008-09-01
In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES*
Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M.; Whitaker, Ross T.
2012-01-01
This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton–Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512–2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers. PMID:22641200
Absence of metastable states in strained monoatomic cubic crystals.
NASA Astrophysics Data System (ADS)
Aguayo, Aarón; Mehl, Michael L.; de Coss, Romeo
2005-03-01
The Bain path distortion of a metal with an fcc (bcc) ground state toward the bcc (fcc) structure initially requires an increase in energy, but at some point along the Bain path the energy will again decrease until a local minimum is reached. We have studied the tetragonal distortion (Bain path) of monoatomic cubic crystals, using a combination of parametrized tight-binding and first-principles linearized augmented plane wave calculations. We show that this local minimum is unstable with respect to an elastic distortion, except in the rare case that the minimum is at the bcc (fcc) point on the Bain path. This shows that body-centered-tetragonal phases of these materials, which have been seen in epitaxially grown thin films, must be stabilized by the substrate and cannot be freestanding films. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.
2011-04-01
L1u. Assume that geodesic lines, generated by the eikonal equation corresponding to the function c (x) are regular, i.e. any two points in R3 can be...source x0 is located far from Ω, then similarly with (107) ∆l (x, x0) ≈ 0 in Ω. The function l (x, x0) satisfies the eikonal equation [38] |∇xl (x, x0...called “inverse kinematic problem” which aims to recover the function c (x) from the eikonal equation assuming that the function l (x, x0) is known for
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson s Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson's Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
Using a plenoptic camera to measure distortions in wavefronts affected by atmospheric turbulence
NASA Astrophysics Data System (ADS)
Eslami, Mohammed; Wu, Chensheng; Rzasa, John; Davis, Christopher C.
2012-10-01
Ideally, as planar wave fronts travel through an imaging system, all rays, or vectors pointing in the direction of the propagation of energy are parallel, and thus the wave front is focused to a particular point. If the wave front arrives at an imaging system with energy vectors that point in different directions, each part of the wave front will be focused at a slightly different point on the sensor plane and result in a distorted image. The Hartmann test, which involves the insertion of a series of pinholes between the imaging system and the sensor plane, was developed to sample the wavefront at different locations and measure the distortion angles at different points in the wave front. An adaptive optic system, such as a deformable mirror, is then used to correct for these distortions and allow the planar wave front to focus at the point desired on the sensor plane, thereby correcting the distorted image. The apertures of a pinhole array limit the amount of light that reaches the sensor plane. By replacing the pinholes with a microlens array each bundle of rays is focused to brighten the image. Microlens arrays are making their way into newer imaging technologies, such as "light field" or "plenoptic" cameras. In these cameras, the microlens array is used to recover the ray information of the incoming light by using post processing techniques to focus on objects at different depths. The goal of this paper is to demonstrate the use of these plenoptic cameras to recover the distortions in wavefronts. Taking advantage of the microlens array within the plenoptic camera, CODE-V simulations show that its performance can provide more information than a Shack-Hartmann sensor. Using the microlens array to retrieve the ray information and then backstepping through the imaging system provides information about distortions in the arriving wavefront.
Improved distorted wave theory with the localized virial conditions
NASA Astrophysics Data System (ADS)
Hahn, Y. K.; Zerrad, E.
2009-12-01
The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.
Wu, Linzhi
2016-01-01
Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884
Measurement of aerosol optical properties by cw cavity enhanced spectroscopy
NASA Astrophysics Data System (ADS)
Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei
2016-10-01
The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.
NASA Astrophysics Data System (ADS)
Louie, J. N.; Basler-Reeder, K.; Kent, G. M.; Pullammanappallil, S. K.
2015-12-01
Simultaneous joint seismic-gravity optimization improves P-wave velocity models in areas with sharp lateral velocity contrasts. Optimization is achieved using simulated annealing, a metaheuristic global optimization algorithm that does not require an accurate initial model. Balancing the seismic-gravity objective function is accomplished by a novel approach based on analysis of Pareto charts. Gravity modeling uses a newly developed convolution algorithm, while seismic modeling utilizes the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests show that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Detailed first arrival picking followed by trial velocity modeling remediates inconsistent data. We use a set of highly refined first arrival picks to compare results of a convergent joint seismic-gravity optimization to the Plotrefa™ and SeisOpt® Pro™ velocity modeling packages. Plotrefa™ uses a nonlinear least squares approach that is initial model dependent and produces shallow velocity artifacts. SeisOpt® Pro™ utilizes the simulated annealing algorithm and is limited to depths above the deepest raypath. Joint optimization increases the depth of constrained velocities, improving reflector coherency at depth. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts caused by limitations in refraction ray coverage. Seismic and gravity data from the San Emidio Geothermal field of the northwest Basin and Range province demonstrate that joint optimization changes interpretation outcomes. The prior shallow-valley interpretation gives way to a deep valley model, while shallow antiformal reflectors that could have been interpreted as antiformal folds are flattened. Furthermore, joint optimization provides a clearer image of the rangefront fault. This technique can readily be applied to existing datasets and could replace the existing strategy of forward modeling to match gravity data.
2006-04-01
the Engdahl, el al. (1998) database . Our results show that the new model better fits the data COm~ared to both the initial model and the alobal l -D...34SOUICU" m the cal-. Tbe Podvh-Lemmte method sohns the eikonal equation m a 3-D medium using a htd&mme . . spprmimatian. It c a n ~ e l y m o d e l ~ ~ o
One-Neutron Removal Measurement Reveals {sup 24}O as a New Doubly Magic Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanungo, R.; Perro, C.; Nociforo, C.
The first measurement of the momentum distribution for one-neutron removal from {sup 24}O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99{+-}4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63{+-}7 mb. The results are well explained with a nearly pure 2s{sub 1/2} neutron spectroscopic factor of 1.74{+-}0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that {sup 24}O is a new doubly magic nucleus.
Differential cross sections for electron capture in p + H2 collisions
NASA Astrophysics Data System (ADS)
Igarashi, Akinori; Gulyás, Laszlo; Ohsaki, Akihiko
2017-11-01
Projectile angular distributions for electron capture in p + H2 collisions at 25 and 75 keV impact energies, measured by Sharma et al. [Phys. Rev. A 86, 022706 (2012)], are calculated using the CDW-EIS and eikonal approximations. Angular distributions evaluated in the CDW-EIS approximation are in good agreement with the experimental data measured for coherent projectile beams. Incoherent projectile scatterings are also considered by folding the coherent angular distributions over the transverse momentum distribution of the projectile wave-packet. Reasonable agreements with the measurements are obtained only with coherence parameters very different from those reported in the experiments.
Models of brachial to finger pulse wave distortion and pressure decrement.
Gizdulich, P; Prentza, A; Wesseling, K H
1997-03-01
To model the pulse wave distortion and pressure decrement occurring between brachial and finger arteries. Distortion reversion and decrement correction were also our aims. Brachial artery pressure was recorded intra-arterially and finger pressure was recorded non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform and Fourier analysis applied to the pulsations. A distortion model was estimated for each subject and averaged over the group. The average inverse model was applied to the full finger pressure waveform. The pressure decrement was modelled by multiple regression on finger systolic and diastolic levels. Waveform distortion could be described by a general, frequency dependent model having a resonance at 7.3 Hz. The general inverse model has an anti-resonance at this frequency. It converts finger to brachial pulsations thereby reducing average waveform distortion from 9.7 (s.d. 3.2) mmHg per sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct on average. The pressure decrement model reduced both the mean and the standard deviation of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences were thus reduced most. Brachial to finger pulse wave distortion due to wave reflection in arteries is almost identical in all subjects and can be modelled by a single resonance. The pressure decrement due to flow in arteries is greatest for high pulse pressures superimposed on low means.
NASA Technical Reports Server (NTRS)
Purdy, K. R.; Ventrice, M. B.; Fang, J.
1972-01-01
Analytical and experimental studies were initiated to determine if the response of a constant temperature hot wire anemometer to acoustic oscillations could serve as an analog to the response of the drop vaporization burning rate process to acoustic oscillations, and, perhaps, also as an analog to any Reynolds number dependent process. The motivation behind this study was a recent analytical study which showed that distorted acoustic oscillations could amplify the open-loop response of vaporization limited combustion. This type of amplification may be the cause of unstable combustion in liquid propellant rocket engines. The analytical results obtained for the constant temperature anemometer are similar in nature to those previously obtained for vaporization limited combustion and indicate that the response is dependent on the amount and type of distortion as well as other factors, such as sound pressure level, Mach number and hot wire temperature. Preliminary results indicate qualitative agreement between theory and experiment.
Computations of Wall Distances Based on Differential Equations
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Chris L.; Spalart, Philippe R.; Bartels, Robert E.; Biedron, Robert T.
2004-01-01
The use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored. Modifications that could palliate some turbulence-modeling anomalies are also discussed. Economy is of especial value for deforming/adaptive grid problems. For these, ideally, d is repeatedly computed. It is shown that the Eikonal and Hamilton-Jacobi equations can be easy to implement when written in implicit (or iterated) advection and advection-diffusion equation analogous forms, respectively. These, like the Poisson Laplacian term, are commonly occurring in CFD solvers, allowing the re-use of efficient algorithms and code components. The use of the NASA CFL3D CFD program to solve the implicit Eikonal and Hamilton-Jacobi equations is explored. The re-formulated d equations are easy to implement, and are found to have robust convergence. For accurate Eikonal solutions, upwind metric differences are required. The Poisson approach is also found effective, and easiest to implement. Modified distances are not found to affect global outputs such as lift and drag significantly, at least in common situations such as airfoil flows.
NASA Astrophysics Data System (ADS)
Choi, Y.; Park, S.; Baik, S.; Jung, J.; Lee, S.; Yoo, J.
A small scale laboratory adaptive optics system using a Shack-Hartmann wave-front sensor (WFS) and a membrane deformable mirror (DM) has been built for robust image acquisition. In this study, an adaptive limited control technique is adopted to maintain the long-term correction stability of an adaptive optics system. To prevent the waste of dynamic correction range for correcting small residual wave-front distortions which are inefficient to correct, the built system tries to limit wave-front correction when a similar small difference wave-front pattern is repeatedly generated. Also, the effect of mechanical distortion in an adaptive optics system is studied and a pre-recognition method for the distortion is devised to prevent low-performance system operation. A confirmation process for a balanced work assignment among deformable mirror (DM) actuators is adopted for the pre-recognition. The corrected experimental results obtained by using a built small scale adaptive optics system are described in this paper.
Bakry, Ahmed
2014-01-01
This paper presents modeling and simulation on the characteristics of semiconductor laser modulated within a strong optical feedback (OFB-)induced photon-photon resonance over a passband of millimeter (mm) frequencies. Continuous wave (CW) operation of the laser under strong OFB is required to achieve the photon-photon resonance in the mm-wave band. The simulated time-domain characteristics of modulation include the waveforms of the intensity and frequency chirp as well as the associated distortions of the modulated mm-wave signal. The frequency domain characteristics include the intensity modulation (IM) and frequency modulation (FM) responses in addition to the associated relative intensity noise (RIN). The signal characteristics under modulations with both single and two mm-frequencies are considered. The harmonic distortion and the third order intermodulation distortion (IMD3) are examined and the spurious free dynamic range (SFDR) is calculated. PMID:25383381
Wen, Haiqi; Bowling, Thomas; Meaud, Julien
2018-05-19
In this work, a three-dimensional computational model of the gerbil ear is used to investigate the generation of the 2f 1 -f 2 and 2f 2 -f 1 distortion product otoacoustic emissions (DPOAEs). In order to predict both the distortion and reflection sources, cochlear roughness is modeled by introducing random inhomogeneities in the outer hair cell properties. The model was used to simulate the generation of DPOAEs in response to a two-tone stimulus for various primary stimulus levels and frequency ratios. As in published experiments, the 2f 1 -f 2 DPOAEs are mostly dominated by the distortion component while the 2f 2 -f 1 DPOAEs are dominated by the reflection component; furthermore, the influence of the levels and frequency ratio of the primaries are consistent with measurements. Analysis of the intracochlear response shows that the distortion component has the highest magnitude at all longitudinal locations for the 2f 1 -f 2 distortion product (DP) while the distortion component only dominates close to the DP best place in the case of the 2f 2 -f 1 DP. Decomposition of the intracochlear DPs into forward and reverse waves demonstrates that the 2f 1 -f 2 DP generates reverse waves for both the distortion and reflection components; however, a reverse wave is only generated for the reflection component in the case of the 2f 2 -f 1 DP. As in experiments in the gerbil, the group delay of the reflection component of the DPOAE is between 1× and 2× the forward group delay, which is consistent with the propagation of DP towards the stapes as slow reverse waves. Copyright © 2018 Elsevier B.V. All rights reserved.
Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics
2012-01-01
0 on Cawt (21) in a weak sense. Equation (20) is the Eikonal partial differential equation subject to the interior constraint given by Eq. (21). To...tion, respectively. The formulation given by Eq. (22) is the SUPG method [30] applied to the Eikonal equation. At the steady state, the above problem
Strong Coupling of Single Emitters to Surface Plasmons
2007-07-01
however, we can make an eikonal approximation,39 assuming that the plas- mons are emitted completely into the end of the tip z=0 and that the propagative...restricts the re- gimes of validity to ki w, ki d1. An additional set of as- sumptions is made in using the eikonal approximation to arrive at Eq. 49
Unveiling the lithospheric structure of the US Interior using the USArray Transportable Array
NASA Astrophysics Data System (ADS)
Moschetti, M. P.; Ritzwoller, M. H.; Lin, F.; Shen, W.; Yang, Y.
2009-12-01
We present current results from ambient noise tomography (ANT) and earthquake surface wave tomography applied to the USARRAY Transportable Array (TA) for the western and central US. We have processed ambient seismic noise data since October 2004 to produce cumulative Rayleigh and Love wave dispersion maps (from about 6 to 40 sec period) within the footprint of the TA. The high spatial density of these instruments results in dispersion maps with a resolution of about the average inter-station distance (70 km) and far exceeds previous surface wave tomographic results for the US interior. The dispersion maps from ANT are complemented by Rayleigh wave phase speed maps from teleseismic earthquake tomography (25 - 100 sec period). The development of a new method of surface wave tomography, termed Eikonal tomography, that models wavefront complexity and off great-circle propagation allows for the robust estimation of phase velocity azimuthal anisotropy. Eikonal tomography has been applied to ambient seismic noise and earthquake measurements and provides a means to compare and vet results in the period band of overlap (25 - 40 sec). In addition, the recent application of this method to Love waves from teleseismic earthquakes provides dispersion measurements up to 50 sec period. These longer period Love wave dispersion measurements may improve the characterization of anisotropy in the uppermost mantle. In addition to the current dispersion maps, we present regional-scale 3-D models of isotropic and anisotropic shear-velocities for the crust and uppermost mantle beneath the western US. Because dispersion measurements from ambient seismic noise include short period (<20 sec) information, they provide a strong constraint on the shear-velocity structure of the crust and uppermost mantle. A radially anisotropic shear-velocity model of the crust and uppermost mantle is constructed by simultaneously inverting Rayleigh and Love wave dispersion measurements from ANT and from earthquake tomography. Models with isotropic and radially anisotropic mantle shear-velocities do not fit the Rayleigh and Love wave measurements simultaneously across large regions of the western US, and the models present a Rayleigh-Love misfit discrepancy at the periods most sensitive to crustal velocity structures. However, by introducing positive radial anisotropy (Vsh>Vsv) to the middle and lower crust, this misfit discrepancy is resolved. Higher amplitude crustal radial anisotropy is observed in the predominant extensional provinces of the western US and is thought to result from the alignment of anisotropic crustal minerals during extension and deformation. Several regions of the western US remain poorly fit by the 3-D radially anisotropic shear-velocity model. These include the Olympic Peninsula, Mendocino Triple Junction, southern Cascadia backarc, Yakima Fold Belt, Wasatch Front, Salton Trough and Great Valley. We investigate various additional model parametrizations and the effect of breaking the constraint on the monotonic increase of crustal velocities with depth to resolve crustal shear-velocity structure in these regions. These techniques will readily be applied to data from the US Interior as the TA moves to the east.
Solitary Wave in One-dimensional Buckyball System at Nanoscale
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
SYMBMAT: Symbolic computation of quantum transition matrix elements
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.
2012-08-01
We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Catalogue identifier: AEMI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem: The notebooks generate analytical expressions for quantum transition matrix elements required in diverse atomic processes: ionization by ion, electron, or photon impact and ionization within the framework of strong field physics. In charged-particle collisions approaches based on perturbation theory enjoy widespread utilization. Accordingly, we have chosen the First Born Approximation and Distorted Wave theories as examples. In light-matter interactions, the main ingredient for many types of calculations is the dipole transition matrix in its different formulations, i.e. length, velocity, and acceleration gauges. In all these cases the transitions of interest occur between a bound state and a continuum state which can be described in different ways. With the notebooks developed in the present work it is possible to calculate transition matrix elements analytically for any set of quantum numbers nlm of initial hydrogenic states or Slater-Type Orbitals and for plane waves or Coulomb waves as final continuum states. Solution method: The notebooks employ symbolic computation to generate analytical expressions for transition matrix elements used in both collision and light-matter interaction physics. fba_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the First Born Approximation (FBA). The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a plane wave (PW) or a Coulomb wave (CW). distorted_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in Distorted Wave (DW) theories. The transitions considered are from a (distorted) bound hydrogenic state with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the Strong Field Approximation (SFA)) or a CW (the Coulomb-Volkov Approximation (CVA)). dipoleVelocity_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). For the case of the CVA we only include the transition from the 1s state to a continuum state represented by a CW. fba_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the FBA. The transitions considered are from a Slater-Type Orbital (STO) with arbitrary quantum numbers nlm to a continuum state represented by a PW or a CW. distorted_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in DW theories. The transitions considered are from a (distorted) STO with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleVelocity_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). The symbolic expressions obtained within each notebook can be exported to standard programming languages such as Fortran or C using the Format.m package (see the text and Ref. Sofroniou (1993) [16] for details). Running time: Computational times vary according to the transition matrix selected and quantum numbers nlm of the initial state used. The typical running time is several minutes, but it will take longer for large values of nlm.
Neutron-Impact Ionization of H and He
NASA Astrophysics Data System (ADS)
Lee, T.-G.; Ciappina, M. F.; Robicheaux, F.; Pindzola, M. S.
2014-05-01
Perturbative distorted-wave and non-perturbative close-coupling methods are used to study neutron-impact ionization of H and He. For single ionization of H, we find excellent agreement between the distorted-wave and close-coupling results at all incident energies. For double ionization of He, we find poor agreement between the distorted-wave and close-coupling results, except at the highest incident energies. We present the ratio of double to single ionization for He as a guide to experimental checks of theory at low energies and experimental confirmation of the rapid rise of the ratio at high energies. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.
Cavitation clouds created by shock scattering from bubbles during histotripsy
Maxwell, Adam D.; Wang, Tzu-Yin; Cain, Charles A.; Fowlkes, J. Brian; Sapozhnikov, Oleg A.; Bailey, Michael R.; Xu, Zhen
2011-01-01
Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5−20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis. PMID:21973343
Corrado, Cesare; Zemzemi, Nejib
2018-01-01
Computational models of heart electrophysiology achieved a considerable interest in the medical community as they represent a novel framework for the study of the mechanisms underpinning heart pathologies. The high demand of computational resources and the long computational time required to evaluate the model solution hamper the use of detailed computational models in clinical applications. In this paper, we present a multi-front eikonal algorithm that adapts the conduction velocity (CV) to the activation frequency of the tissue substrate. We then couple the eikonal new algorithm with the Mitchell-Schaeffer (MS) ionic model to determine the tissue electrical state. Compared to the standard eikonal model, this model introduces three novelties: first, it evaluates the local value of the transmembrane potential and of the ionic variable solving an ionic model; second, it computes the action potential duration (APD) and the diastolic interval (DI) from the solution of the MS model and uses them to determine if the tissue is locally re-excitable; third, it adapts the CV to the underpinning electrophysiological state through an analytical expression of the CV restitution and the computed local DI. We conduct series of simulations on a 3D tissue slab and on a realistic heart geometry and compare the solutions with those obtained solving the monodomain equation. Our results show that the new model is significantly more accurate than the standard eikonal model. The proposed model enables the numerical simulation of the heart electrophysiology on a clinical time scale and thus constitutes a viable model candidate for computer-guided radio-frequency ablation. Copyright © 2017 Elsevier B.V. All rights reserved.
Reverse ray tracing for transformation optics.
Hu, Chia-Yu; Lin, Chun-Hung
2015-06-29
Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.
Diagrammatic exponentiation for products of Wilson lines
NASA Astrophysics Data System (ADS)
Mitov, Alexander; Sterman, George; Sung, Ilmo
2010-11-01
We provide a recursive diagrammatic prescription for the exponentiation of gauge theory amplitudes involving products of Wilson lines and loops. This construction generalizes the concept of webs, originally developed for eikonal form factors and cross sections with two eikonal lines, to general soft functions in QCD and related gauge theories. Our coordinate space arguments apply to arbitrary paths for the lines.
Are eikonal quasinormal modes linked to the unstable circular null geodesics?
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Stuchlík, Z.
2017-08-01
In Cardoso et al. [6] it was claimed that quasinormal modes which any stationary, spherically symmetric and asymptotically flat black hole emits in the eikonal regime are determined by the parameters of the circular null geodesic: the real and imaginary parts of the quasinormal mode are multiples of the frequency and instability timescale of the circular null geodesics respectively. We shall consider asymptotically flat black hole in the Einstein-Lovelock theory, find analytical expressions for gravitational quasinormal modes in the eikonal regime and analyze the null geodesics. Comparison of the both phenomena shows that the expected link between the null geodesics and quasinormal modes is violated in the Einstein-Lovelock theory. Nevertheless, the correspondence exists for a number of other cases and here we formulate its actual limits.
Follett, R. K.; Edgell, D. H.; Froula, D. H.; ...
2017-10-20
Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Edgell, D. H.; Froula, D. H.
Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less
A plane wave source with minimal harmonic distortion for investigating nonlinear acoustic properties
Lloyd, Christopher W.; Wallace, Kirk D.; Holland, Mark R.; Miller, James G.
2008-01-01
The objective of this investigation is to introduce and validate a practical ultrasound source to be used in the investigation of the nonlinear material properties of liquids and soft tissues studied in vitro. Methods based on the progressive distortion of finite amplitude ultrasonic waves in the low megahertz frequency-range are most easily implemented under the assumption of plane wave propagation. However, achieving an approximately planar ultrasonic field over substantial propagation distances can be challenging. Furthermore, undesired harmonic distortion of the ultrasonic field prior to insonification of the specified region of interest represents another serious limitation. This paper introduces an approach based on the use of the ultrasonic field emanating from a stainless-steel delay line. Both simulation and direct experimental measurement demonstrate that such a field exhibits relatively planar wavefronts to a good approximation (such that a 3 mm diameter receiver would be exposed to no more than 3 dB of loss across its face) and is free from the significant harmonic distortion that would occur in a conventional water path. PMID:17614467
NASA Astrophysics Data System (ADS)
Patton, Howard J.
1985-08-01
Surface waves recorded at regional distances are used to study the source mechanisms of seven earthquakes in the western United States with magnitudes between 4.3 and 5.5. The source mechanisms of events in or on the margins of the Basin and Range show T-axis with an azimuth of N85°W +/- 16° and a plunge of 12° +/- 16°. Of the seven events, four have P-wave solutions that are inconsistent with surface-wave observations. Azimuths of the T-axis obtained from the surface-wave mechanisms and from the P-wave solutions differ by up to 45°. These events have dip-slip or oblique-slip mechanisms, and the source depths for three of the events are 5 km or less. Their source mechanisms and small magnitudes make identification of the P-wave first motion difficult due to poor signal-to-noise ratio of the initial P-wave and close arrivals of pP or sP with significant amplitude. We suggest that mis-identification of the P-wave first motion and distortion of the body-wave ray paths due to non-planar structure were sources of error in determining the nodal planes for these events.
Coherence rephasing combined with spin-wave storage using chirped control pulses
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2014-06-01
Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.
Eikonal solutions to optical model coupled-channel equations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.
1988-01-01
Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.
2009-08-01
the measurements of Jung et al [3], ’BSR’ to the Breit- Pauli B-Spline ft-matrix method, and ’RDW to the relativistic distorted wave method. low...excitation cross sections using both relativistic distorted wave and semi-relativistic Breit- Pauli B-Spline R-matrix methods is presented. The model...population and line intensity enhancement. 15. SUBJECT TERMS Metastable xenon Electrostatic thruster Relativistic Breit- Pauli b-spline matrix
Fast algorithm for calculation of the moving tsunami wave height
NASA Astrophysics Data System (ADS)
Krivorotko, Olga; Kabanikhin, Sergey
2014-05-01
One of the most urgent problems of mathematical tsunami modeling is estimation of a tsunami wave height while a wave approaches to the coastal zone. There are two methods for solving this problem, namely, Airy-Green formula in one-dimensional case ° --- S(x) = S(0) 4 H(0)/H (x), and numerical solution of an initial-boundary value problem for linear shallow water equations ( { ηtt = div (gH (x,y)gradη), (x,y,t) ∈ ΩT := Ω ×(0,T); ( η|t=0 = q(x,y), ηt|t=0 = 0, (x,y ) ∈ Ω := (0,Lx)× (0,Ly ); (1) η|δΩT = 0. Here η(x,y,t) is the free water surface vertical displacement, H(x,y) is the depth at point (x,y), q(x,y) is the initial amplitude of a tsunami wave, S(x) is a moving tsunami wave height at point x. The main difficulty problem of tsunami modeling is a very big size of the computational domain ΩT. The calculation of the function η(x,y,t) of three variables in ΩT requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height which is based on kinematic-type approach and analytical representation of fundamental solution (2). The wave is supposed to be generated by the seismic fault of the bottom η(x,y,0) = g(y) ·θ(x), where θ(x) is a Heaviside theta-function. Let τ(x,y) be a solution of the eikonal equation 1 τ2x +τ2y = --, gH (x,y) satisfying initial conditions τ(0,y) = 0 and τx(0,y) = (gH (0,y))-1/2. Introducing new variables and new functions: ° -- z = τ(x,y), u(z,y,t) = ηt(x,y,t), b(z,y) = gH(x,y). We obtain an initial-boundary value problem in new variables from (1) ( 2 2 (2 bz- ) { utt = uzz + b uyy + 2b τyuzy + b(τxx + τyy) + 2b + 2bbyτy uz+ ( +2b(bzτy + by)uy, z,y- >2 0,t > 0,2 -1/2 u|t 0,t > 0. Then after some mathematical transformation we get the structure of the function u(x,y,t) in the form u(z,y,t) = S(z,y)·θ(t - z) + ˜u(z,y,t). (2) Here Å©(z,y,t) is a smooth function, S(z,y) is the solution of the problem: { S + b2τ S + (1b2(τ +τ )+ bz+ bb τ )S = 0, z,y > 0, z ygy(y)( 2-2 xx yy2 b)-1/2y y (3) S(0,y) = 2 b (0,y)- τy(0,y) , y > 0. Note that the problem (3) is two-dimensional which allows one to reduce the number of operations in 1.5 times. The algorithm makes it possible to calculate the moving tsunami wave height S(z,y) coming to a given point (z0,y0) as well as the arrival time. This work was supported by the Russian Foundation for Basic Research (project No. 12-01-00773 «Theory and Numerical Methods for Solving Combined Inverse Problems of Mathematical Physics») and interdisciplinary project of SB RAS 14 «Inverse Problems and Applications: Theory, Algorithms, Software».
The knockout reaction of {sup 15}C on a {sup 9}Be target at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, H., E-mail: H-Sadeghi@araku.ac.ir; Fereidonnejad, R.; Ghambari, M.
2016-05-15
In this work, neutron knockout reactions of {sup 15}C on a {sup 9}Be target at energy 103 and 250 MeV/nucleon are studied. Using the Eikonal approximation of the Glauber model, total neutron removal cross sections, the stripping and diffractive cross sections as well as {sup 14}C longitudinal momentum distributions are determined in both {sup 15}C ground state and exited states of the wave function. We compared the results of our calculations with the available experimental data obtained recently. The calculated cross sections of {sup 15}C and {sup 14}C reactions, as well as the momentum distribution are in relatively good agreementmore » with available data.« less
Sensitivity of Satellite Altimetry Data Assimilation on a Naval Anti-Submarine Warfare Weapon System
2004-09-01
representing the actual ocean structure than static climatology databases (Fox et. al., 2002; Chu et. al., 2004). It is expected that this 2...pressure amplitude function and ( , )P P r z= is the phase function, or eikonal . Doing this and collecting real and imaginary terms yields an equation... eikonal equation, [ ]2 2P k∇ = , (13) from which differential equations for rays can be derived (Etter, 1991). The rays are the normals to surfaces
Simultaneous measurements of density field and wavefront distortions in high speed flows
NASA Astrophysics Data System (ADS)
George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin
2017-09-01
This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.
NASA Astrophysics Data System (ADS)
Guo, Lei
2009-10-01
In d+Au collisions, vector mesons produced in hard scattering are sensitive to various nuclear effects such as parton shadowing/saturation in the small x region (forward rapidity) leading to suppression, and antishadowing (large x region, backward rapidity) or the Cronin effect which both can produce enhancement. Since approaches such as the Color Glass Condensate (CGC) and pQCD-based Glauber-Eikonal models do not agree on the nature of these nuclear effects on particle production at large rapidity, it is essential that they be tested with experimental data in this kinematic regime. Knowledge of the difference between the forward and backward rapidity regions, in d+Au collisions, could also be used to separate the initial-state nuclear wave function modifications and final state in-medium effects in Au+Au collisions. In addition, the relative ratio for the production of ρ, φ and φ can provide information on the production mechanisms of light vector mesons. The PHENIX collaboration at RHIC has recently collected data in d+Au collisions at √s=200 GeV during the 2008 run. The latest work on the RCP measurements of φ, through the di-muon decays at forward and backward rapidities (1.2<η<2.2), will be discussed.
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
NASA Astrophysics Data System (ADS)
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
Theoretical study of (e, 2e) process of atomic and molecular targets*
NASA Astrophysics Data System (ADS)
Houamer, Salim; Chinoune, Mehdi; Cappello, Claude Dal
2017-01-01
Triple differential ionization cross sections (TDCSs) by electron impact are calculated for some atomic and molecular targets by using several models where Post Collisional Interaction (PCI) is taken in account. We also investigate the effect of the short range potential and describe the ejected electron either by a Coulomb wave or by a distorted wave. Significant differences are observed between these models. A better agreement with experimental data is achieved when the short range potential and distortion effects are included.
Slope tomography based on eikonal solvers and the adjoint-state method
NASA Astrophysics Data System (ADS)
Tavakoli F., B.; Operto, S.; Ribodetti, A.; Virieux, J.
2017-06-01
Velocity macromodel building is a crucial step in the seismic imaging workflow as it provides the necessary background model for migration or full waveform inversion. In this study, we present a new formulation of stereotomography that can handle more efficiently long-offset acquisition, complex geological structures and large-scale data sets. Stereotomography is a slope tomographic method based upon a semi-automatic picking of local coherent events. Each local coherent event, characterized by its two-way traveltime and two slopes in common-shot and common-receiver gathers, is tied to a scatterer or a reflector segment in the subsurface. Ray tracing provides a natural forward engine to compute traveltime and slopes but can suffer from non-uniform ray sampling in presence of complex media and long-offset acquisitions. Moreover, most implementations of stereotomography explicitly build a sensitivity matrix, leading to the resolution of large systems of linear equations, which can be cumbersome when large-scale data sets are considered. Overcoming these issues comes with a new matrix-free formulation of stereotomography: a factored eikonal solver based on the fast sweeping method to compute first-arrival traveltimes and an adjoint-state formulation to compute the gradient of the misfit function. By solving eikonal equation from sources and receivers, we make the computational cost proportional to the number of sources and receivers while it is independent of picked events density in each shot and receiver gather. The model space involves the subsurface velocities and the scatterer coordinates, while the dips of the reflector segments are implicitly represented by the spatial support of the adjoint sources and are updated through the joint localization of nearby scatterers. We present an application on the complex Marmousi model for a towed-streamer acquisition and a realistic distribution of local events. We show that the estimated model, built without any prior knowledge of the velocities, provides a reliable initial model for frequency-domain FWI of long-offset data for a starting frequency of 4 Hz, although some artefacts at the reservoir level result from a deficit of illumination. This formulation of slope tomography provides a computationally efficient alternative to waveform inversion method such as reflection waveform inversion or differential-semblance optimization to build an initial model for pre-stack depth migration and conventional FWI.
NASA Astrophysics Data System (ADS)
Hu, Xiaoqing; Gao, Cong-Zhang; Chen, Zhanbin; Wang, Jianguo; Wu, Yong; Wang, Yang
2017-11-01
We present the absolute triple differential cross section (TDCS) for single ionization of Ne (2 p ) at an impact energy of 599.6 eV and Ar (3 p ) at 195 eV. The role of the postcollision interaction (PCI) is studied using a high-order distorted-wave Born approximation model with a continuum distorted-waves expansion. Both the second- and third-order effects are considered in the present calculations, and the third-order distorted wave Born approximation model is reported in the (e ,2 e ) reaction. The calculated results show satisfactory agreement with experimental data. The magnitude of the absolute TDCS is enhanced by a factor 2-3 when the strength factor γ of the PCI amplitude is summarized just from 0 to 2. This proves that the PCI plays an important role in the absolute TDCS of the (e ,2 e ) reaction in the intermediate-energy region.
NASA Astrophysics Data System (ADS)
Kochurin, E. A.; Zubarev, N. M.
2018-01-01
Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a strip, the process of interaction of counter-propagating waves is numerically simulated. The nonlinear solitary waves on the surface can separately propagate along or against the direction of electric field without distortion. At the same time, the shape of the oppositely traveling waves can be distorted as the result of their interaction. In the problem under study, the nonlinearity leads to increasing the wave amplitudes and the duration of their interaction. This effect is inversely proportional to the fluid depth. In the shallow water limit, the tendency to the formation of a vertical liquid jet is observed.
``Smart'' baroreception along the aortic arch, with reference to essential hypertension
NASA Astrophysics Data System (ADS)
Kember, G. C.; Zamir, M.; Armour, J. A.
2004-11-01
Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.
Rogue waves and unbounded solutions of the NLSE
NASA Astrophysics Data System (ADS)
Lechuga, Antonio
2017-04-01
Since the pioneering work of Zakharov has been generally admitted that rogue waves can be studied in the framework of the Nonlinear Schrödinger Equation (NLSE). Many researchers, Akhmediev, Peregrine, Matveev among others gave different solutions to this equation that, in some way, could be linked to rogue waves and also to its more important characteristic: its unexpectedness. Janssen (2003, 2004), Onorato (2004, 2006) and Waseda (2006) linked the coefficient of the nonlinear term of the Schrödinger equation with the Benjamin-Feir index (BFI) that, we know, is a measure of the modulational instability of the waves. From this point of view the value of this coefficient of the NLSE could be known from statistics. Thus the relationship between sea states and the mechanism of generation of rogue waves could be found out. Following the well-known Lie group theory researchers have been studying the Lie point symmetries of the NLSE: the scaling transformations, Galilean transformations and phase transformations. Basically these transformations turn the NLSE into a nonlinear ordinary differential equation called Duffing equation (also called eikonal equation). There are different ways to do this, but in most of them the independent variable that could be seen as a space variable is a kind of moving frame with the time incorporated in this way. The main aim of this work is to classify solutions of the Duffing equation (periodic and nonperiodic waves and also bounded and unbounded waves) bearing in mind that the coefficient of the nonlinear term in the NLSE is left unaltered in the process of the transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu.; Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of themore » incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.« less
X-ray nanofocusing by kinoform lenses: A comparative study using different modeling approaches
NASA Astrophysics Data System (ADS)
Yan, Hanfei
2010-02-01
We conduct a comparative study on various kinoform lenses (KLs) for x-ray nanofocusing by using the geometrical theory, the dynamical diffraction theory, and the beam propagation method. This study shows that the geometrical theory becomes invalid to describe the performance of a KL for nanofocusing. The strong edge diffraction effect from individual lens element, which distorts the desired wave field, leads to a reduction in the effective numerical aperture and imposes a limit on how small a focus a KL can achieve. Because this effect is associated with a finite thickness of a lens, larger lens thickness depicts a stronger distortion. We find that a short KL where all lens elements are folded back to a single plane shows an illumination preference: if the illuminating geometry is in favor of the Bragg diffraction for a focusing order, its performance is enhanced and vice versa. We also find that a short KL usually outperforms its long version where all lens elements do not lie in a single plane because the short one suffers less the wave field distortion due to the edge diffraction. Simulation results suggest that for a long KL, an adaptive lens design is needed to correct the wave field distortion in order to achieve a better performance.
Structural instability in polyacene: A projector quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Srinivasan, Bhargavi; Ramasesha, S.
1998-04-01
We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS
Fu, Zhisong; Kirby, Robert M.; Whitaker, Ross T.
2014-01-01
Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal, but that are designed to allow asynchronous solution updates and have limited memory access patterns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on modern massively-SIMD architectures such as graphics processors and takes into account the particular constraints and capabilities of these computing platforms. This work builds on previous work for solving these equations on triangle meshes; in this paper we adapt and extend previous two-dimensional strategies to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments include a local update strategy with data compaction for tetrahedral meshes that provides solutions on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed functions. We also propose two new update schemes, specialized to mitigate the natural data increase observed when moving to three dimensions, and the data structures necessary for efficiently mapping data to parallel SIMD processors in a way that maintains computational density. Finally, we present descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory and SIMD architectures, with comparative results against state-of-the-art eikonal solvers. PMID:25221418
Distortion of ultrashort pulses caused by aberrations
NASA Astrophysics Data System (ADS)
Horváth, Z. L.; Kovács, A. P.; Bor, Zs.
The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.
Stress-wave grading techniques on veneer sheets
Joseph Jung
1979-01-01
A study was conducted to compare stress wave devices and determine the information available from stress waves in veneer sheets. The distortion of the stress wave as it passed a defect indicated that an estimate of the location and size of the defect can be obtained but information regarding wood quality is lost in the areas immediately behind a knot.
2010-01-25
study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was
Optical-model abrasion cross sections for high-energy heavy ions
NASA Technical Reports Server (NTRS)
Townsend, L. W.
1981-01-01
Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.
Distortion of Dynamical Systems in the Context of Focusing the Chaos Around the Point
NASA Astrophysics Data System (ADS)
Pawlak, Ryszard J.
In the paper, we examine local aspects of chaos for self-functions on topological manifolds. For this purpose, issues related to focal entropy points and homoclinic points are used. We consider also distortion of dynamical systems which is a theoretical analogue to wave interference.
Methods in the study of discrete upper hybrid waves
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.
2007-11-01
Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.
Hammering Yucca Flat, Part One: P-Wave Velocity
NASA Astrophysics Data System (ADS)
Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II
2015-12-01
Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Post-Kerr black hole spectroscopy
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele
2017-09-01
One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.
Correction of Phase Distortion by Nonlinear Optical Techniques
1981-05-01
I I I I ifi 00 o o \\] CORRECTION OF PHASE DISTORTION BY NONLINEAR OPTICAL TECHNIQUES op Hughes Research Laboratories 3011 Malibu Canyon...CORRECTION OF PHASE DISTORTION BY NONLINEAR OPTICAL TECHNIQUES • , — •■ FBiMowmln»"Own. we^owr^wwcw n R.C./Lind| W.B./Browne C.R. Giuliano, R.K... phase conjugation. Adaptive optics , Laser compensation, SBS, Four-wave mixing. 20. ABSTRACT (ConllmM on i tmrr and Identity bv block number
Low energy peripheral scaling in nucleon-nucleon scattering and uncertainty quantification
NASA Astrophysics Data System (ADS)
Ruiz Simo, I.; Amaro, J. E.; Ruiz Arriola, E.; Navarro Pérez, R.
2018-03-01
We analyze the peripheral structure of the nucleon-nucleon interaction for LAB energies below 350 MeV. To this end we transform the scattering matrix into the impact parameter representation by analyzing the scaled phase shifts (L + 1/2) δ JLS (p) and the scaled mixing parameters (L + 1/2)ɛ JLS (p) in terms of the impact parameter b = (L + 1/2)/p. According to the eikonal approximation, at large angular momentum L these functions should become an universal function of b, independent on L. This allows to discuss in a rather transparent way the role of statistical and systematic uncertainties in the different long range components of the two-body potential. Implications for peripheral waves obtained in chiral perturbation theory interactions to fifth order (N5LO) or from the large body of NN data considered in the SAID partial wave analysis are also drawn from comparing them with other phenomenological high-quality interactions, constructed to fit scattering data as well. We find that both N5LO and SAID peripheral waves disagree more than 5σ with the Granada-2013 statistical analysis, more than 2σ with the 6 statistically equivalent potentials fitting the Granada-2013 database and about 1σ with the historical set of 13 high-quality potentials developed since the 1993 Nijmegen analysis.
NASA Astrophysics Data System (ADS)
Chinoune, M.; Houamer, S.; Dal Cappello, C.; Galstyan, A.
2016-10-01
Recently Isik et al (2016 J. Phys B: At. Mol. Opt. Phys. 49 065203) performed measurements of the triple differential cross sections (TDCSs) of methane by electron impact. Their data clearly show that post-collisional interaction (PCI) effects are present in the angular distributions of ejected electrons. A model describing the ejected electron by a distorted wave and including PCI is applied for the single ionization of atomic targets and for methane. Extensive comparisons between this model and other previous models are made with available experiments.
Combined approach to the Hubble Space Telescope wave-front distortion analysis
NASA Astrophysics Data System (ADS)
Roddier, Claude; Roddier, Francois
1993-06-01
Stellar images taken by the HST at various focus positions have been analyzed to estimate wave-front distortion. Rather than using a single algorithm, we found that better results were obtained by combining the advantages of various algorithms. For the planetary camera, the most accurate algorithms consistently gave a spherical aberration of -0.290-micron rms with a maximum deviation of 0.005 micron. Evidence was found that the spherical aberration is essentially produced by the primary mirror. The illumination in the telescope pupil plane was reconstructed and evidence was found for a slight camera misalignment.
Spatial transport of electron quantum states with strong attosecond pulses
NASA Astrophysics Data System (ADS)
Chovancova, M.; Agueny, H.; Førre, M.; Kocbach, L.; Hansen, J. P.
2017-11-01
This work follows up the work of Dimitrovsky, Briggs and co-workers on translated electron atomic states by a strong field of an atto-second laser pulse, also described as creation of atoms without a nucleus. Here, we propose a new approach by analyzing the electron states in the Kramers-Henneberger moving frame in the dipole approximation. The wave function follows the displacement vector α (t). This allows arbitrarily shaped pulses, including the model delta-function potentials in the Dimitrovsky and Briggs approach. In the case of final-length single-cycle pulses, we apply both the Kramers-Henneberger moving frame analysis and a full numerical treatment of our 1D model. When the laser pulse frequency exceeds the frequency associated by the energy difference between initial and final states, the entire wavefunction is translated in space nearly without loss of coherence, to a well defined distance from the original position where the ionized core is left behind. This statement is demonstrated on the excited Rydberg states (n = 10, n = 15), where almost no distortion in the transported wave functions has been observed. However, the ground state (n = 1) is visibly distorted during the removal by pulses of reasonable frequencies, as also predicted by Dimitrovsky and Briggs analysis. Our approach allows us to analyze general pulses as well as the model delta-function potentials on the same footing in the Kramers-Henneberger frame.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.
2018-02-01
Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.
Compensation for 6.5 K cryogenic distortion of a fused quartz mirror by refiguring
NASA Technical Reports Server (NTRS)
Augason, Gordon C.; Young, Jeffrey A.; Melugin, Ramsey K.; Clarke, Dana S.; Howard, Steven D.; Scanlan, Michael; Wong, Steven; Lawton, Kenneth C.
1993-01-01
A 46 cm diameter, lightweight, Amersil TO8E, fused-natural-quartz mirror with a single-arch cross section was tested at the NASA-Ames Research Center Cryogenic Optical Test Facility to measure its cryogenic distortion at 6.5 K. Then the mirror was refigured with the inverse of the measured cryogenic distortion to compensate for this figure defect. The mirror was retested at 6.5 K and found to have a significantly improved figure. The compensation for cryogenic distortion was not complete, but preliminary analysis indicates that the compensation was better than 0.25 waves P-V if edge effects are ignored. The feasibility of compensating for cryogenic distortion by refiguring has thus been verified.
NASA Astrophysics Data System (ADS)
Gong, Maomao; Li, Xingyu; Zhang, Song Bin; Chen, Xiangjun
2018-05-01
A coplanar asymmetric (e, 2e) measurement on N2O has been reported in 1999 by Cavanagh and Lohmann (1999 J. Phys. B: At. Mol. Opt. Phys. 32 L261), however, the relevant ab initio theoretical study is not available even up to now. In this work, we report theoretical studies of (e, 2e) triple differential cross sections of N2O at the same kinematics using a multicenter distorted-wave method. The influence of the multicenter nature of N2O molecule on the continuum wave function of the ejected electron has been largely considered. The computed results show good agreement with the experimental data for both outer valence 2π and inner valence 4σ orbitals.
NASA Astrophysics Data System (ADS)
Li, Zhaokun; Zhao, Xiaohui
2017-02-01
The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.
Near-threshold NN→dπ reaction in chiral perturbation theory
NASA Astrophysics Data System (ADS)
Gårdestig, A.; Phillips, D. R.; Elster, Ch.
2006-02-01
The near-threshold np→dπ0 cross section is calculated in chiral perturbation theory to next-to-leading order in the expansion parameter √(Mmπ)/Λχ. At this order irreducible pion loops contribute to the relevant pion-production operator. Although their contribution to this operator is finite, considering initial- and final-state distortions produces a linear divergence in its matrix elements. We renormalize this divergence by introducing a counterterm, whose value we choose to reproduce the threshold np→dπ0 cross section measured at TRIUMF. The energy dependence of this cross section is then predicted in chiral perturbation theory, being determined by the production of p-wave pions, and also by energy dependence in the amplitude for the production of s-wave pions. With an appropriate choice of the counterterm, the chiral prediction for this energy dependence converges well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Qin, E-mail: Qin_Sheng@baylor.edu; Sun, Hai-wei, E-mail: hsun@umac.mo
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptivemore » grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.« less
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo
2016-10-01
Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.
Coupling modes between liquid/gas coaxial jets and transverse acoustic waves
NASA Astrophysics Data System (ADS)
Helland, Chad; Hilliker, Cullen; Forliti, David; University of St. Thomas Team
2017-11-01
The interactions between shear flows and acoustic disturbances plays a very important role in many propulsion and energy applications. Liquid jets, either independent or air assisted, respond to acoustic disturbances in a manner that alters the primary and secondary atomization processes. The current study focused on the response of an air-assisted liquid jet to disturbances associated with a transverse acoustic wave. The jet is placed in the pressure node (velocity antinode) region of the resonant mode shape. It has been shown in previous studies, under certain conditions, that the acoustic forces can cause the jet flow to distort and atomize. Both liquid and coaxial gas/ liquid jet flows have been shown to distort via acoustic forces. The purpose of the current study is to understand the predictive characteristics that cause the distortion behaviors of a liquid and coaxial jet flow, and how a how a coaxial flow affects the behavior.
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Leib, S. J.; Cowley, S. J.
1990-01-01
Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.
Hemanth, Thayyullathil; Rajesh, Langoju; Padmaram, Renganathan; Vasu, R Mohan; Rajan, Kanjirodan; Patnaik, Lalit M
2004-07-20
We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.
Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field
NASA Astrophysics Data System (ADS)
Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry
2018-05-01
Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.
Photopions from nuclei in the distorted-wave impulse approximation
NASA Astrophysics Data System (ADS)
Girija, V.; Devanathan, V.
1982-11-01
The formalism for photoproduction of pions from nuclei has been developed in the distorted-wave impulse approximation, taking into account the effect of the change in pion momentum in nuclear medium. Detailed calculations have been done for the reaction 16O(γ, π+)16N for photon energies from 170 to 380 MeV, with a view to investigate the effect due to the gradient operator ∇-->π for momentum of the pion and test the sensitivity of the photopion cross sections to the details of the pion-nucleus optical potential. The results clearly establish that the gradient operator increases the cross sections throughout the energy region considered, the increase being small at lower energies. Also with ∇-->π, the cross sections are rendered less sensitive to the optical potential. The calculated differential cross sections agree very well with the recent experimental data of Shoda et al. for γ-ray energy of 200 MeV. However, the cross sections obtained at medium energies are higher when compared to the available experimental data. NUCLEAR REACTIONS π+ photoproduction from 16O; distorted wave impulse approximation; pion-nucleus optical potentials; gradient operator for the pion momentum.
Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction
NASA Astrophysics Data System (ADS)
McLaskey, Gregory Christofer
Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach and the two mechanical calibration sources, four types of piezoelectric sensors were calibrated: three commercially available sensors and the Glaser-type conical piezoelectric sensor, which was developed in the Glaser laboratory. The distorting effects of each sensor are modeled using autoregressive-moving average (ARMA) models, and because vital phase information is robustly incorporated into these models, they are useful for simulating or removing sensor-induced distortions, so that a displacement time history can be retrieved from recorded signals. The Glaser-type sensor was found to be very well modeled as a unidirectional displacement sensor which detects stress wave disturbances down to about 1 picometer in amplitude. Finally, the merits of a fully calibrated experimental system are demonstrated in a study of stress wave sources arising from sliding friction, and the relationship between those sources and earthquakes. A laboratory friction apparatus was built for this work which allows the micro-mechanisms of friction to be studied with stress wave analysis. Using an array of 14 Glaser-type sensors, and precise models of wave propagation effects and the sensor distortions, the physical origins of the stress wave sources are explored. Force-time functions and focal mechanisms are determined for discrete events found amid the "noise" of friction. These localized events are interpreted to be the rupture of micrometer-sized contacts, known as asperities. By comparing stress wave sources from stick-slip experiments on plastic/plastic and rock/rock interfaces, systematic differences were found. The rock interface produces very rapid (<1 microsecond) implosive forces indicative of brittle asperity failure and fault gouge formation, while rupture on the plastic interface releases only shear force and produces a source more similar to earthquakes commonly recorded in the field. The difference between the mechanisms is attributed to the vast differences in the hardness and melting temperatures of the two materials, which affect the distribution of asperities as well as their failure behavior. With proper scaling, the strong link between material properties and laboratory earthquakes will aid in our understanding of fault mechanics and the generation of earthquakes and seismic tremor.
NASA Astrophysics Data System (ADS)
Land, Phillip; Robinson, Dennis; Roeder, James; Cook, Dean; Majumdar, Arun K.
2016-05-01
A new technique has been developed for improving the Signal-to-Noise Ratio (SNR) of underwater acoustic signals measured above the water's surface. This technique uses a Laser Doppler Vibrometer (LDV) and an Adaptive Optics (AO) system (consisting of a fast steering mirror, deformable mirror, and Shack-Hartmann Wavefront Sensor) for mitigating the effect of surface water distortions encountered while remotely recording underwater acoustic signals. The LDV is used to perform non-contact vibration measurements of a surface via a two beam laser interferometer. We have demonstrated the feasibility of this technique to overcome water distortions artificially generated on the surface of the water in a laboratory tank. In this setup, the LDV beam penetrates the surface of the water and travels down to be reflected off a submerged acoustic transducer. The reflected or returned beam is then recorded by the LDV as a vibration wave measurement. The LDV extracts the acoustic wave information while the AO mitigates the water surface distortions, increasing the overall SNR. The AO system records the Strehl ratio, which is a measure of the quality of optical image formation. In a perfect optical system the Strehl ratio is unity, however realistic systems with imperfections have Strehl ratios below one. The operation of the AO control system in open-loop and closed-loop configurations demonstrates the utility of the AO-based LDV for many applications.
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.
Nonlinear distortion of thin liquid sheets
NASA Astrophysics Data System (ADS)
Mehring, Carsten Ralf
Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times are reported for modulated semi-infinite annular and conical sheets. Comparisons between the different geometric configurations are made. For periodically disturbed planar sheets, accuracy of the employed reduced-dimension approach is demonstrated by comparison with more accurate two-dimensional vortex dynamics simulations.
Naked singularities are not singular in distorted gravity
NASA Astrophysics Data System (ADS)
Garattini, Remo; Majumder, Barun
2014-07-01
We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.
Nucleon and heavy-ion total and absorption cross section for selected nuclei
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Costner, C. M.
1975-01-01
Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattered amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon-nucleus experiments show agreement within 5 percent except at lower energies where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented.
Impulse approximation in nuclear pion production reactions: Absence of a one-body operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Daniel R.; Miller, Gerald A.
2011-06-15
The impulse approximation of pion production reactions is studied by developing a relativistic formalism, consistent with that used to define the nucleon-nucleon potential. For plane wave initial states we find that the usual one-body (1B) expression O{sub 1B} is replaced by O{sub 2B}=-iK(m{sub {pi}}/2)O{sub 1B}/m{sub {pi}}, where K(m{sub {pi}}/2) is the sum of all irreducible contributions to nucleon-nucleon scattering with energy transfer of m{sub {pi}}/2. We show that O{sub 2B}{approx_equal}O{sub 1B} for plane wave initial states. For distorted waves, we find that the usual operator is replaced with a sum of two-body operators that are well approximated by the operatormore » O{sub 2B}. Our new formalism solves the (previously ignored) problem of energy transfer forbidding a one-body impulse operator. Using a purely one pion exchange deuteron, the net result is that the impulse amplitude for np{yields}d{pi}{sup 0} at threshold is enhanced by a factor of approximately two. This amplitude is added to the larger ''rescattering'' amplitude and, although experimental data remain in disagreement, the theoretical prediction of the threshold cross section is brought closer to (and in agreement with) the data.« less
NASA Astrophysics Data System (ADS)
Paschall, Randall N.; Anderson, David J.
1993-11-01
A linear quadratic Gaussian method is proposed for a deformable mirror adaptive optics system control. Estimates of system states describing the distortion are generated by a Kalman filter based on Hartmann wave front measurements of the wave front gradient.
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations.
Mast, T D; Hinkelman, L M; Orr, M J; Waag, R C
1998-12-01
Wavefront propagation through the abdominal wall was simulated using a finite-difference time-domain implementation of the linearized wave propagation equations for a lossless, inhomogeneous, two-dimensional fluid as well as a simplified straight-ray model for a two-dimensional absorbing medium. Scanned images of six human abdominal wall cross sections provided the data for the propagation media in the simulations. The images were mapped into regions of fat, muscle, and connective tissue, each of which was assigned uniform sound speed, density, and absorption values. Propagation was simulated through each whole specimen as well as through each fat layer and muscle layer individually. Wavefronts computed by the finite-difference method contained arrival time, energy level, and wave shape distortion similar to that in measurements. Straight-ray simulations produced arrival time fluctuations similar to measurements but produced much smaller energy level fluctuations. These simulations confirm that both fat and muscle produce significant wavefront distortion and that distortion produced by fat sections differs from that produced by muscle sections. Spatial correlation of distortion with tissue composition suggests that most major arrival time fluctuations are caused by propagation through large-scale inhomogeneities such as fatty regions within muscle layers, while most amplitude and waveform variations are the result of scattering from smaller inhomogeneities such as septa within the subcutaneous fat. Additional finite-difference simulations performed using uniform-layer models of the abdominal wall indicate that wavefront distortion is primarily caused by tissue structures and inhomogeneities rather than by refraction at layer interfaces or by variations in layer thicknesses.
NASA Astrophysics Data System (ADS)
Lee, Hyun-Chul; Kumar, Arun; Wang, Wanqiu
2018-03-01
Coupled prediction systems for seasonal and inter-annual variability in the tropical Pacific are initialized from ocean analyses. In ocean initial states, small scale perturbations are inevitably smoothed or distorted by the observational limits and data assimilation procedures, which tends to induce potential ocean initial errors for the El Nino-Southern Oscillation (ENSO) prediction. Here, the evolution and effects of ocean initial errors from the small scale perturbation on the developing phase of ENSO are investigated by an ensemble of coupled model predictions. Results show that the ocean initial errors at the thermocline in the western tropical Pacific grow rapidly to project on the first mode of equatorial Kelvin wave and propagate to the east along the thermocline. In boreal spring when the surface buoyancy flux weakens in the eastern tropical Pacific, the subsurface errors influence sea surface temperature variability and would account for the seasonal dependence of prediction skill in the NINO3 region. It is concluded that the ENSO prediction in the eastern tropical Pacific after boreal spring can be improved by increasing the observational accuracy of subsurface ocean initial states in the western tropical Pacific.
How well can ultracompact bodies imitate black hole ringdowns?
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George
2018-02-01
The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.
Light cone structure near null infinity of the Kerr metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai Shan; Shang Yu; Graduate School of Chinese Academy of Sciences, Beijing, 100080
2007-02-15
Motivated by our attempt to understand the question of angular momentum of a relativistic rotating source carried away by gravitational waves, in the asymptotic regime near future null infinity of the Kerr metric, a family of null hypersurfaces intersecting null infinity in shearfree (good) cuts are constructed by means of asymptotic expansion of the eikonal equation. The geometry of the null hypersurfaces as well as the asymptotic structure of the Kerr metric near null infinity are studied. To the lowest order in angular momentum, the Bondi-Sachs form of the Kerr metric is worked out. The Newman-Unti formalism is then furthermore » developed, with which the Newman-Penrose constants of the Kerr metric are computed and shown to be zero. Possible physical implications of the vanishing of the Newman-Penrose constants of the Kerr metric are also briefly discussed.« less
Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, E. M. C.; Reu, P. L.
“Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less
Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves
Jones, E. M. C.; Reu, P. L.
2017-11-28
“Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Mukdadi, Osama; Shandas, Robin
2004-01-01
Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.
NASA Astrophysics Data System (ADS)
Kota, V. K. B.
General expression for the representation matrix elements in the SUsdg(3) limit of the sdg interacting boson model (sdgIBM) is derived that determine the scattering amplitude in the eikonal approximation for medium energy proton-nucleus scattering when the target nucleus is deformed and it is described by the SUsdg(3) limit. The SUsdg(3) result is generalized to two important situations: (i) when the target nucleus ground band states are described as states arising out of angular momentum projection from a general single Kπ = 0+ intrinsic state in sdg space; (ii) for rotational bands built on one-phonon excitations in sdgIBM.
Compensating for ear-canal acoustics when measuring otoacoustic emissions
Charaziak, Karolina K.; Shera, Christopher A.
2017-01-01
Otoacoustic emissions (OAEs) provide an acoustic fingerprint of the inner ear, and changes in this fingerprint may indicate changes in cochlear function arising from efferent modulation, aging, noise trauma, and/or exposure to harmful agents. However, the reproducibility and diagnostic power of OAE measurements is compromised by the variable acoustics of the ear canal, in particular, by multiple reflections and the emergence of standing waves at relevant frequencies. Even when stimulus levels are controlled using methods that circumvent standing-wave problems (e.g., forward-pressure-level calibration), distortion-product otoacoustic emission (DPOAE) levels vary with probe location by 10–15 dB near half-wave resonant frequencies. The method presented here estimates the initial outgoing OAE pressure wave at the eardrum from measurements of the conventional OAE, allowing one to separate the emitted OAE from the many reflections trapped in the ear canal. The emitted pressure level (EPL) represents the OAE level that would be recorded were the ear canal replaced by an infinite tube with no reflections. When DPOAEs are expressed using EPL, their variation with probe location decreases to the test–retest repeatability of measurements obtained at similar probe positions. EPL provides a powerful way to reduce the variability of OAE measurements and improve their ability to detect cochlear changes. PMID:28147590
Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy
Weigert, Martin; Bundschuh, Sebastian T.
2018-01-01
Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879
NASA Astrophysics Data System (ADS)
Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique
2004-05-01
A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-29
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
Alekseev, S I; Ziskin, M S; Fesenko, E E
2011-01-01
The possibility of using thermocouples for the artifact-free measurements of skin temperature during millimeter wave exposure was studied. The distributions of the specific absorption rate (SAR) in the human skin were calculated for different orientations of the thermocouple relative to the E-field of exposure. It was shown that, at the parallel orientation of a thermocouple relative to the E-field, SAR significantly increased at the tip of the thermocouple. This can result in an overheating of the thermocouple. At the perpendicular orientation of a thermocouple, the distortions of the SAR were insignificant. The data obtained confirm that the skin temperature can be measured with a thermocouple during exposure under the condition that the thermocouple is located perpendicular to the E-vector of the electromagnetic field. For the accurate determination of SAR from the rate of the initial temperature rise, it is necessary to fit the temperature kinetics measured with the thermocouple to the solution of the bio-heat transfer equation.
Maram, Reza; Van Howe, James; Li, Ming; Azaña, José
2014-01-01
Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207
Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy
Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha
2018-01-01
The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels. PMID:29464187
Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy.
Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha
2018-01-01
The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVetter, Brent M.; Kenkel, Seth; Mittal, Shachi
Spectral distortions caused by the electric field standing wave effect were investigated for two commonly used reflective substrates: low-emissivity glass and gold-coated glass. Our analytical calculations showed that spectral distortions may arise for both incoherent and coherent light sources when performing transflectance measurements. We experimentally confirmed our predictions using a commercial mid-infrared quantum cascade laser microscope and an interferometric infrared imaging system.
Role of distortion in the hcp vs fcc competition in rare-gas solids
NASA Astrophysics Data System (ADS)
Krainyukova, N. V.
2011-05-01
As a prototype of an initial or intermediate structure between hcp and fcc lattices we consider a distorted bcc crystal. We calculate the temperature and pressure dependences of the lattice parameters for the heavier rare gas solids Ar, Kr, Xe in a quasiharmonic approximation with Aziz potentials, and confirm earlier predictions that the hcp structure predominates over fcc in the bulk within wide ranges of P and T. The situation is different for confined clusters with up to 105 atoms, where, owing to the specific surface energetics and terminations, structures with five-fold symmetry made up of fcc fragments are dominant. As a next step we consider the free relaxation of differently distorted bcc clusters, and show that two types (monoclinic and orthorhombic) of initial distortion are a driving force for the final hcp vs fcc configurations. Possible energy relationships between the initial and final structures are obtained and analyzed.
Memory conformity affects inaccurate memories more than accurate memories.
Wright, Daniel B; Villalba, Daniella K
2012-01-01
After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.
Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory
NASA Astrophysics Data System (ADS)
Nixon, Kate L.; Murray, Andrew J.; Chaluvadi, H.; Ning, C. G.; Colgan, James; Madison, Don H.
2016-10-01
Experimental and theoretical triple differential ionisation cross-sections (TDCSs) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies.
Wave-front propagation in a discrete model of excitable media
NASA Astrophysics Data System (ADS)
Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.
1998-06-01
We generalize our recent discrete cellular automata (CA) model of excitable media [Y. B. Chernyak, A. B. Feldman, and R. J. Cohen, Phys. Rev. E 55, 3215 (1997)] to incorporate the effects of inhibitory processes on the propagation of the excitation wave front. In the common two variable reaction-diffusion (RD) models of excitable media, the inhibitory process is described by the v ``controller'' variable responsible for the restoration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the ``source'' contribution of excited elements to the excitation of their neighbors decreases with time as a simple function with a single adjustable parameter (a rate constant). We sought specific solutions of the CA state transition equations and obtained (both analytically and numerically) the dependence of the wave-front speed c on the four model parameters and the wave-front curvature κ. By requiring that the major characteristics of c(κ) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remarkably similar to that found in typical RD systems (similar behavior is observed when the analogous model parameters are varied). Most notably, the ``turn-on'' of the inhibitory process is accompanied by the appearance of a solution branch of slow speed, unstable waves. Additionally, when κ is small, we obtain a family of ``eikonal'' relations c(κ) that are suitable for the kinematic analysis of traveling waves in the CA medium. We compared the solutions of the CA equations to CA simulations for the case of plane waves and circular (target) waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific RD system and found good correspondence between the shapes of the RD and CA spiral arms in the region away from the tip where kinematic theory applies. Our analysis suggests that only four physical parameters control the behavior of wave fronts in excitable media.
Extending RTM Imaging With a Focus on Head Waves
NASA Astrophysics Data System (ADS)
Holicki, Max; Drijkoningen, Guy
2016-04-01
Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface with the head wave from the nth-layer. To illustrate the method we apply it to a layered Earth model with five layers and compare it to conventional RTM. We will show that conventional RTM highlights interfaces, while our head-wave based images highlight layers, producing fundamentally different images. We also demonstrate that our proposed imaging scheme is more sensitive to the velocity model than conventional RTM, which is important for improved velocity model building in the future.
Wang, Yuezong; Zhao, Zhizhong; Wang, Junshuai
2016-04-01
We present a novel and high-precision microscopic vision modeling method, which can be used for 3D data reconstruction in micro-gripping system with stereo light microscope. This method consists of four parts: image distortion correction, disparity distortion correction, initial vision model and residual compensation model. First, the method of image distortion correction is proposed. Image data required by image distortion correction comes from stereo images of calibration sample. The geometric features of image distortions can be predicted though the shape deformation of lines constructed by grid points in stereo images. Linear and polynomial fitting methods are applied to correct image distortions. Second, shape deformation features of disparity distribution are discussed. The method of disparity distortion correction is proposed. Polynomial fitting method is applied to correct disparity distortion. Third, a microscopic vision model is derived, which consists of two models, i.e., initial vision model and residual compensation model. We derive initial vision model by the analysis of direct mapping relationship between object and image points. Residual compensation model is derived based on the residual analysis of initial vision model. The results show that with maximum reconstruction distance of 4.1mm in X direction, 2.9mm in Y direction and 2.25mm in Z direction, our model achieves a precision of 0.01mm in X and Y directions and 0.015mm in Z direction. Comparison of our model with traditional pinhole camera model shows that two kinds of models have a similar reconstruction precision of X coordinates. However, traditional pinhole camera model has a lower precision of Y and Z coordinates than our model. The method proposed in this paper is very helpful for the micro-gripping system based on SLM microscopic vision. Copyright © 2016 Elsevier Ltd. All rights reserved.
Samaitis, Vykintas; Mažeika, Liudas
2017-08-08
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.
Samaitis, Vykintas; Mažeika, Liudas
2017-01-01
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system. PMID:28786924
NASA Technical Reports Server (NTRS)
Gough, Douglas; Merryfield, William J.; Toomre, Juri
1998-01-01
A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.
Production and Perception of Distortion in Word-Initial Friction Duration
ERIC Educational Resources Information Center
Jovicic, Slobodan T.; Kasic, Zorca; Punisic, Silvana
2010-01-01
The purpose of the present study was to investigate (a) the distortion in production of word-initial friction duration in fricative /[esh]/, and (b) the perceptual discrimination between typical (normal) and atypical (prolonged or lengthened) friction duration. In the first experiment 80 school aged children pronounced word /[esh]uma/, 40 of them…
Numerical Analysis of the Performance of Millimeter-Wave RoF-Based Cellular Backhaul Links
NASA Astrophysics Data System (ADS)
Pham, Thu A.; Pham, Hien T. T.; Le, Hai-Chau; Dang, Ngoc T.
2017-08-01
In this paper, we study the performance of a next-generation cellular backhaul network that is based on a hybrid architecture using radio-over-fiber (RoF) and millimeter-wave (MMW) techniques. We develop a mathematic model and comprehensively analyze the performance of a MMW/RoF-based backhaul downlink under the impacts of various physical layer impairments originated from both optical fiber and wireless links. More specifically, the effects of nonlinear distortion, chromatic dispersion, fading, and many types of noises including shot noise, thermal noise, amplifier noise, and relative intensity noise are investigated. The numerical results show that the nonlinear distortion, fiber dispersion, and wireless fading are key factors that limit the system performance. Setting the modulation index properly helps minimize the effect of nonlinear distortion while implementing dispersion shifted optical fibers could be used to reduce the impact of dispersion and as a result, they can improve the bit-error rate. Moreover, it is also verified that, to mitigate the effect of multipath fading, remote radio heads should be located as near the remote antenna units as possible.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Haering, Edward A., Jr.; Ehernberger, L. J.
1996-01-01
In-flight measurements of the SR-71 near-field sonic boom were obtained by an F-16XL airplane at flightpath separation distances from 40 to 740 ft. Twenty-two signatures were obtained from Mach 1.60 to Mach 1.84 and altitudes from 47,600 to 49,150 ft. The shock wave signatures were measured by the total and static sensors on the F-16XL noseboo. These near-field signature measurements were distorted by pneumatic attenuation in the pitot-static sensors and accounting for their effects using optimal deconvolution. Measurement system magnitude and phase characteristics were determined from ground-based step-response tests and extrapolated to flight conditions using analytical models. Deconvolution was implemented using Fourier transform methods. Comparisons of the shock wave signatures reconstructed from the total and static pressure data are presented. The good agreement achieved gives confidence of the quality of the reconstruction analysis. although originally developed to reconstruct the sonic boom signatures from SR-71 sonic boom flight tests, the methods presented here generally apply to other types of highly attenuated or distorted pneumatic measurements.
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Lee, Byung Joon
2013-01-01
It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.
Final-state interactions in semi-inclusive deep inelastic scattering off the Deuteron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wim Cosyn, Misak Sargsian
2011-07-01
Semi-inclusive deep inelastic scattering off the Deuteron with production of a slow nucleon in recoil kinematics is studied in the virtual nucleon approximation, in which the final state interaction (FSI) is calculated within general eikonal approximation. The cross section is derived in a factorized approach, with a factor describing the virtual photon interaction with the off-shell nucleon and a distorted spectral function accounting for the final-state interactions. One of the main goals of the study is to understand how much the general features of the diffractive high energy soft rescattering accounts for the observed features of FSI in deep inelasticmore » scattering (DIS). Comparison with the Jefferson Lab data shows good agreement in the covered range of kinematics. Most importantly, our calculation correctly reproduces the rise of the FSI in the forward direction of the slow nucleon production angle. By fitting our calculation to the data we extracted the W and Q{sup 2} dependences of the total cross section and slope factor of the interaction of DIS products, X, off the spectator nucleon. This analysis shows the XN scattering cross section rising with W and decreasing with an increase of Q{sup 2}. Finally, our analysis points at a largely suppressed off-shell part of the rescattering amplitude.« less
Krishnamurthy, K S
2015-09-01
The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.
Computation of Acoustic Waves Through Sliding-Zone Interfaces Using an Euler/Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.
1996-01-01
The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for two- and three-dimensional model problems. A simple but general interpolation scheme at the patched boundary passes acoustic waves without distortion, provided that a sufficiently small time step is taken. A guideline is provided for the maximum permissible time step or zone speed that gives an acceptable error introduced by the sliding-zone interface.
SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA
2007-01-18
Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imagingmore » algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.« less
NASA Astrophysics Data System (ADS)
Bochner, Brett
The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling has lower losses at the interferometer signal port than the Initial-LIGO system, though not significantly improved tolerance to mirror roughness deformations in terms of maintaining high signals. Finally, it is shown that 'Wavefront Healing', the claim that losses can be re- injected into the system to feed the gravitational wave signals, is successful in theory, but limited in practice for optics which cause large scattering losses. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
NASA Astrophysics Data System (ADS)
Bochner, Brett
1998-12-01
The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling has lower losses at the interferometer signal port than the Initial-LIGO system, though not significantly improved tolerance to mirror roughness deformations in terms of maintaining high signals. Finally, it is shown that 'Wavefront Healing', the claim that losses can be re- injected into the system to feed the gravitational wave signals, is successful in theory, but limited in practice for optics which cause large scattering losses. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
The Evolution of Modulated Wavetrains Into Turbulent Spots
NASA Technical Reports Server (NTRS)
Gaster, M.
2007-01-01
Experiment are being carried out to study the process by which th almost periodic disturbance waves generated naturally by the freestream evolve into turbulence. The boundary layer on a flat plate has been used for this study. The novelty of the approach is in the form of artificial excitation that is used. In this work the flow is excited artificially by deterministic white noise. The weak T-S wave created develops down stream, becomes nonlinear and blows up locally onto a highly distorted flow. These large local distortions of the mean flow allow very high frequency disturbances to grow and form into small turbulent spots. The spots arise from the excitation, and if the same noise sequence is repeated a spot will form at the same position and time instant relative to the excitation.
In-Medium Parton Branching Beyond Eikonal Approximation
NASA Astrophysics Data System (ADS)
Apolinário, Liliana
2017-03-01
The description of the in-medium modifications of partonic showers has been at the forefront of current theoretical and experimental efforts in heavy-ion collisions. It provides a unique laboratory to extend our knowledge frontier of the theory of the strong interactions, and to assess the properties of the hot and dense medium (QGP) that is produced in ultra-relativistic heavy-ion collisions at RHIC and the LHC. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss of massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (qbar{q} antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This constitutes the final proof that a probabilistic picture of the parton shower evolution holds even in the presence of a QGP.
NASA Technical Reports Server (NTRS)
Plotkin, Kenneth J.; Maglieri, Domenic J.; Sullivan, Brenda M.
2005-01-01
Turbulence has two distinctive effects on sonic booms: there is distortion in the form of random perturbations that appear behind the shock waves, and shock rise times are increased randomly. A first scattering theory by S.C. Crow in the late 1960s quantified the random distortions, and Crow's theory was shown to agree with available flight test data. A variety of theories for the shock thickness have been presented, all supporting the role of turbulence in increasing rise time above that of a basic molecular-relaxation structure. The net effect of these phenomena on the loudness of shaped minimized booms is of significant interest. Initial analysis suggests that there would be no change to average loudness, but this had not been experimentally investigated. The January 2004 flight test of the Shaped Sonic Boom Demonstrator (SSBD), together with a reference unmodified F-5E, included a 12500- foot linear ground sensor array with 28 digitally recorded sensor sites. This data set provides an opportunity to re-test Crow's theory for the post-shock perturbations, and to examine the net effect of turbulence on the loudness of shaped sonic booms.
Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation
NASA Technical Reports Server (NTRS)
Chen, Jen-Ping; Hathaway, Michael D.; Herrick, Gregory P.
2008-01-01
CFD calculations using high-performance parallel computing were conducted to simulate the pre-stall flow of a transonic compressor stage, NASA compressor Stage 35. The simulations were run with a full-annulus grid that models the 3D, viscous, unsteady blade row interaction without the need for an artificial inlet distortion to induce stall. The simulation demonstrates the development of the rotating stall from the growth of instabilities. Pressure-rise performance and pressure traces are compared with published experimental data before the study of flow evolution prior to the rotating stall. Spatial FFT analysis of the flow indicates a rotating long-length disturbance of one rotor circumference, which is followed by a spike-type breakdown. The analysis also links the long-length wave disturbance with the initiation of the spike inception. The spike instabilities occur when the trajectory of the tip clearance flow becomes perpendicular to the axial direction. When approaching stall, the passage shock changes from a single oblique shock to a dual-shock, which distorts the perpendicular trajectory of the tip clearance vortex but shows no evidence of flow separation that may contribute to stall.
Partial Rarefaction as Way to Reduce Distortion Curve of double-glazed unit
NASA Astrophysics Data System (ADS)
Plotnikov, Alexander
2017-10-01
Use of Insulated Glass Units (IGU) as glazing on building façades causes optical distortions of mirrored images of neighboring buildings in glazed surfaces. Optical distortions are caused by varying distances between glass panes in IGUs as a result of climate factors. This paper examines available engineering solutions that reduce such distortions: use of more rigid outer glasses, encasing the building in a shell of single glass panes, known as the ‘double façade’, and use of vacuum IGUs. A new way is proposed to reduce optical distortions by installing additional pointed or linear supports and creating pre-stress with partial rarefaction inside the IGU. Overpressure that can cause IGU expansion and glass deformation was calculated. In the urban environment of Moscow, reduction of air pressure with simultaneous increase of air pressure inside the IGU during summer heat waves can be as high as 5%, and this figure determines the level of rarefaction.
Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.
1990-01-01
Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.
Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.
Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T
2013-05-10
We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.
Circumferential distortion modeling of the TF30-P-3 compression system
NASA Technical Reports Server (NTRS)
Mazzawy, R. S.; Banks, G. A.
1977-01-01
Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.
Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios
Julian, B.R.; Foulger, G.R.
1996-01-01
The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.
NASA Astrophysics Data System (ADS)
Munzarova, H.; Plomerova, J.; Kissling, E. H.
2015-12-01
Consideration of only isotropic wave propagation and neglecting anisotropy in tomography studies is a simplification obviously incongruous with current understanding of mantle-lithosphere plate dynamics. Both fossil anisotropy in the mantle lithosphere and anisotropy due to the present-day flow in the asthenosphere may significantly influence propagation of seismic waves. We present a novel code for anisotropic teleseismic tomography (AniTomo) that allows to invert relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. We have modified frequently-used isotropic teleseismic tomography code Telinv by assuming weak hexagonal anisotropy with symmetry axis oriented generally in 3D to be, together with heterogeneities, a source of the observed P-wave travel-time residuals. Careful testing of the new code with synthetics, concentrating on strengths and limitations of the inversion method, is a necessary step before AniTomo is applied to real datasets. We examine various aspects of anisotropic tomography and particularly influence of ray coverage on resolvability of individual model parameters and of initial models on the result. Synthetic models are designed to schematically represent heterogeneous and anisotropic structures in the upper mantle. Several synthetic tests mimicking a real tectonic setting, e.g. the lithosphere subduction in the Northern Apennines in Italy (Munzarova et al., G-Cubed, 2013), allow us to make quantitative assessments of the well-known trade-off between effects of seismic anisotropy and heterogeneities. Our results clearly document that significant distortions of imaged velocity heterogeneities may result from neglecting anisotropy.
Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma
NASA Astrophysics Data System (ADS)
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2017-11-01
The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.
Davie, C J; Evans, R G
2013-05-03
We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The results are presented in the context of the robustness of the shock ignition approach to inertial fusion energy.
Influence of the Verwey Transition on the Spin-Wave Dispersion of Magnetite
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.
Inelastic neutron-scattering measurements of the spin-wave spectrum of magnetite (Fe{sub 3}O{sub 4}) that shed new light on the Verwey transition problem are presented. Above the Verwey transition, the spin waves can fit a simple Heisenberg model. Below TV, a large gap (8?meV) forms in the acoustic spin-wave branch at q = (0,0,1/2) and E = 43?meV. Heisenberg models with large unit cells were used to examine the spin waves when the superexchange is modified to reflect the crystallographic symmetry lowering due to either atomic distortions or charge ordering and find that neither of these models predicts the spin-wave gap.
Traveling-Wave Tube Amplifier Model to Predict High-Order Modulation Intersymbol Interference
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2001-01-01
Demands for increased data rates in satellite communications necessitate higher order modulation schemes, larger system bandwidth, and minimum distortion of the modulated signal as it is passed through the traveling wave tube amplifier (TWTA). One type of distortion that the TWTA contributes to is intersymbol interference (ISI), and this becomes particularly disruptive with wide-band, complex modulation schemes. It is suspected that in addition to the dispersion of the TWT, frequency dependent reflections due to mismatches within the TWT are a significant contributor to ISI. To experimentally investigate the effect of these mismatches within the physical TWT on ISI would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to the acquisition of the required digital hardware. In an attempt to develop a more accurate model to correlate IS1 with the TWTA and the operational signal, a fully three-dimensional (3D), time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm). The model includes a user defined slow-wave circuit with a spatially tapered region of loss to implement a sever, and spatially varied geometry (such as helical pitch) to implement a phase velocity taper. The model also includes user defined input/output coupling and an electron beam contained by solenoidal, electrostatic, or periodic permanent magnet (PPM) focusing allowing standard or novel TWTs to be investigated. This model comprehensively takes into account the effects of frequency dependent nonlinear distortions (MAM and AMPM); gain ripple due to frequency dependent reflections at the input/output coupling, severs, and mismatches from dynamic pitch variations; drive induced oscillations; harmonic generation; intermodulation products; and backward waves.
Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea Flux Measurements From Ships
NASA Astrophysics Data System (ADS)
Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.
2016-02-01
Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air-sea fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.
Detecting Gravitational Wave Memory without Parent Signals
NASA Astrophysics Data System (ADS)
McNeill, Lucy O.; Thrane, Eric; Lasky, Paul D.
2017-05-01
Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little more than an order of magnitude smaller in strain than the oscillatory parent waves. We introduce the concept of "orphan memory": gravitational-wave memory for which there is no detectable parent signal. In particular, high-frequency gravitational-wave bursts (≳kHz ) produce orphan memory in the LIGO/Virgo band. We show that Advanced LIGO measurements can place stringent limits on the existence of high-frequency gravitational waves, effectively increasing the LIGO bandwidth by orders of magnitude. We investigate the prospects for and implications of future searches for orphan memory.
NASA Astrophysics Data System (ADS)
Shen, W.; Lin, F.; Ritzwoller, M. H.
2010-12-01
The transition region between the tectonic western US and the cratonic eastern US contains numerous significant geological regions (e.g., the Rocky Mountains, the Colorado Plateau, and the Rio Grande Rift), and also, unknowns (e.g, the location or extent of the east-west US dichotomy, the compensation of the high topography of the western Great Plains, the extensional mechanics of the Rio Grande Rift, and the structure of the mantle beneath the Colorado Plateau). The answers to these questions and others are critical to an understanding of the tectonics and tectonic history of this region and its impact on the cratonic eastern US. The recent deployments of seismic stations, particularly the EarthScope USArray Transportable Array (TA), provide an opportunity to construct a detailed 3-D structural model of the crust and upper mantle beneath this transition region, and thus allow us to address some of the questions listed above. We present results from ambient noise tomography (ANT) and teleseismic earthquake tomography by using data from TA stations within the western and central US. We processed continuous seismic noise data from ~600 TA stations from August 2008 to March 2010, which after data selection produces a data set with ~100,000 inter-station paths. Rayleigh wave phase speed maps between 6 and 40 sec period and Love wave phase speed maps between 8 and 30 sec with a resolution of ~60 km are constructed using eikonal tomography. In addition, we applied eikonal tomography (ET) to about 300 teleseismic earthquakes to obtain long-period (30 - 100 sec) Rayleigh wave phase speed maps and Love wave phase speeds maps (30 - 60 sec). By jointly inverting Rayleigh and Love phase speeds maps from ANT and earthquake tomography, we constructed a 3-D isotropic and radially anisotropic shear velocity model of the crust and upper mantle to ~150 km depth together with model uncertainties constrained by a Monte-Carlo inversion. The 3-D isotropic model reveals a variety of robust features in this transition region. In the uppermost crust, the main sedimentary basins (e.g., Green River, Uinta, Washakie, Powder River, Denver, Albuquerque, Permian, and Anadarko) are imaged. In the middle and lower crust where the low shear velocities from basins diminish, the Yellowstone hot spot becomes the main slow anomaly. In the uppermost mantle, high velocity anomalies are observed beneath the Colorado Plateau, the Wyoming craton, and the Great Plains. Although the Colorado Plateau shows more or less homogeneous shear velocity in its middle and towards its northern boundary, the other two main fast anomalies reveal inhomogeneous structures at depths deeper than 100 km. Two main low velocity anomalies are observed: one underlying the Snake River Plain which broadens and dips to the northeast and another U-shaped anomaly on the eastern margin of the Colorado Plateau. These velocity anomalies add to complexities at the transition between the tectonic western US and the stable eastern US. The location and uncertainty of the east-west shear velocity dichotomy also is constrained by this model.
Extension of the ratio method to low energy
Colomer, Frederic; Capel, Pierre; Nunes, F. M.; ...
2016-05-25
The ratio method has been proposed as a means to remove the reaction model dependence in the study of halo nuclei. Originally, it was developed for higher energies but given the potential interest in applying the method at lower energy, in this work we explore its validity at 20 MeV/nucleon. The ratio method takes the ratio of the breakup angular distribution and the summed angular distribution (which includes elastic, inelastic and breakup) and uses this observable to constrain the features of the original halo wave function. In this work we use the Continuum Discretized Coupled Channel method and the Coulomb-correctedmore » Dynamical Eikonal Approximation for the study. We study the reactions of 11Be on 12C, 40Ca and 208Pb at 20 MeV/nucleon. We compare the various theoretical descriptions and explore the dependence of our result on the core-target interaction. Lastly, our study demonstrates that the ratio method is valid at these lower beam energies.« less
Impulse propagation in the nocturnal boundary layer: analysis of the geometric component.
Blom, Philip; Waxler, Roger
2012-05-01
On clear dry nights over flat land, a temperature inversion and stable nocturnal wind jet lead to an acoustic duct in the lowest few hundred meters of the atmosphere. An impulsive signal propagating in such a duct is received at long ranges from the source as an extended wave train consisting of a series of weakly dispersed distinct arrivals followed by a strongly dispersed low-frequency tail. The leading distinct arrivals have been previously shown to be well modeled by geometric acoustics. In this paper, the geometric acoustics approximation for the leading arrivals is investigated. Using the solutions of the eikonal and transport equations, travel times, amplitudes, and caustic structures of the distinct arrivals have been determined. The time delay between and relative amplitudes of the direct-refracted and single ground reflection arrivals have been investigated as parameters for an inversion scheme. A two parameter quadratic approximation to the effective sound speed profile has been fit and found to be in strong agreement with meteorological measurements from the time of propagation.
Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.
Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A
2014-08-01
Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).
The eikonal function: the commom concept in ray optics and particle mechanics
NASA Astrophysics Data System (ADS)
Krautter, Martin
1993-04-01
The habit of teaching the movements of masses first, and propagation of light later, as an electromagnetic phenomenon was widespread. Looking further back into the history of physics, however, we see earlier the concepts for understanding light rays, and later their successful application to particle trajectories, leading to the highly developed celestial mechanics towards the end of the 19th century. And then, 1905, Karl Schwarzschild transferred the technique of `canonical coordinates,' named so by C.G.J. Jacobi in 1837, back to light rays in imaging systems. I would like to point to the chief steps in the evolution. The learning process for handling both particle and wave propagation aspects continues up to our time: Richard Feynman 1918 - 1988. We may judge each contribution: whether it opens our mind to a unifying theory, or whether it hardens partial understanding. And we can notice where the understanding of light propagation led the evolution, and how the theory for movement of masses caught up.
Phase conjugate digital inline holography (PCDIH)
Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley; ...
2018-01-12
We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.
Phase conjugate digital inline holography (PCDIH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Hoffmeister, Kathryn N. Gabet; Kunzler, William Marley
We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.
Linear Instability of a Uni-Directional Transversely Sheared Mean Flow
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.
On the distortions in calculated GW parameters during slanted atmospheric soundings
NASA Astrophysics Data System (ADS)
de la Torre, Alejandro; Alexander, Peter; Schmidt, Torsten; Llamedo, Pablo; Hierro, Rodrigo
2018-03-01
The significant distortions introduced in the measured atmospheric gravity wavelengths by soundings other than those in vertical and horizontal directions, are discussed as a function of the elevation angle of the sounding path and the gravity wave aspect ratio. Under- or overestimation of real vertical wavelengths during the measurement process depends on the value of these two parameters. The consequences of these distortions on the calculation of the energy and the vertical flux of horizontal momentum are analyzed and discussed in the context of two experimental limb satellite setups: GPS-LEO radio occultations and TIMED/SABER ((Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics)) measurements. Possible discrepancies previously found between the momentum flux calculated from satellite temperature profiles, on site and from model simulations, may to a certain degree be attributed to these distortions. A recalculation of previous momentum flux climatologies based on these considerations seems to be a difficult goal.
Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders
NASA Astrophysics Data System (ADS)
Hu, Zhen; Lu, Ya Yan
2018-02-01
Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.
Eikonal-Based Inversion of GPR Data from the Vaucluse Karst Aquifer
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; van Vorst, D.; Guglielmi, Y.; Cappa, F.; Gaffet, S.
2009-12-01
In this paper, we present an easy-to-implement eikonal-based travel time inversion algorithm and apply it to borehole GPR measurement data obtained from a karst aquifer located in the Vaucluse in Provence. The boreholes are situated with a fault zone deep inside the aquifer, in the Laboratoire Souterrain à Bas Bruit (LSBB). The measurements were made using 250 MHz MALA RAMAC borehole GPR antennas. The inversion formulation is unique in its application of a fast-sweeping eikonal solver (Zhao [1]) to the minimization of an objective functional that is composed of a travel time misfit and a model-based regularization [2]. The solver is robust in the presence of large velocity contrasts, efficient, easy to implement, and does not require the use of a sorting algorithm. The computation of sensitivities, which are required for the inversion process, is achieved by tracing rays backward from receiver to source following the gradient of the travel time field [2]. A user wishing to implement this algorithm can opt to avoid the ray tracing step and simply perturb the model to obtain the required sensitivities. Despite the obvious computational inefficiency of such an approach, it is acceptable for 2D problems. The relationship between travel time and the velocity profile is non-linear, requiring an iterative approach to be used. At each iteration, a set of matrix equations is solved to determine the model update. As the inversion continues, the weighting of the regularization parameter is adjusted until an appropriate data misfit is obtained. The inversion results, shown in the attached image, are consistent with previously obtained geological structure. Future work will look at improving inversion resolution and incorporating other measurement methodologies, with the goal of providing useful data for groundwater analysis. References: [1] H. Zhao, “A fast sweeping method for Eikonal equations,” Mathematics of Computation, vol. 74, no. 250, pp. 603-627, 2004. [2] D. Aldridge and D. Oldenburg, “Two-dimensional tomographic inversion with finite-difference traveltimes,” Journal of Seismic Exploration, vol. 2, pp. 257-274, 1993. Recovered Permittivity Profiles
Field-Effects in Large Axial Ratio Liquid Crystals
NASA Astrophysics Data System (ADS)
Lonberg, Franklin J.
This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.
Interaction of finite-amplitude sound with air-filled porous materials
NASA Technical Reports Server (NTRS)
Nelson, D. A.
1985-01-01
The propagation of high intensity sound waves through an air-filled porus material was studied. The material is assumed: (1) to be rigid, incompressible, and homogeneous, and (2) to be adequately described by two properties: resistivity r and porosity. The resulting wave equation is still nonlinear, however, because of the u sgn(u) term in the resistivity. The equation is solved in the frequency domain as an infinite set of coupled inhomogeneous Helmholtz equations, one for each harmonic. An approximate but analytical solution leads to predictions of excess attenuation, saturation, and phase speed reduction for the fundamental component. A more general numerical solution is used to calculate the propagation curves for the higher harmonics. The u sgn(u) nonlinearity produces a cubic distortion pattern; when the input signal is a pure tone, only odd harmonic distortion products are generated.
Modified plenoptic camera for phase and amplitude wavefront sensing
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Davis, Christopher C.
2013-09-01
Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.
A new method for depth profiling reconstruction in confocal microscopy
NASA Astrophysics Data System (ADS)
Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe
2018-05-01
Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.
NASA Astrophysics Data System (ADS)
Shao, X. M.
2015-12-01
It has been increasingly recognized and observed that activities within the troposphere, either natural (e.g., thunderstorm, earthquake, volcano) or anthropogenic (e.g., explosion above or below ground), can substantially disturb the ionosphere in the forms of atmosphere gravity wave, infrasonic acoustic wave, and electric-field-induced ionospheric chemical reaction. These disturbances introduce plasma density variations in the ionosphere that adversely distort the transionospheric radio signals for communication, navigation, surveillance, and other national security missions. A new three-year strategic research program has been initiated at LANL in FY16 to investigate, understand, and characterize the interwoven dynamic and electrodynamic coupling processes from the source in the troposphere to the disturbances in the ionosphere via comprehensive observation and model simulation. The planned study area is chosen to be over the US Great Plains where severe thunderstorms occur frequently and where the necessary atmospheric and ionospheric observations are conducted routinely. In this presentation, we will outline our program plan, technical approaches, and scientific goals, and will discuss opportunities of possible inter-institute collaborations.
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Kolosov, Valerii V.
2003-04-01
The propagation problem for partially coherent wave fields in inhomogeneous media is considered in this work. The influence of refraction, inhomogeneity of gain medium properties and refraction parameter fluctuations on target characteristics of radiation are taken into consideration. Such problems arise in the study of laser propagation on atmosphere paths, under investigation of directional radiation pattern forming for lasers which gain media is characterized by strong fluctuation of dielectric constant and for lasers which resonator have an atmosphere area. The ray-tracing technique allows us to make effective algorithms for modeling of a partially coherent wave field propagation through inhomogeneous random media is presented for case when the influecne of an optical wave refraction, the influence of the inhomogeiety of radiaitn amplification or absorption, and also the influence of fluctuations of a refraction parameter on target radiation parameters are basic. Novelty of the technique consists in the account of the additional refraction caused by inhomogeneity of gain, and also in the method of an account of turbulent distortions of a beam with any initial coherence allowing to execute construction of effective numerical algorithms. The technique based on the solution of the equation for coherence function of the second order.
LDR structural technology activities at JPL
NASA Technical Reports Server (NTRS)
Wada, Ben
1988-01-01
The status of the Large Deployable Reflector (LDR) technology requirements and the availability of that technology in the next few years are summarized. The research efforts at JPL related to these technology needs are also discussed. LDR requires that a large and relatively stiff truss-type backup structure have a surface accurate to 100 microns in space (initial position with thermal distortions) and the dynamic characteristics predictable and/or measurable by on-orbit system identification for micron level motion. This motion may result from the excitation of the lower modes or from wave-type motions. It is also assumed that the LDR structure can be ground tested to validate its ability to meet mission requirements. No program manager will commit a structural design based solely on analysis, unless the analysis is backed by a validation test program.
Constructing a Teleseismic Tomographic Image of Taiwan using BATS Recordings
NASA Astrophysics Data System (ADS)
Krajewski, J.; Roecker, S.
2005-12-01
Taiwan is an evolving arc-continent collision located at a complicated part of the plate boundary between the Eurasian and Philippine Sea plates. To better understand the role of the upper mantle in the dynamics of this collision, we reviewed 4 years of data from the Broadband Array in Taiwan for Seismology (BATS) in Taiwan to construct a teleseismic dataset for tomographic imaging of the subsurface of the island. From an initial selection of approximately 300 events, we used waveform correlation to generate a dataset of 4500 relative arrival times. To calculate accurate travel times in three dimensional wavespeed models over the large lateral distances in our model (~800 km), we solve the eikonal equation directly in a spherical coordinate system. We reduce the influence of smearing of crustal heterogeneity into the deeper mantle, we fix the upper 30 km to a previously determined P wavespeed model for the region. Initial resolution tests suggest a spatial limit on the order of 40 km.
A Parallel Fast Sweeping Method for the Eikonal Equation
NASA Astrophysics Data System (ADS)
Baker, B.
2017-12-01
Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.
NASA Astrophysics Data System (ADS)
Caron-Huot, Simon
2015-05-01
We propose the eikonal approximation as a simple and reliable tool to analyze relativistic high-energy processes, provided that the necessary subtleties are accounted for. An important subtlety is the need to include eikonal phases for a rapidity-dependent collection of particles, as embodied by the Balitsky-JIMWLK rapidity evolution equation. In the first part of this paper, we review how the phenomenon of gluon reggeization and the BFKL equations can be understood simply (but not too simply) in the eikonal approach. We also work out some previously overlooked implications of BFKL dynamics, including the observation that starting from four loops it is incompatible with a recent conjecture regarding the structure of infrared divergences. In the second part of this paper, we propose that in the strict planar limit the theory can be developed to all orders in the coupling with no reference at all to the concept of "reggeized gluon." Rather, one can work directly with a finite, process-dependent, number of Wilson lines. We demonstrate consistency of this proposal by an exact computation in N=4 super Yang-Mills, which shows that in processes mediated with two Wilson lines the reggeized gluon appears in the weak coupling limit as a resonance whose width is proportional to the coupling. We also provide a precise operator definition of Lipatov's integrable spin chain, which is manifestly integrable at any value of the coupling as a result of the duality between scattering amplitudes and Wilson loops in this theory.
SAR imaging of ocean waves - Theory
NASA Technical Reports Server (NTRS)
Jain, A.
1981-01-01
A SAR imaging integral for a rough surface is derived. Aspects of distributed target imaging and questions of ocean-wave imaging are considered. A description is presented of the results of analyses which are performed on aircraft and a spacecraft data in order to gain an understanding of the SAR imaging of ocean waves. The analyzed data illustrate the effect of radar resolution on the images of azimuthally traveling waves, the dependence of image distortion on the angle which the waves make with the radar flight path, and the dependence of the focusing parameter of the radar matched filter on the ocean wave period for azimuthally traveling waves. A dependence of ocean-wave modulation on significant wave height is also observed. The observed dependence of the modulations of azimuth waves on radar resolution is in contradiction to the hypothesis that these modulations are caused mainly by velocity bunching.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Nonlinear aspects of acoustic radiation force in biomedical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov; Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com
In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.
Nonlinear aspects of acoustic radiation force in biomedical applications
NASA Astrophysics Data System (ADS)
Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen
2015-10-01
In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual "finger" for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.
Rayleigh wave tomography of the British Isles from ambient seismic noise
NASA Astrophysics Data System (ADS)
Nicolson, Heather; Curtis, Andrew; Baptie, Brian
2014-08-01
We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the lower crust such as Northern Ireland, the eastern Irish Sea and northwest Wales.
Local Earthquake P-wave Tomography at Mount St. Helens with the iMUSH Broadband Array
NASA Astrophysics Data System (ADS)
Ulberg, C. W.; Creager, K. C.; Moran, S. C.; Abers, G. A.; Crosbie, K.; Crosson, R. S.; Denlinger, R. P.; Thelen, W. A.; Hansen, S. M.; Schmandt, B.; Kiser, E.; Levander, A.; Bachmann, O.
2016-12-01
We deployed 70 broadband seismometers in the summer of 2014 to image the seismic velocity structure beneath Mount St. Helens (MSH), Washington, as part of the collaborative imaging Magma Under St. Helens (iMUSH) project. Our goal is to illuminate the MSH magmatic system by integrating all portions of the iMUSH experiment, including active- and passive-source tomography, ambient-noise tomography, seismicity, receiver functions, magnetotellurics, and petrology. The broadband array has a diameter of 100 km centered on MSH with an average station spacing of 10 km, and was deployed through summer 2016. It is augmented by dozens of permanent stations in the area. We determine P-wave arrival times and also incorporate picks from the permanent network. There were more than 250 local events during the first year of iMUSH broadband recording, which have provided over 11,000 high-quality arrival times. The iMUSH experiment included 23 active shots in 2014 that were recorded with good signal-to-noise ratios across the entire array. Direct raypaths from local earthquakes and active shots reach 15-20 km depth beneath MSH. We use the program struct3DP to iteratively invert travel times to obtain a 3-D seismic velocity model and relocate hypocenters. Travel times are computed using a 3-D eikonal-equation solver. We are expanding our analysis to include S-wave arrivals from local events. The preliminary 3-D model shows low P-wave speeds along the St. Helens seismic zone, striking NNW-SSE of MSH from near the surface to where we lose resolution at 15-20km depth. This seismic zone coincides with a sharp boundary in Moho reflectivity that has been interpreted as the eastern boundary of a serpentinized mantle wedge (Hansen et al, 2016, submitted). We speculate that the seismic zone and low wave speeds are related to fluids rising from the eastern boundary of the wedge.
2017-04-03
setup in terms of temporal and spatial discretization . The second component was an extension of existing depth-integrated wave models to describe...equations (Abbott, 1976). Discretization schemes involve numerical dispersion and dissipation that distort the true character of the governing equations...represent a leading-order approximation of the Boussinesq-type equations. Tam and Webb (1993) proposed a wavenumber-based discretization scheme to preserve
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-01-01
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898
NASA Astrophysics Data System (ADS)
Margules, L.; Motiyenko, R. A.; Groner, P.; De Chirico, F.; Turk, A.; Cooke, S. A.
2013-06-01
Measurements on the rotational spectrum of 1,1-difluoroacetone have been extended from the cm-wave region into the mm-wave region. Measurements between 150 GHz and 600 GHz were performed a t Lille at room temperature. About 2000 transitions have been added to the known line listing for the ground state. The range of J and K_{-1} values, for both the A and E torsional substates, now span 1 - 60 and 0 - 30, respectively. Analysis of the cm-wave spectrum was only possible using the Watson S-reduced Hamiltonian, with the A-reduction producing a poor spectral fit. For that analysis only quartic centrifugal distortion terms were required. With the newly recorded higher J and K_{-1} measurements it is necessary to expand the Hamiltonian to now include sextic and octic centrifugal distortion terms. This should allow us to extend the assignment to even higher J and K_{-1} and perhaps to shed more light into failure of the A-reduction Hamiltonian to achieve a satisfactory fit for the cm-wave transitions. The effective barrier to methyl group internal rotation has been determined more accurately. G. S. Grubbs II, P. Groner, S. E. Novick and S. A. Cooke J. Mol. Spectrosc. {280} 21-26, 2012.
Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)
2001-01-01
This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to describe finite amplitude disturbances in high-speed compressors. Results are presented for the response of a transonic compressor subjected to inlet distortions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckerman, M.; Auble, R.L.; Bertrand, F.E.
1987-08-01
High-resolution measurements have been made of elastic and inelastic scattering of /sup 58/Ni+ /sup 208/Pb at four bombarding energies from 10.3 to 17.4 MeV/nucleon. The considerable inelastic strength observed for excitation energies up to at least 7 MeV is dominated by Coulomb-driven quadrupole transitions. Analyses were done using both the distorted-wave Born approximation and coupled-channels models. At the highest bombarding energies the data can be described equally well by distorted-wave Born approximations and coupled channels analyses. We find that B(E2) = 0.062 e/sup 2/b/sup 2/ for the 1.454 MeV 2/sup +/ state in /sup 58/Ni and B(E2) = 0.34 e/supmore » 2/b/sup 2/ for the 4.09 MeV 2/sup +/ state in /sup 208/Pb.« less
Transfer reaction code with nonlocal interactions
Titus, L. J.; Ross, A.; Nunes, F. M.
2016-07-14
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d,N)(d,N) or (N,d)(N,d), including nonlocal nucleon–target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d,N)BA(d,N)B or B(N,d)AB(N,d)A. Details on the implementation of the TT-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided.more » This code is suitable to be applied for deuteron induced reactions in the range of View the MathML sourceEd=10–70MeV, and provides cross sections with 4% accuracy.« less
NASA Astrophysics Data System (ADS)
Rahmanian, M.; Fathi, R.; Shojaei, F.
2017-11-01
The single-charge transfer process in collision of protons with helium atoms in their ground states is investigated. The model utilizes the second-order three-body Born distorted-wave approximation (BDW-3B) with correct Coulomb boundary conditions to calculate the differential and total cross sections at intermediate and high energies. The role of the passive electrons and electron-electron correlations are studied by comparing our results and the BDW-4B calculations with the complete perturbation potential. The present results are also compared with other theories, and the Thomas scattering mechanism is investigated. The obtained results are also compared with the recent experimental measurements. For the prior differential cross sections, the comparisons show better agreement with the experiments at smaller scattering angles. The agreement between the total cross sections and the BDW-4B results as well as the experimental data is good at higher impact energies.
Modeling skull's acoustic attenuation and dispersion on photoacoustic signal
NASA Astrophysics Data System (ADS)
Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.
2017-03-01
Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.
Nonlinear Acoustics in Ultrasound Metrology and other Selected Applications.
Lewin, Peter A
2010-01-01
A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of "point-receiver" hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard "biofilm" that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.
Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Makwana, K. D.; Keppens, R.; Lapenta, G.
2017-12-01
We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.
Nonlinear acoustics in ultrasound metrology and other selected applications
NASA Astrophysics Data System (ADS)
Lewin, Peter A.
2010-01-01
A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of 'point-receiver' hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard 'biofilm' that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.
Alternative methods for ray tracing in uniaxial media. Application to negative refraction
NASA Astrophysics Data System (ADS)
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2007-03-01
In previous papers [C. Bellver-Cebreros, M. Rodriguez-Danta, Eikonal equation, alternative expression of Fresnel's equation and Mohr's construction in optical anisotropic media, Opt. Commun. 189 (2001) 193; C. Bellver-Cebreros, M. Rodriguez-Danta, Internal conical refraction in biaxial media and graphical plane constructions deduced from Mohr's method, Opt. Commun. 212 (2002) 199; C. Bellver-Cebreros, M. Rodriguez-Danta, Refraccion conica externa en medios biaxicos a partir de la construccion de Mohr, Opt. Pura AppliE 36 (2003) 33], the authors have developed a method based on the local properties of dielectric permittivity tensor and on Mohr's plane graphical construction in order to study the behaviour of locally plane light waves in anisotropic media. In this paper, this alternative methodology is compared with the traditional one, by emphasizing the simplicity of the former when studying ray propagation through uniaxial media (comparison is possible since, in this case, traditional construction becomes also plane). An original and simple graphical method is proposed in order to determine the direction of propagation given by the wave vector from the knowledge of the extraordinary ray direction (given by Poynting vector). Some properties of light rays in these media not described in the literature are obtained. Finally, two applications are considered: a description of optical birefringence under normal incidence and the study of negative refraction in uniaxial media.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Held, Eric D.
2015-09-01
Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.
Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER
NASA Astrophysics Data System (ADS)
Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.
2014-10-01
The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.
NASA Astrophysics Data System (ADS)
Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun
2017-12-01
Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.
Understanding of Materials State and its Degradation using Non-Linear Ultrasound (NLU) Approaches
2011-01-01
Traditional ultrasonic NDE is based on linear theory and normally relies on measuring some particular parameter (sound velocity , attenuation... velocity in the material. In most cases this technique is not considered to be very practical as very small changes in velocity has to be measured. Hence...nonlinear elasticity) of the material the input wave distorts as it propagates. This is attributed to the difference in the wave velocities of the
Radiation of Sawtooth Waves from the End of an Open Pipe
NASA Astrophysics Data System (ADS)
Bakaitis, Rachael; Bodon, Josh; Gee, Kent; Thomas, Derek
2012-10-01
It is known, that because of nonlinear propagation distortion, a sinusoidal wave is transformed into a sawtooth-like wave as it travels through a pipe. It has been observed that the sawtooth wave, when measured immediately after it exits a pipe, has a form similar to a delta function. Currently this behavior is not understood, but has potential application to radiation of sound from brass instruments and rocket motors. Building on previous work in the 1970s by Blackstock and Wright, the purpose of the current research is to better understand the radiation of sawtooth waves from the open end of a circular pipe. Nonlinear propagation theory, the experimental apparatus and considerations, and some preliminary results are described.
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andorf, Matthew; Lebedev, Valeri; Piot, Philippe
2016-06-01
Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility ofmore » nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.« less
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.
1999-01-01
Turbofan engine-face flow distortion is one of the most troublesome and least understood problems for designers of modern engine inlet systems. One concern is that there are numerous sources of flow-field distortion that are ingested by the inlet or generated within the inlet duct itself. Among these are: (1) flow separation at the cowl lip during in-flight maneuvering, (2) flow separation on the compression surfaces due to shock-wave/boundary layer interactions, (3) spillage of the fuselage boundary layer into the inlet duct, (4) ingestion of aircraft vortices and wakes emanating from upstream disturbances, and (5) strong secondary flow gradients and flow separation induced by wall curvature within the inlet duct itself. Most developing aircraft (including the B70, F-111, F-14, Mig-25, Tornado, and Airbus A300) have experienced one or more of these types of problems, particularly at high Mach numbers and/or extreme maneuver conditions when flow distortion at the engine face exceeded the allowable limits of the engine.
Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Zhidenko, A.
2017-05-01
Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.
Effect of high-latitude ionospheric convection on Sun-aligned polar caps
NASA Technical Reports Server (NTRS)
Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.
1994-01-01
A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore, above the threshold, the single current sheet pair splits into multiple current sheet pairs. For the fixed initial ionospheric and magnetospheric conditions used in this study, the separation distance between the current pairs was found to be almost independent of the background electric field strength. For either three-cell or distorted two-cell background convection patterns the arc formation favored the positive B(sub y) case in the northern hemisphere.
Skull's acoustic attenuation and dispersion modeling on photoacoustic signal
NASA Astrophysics Data System (ADS)
Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza
2018-02-01
Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.
Nonlinear dynamic phenomena in the space shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Housner, J. M.; Edighoffer, H. H.; Park, K. C.
1981-01-01
The development of an analysis for examining the nonlinear dynamic phenomena arising in the space shuttle orbiter tile/pad thermal protection system is presented. The tile/pad system consists of ceramic tiles bonded to the aluminum skin of the orbiter through a thin nylon felt pad. The pads are a soft nonlinear material which permits large strains and displays both hysteretic and nonlinear viscous damping. Application of the analysis to a square tile subjected to transverse sinusoidal motion of the orbiter skin is presented and the following nonlinear dynamic phenomena are considered: highly distorted wave forms, amplitude-dependent resonant frequencies which initially decrease and then increase with increasing amplitude of motion, magnification of substrate motion which is higher than would be expected in a similarly highly damped linear system, and classical parametric resonance instability.
Charge Transfer in Collisions of S^4+ with H.
NASA Astrophysics Data System (ADS)
Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.
2001-05-01
Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented
Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions
NASA Astrophysics Data System (ADS)
Timofeyuk, N. K.
2018-05-01
The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.
True amplitude wave equation migration arising from true amplitude one-way wave equations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition to these newly defined wavefields in heterogeneous media leads to the Kirchhoff inversion formula for common-shot data when the one-way wavefields are replaced by their ray theoretic approximations. This extension enhances the original WEM method. The objective of that technique was a reflector map, only. The underlying theory did not address amplitude issues. Computer output obtained using numerically generated data confirms the accuracy of this inversion method. However, there are practical limitations. The observed data must be a solution of the wave equation. Therefore, the data over the entire survey area must be collected from a single common-shot experiment. Multi-experiment data, such as common-offset data, cannot be used with this method as currently formulated. Research on extending the method is ongoing at this time.
Information retrieval from black holes
NASA Astrophysics Data System (ADS)
Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.
2016-08-01
It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show how one can decipher the information about the in-state of the field from these distortions. We show that the distortions of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial data. The asymptotic observer can do this operationally by measuring certain well-defined observables of the quantum field at late times. We demonstrate that a general class of in-states encode all their information content in the correlation of late time out-going modes. Further, using a 1 +1 dimensional dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also infer and track the information content about the initial data, during the course of evaporation, unambiguously. Implications of such information extraction are discussed.
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Eralp, Muhsin; Thomas, Jayan; Tay, Savaş; Schülzgen, Axel; Norwood, Robert A.; Peyghambarian, N.
2005-04-01
All-optical real-time dynamic correction of wave front aberrations for image transmission is demonstrated using a photorefractive polymeric hologram. The material shows video rate response time with a low power laser. High-fidelity, high-contrast images can be reconstructed when the oil-filled phase plate generating atmospheric-like wave front aberrations is moved at 0.3mm/s. The architecture based on four-wave mixing has potential application in free-space optical communication, remote sensing, and dynamic tracking. The system offers a cost-effective alternative to closed-loop adaptive optics systems.
NASA Astrophysics Data System (ADS)
Chen, Zhanbin
2018-05-01
The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.
Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones
Shera, Christopher A.; Abdala, Carolina
2016-01-01
When distortion-product otoacoustic emissions (DPOAEs) are evoked using stimuli whose instantaneous frequencies change rapidly and continuously with time (swept tones), the oscillatory interference pattern known as distortion-product fine structure shifts slightly along the frequency axis in the same direction as the sweep. By analogy with the temporal mechanisms thought to underlie the differing efficacies of up- and down-swept stimuli as perceptual maskers (e.g., Schroeder-phase complexes), fine-structure shifts have been ascribed to the phase distortion associated with dispersive wave propagation in the cochlea. This paper tests an alternative hypothesis and finds that the observed shifts arise predominantly as a methodological side effect of the analysis procedures commonly used to extract delayed emissions from the measured time waveform. Approximate expressions for the frequency shifts of DPOAE distortion and reflection components are derived, validated with computer simulations, and applied to account for DPOAE fine-structure shifts measured in human subjects. Component magnitudes are shown to shift twice as much as component phases. Procedures for compensating swept-tone measurements to obtain estimates of the total DPOAE and its components measured at other sweep rates or in the sinusoidal steady state are presented. PMID:27586726
NASA Astrophysics Data System (ADS)
Bhattad, Srikanth; Escoto, Abelardo; Malthaner, Richard; Patel, Rajni
2015-03-01
Brachytherapy and thermal ablation are relatively new approaches in robot-assisted minimally invasive interventions for treating malignant tumors. Ultrasound remains the most favored choice for imaging feedback, the benefits being cost effectiveness, radiation free, and easy access in an OR. However it does not generally provide high contrast, noise free images. Distortion occurs when the sound waves pass through a medium that contains air and/or when the target organ is deep within the body. The distorted images make it quite difficult to recognize and localize tumors and surgical tools. Often tools, such as a bevel-tipped needle, deflect from its path during insertion, making it difficult to detect the needle tip using a single perspective view. The shifting of the target due to cardiac and/or respiratory motion can add further errors in reaching the target. This paper describes a comprehensive system that uses robot dexterity to capture 2D ultrasound images in various pre-determined modes for generating 3D ultrasound images and assists in maneuvering a surgical tool. An interactive 3D virtual reality environment is developed that visualizes various artifacts present in the surgical site in real-time. The system helps to avoid image distortion by grabbing images from multiple positions and orientation to provide a 3D view. Using the methods developed for this application, an accuracy of 1.3 mm was achieved in target attainment in an in-vivo experiment subjected to tissue motion. An accuracy of 1.36 mm and 0.93 mm respectively was achieved for the ex-vivo experiments with and without external induced motion. An ablation monitor widget that visualizes the changes during the complete ablation process and enables evaluation of the process in its entirety is integrated.
Atomic data for a five-configuration model of Fe XIV
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Kastner, S. O.
1993-01-01
Collision strengths calculated in the distorted wave approximation are presented for electron excitation of Fe XIV at incident energies of 10, 20 and 30 Rydbergs. Configurations 3s(2)3p, 3s3p(2), 3s(2)3d, 3p(3), and 3s3p3d are included, comprising 40 levels, and wave function mixing coefficients are tabulated. Radiative transition rates are given for the same model using the Superstructure program.
Homogeneous internal wave turbulence driven by tidal flows
NASA Astrophysics Data System (ADS)
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team
2017-11-01
We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).
Explicit inclusion of nonlocality in ( d , p ) transfer reactions
Titus, L. J.; Nunes, F. M.; Potel, G.
2016-01-06
Traditionally, nucleon-nucleus optical potentials are made local for convenience. In recent work we studied the effects of including nonlocal interactions explicitly in the final state for (d,p) reactions, within the distorted wave Born approximation. Our goal in this work is to develop an improved formalism for nonlocal interactions that includes deuteron breakup and to use it to study the effects of including nonlocal interactions in transfer (d,p) reactions, in both the deuteron and the proton channel. We extend the finite-range adiabatic distorted wave approximation to include nonlocal nucleon optical potentials. We apply our method to (d,p) reactions on 16O, 40Ca,more » 48Ca, 126Sn, 132Sn, and 208Pb at 10, 20 and 50 MeV. Here, we find that nonlocality in the deuteron scattering state reduces the amplitude of the wave function in the nuclear interior, and shifts the wave function outward. In many cases, this has the effect of increasing the transfer cross section at the first peak of the angular distributions. This increase was most significant for heavy targets and for reactions at high energies. Lastly, our systematic study shows that, if only local optical potentials are used in the analysis of experimental (d, p) transfer cross sections, the extracted spectroscopic factors may be incorrect by up to 40% due to the local approximation.« less
Testing inflation and curvaton scenarios with CMB distortions
NASA Astrophysics Data System (ADS)
Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi
2014-10-01
Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models.
Leavitt, M.A.; Lutz, I.C.
1958-08-01
An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernheim, M.; Bussiere, A.; Frullani, S.
1977-06-27
In order to test the validity of the distorted wave impulse approximation to describe (e,e'p) reactions and/or the suitability of the available optical potential parameters to calculate the distortion, the spectral function was measured for /sub 12/C(e,e'p)/sub 11/B in different kinematical configurations. Experimental results are shown together with the distributions computed with several values of the optical potential parameters. Data seem to indicate the necessity of using different parameters for p hole states and s hole states.
Proceedings of the Aero-Optics Symposium on Electromagnetic Wave Propagation from Aircraft
NASA Technical Reports Server (NTRS)
1980-01-01
Wind-tunnel and flight experiments concerning natural and induced turbulence around an airplane and the effects on propagation characteristics of an emitter mounted in the airplane are described. Some of the papers are concerned with phase distortion of the propagating radiation, and others deal with mechanical jitter of the optical elements when exposed to open-cavity turbulence. The results include both aerodynamic and optical measurements and a consideration of the relationship between the two. Primary emphasis is on the dynamic disturbances, but theoretical and experimental evaluations of steady-state distortions are also presented.
Trench formation in <110> silicon for millimeter-wave switching device
NASA Astrophysics Data System (ADS)
Datta, P.; Kumar, Praveen; Nag, Manoj; Bhattacharya, D. K.; Khosla, Y. P.; Dahiya, K. K.; Singh, D. V.; Venkateswaran, R.; Kumar, Devender; Kesavan, R.
1999-11-01
Anisotropic etching using alkaline solution has been adopted to form trenches in silicon while fabricating surface oriented bulk window SPST switches. An array pattern has been etched on silicon with good control on depth of trenches. KOH-water solution is seen to yield a poor surface finish. Use of too much of additive like isopropyl alcohol improves the surface condition but distorts the array pattern due to loss of anisotropy. However, controlled use of this additive during the last phase of trench etching is found to produce trenched arrays with desired depth, improved surface finish and minimum distortion of lateral dimensions.
Hsi-Ping, Liu
1980-01-01
Harmonic distortion in the stress-time function applied to rock specimens affects the measurement of rock internal friction in the seismic wave periods by the stress-strain hysteresis loop method. If neglected, the harmonic distortion can cause measurements of rock internal friction to be in error by 3O% in the linear range. The stress-time function therefore must be recorded and Fourier analysed for correct interpretation of the experimental data. Such a procedure would also yield a value for internal friction at the higher harmonic frequencies.-Author
Modeling thermoelastic distortion of optics using elastodynamic reciprocity
NASA Astrophysics Data System (ADS)
King, Eleanor; Levin, Yuri; Ottaway, David; Veitch, Peter
2015-07-01
Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can cause unacceptable changes in optical systems that employ high-power beams. In advanced-generation laser-interferometric gravitational wave detectors, for example, optical absorption is expected to result in wavefront distortions that would compromise the sensitivity of the detector, thus necessitating the use of adaptive thermal compensation. Unfortunately, these systems have long thermal time constants, and so predictive feed-forward control systems could be required, but the finite-element analysis is computationally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We demonstrate, using a simple example, that it can yield accurate results in computational times that are significantly less than those required for finite-element analyses.
Two-dimensional fast marching for geometrical optics.
Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore
2014-11-03
We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.
Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart
2014-03-01
In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.
Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart
2014-01-01
In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687
WaveOne Rotary Instruments after Clinical Use.
Shen, Ya; Coil, Jeffrey M; Mo, Anthony John; Wang, Zhejun; Hieawy, Ahmed; Yang, Yan; Haapasalo, Markus
2016-02-01
The purpose of this study was to evaluate the incidence and mode of WaveOne (Dentsply Tulsa Dental Specialties, Tulsa, OK) instrument defects after single use at different endodontic clinics. A total of 438 WaveOne instruments were collected after clinical use from the 4 specialist clinics over a 12-month period and from 1 graduate program over a 20-month period. The incidence and type of instrument defects were analyzed. The lateral surfaces of part of the defective instruments and fracture surfaces of fractured files were examined using scanning electron microscopy. Unused and clinically used files were examined by a nanoindentation test. Of the 438 WaveOne instruments collected, 42 (9.6%) had defects: 40 (9.1%) were distorted and 2 (0.5%) files had fractured, 1 Small and 1 Primary file. Clear differences in the frequency of defects were found among the 3 file sizes; the occurrence of distortion and fracture were highest with the Small file (21.2% and 0.7%, respectively) followed by the Primary file (4.4% and 0.4%, respectively) (P < .05). No defects were detected on the Large file. The cause of the 2 fractures was shear stress. Instruments from various clinics showed no significantly different occurrence of instrument deformation. Unwinding occurred at 1.2-3.1 mm from the tip. No significant difference in nanohardness was detected among unused and used instruments. The risk of WaveOne fracture is very low when files are singly used by endodontists and residents. Unwinding of the files occurred most frequently in the Small file. The frequency of defects of WaveOne instruments were not influenced by the operator. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gedge, M. R.
1979-01-01
Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.
Cranswick, E.
1988-01-01
Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.
The Effects of Torsional Preloading on the Torsional Resistance of Nickel-titanium Instruments.
Oh, Seung-Hei; Ha, Jung-Hong; Kwak, Sang Won; Ahn, Shin Wook; Lee, WooCheol; Kim, Hyeon-Cheol
2017-01-01
This study evaluated the effect of torsional preloading on the torsional resistance of nickel-titanium (NiTi) endodontic instruments. WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and ProTaper Universal F2 (Dentsply Maillefer) files were used. The ultimate torsional strength until fracture was determined for each instrument. In the phase 1 experiment, the ProTaper and WaveOne files were loaded to have a maximum load from 2.0 up to 2.7 or 2.8 Ncm, respectively. In the phase 2 experiment, the number of repetitions of preloading for each file was increased from 50 to 200, whereas the preloading torque was fixed at 2.4 Ncm. Using torsionally preloaded specimens from phase 1 and 2, the torsional resistances were calculated to determine the ultimate strength, distortion angle, and toughness. The results were analyzed using 1-way analysis of variance and Duncan post hoc comparison. The fracture surfaces and longitudinal aspect of 5 specimens per group were examined under a scanning electron microscope. All preloaded groups showed significantly higher ultimate strength than the unpreloaded groups (P < .05). There was no significant difference among all groups for distortion angle and toughness. Although WaveOne had no significant difference between the repetition groups for ultimate strength, fracture angle, and toughness, ProTaper had a higher distortion angle and toughness in the 50-repetition group compared with the other repetition groups (P < .05). Scanning electron microscopic examinations of the fractured surface showed typical features of torsional fracture. Torsional preloading within the ultimate values could enhance the torsional strength of NiTi instruments. The total energy until fracture was maintained constantly, regardless of the alloy type. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Three-dimensional body-wave model of Nepal using finite difference tomography
NASA Astrophysics Data System (ADS)
Ho, T. M.; Priestley, K.; Roecker, S. W.
2017-12-01
The processes occurring during continent-continent collision are still poorly understood. Ascertaining the seismic properties of the crust and uppermost mantle in such settings provides insight into continental rheology and geodynamics. The most active present-day continent-continent collision is that of India with Eurasia which has created the Himalayas and the Tibetan Plateau. Nepal provides an ideal laboratory for imaging the crustal processes resulting from the Indo-Eurasia collision. We build body wave models using local body wave arrivals picked at stations in Nepal deployed by the Department of Mining and Geology of Nepal. We use the tomographic inversion method of Roecker et al. [2006], the key feature of which is that the travel times are generated using a finite difference solution to the eikonal equation. The advantage of this technique is increased accuracy in the highly heterogeneous medium expected for the Himalayas. Travel times are calculated on a 3D Cartesian grid with a grid spacing of 6 km and intragrid times are estimated by trilinear interpolation. The gridded area spans a region of 80-90o longitude and 25-30o latitude. For a starting velocity model, we use IASP91. Inversion is performed using the LSQR algorithm. Since the damping parameter can have a significant effect on the final solution, we tested a range of damping parameters to fully explore its effect. Much of the seismicity is clustered to the West of Kathmandu at depths < 30 km. Small areas of strong fast wavespeeds exist in the centre of the region in the upper 30 km of the crust. At depths of 40-50 km, large areas of slow wavespeeds are present which track along the plate boundary.
Tokgöz, S Alicura; Vuralkan, E; Sonbay, N D; Çalişkan, M; Saka, C; Beşalti, Ö; Akin, İ
2012-05-01
This experimental study aimed to investigate the effects of vitamins E, B and C and L-carnitine in preventing cisplatin-induced ototoxicity. Twenty-five adult, male, Wistar albino rats were randomly allocated to receive intraperitoneal cisplatin either alone or preceded by vitamins B, E or C or L-carnitine. Auditory brainstem response (i.e. hearing thresholds and wave I-IV intervals) and distortion product otoacoustic emissions (i.e. signal-to-noise ratios) were recorded before and 72 hours after cisplatin administration. The following statistically significant differences were seen: control group pre- vs post-treatment wave I-IV interval values (p < 0.05); control vs vitamin E and B groups' I-IV interval values (p < 0.05); control vs other groups' hearing thresholds; vitamin E vs vitamin B and C and L-carnitine groups' hearing thresholds (p < 0.05); and vitamin B vs vitamin C and L-carnitine groups' hearing thresholds (p < 0.05). Statistically significant decreases were seen when comparing the initial and final signal-to-noise ratios in the control, vitamin B and L-carnitine groups (2000 and 3000 Hz; p < 0.01), and the initial and final signal-to-noise ratios in the control group (at 4000 Hz; p < 0.01). Vitamins B, E and C and L-carnitine appear to reduce cisplatin-induced ototoxicity in rats. The use of such additional treatments to decrease cisplatin-induced ototoxicity in humans is still under discussion.
Information Distortion in the Evaluation of a Single Option
ERIC Educational Resources Information Center
Bond, Samuel D.; Carlson, Kurt A.; Meloy, Margaret G.; Russo, J. Edward; Tanner, Robin J.
2007-01-01
Extending previous work on biased predecisional processing, we investigate the distortion of information during the evaluation of a single option. A coherence-based account of the evaluation task suggests that individuals will form an initial assessment of favorability toward the option and then bias their evaluation of subsequent information to…
NASA Astrophysics Data System (ADS)
Amami, Sadek; Ozer, Zehra N.; Dogan, Mevlut; Yavuz, Murat; Varol, Onur; Madison, Don
2016-09-01
There have been several studies of electron-impact ionization of inert gases for asymmetric final state energy sharing and normally one electron has an energy significantly higher than the other. However, there have been relatively few studies examining equal energy final state electrons. Here we report experimental and theoretical triple differential cross sections for electron impact ionization of Ar (3p) for equal energy sharing of the outgoing electrons. Previous experimental results combined with some new measurements are compared with distorted wave born approximation (DWBA) results, DWBA results using the Ward-Macek (WM) approximation for the post collision interaction (PCI), and three-body distorted wave (3DW) which includes PCI without approximation. The results show that it is crucially important to include PCI in the calculation particularly for lower energies and that the WM approximation is valid only for high energies. The 3DW, on the other hand, is in reasonably good agreement with data down to fairly low energies.
Johnson, J L
1994-09-10
The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.
Shoursheini, S Z; Parvin, P; Sajad, B; Bassam, M A
2009-04-01
In this work, we investigate the enhancement of Cu emission lines of a micro-plasma induced by a Nd:YAG laser due to the thermal effect of simultaneous irradiation by a continuous wave (CW) CO(2) laser. The enhancement of the emission lines was achieved at a higher temperature with minimal distortion of the target when the focal point of the Nd:YAG laser was located approximately 1 mm away from the sample surface.
Detecting the existence of an invisibility cloak using temporal steering
Chen, Shin-Liang; Chao, Ching-Shiang; Chen, Yueh-Nan
2015-01-01
An invisibility cloak provides a way to hide an object under the detection of waves. A good cloak guides the incident waves through the cloaking shell with few distortion. Even if one day a nearly perfect cloak is built, some important quantum effects, such as dephasing of the electron spin or photon polarization, may still remain. In this work, we consider the possibility that using the temporal steering of these degrees of freedom to detect the existence of an invisibility cloak. PMID:26493048
Love-Wave Biosensors Using Cross-Linked Polymer Waveguides on LiTaO{sub 3} Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENDER,FLORIAN; CERNOSEK,RICHARD W.; JOSSE,F.
The design and performance of Love-wave sensors using cross-linked poly-(methyl methacrylate) waveguides of thickness of 0.3--3.2 {micro}m on LiTaO{sub 3} substrates are described. It is found that this layer-substrate combination provides sufficient waveguidance, and electrical isolation of the IDTs from the liquid environment to achieve low acoustic loss and distortion. In bio-sensing experiments, mass sensitivity up to 1,420 Hz/(ng/mm{sup 2}) is demonstrated.
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.
Partial correction of irregular aniseikonia secondary to retinal traction.
Currie, Debra
2012-07-01
This case report presents the management of symptomatic retinally induced aniseikonia and a short review of the literature pertaining to two clinical tests used in the measurement and management of aniseikonia. The clinician is also provided a review of how to design eikonic lenses. A 30-year-old white male presented with symptoms of perceived image size difference after scleral buckle repair for retinal detachment in the right eye. Three measures of aniseikonia resulted in markedly different values, but all indicated larger perceived left eye image. Stereopsis was measured before and after placing an afocal magnifying lens over the right eye. Stereopsis improved immediately upon placement of the afocal lens, with further improvement after 20 minutes, and stereopsis decreased upon removal. The patient reported improved visual comfort for near work with the afocal lens. Eikonic glasses were designed, and the patient reported improved comfort for near work that has remained for over 1 year of wear. Studies evaluating the validity and reliability of the New Aniseikonia Test and the Aniseikonia Inspector are reviewed. Most studies report that induced aniseikonia is underestimated. This case report illustrates that despite the problem with underestimation, these tests are useful clinical tools to identify whether aniseikonia exists and which eye has the larger perceived image. Results can be used as a starting point when making clinical decisions about managing aniseikonia. The Aniseikonia Inspector also assists in the design of eikonic glasses. Even when aniseikonia is substantial, variable in magnitude, and irregular due to retinal disease, reducing the overall aniseikonia can improve binocularity and patient's comfort noticeably for the long term. The underestimation of induced aniseikonia in clinical tests does not preclude their use as a tool in the management of symptomatic aniseikonia.
Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong
2008-03-15
In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less
Phase transitions of titanite CaTiSiO5 from density functional perturbation theory
NASA Astrophysics Data System (ADS)
Malcherek, Thomas; Fischer, Michael
2018-02-01
Phonon dispersion of titanite CaTiSiO5 has been calculated using the variational density functional perturbation theory. The experimentally known out-of-center distortion of the Ti atom is confirmed. The distortion is associated with a Bu mode that is unstable for wave vectors normal to the octahedral chain direction of the C 2 /c aristotype structure. The layer of wave vectors with imaginary mode frequencies also comprises the Brillouin zone boundary point Y (0 ,1 ,0 ) , which is critical for the transition to the P 21/c ground-state structure. The phonon branch equivalent to the imaginary branch of the titanite aristotype is found to be stable in malayaite CaSnSiO5. The unstable phonon mode in titanite leads to the formation of transoriented short and long Ti-O1 bonds. The Ti as well as the connecting O1 atom exhibit strongly anomalous Born effective charges along the octahedral chain direction [001], indicative of the strong covalency in this direction. Accordingly and in contrast to malayaite, LO-TO splitting is very large in titanite. In the C 2 /c phase of titanite, the Ti-O1-Ti distortion chain is disordered with respect to neighboring distortion chains, as all chain configurations are equally unstable along the phonon branch. This result is in agreement with diffuse x-ray scattering in layers normal to the chain direction that is observed at temperatures close to the P 21/c to C 2 /c transition temperature and above. The resulting dynamic chains of correlated Ti displacements are expected to order in two dimensions to yield the P 21/c ground-state structure of titanite.
Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu
2016-08-21
Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted andmore » mathematically controlled, which extends the design concept of unidirectional transmission devices.« less
NASA Astrophysics Data System (ADS)
Tian, Jialin; Smith, William L.; Gazarik, Michael J.
2008-10-01
The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is applied to data collected during an atmospheric measurement experiment with the GIFTS, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The PC vectors of the calibrated radiance spectra are defined from the AERI observations and regression matrices relating the initial GIFTS radiance PC scores to the AERI radiance PC scores are calculated using the least squares inverse method. A new set of accurately calibrated GIFTS radiances are produced using the first four PC scores in the regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Först, M.; Frano, A.; Kaiser, S.
2014-11-17
In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.
Yang, Ping; Ning, Yu; Lei, Xiang; Xu, Bing; Li, Xinyang; Dong, Lizhi; Yan, Hu; Liu, Wenjing; Jiang, Wenhan; Liu, Lei; Wang, Chao; Liang, Xingbo; Tang, Xiaojun
2010-03-29
We present a slab laser amplifier beam cleanup experimental system based on a 39-actuator rectangular piezoelectric deformable mirror. Rather than use a wave-front sensor to measure distortions in the wave-front and then apply a conjugation wave-front for compensating them, the system uses a Stochastic Parallel Gradient Descent algorithm to maximize the power contained within a far-field designated bucket. Experimental results demonstrate that at the output power of 335W, more than 30% energy concentrates in the 1x diffraction-limited area while the beam quality is enhanced greatly.
Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Christopher B.; Herbrych, Jacek W.; Dagotto, Elbio R.
2017-07-15
Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a T S higher than the temperature T N where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ 12 between the monoclinic lattice strain and an orbital-nematic order parameter with Bmore » 2g symmetry. Monte Carlo simulations show that with increasing ˜λ 12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.« less
Ferro-Lattice-Distortions and Charge Fluctuations in Superconducting LaO 1- x F x BiS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athauda, Anushika; Hoffmann, Christina; Aswartham, Saicharan
2017-05-15
Competing ferroelectric and charge density wave states have been proposed to exist in the electron–phonon coupled LaO1-xFxBiS2 superconductor. The lattice instability is proposed to arise from unstable phonon modes that can break the crystal symmetry. Using single crystal diffraction, a superlattice pattern is observed, that arises from coherent in-plane displacements of the sulfur atoms in the BiS2 superconducting planes. The distortions morph into coordinated ferrodistortive patterns with displacements in the x- and y-directions, that alternate along the c-axis. Diffuse scattering is observed along the (H0L) plane due to stacking faults but not along the (HH0) plane. The ferro-distortive pattern remainsmore » in the superconducting state upon fluorine doping, but the displacements are diminished in magnitude. Moreover, we find that the in-plane distortions give rise to disorder where the (00L) reflections become quite broad. It is possible that charge carriers can get trapped in the lattice deformations reducing the effective number of carriers available for pairing.« less
Thermooptics of magnetoactive media: Faraday isolators for high average power lasers
NASA Astrophysics Data System (ADS)
Khazanov, E. A.
2016-09-01
The Faraday isolator, one of the key high-power laser elements, provides optical isolation between a master oscillator and a power amplifier or between a laser and its target, for example, a gravitational wave detector interferometer. However, the absorbed radiation inevitably heats the magnetoactive medium and leads to thermally induced polarization and phase distortions in the laser beam. This self-action process limits the use of Faraday isolators in high average power lasers. A unique property of magnetoactive medium thermooptics is that parasitic thermal effects arise on the background of circular birefringence rather than in an isotropic medium. Also, even insignificant polarization distortions of the radiation result in a worse isolation ratio, which is the key characteristic of the Faraday isolator. All possible laser beam distortions are analyzed for their deteriorating effect on the Faraday isolator parameters. The mechanisms responsible for and key physical parameters associated with different kinds of distortions are identified and discussed. Methods for compensating and suppressing parasitic thermal effects are described in detail, the published experimental data are systematized, and avenues for further research are discussed based on the results achieved.
CMB spectral distortion constraints on thermal inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kihyun; Stewart, Ewan D.; Hong, Sungwook E.
2017-08-01
Thermal inflation is a second epoch of exponential expansion at typical energy scales V {sup 1/4} ∼ 10{sup 6} {sup ∼} {sup 8} GeV. If the usual primordial inflation is followed by thermal inflation, the primordial power spectrum is only modestly redshifted on large scales, but strongly suppressed on scales smaller than the horizon size at the beginning of thermal inflation, k > k {sub b} = a {sub b} H {sub b}. We calculate the spectral distortion of the cosmic microwave background generated by the dissipation of acoustic waves in this context. For k {sub b} || 10{sup 3}more » Mpc{sup −1}, thermal inflation results in a large suppression of the μ-distortion amplitude, predicting that it falls well below the standard value of μ ≅ 2× 10{sup −8}. Thus, future spectral distortion experiments, similar to PIXIE, can place new limits on the thermal inflation scenario, constraining k {sub b} ∼> 10{sup 3} Mpc{sup −1} if μ ≅ 2× 10{sup −8} were found.« less
High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves
NASA Astrophysics Data System (ADS)
Erofeev, Vasily I.; Erofeev
2014-04-01
The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).
Impact of large-scale tides on cosmological distortions via redshift-space power spectrum
NASA Astrophysics Data System (ADS)
Akitsu, Kazuyuki; Takada, Masahiro
2018-03-01
Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1980-01-01
Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.
Electron capture in collisions of S4+ with atomic hydrogen
NASA Astrophysics Data System (ADS)
Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.
2001-06-01
Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.
NASA Astrophysics Data System (ADS)
Vilarinho, R.; Passos, D. J.; Queirós, E. C.; Tavares, P. B.; Almeida, A.; Weber, M. C.; Guennou, M.; Kreisel, J.; Moreira, J. Agostinho
2018-04-01
This work reports the changes in structure and lattice dynamics induced by substituting the Jahn-Teller-active M n3 + ion by the Jahn-Teller-inactive F e3 + in TbM n1 -xF exO3 over the full composition range. The structural analysis reveals that the amplitude of the cooperative Jahn-Teller distortion decreases linearly from x =0 (pure TbMn O3 ) to x =0.5 , where it is completely suppressed. We then correlate this evolution with the behavior of the Raman modes across the solid solution. In particular, we show that the Raman modes associated with the rotation of octahedra, whose wave number is commonly considered to scale linearly with the tilt angles in orthorhombic Pnma perovskites, are also sensitive to the amplitude of the Jahn-Teller distortion.
Structural and electronic phase transitions of MoTe2 induced by Li ionic gating
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae
2017-12-01
Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.
Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter
NASA Astrophysics Data System (ADS)
Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi
2013-03-01
Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.
Testing inflation and curvaton scenarios with CMB distortions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi, E-mail: s.clesse@tum.de, E-mail: garbrecht@tum.de, E-mail: yi.zhu@tum.de
2014-10-01
Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to amore » detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models.« less
NASA Technical Reports Server (NTRS)
Ventrice, M. B.; Purdy, K. R.
1974-01-01
The response of a constant-temperature hot-wire anemometer to sinusoidal and distorted sinusoidal acoustic oscillations is examined. The output of the anemometer is dependent upon the Reynolds number of the flow over the wire. The response is a measure of the interaction between the anemometer output and the acoustic pressure in the neighborhood of the wire. It is an open-loop prediction of the characteristics of actual closed-loop operation of a system. If the open-loop response is large enough, unstable closed-loop operation is predicted. The study was motivated by a need to investigate the stability limits of liquid-propellant rockets when perturbed by pressure oscillations. The sinusoidal and distorted sinusoidal acoustic oscillations used for this study are the same as those characteristic of unstable rocket combustion. Qualitatively, the results are similar--the response of the system to pure sinusoidal acoustic vibration of the fluid surrounding the wire is small, even when the magnitude of the acoustic pressure is quite large; but the response can be increased by as much as an order of magnitude with respect to the sinusoidal case by the addition of distortion. The amplitude and phase of the distortion component, relative to the fundamental component, are the dominant factors in the increase in the response.
NASA Astrophysics Data System (ADS)
Schneider, Sandra; Prijs, Vera F.; Schoonhoven, Ruurd
2003-06-01
Lower sideband distortion product otoacoustic emissions (DPOAEs), measured in the ear canal upon stimulation with two continuous pure tones, are the result of interfering contributions from two different mechanisms, the nonlinear distortion component and the linear reflection component. The two contributors have been shown to have a different amplitude and, in particular, a different phase behavior as a function of the stimulus frequencies. The dominance of either component was investigated in an extensive (f1,f2) area study of DPOAE amplitude and phase in the guinea pig, which allows for both qualitative and quantitative analysis of isophase contours. Making a minimum of additional assumptions, simple relations between the direction of constant phase in the (f1,f2) plane and the group delays in f1-sweep, f2-sweep, and fixed f2/f1 paradigms can be derived, both for distortion (wave-fixed) and reflection (place-fixed) components. The experimental data indicate the presence of both components in the lower sideband DPOAEs, with the reflection component as the dominant contributor for low f2/f1 ratios and the distortion component for intermediate ratios. At high ratios the behavior cannot be explained by dominance of either component.
ERIC Educational Resources Information Center
Rogers, Richard; Gillard, Nathan D.; Wooley, Chelsea N.; Kelsey, Katherine R.
2013-01-01
A major strength of the Personality Assessment Inventory (PAI) is its systematic assessment of response styles, including feigned mental disorders. Recently, Mogge, Lepage, Bell, and Ragatz developed and provided the initial validation for the Negative Distortion Scale (NDS). Using rare symptoms as its detection strategy for feigning, the…
Systematics of quark/gluon tagging
Gras, Philippe; Höche, Stefan; Kar, Deepak; ...
2017-07-18
By measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (C F versus C A). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we findmore » a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.« less
Systematics of quark/gluon tagging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gras, Philippe; Höche, Stefan; Kar, Deepak
By measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (C F versus C A). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we findmore » a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.« less
Modeling and observations of an elevated, moving infrasonic source: Eigenray methods.
Blom, Philip; Waxler, Roger
2017-04-01
The acoustic ray tracing relations are extended by the inclusion of auxiliary parameters describing variations in the spatial ray coordinates and eikonal vector due to changes in the initial conditions. Computation of these parameters allows one to define the geometric spreading factor along individual ray paths and assists in identification of caustic surfaces so that phase shifts can be easily identified. A method is developed leveraging the auxiliary parameters to identify propagation paths connecting specific source-receiver geometries, termed eigenrays. The newly introduced method is found to be highly efficient in cases where propagation is non-planar due to horizontal variations in the propagation medium or the presence of cross winds. The eigenray method is utilized in analysis of infrasonic signals produced by a multi-stage sounding rocket launch with promising results for applications of tracking aeroacoustic sources in the atmosphere and specifically to analysis of motor performance during dynamic tests.
Systematics of intermediate-energy single-nucleon removal cross sections
NASA Astrophysics Data System (ADS)
Tostevin, J. A.; Gade, A.
2014-11-01
There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamoorthy, Sripriya; Zhang, Yuan; Jacques, Steven
In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.
Effect of visual distortion on postural balance in a full immersion stereoscopic environment
NASA Astrophysics Data System (ADS)
Faubert, Jocelyn; Allard, Remy
2004-05-01
This study attempted to determine the influence of non-linear visual movements on our capacity to maintain postural control. An 8x8x8 foot CAVE immersive virtual environment was used. Body sway recordings were obtained for both head and lower back (lumbar 2-3) positions. The subjects were presented with visual stimuli for periods of 62.5 seconds. Subjects were asked to stand still on one foot while viewing stimuli consisting of multiplied sine waves generating movement undulation of a textured surface (waves moving in checkerboard pattern). Three wave amplitudes were tested: 4 feet, 2 feet, and 1 foot. Two viewing conditions were also used; observers looking at 36 inches in front of their feet; observers looking at a distance near the horizon. The results were compiled using an instability index and the data showed a profound and consistent effect of visual disturbances on postural balance in particular for the x (side-to-side) movement. We have demonstrated that non-linear visual distortions similar to those generated by progressive ophthalmic lenses of the kind used for presbyopia corrections, can generate significant postural instability. This instability is particularly evident for the side-to-side body movement and is most evident for the near viewing condition.
Does representational momentum reflect a distortion of the length or the endpoint of a trajectory?
Hubbard, Timothy L; Motes, Michael A
2002-01-01
Observers viewed a moving target, and after the target vanished, indicated either the initial position or the final position of the target. In Experiment 1, an auditory tone cued observers to indicate either the initial position or the final position; in Experiment 2, different groups of observers indicated the initial position or the final position. Judgments of the initial position were displaced backward in the direction opposite to motion, and judgments of the final position were displaced forward in the direction of motion. The data suggest that the remembered trajectory is longer than the actual trajectory, and the displacement pattern is not consistent with the hypothesis that representational momentum results from a distortion of memory for the location of a trajectory.
Miller, Adam Bryant; Williams, Caitlin; Day, Catherine; Esposito-Smythers, Christianne
2017-06-01
The purpose of the present study was to examine whether cognitive distortions (e.g., cognitive errors; negative views of self, world, and future) influence the association between dating violence and problematic substance use behaviors in a sample of psychiatrically hospitalized adolescents. Participants included 155 adolescents, aged 13-17 years, who had initiated dating. Adolescents completed measures of dating violence, substance-related problems (alcohol and marijuana), and cognitive distortions. Logistic regressions were conducted to examine the direct and interactive effects of dating violence exposure and cognitive distortions on likelihood of recent problematic substance use. Results suggested a main effect of dating violence on problematic alcohol and other drug use as well as an interactive effect of dating violence and cognitive distortions. Specifically, the relationship between dating violence and odds of substance-related problems was higher among those with greater (vs. fewer) cognitive distortions. Study results suggest the need for careful screening of cognitive distortions among adolescent dating violence victims, particularly those in mental health treatment. © 2016 Wiley Periodicals, Inc.
Miller, Adam Bryant; Williams, Caitlin; Esposito-Smythers, Christianne
2016-01-01
Purpose The purpose of the present study was to examine whether cognitive distortions (e.g., cognitive errors; negative views of self, world, and future) influence the association between dating violence and problematic substance use behaviors in a sample of psychiatrically hospitalized adolescents. Methods Participants included 155 adolescents, ages 13 to 17, who had initiated dating. Adolescents completed measures of dating violence, substance related problems, (alcohol and marijuana), and cognitive distortions. Results Logistic regressions were conducted to examine the direct and interactive effects of dating violence exposure and cognitive distortions on likelihood of recent problematic substance use. Results suggested a main effect of dating violence on problematic alcohol and other drug use as well as an interactive effect of dating violence and cognitive distortions. Specifically, the relationship between dating violence and odds of substance related problems were higher among those with greater (vs. fewer) cognitive distortions. Conclusions Study results suggest the need for careful screening of cognitive distortions among adolescent dating violence victims, particularly those in mental health treatment. PMID:27552530
Tidal Wave Reflectance, Evolution and Distortion in Elkhorn Slough, CA
2013-03-01
School O1 Lunisolar diurnal Tidal Constituent ONR Office of Naval Research p Pressure Rhfm High-Frequency Motion Tidal Reflection Coefficient RIVET ...2012 an experiment at the New River Inlet, known as the River and Inlet Dynamics experiment ( RIVET ) was conducted. RIVET 2 is currently scheduled for
Transfer and distortion of atmospheric information in the satellite temperature retrieval problem
NASA Technical Reports Server (NTRS)
Thompson, O. E.
1981-01-01
A systematic approach to investigating the transfer of basic ambient temperature information and its distortion by satellite systems and subsequent analysis algorithms is discussed. The retrieval analysis cycle is derived, the variance spectrum of information is examined as it takes different forms in that process, and the quality and quantity of information existing at each stop is compared with the initial ambient temperature information. Temperature retrieval algorithms can smooth, add, or further distort information, depending on how stable the algorithm is, and how heavily influenced by a priori data.
Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode
NASA Astrophysics Data System (ADS)
Yang, S. B.; Han, X. Y.; Qiu, J.
As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.
Laser control of electronic transitions of wave packet by using quadratically chirped pulses.
Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki
2005-02-22
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.
Comment on "Hearing the signal of dark sectors with gravitational wave detectors"
NASA Astrophysics Data System (ADS)
Huang, Da; Lu, Bo-Qiang
2018-03-01
We revisit the calculation of the gravitational wave spectra generated in a classically scale-invariant S U (2 ) gauge sector with a scalar field in the adjoint representation, as discussed by J. Jaeckel, et al. The finite-temperature potential at 1-loop level can induce a strong first-order phase transition, during which gravitational waves can be generated. With the accurate numerical computation of the on-shell Euclidean actions of the nucleation bubbles, we find that the triangle approximation employed by J. Jaeckel et al. strongly distorts the actual potential near its maximum and thus greatly underestimates the action values. As a result, the gravitational wave spectra predicted by J. Jaeckel et al. deviate significantly from the exact ones in peak frequencies and shapes.
Laser control of electronic transitions of wave packet by using quadratically chirped pulses
NASA Astrophysics Data System (ADS)
Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki
2005-02-01
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H2O) as examples.
Fundamentals of Acoustic Backscatter Imagery
1997-10-20
in HYSAS of the acoustic imagery layer of the Master Seafloor Digital Database (MSDDB). Manuscript approved December 19, 1996 2 Clyde E. Nishimura 1.1...than for sidescan systems. Refraction is simply described by Snell’s law, which is derived from the eikonal equation and Fermat’s principle, and can
Schneider, T D
2001-12-01
The sequence logo for DNA binding sites of the bacteriophage P1 replication protein RepA shows unusually high sequence conservation ( approximately 2 bits) at a minor groove that faces RepA. However, B-form DNA can support only 1 bit of sequence conservation via contacts into the minor groove. The high conservation in RepA sites therefore implies a distorted DNA helix with direct or indirect contacts to the protein. Here I show that a high minor groove conservation signature also appears in sequence logos of sites for other replication origin binding proteins (Rts1, DnaA, P4 alpha, EBNA1, ORC) and promoter binding proteins (sigma(70), sigma(D) factors). This finding implies that DNA binding proteins generally use non-B-form DNA distortion such as base flipping to initiate replication and transcription.
Quasilinear analysis of ion Bernstein and lower hybrid waves synergy
NASA Astrophysics Data System (ADS)
Paoletti, F.; Cardinali, A.; Shoucri, M.; Shkarofsky, A.; Bernabei, S.; Ono, M.
1996-02-01
A quasilinear analysis of the absorption of Ion Bernstein Wave (IBW) by the electron population of the plasma is performed. It uses an analytical calculation of the amplitude of the electric field along the trajectory to obtain the quasilinear diffusion coefficient. A numerical integration of the Fokker-Planck equation is performed together with the dynamical evolution of the IBW and Lower Hybrid Wave (LHW) ray trajectories. The damping of IBW is calculated on the distorted distribution function generated by the previous application of Lower Hybrid Current Drive (LHCD) which has bridged the n∥-gap. This calculation is particularly relevant because of the IBW/LHW experiments on the Princeton Beta Experiment-Modified (PBX-M).
Chia-Ling Wei; Yi-Wen Wang; Bin-Da Liu
2014-06-01
A filter-based wide-range programmable sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurement is proposed. The adopted filter is implemented with switched-capacitor circuits, so its corner frequency is accurate and adjustable by changing its switching frequency. The proposed sine wave synthesizer is implemented by using a 0.35 μm 2P4M 3.3 V mixed-signal polycide process. According to the measured results, the output frequency of the proposed synthesizer is 40 mHz-40 kHz . The measured total harmonic distortion is 0.073% at 10 Hz and 0.075% at 10 kHz, both of which are better than that of a typical function generator.
Triple differential cross sections of magnesium in doubly symmetric geometry
NASA Astrophysics Data System (ADS)
S, Y. Sun; X, Y. Miao; Xiang-Fu, Jia
2016-01-01
A dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of magnesium by electron impact. Triple differential cross sections (TDCS) are calculated in doubly symmetric geometry at incident energies of 13.65, 17.65, 22.65, 27.65, 37.65, 47.65, 57.65, and 67.65 eV. Comparisons are made with experimental data and theoretical predictions from a three-Coulomb-wave function (3C) approach and distorted-wave Born approximation (DWBA). The overall agreement between the predictions of the DS3C model and the DWBA approach with the experimental data is satisfactory. Project supported by the National Natural Science Foundation of China (Grant No. 11274215).
Electron Trapping and Charge Transport by Large Amplitude Whistlers
NASA Technical Reports Server (NTRS)
Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III
2010-01-01
Trapping of electrons by magnetospheric whistlers is investigated using data from the Waves experiment on Wind and the S/WAVES experiment on STEREO. Waveforms often show a characteristic distortion which is shown to be due to electrons trapped in the potential of the electrostatic part of oblique whistlers. The density of trapped electrons is significant, comparable to that of the unperturbed whistler. Transport of these trapped electrons to new regions can generate potentials of several kilovolts, Trapping and the associated potentials may play an important role in the acceleration of Earth's radiation belt electrons.
Simulation of electrowetting lens and prism arrays for wavefront compensation.
Gopinath, Juliet T; Bright, Victor M; Cogswell, Carol C; Niederriter, Robert D; Watson, Alexander; Zahreddine, Ramzi; Cormack, Robert H
2012-09-20
A novel application of electrowetting devices has been simulated: wavefront correction using an array of electrowetting lenses and prisms. Five waves of distortion can be corrected with Strehl ratios of 0.9 or higher, utilizing piston, tip-tilt, and curvature corrections from arrays of 19 elements and fill factors as low as 40%. Effective control of piston can be achieved by placing the liquid lens array at the focus of two microlens arrays. Seven waves of piston delay can be generated with variation in focal length between 1.5 and 500 mm.
Electron impact excitation of highly charged sodium-like ions
NASA Technical Reports Server (NTRS)
Blaha, M.; Davis, J.
1978-01-01
Optical transition probabilities and electron collision strengths for Ca X, Fe XVI, Zn XX, Kr XXVI and Mo XXXII are calculated for transitions between n equal to 3 and n equal to 4 levels. The calculations neglect relativistic effects on the radial functions. A semi-empirical approach provides wave functions of the excited states; a distorted wave function without exchange is employed to obtain the excitation cross sections. The density dependence of the relative intensities of certain emission lines in the sodium isoelectronic sequence is also discussed.
Feeling of control of an action after supra and subliminal haptic distortions.
Weibel, Sébastien; Poncelet, Patrick Eric; Delevoye-Turrell, Yvonne; Capobianco, Antonio; Dufour, André; Brochard, Renaud; Ott, Laurent; Giersch, Anne
2015-09-01
Here we question the mechanisms underlying the emergence of the feeling of control that can be modulated even when the feeling of being the author of one's own action is intact. With a haptic robot, participants made series of vertical pointing actions on a virtual surface, which was sometimes postponed by a small temporal delay (15 or 65 ms). Subjects then evaluated their subjective feeling of control. Results showed that after temporal distortions, the hand-trajectories were adapted effectively but that the feeling of control decreased significantly. This was observed even in the case of subliminal distortions for which subjects did not consciously detect the presence of a distortion. Our findings suggest that both supraliminal and subliminal temporal distortions that occur within a healthy perceptual-motor system impact the conscious experience of the feeling of control of self-initiated motor actions. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shah, Tushaar; Giordano, Mark; Mukherji, Aditi
2012-08-01
Indian agriculture is trapped in a complex nexus of groundwater depletion and energy subsidies. This nexus is the product of past public policy choices that initially offered opportunities to India's small-holder-based irrigation economy but has now generated in its wake myriad economic, social, and environmental distortions. Conventional `getting-the-price-right' solutions to reduce these distortions have consistently been undermined by the invidious political economy that the nexus has created. The historical evolution of the nexus is outlined, the nature and scale of the distortions it has created are explored, and alternative approaches which Indian policy makers can use to limit, if not eliminate, the damaging impacts of the distortions, are analysed.
Maganzini, A L; Tseng, J Y; Epstein, J Z
2000-10-01
This investigation utilized a manipulated digital video imaging model to elicit profile facial esthetics preferences in a lay population of native Chinese participants from Beijing. A series of 4 distinct digitized distortions were constructed from an initial lateral cephalogram. These images represented skeletal or dental changes that differed by 2 standard deviations from the normative values for Chinese adults. Video morphing then created soft-tissue profiles. A series of nonparametric tests validated the digitized distortion model. The native Chinese participants in this sample found that the profile distortions most acceptable were the "flatter", or bimaxillary retrusive distortion, in the male stimulus face and the "anterior divergent", or maxillary deficiency, in the female stimulus face.
Zubarev, Nikolay M; Zubareva, Olga V
2010-10-01
Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.
Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer
NASA Astrophysics Data System (ADS)
Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi
2016-02-01
A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, He; Cao, Zhoujian; Zhang, Bing, E-mail: gaohe@bnu.edu.cn
Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ∼1 ms magnetars inferred from the SGRB data, the detection horizon is ∼30 Mpc andmore » ∼600 Mpc for the advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and GW strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low-frequency signals (<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems to not be suitable for detecting the signals from Galactic pulsars and magnetars.« less
NASA Astrophysics Data System (ADS)
Gao, He; Cao, Zhoujian; Zhang, Bing
2017-08-01
Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ˜1 ms magnetars inferred from the SGRB data, the detection horizon is ˜30 Mpc and ˜600 Mpc for the advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and GW strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low-frequency signals (<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems to not be suitable for detecting the signals from Galactic pulsars and magnetars.
NASA Astrophysics Data System (ADS)
Ghorbani, Elaheh; Shahbazi, Farhad; Mosadeq, Hamid
2016-10-01
Using the modified spin wave method, we study the {{J}1}-{{J}2} Heisenberg model with first and second neighbor antiferromagnetic exchange interactions. For a symmetric S = 1/2 model, with the same couplings for all the equivalent neighbors, we find three phases in terms of the frustration parameter \\barα={{J}2}/{{J}1} : (1) a commensurate collinear ordering with staggered magnetization (Néel.I state) for 0≤slant \\barα≲ 0.207 , (2) a magnetically gapped disordered state for 0.207≲ \\barα≲ 0.369 , preserving all the symmetries of the Hamiltonian and lattice, which by definition is a quantum spin liquid (QSL) state and (3) a commensurate collinear ordering in which two out of the three nearest neighbor magnetizations are antiparallel and the remaining pair are parallel (Néel.II state), for 0.396≲ \\barα≤slant 1 . We also explore the phase diagram of a distorted {{J}1}-{{J}2} model with S = 1/2. Distortion is introduced as an inequality of one nearest neighbor coupling with the other two. This yields a richer phase diagram by the appearance of a new gapped QSL, a gapless QSL and also a valence bond crystal phase in addition to the previous three phases found for the undistorted model.
Optimal Inlet Shape Design of N2B Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2012-01-01
The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the Subsonic Fixed Wing project of NASA Fundamental Aeronautics Program. In the present study, flow simulations are conducted around the N2B configuration by a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by the NPSS thermodynamic engine cycle model. The flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and airframe-propulsion integration. Adjoint-based optimal designs are then conducted for the inlet shape to minimize the airframe drag force and flow distortion at fan faces. Design surfaces are parameterized by NURBS, and the cowl lip geometry is modified by a spring analogy approach. By the drag minimization design, flow separation on the cowl surfaces are almost removed, and shock wave strength got remarkably reduced. For the distortion minimization design, a circumferential distortion indicator DPCP(sub avg) is adopted as the design objective and diffuser bottom and side wall surfaces are perturbed for the design. The distortion minimization results in a 12.5 % reduction in the objective function.
Electron impact excitation coefficients for laboratory and astrophysical plasmas
NASA Technical Reports Server (NTRS)
Davis, J.; Kepple, P. C.; Blaha, M.
1976-01-01
Electron impact excitation rate coefficients have been obtained for a number of transitions in highly ionized ions of interest to astrophysical and laboratory plasmas. The calculations were done using the method of distorted waves. Results are presented for various transitions in highly ionized Ne, Na, Al, Si, A, Ca, Ni and Fe.
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Iwamoto, Y.; Sato, T.; Niita, K.; Boudard, A.; Cugnon, J.; David, J.-C.; Leray, S.; Mancusi, D.
2014-08-01
A new approach to describing neutron spectra of deuteron-induced reactions in the Monte Carlo simulation for particle transport has been developed by combining the Intra-Nuclear Cascade of Liège (INCL) and the Distorted Wave Born Approximation (DWBA) calculation. We incorporated this combined method into the Particle and Heavy Ion Transport code System (PHITS) and applied it to estimate (d,xn) spectra on natLi, 9Be, and natC targets at incident energies ranging from 10 to 40 MeV. Double differential cross sections obtained by INCL and DWBA successfully reproduced broad peaks and discrete peaks, respectively, at the same energies as those observed in experimental data. Furthermore, an excellent agreement was observed between experimental data and PHITS-derived results using the combined method in thick target neutron yields over a wide range of neutron emission angles in the reactions. We also applied the new method to estimate (d,xp) spectra in the reactions, and discussed the validity for the proton emission spectra.
NASA Astrophysics Data System (ADS)
Weiss, Luciara I.; Pinho, Adriane S. F.; Michelin, Sergio E.; Fujimoto, Milton M.
2018-02-01
In this work we have applied for the first time the distorted-wave approximation (DWA) combined with Schwinger Variational Iterative Method (SVIM) to describe electronic excitation of H2 molecules by positron collisions. The integral (ICS) and differential (DCS) excitation cross sections for X 1 Σ g + → B 1 Σ u + transition of H2 molecule, in the range from near threshold up to 45 eV of positron energies, were reported in static (ST) and static-correlation-polarization (STPOL) levels. Our two-state ICS in DWA-ST level have quantitative agreement with experimental measurement at energies from threshold up to 18 eV and the inclusion of polarization effects increases the cross sections. Comparison with 2-state close-coupling approximation (CCA), 2-state Schwinger Multichannel (SMC), 5-state SMC and 1013-state from Convergent Close-Coupling (CCC) methods are done and is encouraging. The relative steeper drop above 22 eV in experimental ICS was not observed by any theoretical calculations indicating that new measurements would be interesting for this transition in this energy range.
Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli
NASA Astrophysics Data System (ADS)
Aerts, Johan
The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and middle ear. These signals are used for diagnostic purposes, and therefore it is important to have an estimate the non-linear middle ear contribution to these emissions.
Aerodynamic Evidence Pertaining to the Entry of Tektites into the Earth's Atmosphere
NASA Technical Reports Server (NTRS)
Chapman, Dean R.; Larson, Howard K.; Anderson, Lewis A.
1962-01-01
Evidence is presented which shows that the Australian and Java tektites entered the earth's atmosphere and experienced ablation by severe aerodynamic heating in hypervelocity flight. The laboratory experiments on hypervelocity ablation have reproduced ring-wave flow ridges and coiled circumferential flanges like those found on certain of these tektites. Systematic striae distortions exhibited in a thin layer beneath the front surface of australites also are reproduced in the laboratory ablation experiments, and are shown to correspond to the calculated distortions for aerodynamic ablation of a glass. About 98 percent of Australian tektites represent aerodynamically stable configurations during the ablative portion of an entry trajectory. Certain meteorites exhibit surface features similar to those on tektites.
NASA Astrophysics Data System (ADS)
Alajlouni, Sa'ed; Albakri, Mohammad; Tarazaga, Pablo
2018-05-01
An algorithm is introduced to solve the general multilateration (source localization) problem in a dispersive waveguide. The algorithm is designed with the intention of localizing impact forces in a dispersive floor, and can potentially be used to localize and track occupants in a building using vibration sensors connected to the lower surface of the walking floor. The lower the wave frequencies generated by the impact force, the more accurate the localization is expected to be. An impact force acting on a floor, generates a seismic wave that gets distorted as it travels away from the source. This distortion is noticeable even over relatively short traveled distances, and is mainly caused by the dispersion phenomenon among other reasons, therefore using conventional localization/multilateration methods will produce localization error values that are highly variable and occasionally large. The proposed localization approach is based on the fact that the wave's energy, calculated over some time window, decays exponentially as the wave travels away from the source. Although localization methods that assume exponential decay exist in the literature (in the field of wireless communications), these methods have only been considered for wave propagation in non-dispersive media, in addition to the limiting assumption required by these methods that the source must not coincide with a sensor location. As a result, these methods cannot be applied to the indoor localization problem in their current form. We show how our proposed method is different from the other methods, and that it overcomes the source-sensor location coincidence limitation. Theoretical analysis and experimental data will be used to motivate and justify the pursuit of the proposed approach for localization in a dispersive medium. Additionally, hammer impacts on an instrumented floor section inside an operational building, as well as finite element model simulations, are used to evaluate the performance of the algorithm. It is shown that the algorithm produces promising results providing a foundation for further future development and optimization.
Seismic imaging in hardrock environments: The role of heterogeneity?
NASA Astrophysics Data System (ADS)
Bongajum, Emmanuel; Milkereit, Bernd; Adam, Erick; Meng, Yijian
2012-10-01
We investigate the effect of petrophysical scale parameters and structural dips on wave propagation and imaging in heterogeneous media. Seismic wave propagation effects within the heterogeneous media are studied for different velocity models with scale lengths determined via stochastic analysis of petrophysical logs from the Matagami mine, Quebec, Canada. The elastic modeling study reveals that provided certain conditions of the velocity fluctuations are met, strong local distortions of amplitude and arrival times of propagating waves are observed as the degree of scale length anisotropy in the P-wave velocity increases. The location of these local amplitude anomalies is related to the dips characterizing the fabric of the host rocks. This result is different from the elliptical shape of direct waves often defined by effective anisotropic parameters used for layered media. Although estimates of anisotropic parameters suggest weak anisotropy in the investigated models, these effective anisotropic parameters often used in VTI/TTI do not sufficiently describe the effects of scale length anisotropy in heterogeneous media that show such local amplitude, travel time, and phase distortions in the wavefields. Numerical investigations on the implications for reverse time migration (RTM) routines corroborate that mean P-wave velocity of the host rocks produces reliable imaging results. Based on the RTM results, we postulate the following: weak anisotropy in hardrock environments is a sufficient assumption for processing seismic data; and seismic scattering effects due to velocity heterogeneity with a dip component is not sufficient to cause mislocation errors of target structures as observed in the discrepancy between the location of the strong seismic reflections associated to the Matagami sulfide orebody and its true location. Future work will investigate other factors that may provide plausible explanations for these mislocation problems, with the objective of providing a mitigation strategy for incorporation into the seismic data processing sequence when imaging in hardrock settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin
2014-09-15
Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 N-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in the previous work by Zhangmore » and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153]. In that earlier work, collision strengths were also provided for N-like ions, but for a more comprehensive data set consisting of all possible 105 Δn=0 transitions, six scattered energies and the 81 ions with Z in the range 12≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 72 (1999) 153] and are presented here to replace those earlier results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin
2015-01-15
Relativistic distorted-wave collision strengths have been calculated for the 16 Δn=0 optically allowed transitions with n=2 in the 67 O-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20,0.42,0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−5.83. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L.more » Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357]. In that earlier work, collision strengths were also provided for O-like ions, but for a more comprehensive data set consisting of all possible 45 Δn=0 transitions, six scattered energies, and the 79 ions with Z in the range 14≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 82 (2002) 357] and are presented here to replace those earlier results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontes, Christopher J., E-mail: cjf@lanl.gov; Zhang, Hong Lin
2014-05-15
Relativistic distorted-wave collision strengths have been calculated for the 49 Δn=0 optically allowed transitions with n=2 in the 67 B-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the four final, or scattered, electron energies E{sup ′}=0.20, 0.42, 0.80, and 1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−3.33. In the present calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang andmore » Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41]. In that earlier work, collision strengths were also provided for B-like ions, but for a more comprehensive data set consisting of all 105 Δn=0 transitions, six scattered energies and the 85 ions with Z in the range 8≤Z≤92. The collision strengths covered in the present work should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang and D.H. Sampson, At. Data Nucl. Data Tables 56 (1994) 41] and are presented here to replace those earlier results.« less
Rodriguez, Brian D.
2017-03-31
This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.
NASA Astrophysics Data System (ADS)
Zeqiri, Bajram; Cook, Ashley; Rétat, Lise; Civale, John; ter Haar, Gail
2015-04-01
The acoustic nonlinearity parameter, B/A, is an important parameter which defines the way a propagating finite amplitude acoustic wave progressively distorts when travelling through any medium. One measurement technique used to determine its value is the finite amplitude insertion substitution (FAIS) method which has been applied to a range of liquid, tissue and tissue-like media. Importantly, in terms of the achievable measurement uncertainties, it is a relative technique. This paper presents a detailed study of the method, employing a number of novel features. The first of these is the use of a large area membrane hydrophone (30 mm aperture) which is used to record the plane-wave component of the acoustic field. This reduces the influence of diffraction on measurements, enabling studies to be carried out within the transducer near-field, with the interrogating transducer, test cell and detector positioned close to one another, an attribute which assists in controlling errors arising from nonlinear distortion in any intervening water path. The second feature is the development of a model which estimates the influence of finite-amplitude distortion as the acoustic wave travels from the rear surface of the test cell to the detector. It is demonstrated that this can lead to a significant systematic error in B/A measurement whose magnitude and direction depends on the acoustic property contrast between the test material and the water-filled equivalent cell. Good qualitative agreement between the model and experiment is reported. B/A measurements are reported undertaken at (20 ± 0.5) °C for two fluids commonly employed as reference materials within the technical literature: Corn Oil and Ethylene Glycol. Samples of an IEC standardised agar-based tissue-mimicking material were also measured. A systematic assessment of measurement uncertainties is presented giving expanded uncertainties in the range ±7% to ±14%, expressed at a confidence level close to 95%, dependent on specimen details.
Limits to the Extraction of Information from Multi-Hop Skywave Radar Signals
2005-04-14
equations to compute the eikonal rays gh a model ionosphere, plotting the resulting tories in the range-height plane. oes received via these multi...kilometres. This extensive database is ideally suited to the sta- tistical analysis of the directional, diurnal, seasonal 0 0 500 1000 1500 2000 2500
Focusers of obliquely incident laser radiation
NASA Astrophysics Data System (ADS)
Goncharskiy, A. V.; Danilov, V. A.; Popov, V. V.; Prokhorov, A. M.; Sisakyan, I. N.; Sayfer, V. A.; Stepanov, V. V.
1984-08-01
Focusing obliquely incident laser radiation along a given line in space with a given intensity distribution is treated as a problem of synthesizing a mirror surface. The intricate shape of such a surface, characterized by a function z= z (u,v) in the approximation of geometrical optics, is determined from the equation phi (u,v,z) - phi O(u,v,z)=O, which expresses that the incident field and the reflected field have identical eikonals. Further calculations are facilitated by replacing continuous mirror with a more easily manufactured piecewise continuous one. The problem is solved for the simple case of a plane incident wave with a typical iconal phi O(u,v,z)= -z cos0 at a large angle to a focus mirror in the z-plane region. Mirrors constructed on the basis of the theoretical solution were tested in an experiment with a CO2 laser. A light beam with Gaussian intensity distribution was, upon incidence at a 45 deg angle, focused into a circle or into an ellipse with uniform intensity distribution. Improvements in amplitudinal masking and selective tanning technology should reduce energy losses at the surface which results in efficient laser focusing mirrors.
Eikonalization of conformal blocks
Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; ...
2015-09-03
Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the t-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the 'eikonalization' of conformal blocks. We show that when an operator T appears in the OPE Ο(x)Ο(0), then the large spin Fock space states [TT···T] ℓ also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an correlator build the classical 'T field' in the dual AdS description. In some limits the sum of all Fockmore » space exchanges can be represented as the exponential of a single T exchange in the 4-pt correlator of O. Our results should be useful for systematizing 1/ℓ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading log ℓ dependence of Fock space conformal block coefficients, and we directly compute the OPE coefficients of the simplest ‘triple-trace’ operators.« less
Asymmetry of wind waves studied in a laboratory tank
NASA Astrophysics Data System (ADS)
Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.
1995-03-01
Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.
Asymmetry of wind waves studied in a laboratory tank
NASA Astrophysics Data System (ADS)
Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.
Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.
Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho
2010-05-24
We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.
Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves.
Meissner, Matthias; Sojka, Falko; Matthes, Lars; Bechstedt, Friedhelm; Feng, Xinliang; Müllen, Klaus; Mannsfeld, Stefan C B; Forker, Roman; Fritz, Torsten
2016-07-26
The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate-substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases. Using low-energy electron diffraction and scanning tunneling microscopy, we provide direct experimental evidence for SDWs in organic adsorbate films, namely hexa-peri-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström molecular displacements away from an ideal adsorbate lattice which is incommensurate with graphite. By means of a density-functional-theory based model, we show that, due to the flexibility in the adsorbate layer, molecule-substrate energy is gained by straining the intermolecular bonds and that the resulting total energy is minimal for the observed domain orientation, constituting the orientational epitaxy. While structural relaxation at an interface is a common assumption, the combination of the precise determination of the incommensurate epitaxial relation, the direct observation of SDWs in real space, and their identification as the sole source of epitaxial energy gain constitutes a comprehensive proof of this effect.
Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves
2016-01-01
The epitaxy of many organic films on inorganic substrates can be classified within the framework of rigid lattices which helps to understand the origin of energy gain driving the epitaxy of the films. Yet, there are adsorbate–substrate combinations with distinct mutual orientations for which this classification fails and epitaxy cannot be explained within a rigid lattice concept. It has been proposed that tiny shifts in atomic positions away from ideal lattice points, so-called static distortion waves (SDWs), are responsible for the observed orientational epitaxy in such cases. Using low-energy electron diffraction and scanning tunneling microscopy, we provide direct experimental evidence for SDWs in organic adsorbate films, namely hexa-peri-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström molecular displacements away from an ideal adsorbate lattice which is incommensurate with graphite. By means of a density-functional-theory based model, we show that, due to the flexibility in the adsorbate layer, molecule–substrate energy is gained by straining the intermolecular bonds and that the resulting total energy is minimal for the observed domain orientation, constituting the orientational epitaxy. While structural relaxation at an interface is a common assumption, the combination of the precise determination of the incommensurate epitaxial relation, the direct observation of SDWs in real space, and their identification as the sole source of epitaxial energy gain constitutes a comprehensive proof of this effect. PMID:27014920
Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H
2013-01-01
Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema.
Spectral analysis of /s/ sound with changing angulation of the maxillary central incisors.
Runte, Christoph; Tawana, Djafar; Dirksen, Dieter; Runte, Bettina; Lamprecht-Dinnesen, Antoinette; Bollmann, Friedhelm; Seifert, Eberhard; Danesh, Gholamreza
2002-01-01
The aim of the study was to measure the influence of the maxillary central incisors free from adaptation phenomena using spectral analysis. The maxillary dentures of 18 subjects were duplicated. The central incisors were fixed in a pivoting appliance so that their position could be changed from labial to palatal direction. A mechanical push/pull cable enabled the incisor section to be handled extraorally. Connected to the control was a sound generator producing a sinus wave whose frequency was related to the central incisor angulation. This acoustic signal was recorded on one channel of a digital tape recorder. After calibration of the unit, the denture duplicate was inserted into the subject's mouth, and the signal of the /s/ sounds subsequently produced by the subject was recorded on the second channel during alteration of the inclination angle simultaneously with the generator signal. Spectral analysis was performed using a Kay Speech-Lab 4300B. Labial displacement in particular produced significant changes in spectral characteristics, with the lower boundary frequency of the /s/ sound being raised and the upper boundary frequency being reduced. Maxillary incisor position influences /s/ sound production. Displacement of the maxillary incisors must be considered a cause of immediate changes in /s/ sound distortion. Therefore, denture teeth should be placed in the original tooth position as accurately as possible. Our results also indicate that neuromuscular reactions are more important for initial speech sound distortions than are aerodynamic changes in the anterior speech sound-producing areas.
Stress wave riveting. [of aircraft metal skin
NASA Technical Reports Server (NTRS)
Leftheris, B. P.
1972-01-01
The stress wave riveter deforms the rivet material by a high amplitude stress wave. Thus, the entire rivet is set in motion radially. The rivet expands rapidly and impacts the hole surface before the rivet tail begins to form. Unlike the oversqueezed rivets, therefore, it sets up uniform interference without distortion in the skins. Furthermore, the radial velocity is so high (over 200 in./sec) that upon impact with the hole surface it deforms the surface plastically. This is especially effective in aluminum skins. Thus the SWR combines the advantages of plastically deforming the hole and the economic advantage of a relatively nonprecision hole and inexpensive rivets like those used in oversqueezing. The additional advantage SWR offers is that it is a portable tool.
NASA Astrophysics Data System (ADS)
Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.
2005-07-01
Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.
NASA Astrophysics Data System (ADS)
Sun, S. Y.; Jia, X. F.; Miao, X. Y.; Zhang, J. F.
2014-03-01
The dynamically screened three-Coulomb-wave (DS3C) method is applied to study the single ionization of potassium by electron impact. Triple differential cross-sections (TDCS) are calculated in doubly symmetric geometry at excess energies of 6, 10, 15, 20, 30, 40, 50 and 60 eV. Comparisons are made with recent experimental data and theoretical predictions from a three-Coulomb-wave (3C) and distorted-wave Born approximation (DWBA). The DS3C method is able to reproduce most of the trend of experimental data and in good agreement with DWBA results. It is shown that the DS3C calculation provides much better shape and relative magnitude agreement with experiment.
Myth and Ritual in "Othello": A Technique for Teaching.
ERIC Educational Resources Information Center
Holleran, James V.
In terms of structure, the play "Othello" is a distortion of an initiation ritual. Arnold van Gennup, in his book "The Rites of Passage," reduces all initiation rituals into three definable phases: separation, transition, and incorporation. The general pattern of the initiation ritual in "Othello" is as follows:…
Tomatsu, T.; Kumagai, H.; Dawson, P.B.
2001-01-01
We estimate the P-wave velocity and attenuation structures beneath the Kirishima volcanic complex, southern Japan, by inverting the complex traveltimes (arrival times and pulse widths) of waveform data obtained during an active seismic experiment conducted in 1994. In this experiment, six 200-250 kg shots were recorded at 163 temporary seismic stations deployed on the volcanic complex. We use first-arrival times for the shots, which were hand-measured interactively. The waveform data are Fourier transformed into the frequency domain and analysed using a new method based on autoregressive modelling of complex decaying oscillations in the frequency domain to determine pulse widths for the first-arrival phases. A non-linear inversion method is used to invert 893 first-arrival times and 325 pulse widths to estimate the velocity and attenuation structures of the volcanic complex. Wavefronts for the inversion are calculated with a finite difference method based on the Eikonal equation, which is well suited to estimating the complex traveltimes for the structures of the Kirishima volcano complex, where large structural heterogeneities are expected. The attenuation structure is derived using ray paths derived from the velocity structure. We obtain 3-D velocity and attenuation structures down to 1.5 and 0.5 km below sea level, respectively. High-velocity pipe-like structures with correspondingly low attenuation are found under the summit craters. These pipe-like structures are interpreted as remnant conduits of solidified magma. No evidence of a shallow magma chamber is visible in the tomographic images.
Resonance localization in tokamaks excited with ICRF waves
NASA Astrophysics Data System (ADS)
Kerbel, G. D.; McCoy, M. G.
1985-06-01
Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.
SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi-Ardekani, A; Wronski, M; Kim, A
2015-06-15
Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode priormore » to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.« less
Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate
ERIC Educational Resources Information Center
Acedo, Luis; Tung, Michael M.
2012-01-01
The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…
Miller, Erin
2018-02-07
The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.
Spin dynamics and orbital state in LaTiO3
Keimer; Casa; Ivanov; Lynn; Zimmermann; Hill; Gibbs; Taguchi; Tokura
2000-10-30
A neutron scattering study of the Mott-Hubbard insulator LaTiO3 ( T(N) = 132 K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant J = 15.5 meV and a small Dzyaloshinskii-Moriya interaction ( D = 1.1 meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO3.
Personality retesting for managing intentional distortion.
Ellingson, Jill E; Heggestad, Eric D; Makarius, Erin E
2012-05-01
Self-report personality questionnaires often contain validity scales designed to flag individuals who intentionally distort their responses toward a more favorable characterization of themselves. Yet, there are no clear directives on how scores on these scales should be used by administrators when making high-stakes decisions about respondents. Two studies were conducted to investigate whether administrator-initiated retesting of flagged individuals represents a viable response to managing intentional distortion on personality questionnaires. We explored the effectiveness of retesting by considering whether retest responses are more accurate representations of a flagged individual's personality characteristics. A comparison of retest scores to a baseline measure of personality indicated that such scores were more accurate. Retesting should only work as a strategy for dealing with intentional distortion when individuals choose to respond more accurately the second time. Thus, we further explored the emotional reaction to being asked to retest as one possible explanation of why individuals who engage in intentional distortion respond more accurately upon retest.
NASA Astrophysics Data System (ADS)
Shen, W.; Schulte-Pelkum, V.; Ritzwoller, M. H.
2011-12-01
The joint inversion of surface wave dispersion and receiver functions was proven feasible on a station by station basis more than a decade ago. Joint application to a large number of stations across a broad region such as western US is more challenging, however, because of the different resolutions of the two methods. Improvements in resolution in surface wave studies derived from ambient noise and array-based methods applied to earthquake data now allow surface wave dispersion and receiver functions to be inverted simultaneously across much of the Earthscope/USArray Transportable Array (TA), and we have developed a Monte-Carlo procedure for this purpose. As a proof of concept we applied this procedure to a region containing 186 TA stations in the intermountain west, including a variety of tectonic settings such as the Colorado Plateau, the Basin and Range, the Rocky Mountains, and the Great Plains. This work has now been expanded to encompass all TA stations in the western US. Our approach includes three main components. (1) We enlarge the Earthscope Automated Receiver Survey (EARS) receiver function database by adding more events within a quality control procedure. A back-azimuth-independent receiver function and its associated uncertainties are constructed using a harmonic stripping algorithm. (2) Rayleigh wave dispersion curves are generated from the eikonal tomography applied to ambient noise cross-correlation data and Helmoholtz tomography applied to teleseismic surface wave data to yield dispersion maps from 8 sec to 80 sec period. (3) We apply a Metropolis Monte Carlo algorithm to invert for the average velocity structure beneath each station. Simple kriging is applied to interpolate to the discrete results into a continuous 3-D model. This method has now been applied to over 1,000 TA stations in the western US. We show that the receiver functions and surface wave dispersion data can be reconciled beneath more than 80% of the stations using a smooth parameterization of both crustal and uppermost mantle structure. After the inversion, a 3-D model for the crust and uppermost mantle to a depth of 150 km is constructed for this region. Compared with using surface wave data alone, uncertainty in crustal thickness is much lower and as a result, the lower crustal velocity is better constrained given a smaller depth-velocity trade-off. The new 3-D model including Moho depth with attendant uncertainties provides the basis for further analysis on radial anisotropy and geodynamics in the western US, and also forms a starting point for other seismological studies such as body wave tomography and receiver function CCP analysis.
Theories of cognitive distortions in sexual offending: what the current research tells us.
O Ciardha, Caoilte; Ward, Tony
2013-01-01
Cognitive distortions in sex offenders are specific or general beliefs/attitudes that violate commonly accepted norms of rationality that have been shown to be associated with the onset and maintenance of sexual offending. In this article, we describe the major theories that have been formulated to explain the role of distorted cognition in initiating and maintaining sexual offending. We evaluate each theory in light of a set of theory appraisal criteria and the available empirical research. Finally, we conclude by drawing together the results of this theory evaluation process and highlight the major implications for treatment and future research.
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.
1990-01-01
A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haykal, I.; Margulès, L.; Huet, T. R.
2013-11-10
Organic isocyanides have an interesting astrochemistry and some of these molecules have been detected in the interstellar medium (ISM). However, rotational spectral data for this class of compounds are still scarce. We provide laboratory spectra of the four-carbon allyl isocyanide covering the full microwave region, thus allowing a potential astrophysical identification in the ISM. We assigned the rotational spectrum of the two cis (synperiplanar) and gauche (anticlinal) conformations of allyl isocyanide in the centimeter-wave region (4-18 GHz), resolved its {sup 14}N nuclear quadrupole coupling (NQC) hyperfine structure, and extended the measurements into the millimeter and submillimeter-wave (150-900 GHz) ranges formore » the title compound. Rotational constants for all the monosubstituted {sup 13}C and {sup 15}N isotopologues are additionally provided. Laboratory observations are supplemented with initial radioastronomical observations. Following analysis of an extensive dataset (>11000 rotational transitions), accurate ground-state molecular parameters are reported for the cis and gauche conformations of the molecule, including rotational constants, NQC parameters, and centrifugal distortion terms up to octic contributions. Molecular parameters have also been obtained for the two first excited states of the cis conformation, with a dataset of more than 3300 lines. The isotopic data allowed determining substitution and effective structures for the title compound. We did not detect allyl isocyanide either in the IRAM 30 m line survey of Orion KL or in the PRIMOS survey toward SgrB2. Nevertheless, we provided an upper limit to its column density in Orion KL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentzen, W.; Song, X.Z.; Shelnutt, J.A.
1997-02-27
The X-ray crystal structures of synthetic and protein-bound metalloporphyrins are analyzed using a new normal structural decomposition method for classifying and quantifying their out-of-plane and in-plane distortions. These distortions are characterized in terms of equivalent displacements along the normal coordinates of the D{sub 4h}-symmetric porphyrin macrocycle (normal deformations). It is shown that the macrocyclic structure is, even in highly distorted porphyrins, accurately represented by displacements along only the lowest-frequency normal coordinates. Accordingly, the macrocyclic structure obtained from just the out-of-plane normal deformations of the saddling (sad, B{sub 2u})-, ruffling (ruf, B{sub 1u})-, doming (dom, A{sub 2u})-, waving [wav(x), wav(y); E{submore » g}]-, and propellering (pro, A{sub 1u})-type essentially simulates the out-of-plane distortion of the X-ray crystal structure. Similarly, the observed in-plane distortions are decomposed into in-plane normal deformations corresponding to the lowest-frequency vibrational modes including macrocycle stretching in the direction of the meso-carbon atoms (meso-str, B{sub 2g}), stretching in the direction of the nitrogen atoms (N-str, B{sub 1g}), x and y pyrrole translations [trn(x), trn(y); E{sub u}], macrocycle breathing (bre, A{sub 1g}), and pyrrole rotation (rot, A{sub 2g}). 71 refs., 9 figs., 4 tabs.« less
Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher
2013-11-05
In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, S. A., E-mail: pikin@ns.crys.ras.ru
2016-05-15
It is shown that the electric polarization and wave number of incommensurate modulations, proportional to each other, increase according to the Landau law in spin multiferroic cycloids near the Néel temperature. In this case, the constant magnetization component (including the one for a conical spiral) is oriented perpendicular to the spin incommensurability wave vector. A similar temperature behavior should manifest itself for spin helicoids, the axes of which are oriented parallel to the polarization vector but their spin rotation planes are oriented perpendicular to the antiferromagnetic order plane. When the directions of axes of the magnetization helicoid and polarization vectormore » coincide, the latter is quadratic with respect to magnetization and linearly depends on temperature, whereas the incommensurate-modulation wave number barely depends on temperature. Structural distortions of unit cells for multiferroics of different types determine their axial behavior.« less
Free-surface tracking of submerged features to infer hydrodynamic flow characteristics
NASA Astrophysics Data System (ADS)
Mandel, Tracy; Rosenzweig, Itay; Koseff, Jeffrey
2016-11-01
As sea level rise and stronger storm events threaten our coastlines, increased attention has been focused on coastal vegetation as a potentially resilient, financially viable tool to mitigate flooding and erosion. However, the actual effect of this "green infrastructure" on near-shore wave fields and flow patterns is not fully understood. For example, how do wave setup, wave nonlinearity, and canopy-generated instabilities change due to complex bottom roughness? Answering this question requires detailed knowledge of the free surface. We develop easy-to-use laboratory techniques to remotely measure physical processes by imaging the apparent distortion of the fixed features of a submerged cylinder array. Measurements of surface turbulence from a canopy-generated Kelvin-Helmholtz instability are possible with a single camera. A stereoscopic approach similar to Morris (2004) and Gomit et al. (2013) allows for measurement of waveform evolution and the effect of vegetation on wave steepness and nonlinearity.
Dynamics of the quasielastic 16O (e, e' p) reaction at Q2 ≈ 0.8 (GeV/c)2
NASA Astrophysics Data System (ADS)
Fissum, K. G.; Liang, M.; Anderson, B. D.; Aniol, K. A.; Auerbach, L.; Baker, F. T.; Berthot, J.; Bertozzi, W.; Bertin, P.-Y.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cates, G. D.; Cavata, C.; Chang, C. C.; Chen, J.-P.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; de Leo, R.; Deur, A.; Diederich, B.; Djawotho, P.; Domingo, J.; Ducret, J.-E.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fonvieille, H.; Frois, B.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Gorringe, T.; Hersman, F. W.; Holmes, R.; Holtrop, M.; D'Hose, N.; Howell, C.; Huber, G. M.; Hyde-Wright, C. E.; Iodice, M.; Jaminion, S.; Jones, M. K.; Joo, K.; Jutier, C.; Kahl, W.; Kato, S.; Kelly, J. J.; Kerhoas, S.; Khandaker, M.; Khayat, M.; Kino, K.; Korsch, W.; Kramer, L.; Kumar, K. S.; Kumbartzki, G.; Laveissière, G.; Leone, A.; Lerose, J. J.; Levchuk, L.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Margaziotis, D. J.; Markowitz, P.; Martino, J.; McCarthy, J. S.; McCormick, K.; McIntyre, J.; van der Meer, R. L.; Meziani, Z.-E.; Michaels, R.; Mougey, J.; Nanda, S.; Neyret, D.; Offermann, E. A.; Papandreou, Z.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quéméner, G.; Ransome, R. D.; Ravel, O.; Roblin, Y.; Roche, R.; Rowntree, D.; Rutledge, G. A.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic-Offermann, A.; Smith, T. P.; Soldi, A.; Sorokin, P.; Souder, P.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Todor, L.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Vernin, P.; van Verst, S.; Vlahovic, B.; Voskanyan, H.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B.; Zainea, D. G.; Zeps, V.; Zhao, J.; Zhou, Z.-L.; Udías, J. M.; Vignote, J. R.; Ryckebusch, J.; Debruyne, D.
2004-09-01
The physics program in Hall A at Jefferson Lab commenced in the summer of 1997 with a detailed investigation of the 16O (e, e' p) reaction in quasielastic, constant (q,ω) kinematics at Q2 ≈0.8 (GeV/c)2 , q≈1 GeV/c , and ω≈445 MeV . Use of a self-calibrating, self-normalizing, thin-film waterfall target enabled a systematically rigorous measurement. Five-fold differential cross-section data for the removal of protons from the 1p -shell have been obtained for 0< pmiss <350 MeV/c . Six-fold differential cross-section data for 0< Emiss <120 MeV were obtained for 0< pmiss <340 MeV/c . These results have been used to extract the ALT asymmetry and the RL , RT , RLT , and RL+TT effective response functions over a large range of Emiss and pmiss . Detailed comparisons of the 1p -shell data with Relativistic Distorted-Wave Impulse Approximation (RDWIA), Relativistic Optical-Model Eikonal Approximation (ROMEA), and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations indicate that two-body currents stemming from meson-exchange currents (MEC) and isobar currents (IC) are not needed to explain the data at this Q2 . Further, dynamical relativistic effects are strongly indicated by the observed structure in ALT at pmiss ≈300 MeV/c . For 25< Emiss <50 MeV and pmiss ≈50 MeV/c , proton knockout from the 1 s1/2 -state dominates, and ROMEA calculations do an excellent job of explaining the data. However, as pmiss increases, the single-particle behavior of the reaction is increasingly hidden by more complicated processes, and for 280< pmiss <340 MeV/c , ROMEA calculations together with two-body currents stemming from MEC and IC account for the shape and transverse nature of the data, but only about half the magnitude of the measured cross section. For 50< Emiss <120 MeV and 145< pmiss <340 MeV/c , (e, e' pN) calculations which include the contributions of central and tensor correlations (two-nucleon correlations) together with MEC and IC (two-nucleon currents) account for only about half of the measured cross section. The kinematic consistency of the 1p -shell normalization factors extracted from these data with respect to all available 16O (e, e' p) data is also examined in detail. Finally, the Q2 -dependence of the normalization factors is discussed.
Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun
2016-01-01
The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave–matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887
Delamination detection in smart composite beams using Lamb waves
NASA Astrophysics Data System (ADS)
Ip, Kim-Ho; Mai, Yiu-Wing
2004-06-01
This paper presents a feasibility study on using Lamb waves to detect and locate through-width delamination in fiber-reinforced plastic beams. An active diagnostic system is proposed for clamped-free specimens. It consists of a piezoelectric patch and an accelerometer both mounted near the support. Such a system can locate damage in an absolute sense, that is, a priori knowledge on the response from pristine specimens is not required. The fundamental anti-symmetric Lamb wave mode is chosen as the diagnostic wave. It is generated by applying a voltage in the form of sinusoidal bursts to the piezoelectric patch. The proposed system was applied to locate delaminations in some fabricated Kevlar/epoxy beam specimens. With an appropriate actuating frequency, distortions of waveforms due to boundary reflections can be reduced. Based on their arrival times and the known propagating speed of Lamb waves, the delaminations can be located. The errors associated with the predicted damage positions range from 4.5% to 8.5%.
NASA Astrophysics Data System (ADS)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
NASA Technical Reports Server (NTRS)
Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.
1995-01-01
The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Nadine; Prestel, S.; Ritzmann, M.
We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p ⊥ measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g → qq¯) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q 2. Recoils and kinematics are governed bymore » exact on-shell 2 → 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α 4 s) (4 jets), and for Drell–Yan and Higgs production up to O(α 3 s) (V / H + 3 jets). Finally, the resulting algorithm has been made publicly available in Vincia 2.0.« less
Propagation path effects for rayleigh and love waves. Semi-annual technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrin, E.; Goforth, T.
Seismic surface waves are usually composed of overlapping wave trains representing multi-path propagation. A first task in the analysis of such waves is to identify and separate the various component wave trains so that each can be analyzed separately. Phase-matched filters are a class of linear filters in which the Fourier phase of the filter is made equal to that of a given signal. The authors previously described an iterative technique which can be used to find a phase-matched filter for a particular component of a seismic signal. Application of the filters to digital records of Rayleigh waves allowed multiplemore » arrivals to be identified and removed, and allowed recovery of the complex spectrum of the primary wave train along with its apparent group velocity dispersion curve. A comparable analysis of Love waves presents additional complications. Love waves are contaminated by both Love and Rayleigh multipathing and by primary off-axis Rayleigh energy. In the case of explosions, there is much less energy generated as Love waves than as Rayleigh waves. The applicability of phase-matched filtering to Love waves is demonstrated by its use on earthquakes occurring in the Norwegian Sea and near Iceland and on a nuclear explosion in Novaya Zemlya. Despite severe multipathing in two of the three events, the amplitude and phase of each of the primary Love waves were recovered without significant distortion.« less
ERIC Educational Resources Information Center
Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua
2012-01-01
In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…
The report describes the implementation, theory of operation, and performance of an adjustable, 48 tap, surface wave transversal equalizer designed...for the Rome Air Development Center, Floyd Site Radar. The transversal equalizer achieves equalization of system distortion by an array of fixed taps...which provide leading and lagging echoes of the main signal. Equalization is achieved by the introduction of an equal but oppositely phased echo of
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Tadjfar, M.; Welch, W. J. C.; Duck, P. W.
1989-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite-difference and spectral methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T-S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves.
Ultrasound Analysis of Slurries
Soong, Yee and Blackwell, Arthur G.
2005-11-01
An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.
Ultrasound Analysis Of Slurries
Soong, Yee; Blackwell, Arthur G.
2005-11-01
An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.
Mode calculations in unstable resonators with flowing saturable gain. 1:hermite-gaussian expansion.
Siegman, A E; Sziklas, E A
1974-12-01
We present a procedure for calculating the three-dimensional mode pattern, the output beam characteristics, and the power output of an oscillating high-power laser taking into account a nonuniform, transversely flowing, saturable gain medium; index inhomogeneities inside the laser resonator; and arbitrary mirror distortion and misalignment. The laser is divided into a number of axial segments. The saturated gain-and-index variation. across each short segment is lumped into a complex gain profile across the midplane of that segment. The circulating optical wave within the resonator is propagated from midplane to midplane in free-space fashion and is multiplied by the lumped complex gain profile upon passing through each midplane. After each complete round trip of the optical wave inside the resonator, the saturated gain profiles are recalculated based upon the circulating fields in the cavity. The procedure when applied to typical unstable-resonator flowing-gain lasers shows convergence to a single distorted steady-state mode of oscillation. Typical near-field and far-field results are presented. Several empirical rules of thumb for finite truncated Hermite-Gaussian expansions, including an approximate sampling theorem, have been developed as part of the calculations.
NASA Astrophysics Data System (ADS)
Djaloeis, A.; Alderliesten, C.; Bojowald, J.; Mayer-Böricke, C.; Oelert, W.; Turek, P.
1983-04-01
Angular distributions of 58Ni(3He, d)59Cu transitions leading to the (0.0 MeV, 32-), (0.91 MeV, 52-), and (3.04 MeV, 92+) states in 59Cu have been measured at an incident energy of 130 MeV. The experimental data have been used to study mainly the role of the 3He optical model potential ambiguity in the distorted-wave Born approximation description of the reaction. Satisfactory fits to the data are obtained using a deep helion potential in standard local zero-range calculations. For a shallow 3He potential a comparable description can be achieved if the depth of the real part of the deuteron optical potential is reduced considerably, and nonlocality as well as finite-range corrections are taken into account. Under these conditions, the use of a 3He potential constructed according to the Johnson-Soper prescription yields similar results. NUCLEAR REACTIONS 58Ni (3He, d)59Cu, E=130 MeV; measured dσ(θ)dΩ. Enriched target; DWBA analysis; discussed reaction mechanism.
The energy balance in coronal holes and average quiet-sun regions
NASA Technical Reports Server (NTRS)
Raymond, J. C.; Doyle, J. G.
1981-01-01
Emission measure curves are presented for average coronal hole and quiet-sun spectra taken during the Skylab mission by Vernazza and Reeves (1978), and the curves are used to discuss the energy balance in each region. Close-coupling calculations are used for the Be sequence, assuming a 10 level ion; for B sequence ions mainly distorted wave calculations in an 11 level ion are used, but close-coupling cross sections are used for some ions; for C and Mg sequence ions, distorted wave calculations are used with 15 and 10 level ions, respectively, and close-coupling results are used for Li-like ions with two levels. Results are presented and include the following: the coronal hole spectrum shows a smaller slope in the emission measure distribution, consistent with the expected outflow effects. It is concluded that the simple constant pressure models of static coronal loops of constant cross section are basically able to match the observed emission measure distribution of the average quiet sun between 1,000,000 and 10,000,000 K. However, the cell center and network distributions are respectively steeper and shallower than predicted by the detailed cooling curve.
Experimental study of an adaptive CFRC reflector for high order wave-front error correction
NASA Astrophysics Data System (ADS)
Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang
2018-03-01
The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.
Navier-Stokes simulations of unsteady transonic flow phenomena
NASA Technical Reports Server (NTRS)
Atwood, C. A.
1992-01-01
Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipation. In addition, optical phase distortion due to the time-varying density field is modelled using geometrical constructs. The computed optical distortion trends compare with the experimentally inferred result, but underpredicts the fluctuating phase difference magnitude.
Lattice distortions in GaN on sapphire using the CBED-HOLZ technique.
Sridhara Rao, D V; McLaughlin, K; Kappers, M J; Humphreys, C J
2009-09-01
The convergent beam electron diffraction (CBED) methodology was developed to investigate the lattice distortions in wurtzite gallium nitride (GaN) from a single zone-axis pattern. The methodology enabled quantitative measurements of lattice distortions (alpha, beta, gamma and c) in transmission electron microscope (TEM) specimens of a GaN film grown on (0,0,0,1) sapphire by metal-organic vapour-phase epitaxy. The CBED patterns were obtained at different distances from the GaN/sapphire interface. The results show that GaN is triclinic above the interface with an increased lattice parameter c. At 0.85 microm from the interface, alpha=90 degrees , beta=8905 degrees and gamma=11966 degrees . The GaN lattice relaxes steadily back to hexagonal further away from the sapphire substrate. The GaN distortions are mainly confined to the initial stages of growth involving the growth and the coalescence of 3D GaN islands.
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Levy, Ralph
1991-01-01
A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.
Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas
2005-01-01
The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.
NASA Astrophysics Data System (ADS)
Liu, Lulu; Woolf, Alex
2015-03-01
By observing the motion of an optically trapped microscopic colloid, sub-piconewton static and dynamical forces have been measured using a technique called photonic force microscopy. This technique, though potentially powerful, has in the past struggled to make precise measurements in the vicinity of a reflective or metallic interface, due to distortions of the optical field. We introduce a new in-situ, contact-free calibration method for particle tracking using an evanescent wave, and demonstrate its expanded capability by the precise measurement of forces of interaction between a single colloid and the optical field generated by a propagating surface plasmon polariton on gold.
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.
Highly Sensitive Electro-Optic Modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVore, Peter S
2015-10-26
There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less
Localization and Mapping Using Only a Rotating FMCW Radar Sensor
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-01-01
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523
Ranasinghesagara, Janaka C.; Hayakawa, Carole K.; Davis, Mitchell A.; Dunn, Andrew K.; Potma, Eric O.; Venugopalan, Vasan
2014-01-01
We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens. PMID:25121440
Localization and mapping using only a rotating FMCW radar sensor.
Vivet, Damien; Checchin, Paul; Chapuis, Roland
2013-04-08
Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.
Active phase locking of thirty fiber channels using multilevel phase dithering method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhimeng; Luo, Yongquan, E-mail: yongquan-l@sina.com; Liu, Cangli
2016-03-15
An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels ismore » achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.« less
Development of software to improve AC power quality on large spacecraft
NASA Technical Reports Server (NTRS)
Kraft, L. Alan
1991-01-01
To insure the reliability of a 20 kHz, AC power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can cause malfunctions in equipment that the power system is supplying, and during extreme distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. HARMFLO, a power flow computer program, which was capable of analyzing harmonic conditions on three phase, balanced, 60 Hz, AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The results are that (1) the harmonic power now has a model of a single phase, voltage controlled, full wave rectifier; and (2) HARMFLO was ported to the SUN workstation platform.
Slow and fast light via SBS in optical fibers for short pulses and broadband pump
NASA Astrophysics Data System (ADS)
Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi
2006-12-01
Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.
Zhang, Jiarui; Zhang, Yingjie; Chen, Bo
2017-12-20
The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.
Modeling distortion of HIT by an Actuator Disk in a periodic domain
NASA Astrophysics Data System (ADS)
Ghate, Aditya; Ghaisas, Niranjan; Lele, Sanjiva
2017-11-01
We study the distortion of incompressible, homogeneous isotropic turbulence (HIT) by a dragging actuator disk with a fixed thrust coefficient (under the large Reynolds number limit), using Large Eddy Simulation (LES). The HIT inflow is tailored to ensure that the largest length scales in the flow are smaller than the actuator disk diameter in order to minimize the meandering of the turbulent wake and isolate the length scales that undergo distortion. The numerical scheme (Fourier collocation with dealiasing) and the SGS closure (anisotropic minimum dissipation model) are carefully selected to minimize numerical artifacts expected due to the inviscid assumption. The LES is used to characterize the following 3 properties of the flow a) distortion of HIT due to the expanding streamtube resulting in strong anisotropy, b) turbulent pressure modulation across the actuator disk, and the c) turbulent wake state. Finally, we attempt to model the initial distortion and the pressure modulation using a WKB variant of RDT solved numerically using a set of discrete Gabor modes. Funding provided by Precourt Institute for Energy at Stanford University.
NASA Astrophysics Data System (ADS)
Rung-Arunwan, T.; Siripunvaraporn, W.; Utada, H.
2017-06-01
Several useful properties and parameters—a model of the regional mean one-dimensional (1D) conductivity profile, local and regional distortion indicators, and apparent gains—were defined in our recent paper using two rotational invariants (det: determinant and ssq: sum of squared elements) from a set of magnetotelluric (MT) data obtained by an array of observation sites. In this paper, we demonstrate their characteristics and benefits through synthetic examples using 1D and three-dimensional (3D) models. First, a model of the regional mean 1D conductivity profile is obtained using the average ssq impedance with different levels of galvanic distortion. In contrast to the Berdichevsky average using the average det impedance, the average ssq impedance is shown to yield a reliable estimate of the model of the regional mean 1D conductivity profile, even when severe galvanic distortion is contained in the data. Second, the local and regional distortion indicators were found to indicate the galvanic distortion as expressed by the splitting and shear parameters and to quantify their strengths in individual MT data and in the dataset as a whole. Third, the apparent gain was also shown to be a good approximation of the site gain, which is generally claimed to be undeterminable without external information. The model of the regional mean 1D profile could be used as an initial or a priori model in higher-dimensional inversions. The local and regional distortion indicators and apparent gains could be used to examine the existence and to guess the strength of the galvanic distortion. Although these conclusions were derived from synthetic tests using the Groom-Bailey distortion model, additional tests with different distortion models indicated that these conclusions are not strongly dependent on the choice of distortion model. These galvanic-distortion-related parameters would also assist in judging if a proper treatment is needed for the galvanic distortion when an MT dataset is given. Hence, this information derived from the dataset would be useful in MT data analysis and inversion.
Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids
NASA Technical Reports Server (NTRS)
Adler, Laszlo; Cantrell, John H.; Yost, William T.
2016-01-01
Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.
Effect of dynamical phase on the resonant interaction among tsunami edge wave modes
Geist, Eric L.
2018-01-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
NASA Astrophysics Data System (ADS)
Geist, Eric L.
2018-02-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
NASA Astrophysics Data System (ADS)
Geist, Eric L.
2018-04-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Goto, Nobuo; Miyazaki, Yasumitsu
2014-06-01
Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100 Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.
Enhanced Performance of Streamline-Traced External-Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.
2015-01-01
A computational design study was conducted to enhance the aerodynamic performance of streamline-traced, external-compression inlets for Mach 1.6. Compared to traditional external-compression, two-dimensional and axisymmetric inlets, streamline-traced inlets promise reduced cowl wave drag and sonic boom, but at the expense of reduced total pressure recovery and increased total pressure distortion. The current study explored a new parent flowfield for the streamline tracing and several variations of inlet design factors, including the axial displacement and angle of the subsonic cowl lip, the vertical placement of the engine axis, and the use of porous bleed in the subsonic diffuser. The performance was enhanced over that of an earlier streamline-traced inlet such as to increase the total pressure recovery and reduce total pressure distortion.
NASA Astrophysics Data System (ADS)
Shemer, L.; Sergeeva, A.
2009-12-01
The statistics of random water wave field determines the probability of appearance of extremely high (freak) waves. This probability is strongly related to the spectral wave field characteristics. Laboratory investigation of the spatial variation of the random wave-field statistics for various initial conditions is thus of substantial practical importance. Unidirectional nonlinear random wave groups are investigated experimentally in the 300 m long Large Wave Channel (GWK) in Hannover, Germany, which is the biggest facility of its kind in Europe. Numerous realizations of a wave field with the prescribed frequency power spectrum, yet randomly-distributed initial phases of each harmonic, were generated by a computer-controlled piston-type wavemaker. Several initial spectral shapes with identical dominant wave length but different width were considered. For each spectral shape, the total duration of sampling in all realizations was long enough to yield sufficient sample size for reliable statistics. Through all experiments, an effort had been made to retain the characteristic wave height value and thus the degree of nonlinearity of the wave field. Spatial evolution of numerous statistical wave field parameters (skewness, kurtosis and probability distributions) is studied using about 25 wave gauges distributed along the tank. It is found that, depending on the initial spectral shape, the frequency spectrum of the wave field may undergo significant modification in the course of its evolution along the tank; the values of all statistical wave parameters are strongly related to the local spectral width. A sample of the measured wave height probability functions (scaled by the variance of surface elevation) is plotted in Fig. 1 for the initially narrow rectangular spectrum. The results in Fig. 1 resemble findings obtained in [1] for the initial Gaussian spectral shape. The probability of large waves notably surpasses that predicted by the Rayleigh distribution and is the highest at the distance of about 100 m. Acknowledgement This study is carried out in the framework of the EC supported project "Transnational access to large-scale tests in the Large Wave Channel (GWK) of Forschungszentrum Küste (Contract HYDRALAB III - No. 022441). [1] L. Shemer and A. Sergeeva, J. Geophys. Res. Oceans 114, C01015 (2009). Figure 1. Variation along the tank of the measured wave height distribution for rectangular initial spectral shape, the carrier wave period T0=1.5 s.
Imaging Seismic Zones and Magma beneath Mount St. Helens with the iMUSH Broadband Array
NASA Astrophysics Data System (ADS)
Ulberg, C. W.; Creager, K.; Moran, S. C.; Abers, G. A.; Crosbie, K.; Crosson, R. S.; Denlinger, R. P.; Thelen, W. A.; Kiser, E.; Levander, A.; Bachmann, O.
2017-12-01
We deployed 70 broadband seismometers from 2014 to 2016 to image the seismic velocity structure beneath Mount St. Helens (MSH), Washington, as part of the collaborative imaging Magma Under St. Helens (iMUSH) project. The broadband array had a 100 km diameter centered on MSH with an average station spacing of 10 km, augmented by dozens of permanent stations. We picked P- and S-wave arrival times and also incorporated picks from the permanent network. More than 400 local events M>0.5 occurred during the deployment, providing over 12,000 P-wave and 6,000 S-wave arrival times. In addition, we incorporated 23 explosions that were part of the active-source component of iMUSH. We used the program struct3DP to invert travel times to obtain a 3-D seismic velocity model and relocated hypocenters, with travel times computed using a 3-D eikonal-equation solver. Principal features of our 3-D model include: (1) Low P- and S-wave velocities along the St. Helens seismic Zone (SHZ), striking NNW-SSE north of MSH from near the surface to where we lose resolution at 15-20 km depth. This anomaly corresponds to high conductivity as imaged by iMUSH magnetotelluric studies. The SHZ also coincides with a sharp boundary in continental Moho reflectivity that has been interpreted as the eastern boundary of a serpentinized mantle wedge (Hansen et al, 2016). We speculate that the SHZ and low velocities are related to fluids rising from the eastern boundary of the wedge; (2) A 4-5% negative P- and S-wave velocity anomaly beneath MSH at depths of 6-15 km with a quasi-cylindrical geometry and a diameter of 5 km, probably indicating a magma storage region. Based on resolution testing of similar-sized features, it is possible that the velocity anomaly we see underneath MSH is narrower and higher (i.e., more negative) amplitude; (3) A broad, high-amplitude, low P-wave velocity region below 10-km depth extending between Mount Adams and Mount Rainier along and to the east of the main Cascade arc, which is likely due to high-temperature arc crust and possible presence of melt; (4) Several anomalies associated with surface-mapped features, including high-velocity igneous units such as the Spud Mountain and Spirit Lake plutons and low velocities in the Chehalis sedimentary basin and the Indian Heaven volcanic field.
Introducing causality violation for improved DPOAE component unmixing
NASA Astrophysics Data System (ADS)
Moleti, Arturo; Sisto, Renata; Shera, Christopher A.
2018-05-01
The DPOAE response consists of the linear superposition of two components, a nonlinear distortion component generated in the overlap region, and a reflection component generated by roughness in the DP resonant region. Due to approximate scaling symmetry, the DPOAE distortion component has approximately constant phase. As the reflection component may be considered as a SFOAE generated by the forward DP traveling wave, it has rapidly rotating phase, relative to that of its source, which is also equal to the phase of the DPOAE distortion component. This different phase behavior permits effective separation of the DPOAE components (unmixing), using time-domain or time-frequency domain filtering. Departures from scaling symmetry imply fluctuations around zero delay of the distortion component, which may seriously jeopardize the accuracy of these filtering techniques. The differential phase-gradient delay of the reflection component obeys causality requirements, i.e., the delay is positive only, and the fine-structure oscillations of amplitude and phase are correlated to each other, as happens for TEOAEs and SFOAEs relative to their stimulus phase. Performing the inverse Fourier (or wavelet) transform of a modified DPOAE complex spectrum, in which a constant phase function is substituted for the measured one, the time (or time-frequency) distribution shows a peak at (exactly) zero delay and long-latency specular symmetric components, with a modified (positive and negative) delay, which is that relative to that of the distortion component in the original response. Component separation, applied to this symmetrized distribution, becomes insensitive to systematic errors associated with violation of the scaling symmetry in specific frequency ranges.
Realistic Reflections for Marine Environments in Augmented Reality Training Systems
2009-09-01
Static Backgrounds. Top: Agua Background. Bottom: Blue Background.............48 Figure 27. Ship Textures Used to Generate Reflections. In Order from...Like virtual simulations, augmented reality trainers can be configured to meet specific training needs and can be restarted and reused to train...Wave Distortion, Blurring and Shadow Many of the same methods outlined in Full Reflection shader were reused for the Physics shader. The same
Review of ESA Experimental Research Activities for Electric Propulsion
2011-01-01
detect gravitational waves, distortions of space-time occurring when a massive body is accelerated or disturbed. To achieve that goal the relative...thrusters of Electric Propulsion systems accelerate the propellant ions to velocities of tens of kilometers per second making it a propulsion option that is...expanded through nozzle Ion electrostatically accelerated . Plasma accelerated via interaction of current and magnetic field. Concept Resistojets
Securing the Heavens: A Perspective on Space Control
1999-06-01
transmission , command and control, as well as their supporting infrastructure—which should all be considered potential targets. The appeal of physically ...to 64 exposure to x - rays , gamma rays and neutrons (as well as trapped radiation that lingers above the atmosphere) include electronic upset...data links due to the associated scintillation (distortion of radio waves) and absorption/ blackout (denial of communications ) effects. High-altitude
Advanced Machining Toolpath for Low Distortion
2017-02-28
Minneapolis, MN (952) 832-5515 for the U.S. Army - Aviation Development Directorate Contract No: W911W6-16-P-0044 Contractor : Third Wave...Systems, Inc. Contractor Address: 6475 City West Parkway Minneapolis, MN 55344 Distribution Statement A. Approved for public release: distribution...to such data must promptly notify the above named Contractor . The views, opinions, and findings contained in this report are those of the author
Birefringent Fiber Devices and Lasers
NASA Astrophysics Data System (ADS)
Theimer, James Prentice
1995-01-01
This thesis presents the results of numerical simulations of mode-locked figure eight lasers and their components: fiber amplifiers and nonlinear optical loop mirrors (NOLMs). The computations were designed to study pulse evolution in optical amplifiers and NOLMs with periodic repetition of these elements. Since fiber laser systems also include birefringent fiber, the effects of fiber birefringence was incorporated into the simulations. My studies of pulse amplification in non-birefringent amplifiers show pulse breakup when their energies exceed 4.5 fundamental soliton energies. In birefringent fibers pulse breakup is also found, but the two orthogonally polarized pulses propagate together. I find that their behavior is related to the properties of a vector soliton. I found that vector waves have close to unity transmission through a birefringent NOLM, but the pulse shape is distorted. This shape distortion reduces subsequent transmissions through the NOLM. The energy required for peak transmission of the pulse is predicted by the theory based on vector solitons. The same theory also predicted the low intensity transmission. The performance of the NOLM with birefringent fiber could not be improved by altering the polarization state of the pulse from linear polarization; the polarization controller introduced pulse distortion that resulted in excessive loss. I found an instability in the steady-state operation of the figure eight laser, which is due to pulse reshaping during propagation in the amplifier section. To remove this instability I introduced the concept of dispersion balancing; by increasing the dispersion in the amplifier section, the pulse can propagate nearly as a fundamental soliton in both the amplifier and the NOLM sections of the laser. This eliminated a major source of dispersive wave shedding and allowed the laser operation to become independent of the amplifier length. Sidebands were found on the pulse spectrum and their maxima corresponded well with the periodic resonance model.
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan
2017-06-01
We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir
We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linearmore » perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.« less
Teleseismic traveltime tomography of Jeju Island, South Korea
NASA Astrophysics Data System (ADS)
Song, J.; Rhie, J.; Kim, S.; Lee, S. H.
2017-12-01
Jeju Island is the largest volcanic island in South Korea, which lies off the south coast of the Korean Peninsula. It is well known that the volcanism started in the Early Pleistocene (c. 1.7 Ma) and subsequent eruptions during Late Pleistocene to Holocene formed the bulk of the island with a number of small cones. However, the origin of magma and detailed mechanism of eruptions have not been fully understood yet. To address these issues, we applied teleseismic travel time tomography to image the underlying crust and upper mantle of the island. We carefully analyzed 185 teleseismic earthquakes (5.5 < Mw < 7.9) that occurred between Oct. 2013 and Nov. 2015. Broadband waveforms recorded by 23 seismic stations covering the whole island were used to measure travel time residuals of P and S waves using semi-automated adaptive stacking technique. The residuals are mapped as three-dimensional perturbations of velocity using iterative non-linear tomographic process with a subspace inversion technique and the fast marching method for grid based eikonal solver. We used AK135 global reference model as a starting velocity model for tomography inversion. The resulting P wave tomographic images exhibit relatively low velocity anomaly in the upper mantle, which extends to depths of nearly 60 km under the summit of the island, Mt. Halla. The anomaly is likely related to a relatively high-temperature magmatic body, which might be associated to the volcanism lasted until late Cenozoic. To better constrain possible compositions of the anomalies and the existence of melt fractions, we will continue to examine perturbation of Vp/Vs ratios and discuss the evolution of the volcanic island.
Cognitive distortions among older adult gamblers in an Asian context.
Subramaniam, Mythily; Chong, Siow Ann; Browning, Colette; Thomas, Shane
2017-01-01
The study aims to describe the construct of cognitive distortions based on the narratives of older adult gamblers (aged 60 years and above) in Singapore. Singapore residents (citizens or permanent residents) aged 60 years and above, who were current or past regular gamblers were included in the study. Participants were recruited using a combination of venue based approach, referrals from service providers as well as by snowball sampling. In all, 25 in-depth interviews were conducted with older adult gamblers. The six-step thematic network analysis methodology was adopted for data analysis. The mean age of the participants was 66.2 years. The majority were male (n = 18), of Chinese ethnicity (n = 16), with a mean age of gambling initiation at 24.5 years. Among older adult gamblers, cognitive distortions emerged as a significant global theme comprising three organizing themes-illusion of control, probability control and interpretive control. The organizing themes comprised nine basic themes: perception of gambling as a skill, near miss, concept of luck, superstitious beliefs, entrapment, gambler's fallacy, chasing wins, chasing losses, and beliefs that wins are more than losses. Cognitive distortions were endorsed by all gamblers in the current study and were shown to play a role in both maintaining and escalating the gambling behaviour. While the surface characteristics of the distortions had a culture-specific appearance, the deeper characteristics of the distortions may in fact be more universal than previously thought. Future research must include longitudinal studies to understand causal relationships between cognitive distortions and gambling as well as the role of culture-specific distortions both in the maintenance and treatment of the disorder.
Compensation of strong thermal lensing in high-optical-power cavities.
Zhao, C; Degallaix, J; Ju, L; Fan, Y; Blair, D G; Slagmolen, B J J; Gray, M B; Lowry, C M Mow; McClelland, D E; Hosken, D J; Mudge, D; Brooks, A; Munch, J; Veitch, P J; Barton, M A; Billingsley, G
2006-06-16
In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated on its cylindrical surface. We show that high finesse approximately 1400 can be achieved in cavities with internal compensation plates, and that mode matching can be maintained. The experiment achieves a wave front distortion similar to that expected for the input test mass substrate in the Advanced Laser Interferometer Gravitational Wave Observatory, and shows that thermal compensation schemes are viable. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.
NASA Technical Reports Server (NTRS)
Wilson, J. C.; Lai, W. T.; Smith, S. D.
1991-01-01
Condensation nuclei were used as a tracer in midlatitude NASA Stratosphere-Troposphere Exchange Project (STEP) experiments in April and May 1984 in order to study transport in the stratosphere. The very large scale, mean CN distribution was distorted by waves which had the effect of transporting air with anticyclonic properties several degrees to the cyclonic side of the jet and created a strongly layered structure in the CN distribution. Unfiltered CN data revealed short-wavelength oscillations in the CN distribution at the interface between the transported anticyclonic air parcel and the adjacent cyclonic air mass. These oscillations were also seen in the ozone data and increase the potential for mixing along that interface. If the mixing does occur, a wave mechanism for cross-jet transport has been observed.
New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.
Weise, Louis D; Panfilov, Alexander V
2011-01-01
Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.
Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals.
Ranasinghesagara, Janaka C; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O; Venugopalan, Vasan
2017-04-17
We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction.
Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals
Ranasinghesagara, Janaka C.; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O.; Venugopalan, Vasan
2017-01-01
We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction. PMID:28437941
Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats
NASA Astrophysics Data System (ADS)
Brovoll, Sverre; Berger, Tor; Aardal, Åyvind; Lande, Tor S.; Hamran, Svein-Erik
2014-05-01
Cardiovascular diseases (CVD) are a major cause of deaths all over the world. Microwave radar can be an alternative sensor for heart diagnostics and monitoring in modern healthcare that aids early detection of CVD symptoms. In this paper measurements from a switch array radar system are presented. This UWB system operates below 3 GHz and does time-lapse imaging of the beating heart inside the human body. The array consists of eight fat dipole elements. With a switch system, every possible sequence of transmit/receive element pairs can be selected to build a radar image from the recordings. To make the radar waves penetrate the human tissue, the antenna array is placed in contact with the body. Removal of the direct signal leakage through the antennas and body surface are done by high-pass (HP) filtering of the data prior to image processing. To analyze the results, measurements of moving spheres in air and simulations are carried out. We see that removal of the direct signal introduces amplitude distortion in the images. In addition, the effect of small target motion between the collection times of data from the individual elements is analyzed. With low pulse repetition frequency (PRF) this motion will distort the image. By using data from real measurements of heart motion in simulations, we analyze how the PRF and the antenna geometry influence this distortions.
Analyzing the relationships between reflection source DPOAEs and SFOAEs using a computational model
NASA Astrophysics Data System (ADS)
Wen, Haiqi; Bowling, Thomas; Meaud, Julien
2018-05-01
Distortion product otoacoustic emissions (DPOAEs) are sounds generated by the cochlea in response to a stimulus that consists of two primary tones. DPOAEs consist of a mixture of emissions arising from two different mechanisms: nonlinear distortion and coherent reflection. Stimulus Frequency Otoacoustic Emissions (SFOAEs) are sounds generated by the cochlea in response to a pure tone; SFOAEs are commonly hypothesized to be generated due to coherent reflection. Nonlinearity of the outer hair cells (OHCs) provides nonlinear amplification to the traveling wave while reflections occur due to pre-existing micromechanical impedance perturbations. In this work, DPOAEs are obtained from a time domain computational model coupling a lumped parameter middle ear model with a multiphysics mechanical-electrical-acoustical model of cochlea. Cochlear roughness is intro-duced by perturbing the value of the OHC electromechanical coupling coefficient to account for the putative inhomogeneities inside the cochlea. The DPOAEs emitted in the ear canal are decomposed into distortion source and reflection source components. The reflection source component of DPOAEs is compared to SFOAEs obtained using a frequency-domain implementation of the model, to help us understand how distortion source and reflection source contributes to total DPOAEs. Moreover, the group delays of reflection sources OAEs are compared to group delays in the basilar membrane velocity to clarify the relationship between basilar membrane and OAE group delays.
Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall.
Mast, T D; Hinkelman, L M; Metlay, L A; Orr, M J; Waag, R C
1999-12-01
A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and bone. This extended model has been used to simulate ultrasonic propagation through anatomically detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented by two-dimensional maps determined by staining chest wall cross sections to distinguish between tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then assigned a sound speed, density, and absorption value determined from published measurements and assumed to be representative of the local tissue type. Computational results for energy level fluctuations and arrival time fluctuations show qualitative agreement with measurements performed on the same specimens, but show significantly less waveform distortion than measurements. Visualization of simulated tissue-ultrasound interactions in the chest wall shows possible mechanisms for image aberration in echocardiography, including effects associated with reflection and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations increase to a lesser degree.
Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H
2013-01-01
Introduction Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (−) P wave in V1 or a biphasic (+/−) P wave in V1. Results s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). Conclusion We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema. PMID:23690680
Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion
Grimshaw, Roger; Stepanyants, Yury; Alias, Azwani
2016-01-01
It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg–de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg–de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg–de Vries solitary wave. PMID:26997887
Bramhall, Naomi F.; Konrad-Martin, Dawn; McMillan, Garnett P.; Griest, Susan E.
2017-01-01
Objectives Recent animal studies demonstrated that cochlear synaptopathy, a partial loss of inner hair cell-auditory nerve fiber synapses, can occur in response to noise exposure without any permanent auditory threshold shift. In animal models, this synaptopathy is associated with a reduction in the amplitude of wave I of the auditory brainstem response (ABR). The goal of this study was to determine whether higher lifetime noise exposure histories in young people with clinically normal pure-tone thresholds are associated with lower ABR wave I amplitudes. Design Twenty-nine young military Veterans and 35 non Veterans (19 to 35 years of age) with normal pure-tone thresholds were assigned to 1 of 4 groups based on their self-reported lifetime noise exposure history and Veteran status. Suprathreshold ABR measurements in response to alternating polarity tone bursts were obtained at 1, 3, 4, and 6 kHz with gold foil tiptrode electrodes placed in the ear canal. Wave I amplitude was calculated from the difference in voltage at the positive peak and the voltage at the following negative trough. Distortion product otoacoustic emission input/output functions were collected in each participant at the same four frequencies to assess outer hair cell function. Results After controlling for individual differences in sex and distortion product otoacoustic emission amplitude, the groups containing participants with higher reported histories of noise exposure had smaller ABR wave I amplitudes at suprathreshold levels across all four frequencies compared with the groups with less history of noise exposure. Conclusions Suprathreshold ABR wave I amplitudes were reduced in Veterans reporting high levels of military noise exposure and in non Veterans reporting any history of firearm use as compared with Veterans and non Veterans with lower levels of reported noise exposure history. The reduction in ABR wave I amplitude in the groups with higher levels of noise exposure cannot be accounted for by sex or variability in outer hair cell function. This change is similar to the decreased ABR wave I amplitudes observed in animal models of noise-induced cochlear synaptopathy. However, without post mortem examination of the temporal bone, no direct conclusions can be drawn concerning the presence of synaptopathy in the study groups with higher noise exposure histories. PMID:27992391
Thermo-mechanical modeling of the gas-tungsten-arc (GTA) welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, D.B.
1980-01-18
A fundamental study of gas-tungsten-arc (GTA) welding was undertaken. This was initiated with a review of the GTA welding process which lead to the decision to focus experimental and analytical efforts on stationary welds on a pure material. Pure nickel was selected for the test material. Temperature, strain, and distortion measurements were made during the formation of spot welds on circular plates. Transient thermal data were obtained with thermocouples, a radiation pyrometer, and from motion pictures. Local strain was observed qualitatively from Moire interference fringe patterns. Distortion during welding was measured with displacement gages and residual distortion with a profilometer.more » Experimental measurements are compared with predictions of thermal and mechanical finite element codes.« less
Construction of 3-D Earth Models for Station Specific Path Corrections by Dynamic Ray Tracing
2001-10-01
the numerical eikonal solution method of Vidale (1988) being used by the MIT led consortium. The model construction described in this report relies...assembled. REFERENCES Barazangi, M., Fielding, E., Isacks, B. & Seber, D., (1996), Geophysical And Geological Databases And Ctbt...preprint download6). Fielding, E., Isacks, B.L., and Baragangi. M. (1992), A Network Accessible Geological and Geophysical Database for
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng; Jing, Liping; Li, Yongqiang
2018-05-01
In this paper, transient wave propagation is investigated within a fluid/saturated porous medium halfspace system with a planar interface that is subjected to a cylindrical P-wave line source. Assuming the permeability coefficient is sufficiently large, analytical solutions for the transient response of the fluid/saturated porous medium halfspace system are developed. Moreover, the analytical solutions are presented in simple closed forms wherein each term represents a transient physical wave, especially the expressions for head waves. The methodology utilised to determine where the head wave can emerge within the system is also given. The wave fields within the fluid and porous medium are first defined considering the behaviour of two compressional waves and one tangential wave in the saturated porous medium and one compressional wave in the fluid. Substituting these wave fields into the interface continuity conditions, the analytical solutions in the Laplace domain are then derived. To transform the solutions into the time domain, a suitable distortion of the contour is provided to change the integration path of the solution, after which the analytical solutions in the Laplace domain are transformed into the time domain by employing Cagniard's method. Numerical examples are provided to illustrate some interesting features of the fluid/saturated porous medium halfspace system. In particular, the interface wave and head waves that propagate along the interface between the fluid and saturated porous medium can be observed.
On the Scattering of Sound by a Rectilinear Vortex
NASA Astrophysics Data System (ADS)
HOWE, M. S.
1999-11-01
A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.
Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Sun, Ning
2018-04-01
Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.
Observation and parametrization of wave attenuation through the MIZ
NASA Astrophysics Data System (ADS)
Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.
2016-02-01
Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.
Effect of doping with nickel ions on the structural state of a zinc oxide crystal
NASA Astrophysics Data System (ADS)
Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Maksimov, V. I.; Gruzdev, N. B.
2009-10-01
The fine structure of a hexagonal zinc oxide crystal doped with nickel ions of the composition Zn1 - x Ni x O has been studied using neutron diffraction and magnetic measurements. It is established that even at very low doping levels ( x = 0.0004), the crystal undergoes local distortions in basal planes of the initial hexagonal lattice. The local distortions are assumed to be sources of the formation of ferromagnetism in compounds of this class.
Applications of High-Frequency Gravitational Waves to the Global War on Terror
NASA Astrophysics Data System (ADS)
Baker, Robert M. L.
2010-01-01
Applications of high-frequency gravitational waves or HFGWs to the global war on terror are now realistic because technology developed by GravWave® LLC and other institutions overseas can lead to devices, some already constructed, that can generate and detect HFGWs. In fact, three HFGW detectors have been built outside the United States and an ultra high-sensitive Li-Baker HFGW Detector has been proposed. HFGW generators have been proposed theoretically by the Russians, Germans, Italians and Chinese. Because of their unique characteristics, such as their ability to pass through all material without attenuation, HFGWs could be utilized for uninterruptible, very low-probability-of-intercept (LPI), high-bandwidth communications among and between anti-terrorist assets. One such communications system, which can be constructed from off-the-shelf elements, is discussed. The HFGW generation device or transmitter alternative selected is based upon bands of piezoelectric crystal, film-bulk acoustic resonators or FBARs energized by conventional Magnetrons. The system is theoretically capable of transmitting and detecting, through use of the Li-Baker HFGW detector, a signal generated on the opposite side of the Earth. Although HFGWs do not interact with and are not absorbed by ordinary matter, their presence can be detected by their distortion of spacetime as measured by the Laser Interferometer Gravitational Observatory (LIGO), Virgo, GEO600, et al., by detection photons generated from electromagnetic beams having the same frequency, direction and phase as the HFGWs in a superimposed magnetic field (Li-Baker HFGW Detector), by the change in polarization HFGWs produce in a microwave guide (Birmingham University Detector) and by other such instruments. Potential theoretical applications, which may or may not be practical yet theoretically possible, are propulsion, including "moving" space objects such as missiles, anti-missiles and warheads in flight; surveillance through buildings and the Earth itself and remote initiation of nuclear events. Such applications can only be quantified and established as practical by the proof-of-concept generation and detection of HFGWs in the laboratory experiment. These important potential HFGW applications are motivations for HFGW research and development and such an R&D program is recommended for immediate initiation.
Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, Anand
2012-01-01
We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.
Solar tomography adaptive optics.
Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang
2014-03-10
Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.
Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset
2017-06-21
Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.
New window into stochastic gravitational wave background.
Rotti, Aditya; Souradeep, Tarun
2012-11-30
A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We correct the results provided in existing literature for modifications to the CMB polarization power spectra due to lensing by gravitational waves. Weak lensing by gravitational waves distorts all four CMB power spectra; however, its effect is most striking in the mixing of power between the E mode and B mode of CMB polarization. This suggests the possibility of using measurements of the CMB angular power spectra to constrain the energy density (Ω(GW)) of the SGWB. Using current data sets (QUAD, WMAP, and ACT), we find that the most stringent constraints on the present Ω(GW) come from measurements of the angular power spectra of CMB temperature anisotropies. In the near future, more stringent bounds on Ω(GW) can be expected with improved upper limits on the B modes of CMB polarization. Any detection of B modes of CMB polarization above the expected signal from large scale structure lensing could be a signal for a SGWB.
Easton, Curtis R.; Weir, Keiko; Scott, Adina; Moen, Samantha P.; Barger, Zeke; Folch, Albert; Hevner, Robert F.
2014-01-01
Many structures of the mammalian CNS generate propagating waves of electrical activity early in development. These waves are essential to CNS development, mediating a variety of developmental processes, such as axonal outgrowth and pathfinding, synaptogenesis, and the maturation of ion channel and receptor properties. In the mouse cerebral cortex, waves of activity occur between embryonic day 18 and postnatal day 8 and originate in pacemaker circuits in the septal nucleus and the piriform cortex. Here we show that genetic knock-out of the major synthetic enzyme for GABA, GAD67, selectively eliminates the picrotoxin-sensitive fraction of these waves. The waves that remain in the GAD67 knock-out have a much higher probability of propagating into the dorsal neocortex, as do the picrotoxin-resistant fraction of waves in controls. Field potential recordings at the point of wave initiation reveal different electrical signatures for GABAergic and glutamatergic waves. These data indicate that: (1) there are separate GABAergic and glutamatergic pacemaker circuits within the piriform cortex, each of which can initiate waves of activity; (2) the glutamatergic pacemaker initiates waves that preferentially propagate into the neocortex; and (3) the initial appearance of the glutamatergic pacemaker does not require preceding GABAergic waves. In the absence of GAD67, the electrical activity underlying glutamatergic waves shows greatly increased tendency to burst, indicating that GABAergic inputs inhibit the glutamatergic pacemaker, even at stages when GABAergic pacemaker circuitry can itself initiate waves. PMID:24623764
Dynamics of the exceptional warming events during the Arctic winters 2003/04, 2005/06 and 2008/09
NASA Astrophysics Data System (ADS)
Kuttippurath, Jayanarayanan; Godin-Beekmann, Sophie; Lefèvre, Franck; Nikulin, Grigory
2010-05-01
Sudden stratospheric warmings (SSW) are common features of the Arctic meteorology. During a major SSW, polar temperature rises and the zonal mean flow weakens dramatically over a short period of time. This situation causes displacement, distortion or split of the polar vortex. The Arctic winters 2003/04, 2005/06 and 2008/09 were characterized by major midwinter warming of different proportions. The major warming occurred in early January in 2003/04 and in mid-January in the other winters in the lower stratosphere. The winter 2003/04 was remarkable in that a stable vortex formed again in March 2004 after two months of severe disturbance. No vortex was evident in other winters after the mid-January major warming. The planetary waves 1 and 2 play a key role in warming events and in vortex distortions as they control the stratospheric circulation. The dominating presence and amplitude of these waves were also different in each winter. In this presentation, we characterize the winters 2003/04, 2005/06 and 2008/09 in terms of chemical and dynamical situation during the winters. In order to illustrate, we exploit the heat flux, zonal wind characteristics, Eliassen-Palm vectors and planetary wave analyzes for the winters in a comparative perspective. The dynamical parameters are derived from ECMWF analyzes and the chemical realm are discussed in terms of the measurements from MLS (Microwave Limb Sounder) and POAM (Polar Ozone and Aerosol Measurement) as well as simulations from the Mimosa-Chim global three-dimensional chemical transport model.
Orr, Vanessa L; Esselman, Brian J; Dorman, P Matisha; Amberger, Brent K; Guzei, Ilia A; Woods, R Claude; McMahon, Robert J
2016-10-06
The pure rotational spectrum of diketene has been studied in the millimeter-wave region from ∼240 to 360 GHz. For the ground vibrational state and five vibrationally excited satellites (ν 24 , 2ν 24 , 3ν 24 , 4ν 24 , and ν 16 ), the observed spectrum allowed for the measurement, assignment, and least-squares fitting a total of more than 10 000 distinct rotational transitions. In each case, the transitions were fit to single-state, complete or near-complete sextic centrifugally distorted rotor models to near experimental error limits using Kisiel's ASFIT. Additionally, we obtained less satisfactory least-squares fits to single-state centrifugally distorted rotor models for three additional vibrational states: ν 24 + ν 16 , ν 23 , and 5ν 24 . The structure of diketene was optimized at the CCSD(T)/ANO1 level, and the vibration-rotation interaction (α i ) values for each normal mode were determined with a CCSD(T)/ANO1 VPT2 anharmonic frequency calculation. These α i values were helpful in identifying the previously unreported ν 16 and ν 23 fundamental states. We obtained a single-crystal X-ray structure of diketene at -173 °C. The bond distances are increased in precision by more than an order of magnitude compared to those in the 1958 X-ray crystal structure. The improved accuracy of the crystal structure geometry resolves the discrepancy between previous computational and experimental structures. The rotational transition frequencies provided herein should be useful for a millimeter-wave or terahertz search for diketene in the interstellar medium.
Electron Impact Excitation-Ionization of Molecules
NASA Astrophysics Data System (ADS)
Ali, Esam Abobakr A.
In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.
NASA Technical Reports Server (NTRS)
Steenken, W. G.; Williams, J. G.; Yuhas, A. J.; Walsh, K. R.
1999-01-01
The F404-GE-400 engine powered F/A- 18A High Alpha Research Vehicle (HARV) was used to examine the quality of inlet airflow during departed flight maneuvers, that is, during flight outside the normal maneuvering envelope where control surfaces have little or no effectiveness. A series of six nose-left and six nose-right departures were initiated at Mach numbers between 0.3 and 0.4 at an altitude of 35 kft. The yaw rates at departure recovery were in the range of 40 to 90 degrees per second. Engine surges were encountered during three of the nose-left and one of the nose-right departures. Time-variant inlet-total-pressure distortion levels at the engine face were determined to not significantly exceed those measured at maximum angle-of-attack and - sideslip maneuvers during controlled flight. Surges as a result of inlet distortion levels were anticipated to initiate in the fan. Analysis revealed that the surges initiated in the compressor and were the result of a combination of high levels of inlet distortion and rapid changes in aircraft motion. These rapid changes in aircraft motion are indicative of a combination of engine mount and gyroscopic loads being applied to the engine structure that impact the aerodynamic stability of the compressor through changes in the rotor-to-case clearances.