Sample records for distortion structures

  1. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  2. Visualization of Hyperconjugation and Subsequent Structural Distortions through 3D Printing of Crystal Structures.

    PubMed

    Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj

    2016-01-01

    Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.

  3. Local structural distortion and electrical transport properties of Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure

    DOE PAGES

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; ...

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Wemore » find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less

  4. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure.

    PubMed

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.

  5. A Model-Based Approach for Microvasculature Structure Distortion Correction in Two-Photon Fluorescence Microscopy Images

    PubMed Central

    Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh

    2015-01-01

    SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257

  6. A methodology to investigate the impact of image distortions on the radiation dose when using magnetic resonance images for planning

    NASA Astrophysics Data System (ADS)

    Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong

    2018-04-01

    We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.

  7. The Jahn-Teller distortion influenced ferromagnetic order in Pr1-xLaxMnO3

    NASA Astrophysics Data System (ADS)

    He, Feifei; Mao, Zhongquan; Tang, Lingyun; Zhang, Jiang; Chen, Xi

    2018-06-01

    The structural and magnetic properties of Pr1-xLaxMnO3 (0 ≤ x ≤ 1) polycrystalline powders are investigated. A structural phase transition from a large Jahn-Teller (J-T) distorted orthorhombic structure to a small J-T distorted orthorhombic phase is found at x = 0.70, while the LaMnO3 is showed to have a rhombohedral structure. All the samples exhibit ferromagnetic ordering, and meanwhile, a reentrant spin glass behavior at low temperature. The relationship between J-T distortions and the ferromagnetic order is discussed.

  8. (In) Sensitivity to spatial distortion in natural scenes

    PubMed Central

    Bex, Peter J.

    2010-01-01

    The perception of object structure in the natural environment is remarkably stable under large variation in image size and projection, especially given our insensitivity to spatial position outside the fovea. Sensitivity to periodic spatial distortions that were introduced into one quadrant of gray-scale natural images was measured in a 4AFC task. Observers were able to detect the presence of distortions in unfamiliar images even though they did not significantly affect the amplitude spectrum. Sensitivity depended on the spatial period of the distortion and on the image structure at the location of the distortion. The results suggest that the detection of distortion involves decisions made in the late stages of image perception and is based on an expectation of the typical structure of natural scenes. PMID:20462324

  9. Local structure of the SnTe topological crystalline insulator: Rhombohedral distortions emerging from the rocksalt phase

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Shintani, T.; Tominaga, J.; Uruga, T.

    2014-10-01

    AIVBVI crystals are believed to possess a rhombohedral (ferroelectric) structure at low temperature that changes to the rocksalt (paraelectric) structure above the Curie temperature. For GeTe it has been recently demonstrated that locally the structure retains the subsets of the shorter and longer bonds across the ferroelectric-to-paraelectric transition despite acquiring the cubic structure on average. Nothing is known about the existence of local distortions in SnTe, a prototypical topological crystalline insulator, where the crystal symmetry plays a crucial role. In this work we report the results of x-ray absorption measurements. We find that the structure is locally rhombohedrally distorted, and the distortions increase at T >100K, breaking the rocksalt average symmetry. Our density functional theory simulations performed at 0 K indicate that the role of spin-orbit coupling in the formation of the local structure of SnTe at low temperature is negligibly small. The small stochastic distortions do not affect the intrinsic band inversion of SnTe.

  10. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  11. Theoretical prediction of welding distortion in large and complex structures

    NASA Astrophysics Data System (ADS)

    Deng, De-An

    2010-06-01

    Welding technology is widely used to assemble large thin plate structures such as ships, automobiles, and passenger trains because of its high productivity. However, it is impossible to avoid welding-induced distortion during the assembly process. Welding distortion not only reduces the fabrication accuracy of a weldment, but also decreases the productivity due to correction work. If welding distortion can be predicted using a practical method beforehand, the prediction will be useful for taking appropriate measures to control the dimensional accuracy to an acceptable limit. In this study, a two-step computational approach, which is a combination of a thermoelastic-plastic finite element method (FEM) and an elastic finite element with consideration for large deformation, is developed to estimate welding distortion for large and complex welded structures. Welding distortions in several representative large complex structures, which are often used in shipbuilding, are simulated using the proposed method. By comparing the predictions and the measurements, the effectiveness of the two-step computational approach is verified.

  12. Effect of pressure on the tetragonal distortion in TiH2: a first-principles study

    NASA Astrophysics Data System (ADS)

    de Coss, R.; Quijano, R.; Singh, D. J.

    2009-03-01

    The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.

  13. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  14. Correlation between the structural distortions and thermoelectric characteristics in La(1-x)A(x)CoO(3) (A = Ca and Sr).

    PubMed

    Wang, Yang; Sui, Yu; Ren, Peng; Wang, Lan; Wang, Xianjie; Su, Wenhui; Fan, Hong Jin

    2010-04-05

    Detailed structures and thermoelectric (TE) properties are investigated for the perovskite La(1-x)Ca(x)CoO(3) and La(1-x)Sr(x)CoO(3) with 0

  15. Heme Distortions in Sperm-Whale Carbonmonoxy Myoglobin: Correlations between Rotational Strengths and Heme Distortions in MD-Generated Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI

    2000-07-13

    The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decompositionmore » and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.« less

  16. Effect of structural distortion on the electronic band structure of NaOsO3 studied within density functional theory and a three-orbital model

    NASA Astrophysics Data System (ADS)

    Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash

    2018-04-01

    Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.

  17. Transient Signal Distortion and Coupling in Multilayer Multiconductor MIC Microstrips

    DTIC Science & Technology

    1990-05-22

    cess.ar1 and identify by block number) I FIELD GROUP I $..)3-{; ’\\0-:: Transient signals, distortion, dispersion, microstrip J 1 i nes , multi...printed circuit design; complex microstrip structures {multiple lines and/or dielectric layers), coupling between lines, distortion of non -periodic...signals on complex structures, and a new method to control coupling on multilayer structures, as well as presenting numerical results for each of these

  18. Study of distorted octahedral structure in 3d transition metal complexes using XAFS

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.

    2018-01-01

    Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.

  19. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  20. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate.

    PubMed

    Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E

    2017-04-21

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  1. Functional modulation of a protein folding landscape via side-chain distortion

    PubMed Central

    Kelch, Brian A.; Salimi, Neema L.; Agard, David A.

    2012-01-01

    Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results in a ∼6° distortion along the side-chain, estimated to cost 4 kcal/mol. By contrast, in the closely related protease Streptomyces griseus Protease B (SGPB), the equivalent Phe adopts a different rotamer and is undistorted. Here, we report that the αLP Phe side-chain distortion is both functional and conserved in proteases with large pro regions. Sequence analysis of the αLP serine protease family reveals a bifurcation separating those sequences expected to induce distortion and those that would not, which correlates with the extent of kinetic stability. Structural and folding kinetics analyses of family members suggest that distortion of this side-chain plays a role in increasing kinetic stability within the αLP family members that use a large Pro region. Additionally, structural and kinetic folding studies of mutants demonstrate that strain alters the folding free energy landscape by destabilizing the transition state (TS) relative to the native state (N). Although side-chain distortion comes at a cost of foldability, it suppresses the rate of unfolding, thereby enhancing kinetic stability and increasing protein longevity under harsh extracellular conditions. This ability of a structural distortion to enhance function is unlikely to be unique to αLP family members and may be relevant in other proteins exhibiting side-chain distortions. PMID:22635267

  2. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE PAGES

    Pham, Joyce; Miller, Gordon J.

    2018-04-02

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  3. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Miller, Gordon J.

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  4. Transformation and Alignment in Similarity

    ERIC Educational Resources Information Center

    Hodgetts, Carl J.; Hahn, Ulrike; Chater, Nick

    2009-01-01

    This paper contrasts two structural accounts of psychological similarity: structural alignment (SA) and Representational Distortion (RD). SA proposes that similarity is determined by how readily the structures of two objects can be brought into alignment; RD measures similarity by the complexity of the transformation that "distorts" one…

  5. Local lattice distortion in high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian

    2017-07-01

    The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.

  6. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    NASA Astrophysics Data System (ADS)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  7. Probabilistic assessment of smart composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Michael C.

    1994-01-01

    A composite wing with spars and bulkheads is used to demonstrate the effectiveness of probabilistic assessment of smart composite structures to control uncertainties in distortions and stresses. Results show that a smart composite wing can be controlled to minimize distortions and to have specified stress levels in the presence of defects. Structural responses such as changes in angle of attack, vertical displacements, and stress in the control and controlled plies are probabilistically assessed to quantify their respective uncertainties. Sensitivity factors are evaluated to identify those parameters that have the greatest influence on a specific structural response. Results show that smart composite structures can be configured to control both distortions and ply stresses to satisfy specified design requirements.

  8. Role of distortion in the hcp vs fcc competition in rare-gas solids

    NASA Astrophysics Data System (ADS)

    Krainyukova, N. V.

    2011-05-01

    As a prototype of an initial or intermediate structure between hcp and fcc lattices we consider a distorted bcc crystal. We calculate the temperature and pressure dependences of the lattice parameters for the heavier rare gas solids Ar, Kr, Xe in a quasiharmonic approximation with Aziz potentials, and confirm earlier predictions that the hcp structure predominates over fcc in the bulk within wide ranges of P and T. The situation is different for confined clusters with up to 105 atoms, where, owing to the specific surface energetics and terminations, structures with five-fold symmetry made up of fcc fragments are dominant. As a next step we consider the free relaxation of differently distorted bcc clusters, and show that two types (monoclinic and orthorhombic) of initial distortion are a driving force for the final hcp vs fcc configurations. Possible energy relationships between the initial and final structures are obtained and analyzed.

  9. Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Lu, Ya Yan

    2018-02-01

    Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.

  10. Effects of inflow distortion profiles on fan tone noise calculated using a 3-D theory

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.; Groeneweg, J. F.

    1979-01-01

    Calculations of the fan tone acoustic power and modal structure generated by complex distortions in axial inflow velocity are presented. The model used treats the motor as a rotating three-dimensional cascade and calculates the acoustic field from the distortion-produced dipole distribution on the blades including noncompact source effects. Radial and circumferential distortion shapes are synthesized from Fourier-Bessel components representing individual distortion modes. The relation between individual distortion modes and the generated acoustic modes is examined for particular distortion cases. Comparisons between theoretical and experimental results for distortions produced by wakes from upstream radial rods show that the analysis is a good predictor of acoustic power dependence on disturbance strength.

  11. Multiferroic Properties of o-LuMnO3 Controlled by b-Axis Strain

    NASA Astrophysics Data System (ADS)

    Windsor, Y. W.; Huang, S. W.; Hu, Y.; Rettig, L.; Alberca, A.; Shimamoto, K.; Scagnoli, V.; Lippert, T.; Schneider, C. W.; Staub, U.

    2014-10-01

    Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO3. An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.

  12. Multiferroic properties of o-LuMnO3 controlled by b-axis strain.

    PubMed

    Windsor, Y W; Huang, S W; Hu, Y; Rettig, L; Alberca, A; Shimamoto, K; Scagnoli, V; Lippert, T; Schneider, C W; Staub, U

    2014-10-17

    Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO(3). An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.

  13. Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules

    NASA Astrophysics Data System (ADS)

    Garner, Scott M.; Miller, Terry A.

    2017-06-01

    The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.

  14. Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in γ -Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T. A. L.; Lippertz, G.; Trekels, M.; Menéndez, E.; Kremer, F.; Wahl, U.; Costa, A. R. G.; Correia, J. G.; Banerjee, D.; Gunnlaugsson, H. P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M. J.; Hadermann, J.; Araújo, J. P.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-11-01

    γ -Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γ -Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a =3.76 (2 )Å and c =3.50 (2 )Å , and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γ -Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γ -Fe taking tetragonal distortion into account.

  15. Cosmological Distortions in Redshift Space

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara S.

    1995-05-01

    The long-sought value of q_0, the deceleration parameter, remains elusive. One method of finding q_0 is to measure the distortions of large scale structure in redshift space. If the Hubble constant changes with time, then the mapping between redshift space and real space is nonlinear, even in the absence of peculiar motions. When q_0 > -1, structures in redshift space will be distorted along the line of sight; the distortion is proportional to (1 + q_0 ) z in the limit that the redshift z is small. The cosmological distortions at z <= 0.2 can be found by measuring the shapes of voids in redshift surveys of galaxies (such as the upcoming Sloane Digital Sky Survey). The cosmological distortions are masked to some extent by the distortions caused by small-scale peculiar velocities; it is difficult to measure the shape of a void when the fingers of God are poking into it. The cosmological distortions at z ~ 1 can be found by measuring the correlation function of quasars as a function of redshift and of angle relative to the line of sight. Finding q_0 by measuring distortions in redshift space, like the classical methods of determining q_0, is simple and elegant in principle but complicated and messy in practice.

  16. The principle of minimal episteric distortion of the water matrix and its steering role in protein folding

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2013-08-01

    A significant episteric ("around a solid") distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water. Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.

  17. On relative distortion in fingerprint comparison.

    PubMed

    Kalka, Nathan D; Hicklin, R Austin

    2014-11-01

    When fingerprints are deposited, non-uniform pressure in conjunction with the inherent elasticity of friction ridge skin often causes linear and non-linear distortions in the ridge and valley structure. The effects of these distortions must be considered during analysis of fingerprint images. Even when individual prints are not notably distorted, relative distortion between two prints can have a serious impact on comparison. In this paper we discuss several metrics for quantifying and visualizing linear and non-linear fingerprint deformations, and software tools to assist examiners in accounting for distortion in fingerprint comparisons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide

    NASA Astrophysics Data System (ADS)

    Cui, Chang-Xing; Kertesz, Miklos

    1990-06-01

    A new type of Peierls-like distortion, the formation of a helix due to the existence of partially filled crossing bands, is reported for polyketone and polyisocyanide. The torsional potential curves, optimized geometries, band structures and phonon dispersion curves are derived. A comparison with the well-known Peierls-distorted all-trans polyacetylene indicates close similarity between the two types of Peierls distortions.

  19. Structural distortion-induced magnetoelastic locking in Sr(2)IrO(4) revealed through nonlinear optical harmonic generation.

    PubMed

    Torchinsky, D H; Chu, H; Zhao, L; Perkins, N B; Sizyuk, Y; Qi, T; Cao, G; Hsieh, D

    2015-03-06

    We report a global structural distortion in Sr_{2}IrO_{4} using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I4_{1}/acd to I4_{1}/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr_{2}IrO_{4}.

  20. Limits on the fluctuating part of y-type distortion monopole from Planck and SPT results

    NASA Astrophysics Data System (ADS)

    Khatri, Rishi; Sunyaev, Rashid

    2015-08-01

    We use the published Planck and SPT cluster catalogs [1,2] and recently published y-distortion maps [3] to put strong observational limits on the contribution of the fluctuating part of the y-type distortions to the y-distortion monopole. Our bounds are 5.4× 10-8 < langle yrangle < 2.2× 10-6. Our upper bound is a factor of 6.8 stronger than the currently best upper 95% confidence limit from COBE-FIRAS of langle yrangle <15× 10-6. In the standard cosmology, large scale structure is the only source of such distortions and our limits therefore constrain the baryonic physics involved in the formation of the large scale structure. Our lower limit, from the detected clusters in the Planck and SPT catalogs, also implies that a Pixie-like experiment should detect the y-distortion monopole at >27-σ. The biggest sources of uncertainty in our upper limit are the monopole offsets between different HFI channel maps that we estimate to be <10-6.

  1. Minimizing distortion and internal forces in truss structures by simulated annealing

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Padula, Sharon L.

    1990-01-01

    Inaccuracies in the length of members and the diameters of joints of large space structures may produce unacceptable levels of surface distortion and internal forces. Here, two discrete optimization problems are formulated, one to minimize surface distortion (DSQRMS) and the other to minimize internal forces (FSQRMS). Both of these problems are based on the influence matrices generated by a small-deformation linear analysis. Good solutions are obtained for DSQRMS and FSQRMS through the use of a simulated annealing heuristic.

  2. New mechanism of structuring associated with the quasi-merohedral twinning by an example of Ca{sub 1–x}La{sub x}F{sub 2+x} ordered solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksimov, S. K., E-mail: maksimov-sk@comtv.ru; Maksimov, K. S., E-mail: kuros@rambler.ru; Sukhov, N. D.

    Merohedry is considered an inseparable property of atomic structures, and uses for the refinement of structural data in a process of correct determination of structure of compounds. Transformation of faulty structures stimulated by decreasing of systemic cumulative energy leads to generation of merohedral twinning type. Ordering is accompanied by origin of antiphase domains. If ordering belongs to the CuAu type, it is accompanied by tetragonal distortions along different (100) directions. If a crystal consists of mosaic of nanodimensional antiphase domains, the conjugation of antiphase domains with different tetragonality leads to monoclinic distortions, at that, conjugated domains are distorted mirrorly. Similarmore » system undergoes further transformation by means of quasi-merohedral twinning. As a result of quasi-merohedry, straight-lines of lattices with different monoclinic distortions are transformed into coherent lattice broken-lines providing minimization of the cumulative energy. Structuring is controlled by regularities of the self-organization. However stochasticity of ordering predetermines the origin areas where few domains with different tetragonality contact which leads to the origin of faulty fields braking regular passage of structuring. Resulting crystal has been found structurally non-uniform, furthermore structural non-uniformity permits identifying elements and stages of a process. However there is no precondition preventing arising the origin of homogenous states. Effect has been revealed in Ca{sub 1–x}La{sub x}F{sub 2+x} solid solution, but it can be expected that distortions of regular alternation of ions similar to antiphase domains can be obtained in non-equilibrium conditions in compounds and similar effect of the quasi-merohedry can falsify results of structural analysis.« less

  3. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  4. The stabilization mechanism of titanium cluster

    NASA Astrophysics Data System (ADS)

    Sun, Houqian; Ren, Yun; Hao, Yuhua; Wu, Zhaofeng; Xu, Ning

    2015-05-01

    A systematic and comparative theoretical study on the stabilization mechanism of titanium cluster has been performed by selecting the clusters Tin (n=3, 4, 5, 7, 13, 15 and 19) as representatives in the framework of density-functional theory. For small clusters Tin (n=3, 4 and 5), the binding energy gain due to spin polarization is substantially larger than that due to structural distortion. For medium clusters Ti13 and Ti15, both have about the same contribution. For Tin (n=4, 5, 13 and 15), when the undistorted high symmetric structure with spin-polarization is changed into the lowest energy structure, the energy level spelling due to distortion fails to reverse the level order of occupied and unoccupied molecular orbital (MO) of two type spin states, the spin configuration remains unchanged. In spin restricted and undistorted high symmetric structure, d orbitals participate in the hybridization in MOs, usually by way of a less distorted manner, and weak bonds are formed. In contrast, d orbitals take part in the formation of MOs in the ground state structure, usually in a distorted manner, and strong covalent metallic bonds are formed.

  5. JWST ISIM Distortion Analysis Challenge

    NASA Technical Reports Server (NTRS)

    Cifie, Emmanuel; Matzinger, Liz; Kuhn, Jonathan; Fan, Terry

    2004-01-01

    Very tight distortion requirements are imposed on the JWST's ISM structure due to the sensitivity of the telescope's mirror segment and science instrument positioning. The ISIM structure is a three dimensional truss with asymmetric gusseting and metal fittings. One of the primary challenges for ISIM's analysis team is predicting the thermal distortion of the structure both from the bulk cooldown from ambient to cryo, and the smaller temperature changes within the cryogenic operating environment. As a first cut to estimate thermal distortions, a finite element model of bar elements was created. Elements representing joint areas and metal fittings use effective properties that match the behavior of the stack-up of the composite tube, gusset and adhesive under mechanical and thermal loads. These properties were derived by matching tip deflections of a solid model simplified T-joint. Because of the structure s asymmetric gusseting, this effective property model is a first attempt at predicting rotations that cannot be captured with a smeared CTE approach. In addition to the finite element analysis, several first order calculations have been performed to gauge the feasibility of the material design. Because of the stringent thermal distortion requirements at cryogenic temperatures, a composite tube material with near zero or negative CTE is required. A preliminary hand analysis of the contribution of the various components along the distortion path between FGS and the other instruments, neglecting second order effects were examined. A plot of bounding tube longitudinal and transverse CTEs for thermal stability requirements was generated to help determine the feasibility of meeting these requirements. This analysis is a work in progress en route to a large degree of freedom hi-fidelity FEA model for distortion analysis. Methods of model reduction, such as superelements, are currently being investigated.

  6. Mapping and distortions of auroral structures in the quiet magnetosphere

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.; Larson, Douglas J.; Lu, Chen

    1990-01-01

    The closed quiet magnetosphere model of Beard (1979) and Beard et al. (1982) is used to identify those features of commonly observed dayside auroras that can be explained by either of two processes: mapping distortions or distortions caused by nearby Birkeland currents. It is shown that single and multiple linear and hooked auroral forms can be easily explained in terms of mapping distortions in a quiet magnetosphere. On the other hand, the shapes of bright twisted or folded auroral forms can be more easily explained as distortions produced by localized Birkeland currents.

  7. Ellipsoidal analysis of coordination polyhedra

    PubMed Central

    Cumby, James; Attfield, J. Paul

    2017-01-01

    The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules. PMID:28146146

  8. Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography withumbrella configuration.

    PubMed

    Zhu, Xuelian; Xu, Yongan; Yang, Shu

    2007-12-10

    We present a quantitative study of the distortion from a threeterm diamond-like structure fabricated in SU8 polymer by four-beam holographic lithography. In the study of the refraction effect, theory suggests that the lattice in SU8 should be elongated in the [111] direction but have no distortion in the (111) plane, and each triangular-like hole array in the (111) plane would rotate by ~30 degrees away from that in air. Our experiments agree with the prediction on the periodicity in the (111) plane and the rotation due to refraction effect, however, we find that the film shrinkage during lithographic process has nearly compensated the predicted elongation in the [111] direction. In study of photonic bandgap (PBG) properties of silicon photonic crystals templated by the SU8 structure, we find that the distortion has decreased quality of PBG.

  9. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti4+) Doping

    PubMed Central

    Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu

    2015-01-01

    The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809

  10. Structural characterization of synthetic and protein-bound porphyrins in terms of the lowest-frequency normal coordinates of the macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jentzen, W.; Song, X.Z.; Shelnutt, J.A.

    1997-02-27

    The X-ray crystal structures of synthetic and protein-bound metalloporphyrins are analyzed using a new normal structural decomposition method for classifying and quantifying their out-of-plane and in-plane distortions. These distortions are characterized in terms of equivalent displacements along the normal coordinates of the D{sub 4h}-symmetric porphyrin macrocycle (normal deformations). It is shown that the macrocyclic structure is, even in highly distorted porphyrins, accurately represented by displacements along only the lowest-frequency normal coordinates. Accordingly, the macrocyclic structure obtained from just the out-of-plane normal deformations of the saddling (sad, B{sub 2u})-, ruffling (ruf, B{sub 1u})-, doming (dom, A{sub 2u})-, waving [wav(x), wav(y); E{submore » g}]-, and propellering (pro, A{sub 1u})-type essentially simulates the out-of-plane distortion of the X-ray crystal structure. Similarly, the observed in-plane distortions are decomposed into in-plane normal deformations corresponding to the lowest-frequency vibrational modes including macrocycle stretching in the direction of the meso-carbon atoms (meso-str, B{sub 2g}), stretching in the direction of the nitrogen atoms (N-str, B{sub 1g}), x and y pyrrole translations [trn(x), trn(y); E{sub u}], macrocycle breathing (bre, A{sub 1g}), and pyrrole rotation (rot, A{sub 2g}). 71 refs., 9 figs., 4 tabs.« less

  11. Experimental thermal mechanics of deployable boom structures

    NASA Technical Reports Server (NTRS)

    Predmore, R.

    1972-01-01

    An apparatus was developed for thermal distortion measurements on deployable boom structures. The calibration procedure and thermal static bending plus twist measurements are considered. The thermal mechanics test facility is described. A table is presented for several examples of spacecraft applications of thermal static distortion measurements on 3-m deployable booms.

  12. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge.

    PubMed

    Sang, Xiahan; LeBeau, James M

    2014-03-01

    We report the development of revolving scanning transmission electron microscopy--RevSTEM--a technique that enables characterization and removal of sample drift distortion from atomic resolution images without the need for a priori crystal structure information. To measure and correct the distortion, we acquire an image series while rotating the scan coordinate system between successive frames. Through theory and experiment, we show that the revolving image series captures the information necessary to analyze sample drift rate and direction. At atomic resolution, we quantify the image distortion using the projective standard deviation, a rapid, real-space method to directly measure lattice vector angles. By fitting these angles to a physical model, we show that the refined drift parameters provide the input needed to correct distortion across the series. We demonstrate that RevSTEM simultaneously removes the need for a priori structure information to correct distortion, leads to a dramatically improved signal-to-noise ratio, and enables picometer precision and accuracy regardless of drift rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Simultaneous measurements of density field and wavefront distortions in high speed flows

    NASA Astrophysics Data System (ADS)

    George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin

    2017-09-01

    This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.

  14. Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones

    PubMed Central

    Shera, Christopher A.; Abdala, Carolina

    2016-01-01

    When distortion-product otoacoustic emissions (DPOAEs) are evoked using stimuli whose instantaneous frequencies change rapidly and continuously with time (swept tones), the oscillatory interference pattern known as distortion-product fine structure shifts slightly along the frequency axis in the same direction as the sweep. By analogy with the temporal mechanisms thought to underlie the differing efficacies of up- and down-swept stimuli as perceptual maskers (e.g., Schroeder-phase complexes), fine-structure shifts have been ascribed to the phase distortion associated with dispersive wave propagation in the cochlea. This paper tests an alternative hypothesis and finds that the observed shifts arise predominantly as a methodological side effect of the analysis procedures commonly used to extract delayed emissions from the measured time waveform. Approximate expressions for the frequency shifts of DPOAE distortion and reflection components are derived, validated with computer simulations, and applied to account for DPOAE fine-structure shifts measured in human subjects. Component magnitudes are shown to shift twice as much as component phases. Procedures for compensating swept-tone measurements to obtain estimates of the total DPOAE and its components measured at other sweep rates or in the sinusoidal steady state are presented. PMID:27586726

  15. Contour sensitive saliency and depth application in image retargeting

    NASA Astrophysics Data System (ADS)

    Lu, Hongju; Yue, Pengfei; Zhao, Yanhui; Liu, Rui; Fu, Yuanbin; Zheng, Yuanjie; Cui, Jia

    2018-04-01

    Image retargeting technique requires important information preservation and less edge distortion during increasing/decreasing image size. The major existed content-aware methods perform well. However, there are two problems should be improved: the slight distortion appeared at the object edges and the structure distortion in the nonsalient area. According to psychological theories, people evaluate image quality based on multi-level judgments and comparison between different areas, both image content and image structure. The paper proposes a new standard: the structure preserving in non-salient area. After observation and image analysis, blur (slight blur) is generally existed at the edge of objects. The blur feature is used to estimate the depth cue, named blur depth descriptor. It can be used in the process of saliency computation for balanced image retargeting result. In order to keep the structure information in nonsalient area, the salient edge map is presented in Seam Carving process, instead of field-based saliency computation. The derivative saliency from x- and y-direction can avoid the redundant energy seam around salient objects causing structure distortion. After the comparison experiments between classical approaches and ours, the feasibility of our algorithm is proved.

  16. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    PubMed

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.

  17. Multidimensional incremental parsing for universal source coding.

    PubMed

    Bae, Soo Hyun; Juang, Biing-Hwang

    2008-10-01

    A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.

  18. Expertise and processing distorted structure in chess.

    PubMed

    Bartlett, James C; Boggan, Amy L; Krawczyk, Daniel C

    2013-01-01

    A classic finding in research on human expertise and knowledge is that of enhanced memory for stimuli in a domain of expertise as compared to either stimuli outside that domain, or within-domain stimuli that have been degraded or distorted in some way. However, we do not understand how experts process degradation or distortion of stimuli within the expert domain (e.g., a face with the eyes, nose, and mouth in the wrong positions, or a chessboard with pieces placed randomly). Focusing on the domain of chess, we present new fMRI evidence that when experts view such distorted/within-domain stimuli, they engage an active search for structure-a kind of exploratory chunking-that involves a component of a prefrontal-parietal network linked to consciousness, attention and working memory.

  19. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE PAGES

    Wen, Tongqi; Sun, Yang; Ye, Beilin; ...

    2018-01-31

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  20. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Tongqi; Sun, Yang; Ye, Beilin

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  1. Cooling rate dependence of structural order in Ni62Nb38 metallic glass

    NASA Astrophysics Data System (ADS)

    Wen, Tongqi; Sun, Yang; Ye, Beilin; Tang, Ling; Yang, Zejin; Ho, Kai-Ming; Wang, Cai-Zhuang; Wang, Nan

    2018-01-01

    Molecular dynamics (MD) simulations are performed to study the structure of Ni62Nb38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni62Nb38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfect icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.

  2. Local structure and polarization resistance of Ce doped SrMnO{sub 3} using extended x-ray fine structure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr

    2014-09-15

    Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less

  3. Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Kim, Dae Ho; Lee, Ho Nyung; Biegalski, Michael D.; Christen, Hans M.

    2008-01-01

    Multiferroic BiFeO3 epitaxial films with thicknesses ranging from 40to960nm were grown by pulsed laser deposition on SrTiO3 (001) substrates with SrRuO3 bottom electrodes. X-ray characterization shows that the structure evolves from angularly distorted tetragonal with c /a≈1.04 to more bulklike distorted rhombohedral (c/a≈1.01) as the strain relaxes with increasing thickness. Despite this significant structural evolution, the ferroelectric polarization along the body diagonal of the distorted pseudocubic unit cells, as calculated from measurements along the normal direction, barely changes.

  4. Local atomic and electronic structures of epitaxial strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.

    2012-01-01

    We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.

  5. Simultaneous measurement of aero-optical distortion and turbulent structure in a heated boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav

    2014-11-01

    This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  6. Limits on the fluctuating part of y-type distortion monopole from Planck and SPT results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatri, Rishi; Sunyaev, Rashid, E-mail: khatri@mpa-garching.mpg.de, E-mail: sunyaev@mpa-garching.mpg.de

    2015-08-01

    We use the published Planck and SPT cluster catalogs [1,2] and recently published y-distortion maps [3] to put strong observational limits on the contribution of the fluctuating part of the y-type distortions to the y-distortion monopole. Our bounds are 5.4× 10{sup −8} < ( y) < 2.2× 10{sup −6}. Our upper bound is a factor of 6.8 stronger than the currently best upper 95% confidence limit from COBE-FIRAS of ( y) <15× 10{sup −6}. In the standard cosmology, large scale structure is the only source of such distortions and our limits therefore constrain the baryonic physics involved in the formation of the large scale structure. Our lower limit, from themore » detected clusters in the Planck and SPT catalogs, also implies that a Pixie-like experiment should detect the y-distortion monopole at >27-σ. The biggest sources of uncertainty in our upper limit are the monopole offsets between different HFI channel maps that we estimate to be <10{sup −6}.« less

  7. Ferroelectric and paraelectric Ba0.5Sr0.5TiO3 film structure distortions at room temperature and their effects on tunable microwave properties

    NASA Astrophysics Data System (ADS)

    Alldredge, L. M. B.; Chang, Wontae; Qadri, Syed B.; Kirchoefer, Steven W.; Pond, Jeffrey M.

    2007-05-01

    Sputter-deposited Ba0.5Sr0.5TiO3 films on (001) MgO were characterized for their dielectric properties with different lattice structures. With varying Ar :O2 ratios during deposition, the films showed either in-plane (ca) tetragonal distortions, significantly affecting the dielectric constant and tunability. The dielectric constant exhibited clear hysteresis with dc bias at room temperature, indicating that the films were ferroelectric. The relationship between the dielectric properties and the distortions was the reverse of that observed in films deposited by pulsed laser deposition. The anisotropic in-plane dielectric behavior can be understood by relating polarization to film distortions and to the presence of permanent dipoles.

  8. Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi

    2013-03-01

    Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.

  9. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    DTIC Science & Technology

    2015-11-01

    induced residual stresses and distortions from weld simulations in the SYSWELD software code in structural Finite Element Analysis ( FEA ) simulations...performed in the Abaqus FEA code is presented. The translation of these results is accomplished using a newly developed Python script. Full details of...Local Weld Model in Structural FEA ....................................................15 CONCLUSIONS

  10. Mapping all the mass in the universe (with weak gravitational lensing) - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Spencer

    Recent discoveries have shown that most of the universe is made of an exotic dark matter that behaves much differently than the normal matter that we experience in everyday life. As we cannot detect dark matter directly, we must infer its location in the universe by indirect effects, such as the distortion of light from distant galaxies as it travels through large clouds of dark matter. While the degree of distortion should be proportional to the amount of dark matter present, we don't know the original shape of the galaxy so the distortion is difficult to quantify. If we hadmore » a model of how dark matter is linked to galaxies, and thus be able predict the amount of distortion that should occur, we could apply the model to galaxy surveys to map out the dark matter in our universe. In this research, I attach a spherical 'halo' of dark matter to each galaxy in a simulated universe to approximate its known complex dark matter structure. I then predict how the halos distort the light from distant galaxies generated behind the halos. As the data is simulated, the true distortion of the light is known which is compared to the halo-predicted distortion. I find that, on average, the model under-predicts the degree of distortion on all scales and fails to capture distortions from large-scale dark matter structure. These issues are likely due to missing features in the model, as the halo model is a greatly simplified version of the actual distribution of dark matter. Potential improvements to the model for future work are discussed.« less

  11. Harmonic distortion in microwave photonic filters.

    PubMed

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  12. Optical analysis of thermal induced structural distortions

    NASA Technical Reports Server (NTRS)

    Weinswig, Shepard; Hookman, Robert A.

    1991-01-01

    The techniques used for the analysis of thermally induced structural distortions of optical components such as scanning mirrors and telescope optics are outlined. Particular attention is given to the methodology used in the thermal and structural analysis of the GOES scan mirror, the optical analysis using Zernike coefficients, and the optical system performance evaluation. It is pointed out that the use of Zernike coefficients allows an accurate, effective, and simple linkage between thermal/mechanical effects and the optical design.

  13. Structural and electronic phase transitions of MoTe2 induced by Li ionic gating

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae

    2017-12-01

    Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.

  14. Structural changes during milling of aluminum oxide powders

    NASA Technical Reports Server (NTRS)

    Ziepler, G.

    1984-01-01

    The mechanical activation of four fused corundum powders and a calcined Al2O3 powder was studied. The milled powders were characterized by their structural properties, crystallite size, and lattice distortions. Structural changes during milling, detected by X-ray line broadening analysis, gave information about the enhanced activity of the powders caused by the lattice distortions and by the decreasing crystallite size during milling. The structural changes during milling, under the same milling conditions, can be quite different for the same ceramic material, but with different characteristics in the as received state.

  15. Magnetic structure and local lattice distortion in giant negative thermal expansion material Mn3Cu1-xGexN

    NASA Astrophysics Data System (ADS)

    Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Shamoto, S.

    2010-11-01

    Magnetic and local structures in an antiperovskite system, Mn3Cu1-xGexN, with a giant negative thermal expansion have been studied by neutron powder diffraction measurement. We discuss (1) an importance of an averaged cubic crystal structure and a ΓG5g antiferromagnetic spin structure for the large magneto-volume effect (MVE) in this itinerant electron system, (2) an unique role of a local lattice distortion well described by the low temperature tetragonal structure of Mn3GeN for the broadening of MVE.

  16. The Structure of Self-Serving Cognitive Distortions: A Validation of the "How I Think" Questionnaire in a Sample of Italian Adolescents

    ERIC Educational Resources Information Center

    Bacchini, Dario; De Angelis, Grazia; Affuso, Gaetana; Brugman, Daniel

    2016-01-01

    This study aims to investigate the structure of self-serving cognitive distortions (CD), evaluating the psychometric properties of the How I Think Questionnaire in a sample of Italian adolescents. A confirmatory factor analysis supported the distinction between four categories of CD and the use of a single second-order dimension of CD. Reliability…

  17. COBE limits on explosive structure formation scenarios

    NASA Technical Reports Server (NTRS)

    Levin, Janna J.; Freese, Katherine; Spergle, David N.

    1992-01-01

    The Compton y-distortion that would result from an epoch of explosions at moderate redshifts is estimated and compared to recent measurements of the CBR spectrum made by the COBE satellite. The temperature anisotropy on large angular scales is estimated, and it is found that in general the limits on the overall spectral distortion are more constraining than those on the temperature anisotropy. It is found that most of the y-distortion is produced during the early, noncosmological phase of bubble evolution. An expression is obtained for the y-distortion including the effects of Compton cooling. The implications of the findings are discussed.

  18. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  19. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  20. The importance of topographic corrections on magnetotelluric response data from rugged regions of Anatolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerer, A.; Ilkisik, O.M.

    1997-01-01

    Topographic irregularities cause some distortions of magnetotelluric (MT) fields. In the vicinity of a topographic feature, the TM-mode distortion increases with the height and inclination of the slope. It is well-known that TM-mode topographic effects are much greater than TE-mode distortions. The authors have made a study of MT anomalies in TM-mode due to two-dimensional topography. In order to reduce these effects, the distortion tensor stripping technique was used. After corrections, the resulting data can be interpreted as if they were obtained over a flat surface and depend only on the subsurface structure. However, this technique sometimes causes some geometricalmore » distortions of the real subsurface structure. One of the aims is to overcome this failure. The authors have modified the correction coefficients by considering the actual one-dimensional geology. Model studies showed that this approach is especially useful in removing the terrain effects on complex 2D subsurface structures. The other purpose of this study is to emphasize the importance of a proper terrain correction for data from sites having mountainous topography over complex geology, e.g., strike-slip faults, suture zones and rift valleys. Some examples of MT data sets collected from the North Anatolian Fault Zone and from the thrust regions of the Western Taurides will be presented.« less

  1. Development of a Cryogenic Thermal Distortion Measurement Facility for Testing the James Webb Space Telescope Instrument Support Integration Module 2-D Test Assemblies

    NASA Technical Reports Server (NTRS)

    Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; hide

    2007-01-01

    The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard deviation for all of the distortion measurements is less than 0.5 microns, which falls within the ISIM requirement of 3 microns.

  2. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  3. Controlling octahedral rotations in a perovskite via strain doping

    DOE PAGES

    Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; ...

    2016-05-24

    The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film canmore » be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO 3 films coherently grown on SrTiO 3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.« less

  4. Making sense, making good, or making meaning? Cognitive distortions as targets of change in offender treatment.

    PubMed

    Friestad, Christine

    2012-05-01

    Most structured sex-offender programs are based on a cognitive-behavioural model of behaviour change. Within this overarching theoretical paradigm, extensive use of cognitive distortions is seen as a central core symptom among sex offenders. However, the literature on cognitive distortions lacks a clear and consistent definition of the term. It is unclear whether cognitive distortions are consciously employed excuses or unconscious processes serving to protect the offender from feelings of guilt or shame. In this article, the dominant cognitive-behavioural interpretation of cognitive distortions is contrasted with two alternative interpretations. One is based on an attributional perspective and the notion of attributional biases. The other explanation is based on a narrative approach focusing on the action elements of cognitive distortions, that is, as something people do rather than something they have. Clinical implications of these alternative conceptualizations are discussed and illustrated throughout by a case example.

  5. Fabric geometry distortion during composites processing

    NASA Technical Reports Server (NTRS)

    Chen, Julie

    1994-01-01

    Waviness and tow misalignment are often cited as possible causes of data scatter and lower compression stiffness and strength in textile composites. Strength differences of as much as 40 percent have been seen in composites that appear to have the same basic material and structural properties -- i.e., yarn orientation, yarn size, interlacing geometry. Fabric geometry distortion has been suggested as a possible reason for this discrepancy, but little quantitative data or substantial evidence exists. The focus of this research is to contribute to the present understanding of the causes and effects of geometric distortion in textile composites. The initial part of the study was an attempt to gather qualitative information on a variety of textile structures. Existing and new samples confirmed that structures with a significant direction presence would be more susceptible to distortion due to the compaction process. Thus, uniweaves (fiber vol frac: 54-72 percent) biaxial braids (vf: 34-58 percent) demonstrated very little fabric geometry distortion. In stitched panels, only slight buckling of z-direction stitches was observed, primarily near the surface. In contrast, for structures with high compaction ratios -- e.g., large cylindrical yarns (2.5:1) orpowder towpreg (4:1) -- there were visible distortions where previously smooth and periodic undulations were transformed to abrupt changes in direction. A controlled study of the effect of forming pressure on distortion was conducted on type 162 glass plain weave fabrics. Panels (6 x 6 in) were produced via a resin infusion type setup, but with an EPON 815 epoxy resin. Pressures ranging from hand layup to 200 psi were used (vf: 34-54 percent). Photomicrographs indicated that at pressures up to 50 psi, large changes in thickness were due primarily to resin squeeze out. At higher pressures, when intimate contact was made between the layers, there was some tow flattening and in-plane shifting to optimize nesting. However, even at 200 psi the period and amplitude of the tow undulation remained constant, suggesting that for this relatively fine fabric, distortions from compaction were not a problem. Because of the interest in using larger tows (to reduce cost) and more complex structures, tests were also run on 2D triaxial glass braid (113 yd/lb at 0, 225 yd/lb at +/- 45). Forming pressures of 20, 50, 200, and 500 psi were used, and short block compression tests were run. The 500 psi specimen had a 10 percent decrease in modulus and an almost 50 percent decrease in strength (vs. 20 psi). Because the total fiber wgt/panel was kept constant, the thickness varied from 0.32 to 0.22 in (49-70 percent vf). Yet, the strength value is clearly below what would be expected, even with the decrease in thickness. Photomicrographs of these samples will be taken to determine if more fabric distortion exists in the 500 psi specimens. Finally, because the ultimate goal is to be able to predict and control distortion in a variety of textile structures, a model compaction test was developed to directly measure the deformation of the tows during compaction. Layers of dry glass fabric were placed in a mold with a clear plexiglass window. The yarn amplitude and period was then calculated using image analysis of the videotaped deformation. Preliminary tests demonstrated the feasibility of this technique for simple fabrics with large tows.

  6. Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.

    2018-05-01

    Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.

  7. Detailed relationship between local structure, polarons, and magnetizationfor La1-xCaxMnO3 (0.21≤x≤0.45)

    NASA Astrophysics Data System (ADS)

    Bridges, F.; Downward, L.; Neumeier, J. J.; Tyson, T. A.

    2010-05-01

    We present detailed local structure measurements (using the extended x-ray absorption fine structure technique) for the colossal magnetoresistive material La1-xCaxMnO3 (0.21

  8. Comparison of the Manganese Cluster in Oxygen-Evolving Photosystem II with Distorted Cubane Manganese Compounds through X-ray Absorption Spectroscopy

    PubMed Central

    Cinco, Roehl M.; Rompel, Annette; Visser, Hendrik; Aromí, Guillem; Christou, George; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    X-ray absorption spectroscopy has been employed to assess the degree of similarity between the oxygen-evolving complex (OEC) in photosystem II (PS II) and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride, or bromide). These [Mn4(μ3-O)3(μ3-X)] cubanes possess C3v symmetry except for the X = benzoate species, which is slightly more distorted with only Cs symmetry. In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The Mn K-edge X-ray absorption near edge structure (XANES) from the oxygen-ligated complexes begin to resemble general features of the PS II (S1 state) spectrum, although the second derivatives are distinct from those in PS II. The extended X-ray absorption fine structure (EXAFS) of these Mn compounds also displays superficial resemblance to that of PS II, but major differences emerge on closer examination of the phases and amplitudes. The most obvious distinction is the smaller magnitude of the Fourier transform (FT) of the PS II EXAFS compared to the FTs from the distorted cubanes. Curve fitting of the Mn EXAFS spectra verifies the known core structures of the Mn cubanes, and shows that the number of the crucial 2.7 and 3.3 Å Mn–Mn distances differs from that observed in the OEC. The EXAFS method detects small changes in the core structures as X is varied in this series, and serves to exclude the distorted cubane of C3v symmetry as a topological model for the Mn catalytic cluster of the OEC. Instead, the method shows that even more distortion of the cubane framework, altering the ratio of the Mn–Mn distances, is required to resemble the Mn cluster in PS II. PMID:11671305

  9. The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts

    NASA Astrophysics Data System (ADS)

    Mishurova, Tatiana; Cabeza, Sandra; Thiede, Tobias; Nadammal, Naresh; Kromm, Arne; Klaus, Manuela; Genzel, Christoph; Haberland, Christoph; Bruno, Giovanni

    2018-07-01

    The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed.

  10. The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts

    NASA Astrophysics Data System (ADS)

    Mishurova, Tatiana; Cabeza, Sandra; Thiede, Tobias; Nadammal, Naresh; Kromm, Arne; Klaus, Manuela; Genzel, Christoph; Haberland, Christoph; Bruno, Giovanni

    2018-05-01

    The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed.

  11. Effect of aluminum on the local structure of silicon in zeolites as studied by Si K edge X-ray absorption near-edge fine structure: spectra simulation with a non-muffin tin atomic background.

    PubMed

    Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V

    2009-04-09

    Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.

  12. GdPtPb: A noncollinear antiferromagnet with distorted kagome lattice

    DOE PAGES

    Manni, S.; Bud'ko, Sergey L.; Canfield, Paul C.

    2017-08-24

    In the spirit of searching for Gd-based, frustrated, rare earth magnets, we have found antiferomagnetism (AF) in GdPtPb, which crystallizes in the ZrNiAl-type structure that has a distorted kagome lattice of Gd triangles. Single crystals were grown and investigated using structural, magnetic, transport, and thermodynamic measurements. GdPtPb orders antiferromagnetically at 15.5 K, arguably with a planar, noncollinear structure. The high temperature magnetic susceptibility data reveal an “anti-frustration” behavior having a frustration parameter, |f| = |Θ|/T N = 0.25, which can be explained by mean field theory within a two-sublattice model. Here, the study of the magnetic phase diagram down tomore » T = 1.8K reveals a change of magnetic structure through a metamagnetic transition at around 20 kOe and the disappearance of the AF ordering near 140 kOe. In total, our work indicates that GdPtPb can serve as an example of a planar, noncollinear AF with a distorted kagome magnetic sublattice.« less

  13. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    NASA Astrophysics Data System (ADS)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  14. The influence of maternal psychopathology on ratings of child psychiatric symptoms: an SEM analysis on cross-informant agreement.

    PubMed

    Müller, Jörg M; Achtergarde, Sandra; Furniss, Tilman

    2011-05-01

    The distorting influence of maternal depression on the ratings of child behaviour is known as the depression-distortion hypothesis. This study investigated the depression-distortion hypothesis in a clinical sample of child psychiatric preschool children and extended the depression-distortion hypothesis to maternal psychopathology-distortion hypothesis in general. Subjects were 124 children, who were referred for treatment in a Child Psychiatric Family Day Hospital for preschool children, and their parents. Children were rated on the CBCL/1.5-5 and the C-TRF/1.5-5 by their mothers, kindergarten teachers and therapists. Maternal psychopathology was assessed by self-rating with the SCL-90-R and the BDI. The appropriateness of the depression-distortion hypothesis, as well as two alternatives, the accuracy and the combinatory model, were subsequently analysed by structural equation modelling (SEM), including the ratings of all three informants. Model fit and parameter estimation supported the distortion model, suggesting that ratings of child behaviour by mothers may be biased by maternal psychopathology. Findings are discussed with regard to the existing cross-informant literature, with particular consideration of the distortion hypothesis and third person ratings of child psychopathology in preschool age.

  15. Effects of EPI distortion correction pipelines on the connectome in Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Galvis, Justin; Mezher, Adam F.; Ragothaman, Anjanibhargavi; Villalon-Reina, Julio E.; Fletcher, P. Thomas; Thompson, Paul M.; Prasad, Gautam

    2016-03-01

    Echo-planar imaging (EPI) is commonly used for diffusion-weighted imaging (DWI) but is susceptible to nonlinear geometric distortions arising from inhomogeneities in the static magnetic field. These inhomogeneities can be measured and corrected using a fieldmap image acquired during the scanning process. In studies where the fieldmap image is not collected, these distortions can be corrected, to some extent, by nonlinearly registering the diffusion image to a corresponding anatomical image, either a T1- or T2-weighted image. Here we compared two EPI distortion correction pipelines, both based on nonlinear registration, which were optimized for the particular weighting of the structural image registration target. The first pipeline used a 3D nonlinear registration to a T1-weighted target, while the second pipeline used a 1D nonlinear registration to a T2-weighted target. We assessed each pipeline in its ability to characterize high-level measures of brain connectivity in Parkinson's disease (PD) in 189 individuals (58 healthy controls, 131 people with PD) from the Parkinson's Progression Markers Initiative (PPMI) dataset. We computed a structural connectome (connectivity map) for each participant using regions of interest from a cortical parcellation combined with DWI-based whole-brain tractography. We evaluated test-retest reliability of the connectome for each EPI distortion correction pipeline using a second diffusion scan acquired directly after the participants' first. Finally, we used support vector machine (SVM) classification to assess how accurately each pipeline classified PD versus healthy controls using each participants' structural connectome.

  16. Phase Separation and d Electronic Orbitals on Cyclic Degradation in Li-Mn-O Compounds: First-Principles Multiscale Modeling and Experimental Observations.

    PubMed

    Kim, Duho; Lim, Jin-Myoung; Park, Min-Sik; Cho, Kyeongjae; Cho, Maenghyo

    2016-07-06

    A combined study involving experiments and multiscale computational approaches is conducted to propose a theoretical solution for the suppression of the Jahn-Teller distortion which causes severe cyclic degradation. As-synthesized pristine and Al-doped Mn spinel compounds are the focus to understand the mechanism of the cyclic degradation in terms of the Jahn-Teller distortion, and the electrochemical performance of the Al-doped sample shows enhanced cyclic performance compared with that of the pristine one. Considering the electronic structures of the two systems using first-principles calculations, the pristine spinel suffers entirely from the Jahn-Teller distortion by Mn(3+), indicating an anisotropic electronic structure, but the Al-doped spinel exhibits an isotropic electronic structure, which means the suppressed Jahn-Teller distortion. A multiscale phase field model in nanodomain shows that the phase separation of the pristine spinel occurs to inactive Li0Mn2O4 (i.e., fully delithiated) gradually during cycles. In contrast, the Al-doped spinel does not show phase separation to an inactive phase. This explains why the Al-doped spinel maintains the capacity of the first charge during the subsequent cycles. On the basis of the mechanistic understanding of the origins and mechanism of the suppression of the Jahn-Teller distortion, fundamental insight for making tremendous cuts in the cyclic degradation could be provided for the Li-Mn-O compounds of Li-ion batteries.

  17. Mutation of the myosin converter domain alters cross-bridge elasticity

    PubMed Central

    Köhler, Jan; Winkler, Gerhard; Schulte, Imke; Scholz, Tim; McKenna, William; Brenner, Bernhard; Kraft, Theresia

    2002-01-01

    Elastic distortion of a structural element of the actomyosin complex is fundamental to the ability of myosin to generate motile forces. An elastic element allows strain to develop within the actomyosin complex (cross-bridge) before movement. Relief of this strain then drives filament sliding, or more generally, movement of a cargo. Even with the known crystal structure of the myosin head, however, the structural element of the actomyosin complex in which elastic distortion occurs remained unclear. To assign functional relevance to various structural elements of the myosin head, e.g., to identify the elastic element within the cross-bridge, we studied mechanical properties of muscle fibers from patients with familial hypertrophic cardiomyopathy with point mutations in the head domain of the β-myosin heavy chain. We found that the Arg-719 → Trp (Arg719Trp) mutation, which is located in the converter domain of the myosin head fragment, causes an increase in force generation and fiber stiffness under isometric conditions by 48–59%. Under rigor and relaxing conditions, fiber stiffness was 45–47% higher than in control fibers. Yet, kinetics of active cross-bridge cycling were unchanged. These findings, especially the increase in fiber stiffness under rigor conditions, indicate that cross-bridges with the Arg719Trp mutation are more resistant to elastic distortion. The data presented here strongly suggest that the converter domain that forms the junction between the catalytic and the light-chain-binding domain of the myosin head is not only essential for elastic distortion of the cross-bridge, but that the main elastic distortion may even occur within the converter domain itself. PMID:11904418

  18. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.

    PubMed

    Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong

    2017-11-22

    Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.

  19. Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.

    PubMed

    Wang, Zhenhai; Zhou, Xiang-Feng; Zhang, Xiaoming; Zhu, Qiang; Dong, Huafeng; Zhao, Mingwen; Oganov, Artem R

    2015-09-09

    Using systematic evolutionary structure searching we propose a new carbon allotrope, phagraphene [fæ'græfi:n], standing for penta-hexa-hepta-graphene, because the structure is composed of 5-6-7 carbon rings. This two-dimensional (2D) carbon structure is lower in energy than most of the predicted 2D carbon allotropes due to its sp(2)-binding features and density of atomic packing comparable to graphene. More interestingly, the electronic structure of phagraphene has distorted Dirac cones. The direction-dependent cones are further proved to be robust against external strain with tunable Fermi velocities.

  20. Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.

    The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less

  1. Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3

    DOE PAGES

    Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; ...

    2016-11-11

    The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less

  2. Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong

    2018-05-01

    In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.

  3. First-Principles Study of the Jahn-Teller Distortion in the Ti1-XVXH2 and Zr1-XNbxH2 Alloys

    NASA Astrophysics Data System (ADS)

    Quijano, Ramiro; de Coss, Romeo; Singh, David

    2008-03-01

    The transition metal dihydrides TiH2 and ZrH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Electronic band structure calculations have shown that TiH2 and ZrH2 in the cubic phase display a very flat band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. In order to understand the role of band filling in controlling the structural instability of the transition metal dihydrides, we have performed a first-principles total energy study of the Ti1-XVxH2 and Zr1-xNbxH2 alloys. The calculations were performed using FP-LAPW method within the (DFT) and we use the GGA for exchange correlation functional energy. The critical concentration for which the Jahn-Teller effect is suppressed, was determined from the evolution of the tetragonal-cubic energy barrier. We discuss the electronic mechanism of the structural-instability, in terms of the band filling. From the obtained results we conclude that the tetragonal distortion in TiH2 and ZrH2 is not produced only by a Jahn-Teller Effect. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.

  4. The Generation of Harmonic Distortion and Distortion Products in a Computational Model of the Cochlea

    NASA Astrophysics Data System (ADS)

    Meaud, Julien; Li, Yizeng; Grosh, Karl

    2011-11-01

    It is generally agreed that the nonlinear response of the cochlea is due to the forward transduction of the outer hair cell (OHC) hair bundle (HB) and subsequent alteration of the active force applied to the cochlear structures, including the basilar membrane (BM). A mechanical-acoustical-electrical model of the cochlea with three-dimensional fluid representation, and feedback from OHC somatic motility coupled to nonlinear HB mechanotransduction is used to predict nonlinear distortion of the BM response to acoustic stimulus. An efficient alternating frequency time scheme is implemented to solve for the nonlinear stationary dynamics of the cochlea. The model is used to predict the location of maximum generation of nonlinear distortion during pure tone and two-tone stimulation as well as the propagation of the distortion components on the BM.

  5. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  6. Distorted allotropes of bi-benzene: vibronic interactions and electronic excitations

    NASA Astrophysics Data System (ADS)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.

    2017-05-01

    Bi-benzene - chemically bound two benzene molecules in stuck position is studied both analytically and numerically. There are several allotropes of bi-benzene having different geometry. The reason of the existence of sundry distorted structures is the pseudo-Jahn-Teller effect. The parameters of vibronic couplings causing distortions are found. For the calculation of these parameters both, the vibronic coupling of carbon atoms in different C6 rings and the vibronic coupling in the rings are considered. The contribution of the distortion of C6-planes to the latter coupling is also found. The energies of all the electronic states of π-electrons in all bi-benzene allotropes are determined by using the calculated vibronic interaction parameters.

  7. Repair of distortion-induced fatigue damage in bridge no. 135-87 (043SB and 044NB) using newly-developed strengthening schemes : summary.

    DOT National Transportation Integrated Search

    2016-08-01

    A steel girder twin bridge structure located near Park City, Kansas, has experienced : extensive distortion-induced fatigue cracking in its web-gap regions. Due to : the bridges skewed, staggered configuration, the majority of these cracks have : ...

  8. A robust fingerprint matching algorithm based on compatibility of star structures

    NASA Astrophysics Data System (ADS)

    Cao, Jia; Feng, Jufu

    2009-10-01

    In fingerprint verification or identification systems, most minutiae-based matching algorithms suffered from the problems of non-linear distortion and missing or faking minutiae. Local structures such as triangle or k-nearest structure are widely used to reduce the impact of non-linear distortion, but are suffered from missing and faking minutiae. In our proposed method, star structure is used to present local structure. A star structure contains various number of minutiae, thus, it is more robust with missing and faking minutiae. Our method consists of four steps: 1) Constructing star structures at minutia level; 2) Computing similarity score for each structure pair, and eliminating impostor matched pairs which have the low scores. As it is generally assumed that there is only linear distortion in local area, the similarity is defined by rotation and shifting. 3) Voting for remained matched pairs according to the compatibility between them, and eliminating impostor matched pairs which gain few votes. The concept of compatibility is first introduced by Yansong Feng [4], the original definition is only based on triangles. We define the compatibility for star structures to adjust to our proposed algorithm. 4) Computing the matching score, based on the number of matched structures and their voting scores. The score also reflects the fact that, it should get higher score if minutiae match in more intensive areas. Experiments evaluated on FVC 2004 show both effectiveness and efficiency of our methods.

  9. Effect of doping with nickel ions on the structural state of a zinc oxide crystal

    NASA Astrophysics Data System (ADS)

    Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Maksimov, V. I.; Gruzdev, N. B.

    2009-10-01

    The fine structure of a hexagonal zinc oxide crystal doped with nickel ions of the composition Zn1 - x Ni x O has been studied using neutron diffraction and magnetic measurements. It is established that even at very low doping levels ( x = 0.0004), the crystal undergoes local distortions in basal planes of the initial hexagonal lattice. The local distortions are assumed to be sources of the formation of ferromagnetism in compounds of this class.

  10. Topological magnetic phase in LaMnO3 (111) bilayer

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai

    2015-11-01

    Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as the Hubbard-type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semimetal (graphenelike) which is also a half metal [different from graphene or the previously studied LaNiO3 (111) bilayer]. The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (˜1.7 meV) than the undistorted one (˜11 meV). Therefore, to suppress the lattice distortion can be helpful to enhance the robustness of the topological phase in perovskite (111) bilayers.

  11. Orbital ordering-driven ferromagnetism in LaCoO3 nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Fan, Hong Jin

    2010-09-01

    The structure and magnetic properties of LaCoO3 nanowires are investigated as a function of the diameter in the temperature range of 5-300 K. Ferromagnetism below 85 K is observed in these nanowires, in agreement with the recent observations in LaCoO3 epitaxial thin films and nanoparticles. With the diameter of nanowires decreasing, the unit-cell volume increases, while both the global and local structural distortions lessen, accompanied by the gradual enhancement of ferromagnetism. The structure analysis reveals that LaCoO3 nanowires exhibit a monoclinic distorted structure with I2/a space group in the entire investigated temperature range. Different from bulks, there is no clear spin-state transition occurring with temperature in LaCoO3 nanowires. There exists a noticeable Jahn-Teller (JT) distortion in the nanowires even at the lowest temperature, namely, orbital-ordered JT active Co3+ ions with intermediate-spin (IS) state persist at low temperatures, which is not observed in bulk LaCoO3. These results indicate that the ferromagnetism in the nanowires is driven by the orbital ordering of IS Co3+.

  12. Thermal-distortion analysis of an antenna strongback for geostationary high-frequency microwave applications

    NASA Technical Reports Server (NTRS)

    Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.

    1990-01-01

    The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.

  13. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  14. Microwave background distortions from domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  15. A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs.

    PubMed

    Lee, Bumshik; Kim, Munchurl

    2016-08-01

    In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of 4×4 and 8×8 , which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively.

  16. Compensation of relector antenna surface distortion using an array feed

    NASA Technical Reports Server (NTRS)

    Cherrette, A. R.; Acosta, R. J.; Lam, P. T.; Lee, S. W.

    1988-01-01

    The dimensional stability of the surface of a large reflector antenna is important when high gain or low sidelobe performance is desired. If the surface is distorted due to thermal or structural reasons, antenna performance can be improved through the use of an array feed. The design of the array feed and its relation to the surface distortion are examined. The sensitivity of antenna performance to changing surface parameters for fixed feed array geometries is also studied. This allows determination of the limits of usefulness for feed array compensation.

  17. Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.

    2018-03-01

    In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.

  18. A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure.

    PubMed

    Chen, Xinjian; Tian, Jie; Yang, Xin

    2006-03-01

    Coping with nonlinear distortions in fingerprint matching is a challenging task. This paper proposes a novel algorithm, normalized fuzzy similarity measure (NFSM), to deal with the nonlinear distortions. The proposed algorithm has two main steps. First, the template and input fingerprints were aligned. In this process, the local topological structure matching was introduced to improve the robustness of global alignment. Second, the method NFSM was introduced to compute the similarity between the template and input fingerprints. The proposed algorithm was evaluated on fingerprints databases of FVC2004. Experimental results confirm that NFSM is a reliable and effective algorithm for fingerprint matching with nonliner distortions. The algorithm gives considerably higher matching scores compared to conventional matching algorithms for the deformed fingerprints.

  19. Semiautomatic approaches to account for 3-D distortion of the electric field from local, near-surface structures in 3-D resistivity inversions of 3-D regional magnetotelluric data

    USGS Publications Warehouse

    Rodriguez, Brian D.

    2017-03-31

    This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.

  20. Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2015-01-01

    Experimental studies have uncovered a variety of microRNA (miRNA)–target duplex structures that include perfect, imperfect and seedless duplexes. However, non-canonical binding modes from imperfect/seedless duplexes are not well predicted by computational approaches, which rely primarily on sequence and secondary structural features, nor have their tertiary structures been characterized because solved structures to date are limited to near perfect, straight duplexes in Argonautes (Agos). Here, we use structural modeling to examine the role of Ago dynamics in assembling viable eukaryotic miRNA-induced silencing complexes (miRISCs). We show that combinations of low-frequency, global modes of motion of Ago domains are required to accommodate RNA duplexes in model human and C. elegans Ago structures. Models of viable miRISCs imply that Ago adopts variable conformations at distinct target sites that generate distorted, imperfect miRNA-target duplexes. Ago's ability to accommodate a duplex is dependent on the region where structural distortions occur: distortions in solvent-exposed seed and 3′-end regions are less likely to produce steric clashes than those in the central duplex region. Energetic analyses of assembled miRISCs indicate that target recognition is also driven by favorable Ago-duplex interactions. Such structural insights into Ago loading and target recognition mechanisms may provide a more accurate assessment of miRNA function. PMID:26432829

  1. Non percolative nature of the metal-insulator transition and persistence of local Jahn-Teller distortions in the rhombohedral regime of La 1-xCa xMnO 3

    DOE PAGES

    Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...

    2016-04-25

    Evolution of the average and local crystal structure of Ca-doped LaMnO 3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO 6 octahedra across the OR transition at T S~720 K.more » The study utilized explicit two-phase PDF structural modeling, revealing that away from T MI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO 3. The results hence do not support the percolative scenario for the MI transition in La 1–xCa xMnO 3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO 3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less

  2. Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets

    NASA Astrophysics Data System (ADS)

    Baydar, Ezgihan

    Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although traditional VGs energize the flow with stronger vortex structures compared to micro-VGs, the AIP is affected with overwhelming amounts of reduced and enhanced flow regions. In summary, vanes are exceptional in reducing radial distortion and improving the health of the boundary layer compared to the ramps. In the study of the STEX inlet, vane-type vortex generators were the preferred devices for boundary layer flow control. In the supersonic diffuser, co-rotating vane arrays and counter-rotating vane arrays did not show improvement. In the subsonic diffuser, co-rotating vane arrays with negative angles-of-incidence and counter-rotating vane arrays were exceptional in reducing radial distortion and improving total pressure recovery. Downstream co-rotating vanes demonstrated up to 41% improvement in radial distortion whereas downstream counter-rotating vanes demonstrated up to 73% improvement. For downstream counter-rotating vanes, a polynomial trend between VG height and radial distortion indicate that increasing VG height improves inlet distortion. In summary, downstream vanes are exceptional in improving total pressure recovery compared to upstream vanes.

  3. Speech therapy for errors secondary to cleft palate and velopharyngeal dysfunction.

    PubMed

    Kummer, Ann W

    2011-05-01

    Individuals with a history of cleft lip/palate or velopharyngeal dysfunction may demonstrate any combination of speech sound errors, hypernasality, and nasal emission. Speech sound distortion can also occur due to other structural anomalies, including malocclusion. Whenever there are structural anomalies, speech can be affected by obligatory distortions or compensatory errors. Obligatory distortions (including hypernasality due to velopharyngeal insufficiency) are caused by abnormal structure and not by abnormal function. Therefore, surgery or other forms of physical management are needed for correction. In contrast, speech therapy is indicated for compensatory articulation productions where articulation placement is changed in response to the abnormal structure. Speech therapy is much more effective if it is done after normalization of the structure. When speech therapy is appropriate, the techniques involve methods to change articulation placement using standard articulation therapy principles. Oral-motor exercises, including the use of blowing and sucking, are never indicated to improve velopharyngeal function. The purpose of this article is to provide information regarding when speech therapy is appropriate for individuals with a history of cleft palate or other structural anomalies and when physical management is needed. In addition, some specific therapy techniques are offered for the elimination of common compensatory articulation productions. © Thieme Medical Publishers.

  4. Detailed intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules with C(3v) symmetry: chloroform, bromoform, and methyl-iodide.

    PubMed

    Pothoczki, Szilvia; Temleitner, László; Pusztai, László

    2011-01-28

    Analyses of the intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules of the CXY(3)-type are described. The process is composed of the determination of several different distance-dependent orientational correlation functions, including ones that are introduced here. As a result, a complete structure classification could be provided for CXY(3) molecular liquids, namely for liquid chloroform, bromoform, and methyl-iodide. In the present work, the calculations have been conducted on particle configurations resulting from reverse Monte Carlo computer modeling: these particle arrangements have the advantage that they are fully consistent with structure factors from neutron and x-ray diffraction measurements. It has been established that as the separation between neighboring molecules increases, the dominant mutual orientations change from face-to-face to edge-to-edge, via the edge-to-face arrangements. Depending on the actual liquid, these geometrical elements (edges and faces of the distorted tetrahedra) were found to contain different atoms. From the set of liquids studied here, the structure of methyl-iodide was found to be easiest to describe on the basis of pure steric effects (molecular shape, size, and density) and the structure of liquid chloroform seems to be the furthest away from the corresponding "flexible fused hard spheres" like reference system.

  5. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures.

    PubMed

    Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H

    2000-04-01

    The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.

  6. Theoretical investigations of the local distortion and spectral properties for VO2+ in SiO2 Glass

    NASA Astrophysics Data System (ADS)

    Li, Mu-Neng; Zhang, Zhi-Hong; Wu, Shao-Yi

    2017-11-01

    The local distortions and the spin Hamiltonian parameters g factors g∥, g⊥ and the hyperfine structure constants A∥ and A⊥ for isolated vanadyl ions VO2+ doped in SiO2 glass at 700°C are theoretically investigated from the perturbation formulas of these parameters for a 3d1 ion in tetragonally compressed octahedra. In these formulas, the relationships between local structure of VO2+ ions center and the tetragonal crystal field parameters are established. As a result, the distortion of the ligand octahedron is attributed to the strong axial crystal-fields associated with the short V4+-O2- bond due to the strong V=O bonding in the silica matrix. The theoretical spin Hamiltonian parameters obtained in this work show reasonable agreement with the experimental data.

  7. Effect of p–d hybridization, structural distortion and cation electronegativity on electronic properties of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in

    2013-04-15

    Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductorsmore » in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively due to cation electronegativity.« less

  8. Structure of β-AgGaO{sub 2}; ternary I–III–VI{sub 2} oxide semiconductor with a wurtzite-derived structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-02-15

    The structure of the wurtzite-derived β-AgGaO{sub 2} was refined by Rietveld analysis of high-resolution powder diffraction data obtained using synchrotron X-ray radiation. The space group of the crystal is Pna2{sub 1} with lattice parameters of a{sub 0}=5.56175 Å, b{sub 0}=7.14749 Å, and c{sub 0}=5.46875 Å. The deviation of O–Ag–O and M–O–M bond angles from the regular tetrahedral angle of 109.5° was very large at ∼8° and ∼11°, respectively. The electronic structure of β-AgGaO{sub 2} is discussed based on its structure, and the indirect band gap of β-AgGaO{sub 2} was related to significant tetrahedral distortion. Although β-AgGaO{sub 2} decomposes into metallicmore » silver and Ga{sub 2}O{sub 3} at a high temperature in any atmosphere, β-AgGaO{sub 2} is stable up to 690 °C under an O{sub 2} atmosphere. No direct transformation from the wurtzite-derived phase to a delafossite phase occurs in β-AgGaO{sub 2}. - Graphical abstract: Crystal structure of β-AgGaO{sub 2} was refined by Rietveld analysis. AgO{sub 4} and O(Ag,Ga){sub 4} tetrahedra are significantly distorted from ideal tetrahedron. - Highlights: • Orthorhombic β-AgGaO{sub 2} with a wurtzite-derived β-NaFeO{sub 2} structure was synthesized. • Its structure was refined by Rietveld analysis of high-resolution XRD data. • Silver and oxygen tetrahedra are significantly distorted from an ideal tetrahedron. • The extent of this tetrahedral distortion is related to the band gap nature. • β-AgGaO{sub 2} is a metastable phase but is stable up to 690 °C in an O{sub 2} atmosphere.« less

  9. The Assessment of Distortion in Neurosurgical Image Overlay Projection.

    PubMed

    Vakharia, Nilesh N; Paraskevopoulos, Dimitris; Lang, Jozsef; Vakharia, Vejay N

    2016-02-01

    Numerous studies have demonstrated the superiority of neuronavigation during neurosurgical procedures compared to non-neuronavigation-based procedures. Limitations to neuronavigation systems include the need for the surgeons to avert their gaze from the surgical field and the cost of the systems, especially for hospitals in developing countries. Overlay projection of imaging directly onto the patient allows localization of intracranial structures. A previous study using overlay projection demonstrated the accuracy of image coregistration for a lesion in the temporal region but did not assess image distortion when projecting onto other anatomical locations. Our aim is to quantify this distortion and establish which regions of the skull would be most suitable for overlay projection. Using the difference in size of a square grid when projected onto an anatomically accurate model skull and a flat surface, from the same distance, we were able to calculate the degree of image distortion when projecting onto the skull from the anterior, posterior, superior, and lateral aspects. Measuring the size of a square when projected onto a flat surface from different distances allowed us to model change in lesion size when projecting a deep structure onto the skull surface. Using 2 mm as the upper limit for distortion, our results show that images can be accurately projected onto the majority (81.4%) of the surface of the skull. Our results support the use of image overlay projection in regions with ≤2 mm distortion to assist with localization of intracranial lesions at a fraction of the cost of existing methods. © The Author(s) 2015.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com; Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020; Domagalski, Marcin J.

    Conformational differences between myoglobin structures are studied. Most structural differences in whale myoglobin beyond the uncertainty threshold can be correlated with a few specific structural factors. There are always exceptions and a search for additional factors is needed. The results might have serious implications for biological insights from conformational differences. Validation of general ideas about the origins of conformational differences in proteins is critical in order to arrive at meaningful functional insights. Here, principal component analysis (PCA) and distance difference matrices are used to validate some such ideas about the conformational differences between 291 myoglobin structures from sperm whale, horsemore » and pig. Almost all of the horse and pig structures form compact PCA clusters with only minor coordinate differences and outliers that are easily explained. The 222 whale structures form a few dense clusters with multiple outliers. A few whale outliers with a prominent distortion of the GH loop are very similar to the cluster of horse structures, which all have a similar GH-loop distortion apparently owing to intermolecular crystal lattice hydrogen bonds to the GH loop from residues near the distal histidine His64. The variations of the GH-loop coordinates in the whale structures are likely to be owing to the observed alternative intermolecular crystal lattice bond, with the change to the GH loop distorting bonds correlated with the binding of specific ‘unusual’ ligands. Such an alternative intermolecular bond is not observed in horse myoglobins, obliterating any correlation with the ligands. Intermolecular bonds do not usually cause significant coordinate differences and cannot be validated as their universal cause. Most of the native-like whale myoglobin structure outliers can be correlated with a few specific factors. However, these factors do not always lead to coordinate differences beyond the previously determined uncertainty thresholds. The binding of unusual ligands by myoglobin, leading to crystal-induced distortions, suggests that some of the conformational differences between the apo and holo structures might not be ‘functionally important’ but rather artifacts caused by the binding of ‘unusual’ substrate analogs. The causes of P6 symmetry in myoglobin crystals and the relationship between crystal and solution structures are also discussed.« less

  11. Syntheses, Raman spectroscopy and crystal structures of alkali hexa­fluorido­rhenates(IV) revisited

    PubMed Central

    Louis-Jean, James; Salamat, Ashkan; Pham, Chien Thang; Poineau, Frederic

    2018-01-01

    The A 2[ReF6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type P m1, adopting the K2[GeF6] structure type. Common to all A 2[ReF6] structures are slightly distorted octa­hedral [ReF6]2− anions with an average Re—F bond length of 1.951 (8) Å. In those salts, symmetry lowering on the local [ReF6]2− anions from Oh (free anion) to D 3d (solid-state structure) occur. The distortions of the [ReF6]2− anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.

  12. Syntheses, Raman spectroscopy and crystal structures of alkali hexafluoridorhenates(IV) revisited

    DOE PAGES

    Louis-Jean, James; Mariappan Balasekaran, Samundeeswari; Smith, Dean; ...

    2018-04-06

    The A 2[ReF 6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type Pmore » $$\\bar{3}$$m1, adopting the K 2[GeF 6] structure type. Common to all A 2[ReF 6] structures are slightly distorted octa­hedral [ReF 6] 2- anions with an average Re—F bond length of 1.951 (8) Å. In these salts, symmetry lowering on the local [ReF 6] 2- anions from O h (free anion) to D 3d (solid-state structure) occur. The distortions of the [ReF 6] 2- anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.« less

  13. Effects of local and global mechanical distortions to hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, William P.

    The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.

  14. Expertise and processing distorted structure in chess

    PubMed Central

    Bartlett, James C.; Boggan, Amy L.; Krawczyk, Daniel C.

    2013-01-01

    A classic finding in research on human expertise and knowledge is that of enhanced memory for stimuli in a domain of expertise as compared to either stimuli outside that domain, or within-domain stimuli that have been degraded or distorted in some way. However, we do not understand how experts process degradation or distortion of stimuli within the expert domain (e.g., a face with the eyes, nose, and mouth in the wrong positions, or a chessboard with pieces placed randomly). Focusing on the domain of chess, we present new fMRI evidence that when experts view such distorted/within-domain stimuli, they engage an active search for structure—a kind of exploratory chunking—that involves a component of a prefrontal-parietal network linked to consciousness, attention and working memory. PMID:24348371

  15. Numerical Analysis of Residual Stress and Distortion Use Finite Element Method on Inner Bottom Construction of Geomarin IV Survey Ship with Welding Sequence Variations

    NASA Astrophysics Data System (ADS)

    Syahroni, N.; Hartono, A. B. W.; Murtedjo, M.

    2018-03-01

    In the ship fabrication industry, welding is the most critical stage. If the quality of welding on ship fabrication is not good, then it will affect the strength and overall appearance of the structure. One of the factors that affect the quality of welding is residual stress and distortion. In this research welding simulation is performed on the inner bottom construction of Geomarin IV Ship Survey using shell element and has variation to welding sequence. In this study, welding simulations produced peak temperatures at 2490 K at variation 4. While the lowest peak temperature was produced by variation 2 with a temperature of 2339 K. After welding simulation, it continued simulating residual stresses and distortion. The smallest maximum tensile residual stress found in the inner bottom construction is 375.23 MPa, and the maximum tensile pressure is -20.18 MPa. The residual stress is obtained from variation 3. The distortion occurring in the inner bottom construction for X=720 mm is 4.2 mm and for X=-720 mm, the distortion is 4.92 mm. The distortion is obtained from the variation 3. Near the welding area, distortion value reaches its minimum point. This is because the stiffeners in the form of frames serves as anchoring.

  16. Model-based correction for local stress-induced overlay errors

    NASA Astrophysics Data System (ADS)

    Stobert, Ian; Krishnamurthy, Subramanian; Shi, Hongbo; Stiffler, Scott

    2018-03-01

    Manufacturing embedded DRAM deep trench capacitors can involve etching very deep holes into silicon wafers1. Due to various design constraints, these holes may not be uniformly distributed across the wafer surface. Some wafer processing steps for these trenches results in stress effects which can distort the silicon wafer in a manner that creates localized alignment issues between the trenches and the structures built above them on the wafer. In this paper, we describe a method to model these localized silicon distortions for complex layouts involving billions of deep trench structures. We describe wafer metrology techniques and data which have been used to verify the stress distortion model accuracy. We also provide a description of how this kind of model can be used to manipulate the polygons in the mask tape out flow to compensate for predicted localized misalignments between design shapes from a deep trench mask and subsequent masks.

  17. Suppression of the cooperative Jahn-Teller distortion and its effect on the Raman octahedra-rotation modes of TbM n1 -xF exO3

    NASA Astrophysics Data System (ADS)

    Vilarinho, R.; Passos, D. J.; Queirós, E. C.; Tavares, P. B.; Almeida, A.; Weber, M. C.; Guennou, M.; Kreisel, J.; Moreira, J. Agostinho

    2018-04-01

    This work reports the changes in structure and lattice dynamics induced by substituting the Jahn-Teller-active M n3 + ion by the Jahn-Teller-inactive F e3 + in TbM n1 -xF exO3 over the full composition range. The structural analysis reveals that the amplitude of the cooperative Jahn-Teller distortion decreases linearly from x =0 (pure TbMn O3 ) to x =0.5 , where it is completely suppressed. We then correlate this evolution with the behavior of the Raman modes across the solid solution. In particular, we show that the Raman modes associated with the rotation of octahedra, whose wave number is commonly considered to scale linearly with the tilt angles in orthorhombic Pnma perovskites, are also sensitive to the amplitude of the Jahn-Teller distortion.

  18. Recursive optimal pruning with applications to tree structured vector quantizers

    NASA Technical Reports Server (NTRS)

    Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen

    1992-01-01

    A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.

  19. Strain Accommodation By Facile WO6 Octahedral Distortion and Tilting During WO3 Heteroepitaxy on SrTiO3(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Yingge; Gu, Meng; Varga, Tamas

    2014-08-27

    In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planarmore » defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.« less

  20. Anomalous structural disorder and distortion in metal-to-insulator-transition Ti{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, In-Hui; Jin, Zhenlan; Park, Chang-In

    2016-01-07

    Mott proposed that impurity bands in corundum-symmetry Ti{sub 2}O{sub 3} at high temperatures caused a collapse in the bandgap. However, the origin of the impurity bands has not yet been clarified. We examine the local structural properties of metal-to-insulator-transition Ti{sub 2}O{sub 3} using in-situ x-ray absorption fine structure (XAFS) measurements at the Ti K edge in the temperature range from 288 to 739 K. The Ti{sub 2}O{sub 3} powder is synthesized by using a chemical reaction method. X-ray diffraction (XRD) measurements from Ti{sub 2}O{sub 3} with a Rietveld refinement demonstrate a single-phased R-3c symmetry without additional distortion. Extended-XAFS combined with XRDmore » reveals a zigzag patterned Ti position and an anomalous structural disorder in Ti-Ti pairs, accompanied by a bond length expansion of the Ti-Ti pairs along the c-axis for T > 450 K. The local structural distortion and disorder of the Ti atoms would induce impurity levels in the band gap between the Ti 3d a{sub 1g} and e{sub g}{sup π} bands, resulting in a collapse of the band gap for T > 450 K.« less

  1. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  2. Tidal Distortion and Disruption of Earth-Crossing Asteriods

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bottke, William, Jr.

    1997-01-01

    We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.

  3. Iodine Incorporation in Calcite: Insights from Computational and Experimental Study

    NASA Astrophysics Data System (ADS)

    Feng, X.; Redfern, S. A. T.

    2016-12-01

    The incorporation of iodine into calcite is important both in the context of radioactive waste disposal (carbonates seem to be the principal host for iodine at the Hnaford site) as well as in paleoproxy methods applied in paleo-oceanography, where iodine content has been proposed as a proxy for fO2. Here, we report on studies of iodine incorporation into calcite carried out by a combination of earlier X-Ray absorption spectroscopy, Raman spectroscopy, X-Ray diffraction and new ab initio DFT calculations (using VASP). Our results show that iodine is principally incorporated into the calcite lattice as IO3, replacing carbon in the carbonate group. The much larger size of iodine, and different outer shell electronic configuration, leads to a distortion of the calcite structure locally. Our DFT results show that the adjacent layers of CO3 groups are significantly distorted, over a length scale of around 0.5 nm, and that this distortion leads to a slight increase in enthalpy associated with the iodine point defect. The relationship to the distorted structure of calcite II is considered, and the role of iodine as an agent of "internal pressure" will be discussed.

  4. Role of cooperative structural distortions in the metal--insulator transitions of perovskite ferrates

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James

    2012-02-01

    Transition-metal oxides within the perovskite crystal family exhibit strong electron--electron correlation effects that coexist with complex structural distortions, leading to metal-insulator (MI) transitions. Using first-principles density functional calculations, we investigate the effects of cooperative octahedral rotations and dilations/contractions on the charge-ordering MI-transition in CaFeO3. By calculating the evolution in the lattice phonons, which describe the different octahedral distortions present in the low-symmetry monoclinic phase of CaFeO3 with increasing electron correlation, we show that the MI-transition results from a complex interplay between these modes and correlation effects. We combine this study with group theoretical tools to disentangle the electron--lattice interactions by computing the evolution in the low-energy electronic band structure with the lattice phonons, demonstrating the MI-transition in CaFeO3 proceeds through a symmetry-lowering transition driven by a cooperative three-dimensional octahedral dilation/contraction pattern. Finally, we suggest a possible route by which to control the charge ordering by fine-tuning the electron--lattice coupling.

  5. Structural, electronic, and vibrational properties of high-density amorphous silicon: a first-principles molecular-dynamics study.

    PubMed

    Morishita, Tetsuya

    2009-05-21

    We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).

  6. Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12}: Solid-state synthesis, structure determination, and characterization of two new quaternary mixed metal oxides containing asymmetric coordination environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun

    Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12} have been prepared by standard solid-state reactions using Y{sub 2}O{sub 3}, MoO{sub 3}, and SeO{sub 2} (or TeO{sub 2}) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order Jahn–Teller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y{sub 2}MoSe{sub 3}O{sub 12} shows a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} groups, Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed ofmore » YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} polyhedra. With the Mo{sup 6+} cations in Y{sub 2}MoSe{sub 3}O{sub 12}, a C{sub 3}-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo{sup 6+} is away from the oxide ligand linked to a Se{sup 4+} cation. The Se{sup 4+} and Te{sup 4+} cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented. - Graphical abstract: Y{sub 2}MoSe{sub 3}O{sub 12} reveals a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} polyhedra, whereas Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} groups. - Highlights: • Two new selenite and tellurite (Y{sub 2}MoQ{sub 3}O{sub 12}; Q=Se and Te) are synthesized. • Y{sub 2}MoQ{sub 3}O{sub 12} contain second-order Jahn–Teller distortive cations in asymmetric environments. • The intra-octahedral distortion of the Mo{sup 6+} is influenced by the Se{sup 4+}.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.

    Chemically bound states of benzene molecules with graphene are studied both analytically and numerically. The states are formed by switching off intrabonds of π-electrons in C{sub 6} rings to interbonds. A number of different undistorted and distorted structures are established both with aligned and with transversal mutual orientation of benzene and graphene. The vibronic interactions causing distortions of bound states are found, by using a combination of analytical and numerical considerations. This allows one to determine all electronic transitions of π-electrons without explicit numerical calculations of excited states, to find the conical intersections of potentials, and to show that themore » mechanism of distortions is the pseudo-Jahn-Teller effect. It is found that the aligned distorted benzene molecule placed between two graphene sheets makes a chemical bond with both of them, which may be used for fastening of graphene sheets together.« less

  8. Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow

    NASA Astrophysics Data System (ADS)

    Giuliani, James Edward

    Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion. Total pressure profiles at various axial locations are computed to identify the overall distortion pattern, how the distortion evolves through the blade passages and mixes out downstream of the blades, and where any critical performance concerns might be. Stall cells are identified that are stationary in the absolute frame and are fixed to the inlet distortion. Flow paths around the blades are examined to study the stall mechanism. Rather than a static airfoil stall, it is observed that the non-uniform pressure loading promotes a three-dimensional dynamic stall. The stall occurs at a point of rapid incidence angle oscillation, observed when a blade passes through the distortion, and re-attaches when the blade leaves the distortion.

  9. Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.

    PubMed

    Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat

    2010-12-20

    We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.

  10. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability

    PubMed Central

    Menzies, Georgina E.; Reed, Simon H.; Brancale, Andrea; Lewis, Paul D.

    2015-01-01

    The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots. PMID:26400171

  12. A model for the Pockels effect in distorted liquid crystal blue phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castles, F., E-mail: flynn.castles@materials.ox.ac.uk

    2015-09-07

    Recent experiments have found that a mechanically distorted blue phase can exhibit a primary linear electro-optic (Pockels) effect [F. Castles et al., Nat. Mater. 13, 817 (2014)]. Here, it is shown that flexoelectricity can account for the experimental results and a model, which is based on continuum theory but takes into account the sub-unit-cell structure, is proposed. The model provides a quantitative description of the effect accurate to the nearest order of magnitude and predicts that the Pockels coefficient(s) in an optimally distorted blue phase may be two orders of magnitude larger than in lithium niobate.

  13. A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.

  14. Crystal structure and superconductivity in atomic hydrogen: Deformation between I41/amd and Fddd

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Nagara, H.; Oda, T.; Suzuki, N.; Shimizu, K.

    2017-10-01

    We investigated crystal structures of solid metallic hydrogen using the potential energy surface trekking for structure search. We applied this technique to a tetragonal I41/amd structure at pressures of 500 and 600 GPa and obtained the transformation into multiple orthorhombic Fddd structures, which are formed by distortions in the ab plane of I41/amd. The potential barriers are easily surmounted by few trekking steps, which indicates that in solid metallic hydrogen crystal structure is softened with respect to the distortion and is easily fluctuated among the I41/amd and Fddd structures. Calculated superconducting critical temperatures show 269 K for I41/amd and 263 K for Fddd at 500 GPa. The structures are softened and the electron-phonon coupling are enhanced with pressurization to 600 GPa. As the results, the superconducting critical temperature is increased to 281 K for I41/amd, whereas it is decreased to 252 K for Fddd owing to its larger phonon softening than that of I41/amd.

  15. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.

    PubMed

    K, Manasa; Channappayya, Sumohana S

    2016-06-01

    We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.

  16. Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn3Cu1-xGexN

    NASA Astrophysics Data System (ADS)

    Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S.

    2008-11-01

    Giant negative thermal expansion is achieved in antiperovskite manganese nitrides when the sharp volume change associated with magnetic ordering is broadened by substitution. In this Letter, we address the unique role of the ‘‘magic” element, Ge, for such broadening in Mn3Cu1-xGexN. We present evidence for a local lattice distortion well described by the low-temperature tetragonal (T4) structure of Mn3GeN for a range of x, where the overall structure remains cubic. This structural instability shows a strong correlation with the broadness of the growth of the ordered magnetic moment and, hence, is considered to trigger the broadening of the volume change.

  17. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  18. Structural and dynamical properties of the V(3+) ion in dilute aqueous solution: An ab initio QM/MM molecular dynamics simulation.

    PubMed

    Kritayakornupong, Chinapong

    2009-12-01

    A hybrid ab initio QM/MM molecular dynamics simulation at the Hartree-Fock level has been performed to investigate structural and dynamical parameters of the V(3+) ion in dilute aqueous solution. A distorted octahedral structure with the average V(3+)-O distance of 1.99 A is evaluated from the QM/MM simulation, which is in good agreement with the X-ray data. Several structural parameters such as angular distribution functions, theta- and tilt-angle distributions have been determined to obtain the full description of the hydration structure of the hydrated V(3+). The Jahn-Teller distortions of the V(3+) ion are pronounced in the QM/MM simulation. The mean residence time of 14.5 ps is estimated for the ligand exchange processes in the second hydration shell. (c) 2009 Wiley Periodicals, Inc.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, Valeri; Hessel, Colin M.; Ovtchinnikoff, Justine

    High-energy synchrotron X-ray diffraction coupled to atomic pair distribution function analysis and computer simulations is used to determine the atomic-scale structure of silicon (Si) nanoparticles obtained by two different synthetic routes. Results show that Si nanoparticles may have significant structural differences depending on the synthesis route and surface chemistry. In this case, one method produced Si nanoparticles that are highly crystalline but surface oxidized, whereas a different method yields organic ligand-passivated nanoparticles without surface oxide but that are structurally distorted at the atomic scale. Particular structural features of the oxide-free Si nanoparticles such as average first coordination numbers, length ofmore » structural coherence, and degree of local distortions are compared to their optical properties such as photoluminescence emission energy, quantum yield, and Raman spectra. A clear structure–properties correlation is observed indicating that the former may need to be taken into account when considering the latter.« less

  20. Catenanes: A molecular mechanics analysis of the (C13H26)2 Structure 13-13 D2.

    PubMed

    Lii, Jenn-Huei; Allinger, Norman L; Hu, Ching-Han; Schaefer, Henry F

    2016-01-05

    Molecular mechanics (MM4) studies have been carried out on the catenane (C13H26)2, specifically 13-13D2. The structure obtained is in general agreement with second-order perturbation theory. More importantly, the MM4 structure allows a breakdown of the energy of the molecule into its component classical parts. This allows an understanding of why the structure is so distorted, in terms of C-C bonding and nonbonding interactions, van der Waals repulsion, C-C-C and C-C-H angle bending, torsional energies, stretch-bend, torsion-stretch, and bend-torsion-bend interactions. Clearly, the hole in 113-membered ring is too small for the other ring to fit through comfortably. There are too many atoms trying to fit into the limited space at the same time, leading to large van der Waals repulsions. The rings distort in such a way as to enlarge this available space, and lower the total energy of the molecule. While the distortions are spread around the rings, one of the nominally tetrahedral C-C-C bond angles in each ring is opened to 147.9° by MM4 (146.8° by MP2). The stability of the compound is discussed in terms of the strain energy. © 2015 Wiley Periodicals, Inc.

  1. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.

    1994-01-01

    Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.

  2. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  3. Out-of-Focus Projector Calibration Method with Distortion Correction on the Projection Plane in the Structured Light Three-Dimensional Measurement System.

    PubMed

    Zhang, Jiarui; Zhang, Yingjie; Chen, Bo

    2017-12-20

    The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.

  4. Improving MRI surface coil decoupling to reduce B1 distortion

    NASA Astrophysics Data System (ADS)

    Larson, Christian

    As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.

  5. Characterization of the structure of low-e substrates and consequences for IR transflection measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVetter, Brent M.; Kenkel, Seth; Mittal, Shachi

    Spectral distortions caused by the electric field standing wave effect were investigated for two commonly used reflective substrates: low-emissivity glass and gold-coated glass. Our analytical calculations showed that spectral distortions may arise for both incoherent and coherent light sources when performing transflectance measurements. We experimentally confirmed our predictions using a commercial mid-infrared quantum cascade laser microscope and an interferometric infrared imaging system.

  6. 3D lattice distortions and defect structures in ion-implanted nano-crystals

    DOE PAGES

    Hofmann, Felix; Robinson, Ian K.; Tarleton, Edmund; ...

    2017-04-06

    The ability of Focused Ion Beam (FIB) techniques to cut solid matter at the nano-scale revolutionized the study of material structure across the life-, earth- and material sciences. But a detailed understanding of the damage caused by the ion beam and its effect on material properties remains elusive. We examine this damage in 3D using coherent X-ray diffraction to measure the full lattice strain tensor in FIB-milled gold nano-crystals. We also found that even very low ion doses, previously thought to be negligible, cause substantial lattice distortions. At higher doses, extended self-organized defect structures appear. Combined with detailed numerical calculations,more » these observations allow fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.« less

  7. Magneto-elastic coupling across the first-order transition in the distorted kagome lattice antiferromagnet Dy3Ru4Al12

    PubMed Central

    Henriques, M.S.; Gorbunov, D.I.; Kriegner, D.; Vališka, M.; Andreev, A.V.; Matěj, Z.

    2018-01-01

    Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system. PMID:29445250

  8. 3D lattice distortions and defect structures in ion-implanted nano-crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix; Robinson, Ian K.; Tarleton, Edmund

    The ability of Focused Ion Beam (FIB) techniques to cut solid matter at the nano-scale revolutionized the study of material structure across the life-, earth- and material sciences. But a detailed understanding of the damage caused by the ion beam and its effect on material properties remains elusive. We examine this damage in 3D using coherent X-ray diffraction to measure the full lattice strain tensor in FIB-milled gold nano-crystals. We also found that even very low ion doses, previously thought to be negligible, cause substantial lattice distortions. At higher doses, extended self-organized defect structures appear. Combined with detailed numerical calculations,more » these observations allow fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.« less

  9. Preschool speech error patterns predict articulation and phonological awareness outcomes in children with histories of speech sound disorders.

    PubMed

    Preston, Jonathan L; Hull, Margaret; Edwards, Mary Louise

    2013-05-01

    To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up at age 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors was used to predict later speech sound production, PA, and literacy outcomes. Group averages revealed below-average school-age articulation scores and low-average PA but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom >10% of their speech sound errors were atypical had lower PA and literacy scores at school age than children who produced <10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores than preschoolers who produced fewer distortion errors. Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschoolers may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschoolers' distortions may be resistant to change over time, leading to persisting speech sound production problems.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila L.; Semin, Viktor O.; Gudimova, Ekaterina Y.

    By transmission electron microscopy method the evolution of structural-phase states on a depth of close to equiatomic NiTi modified layer has been studied. Modification performed by pulse impact on its surface low-energy high-current electron beam (beam energy density 10 J/sm{sup 2}, 10 pulses, pulse duration 50mks). It is established that during the treatment in the layer thickness of 8–10 μm, the melting of primary B2 phase and contained therein as Ti2Ni phase particles occurs. The result is change in the concentration ratio of titanium and nickel in the direction of increasing titanium content, which was confirmed by X-ray analysis in themore » form of increased unit cell parameter B2 phase. Analysis of the electron diffraction pattern showed that the modified layer is characterized as a highly distorted structure on the basis of bcc lattice. Lattice distortions are maximal near the surface and extends to a depth of melt. In subjacent layer there is gradual decline lattice distortions is observed.« less

  11. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  12. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at Approximately 90 K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  13. Enhancement of redox- and phase-stability of thermoelectric CaMnO3-δ by substitution

    NASA Astrophysics Data System (ADS)

    Thiel, Philipp; Populoh, Sascha; Yoon, Songhak; Weidenkaff, Anke

    2015-09-01

    Redox Reactivity and structural phase transitions have a major impact on transport and me-chemical properties of thermoelectric CaMnO3-δ. In this study series of Ca1-xAxMn1-yByO3-δ (0≤x,y≤0.8) compounds, each with A-site (Dy3+, Yb3+) or B-site (Nb5+, Ta5+ and Mo6+, W6+) substitution, were synthesized and crystallographically analyzed. It was found that the high-temperature oxygen content is widely independent from the substituent. Subsequently, with increasing temperature the differences in the Seebeck coefficient vanish above 1200 K. With increasing substitution the orthorhombic distortion of the perovskite-like phase increases. The orthorhombic distortion and the upper temperature limit of the stability of the orthorhombic crystal structure show an almost linear dependency. Accordingly, the mechanical stability of all-oxides thermoelectric converters at temperatures exceeding 1000 K will be increased employing materials with high substitution level and substituents inducing a high orthorhombic distortion.

  14. DNA minicircles clarify the specific role of DNA structure on retroviral integration

    PubMed Central

    Pasi, Marco; Mornico, Damien; Volant, Stevenn; Juchet, Anna; Batisse, Julien; Bouchier, Christiane; Parissi, Vincent; Ruff, Marc; Lavery, Richard; Lavigne, Marc

    2016-01-01

    Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms. PMID:27439712

  15. Topological magnetic phase in LaMnO3 (111) bilayer

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai

    Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as Hubbard type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semi-metal (graphene-like) which is also a half-metal (different from graphene nor previous studied LaNiO3 (111) bilayer). The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (~ 1 . 7 meV) than the undistorted one (~11 meV).

  16. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  17. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  18. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylprophyrin complexes with nitrogenous bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, S.L.; Song, X.Z.; Ma, J.G.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance Raman evidence for these conformers was given previously.« less

  19. STOP Analysis and Optimization of a Very-Low-Distortion Space Instrument: HST WFC3 Case Study

    NASA Technical Reports Server (NTRS)

    Kunt, Cengiz; Broduer, Steve (Technical Monitor)

    2001-01-01

    New generation optical instruments with very demanding stability requirements are being proposed and developed for space applications. STOP (Structural-Thermal-Optical Performance) analysis and optimization is crucial in meeting the very tight distortion budgets of these instruments. This presentation outlines STOP analysis and optimization approach in the context of WFC3 (Wide-Field Camera 3), which is a radial instrument designed to replace the Wide-Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST). WFC3 houses two separate channels, UVIS and IR, and will have greater throughput and sensitivity than WFPC2. WFC3 line-of-sight alignment budget for the UVIS and IR channels are as small as 10 and 20 milli-arcsec, respectively. Its optical bench is the most critical subsystem effecting the optical stability of WFC3 hence our effort concentrates on the design and analysis of the bench and its interfaces. Structural analysis has accompanied the mechanical design of the bench since the initial concept study. A high fidelity structural Finite Element Model (FEM) of the bench has been developed and used for minimizing its thermally induced distortions as well as sizing it to meet the stiffness and strength requirements of a Shuttle launch. The bench is a composite honeycomb panel box structure with a very low planar Coefficient of Thermal Expansion (CTE) of approximately 0.1 ppm/C. Optic components are mounted to super-INVAR inserts bonded into the panels. The bench is kinematically supported on three HST latches via interface struts, which are tailored to exhibit negative CTE to cancel out the thermal motions of the latches. The interface struts also incorporate flexure elements to minimize the mechanical distortions coming into the bench from its enclosure. Bench FEM is coupled with the enclosure FEM to quantify these effects. Short term or on-orbit STOP analysis includes distortion due to the temperature variations of the bench, the struts, and the enclosure. Long term or ground-to-orbit STOP analysis includes distortional effects of gravity release, desorption, and assembly in addition to the ground-to-orbit temperature variations. A rigorous testing program has been implemented for verifying the material properties and the analysis predictions. STOP analysis results demonstrate that both the short-term and the long-term alignment budgets will be met. Presentation will cover design and analysis details that are critical to a successful implementation of the STOP analysis and optimization process.

  20. A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1): Synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides

    NASA Astrophysics Data System (ADS)

    Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min

    2011-04-01

    Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trump, Benjamin A., E-mail: btrump1@jhu.edu; Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218; McQueen, Tyrel M., E-mail: mcqueen@jhu.edu

    The synthesis and physical properties of the new distorted-Hollandite PbIr{sub 4}Se{sub 8} are reported. Powder X-ray diffraction and transmission electron microscopy show that the structure consists of edge- and corner-sharing IrSe{sub 6} octahedra, with one-dimensional channels occupied by Pb. The structure contains Se-Se anion-anion bonding, leading to an electron count of Pb{sup 2+}(Ir{sup 3+}){sub 4}(Se{sub 2}){sup 2-}(Se{sup 2−}){sub 6}, confirmed by bond-valence sums and diamagnetic behavior. Structural and heat capacity measurements demonstrate disorder on the Pb site, due to the combination of lone-pair effects and the large size of the one-dimensional channels. Comparisons are made to known Hollandite and pseudo-Hollanditemore » structures, which demonstrates that the anion-anion bonding in PbIr{sub 4}Se{sub 8} distorts its structure, to accommodate the Ir{sup 3+} state. An electronic structure calculation indicates semiconductor character with a band gap of 0.76(11) eV.« less

  2. White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites.

    PubMed

    Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Wasielewski, Michael R; Kanatzidis, Mercouri G

    2017-03-29

    Hybrid inorganic-organic perovskites are developing rapidly as high performance semiconductors. Recently, two-dimensional (2D) perovskites were found to have white-light, broadband emission in the visible range that was attributed mainly to the role of self-trapped excitons (STEs). Here, we describe three new 2D lead bromide perovskites incorporating a series of bifunctional ammonium dications as templates which also emit white light: (1) α-(DMEN)PbBr 4 (DMEN = 2-(dimethylamino)ethylamine), which adopts a unique corrugated layered structure in space group Pbca with unit cell a = 18.901(4) Å, b = 11.782(2) Å, and c = 23.680(5) Å; (2) (DMAPA)PbBr 4 (DMAPA = 3-(dimethylamino)-1-propylamine), which crystallizes in P2 1 /c with a = 10.717(2) Å, b = 11.735(2) Å, c = 12.127(2) Å, and β = 111.53(3)°; and (3) (DMABA)PbBr 4 (DMABA = 4-dimethylaminobutylamine), which adopts Aba2 with a = 41.685(8) Å, b = 23.962(5) Å, and c = 12.000(2) Å. Photoluminescence (PL) studies show a correlation between the distortion of the "PbBr 6 " octahedron in the 2D layer and the broadening of PL emission, with the most distorted structure having the broadest emission (183 nm full width at half-maximum) and longest lifetime (τ avg = 1.39 ns). The most distorted member α-(DMEN)PbBr 4 exhibits white-light emission with a color rendering index (CRI) of 73 which is similar to a fluorescent light source and correlated color temperature (CCT) of 7863 K, producing "cold" white light.

  3. Nucleic acid duplexes incorporating a dissociable covalent base pair

    PubMed Central

    Gao, Kui; Orgel, Leslie E.

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  4. Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol

    NASA Astrophysics Data System (ADS)

    Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan

    2017-07-01

    Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.

  5. Intrinsic Local Distortions and charge carrier behavior in CMR manganites and cobaltites

    NASA Astrophysics Data System (ADS)

    Bridges, Frank

    2010-03-01

    We compare and contrast the local structure and electronic configurations in two oxide systems La1-xSrxCoO3 (LSCO) and La1-yCayMnO3 (LCMO). Although these oxides may appear quite similar they have rather different properties. At x=0, LaCoO3 (LCO) has unusual magnetic properties - diamagnetic at low T but developing a moment near 100K. The Sr doped LSCO materials show ferromagnetism for x > 0.2. For LCO, one of the possible spin state configurations called the intermediate spin (IS) state (S=1), should be Jahn-Teller (JT) active, while the low spin (S=0) and high spin (S=2) states have no JT distortion. Early local structure measurements suggested a JT distortion was present in LCO and therefore supported an IS spin model. However we find no evidence for any significant JT distortion (and hence no support for the IS model) for a range of bulk and nanoparticle cobaltites La1-xSrxCoO3, x = 0 - 0.35. In contrast there are large JT distortions in the manganites LCMO, 0.2 < x < 0.5 (Mn-O bonds), for which CMR behavior is observed. We have shown that the JT distortions in the manganites depend on both temperature T and magnetic field B, and from the B-field dependence, propose the size and nature of the polarons in LCMO. We also present Co K-edge XANES data that shown no significant shift of the edge for the cobaltites as the Sr concentration increases from x =0 to 0.35 indicating essentially no change in the electronic configuration about Co; consequently, the holes introduced via Sr doping appear to go primarily into the O bands. In contrast there is a large shift of the Mn K-edge with Ca doping indicating a change in the average Mn valence, and a corresponding change in the Mn electronic configuration. We briefly discuss some possible models.

  6. The design of visible system for improving the measurement accuracy of imaging points

    NASA Astrophysics Data System (ADS)

    Shan, Qiu-sha; Li, Gang; Zeng, Luan; Liu, Kai; Yan, Pei-pei; Duan, Jing; Jiang, Kai

    2018-02-01

    It has a widely applications in robot vision and 3D measurement for binocular stereoscopic measurement technology. And the measure precision is an very important factor, especially in 3D coordination measurement, high measurement accuracy is more stringent to the distortion of the optical system. In order to improving the measurement accuracy of imaging points, to reducing the distortion of the imaging points, the optical system must be satisfied the requirement of extra low distortion value less than 0.1#65285;, a transmission visible optical lens was design, which has characteristic of telecentric beam path in image space, adopted the imaging model of binocular stereo vision, and imaged the drone at the finity distance. The optical system was adopted complex double Gauss structure, and put the pupil stop on the focal plane of the latter groups, maked the system exit pupil on the infinity distance, and realized telecentric beam path in image space. The system mainly optical parameter as follows: the system spectrum rangement is visible light wave band, the optical effective length is f '=30mm, the relative aperture is 1/3, and the fields of view is 21°. The final design results show that the RMS value of the spread spots of the optical lens in the maximum fields of view is 2.3μm, which is less than one pixel(3.45μm) the distortion value is less than 0.1%, the system has the advantage of extra low distortion value and avoids the latter image distortion correction; the proposed modulation transfer function of the optical lens is 0.58(@145 lp/mm), the imaging quality of the system is closed to the diffraction limited; the system has simply structure, and can satisfies the requirements of the optical indexes. Ultimately, based on the imaging model of binocular stereo vision was achieved to measuring the drone at the finity distance.

  7. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    PubMed

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  8. Role of the local structure in superconductivity of LaO0.5F0.5BiS2-x Se x system

    NASA Astrophysics Data System (ADS)

    Paris, E.; Mizuguchi, Y.; Hacisalihoglu, M. Y.; Hiroi, T.; Joseph, B.; Aquilanti, G.; Miura, O.; Mizokawa, T.; Saini, N. L.

    2017-04-01

    We have studied the local structure of LaO0.5F0.5BiS2-x Se x by Bi L1-edge extended x-ray absorption fine structure (EXAFS). We find a significant effect of Se substitution on the local atomic correlations with a gradual elongation of average in-plane Bi-S bondlength. The associated mean square relative displacement, measuring average local distortions in the BiS2 plane, hardly shows any change for small Se substitution, but decreases significantly for x≥slant 0.6 . The Se substitution appears to suppress the local distortions within the BiS2 plane that may optimize in-plane orbital hybridization and hence the superconductivity. The results suggest that the local structure of the BiS2-layer is one of the key ingredients to control the physical properties of the BiS2-based dichalcogenides.

  9. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors.

    PubMed

    Chen, I-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-10-07

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.

  10. Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi

    2016-02-01

    A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.

  11. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  12. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  13. Raman Study of the Structural Distortion in the Ni 1–xCo xTiO 3 Solid Solution

    DOE PAGES

    Fujioka, Yukari; Frantti, Johannes; Puretzky, Alexander; ...

    2016-09-08

    In this paper, Raman spectra were collected on Ni 1–xCo xTiO 3 (0 ≤ x ≤ 1) ilmenite samples as a function of the temperature between 4 and 1200 K. An evident symmetry lowering from the prototype Rmore » $$\\bar{3}$$symmetry is observed. The distortion was largest for the x = 0.40 and 0.50 samples and significantly diminished for small and large values of x. The distortion was preserved in the whole temperature range and, except for the x = 0.50 sample, did not show significant changes. Notably, between 25 and 69 K, distortion of the x = 0.40 sample is accompanied by ferromagnetic order. The direct cation–cation and O-mediated indirect interactions are discussed as mechanisms behind the distortion and magnetic order. A reversible order–disorder phase transformation, assigned to occur between the ilmenite and corundum phases, took place at 973 K in the x = 0.50 sample. Completion of the transformation took over 1 h. Finally, the role of the overlap of Co/Ni and Ti 3d orbitals through O octahedral faces for charge transfer is discussed.« less

  14. Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.

    PubMed

    Milani, Ali A; Panahi, Issa M; Briggs, Richard

    2007-01-01

    Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.

  15. Earth Walk: Touring Our Planet's Inner Structure.

    ERIC Educational Resources Information Center

    Muller, Eric P.

    1995-01-01

    Describes an excursion that effectively helps students visualize the earth's immense size and numerous structures without the usual scale and ratio distortions found in most textbooks and allows students to compare their body's height to a scaled-down earth. (JRH)

  16. GNSS Space-Time Interference Mitigation and Attitude Determination in the Presence of Interference Signals

    PubMed Central

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-01-01

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909

  17. IRREGULAR SLOSHING COLD FRONTS IN THE NEARBY MERGING GROUPS NGC 7618 AND UGC 12491: EVIDENCE FOR KELVIN-HELMHOLTZ INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roediger, E.; Kraft, R. P.; Machacek, M. E.

    2012-08-01

    We present results from two {approx}30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts (CFs) wrapped around each group center and {approx}100 kpc long spiral tails in both groups. Most interestingly, the CFs are highly distorted in both groups, exhibiting 'wings' along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the CFs. This is in contrast to the structure seen in many other sloshing and merger CFs,more » which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth CFs, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger CFs that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the CFs in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI distortions in CFs can be used as a measure of the effective viscosity and/or magnetic field strengths in the intracluster medium.« less

  18. Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall.

    PubMed

    Mast, T D; Hinkelman, L M; Metlay, L A; Orr, M J; Waag, R C

    1999-12-01

    A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and bone. This extended model has been used to simulate ultrasonic propagation through anatomically detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented by two-dimensional maps determined by staining chest wall cross sections to distinguish between tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then assigned a sound speed, density, and absorption value determined from published measurements and assumed to be representative of the local tissue type. Computational results for energy level fluctuations and arrival time fluctuations show qualitative agreement with measurements performed on the same specimens, but show significantly less waveform distortion than measurements. Visualization of simulated tissue-ultrasound interactions in the chest wall shows possible mechanisms for image aberration in echocardiography, including effects associated with reflection and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations increase to a lesser degree.

  19. GNSS space-time interference mitigation and attitude determination in the presence of interference signals.

    PubMed

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-05-26

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.

  20. Atomic-scale distortion of optically activated Sm dopants identified with site-selective X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Hu, Yongfeng; Sham, Tsun-Kong; Harako, Susumu; Zhao, Xin-Wei; Komuro, Shuji

    2013-10-01

    The local structure of luminescent Sm dopants was investigated using an X-ray absorption fine-structure technique with X-ray-excited optical luminescence. Because this technique evaluates X-ray absorption from luminescence, only optically active sites are analyzed. The Sm L3 near-edge spectrum contains split 5d states and a shake-up transition that are specific to luminescent Sm. Theoretical calculations using cluster models identified an atomic-scale distortion that can reproduce the split 5d states. The model with C4v local symmetry and compressive bond length of Sm-O of a six-fold oxygen (SmO6) cluster is most consistent with the experimental results.

  1. Structural similitude and scaling laws for laminated beam-plates

    NASA Technical Reports Server (NTRS)

    Simitses, George J.; Rezaeepazhand, Jalil

    1992-01-01

    The establishment of similarity conditions between two structural systems is discussed. Similarity conditions provide the relationship between a scale model and its prototype and can be used to predict the behavior of the prototype by extrapolating the experimental data of the corresponding small-scale model. Since satisfying all the similarity conditions simultaneously is difficult or even impossible, distorted models with partial similarity (with at least one similarity condition relaxed) are more practical. Establishing similarity conditions based on both dimensional analysis and direct use of governing equations is discussed, and the possibility of designing distorted models is investigated. The method is demonstrated through analysis of the cylindrical bending of orthotropic laminated beam-plates subjected to transverse line loads.

  2. Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.

    PubMed

    Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo

    2017-01-11

    Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.

  3. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue

    PubMed Central

    Chaigneau, Emmanuelle; Wright, Amanda J.; Poland, Simon P.; Girkin, John M.; Silver, R. Angus

    2011-01-01

    Two-photon (2P) microscopy is widely used in neuroscience, but the optical properties of brain tissue are poorly understood. We have investigated the effect of brain tissue on the 2P point spread function (PSF2P) by imaging fluorescent beads through living cortical slices. By combining this with measurements of the mean free path of the excitation light, adaptive optics and vector-based modeling that includes phase modulation and scattering, we show that tissue-induced wavefront distortions are the main determinant of enlargement and distortion of the PSF2P at intermediate imaging depths. Furthermore, they generate surrounding lobes that contain more than half of the 2P excitation. These effects reduce the resolution of fine structures and contrast and they, together with scattering, limit 2P excitation. Our results disentangle the contributions of scattering and wavefront distortion in shaping the cortical PSF2P, thereby providing a basis for improved 2P microscopy. PMID:22109156

  4. Structural instability in polyacene: A projector quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhargavi; Ramasesha, S.

    1998-04-01

    We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.

  5. Grounding the figure.

    PubMed

    Calis, G; Leeuwenberg, E

    1981-12-01

    Coding rules can be formulated in which the shortest description of a figure-ground pattern exhibits a hierarchical structure, with the ground playing a primary and the figure a secondary role. We hypothesized that the process of perception involves and assimilation phase followed by a test phase in which the ground is tested before the figure. Experiments are described in which pairs of consecutive, superimposed patterns are presented in rapid succession, resulting in a subjective impression of seeing one pattern only. In these presentations, the second pattern introduces some deliberate distortion of the figure or ground displayed in the first pattern. Maximal distortions of the ground occur at shorter stimulus onset asynchronies than maximal distortions of the figure, suggesting that the ground codes are processed before figure codes. Moreover, patterns presenting the ground first are more likely to be perceived as ground, regardless of the distortions, than patterns presenting the figure first. This quasi masking or microgenetic approach might be relevant to theories on :mediations of immediate, or direct" perception.

  6. Wagering the future: Cognitive distortions, impulsivity, delay discounting, and time perspective in adolescent gambling.

    PubMed

    Cosenza, Marina; Nigro, Giovanna

    2015-12-01

    This study investigated the relationship of cognitive distortions, self-reported impulsivity, delay discounting, and time perspective to gambling severity in Italian adolescents. One thousand and thirty high school students were administered the South Oaks Gambling Screen Revised for Adolescents (SOGS-RA), the Gambling Related Cognitions Scale (GRCS), the Barratt Impulsiveness Scale (BIS-11), the Monetary Choice Questionnaire (MCQ), and the Consideration of Future Consequences Scale (CFC-14). A factor analysis, used to evaluate common factors assessed by the different measures, revealed a three-factor structure of Cognitive distortions, Impulsive present orientation, and Delay discounting. The results of regression analysis using factor scores showed that males scored higher than females on the SOGS-RA and that gambling severity correlated positively with high scores on the three factors. These results indicate that cognitive distortions associated with gambling are a powerful predictor of gambling severity, and that adolescent gamblers are impaired in their abilities to think about the future. Copyright © 2015. Published by Elsevier Ltd.

  7. Close coupling of pre- and post-processing vision stations using inexact algorithms

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.

    1996-02-01

    Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.

  8. Field-Effects in Large Axial Ratio Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Lonberg, Franklin J.

    This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.

  9. The XRD Study of the Effect of Slight Change in Structure on the Superconductivity of Y-Ba-Cu-O System Material

    NASA Astrophysics Data System (ADS)

    Huaqin, Wang; Shiyuan, Zhang; Tongzheng, Jin; Shiying, Han; Dirong, Qiu; Hao, Wang; Ningsheng, Zhou

    In this paper the differences in diffraction intensities from some crystal planes in the X-ray diffraction patterns of high Tc Y-Ba-Cu-O system superconductors prepared by different processing conditions and the difference among various structure cells in references are interpreted using computer fitting. The results suggest that there exists two structure cells in the single phase YBa2Cu3O7-x samples. Both structure cells have the same crystal symmetry and almost the same lattice parameters, a=3.821Å, b=3.892Å and c=11.676Å, but the different distortion degree of Cu2-O plane. According to EPR spectra measured on the same samples, it is considered that the improvement of superconductivity for the samples prepared by two-step annealing in flowing oxygen may be related to concentration of the structure cell with more serious distortion on the Cu2-O plane.

  10. Effect of pressure on the superconducting {ital T}{sub {ital c}} of lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tissen, V.G.; Ponyatovskii, E.G.; Nefedova, M.V.

    1996-04-01

    The effect of pressure on the superconducting transition temperature {ital T}{sub {ital c}} of La was studied up to 50 GPa. {ital T}{sub {ital c}}({ital P}) shows a rather complicated variation with a discontinuous increase in {ital T}{sub {ital c}} at about 2.2 GPa due to the first-order phase transition from dhcp to fcc structure. At about 5.4 GPa a sharp peak is observed due to the soft-mode phase transition from fcc to the distorted fcc structure and two broad maxima are found within the stability region of the distorted fcc structure around 12 and 39 GPa. Some differences betweenmore » these and previous low-pressure data for metastable fcc La are noticed. The results are discussed in connection with pressure-induced structural phase transitions found in earlier x-ray-diffraction experiments and band-structure calculations giving evidences for van Hove singularities in the density of states. {copyright} {ital 1996 The American Physical Society.}« less

  11. Structural Distortions under pressure and doping in superconducting BaFe2As2

    NASA Astrophysics Data System (ADS)

    Kimber, Simon

    2010-03-01

    The discovery of a new family of high-TC materials, the iron arsenides, has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. The structure and properties of chemically substituted samples are known to be intimately linked; however, until recently (1), remarkably little was known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2 show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. Our results show that, in contrast to the cuprates, structural distortions are more important than charge doping in the iron arsenides. This work was performed at the Helmholtz-Zentrum Berlin in collaboration with Ames Laboratory, Goethe-Universit"at Frankfurt, JCNS J"ulich and the Institute Laue-Langevin. (1) S.A.J. Kimber et al, Nature Materials,

  12. Correlations between Transition Metal Chemistry, Local Structure and Global Structure in Li 2Ru 0.5Mn 0.5O 3 Investigated in a Wide Voltage Window

    DOE PAGES

    Lyu, Yingchun; Hu, Enyuan; Xiao, Dongdong; ...

    2017-10-20

    Li 2Ru 0.5Mn 0.5O 3, a high capacity lithium rich layered cathode material for lithium-ion batteries, was subject to comprehen-sive diagnostic studies including in situ/ex situ X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), pair distribu-tion function (PDF) and high resolution scanning transmission electron microscopy (STEM) analysis, to understand the cor-relations between transition metal chemistry, structure and lithium storage electrochemical behavior. Ru-Ru dimers have been identified in the as-prepared sample and found to be preserved upon prolonged cycling. Presence of these dimers, which are likely caused by the delocalized nature of 4d electrons, is found to favor the stabilization of themore » structure in a lay-ered phase. The in situ XAS results confirm the participation of oxygen redox into the charge compensation at high charge voltage, and the great flexibility of the covalent bond between Ru and O may provide great reversibility of the global struc-ture despite of the significant local distortion around Ru. In contrast, the local distortion around Mn occurs at low discharge voltage and is accompanied by a “layered to 1T” phase transformation, which is found to be detrimental to the cycle per-formances. It is clear that the changes of local structure around individual transition metal cations respond separately and differently to lithium intercalation/deintercalation. Here, cations with the capability to tolerate the lattice distortion will benefit for maintaining the integrality of the crystal structure and therefore is able to enhance the long-term cycling performance of the electrode materials.« less

  13. Correlations between Transition Metal Chemistry, Local Structure and Global Structure in Li 2Ru 0.5Mn 0.5O 3 Investigated in a Wide Voltage Window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Yingchun; Hu, Enyuan; Xiao, Dongdong

    Li 2Ru 0.5Mn 0.5O 3, a high capacity lithium rich layered cathode material for lithium-ion batteries, was subject to comprehen-sive diagnostic studies including in situ/ex situ X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), pair distribu-tion function (PDF) and high resolution scanning transmission electron microscopy (STEM) analysis, to understand the cor-relations between transition metal chemistry, structure and lithium storage electrochemical behavior. Ru-Ru dimers have been identified in the as-prepared sample and found to be preserved upon prolonged cycling. Presence of these dimers, which are likely caused by the delocalized nature of 4d electrons, is found to favor the stabilization of themore » structure in a lay-ered phase. The in situ XAS results confirm the participation of oxygen redox into the charge compensation at high charge voltage, and the great flexibility of the covalent bond between Ru and O may provide great reversibility of the global struc-ture despite of the significant local distortion around Ru. In contrast, the local distortion around Mn occurs at low discharge voltage and is accompanied by a “layered to 1T” phase transformation, which is found to be detrimental to the cycle per-formances. It is clear that the changes of local structure around individual transition metal cations respond separately and differently to lithium intercalation/deintercalation. Here, cations with the capability to tolerate the lattice distortion will benefit for maintaining the integrality of the crystal structure and therefore is able to enhance the long-term cycling performance of the electrode materials.« less

  14. First Principles Study on Topological-Phase Transition in Ferroelectric Oxides

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kunihiko; Barone, Paolo; Picozzi, Silvia

    Graphene is known as a 2D topological insulator with zero energy gap and Dirac cone. In this study, we theoretically designed a honeycomb structure of Au ions embedded in a ferroelectric host oxide, in order to exploit structural distortions to control topological properties. We show that the polar structural distortion induces the emergence of spin-valley coupling, together with a topological transition from a quantum spin-Hall insulating phase to a trivial band insulator. The phase transition also affects the Berry curvature and spin-valley selection rules. Analogously to graphene, the microscopic origin of this topological phase is ascribed to a spin-valley-sublattice coupling, which arises from the interplay between trigonal crystal field and an ``effective'' spin-orbit interaction due to virtual excitations between eg and t2g states of transition-metal ions.

  15. Structural origins of broadband emission from layered Pb-Br hybrid perovskites.

    PubMed

    Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I

    2017-06-01

    Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.

  16. Nanoscale structural and electronic characterization of α-RuCl3 layered compound

    NASA Astrophysics Data System (ADS)

    Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei

    The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.

  17. Ferroelectric properties of oxalate and phenanthroline based 1-D single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Mukadam, M. D.; Mandal, B. P.; Yusuf, S. M.

    2018-04-01

    The one-dimensional (1-D) single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2] is hydrothermally synthesized using oxalate (ox) and phenanthroline (phen) ligands with transition metal ions (Fe and Cr). The compound is characterized using x-ray diffraction, dc magnetization measurements and P-E ferroelectric loop measurements. The diffraction analysis using Rietveld refinement confirms a single phase formation of the compound in monoclinic structure with space group of P21. The compound crystallizes in 1-D chain like structure containing two different crystallographic sites of metal ions (Δ- and Λ-), which are bridged by the ox ligand and Phen ligand. These two metals site are different in bond length and bond angles results lattice distortions. The lattice distortion induces ferroelectric behavior in the compound which is discussed in terms of lattice distortion induced dipole moments.

  18. Phase transitions of titanite CaTiSiO5 from density functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Malcherek, Thomas; Fischer, Michael

    2018-02-01

    Phonon dispersion of titanite CaTiSiO5 has been calculated using the variational density functional perturbation theory. The experimentally known out-of-center distortion of the Ti atom is confirmed. The distortion is associated with a Bu mode that is unstable for wave vectors normal to the octahedral chain direction of the C 2 /c aristotype structure. The layer of wave vectors with imaginary mode frequencies also comprises the Brillouin zone boundary point Y (0 ,1 ,0 ) , which is critical for the transition to the P 21/c ground-state structure. The phonon branch equivalent to the imaginary branch of the titanite aristotype is found to be stable in malayaite CaSnSiO5. The unstable phonon mode in titanite leads to the formation of transoriented short and long Ti-O1 bonds. The Ti as well as the connecting O1 atom exhibit strongly anomalous Born effective charges along the octahedral chain direction [001], indicative of the strong covalency in this direction. Accordingly and in contrast to malayaite, LO-TO splitting is very large in titanite. In the C 2 /c phase of titanite, the Ti-O1-Ti distortion chain is disordered with respect to neighboring distortion chains, as all chain configurations are equally unstable along the phonon branch. This result is in agreement with diffuse x-ray scattering in layers normal to the chain direction that is observed at temperatures close to the P 21/c to C 2 /c transition temperature and above. The resulting dynamic chains of correlated Ti displacements are expected to order in two dimensions to yield the P 21/c ground-state structure of titanite.

  19. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions

    NASA Astrophysics Data System (ADS)

    Vasquez, Karen M.; Christensen, Jesper; Li, Lei; Finch, Rick A.; Glazer, Peter M.

    2002-04-01

    Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahona, P., E-mail: pbaraho@ucm.cl; Galdámez, A., E-mail: agaldamez@uchile.cl; López-Vergara, F.

    CuTi{sub 2−x}M{sub x}S{sub 4} (M=Fe, Mn, Co; x=0.3, 0.5) and CuCr{sub 2−x}Ti{sub x}Se{sub 4} (x=0.3, 0.5, 0.7) chalcospinels were synthesized by conventional solid-state reactions. Their crystal structures were determined by single-crystal X-ray diffraction. All of the phases crystallized in cubic spinel-type structures (space group, Fd3{sup ¯}m). For all of the chalcospinel compounds, the edge-length distortion parameter (ELD) indicated that the most distorted polyhedron was Q[(Ti,M){sub 3}Cu], which displayed an ∼8% distortion from an ideal tetrahedron structure (Q=S or Se). The Mn-based thiospinel CuMn{sub 0.3}Ti{sub 1.7}S{sub 4} is paramagnetic, whereas the Fe-based thiospinels (CuTi{sub 2−x}Fe{sub x}S{sub 4}; x=0.3 and 0.7) aremore » strongly antiferromagnetic due to their spin-glass states. The magnetic susceptibility measurements indicated ferromagnetic behavior for the selenospinels (CuCr{sub 2−x}Ti{sub x}Se{sub 4}; x=0.3, 0.5 and 0.7). - Graphical abstract: View along [1 0 0] of CuCr{sub 2−x}Ti{sub x}Se{sub 4} crystal structure showing tetrahedral and octahedral units. To the right, experimental X-ray powder diffraction pattern of CuCr{sub 1.7}Ti{sub 0.3}Se{sub 4} (top) in compared (in a like-mirror representation) to a simulated X-ray pattern from single-crystal data (bottom). - Highlights: • Chalcogenides belong to the family of compounds spinel-type. • Resolved single crystals of the solid solutions have space group Fd-3m. • The distortion of the tetrahedral and octahedral volume were calculated. • These solid solutions shows a ferromagnetic or spin-glass behavior.« less

  1. Rare-earth Doped GaN - An Innovative Path Toward Area-scalable Solid-state High Energy Lasers Without Thermal Distortion (2nd year)

    DTIC Science & Technology

    2010-06-01

    heat removal technique and its efficiency , the gain medium itself is the bottleneck for non-distortive heat removal―simply due to low thermal...dysprosium (Dy) has been demonstrated by photoluminescence (PL), electroluminescence (EL), and/or cathodoluminescence (CL) (2, 3). As the RE dopant...provides the highest level of laser efficiency due to the pump and signal mode confinement within a crystalline-guided structure) has been designed. The

  2. Rare-Earth Doped Gallium Nitride (GaN)- An Innovative Path Toward Area-scalable Solid-state High Energy Lasers Without Thermal Distortion

    DTIC Science & Technology

    2009-04-01

    technique and its efficiency , the gain medium itself is the bottleneck for non-distortive heat removal—due to the low thermal conductivity of known gain...photoluminescence (PL), electroluminescence (EL), and/or cathodoluminescence (CL) (2,3). As the RE dopant, Nd is an excellent candidate due to its success...highest level of laser efficiency due to the pump and signal mode confinement within a crystalline-guided structure). The successful implementation of

  3. Development of an Aero-Optics Software Library and Integration into Structured Overset and Unstructured Computational Fluid Dynamics (CFD) Flow Solvers

    DTIC Science & Technology

    2011-04-01

    some similarities to the far- field (i.e. atmospheric ) propagation, but due to the interactions between turbulence length scales, beam wavelengths...equivalently, phase differences, have been used to characterize the beam distortion caused by the unsteady turbulent flow field. A Partially-Averaged Navier...A., Wang, M., and Moin, P., “Computational Study of Aero-Optical Distortion by Turbulent Wake,” AIAA Paper 2005-4655. [11] Mani, A., Wang, M., and

  4. Conductivity and local structure in LaNiO3

    NASA Astrophysics Data System (ADS)

    Fowlie, Jennifer; Gibert, Marta; Tieri, Giulio; Gloter, Alexandre; à+/-Iguez, Jorge; Filippetti, Alessio; Catalano, Sara; Gariglio, Stefano; StéPhan, Odile; Triscone, Jean-Marc

    In this study we approach the thickness-dependence of the properties of LaNiO3 films along multiple, complementary avenues: sophisticated ab initio calculations, scanning transmission electron microscopy and electronic transport. Specifically, we find an unexpected maximum in conductivity in films of thickness 6 - 10 unit cells (3 nm) for several series of LaNiO3 films. Ab initio transport based on the detailed crystal structure also reveals a maximum in conductivity at the same thickness. In agreement with the structure obtained from scanning transmission electron microscopy (STEM), our simulated structures reveal that the substrate- and surface-induced distortions lead to three types of local structure (heterointerface, interior-layer, surface). Based on this observation, a 3-element parallel conductor model neatly reproduces the trend of conductivity with thickness. This study addresses the question of how structural distortions at the atomic scale evolve in a thin film under the influence of the substrate and the surface. This topic is key to the understanding of the physics of heterostructures and the design of functional oxides.

  5. Oxygen octahedra picker: A software tool to extract quantitative information from STEM images.

    PubMed

    Wang, Yi; Salzberger, Ute; Sigle, Wilfried; Eren Suyolcu, Y; van Aken, Peter A

    2016-09-01

    In perovskite oxide based materials and hetero-structures there are often strong correlations between oxygen octahedral distortions and functionality. Thus, atomistic understanding of the octahedral distortion, which requires accurate measurements of atomic column positions, will greatly help to engineer their properties. Here, we report the development of a software tool to extract quantitative information of the lattice and of BO6 octahedral distortions from STEM images. Center-of-mass and 2D Gaussian fitting methods are implemented to locate positions of individual atom columns. The precision of atomic column distance measurements is evaluated on both simulated and experimental images. The application of the software tool is demonstrated using practical examples. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Ferromagnetism in tetragonally distorted LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Mehta, Virat Vasav; Liberati, Marco; Wong, Franklin J.; Chopdekar, Rajesh Vilas; Arenholz, Elke; Suzuki, Yuri

    2009-04-01

    Thin films of epitaxial LaCoO3 were synthesized on SrTiO3 and (La ,Sr)(Al,Ta)O3 substrates, varying the oxygen background pressure in order to evaluate the impact of epitaxial growth as well as oxygen vacancies on the long range magnetic order. The epitaxial constraints from the substrate impose a tetragonal distortion compared to the bulk form. X-ray absorption and x-ray magnetic circular dichroism measurements confirmed that the ferromagnetism arises from the Co ions and persists through the entire thickness of the film. It was found that for the thin films to show ferromagnetic order they have to be grown under the higher oxygen pressures. A correlation of the structure and magnetism suggests that the tetragonal distortions induce the ferromagnetism.

  7. An evolving effective stress approach to anisotropic distortional hardening

    DOE PAGES

    Lester, B. T.; Scherzinger, W. M.

    2018-03-11

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  8. An evolving effective stress approach to anisotropic distortional hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, B. T.; Scherzinger, W. M.

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  9. Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: why a universal suppressor level is not a practical solution to obtaining single-generator DP-grams.

    PubMed

    Dhar, Sumitrajit; Shaffer, Lauren A

    2004-12-01

    The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.

  10. Ab initio study of the structural phase transitions of the double perovskites Sr2MWO6 (M=Zn, Ca, Mg)

    NASA Astrophysics Data System (ADS)

    Petralanda, U.; Etxebarria, I.

    2014-02-01

    We study the interplay of structural distortions in double perovskites Sr2MWO6 (M = Zn, Ca, Mg) by means of first-principles calculations and group theoretical analysis. Structure relaxations of the cubic, tetragonal, and monoclinic phases show that the ground states of the three compounds are monoclinic, although the energy difference between the monoclinic and tetragonal structures is very small in the case of Sr2MgWO6. The symmetry analysis of the distortions involved in the experimental and calculated low-temperature structures shows that the amplitude of two primary distortions associated to rigid rotations of the MX6 and WO6 octahedra are dominant, although the amplitude of a third mode related to deformations of the MX6 groups can not be neglected. The energy maps of the space spanned by the three relevant modes are calculated, and the couplings among the modes are evaluated, showing that the role of a hard secondary mode (in the Landau sense) coupled trilinearly to the two primary instabilities is crucial to stabilize the monoclinic ground state. Results suggest that the key role of the trilinear coupling among three modes could be rather common. A phenomenological theory including the effects of the chemical pressure is also developed. We find that the evolution of the stiffness constants in terms of the atomic substitution follows an accurate linear dependence and that the influence of quantum saturation of the order parameters could stabilize the tetragonal phase of Sr2MgWO6.

  11. Perovskite-structure TlMnO₃: a new manganite with new properties.

    PubMed

    Yi, Wei; Kumagai, Yu; Spaldin, Nicola A; Matsushita, Yoshitaka; Sato, Akira; Presniakov, Igor A; Sobolev, Alexey V; Glazkova, Yana S; Belik, Alexei A

    2014-09-15

    We synthesize a new member of the AMnO3 perovskite manganite family (where A is a trivalent cation)--thallium manganite, TlMnO3--under high-pressure (6 GPa) and high-temperature (1500 K) conditions and show that the structural and magnetic properties are distinct from those of all other AMnO3 manganites. The crystal structure of TlMnO3 is solved and refined using single-crystal X-ray diffraction data. We obtain a triclinically distorted structure with space group P1̅ (No. 2), Z = 4, and lattice parameters a = 5.4248(2) Å, b = 7.9403(2) Å, c = 5.28650(10) Å, α = 87.8200(10)°, β = 86.9440(10)°, and γ = 89.3130(10)° at 293 K. There are four crystallographic Mn sites in TlMnO3 forming two groups based on the degree of their Jahn-Teller distortions. Physical properties of insulating TlMnO3 are investigated with Mössbauer spectroscopy and resistivity, specific heat, and magnetization measurements. The orbital ordering, which persists to the decomposition temperature of 820 K, suggests A-type antiferromagnetic ordering with the ferromagnetic planes along the [-101] direction, consistent with the measured collinear antiferromagnetism below the Néel temperature of 92 K. Hybrid density functional calculations are consistent with the experimentally identified structure, insulating ground state, and suggested magnetism, and show that the low symmetry originates from the strongly Jahn-Teller distorted Mn(3+) ions combined with the strong covalency of the Tl(3+)-O bonds.

  12. Augmented Method to Improve Thermal Data for the Figure Drift Thermal Distortion Predictions of the JWST OTIS Cryogenic Vacuum Test

    NASA Technical Reports Server (NTRS)

    Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan

    2017-01-01

    The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.

  13. Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency.

    PubMed

    Meshach Paul, D; Chadah, Tania; Senthilkumar, B; Sethumadhavan, Rao; Rajasekaran, R

    2017-11-03

    The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO 3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.

  14. Structure-based Analysis to Hu-DNA Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinger,K.; Rice, P.

    2007-01-01

    HU and IHF are prokaryotic proteins that induce very large bends in DNA. They are present in high concentrations in the bacterial nucleoid and aid in chromosomal compaction. They also function as regulatory cofactors in many processes, such as site-specific recombination and the initiation of replication and transcription. HU and IHF have become paradigms for understanding DNA bending and indirect readout of sequence. While IHF shows significant sequence specificity, HU binds preferentially to certain damaged or distorted DNAs. However, none of the structurally diverse HU substrates previously studied in vitro is identical with the distorted substrates in the recently publishedmore » Anabaena HU(AHU)-DNA cocrystal structures. Here, we report binding affinities for AHU and the DNA in the cocrystal structures. The binding free energies for formation of these AHU-DNA complexes range from 10-14.5 kcal/mol, representing K{sub d} values in the nanomolar to low picomolar range, and a maximum stabilization of at least 6.3 kcal/mol relative to complexes with undistorted, non-specific DNA. We investigated IHF binding and found that appropriate structural distortions can greatly enhance its affinity. On the basis of the coupling of structural and relevant binding data, we estimate the amount of conformational strain in an IHF-mediated DNA kink that is relieved by a nick (at least 0.76 kcal/mol) and pinpoint the location of the strain. We show that AHU has a sequence preference for an A+T-rich region in the center of its DNA-binding site, correlating with an unusually narrow minor groove. This is similar to sequence preferences shown by the eukaryotic nucleosome.« less

  15. Anomalous behaviour of thermodynamic properties at successive phase transitions in (NH4)3GeF7

    NASA Astrophysics Data System (ADS)

    Bogdanov, Evgeniy V.; Kartashev, Andrey V.; Pogoreltsev, Evgeniy I.; Gorev, Mikhail V.; Laptash, Natalia M.; Flerov, Igor N.

    2017-12-01

    Heat capacity, thermal dilatation, susceptibility to hydrostatic pressure and dielectric properties associated with succession of three phase transitions below room temperature in double fluoride salt (NH4)3GeF7 were studied. A possible transformation into the parent Pm-3m cubic phase was not observed up to the decomposition of compound. Nonferroelectric nature of structural distortions was confirmed. The DTA under pressure studies revealed a high temperature stability of two phases: P4/mbm and Pbam. The entropies of the phase transitions agree well with the model of structural distortions. Analysis of the thermal properties associated with the individual phase transitions in the framework of thermodynamic equations has shown a high reliability of the data obtained.

  16. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang; Tong, Yang; Jin, Ke

    In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.

  17. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy

    DOE PAGES

    Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...

    2018-06-16

    In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.

  18. Pressure induced swelling in microporous materials

    DOEpatents

    Vogt, Thomas; Hriljac, Joseph A.; Lee, Yongjae

    2006-07-11

    A method for capturing specified materials which includes contacting a microporous material with a hydrostatic fluid having at least one specified material carried therein, under pressure which structurally distorts the lattice sufficiently to permit entry of the at least one specified material. The microporous material is capable of undergoing a temporary structural distortion which alters resting lattice dimensions under increased ambient pressure and at least partially returning to rest lattice dimensions when returned to ambient pressure. The pressure of the fluid is then reduced to permit return to at least partial resting lattice dimension while the at least one specified material is therein. By this method, at least one specified material is captured in the microporous material to form a modified microporous material.

  19. Local and average structure of Mn- and La-substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.

  20. Local and average structure of Mn- and La-substituted BiFeO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO 3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space groupmore » symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO 3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.« less

  1. Active structural control for damping augmentation and compensation of thermal distortion

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.

    1992-01-01

    A large space-based Focus Mission Interferometer is used as a testbed for the NASA Controls and Structures Interaction Program. Impedance-based adaptive structural control and control of thermal disturbances are demonstrated using an end-to-end simulation of the system's optical performance. Attention is also given to integrated optical/structural modeling and a hierarchical, layered control strategy.

  2. A rate distortion approach to protein symmetry.

    PubMed

    Wallace, Rodrick

    2010-08-01

    A spontaneous symmetry breaking argument is applied to the problem of protein folding, via a rate distortion analysis of the relation between genome coding and the final condensation of the protein molten globule that is, in spirit, analogous to Tlusty's (2007) exploration of the evolution of the genetic code. In the 'energy' picture, the average distortion between codon message and final protein structure, under constraints driven by evolutionary selection, serves as a temperature analog, so that low values limit the possible distribution of protein forms, producing the canonical folding funnel. A dual 'developmental' perspective sees the rate distortion function itself as the temperature analog, and permits incorporation of chaperons or toxic exposures as catalysts, driving the system to different possible outcomes or affecting the rate of convergence. The rate distortion function appears constrained by the availability of metabolic free energy, with implications for prebiotic evolution, and a nonequilibrium empirical Onsager treatment provides an adaptable statistical model that can be fitted to data, in the same manner as a regression equation. In sum, mechanistic models of protein folding fail to account for the observed spectrum of protein folding and aggregation disorders, suggesting that a biologically based cognitive paradigm describing folding will be needed for understanding the etiology, prevention, and treatment of these diseases. The developmental formalism introduced here may contribute substantially to such a paradigm.

  3. Distortion control in 20MnCr5 bevel gears after liquid nitriding process to maintain precision dimensions

    NASA Astrophysics Data System (ADS)

    Mahendiran, M.; Kavitha, M.

    2018-02-01

    Robotic and automotive gears are generally very high precision components with limitations in tolerances. Bevel gears are more widely used and dimensionally very close tolerance components that need stability without any backlash or distortion for smooth and trouble free functions. Nitriding is carried out to enhance wear resistance of the surface. The aim of this paper is to reduce the distortion in liquid nitriding process, though plasma nitriding is preferred for high precision components. Various trials were conducted to optimize the process parameters, considering pre dimensional setting for nominal nitriding layer growth. Surface cleaning, suitable fixtures and stress relieving operations were also done to optimize the process. Micro structural analysis and Vickers hardness testing were carried out for analyzing the phase changes, variation in surface hardness and case depth. CNC gear testing machine was used for determining the distortion level. The presence of white layer was found for about 10-15μm in the case depth of 250± 3.5μm showing an average surface hardness of 670 HV. Hence the economical liquid nitriding process was successfully used for producing high hardness and wear resistant coating over 20MnCr5 material with less distortion and reduced secondary grinding process for dimensional control.

  4. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  5. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    DOE PAGES

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; ...

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less

  6. Local structures around the substituted elements in mixed layered oxides

    PubMed Central

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-01-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008

  7. Pressure-induced amorphization of charge ordered spinel AlV{sub 2}O{sub 4} at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malavi, Pallavi S., E-mail: malavips@barc.gov.in; Karmakar, S., E-mail: malavips@barc.gov.in; Sharma, S. M.

    2014-04-24

    Structural properties of charge ordered spinel AlV{sub 2}O{sub 4} have been investigated under high pressure at low temperature (80K) by synchrotron based x-ray diffraction measurements. It is observed that upon increasing pressure the structure becomes progressively disordered due to the distortion of the AlO{sub 4} tetrahedral unit and undergoes amorphization above ∼12 GPa. While releasing pressure, the rhombohedral phase is only partially recovered at a much lower pressure (below 5 GPa). Within the stability of the rhombohedral phase, the distortion in the vanadium heptamer increases monotonically with pressure, suggesting enhanced charge ordering. This result is in sharp contrast with themore » recent observation of pressure-induced frustration in the charge ordered state leading to structural transition to the cubic phase at room temperature [JPCM 25, 292201, 2013].« less

  8. An Automated Ab Initio Framework for Identifying New Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Smidt, Tess; Reyes-Lillo, Sebastian E.; Jain, Anubhav; Neaton, Jeffrey B.

    Ferroelectric materials have a wide-range of technological applications including non-volatile RAM and optoelectronics. In this work, we present an automated first-principles search for ferroelectrics. We integrate density functional theory, crystal structure databases, symmetry tools, workflow software, and a custom analysis toolkit to build a library of known and proposed ferroelectrics. We screen thousands of candidates using symmetry relations between nonpolar and polar structure pairs. We use two search strategies 1) polar-nonpolar pairs with the same composition and 2) polar-nonpolar structure type pairs. Results are automatically parsed, stored in a database, and accessible via a web interface showing distortion animations and plots of polarization and total energy as a function of distortion. We benchmark our results against experimental data, present new ferroelectric candidates found through our search, and discuss future work on expanding this search methodology to other material classes such as anti-ferroelectrics and multiferroics.

  9. Optical analysis of the fine crystalline structure of artificial opal films.

    PubMed

    Lozano, G; Dorado, L A; Schinca, D; Depine, R A; Míguez, H

    2009-11-17

    Herein, we present a detailed analysis of the structure of artificial opal films. We demonstrate that, rather than the generally assumed face centered cubic lattice of spheres, opal films are better approximated by rhombohedral assemblies of distorted colloids. Detailed analysis of the optical response in a very wide spectral range (0.4 < or = a/lambda < or = 2, where a is the conventional lattice constant), as well as at perpendicular and off-normal directions, unambiguously shows that the interparticle distance coincides very approximately with the expected diameter only along directions contained in the same close-packed plane but differs significantly in directions oblique to the [111] one. A full description of the real and reciprocal lattices of actual opal films is provided, as well as of the photonic band structure of the proposed arrangement. The implications of this distortion in the optical response of the lattice are discussed.

  10. Robust Depth Image Acquisition Using Modulated Pattern Projection and Probabilistic Graphical Models

    PubMed Central

    Kravanja, Jaka; Žganec, Mario; Žganec-Gros, Jerneja; Dobrišek, Simon; Štruc, Vitomir

    2016-01-01

    Depth image acquisition with structured light approaches in outdoor environments is a challenging problem due to external factors, such as ambient sunlight, which commonly affect the acquisition procedure. This paper presents a novel structured light sensor designed specifically for operation in outdoor environments. The sensor exploits a modulated sequence of structured light projected onto the target scene to counteract environmental factors and estimate a spatial distortion map in a robust manner. The correspondence between the projected pattern and the estimated distortion map is then established using a probabilistic framework based on graphical models. Finally, the depth image of the target scene is reconstructed using a number of reference frames recorded during the calibration process. We evaluate the proposed sensor on experimental data in indoor and outdoor environments and present comparative experiments with other existing methods, as well as commercial sensors. PMID:27775570

  11. X-ray and simulation studies of water

    NASA Astrophysics Data System (ADS)

    Nilsson, A.; Schlesinger, D.; G. M. Pettersson, L.

    Here we present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid-liquid critical point hypothesis in supercooled water corresponding to high-density liquid (HDL) and low-density liquid (LDL). We demonstrate that the HDL local structure deviates from a tetrahedral coordination not only through a collapse of the 2nd shell but also through severe distortions around the 1st coordination shell.

  12. Subaru Telescope limits on cosmological variations in the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Murphy, Michael T.; Cooksey, Kathy L.

    2017-11-01

    Previous, large samples of quasar absorption spectra have indicated some evidence for relative variations in the fine-structure constant (Δα/α) across the sky. However, they were likely affected by long-range distortions of the wavelength calibration, so it is important to establish a statistical sample of more reliable results from multiple telescopes. Here we triple the sample of Δα/α measurements from the Subaru Telescope which have been `supercalibrated' to correct for long-range distortions. A blinded analysis of the metallic ions in six intervening absorption systems in two Subaru quasar spectra provides no evidence for α variation, with a weighted mean of Δα/α = 3.0 ± 2.8stat ± 2.0sys parts per million (1σ statistical and systematic uncertainties). The main remaining systematic effects are uncertainties in the long-range distortion corrections, absorption profile models, and errors from redispersing multiple quasar exposures on to a common wavelength grid. The results also assume that terrestrial isotopic abundances prevail in the absorbers; assuming only the dominant terrestrial isotope is present significantly lowers Δα/α, though it is still consistent with zero. Given the location of the two quasars on the sky, our results do not support the evidence for spatial α variation, especially when combined with the 21 other recent measurements which were corrected for, or resistant to, long-range distortions. Our spectra and absorption profile fits are publicly available.

  13. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue.

    PubMed

    Hoffman, David M; Girshick, Ahna R; Akeley, Kurt; Banks, Martin S

    2008-03-28

    Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues-accommodation and blur in the retinal image-specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one's ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays.

  14. A poroplastic model of structural reorganisation in porous media of biomechanical interest

    NASA Astrophysics Data System (ADS)

    Grillo, Alfio; Prohl, Raphael; Wittum, Gabriel

    2016-03-01

    We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of "plastic" distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.

  15. The distorted tropane of scopoline.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Basterretxea, Francisco J; Fernández, José A; Castaño, Fernando

    2013-06-24

    The structural isomerization of scopine into scopoline (oscine) has been observed in a supersonic jet expansion using microwave spectroscopy. The rotational spectrum evidences a single structure in the gas phase, providing a first description of the (three-ring) structurally distorted tropane in scopoline. The absence of rotational signatures of any scopine conformation suggests a practically quantitative isomerization at the vaporization temperatures of the experiment (ca. 90 °C). The determined rotational parameters of scopoline reveal the structural consequences of the intramolecular cyclation of scopine, which breaks the original epoxy group and creates a new ether bridge and a 7β-hydroxytropane configuration. The hydroxy group further stabilizes the molecule by an O-H⋅⋅⋅N intramolecular hydrogen bond, which, in turn, forces the N-methyl group to the less stable axial form. Supporting ab initio (MP2) and DFT (B3LYP, M06-2X) calculations are included. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-09-01

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance. Electronic supplementary information (ESI) available: A series of Ru K-edge EXAFS spectra fitting results for RuO2 together with oxides with different Ru-Ti atomic ratios treated at 200 °C. See DOI: 10.1039/c5nr03660g

  17. Design of microcamera for field curvature and distortion correction in monocentric multiscale foveated imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Xiongxiong; Wang, Xiaorui; Zhang, Jianlei; Yuan, Ying; Chen, Xiaoxiang

    2017-04-01

    To realize large field of view (FOV) and high-resolution dynamic gaze of the moving target, this paper proposes the monocentric multiscale foveated (MMF) imaging system based on monocentric multiscale design and foveated imaging. First we present the MMF imaging system concept. Then we analyze large field curvature and distortion of the secondary image when the spherical intermediate image produced by the primary monocentric objective lens is relayed by the microcameras. Further a type of zoom endoscope objective lens is selected as the initial structure and optimized to minimize the field curvature and distortion with ZEMAX optical design software. The simulation results show that the maximum field curvature in full field of view is below 0.25 mm and the maximum distortion in full field of view is below 0.6%, which can meet the requirements of the microcamera in the proposed MMF imaging system. In addition, a simple doublet is used to design the foveated imaging system. Results of the microcamera together with the foveated imager compose the results of the whole MMF imaging system.

  18. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    NASA Astrophysics Data System (ADS)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-04-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  19. Flexible Animation Computer Program

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1990-01-01

    FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.

  20. Understanding the structural, electrical, and optical properties of monolayer h-phase RuO2 nanosheets: a combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Ko, Dong-Su; Lee, Woo-Jin; Sul, Soohwan; Jung, Changhoon; Yun, Dong-Jin; Kim, Hee-Goo; Son, Won-Joon; Chung, Jae Gwan; Jung, Doh Won; Kim, Se Yun; Kim, Jeongmin; Lee, Wooyoung; Kwak, Chan; Shin, Jai Kwang; Kim, Jung-Hwa; Roh, Jong Wook

    2018-04-01

    The structural, electrical, and optical properties of monolayer ruthenium oxide (RuO2) nanosheets (NSs) fabricated by chemical exfoliation of a layered three-dimensional form of K-intercalated RuO2 are studied systematically via experimental and computational methods. Monolayer RuO2 NS is identified as having a distorted h-MX2 structure. This is the first observation of a RuO2 NS structure that is unlike the t-MX2 structure of the RuO2 layers in the parent material and does not have hexagonal symmetry. The distorted h-MX2 RuO2 NSs are shown to have optical transparency superior to that of graphene, thereby predicting the feasibility of applying RuO2 NSs to flexible transparent electrodes. In addition, it is demonstrated that the semiconducting band structures of RuO2 NSs can be manipulated to be semi-metallic by adjusting the crystal structure, which is related to band-gap engineering. This finding indicates that RuO2 NSs can be used in a variety of applications, such as flexible transparent electrodes, atomic-layer devices, and optoelectronic devices.

  1. Origin of the magnetic transition at 100 K in ɛ-Fe2O3 nanoparticles studied by x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    López-Sánchez, J.; Muñoz-Noval, A.; Castellano, C.; Serrano, A.; del Campo, A.; Cabero, M.; Varela, M.; Abuín, M.; de la Figuera, J.; Marco, J. F.; Castro, G. R.; Rodríguez de la Fuente, O.; Carmona, N.

    2017-12-01

    The current study unveils the structural origin of the magnetic transition of the ɛ-Fe2O3 polymorph from an incommensurate magnetic order to a collinear ferrimagnetic state at low temperature. The high crystallinity of the samples and the absence of other iron oxide polymorphs have allowed us to carry out temperature-dependent x-ray absorption fine structure spectroscopy experiments out. The deformation of the structure is followed by the Debye-Waller factor for each selected Fe-O and Fe-Fe sub-shell. For nanoparticle sizes between 7 and 15 nm, the structural distortions between the Fete and Fe-D1oc sites are localized in a temperature range before the magnetic transition starts. On the contrary, the inherent interaction between the other sub-shells (named Fe-O1,2 and Fe-Fe1) provokes cooperative magneto-structural changes in the same temperature range. This means that the Fete with Fe-D1oc polyhedron interaction seems to be uncoupled with temperature dealing with these nanoparticle sizes wherein the structural distortions are likely moderate due to surface effects.

  2. Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Ghaffarian, Reza

    2006-01-01

    A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.

  3. The structure and stability of Si60 and Ge60 cages: a computational study.

    PubMed

    Chen, Zhongfang; Jiao, Haijun; Seifert, Gotthard; Horn, Anselm H C; Yu, Dengke; Clark, Tim; Thiel, Walter; von Ragué Schleyer, Paul

    2003-06-01

    Structural studies of fullerene-like Si(60) and Ge(60) cages using ab initio methods were augmented by density functional tight-binding molecular dynamics (DFTB-MD) simulations of finite temperature effects. Neither the perfect I(h) symmetry nor the distorted T(h) structures are true minima. The energies of both are high relative to distorted, lower symmetry minima, C(i) and T, respectively, which still preserve C(60)-type connectivity. Both Si(60) and Ge(60) favor C(i) symmetry cages in which Si and Ge vertexes exhibit either near-trigonal or pyramidal geometries. These structural variations imply significant reactivity differences between different positions. The small magnetic shielding effects (NICS) indicate that aromaticity is not important in these systems. The inorganic fullerene cages have lower stabilities compared with their carbon analogs. Si(60) is stable towards spontaneous disintegration up to 700 K according to DFTB-MD simulations, and thus has potential for experimental observation. In contrast, Ge(60) preserves its cage structure only up to 200 K. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 948-953, 2003

  4. Quasi-optical frequency selective surface with phase compensation structure correcting the beam distortion.

    PubMed

    Yao, Xiayuan; Liang, Bingyuan; Bai, Ming

    2017-09-18

    In space-borne quasi-optical feed system, frequency selective surface (FSS) should meet both electrical properties and mechanical requirements. In the paper, we design and fabricate three FSSs to achieve these goals. We present a novel FFS with phase compensation structure correcting the beam distortion. The phase compensation structure consists of short-ended circular waveguide array, inspired by the idea of reflect array antenna. The first FSS meets the need of electrical performance, however, which is too weak to pass the mechanical test. The second one overcomes the former problem, but brings the aberration in reflection beam, due to the discontinuity of the reflection phase. The third one with phase compensation structure meets all the demands. The insertion phase of the unit cell compensates 119 and 183 GHz two reflection bands, reconfigures the field distributions on the cross section of beam waist simultaneously. What' more, this FSS extends the functionality of the original FSS. To some extent, the FSS with phase compensation structure shares the ellipsoidal reflector's pressure to adjust the beam.

  5. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence† †Electronic supplementary information (ESI) available: General details, synthesis and spectroscopy data of new compounds. Experimental details on optical, chiroptical, electrochemical and on-surface measurements. Crystal data and structure refinement of compounds 1, and 6. Further details on theoretical calculations and Cartesian coordinates of computed structures. VT-H1NMR, 2D-NMR and HRMS spectra of 1. CCDC 1561552 and 1561553. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8sc00427g

    PubMed Central

    Cruz, Carlos M.; Márquez, Irene R.; Mariz, Inês F. A.; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M.; Martín-Gago, José A.; Cuerva, Juan M.

    2018-01-01

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push–pull geometry and the extended network of sp2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results. PMID:29780523

  6. α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8: new quaternary mixed metal oxides composed of only second-order Jahn-Teller distortive cations.

    PubMed

    Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2013-10-07

    Three new quaternary scandium vanadium selenium/tellurium oxides, α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8 have been synthesized through hydrothermal and standard solid-state reactions. Although all three reported materials are stoichiometrically similar, they exhibit different crystal structures: α-ScVSe2O8 has a three-dimensional framework structure consisting of ScO6, VO6, and SeO3 groups. β-ScVSe2O8 reveals another three-dimensional framework composed of ScO7, VO5, and SeO3 polyhedra. ScVTe2O8 shows a layered structure with ScO6, VO4, and TeO4 polyhedra. Interestingly, the constituent cations, that is, Sc(3+), V(5+), Se(4+), and Te(4+) are all in a distorted coordination environment attributable to second-order Jahn-Teller (SOJT) effects. Complete characterizations including infrared spectroscopy, elemental analyses, thermal analyses, dipole moment calculation, and the magnitudes of out-of-center distortions for the compounds are reported. Transformation reactions suggest that α-ScVSe2O8 may change to β-ScVSe2O8, and then to Sc2(SeO3)3·H2O under hydrothermal conditions.

  7. Detection for flatness of large surface based on structured light

    NASA Astrophysics Data System (ADS)

    He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang

    2016-09-01

    In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.

  8. Magnetic reconnection during eruptive magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2017-08-01

    Aims: We perform a three-dimensional (3D) high resolution numerical simulation in isothermal magnetohydrodynamics to study the magnetic reconnection process in a current sheet (CS) formed during an eruption of a twisted magnetic flux rope (MFR). Because the twist distribution violates the Kruskal-Shafranov condition, the kink instability occurs, and the MFR is distorted. The centre part of the MFR loses its equilibrium and erupts upward, which leads to the formation of a 3D CS underneath it. Methods: In order to study the magnetic reconnection inside the CS in detail, mesh refinement has been used to reduce the numerical diffusion and we estimate a Lundquist number S = 104 in the vicinity of the CS. Results: The refined mesh allows us to resolve fine structures inside the 3D CS: a bifurcating sheet structure signaling the 3D generalization of Petschek slow shocks, some distorted-cylindrical substructures due to the tearing mode instabilities, and two turbulence regions near the upper and the lower tips of the CS. The topological characteristics of the MFR depend sensitively on the observer's viewing angle: it presents as a sigmoid structure, an outwardly expanding MFR with helical distortion, or a flare-CS-coronal mass ejection symbiosis as in 2D flux-rope models when observed from the top, the front, or the side. The movie associated to Fig. 2 is available at http://www.aanda.org

  9. Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures

    NASA Astrophysics Data System (ADS)

    Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en

    2015-08-01

    Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.

  10. Anion-Anion Bonding and Topology in Ternary Iridium Seleno-Stannides.

    PubMed

    Trump, Benjamin A; Tutmaher, Jake A; McQueen, Tyrel M

    2015-12-21

    The synthesis and physical properties of two new and one known Ir-Sn-Se compound are reported. Their crystal structures are elucidated with transmission electron microscopy and powder X-ray diffraction. IrSn0.45Se1.55 is a pyrite phase which consists of tilted corner-sharing IrX6 octahedra with randomly distributed (Sn-Se)(4-) and (Se-Se)(2-) dimers. Ir2Sn3Se3 is a known trigonally distorted skutterudite that consists of cooperatively tilted corner-sharing IrSn3Se3 octahedra with ordered (Sn-Se)2(4-) tetramers. Ir2SnSe5 is a layered, distorted β-MnO2 (pyrolusite) structure consisting of a double IrSe6 octrahedral row, corner sharing in the a direction and edge sharing in the b direction. This distorted pyrolusite contains (Se-Se)(2-) dimers and Se(2-) anions, and each double row is "capped" with a (Sn-Se)n polymeric chain. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low-spin 5d(6) Ir(3+). Electronic structure calculations on Ir2Sn3Se3 show a single, spherical, nonspin-orbit split valence band and suggest that Ir2Sn3Se3 is topologically nontrivial under tensile strain due to inversion of Ir-d and Se-p states.

  11. Anion–Anion Bonding and Topology in Ternary Iridium Seleno–Stannides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trump, Benjamin A.; Tutmaher, Jake A.; McQueen, Tyrel M.

    2015-12-21

    The synthesis and physical properties of two new and one known Ir–Sn–Se compound are reported. Their crystal structures are elucidated with transmission electron microscopy and powder X-ray diffraction. IrSn0.45Se1.55 is a pyrite phase which consists of tilted corner-sharing IrX6 octahedra with randomly distributed (Sn–Se)4– and (Se–Se)2– dimers. Ir2Sn3Se3 is a known trigonally distorted skutterudite that consists of cooperatively tilted corner-sharing IrSn3Se3 octahedra with ordered (Sn–Se)24– tetramers. Ir2SnSe5 is a layered, distorted β-MnO2 (pyrolusite) structure consisting of a double IrSe6 octrahedral row, corner sharing in the a direction and edge sharing in the b direction. This distorted pyrolusite contains (Se–Se)2– dimersmore » and Se2– anions, and each double row is “capped” with a (Sn–Se)n polymeric chain. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low-spin 5d6 Ir3+. Electronic structure calculations on Ir2Sn3Se3 show a single, spherical, nonspin–orbit split valence band and suggest that Ir2Sn3Se3 is topologically nontrivial under tensile strain due to inversion of Ir-d and Se-p states.« less

  12. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    PubMed

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  13. Power spectrum precision for redshift space distortions

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.; Samsing, Johan

    2013-02-01

    Redshift space distortions in galaxy clustering offer a promising technique for probing the growth rate of structure and testing dark energy properties and gravity. We consider the issue of to what accuracy they need to be modeled in order not to unduly bias cosmological conclusions. Fitting for nonlinear and redshift space corrections to the linear theory real space density power spectrum in bins in wavemode, we analyze both the effect of marginalizing over these corrections and of the bias due to not correcting them fully. While naively subpercent accuracy is required to avoid bias in the unmarginalized case, in the fitting approach the Kwan-Lewis-Linder reconstruction function for redshift space distortions is found to be accurately selfcalibrated with little degradation in dark energy and gravity parameter estimation for a next generation galaxy redshift survey such as BigBOSS.

  14. Towards the Structure Determination of a Modulated Protein Crystal: The Semicrystalline State of Profilin:Actin

    NASA Technical Reports Server (NTRS)

    Borgstahl, G.; Lovelace, J.; Snell, E. H.; Bellamy, H.

    2003-01-01

    One of the remaining challenges to structural biology is the solution of modulated structures. While small molecule crystallographers have championed this type of structure, to date, no modulated macromolecular structures have been determined. Modulation of the molecular structures within the crystal can produce satellite reflections or a superlattice of reflections in reciprocal space. We have developed the data collection methods and strategies that are needed to collect and analyze these data. If the macromolecule's crystal lattice is composed of physiologically relevant packing contacts, structural changes induced under physiological conditions can cause distortion relevant to the function and biophysical processes of the molecule making up the crystal. By careful measurement of the distortion, and the corresponding three-dimensional structure of the distorted molecule, we will visualize the motion and mechanism of the biological macromolecule(s). We have measured the modulated diffraction pattern produced by the semicrystalline state of profilin:actin crystals using highly parallel and highly monochromatic synchrotron radiation coupled with fine phi slicing (0.001-0.010 degrees) for structure determination. These crystals present these crystals present a unique opportunity to address an important question in structural biology. The modulation is believed to be due to the formation of actin helical filaments from the actin beta ribbon upon the pH-induced dissociation of profilin. To date, the filamentous state of actin has resisted crystallization and no detailed structures are available. The semicrystalline state profilin:actin crystals provides a unique opportunity to understand the many conformational states of actin. This knowledge is essential for understanding the dynamics underlying shape changes and motility of eukaryotic cells. Many essential processes, such as cytokinesis, phagocytosis, and cellular migration depend upon the capacity of the actin microfilament system to be restructured in a controlled manner via polymerization, depolymerization, severing, cross-linking, and anchorage. The structure the semicrystalline state of profilin:actin will challenge and validate current models of muscle contraction and cell motility. The methodology and theory under development will be easily extendable to other systems.

  15. Multiple shadows from distorted static black holes

    NASA Astrophysics Data System (ADS)

    Grover, Jai; Kunz, Jutta; Nedkova, Petya; Wittig, Alexander; Yazadjiev, Stoytcho

    2018-04-01

    We study the local shadow of the Schwarzschild black hole with a quadrupole distortion and the influence of the external gravitational field on the photon dynamics. The external matter sources modify the light ring structure and lead to the appearance of multiple shadow images. In the case of negative quadrupole moments we identify the most prominent mechanism causing multiple shadow formation. Furthermore, we obtain a condition under which this mechanism can be realized. This condition depends on the quadrupole moment, but also on the position of the observer and the celestial sphere.

  16. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  17. Simulation of the enhanced traffic alert and collision avoidance system (TCAS 2)

    NASA Technical Reports Server (NTRS)

    Rojas, R. G.; Burnside, W. D.; Law, P.; Grandchamp, B.

    1985-01-01

    The OSU aircraft code is used to analyze and simulate the TCAS 2 circular array which is mounted on the fuselage of a Boeing 737 aircraft. It is shown that the sum and difference patterns radiated by the circular array are distorted by the various structures of the aircraft, i.e., wings, tail, etc. Furthermore, monopulse curves are calculated and plotted for several beam positions and THETA angles. As expected, the worst cases of distortion occur when the beams are pointed toward the tail of the aircraft.

  18. Focal theoretical problems in modulated and martensitic transformations in alloys and perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumhansl, J.A.

    Fundamental understanding of the microscopic physic of displacive transformations requires insight into the most remarkable and fascinating feature common to so many of the transformations; the formation of local distortive structures, modulations and more general patterns at the mesoscopic scale, far larger than atomic spacings, much smaller than typical specimen size. These have been extensively studied by metallurgists for some time; but also, they are are manifest in ferroelectrics, in such phenomena as the blue phases'' in chloesteric liquid crystals, and in turbulence. This commonality in such a wide range of materials challenges us to achieve a basic understanding ofmore » the physics of why such local, persistent mesostructures appear. In order to address some of the bigger questions -- microscopics of nucleation and growth, mesoscopic and transitional (precursor) structures, and properties of transformed materials -- we began addressing the limitations of traditional methods for describing the thermodynamics and (elastic) distortions of displacive transformations. Conventional phonon descriptions and linear elasticity (and their contribution of the free energy) are obviously limited to very small distortions and are intrinsically incapable of describing the larger, topology changing displacements that are of essence here.« less

  19. Pseudo-Jahn-Teller Distortion in Two-Dimensional Phosphorus: Origin of Black and Blue Phases of Phosphorene and Band Gap Modulation by Molecular Charge Transfer.

    PubMed

    Chowdhury, Chandra; Jahiruddin, Sheik; Datta, Ayan

    2016-04-07

    Phosphorene (Pn) is stabilized as a layered material like graphite, yet it possess a natural direct band gap (Eg = 2.0 eV). Interestingly, unlike graphene, Pn exhibits a much richer phase diagram which includes distorted forms like the stapler-clip (black Pn, α form) and chairlike (blue Pn, β form) structures. The existence of these phases is attributed to pseudo-Jahn-Teller (PJT) instability of planar hexagonal P6(6-) rings. In both cases, the condition for vibronic instability of the planar P6(6-) rings is satisfied. Doping with electron donors like tetrathiafulvalene and tetraamino-tetrathiafulvalene and electron acceptors like tetracyanoquinodimethane and tetracyanoethylene convert blue Pn into N-type and black Pn into efficient P-type semiconductors, respectively. Interestingly, pristine blue Pn, an indirect gap semiconductor, gets converted into a direct gap semiconductor on electron or hole doping. Because of comparatively smaller undulation in blue Pn (with respect to black Pn), the van der Waals interactions between the dopants and blue Pn is stronger. PJT distortions for two-dimensional phosphorus provides a unified understanding of structural features and chemical reactivity in its different phases.

  20. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

    NASA Technical Reports Server (NTRS)

    Maniotis, A. J.; Chen, C. S.; Ingber, D. E.

    1997-01-01

    We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.

  1. Coupled Control of Flow Separation and Streamwise Vortical Structures

    NASA Astrophysics Data System (ADS)

    Burrows, Travis; Vukasinovic, Bojan; Glezer, Ari

    2017-11-01

    The flow in offset diffusers of modern propulsion systems are dominated by streamwise vorticity concentrations that advect of low-momentum fluid from the flow boundaries into the core flow and give rise to flow distortion and losses at the engine inlet. Because the formation of these vortices is strongly coupled to trapped vorticity concentrations within locally-separated flow domains over concave surfaces of the diffuser bends, this coupling is exploited for controlling the streamwise evolution of the vortices and thereby significantly reduce the flow distortion and losses. The scale and topology of the trapped vorticity are manipulated at an operating throat Mach number of 0.64 by using a spanwise array of fluidic oscillating jets that are placed upstream of the separation domain. The present investigations demonstrate that the actuation alters the structure of both the trapped and streamwise vortices. In particular, the distribution of the streamwise vortices is altered and their strength is diminished by actuation-induced streamwise vorticity concentrations of opposite sense. As a result, the actuation leads to significant suppression of pressure distortion at the engine inlet (by as much as 60%) at an actuation level that utilizes less than 0.4% of the diffuser's mass flow rate. Supported by ONR.

  2. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuanyuan; Zacharowicz, Renee; Frenkel, Anatoly I., E-mail: igor.lubomirsky@weizmann.ac.il, E-mail: anatoly.frenkel@yu.edu

    2016-05-15

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. We used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorption spectra in CGOmore » in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  3. Thermal, optical, and dielectric properties of fluoride Rb2TaF7

    NASA Astrophysics Data System (ADS)

    Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.

    2017-05-01

    The thermal, optical, and dielectric properties of fluoride Rb2TaF7 were investigated. It was observed that the variation in chemical pressure in fluorides A 2 +TaF7 caused by the cation substitution of rubidium for ammonium does not affect the ferroelastic nature of structural distortions, but leads to stabilization of the high- and low-temperature phases and enhancement of birefringence. The entropy of the phase transition P4/nmm ↔ Cmma is typical of the shift transformations, which is consistent with a model of the initial and distorted phase structures. The anisotropy of chemical pressure causes the change of signs of the anomalous strain and baric coefficient dT/ dp of Rb2TaF7 as compared with the values for its ammonium analog.

  4. Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study.

    PubMed

    Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia

    2010-02-05

    We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.

  5. Quality assurance of registration of CT and MRI data sets for treatment planning of radiotherapy for head and neck cancers

    PubMed Central

    Moore, Craig S.; Liney, Gary P.; Beavis, Andrew W.

    2004-01-01

    We are implementing the use of magnetic resonance (MR) images for head and neck radiotherapy planning, which involves their registration with computed tomography (CT). The quality assurance (QA) of the registration process was an initial step of this program. A phantom was built, and appropriate materials were identified to produce clinically relevant MR T1 and T2 contrast for its constituent “anatomy.” We performed a characterization of the distortion detectable within our phantom. Finally, we assessed the accuracy of image registration by contouring structures in the registered/fused data sets using the treatment planning system. Each structure was contoured using each modality, in turn, blind of the other. The position, area, and perimeter of each structure were assessed as a measure of accuracy of the entire image registration process. Distortion effects in the MR image were shown to be minimized by choosing a suitable (≥±30 kHz) receiver bandwidth. Remaining distortion was deemed clinically acceptable within ±15 cm of the magnetic field isocenter. A coefficient of agreement (A) analysis gave values to be within 9% of unity, where A=RaRp and Ra/p is the ratio of the area/perimeter of a particular structure on CT to that on MR. The center of each structure of interest agreed to within 1.8 mm. A QA process has been developed to assess the accuracy of using multimodality image registration in the planning of radiotherapy for the head and neck; we believe its introduction is feasible and safe. PACS numbers: 87.53.Xd, 87.57.Gg, 87.59.Fm; 87.61.‐c, 87.66.Xa PMID:15753931

  6. The information content of high-frequency seismograms and the near-surface geologic structure of "hard rock" recording sites

    USGS Publications Warehouse

    Cranswick, E.

    1988-01-01

    Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.

  7. The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations.

    PubMed

    Mast, T D; Hinkelman, L M; Orr, M J; Waag, R C

    1998-12-01

    Wavefront propagation through the abdominal wall was simulated using a finite-difference time-domain implementation of the linearized wave propagation equations for a lossless, inhomogeneous, two-dimensional fluid as well as a simplified straight-ray model for a two-dimensional absorbing medium. Scanned images of six human abdominal wall cross sections provided the data for the propagation media in the simulations. The images were mapped into regions of fat, muscle, and connective tissue, each of which was assigned uniform sound speed, density, and absorption values. Propagation was simulated through each whole specimen as well as through each fat layer and muscle layer individually. Wavefronts computed by the finite-difference method contained arrival time, energy level, and wave shape distortion similar to that in measurements. Straight-ray simulations produced arrival time fluctuations similar to measurements but produced much smaller energy level fluctuations. These simulations confirm that both fat and muscle produce significant wavefront distortion and that distortion produced by fat sections differs from that produced by muscle sections. Spatial correlation of distortion with tissue composition suggests that most major arrival time fluctuations are caused by propagation through large-scale inhomogeneities such as fatty regions within muscle layers, while most amplitude and waveform variations are the result of scattering from smaller inhomogeneities such as septa within the subcutaneous fat. Additional finite-difference simulations performed using uniform-layer models of the abdominal wall indicate that wavefront distortion is primarily caused by tissue structures and inhomogeneities rather than by refraction at layer interfaces or by variations in layer thicknesses.

  8. Structural deformation measurement via efficient tensor polynomial calibrated electro-active glass targets

    NASA Astrophysics Data System (ADS)

    Gugg, Christoph; Harker, Matthew; O'Leary, Paul

    2013-03-01

    This paper describes the physical setup and mathematical modelling of a device for the measurement of structural deformations over large scales, e.g., a mining shaft. Image processing techniques are used to determine the deformation by measuring the position of a target relative to a reference laser beam. A particular novelty is the incorporation of electro-active glass; the polymer dispersion liquid crystal shutters enable the simultaneous calibration of any number of consecutive measurement units without manual intervention, i.e., the process is fully automatic. It is necessary to compensate for optical distortion if high accuracy is to be achieved in a compact hardware design where lenses with short focal lengths are used. Wide-angle lenses exhibit significant distortion, which are typically characterized using Zernike polynomials. Radial distortion models assume that the lens is rotationally symmetric; such models are insufficient in the application at hand. This paper presents a new coordinate mapping procedure based on a tensor product of discrete orthogonal polynomials. Both lens distortion and the projection are compensated by a single linear transformation. Once calibrated, to acquire the measurement data, it is necessary to localize a single laser spot in the image. For this purpose, complete interpolation and rectification of the image is not required; hence, we have developed a new hierarchical approach based on a quad-tree subdivision. Cross-validation tests verify the validity, demonstrating that the proposed method accurately models both the optical distortion as well as the projection. The achievable accuracy is e <= +/-0.01 [mm] in a field of view of 150 [mm] x 150 [mm] at a distance of the laser source of 120 [m]. Finally, a Kolmogorov Smirnov test shows that the error distribution in localizing a laser spot is Gaussian. Consequently, due to the linearity of the proposed method, this also applies for the algorithm's output. Therefore, first-order covariance propagation provides an accurate estimate of the measurement uncertainty, which is essential for any measurement device.

  9. System overview on electromagnetic compensation for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This paper addresses the system requirements for such a system and identify candidate technologies (analog and digital) for possible hardware implementation.

  10. Synthesis of Two New Group 13 Benzoato-Chloro Complexes: A Structural Study of Gallium and Indium Chelating Carboxylates

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Hepp, Aloysius F.; Woloszynek, Robert; Protasiewicz, John D.; Dequeant, Michael; Ren, Tong

    2010-01-01

    Two new heteroleptic chelated-benzoato gallium (III) and indium (III) complexes have been prepared and structurally characterized. The molecular structures of [GaCl2(4-Mepy)2(O2CPh)]4-Mepy (1) and [InCl(4-Mepy)2(O2CPh)2]4-Mepy (2) have been determined by single-crystal x-ray diffraction. The gallium compound (1) is a distorted octahedron with cis-chloride ligands co-planar with the chelating benzoate and the 4-methylpyridines trans to each other. This is the first example of a Ga(III) structure with a chelating benzoate. The indium compound (2) is a distorted pentagonal bipyramid with two chelating benzoates, one 4-methylpyridine in the plane and a chloride trans to the other 4-methylpyridine. The indium bis-benzoate is an unusual example of a seven-coordinate structure with classical ligands. Both complexes, which due to the chelates, could also be described as pseudo-trigonal bipyramidal, include a three-bladed motif with three roughly parallel aromatic rings that along with a solvent of crystallization and electron-withdrawing chloride ligand(s) stabilize the solid-state structures.

  11. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    PubMed

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  12. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    NASA Astrophysics Data System (ADS)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  13. Real-time 3D measurement based on structured light illumination considering camera lens distortion

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing

    2014-12-01

    Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.

  14. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  15. [Design of a Component and Transmission Imaging Spectrometer].

    PubMed

    Sun, Bao-peng; Zhang, Yi; Yue, Jiang; Han, Jing; Bai, Lian-fa

    2015-05-01

    In the reflection-based imaging spectrometer, multiple reflection(diffraction) produces stray light and it is difficult to assemble. To address that, a high performance transmission spectral imaging system based on general optical components was developed. On the basis of simple structure, the system is easy to assemble. And it has wide application and low cost compared to traditional imaging spectrometers. All components in the design can be replaced according to different application situations, having high degree of freedom. In order to reduce the influence of stray light, a method based on transmission was introduced. Two sets of optical systems with different objective lenses were simulated; the parameters such as distortion, MTF and aberration.were analyzed and optimized in the ZEMAX software. By comparing the performance of system with different objective len 25 and 50 mm, it can be concluded that the replacement of telescope lens has little effect on imaging quality of whole system. An imaging spectrometer is developed successfully according design parameters. The telescope lens uses double Gauss structures, which is beneficial to reduce field curvature and distortion. As the craftsmanship of transmission-type plane diffraction grating is mature, it can be used without modification and it is easy to assemble, so it is used as beam-split. component of the imaging spectrometer. In addition, the real imaging spectrometer was tested for spectral resolution and distortion. The result demonstrates that the system has good ability in distortion control, and spectral resolution is 2 nm. These data satisfy the design requirement, and obtained spectrum of deuterium lamp through calibrated system are ideal results.

  16. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue

    PubMed Central

    Hoffman, David M.; Girshick, Ahna R.; Akeley, Kurt; Banks, Martin S.

    2010-01-01

    Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues—accommodation and blur in the retinal image—specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one’s ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays. PMID:18484839

  17. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.

    PubMed

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-12-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  18. Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2: a first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quijano, Ramiro; DeCoss, Romeo; Singh, David J

    2009-01-01

    The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less

  19. Isolating relativistic effects in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  20. The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.

    PubMed

    Rout, G C; Panda, Saswati; Behera, S N

    2011-10-05

    We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd

  1. Object-based warping: an illusory distortion of space within objects.

    PubMed

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  2. Absence of metastable states in strained monoatomic cubic crystals.

    NASA Astrophysics Data System (ADS)

    Aguayo, Aarón; Mehl, Michael L.; de Coss, Romeo

    2005-03-01

    The Bain path distortion of a metal with an fcc (bcc) ground state toward the bcc (fcc) structure initially requires an increase in energy, but at some point along the Bain path the energy will again decrease until a local minimum is reached. We have studied the tetragonal distortion (Bain path) of monoatomic cubic crystals, using a combination of parametrized tight-binding and first-principles linearized augmented plane wave calculations. We show that this local minimum is unstable with respect to an elastic distortion, except in the rare case that the minimum is at the bcc (fcc) point on the Bain path. This shows that body-centered-tetragonal phases of these materials, which have been seen in epitaxially grown thin films, must be stabilized by the substrate and cannot be freestanding films. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  3. Effects of structural distortion induced by Sc substitution in LuFe2O4

    NASA Astrophysics Data System (ADS)

    Jeong, Jinwon; Noh, Han-Jin; Kim, Sung Baek

    2014-06-01

    We have studied the correlation between the structural distortion and the electronic/magnetic properties in single-crystalline (Lu,Sc)Fe2O4 (Sc = 0.05 and 0.3) by using X-ray diffraction (XRD), magnetic susceptibility, and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD) measurements. The Rietveld structure analysis of the XRD patterns revealed that the Sc substitution induced an elongation of the FeO5 bipyramidal cages in LuFe2O4 and increased the Fe2O4 bilayer thickness. A non-negligible decrease in the ferrimagnetic transition temperature T C is observed in the magnetic susceptibility curve of the Sc = 0.3 sample, but the XAS/XMCD spectra do not show any difference except for a small reduction of dichroism signals at the Fe3+absorption edge. We interpret this suppression of TC to be the result of a decreased spin-orbit coupling effect in the Fe2+ e 1 g doublet under D 3 h symmetry, which is induced by the weakened structural asymmetry of the FeO5 bipyramids.

  4. Theoretical studies of the dependence of EPR parameters on local structure for the tetragonal Er(3+) centres in YVO4 and ScVO4.

    PubMed

    Chai, Rui-Peng; Hao, Dan-Hui; Kuang, Xiao-Yu; Liang, Liang

    2015-11-05

    The dependences of the EPR parameters on the local distortion parameters Δθ and ΔR as well as the crystal-field parameters have been studied by diagonalizing the 364×364 complete energy matrices for a tetragonal Er(3+) centre in the YVO4 and ScVO4 crystals. The results show that the local distortion angle Δθ and the fourth-order crystal-field parameter Ā4 are most sensitive to the EPR g-factors g// and g⊥, whereas the local distortion length ΔR and the second-order parameter Ā2 are less sensitive to the g-factors. Furthermore, we found that the abnormal EPR g-factors for the Er(3+) ion in the ScVO4 may be ascribed to the stronger nephelauxetic effect and covalent bonding effect, as a result of an expanded local distortion for the Er(3+) centre in the ScVO4 crystal. Simultaneously, the contributions of the J-J mixing effects from the terms of excited states to the EPR parameters have been evaluated quantitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An Inlet Distortion Assessment During Aircraft Departures at High Angle of Attack for an F/A-18A Aircraft

    NASA Technical Reports Server (NTRS)

    Steenken, William G.; Williams, John G.; Yuhas, Andrew J.; Walsh, Kevin R.

    1997-01-01

    The F404-GE-400-powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the quality of inlet airflow during departed flight maneuvers, that is, during flight outside the normal maneuvering envelope where control surfaces have little or no effectiveness. Six nose-left and six nose-right departures were initiated at Mach numbers between 0.3 and 0.4 at an altitude of 35 kft. The entry yaw rates were approximately 40 to 90 deg/sec. Engine surges were encountered during three of the nose-left and one of the nose-right departures. Time-variant inlet-total-pressure distortion levels at the engine face did not significantly exceed those at maximum angle-of-attack and sideslip maneuvers during controlled flight. Surges caused by inlet distortion levels resulted from a combination of high levels of inlet distortion and rapid changes in aircraft position. These rapid changes indicate a combination of engine support and gyroscopic loads being applied to the engine structure that impact the aerodynamic stability of the compressor through changes in the rotor-to-case clearances. This document presents the slides from an oral presentation.

  6. Optical distortion in the field of a lithotripter shock wave

    NASA Astrophysics Data System (ADS)

    Carnell, M. T.; Emmony, D. C.

    1995-10-01

    The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.

  7. Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide

    NASA Astrophysics Data System (ADS)

    Minns, J. L.; Zajdel, P.; Chernyshov, D.; van Beek, W.; Green, M. A.

    2017-05-01

    Hybrid perovskites form an emerging family of exceptional light harvesting compounds. However, the mechanism underpinning their photovoltaic effect is still far from understood, which is impeded by a lack of clarity on their structures. Here we show that iodide ions in the methylammonium lead iodide migrate via interstitial sites at temperatures above 280 K. This coincides with temperature dependent static distortions resulting in pseudocubic local symmetry. Based on bond distance analysis, the migrating and distorted iodines are at lengths consistent with the formation of I2 molecules, suggesting a 2I--->I2+2e- redox couple. The actual formula of this compound is thus (CH3NH3)PbI3-2x(I2)x where x~0.007 at room temperature. A crucial feature of the tetragonal structure is that the methylammonium ions do not sit centrally in the A-site cavity, but disordered around two off-centre orientations that facilitate the interstitial ion migration via a gate opening mechanism.

  8. Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2017-02-01

    Large area (up to 4 squared inches) epitaxial VO2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 , have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where the distortions are confined close to the interface which allows growth of high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with a RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.

  9. Nonlocal Gravity and Structure in the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodelson, Scott; Park, Sohyun

    2014-08-26

    The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravitymore » $$E_G$$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $$E_G$$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.« less

  10. Antiprismatic Coordination about Xenon: The Structure of Nitrosonium Octafluoroxenate(VI).

    PubMed

    Peterson, S W; Holloway, J H; Coyle, B A; Williams, J M

    1971-09-24

    The structure of nitrosonium octafluoroxenate(VI), 2NOF . XeF(6), has been determined by means of single-crystal x-ray counter methods (R-index = 0.046, weighted R-index = 0.042). The space group is Pnma, with a = 8.914(10) angstroms, b = 5.945(10) angstroms, and c = 12.83(2) angstroms (the numbers in parentheses are the standard deviations to the least significant digit or digits); the calculated density (rho) is 3.354 grams per cubic centimeter, and there are four formula units per unit cell. The material consists of well-separated NO(+) and (XeF(8))(2-) ions; the structural formula is thus (NO)(2) (XeF(8)). The anion configuration is that of a slightly distorted Archimedean antiprism. The observed distortion appears incompatible with a lone-pair repulsion model. Xenon-fluorine bond lengths of 1.971(7), 1.946(5), 1.958(7), 2.052(5), and 2.099(5) angstroms were found.

  11. Underwater binocular imaging of aerial objects versus the position of eyes relative to the flat water surface.

    PubMed

    Barta, András; Horváth, Gábor

    2003-12-01

    The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously.

  12. The Dominant Folding Route Minimizes Backbone Distortion in SH3

    PubMed Central

    Lammert, Heiko; Noel, Jeffrey K.; Onuchic, José N.

    2012-01-01

    Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding. PMID:23166485

  13. Finite temperature effects on the X-ray absorption spectra of energy related materials

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2014-03-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.

  14. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro

    We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less

  15. Effect of severe plastic deformation on the structure and crystal-lattice distortions in the Ni3(Al, X) ( X = Ti, Nb) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Pilyugin, V. P.; Danilov, S. E.; Kolosov, V. Yu.

    2015-05-01

    A systematic combined study of crystal lattice distortions caused by doping and by severe plastic deformation (SPD) of Ti- and Nb-doped Ni3Al intermetallic compound has been carried out using methods of X-ray diffraction, electron microscopy, and electrical-resistance measurements. The degree of imperfection of the alloys has been estimated based on the results obtained by all three methods. The degree of structural perfection of niobium-doped crystals was found to be higher than in the case of Ti doping. The character of stresses (tensile stresses after doping; and compressive stresses after SPD) in the crystal lattice has been established and their values have been calculated. A significant increase in the density of dislocations, point defects, and lattice curvature has been found after SPD. A nanocrystalline structure is formed in these alloys, but no complete disordering of the intermetallic phase is observed.

  16. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE PAGES

    Li, Yuanyuan; Kraynis, Olga; Kas, Joshua; ...

    2016-05-20

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. In this study, we used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorptionmore » spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  17. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  18. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  19. JWST ISIM Primary Structure and Kinematic Mount Configuration

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Carnahan, Tim; Hendricks, Steve; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz

    2004-01-01

    In this presentation we will review the evolution of the ISIM primary structure tube topology and kinematic mount configuration to the current baseline concept. We will also show optimization procedures used and challenges resulting from complex joints under launch loads. Two additional key ISIM structure challenges of meeting thermal distortion and stability requirements and metal-composite bonded joint survivability at cryogenic temperatures are covered in other presentations.

  20. Oxidation/reduction studies on Zr yU 1-yO 2+x and delineation of a new orthorhombic phase in U-Zr-O system

    NASA Astrophysics Data System (ADS)

    Sali, S. K.; Kulkarni, N. K.; Krishnan, K.; Achary, S. N.; Tyagi, A. K.

    2008-08-01

    In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO 2 in UO 2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr 0.33U 0.67O 2.33 (ZrU 2O 7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å 3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U 4+ and U 6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU 2O 7 are also studied using thermogravimetry.

  1. Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure.

    PubMed

    Wang, G Q; Gong, X H; Chen, Y J; Huang, J H; Lin, Y F; Luo, Z D; Huang, Y D

    2017-05-23

    Two novel red phosphors KBaEu(XO 4 ) 3 (X = Mo, W) have been synthesized by high-temperature solid-state reactions and the crystal structures were determined for the first time. Single-crystal X-ray diffraction data reveal that their space groups are C2/c. The crystalline structure is constituted of K/BaO 8 distorted square antiprisms and distorted EuO 8 polyhedra which form chains lying along the c-axis and two kinds of distorted XO 4 tetrahedra. This high disorder of K/Ba which might lower the crystal field symmetry around Eu 3+ results in the high purity of red emission around 615 nm originating from 5 D 0 → 7 F 2 transition under near-ultraviolet (NUV) excitation. With increasing temperature, the luminescence of KBaEu(XO 4 ) 3 (X = Mo, W) phosphors decreases almost linearly with subtle alteration for the CIE coordinate. As the temperature reaches 550 K, the red emission intensity decreases to 37.3% and 50.7% of that at 300 K for KBaEu(MoO 4 ) 3 and KBaEu(WO 4 ) 3 , respectively. The analysis of the decay curves of the 5 D 0 → 7 F 2 emission at variable temperatures indicates the weak cross relaxation and non-radiative energy transfer between Eu 3+ ions. These results demonstrate that the investigated phosphors are attractive for application in high power NUV excited white LEDs.

  2. A Three-dimensional Non-spherical Calculation Of The Rotationally Distorted Shape And Internal Structure Of A Model Of Jupiter With A Polytropic Index Of Unity

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.

    2012-10-01

    An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390

  3. Thermal emergence of laser-induced spin dynamics for a Ni4 cluster

    NASA Astrophysics Data System (ADS)

    Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.

    2018-05-01

    We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.

  4. The trigonal prism in coordination chemistry.

    PubMed

    Cremades, Eduard; Echeverría, Jorge; Alvarez, Santiago

    2010-09-10

    Herein we analyze the accessibility of the trigonal-prismatic geometry to metal complexes with different electron configurations, as well as the ability of several hexadentate ligands to favor that coordination polyhedron. Our study combines i) a structural database analysis of the occurrence of the prismatic geometry throughout the transition-metal series, ii) a qualitative molecular orbital analysis of the distortions expected for a trigonal-prismatic geometry, and iii) a computational study of complexes of several transition-metal ions with different hexadentate ligands. Also the tendency of specific electron configurations to present a cis bond-stretch Jahn-Teller distortion is analyzed.

  5. Input reconstruction of chaos sensors.

    PubMed

    Yu, Dongchuan; Liu, Fang; Lai, Pik-Yin

    2008-06-01

    Although the sensitivity of sensors can be significantly enhanced using chaotic dynamics due to its extremely sensitive dependence on initial conditions and parameters, how to reconstruct the measured signal from the distorted sensor response becomes challenging. In this paper we suggest an effective method to reconstruct the measured signal from the distorted (chaotic) response of chaos sensors. This measurement signal reconstruction method applies the neural network techniques for system structure identification and therefore does not require the precise information of the sensor's dynamics. We discuss also how to improve the robustness of reconstruction. Some examples are presented to illustrate the measurement signal reconstruction method suggested.

  6. Special Features of Strain Localization and Nanodipoles of Partial Disclinations in the Region of Elastic Distortions

    NASA Astrophysics Data System (ADS)

    Tyumentsev, A. N.; Ditenberg, I. A.; Sukhanov, I. I.

    2018-02-01

    In the zones of strain localization in the region of elastic distortions and nanodipoles of partial disclinations representing the defects of elastically deformed medium, a theoretical analysis of the elastically stressed state and the energy of these defects, including the cases of their transformation into more complex ensembles of interrelated disclinations, is performed. Using the analytical results, the mechanisms of strain localization are discussed in the stages of nucleation and propagation of the bands of elastic and plastic strain localization formed in these zones (including the cases of nanocrystalline structure formation).

  7. Vacancy effects on the electronic and structural properties pentacene

    NASA Astrophysics Data System (ADS)

    Laraib, Iflah; Janotti, Anderson

    Defects in organic crystals are likely to affect charge transport in organic electronic devices. Vacancies can create lattice distortions and modify electronic states associated with the molecules in its surrounding. Spectroscopy experiments indicate that molecular vacancies trap charge carriers. Experimental characterization of individual defects is challenging and unambiguous. Here we use density functional calculations including van der Waals interactions in a supercell approach to study the single vacancy in pentacene, a prototype organic semiconductor. We determine formation energies, local lattice relaxations, and discuss how vacancies locally distort the lattice and affect the electronic properties of the host organic semiconductor.

  8. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.

    PubMed

    Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E

    2014-02-21

    Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.

  9. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  10. Structural phase transition, Néel temperature enhancement, and persistent magneto-dielectric coupling in Cr-substituted Mn3O4

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.

    2016-05-01

    Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.

  11. Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals

    DOE PAGES

    McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; ...

    2014-11-18

    Here we report structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature T SR = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropymore » of the atomic displacement parameters for Bi with increasing temperature above T SR is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. Finally, the identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.« less

  12. High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 ) 4 -NH 3 ]CuCl 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Li, Shourui; Wang, Kai

    Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less

  13. Repurposing video recordings for structure motion estimations

    NASA Astrophysics Data System (ADS)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  14. Can temporal fine structure represent the fundamental frequency of unresolved harmonics?

    PubMed

    Oxenham, Andrew J; Micheyl, Christophe; Keebler, Michael V

    2009-04-01

    At least two modes of pitch perception exist: in one, the fundamental frequency (F0) of harmonic complex tones is estimated using the temporal fine structure (TFS) of individual low-order resolved harmonics; in the other, F0 is derived from the temporal envelope of high-order unresolved harmonics that interact in the auditory periphery. Pitch is typically more accurate in the former than in the latter mode. Another possibility is that pitch can sometimes be coded via the TFS from unresolved harmonics. A recent study supporting this third possibility [Moore et al. (2006a). J. Acoust. Soc. Am. 119, 480-490] based its conclusion on a condition where phase interaction effects (implying unresolved harmonics) accompanied accurate F0 discrimination (implying TFS processing). The present study tests whether these results were influenced by audible distortion products. Experiment 1 replicated the original results, obtained using a low-level background noise. However, experiments 2-4 found no evidence for the use of TFS cues with unresolved harmonics when the background noise level was raised, or the stimulus level was lowered, to render distortion inaudible. Experiment 5 measured the presence and phase dependence of audible distortion products. The results provide no evidence that TFS cues are used to code the F0 of unresolved harmonics.

  15. Preschool speech error patterns predict articulation and phonological awareness outcomes in children with histories of speech sound disorders

    PubMed Central

    Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise

    2012-01-01

    Purpose To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost four years later. Method Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 and followed up at 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors were used to predict later speech sound production, PA, and literacy outcomes. Results Group averages revealed below-average school-age articulation scores and low-average PA, but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom more than 10% of their speech sound errors were atypical had lower PA and literacy scores at school-age than children who produced fewer than 10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores. Conclusions Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschool may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschool distortions may be resistant to change over time, leading to persisting speech sound production problems. PMID:23184137

  16. Comparative study of A-site order in the lead-free bismuth titanates M{sub 1/2}Bi{sub 1/2}TiO{sub 3} (M=Li, Na, K, Rb, Cs, Ag, Tl) from first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gröting, Melanie, E-mail: groeting@mm.tu-darmstadt.de; Albe, Karsten, E-mail: albe@mm.tu-darmstadt.de

    2014-05-01

    We investigate the possibility of enhancing chemical order in the relaxor ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} upon substitution of Na{sup +} by other monovalent cations M{sup +} using total energy calculations based on density functional theory. All chemically available monovalent cations M{sup +}, which are Li, Na, Ag, K, Tl, Rb and Cs, are considered and an analysis of the structurally relaxed structures in terms of symmetry-adapted distortion modes is given in order to quantify the chemically induced structural distortions. We demonstrate that the replacement of Na{sup +} by other monovalent cations can hardly alter the tendency of chemical ordermore » with respect to Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}. Only Tl{sub 1/2}Bi{sub 1/2}TiO{sub 3} and Ag{sub 1/2}Bi{sub 1/2}TiO{sub 3} show enhanced tendency for chemical ordering. Both heavy metals behave similar to the light alkali metals in terms of structural relaxations and relative stabilities of the ordered configurations. Although a comparison of the Goldschmidt factors of components (M TiO{sub 3}){sup −} reveals for Tl a value above the upper stability limit for perovskites, the additional lone-pair effect of Tl{sup +} stabilizes the ordered structure. - Graphical abstract: Amplitudes of chemically induced distortion modes in different ordered perovskites M{sub 1/2}Bi{sub 1/2}TiO{sub 3} and visualisation of atomic displacements associated with distortion mode X{sup +}{sub 1} in the 001-ordered compounds Li{sub 1/2}Bi{sub 1/2}TiO{sub 3} and Cs{sub 1/2}Bi{sub 1/2}TiO{sub 3}. Due to a substantial size mismatch between bismuth (green) and caesium (dark blue), incorporation of the latter leads to enhanced displacements of oxygen atoms (red) and suppresses displacements of titanium (silver) as compared to lithium (light blue) or other smaller monovalent cations. - Highlights: • Lead-free A-site mixed bismuth titanates M{sub 1/2}Bi{sub 1/2}TiO{sub 3} are studied by first-principles calculations. • Investigation of chemical ordering tendency for M=Li, Na, K, Rb, Cs, Ag, and Tl. • Group theoretical analysis of different ordered structures. • Ag and Tl compounds are the most promising candidates for study of chemical order dependent ferroelectric properties.« less

  17. Combined MCD/DFT/TDDFT Study of the Electronic Structure of Axially Pyridine Coordinated Metallocorroles.

    PubMed

    Rhoda, Hannah M; Crandall, Laura A; Geier, G Richard; Ziegler, Christopher J; Nemykin, Victor N

    2015-05-18

    A series of metallocorroles were investigated by UV-vis and magnetic circular dichroism spectroscopies. The diamagnetic distorted square-pyramidal main-group corrole Ga(tpfc)py (2), the diamagnetic distorted octahedral transition-metal adduct Co(tpfc)(py)2 (3), and paramagnetic distorted octahedral transition-metal complex Fe(tpfc)(py)2 (4) [H3tpfc = tris(perfluorophenyl)corrole] were studied to investigate similarities and differences in the electronic structure and spectroscopy of the closed- and open-shell metallocorroles. Similar to the free-base H3tpfc (1), inspection of the MCD Faraday B-terms for all of the macrocycles presented in this report revealed that a ΔHOMO < ΔLUMO [ΔHOMO is the energy difference between two highest energy corrole-centered π-orbitals and ΔLUMO is the energy difference between two lowest energy corrole-centered π*-orbitals originating from ML ± 4 and ML ± 5 pairs of perimeter] condition is present for each complex, which results in an unusual sign-reversed sequence for π-π* transitions in their MCD spectra. In addition, the MCD spectra of the cobalt and the iron complexes were also complicated by a number of charge-transfer states in the visible region. Iron complex 4 also exhibits a low-energy absorption in the NIR region (1023 nm). DFT and TDDFT calculations were used to elaborate the electronic structures and provide band assignments in UV-vis and MCD spectra of the metallocorroles. DFT and TDDFT calculations predict that the orientation of the axial pyridine ligand(s) has a very minor influence on the calculated electronic structures and absorption spectra in the target systems.

  18. High-pressure crystal structure of elastically isotropic CaTiO3 perovskite under hydrostatic and non-hydrostatic conditions.

    PubMed

    Zhao, Jing; Ross, Nancy L; Wang, Di; Angel, Ross J

    2011-11-16

    The structural evolution of orthorhombic CaTiO3 perovskite has been studied using high-pressure single-crystal x-ray diffraction under hydrostatic conditions up to 8.1 GPa and under a non-hydrostatic stress field formed in a diamond anvil cell (DAC) up to 4.7 GPa. Under hydrostatic conditions, the TiO6 octahedra become more tilted and distorted with increasing pressure, similar to other 2:4 perovskites. Under non-hydrostatic conditions, the experiments do not show any apparent difference in the internal structural variation from hydrostatic conditions and no additional tilts and distortions in the TiO6 octahedra are observed, even though the lattice itself becomes distorted due to the non-hydrostatic stress. The similarity between the hydrostatic and non-hydrostatic cases can be ascribed to the fact that CaTiO3 perovskite is nearly elastically isotropic and, as a consequence, its deviatoric unit-cell volume strain produced by the non-hydrostatic stress is very small; in other words, the additional octahedral tilts relevant to the extra unit-cell volume associated with the deviatoric unit-cell volume strain may be totally neglected. This study further addresses the role that three factors--the elastic properties, the crystal orientation and the pressure medium--have on the structural evolution of an orthorhombic perovskite loaded in a DAC under non-hydrostatic conditions. The influence of these factors can be clearly visualized by plotting the three-dimensional distribution of the deviatoric unit-cell volume strain in relation to the cylindrical axis of the DAC and indicates that, if the elasticity of a perovskite is nearly isotropic as it is for CaTiO3, the other two factors become relatively insignificant.

  19. Jets on Comet Borrelly

    NASA Image and Video Library

    2001-11-03

    This very long exposure was taken by NASA Deep Space 1 to show detailed structures in the faint parts of comet Borrelly inner coma. As a result, the nucleus has been greatly over-exposed and its shape appears distorted.

  20. Retinal image mosaicing using the radial distortion correction model

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2008-03-01

    Fundus camera imaging can be used to examine the retina to detect disorders. Similar to looking through a small keyhole into a large room, imaging the fundus with an ophthalmologic camera allows only a limited view at a time. Thus, the generation of a retinal montage using multiple images has the potential to increase diagnostic accuracy by providing larger field of view. A method of mosaicing multiple retinal images using the radial distortion correction (RADIC) model is proposed in this paper. Our method determines the inter-image connectivity by detecting feature correspondences. The connectivity information is converted to a tree structure that describes the spatial relationships between the reference and target images for pairwise registration. The montage is generated by cascading pairwise registration scheme starting from the anchor image downward through the connectivity tree hierarchy. The RADIC model corrects the radial distortion that is due to the spherical-to-planar projection during retinal imaging. Therefore, after radial distortion correction, individual images can be properly mapped onto a montage space by a linear geometric transformation, e.g. affine transform. Compared to the most existing montaging methods, our method is unique in that only a single registration per image is required because of the distortion correction property of RADIC model. As a final step, distance-weighted intensity blending is employed to correct the inter-image differences in illumination encountered when forming the montage. Visual inspection of the experimental results using three mosaicing cases shows our method can produce satisfactory montages.

  1. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taruya, Atsushi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Nishimichi, Takahiro

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopolemore » and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.« less

  2. Thermal and structural analysis of the GOES scan mirror's on orbit performance

    NASA Technical Reports Server (NTRS)

    Zurmehly, G. E.; Hookman, R. A.

    1991-01-01

    The on-orbit performance of the GOES satellite's scan mirror has been predicted by means of thermal, structural, and optical models. A simpler-than-conventional thermal model was used to reduce the time required to obtain orbital predictions, and the structural model was used to predict on-earth gravity sag and on-orbit distortions. The transfer of data from the thermal model to the structural model was automated for a given set of thermal nodes and structural grids.

  3. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    NASA Astrophysics Data System (ADS)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  4. What can one learn about material structure given a single first-principles calculation?

    NASA Astrophysics Data System (ADS)

    Rajen, Nicholas; Coh, Sinisa

    2018-05-01

    We extract a variable X from electron orbitals Ψn k and energies En k in the parent high-symmetry structure of a wide range of complex oxides: perovskites, rutiles, pyrochlores, and cristobalites. Even though calculation was done only in the parent structure, with no distortions, we show that X dictates material's true ground-state structure. We propose using Wannier functions to extract concealed variables such as X both for material structure prediction and for high-throughput approaches.

  5. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed four separate Pb images, as shown in Fig.1. Using these images, we could obtain acute and obtuse rhombohedral structures of the crystal unit cells. Moreover, the Pb-Pb correlated images reconstructed from Pb Lα holograms showed a local structure of body center-like 2a0 ×2a0 × 2a0 superlattice, proving a rigid 3D network structural model combining the two kinds of rhombohedrons. This superstructure are believed to play an important role in the relaxor behaviour of PMN at atomic level[3].jmicro;63/suppl_1/i13/DFU047F1F1DFU047F1Fig. 1.3D images of the nearest Pb and O atoms around Nb in Pb(Mg1/3Nb2/3)O3. The cube represents 1/8 of the unit cell. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Structural Integrity of the Greek Key Motif in βγ-Crystallins Is Vital for Central Eye Lens Transparency

    PubMed Central

    Vendra, Venkata Pulla Rao; Agarwal, Garima; Chandani, Sushil; Talla, Venu; Srinivasan, Narayanaswamy; Balasubramanian, Dorairajan

    2013-01-01

    Background We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the βγ-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in βγ-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display ‘native state aggregation’, leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy “distort motif, lose central vision”. PMID:23936409

  7. Influence of molecular distortion on the exciton quenching for quaterthiophene-terminated self-assembled monolayers on Au(111)

    NASA Astrophysics Data System (ADS)

    Kato, Hiroyuki S.; Murakami, Yoshinari; Saitoh, Riyo; Osumi, Yuji; Okaue, Daijiro; Kiriyama, Yoshiaki; Ueba, Takahiro; Yamada, Takashi; Ie, Yutaka; Aso, Yoshio; Munakata, Toshiaki

    2018-03-01

    We have studied the dynamics of photoexcited electronic states for structure-specific alkanethiolate-based self-assembled monolayers (SAMs) on Au(111). At the even numbers of methylene units (n) in the alkylene chain, a molecular distortion due to strong interference between the end substituents is expected. Focused on this geometrical perturbation, here, we examine the influence of the molecular distortion on the quenching process of photoexcited quaterthiophene (4T)-terminated alkanethiolate SAMs (4TCnS-SAMs) for even n (= 6 and 8). The occupied and unoccupied electronic levels of 4TCnS-SAMs are specified by ultraviolet photoelectron spectroscopy (UPS) and two-photon photoemission (2PPE) spectroscopy, respectively. The quenching rate, i.e., lifetime (τn), of the photoexcited state for 4TCnS-SAMs is evaluated by the time-resolved 2PPE measurements. In comparison to the previously reported results for odd n [J. Phys. Chem. C 119 (2015) 7400-7407], we find that τn for even n is not in the middle of those for n ± 1 but close to that for n - 1, i.e., τ6 ≈ τ5 and τ8 ≈ τ7, in contrast to the negligible difference in the electronic levels for all n. By the examination of molecular configurations using scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy (IRAS), we elucidate the weak n dependence of the 4T group orientation and the n-parity-dependent conformation change of alkylene chain. We conclude that the n parity dependence of τn results from a structural distortion of the aliphatic alkylene chain, in which a skewed alkylene chain appears for even n, rather than the electronic modification of the aromatic 4T groups.

  8. Director Field Analysis (DFA): Exploring Local White Matter Geometric Structure in Diffusion MRI.

    PubMed

    Cheng, Jian; Basser, Peter J

    2018-01-01

    In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spherical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter based on the reconstructed tensor field or spherical function field: (1) We propose a set of mathematical tools to process general director data, which consists of dyadic tensors that have orientations but no direction. (2) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in a single voxel or in a region, respectively; (3) We also show how to construct a local orthogonal coordinate frame in each voxel exhibiting anisotropic diffusion; (4) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA and its related mathematical tools can be used to process not only diffusion MRI data but also general director field data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in DMRITool. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Topographic Diagnosis of Craniopharyngiomas: The Accuracy of MRI Findings Observed on Conventional T1 and T2 Images.

    PubMed

    Prieto, R; Pascual, J M; Barrios, L

    2017-11-01

    The topography of craniopharyngiomas has proved fundamental in predicting the involvement of vital brain structures and the possibility of achieving a safe radical resection. Beyond the imprecise term "suprasellar," indiscriminately used for craniopharyngiomas, an accurate definition of craniopharyngioma topography should be assessed by preoperative MR imaging. The objective of this study was to investigate the MRI findings that help define craniopharyngioma topography. This study retrospectively investigated a cohort of 200 surgically treated craniopharyngiomas with their corresponding preoperative midsagittal and coronal conventional T1- and T2-weighted MR images, along with detailed descriptions of the surgical findings. Radiologic variables related to the occupation of the tumor of intracranial compartments and the distortions of anatomic structures along the sella turcica-third ventricle axis were analyzed and correlated with the definitive craniopharyngioma topography observed during the surgical procedures. A predictive model for craniopharyngioma topography was generated by multivariate analysis. Five major craniopharyngioma topographies can be defined according to the degree of hypothalamic distortion caused by the tumor: sellar-suprasellar, pseudointraventricular, secondary intraventricular, not strictly intraventricular, and strictly intraventricular. Seven key radiologic variables identified on preoperative MRI allowed a correct overall prediction of craniopharyngioma topography in 86% of cases: 1) third ventricle occupation, 2) pituitary stalk distortion, 3) relative level of the hypothalamus in relation to the tumor, 4) chiasmatic cistern occupation, 5) mammillary body angle, 6) type of chiasm distortion, and 7) tumor shape. Systematic assessment of these 7 variables on conventional preoperative T1 and T2 MRI is a useful and reliable method to ascertain individual craniopharyngioma topography. © 2017 by American Journal of Neuroradiology.

  10. Direct observation of the ferroelectric polarization in the layered perovskite Bi{sub 4}Ti{sub 3}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urushihara, Daisuke; Asaka, Toru, E-mail: asaka.toru@nitech.ac.jp; Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya 466-8555

    We investigated the crystal structure and ferroelectric domains of Bi{sub 4}Ti{sub 3}O{sub 12} (BTO) by means of transmission electron microscopy (TEM) and single-crystal X-ray diffractometry. From the extinction rule, we determined that the space group in the ferroelectric phase of BTO is P1a1 rather than B2cb and B1a1 which have been proposed previously. We successfully refined the crystal structure based on the space group P1a1. The 180° and 90° ferroelectric domain structures were observed by the [001]-zone dark-field TEM imaging. In the 180° domain structure, we determined that one component of the polarization vector is parallel to the a-axis. Anmore » annular bright-field scanning transmission electron microscopy (ABF-STEM) was performed for the direct observation of the crystal structures. The ABF-STEM images displayed the contrasts with respect to every atomic position in spite of the highly distorted structure of BTO. We could evaluate the tilting and distortion of the [TiO{sub 6}] octahedra relatively. Therefore, we directly observed the ferroelectric displacements of Bi and Ti ions.« less

  11. Synchrotron-based XAS on structure investigation of La0.99-xSrx(Na, K, Ba)0.01MnO3 nanoparticles: Evidence of magnetic properties

    NASA Astrophysics Data System (ADS)

    Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi

    2018-04-01

    This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.

  12. Multiconfiguration Self-Consistent Field Study on Formonitrile Imine and N-Substituted Nitrile Imines HCN2-R: Energy Component Analysis of the Pseudo-Jahn-Teller Effect.

    PubMed

    Toyota, Azumao; Muramatsu, Takashi; Koseki, Shiro

    2017-03-23

    Stable geometrical structures for formonitrile imine (1) and N-substituted nitrile imines HCN 2 -R (R = Li, BeH, BH 2 , CH 3 , CN, CCH, C 6 H 5 , NH 2 , OH, and F) (2-11) were examined by using the multiconfiguration self-consistent-field (MCSCF) method followed by second-order configuration interaction (SOCI) calculations and second-order multiconfiguration quasi-degenerate perturbation theory (MCQDPT2) calculations, together with the aug-cc-pVTZ basis sets. The results show that 1 suffers a pseudo-Jahn-Teller (JT) distortion from a linear C ∞v structure to a C 1 structure via a planar bent C s structure. Each of the others is found to undergo pseudo-JT distortion from a symmetrical structure to a planar bent C s structure for 2, 3, and 7 and to a C 1 structure for 4, 5, 6, 8, 9, 10, and 11. At the stationary structures of 1-11, the structural characteristics were briefly discussed in terms of allenic and propargylic. To elucidate the nature of pseudo-JT distortions, energy component analyses were carried out at the MCSCF+SOCI level of theory at all of the stationary structures for the relevant molecules. In most of the molecules examined, pseudo-JT stabilizations were classified into two groups, one in which the stability arises from a lowering of the energy of the attractive term V en and the other in which the stability results from a lowering of the energy of the repulsive terms V nn and V ee . In addition to the above two groups, it was also found that the following three groups are responsible for the pseudo-JT stabilizations in a certain stage of the structural changes. Namely, one is a lowering of the energy of the term V ee observed in 6, another is a lowering of the energy of the terms V ee and V en observed in 9-11, and the other is a lowering of the energy of the terms V en and V nn observed in 10. These energetic behaviors were accounted in terms of an elongation or a contraction of the molecular skeleton, a migration of electrons from one part of the molecule to other parts, and the combined effects arising from these two factors.

  13. Seeing the invisible

    NASA Astrophysics Data System (ADS)

    Heymans, Catherine

    2014-07-01

    Light from distant galaxies is distorted on its journey to us via a vast network of dark matter. By observing this phenomenon, known as gravitational lensing, physicists are able to map the structure of this dark cosmic web, as Catherine Heymans explains.

  14. Weak ferromagnetism in a high-pressure phase of FeTiO3 with polar lattice distortion

    NASA Astrophysics Data System (ADS)

    Varga, Tamas; Mitchell, John; Fennie, Craig; Streiffer, Stephen; Hong, Seungbum; Park, Moonkyu; Gopalan, Venkatraman; Kumar, Amit; Vlahos, Eftihia; Sanehira, Takeshi; Wang, Yanbin

    2009-03-01

    Today's challenge in multiferroics is to identify materials in which polarization and magnetization -- normally considered contraindicated properties - are strongly coupled. Recent density functional theory calculations have predicted that the family of compounds MTiO3 (M = Mn, Fe, Ni) are promising candidates where a polar lattice distortion can induce weak ferromagnetism. The crucial insight is that while the equilibrium one-atmosphere structure of these is ilmenite, they must be transformed to a closely related LiNbO3-type structure. We have prepared the corresponding FeTiO3 phase at 18 GPa and 1200 ^oC. It shows a sharp antiferromagnetic (AF) transition at 111.5 K. FeTiO3 also displays ferroelectric domains, and weak ferromagnetism coincident with the AF transition. Possible coupling between its polarization and weak ferromagnetism is discussed based on results of piezoelectric force microscopy (PFM), second harmonic generation (SHG), dielectric, and polarization measurements.

  15. Strainmeters and tiltmeters in geophysics

    NASA Technical Reports Server (NTRS)

    Goulty, N. R.

    1976-01-01

    Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.

  16. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less

  17. Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles

    NASA Astrophysics Data System (ADS)

    Khalsa, Guru; Benedek, Nicole A.

    2018-03-01

    Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.

  18. Giant magnetostriction in nanoheterogeneous Fe-Al alloys

    NASA Astrophysics Data System (ADS)

    Han, Yongjun; Wang, Hui; Zhang, Tianli; He, Yangkun; Jiang, Chengbao

    2018-02-01

    As a potential magnetostrictive material, Fe-Al alloys exhibit excellent mechanical properties, low cost, and moderate magnetostriction, but the magnetostriction mechanism is still a mystery. Here, we elucidate the structural origin of magnetostriction in Fe-Al alloys and further improve the magnetostriction five-fold via Tb doping. Nanoinclusions with a size of 3-5 nm were found dispersed in the A2 matrix in Fe82Al18 ribbons. The structure of the nanoinclusions is identified to be tetragonally modified-D03 (L60), which are considered to create the tetragonal distortion of the matrix, leading to the enhanced magnetostriction. Furthermore, a drastic enhancement of the magnetostriction up to 5 times was achieved by trace Tb doping (0.2 at. %). Synchrotron X-ray diffraction directly revealed the increased tetragonal distortion of the matrix caused by these Tb dopants. The results further enrich the heterogeneous magnetostriction and guide the development of magnetostrictive materials.

  19. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes.

    PubMed

    Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A

    2003-11-26

    DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.

  20. Optical Experiments With Manganese Doped Yttrium Orthoaluminate, a Potential Material for Holographic Recording and Data Storage

    NASA Technical Reports Server (NTRS)

    Warren, Matthew E.; Loutts, George

    1998-01-01

    The YAlO3 host crystal has a distorted perovskite structure that belongs to the orthorhombic centrosymmetric Pbnm space group. The cationic sites in the structure available for Mn substitution are the relatively large strongly distorted YO12 polyhedral (Y3+ ionic radius R(sub Y) = 1.02 A) and the smaller nearly ideal AlO6 octahedra R(sub Al) = 0.53 A). Manganese may enter YAlO3 in the form of Mn2+ ions (R(sub Mn)= 0.96 A), substituting most likely Y3+ ions, and Mn3+ ions (R(sub Mn) = 0.65 A) or Mn4+ ions (R(sub Mn) = 0.53 A) substituting Al3+ ions. The latter substitution is most probable because of dimensional parameters. Point defects, which are common in YAl03, may provide the charge compensation required for substitution.

  1. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joellenbeck, S.; Mahnke, J.; Randoll, R.

    2011-04-15

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4x10{sup 10} atoms/s and maximum number of 8.7x10{sup 9} captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all magnetic fields are applied locally without the need formore » external bias fields, the presented setup will facilitate parallel generation of Bose-Einstein condensates on a conveyor belt with a cycle rate above 1 Hz.« less

  2. CRADA Final Report: Weld Predictor App

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, Jay Jay

    Welding is an important manufacturing process used in a broad range of industries and market sectors, including automotive, aerospace, heavy manufacturing, medical, and defense. During welded fabrication, high localized heat input and subsequent rapid cooling result in the creation of residual stresses and distortion. These residual stresses can significantly affect the fatigue resistance, cracking behavior, and load-carrying capacity of welded structures during service. Further, additional fitting and tacking time is often required to fit distorted subassemblies together, resulting in non-value added cost. Using trial-and-error methods to determine which welding parameters, welding sequences, and fixture designs will most effectively reduce distortionmore » is a time-consuming and expensive process. For complex structures with many welds, this approach can take several months. For this reason, efficient and accurate methods of mitigating distortion are in-demand across all industries where welding is used. Analytical and computational methods and commercial software tools have been developed to predict welding-induced residual stresses and distortion. Welding process parameters, fixtures, and tooling can be optimized to reduce the HAZ softening and minimize weld residual stress and distortion, improving performance and reducing design, fabrication and testing costs. However, weld modeling technology tools are currently accessible only to engineers and designers with a background in finite element analysis (FEA) who work with large manufacturers, research institutes, and universities with access to high-performance computing (HPC) resources. Small and medium enterprises (SMEs) in the US do not typically have the human and computational resources needed to adopt and utilize weld modeling technology. To allow an engineer with no background in FEA and SMEs to gain access to this important design tool, EWI and the Ohio Supercomputer Center (OSC) developed the online weld application software tool “WeldPredictor” ( https://eweldpredictor.ewi.org ). About 1400 users have tested this application. This project marked the beginning of development on the next version of WeldPredictor that addresses many outstanding features of the original, including 3D models, allow more material hardening laws, model material phase transformation, and uses open source finite element solvers to quickly solve problems (as opposed to expensive commercial tools).« less

  3. The Veils of Clio: Dimensions of a Behavioral Narratology

    PubMed Central

    Grant, Lyle K

    2007-01-01

    This paper outlines a behavior-analysis approach to the field of narratology, the study of the narrative or story, with emphasis on nonfiction stories and the processes by which such stories distort the world they describe. Stories are described in terms of (a) a behavior-analysis adaptation of Todorov's (1977) analysis of the plots of stories in terms of states of equilibrium/disequilibrium and (b) Grant's (2005) analysis of the structure of stories in terms of establishing operations and escape contingencies. These two sets of concepts are applied to understanding how and why stories lead to distortions of the events they report. PMID:22477381

  4. Plenoptic wavefront sensor with scattering pupil.

    PubMed

    Vdovin, Gleb; Soloviev, Oleg; Loktev, Mikhail

    2014-04-21

    We consider a wavefront sensor combining scattering pupil with a plenoptic imager. Such a sensor utilizes the same reconstruction principle as the Hartmann-Shack sensor, however it is free from the ambiguity of the spot location caused by the periodic structure of the sensor matrix, and allows for wider range of measured aberrations. In our study, sensor with scattering pupil has demonstrated a good match between the introduced and reconstructed aberrations, both in the simulation and experiment. The concept is expected to be applicable to optical metrology of strongly distorted wavefronts, especially for measurements through dirty, distorted, or scattering windows and pupils, such as cataract eyes.

  5. Resonance rotational level crossing in the fluorosulfate radical FSO3rad and experimental determination of the rotational A and the centrifugal distortion DK constants

    NASA Astrophysics Data System (ADS)

    Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán

    2018-01-01

    The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.

  6. Insight into inhibition of the human amyloid beta protein precursor (APP: PDB ID ) using (E)-N-(pyridin-2-ylmethylene)arylamine (LR) models: structure elucidation of a family of ZnX2-LR complexes.

    PubMed

    Basu Baul, Tushar S; Kundu, Sajal; Singh, Palwinder; Shaveta; Guedes da Silva, M Fátima C

    2015-02-07

    The amyloid beta precursor protein (APP) and its neurotoxic cleavage product amyloid beta (Aβ) are a cause of Alzheimer's disease and appear essential for neuronal development and cell homeostasis. Proteolytic processing of APP is influenced by metal ions and protein ligands, however the structural and functional mechanism of APP regulation is not known so far. In this context, molecular modeling studies were performed to understand the molecular behavior of (E)-N-(pyridin-2-ylmethylene)arylamines (LR) with an E2 domain of the APP in its complex with zinc (APP; PDB ID: ). Docking results indeed confirmed that the LR interacts with Zn in the binding site of the protein between two α-helical chains. In view of these findings, LR was further investigated for complexation reactions with Zn(2+) in order to establish the structural models in solution and in the solid state. Five new Zn(2+) complexes of compositions viz. [Zn(Br)2(L2-Me)] (), [Zn(Br)2(L2-OMe)] (), [Zn(i)2(L2-OMe)] (), [Zn(NO3)2(L2-OMe)(H2O)] () and [Zn(L4-Me)2(H2O)2](NO3)2 () were synthesized and their structures were ascertained by microanalysis, IR and (1)H NMR spectroscopy, and single-crystal X-ray diffraction. The zinc atom in complex exhibits a distorted tetrahedral geometry while the crystal structures of complexes and show distorted square pyramidal geometries. The zinc cation in and has an octahedral coordination environment, but in the zinc coordination geometry is less distorted. The Zn(ii) cations take part in one ( and ) or two () 5-membered metallacycles imposed by the NN or NNO chelation modes of LR. The significant intermolecular ππ interactions are also discussed.

  7. Suppression of the ferromagnetic state in LaCoO3 films by rhombohedral distortion

    NASA Astrophysics Data System (ADS)

    Fuchs, D.; Dieterle, L.; Arac, E.; Eder, R.; Adelmann, P.; Eyert, V.; Kopp, T.; Schneider, R.; Gerthsen, D.; v. Löhneysen, H.

    2009-01-01

    Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t , on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the formation of periodic nanotwins with twin planes predominantly along the ⟨100⟩ direction. Nanotwinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudotetragonal structure toward the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudotetragonal structure is found to be nearly constant over a very large range of t . Only films with t>130nm show a significant relaxation of the lattice parameters toward values comparable to those of bulk LCO. Measurements of the magnetic moment indicate that the effective paramagnetic moment, meff , and thus the spin state of the Co3+ ion do not change for films with t≤100nm . However, the saturated ferromagnetic moment, ms , was found to be proportional only to the pseudotetragonal part of the film and decreases with increasing rhombohedral distortion. The measurements demonstrate that ferromagnetism of LCO is strongly affected by the rhombohedral distortion while the increased unit-cell volume mainly controls the effective paramagnetic moment and thus the spin state of the Co3+ ion.

  8. Lanthanide contraction effect on crystal structures, magnetic, and dielectric properties in ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.; Yao, C. G.; Meng, J. L.

    The crystal structures, magnetic, and dielectric properties for the ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd) have been investigated. The crystal structure has been solved by Rietveld refinements of X-ray diffraction data in the monoclinic space group P2{sub 1}/n (No. 14). The Co{sup 2+} and Sb{sup 5+} ions are almost fully ordered over the B-site, and the octahedral framework displays significant tilting distortion according to the Glazer's tilt system a{sup –}a{sup –}c{sup +}. As the result of lanthanide contraction from La{sup 3+} to Nd{sup 3+}, the B-site sublattice distortions become stronger accompanying with the reduction of themore » tolerance factor and coordination number. The magnetization measurements show an antiferromagnetic ordering with large effective magnetic moments (μ{sub eff}) suggesting that the orbital component is significant. The maximum values of isothermal magnetization increase with the decrease in radii of rare earth ions, which is attributed to the weakening of antiferromagnetic interaction via Co{sup 2+}–O–Sb{sup 5+}–O–Co{sup 2+} paths. The dielectric constants present frequency dependence and monotonically decrease with the ionic radii reduction from La{sup 3+} to Nd{sup 3+} due to the suppression of electron transfer. These results indicate that the magnetic and dielectric properties can be tuned by controlling the degree of lattice distortion, which is realized by introducing different Ln{sup 3+} ions at the A-site.« less

  9. Genome structure and primitive sex chromosome revealed in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuskan, Gerald A; Yin, Tongming; Gunter, Lee E

    We constructed a comprehensive genetic map for Populus and ordered 332 Mb of sequence scaffolds along the 19 haploid chromosomes in order to compare chromosomal regions among diverse members of the genus. These efforts lead us to conclude that chromosome XIX in Populus is evolving into a sex chromosome. Consistent segregation distortion in favor of the sub-genera Tacamahaca alleles provided evidence of divergent selection among species, particularly at the proximal end of chromosome XIX. A large microsatellite marker (SSR) cluster was detected in the distorted region even though the genome-wide distribute SSR sites was uniform across the physical map. Themore » differences between the genetic map and physical sequence data suggested recombination suppression was occurring in the distorted region. A gender-determination locus and an overabundance of NBS-LRR genes were also co-located to the distorted region and were put forth as the cause for divergent selection and recombination suppression. This hypothesis was verified by using fine-scale mapping of an integrated scaffold in the vicinity of the gender-determination locus. As such it appears that chromosome XIX in Populus is in the process of evolving from an autosome into a sex chromosome and that NBS-LRR genes may play important role in the chromosomal diversification process in Populus.« less

  10. Role of lattice distortion on diffuse phase transition temperatures in Bi0.5Na0.5TiO3-BaTiO3 [BNBTO] solid solutions

    NASA Astrophysics Data System (ADS)

    Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2018-04-01

    Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.

  11. Do cognitive distortions explain the longitudinal relationship between life adversity and emotional and behavioural problems in secondary school children?

    PubMed Central

    Comoretto, Amanda

    2017-01-01

    Abstract Research has shown that children exposed to life adversity are at higher risk of negative developmental outcomes than those enduring lower stress levels. Life adversity can lead, among other things, to emotional and behavioural problems. Several factors have been studied to explain this relationship, with several investigators underlining the role of thought structures such as cognitive distortions, which refer to negatively biased information‐processing of external events. This can help explain why some individuals characterised by adverse personal life stories interpret ambiguous events in a negatively biased way. This study was aimed at assessing the mediating role of cognitive distortions in the longitudinal relationship between life adversity and two dimensions of psychopathology, namely, emotional and behavioural problems in 247 secondary school children attending three state secondary schools in one county in the South East of England. An increase in life adversity was associated with an increase in cognitive distortions, which was in turn related to a higher number of symptoms reflecting behavioural issues. In terms of practical applications, an effort to protect children from further exposure to adverse life events could represent a step forward to prevent the development of future behavioural problems in at‐risk children. PMID:28198138

  12. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    NASA Technical Reports Server (NTRS)

    Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.

    1995-01-01

    The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.

  13. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

    PubMed Central

    Braaf, Boy; Vermeer, Koenraad A.; de Groot, Mattijs; Vienola, Kari V.; de Boer, Johannes F.

    2014-01-01

    In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss. PMID:25136498

  14. Inference Control Mechanism for Statistical Database: Frequency-Imposed Data Distortions.

    ERIC Educational Resources Information Center

    Liew, Chong K.; And Others

    1985-01-01

    Introduces two data distortion methods (Frequency-Imposed Distortion, Frequency-Imposed Probability Distortion) and uses a Monte Carlo study to compare their performance with that of other distortion methods (Point Distortion, Probability Distortion). Indications that data generated by these two methods produce accurate statistics and protect…

  15. Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices

    NASA Astrophysics Data System (ADS)

    Li, Yun-Mei; Zhou, Xiaoying; Zhang, Yan-Yang; Zhang, Dong; Chang, Kai

    2017-07-01

    We investigate theoretically the electronic properties of two-dimensional electron gases (2DEGs) with regular and distorted triangular antidot lattices. We show that the triangular antidot lattices embedded in 2DEGs behave like artificial graphene and host Dirac fermions. By introducing the Wannier representation, we obtain a tight-binding Hamiltonian including the second-nearest-neighboring hopping, which agrees well with the numerically exact solutions. Based on the tight-binding model, we find that spatially nonuniform distortions of the antidot lattices strongly modify the electronic structures, generate pseudomagnetic fields and the well-defined Landau levels. In contrast to graphene, we can design the nonuniform distortions to generate various configurations of pseudomagnetic fields. We show that the snake orbital states arise by designing the ±B pseudomagnetic field configuration. We find that the disorders of antidot lattices during fabrication would not affect the basic feature of the Dirac electrons, but they lead to a reduction in conductance in strong disorder cases.

  16. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Vortex generators within a two-dimensional, external-compression supersonic inlet for Mach 1.6 were investigated to determine their ability to increase total pressure recovery, reduce total pressure distortion, and improve the boundary layer. The vortex generators studied included vanes and ramps. The geometric factors of the vortex generators studied included height, length, spacing, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated through the computational solution of the steady-state Reynolds-averaged Navier-Stokes equations on multi-block, structured grids. The vortex generators were simulated by either gridding the geometry of the vortex generators or modeling the vortices generated by the vortex generators. The inlet performance was characterized by the inlet total pressure recovery, total pressure distortion, and incompressible shape factor of the boundary-layer at the engine face. The results suggested that downstream vanes reduced the distortion and improved the boundary layer. The height of the vortex generators had the greatest effect of the geometric factors.

  17. An optical technique to measure distortion in heat-treated parts in-situ

    NASA Astrophysics Data System (ADS)

    Sciammarella, Federico; Nash, Phillip

    2005-05-01

    Improvements in the properties of aluminum alloys have made them more popular for structural applications. Using the different heat treatments that are available, aluminum alloys can have a wide variation in properties for different types of applications. The appropriate heat treatments of these alloys are vital in providing the properties needed for their particular applications. Moreover, understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is in the form of pre- and post-treatment analysis of a part. In this study, in-situ measurements of the distortions that a heat-treated part undergoes when subjected to rapid heating to temperatures near melting followed by slow cooling were carried out. A numerical model was built to simulate the experiment and the results are compared. This study will provide much-needed insight into the complex occurrences that aluminum parts undergo during heat treatment.

  18. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR

    PubMed Central

    Keedy, Daniel A.; van den Bedem, Henry; Sivak, David A.; Petsko, Gregory A.; Ringe, Dagmar; Wilson, Mark A.; Fraser, James S.

    2014-01-01

    Summary Most macromolecular X-ray structures are determined from cryocooled crystals, but it is unclear whether cryocooling distorts functionally relevant flexibility. Here we compare independently acquired pairs of high-resolution datasets of a model Michaelis complex of dihydrofolate reductase (DHFR), collected by separate groups at both room and cryogenic temperatures. These datasets allow us to isolate the differences between experimental procedures and between temperatures. Our analyses of multiconformer models and time-averaged ensembles suggest that cryocooling suppresses and otherwise modifies sidechain and mainchain conformational heterogeneity, quenching dynamic contact networks. Despite some idiosyncratic differences, most changes from room temperature to cryogenic temperature are conserved, and likely reflect temperature-dependent solvent remodeling. Both cryogenic datasets point to additional conformations not evident in the corresponding room-temperature datasets, suggesting that cryocooling does not merely trap pre-existing conformational heterogeneity. Our results demonstrate that crystal cryocooling consistently distorts the energy landscape of DHFR, a paragon for understanding functional protein dynamics. PMID:24882744

  19. The Rapid Distortion of Two-Way Coupled Particle-Laden Turbulence

    NASA Astrophysics Data System (ADS)

    Kasbaoui, Mohamed; Koch, Donald; Desjardins, Olivier

    2017-11-01

    The modulation of sheared turbulence by dispersed particles is addressed in the two-way coupling regime. The preferential sampling of the straining regions of the flow by inertial particles in turbulence leads to the formation of clusters. These fast sedimenting particle structures cause the anisotropic alteration of turbulence at small scales in the direction of gravity. These effects are investigated in a revisited Rapid Distortion Theory (RDT), extended for two-way coupled particle-laden flows. To make the analysis tractable, we assume that particles have small but non-zero inertia. In the classical results for single-phase flows, the RDT assumption of fast shearing compared to the turbulence time scales leads to the distortion of ``frozen'' turbulence. In particle-laden turbulence, the coupling between the two phases remains strong even under fast shearing and leads to a dynamic modulation of the turbulence spectrum. Turbulence statistics obtained from RDT are compared with Euler-Lagrange simulations of homogeneously sheared particle-laden turbulence.

  20. Stable monolayer honeycomb-like structures of RuX2 (X =S,Se)

    NASA Astrophysics Data System (ADS)

    Ersan, Fatih; Cahangirov, Seymur; Gökoǧlu, Gökhan; Rubio, Angel; Aktürk, Ethem

    2016-10-01

    Recent studies show that several metal oxides and dichalcogenides (M X2) , which exist in nature, can be stable in two-dimensional (2D) form and each year several new M X2 structures are explored. The unstable structures in H (hexagonal) or T (octahedral) forms can be stabilized through Peierls distortion. In this paper, we propose new 2D forms of RuS2 and RuSe2 materials. We investigate in detail the stability, electronic, magnetic, optical, and thermodynamic properties of 2D Ru X2 (X =S,Se) structures from first principles. While their H and T structures are unstable, the distorted T structures (T'-Ru X2) are stable and have a nonmagnetic semiconducting ground state. The molecular dynamic simulations also confirm that T'-Ru X2 systems are stable even at 500 K without any structural deformation. T'-RuS2 and T'-RuSe2 have indirect band gaps with 0.745 eV (1.694 eV with HSE) and 0.798 eV (1.675 eV with HSE) gap values, respectively. We also examine their bilayer and trilayer forms and find direct and smaller band gaps. We find that AA stacking is more favorable than the AB configuration. The new 2D materials obtained can be good candidates with striking properties for applications in semiconductor electronic, optoelectronic devices, and sensor technology.

  1. Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System

    NASA Astrophysics Data System (ADS)

    Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.

    Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.

  2. Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegalski, Michael D; Takamura, Y; Mehta, A

    Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.

  3. Wide-Field Infrared Survey Telescope (WFIRST) Integrated Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Blaurock, Carl

    2017-01-01

    Contents: introduction to WFIRST (Wide-Field Infrared Survey Telescope) and integrated modeling; WFIRST stability requirement summary; instability mitigation strategies; dynamic jitter results; STOP (structural-thermal-optical performance) (thermal distortion) results; STOP and jitter capability limitations; model validation philosophy.

  4. Simulation Study on Fit Indexes in CFA Based on Data with Slightly Distorted Simple Structure

    ERIC Educational Resources Information Center

    Beauducel, Andre; Wittmann, Werner W.

    2005-01-01

    Fit indexes were compared with respect to a specific type of model misspecification. Simple structure was violated with some secondary loadings that were present in the true models that were not specified in the estimated models. The c2 test, Comparative Fit Index, Goodness-of-Fit Index, Incremental Fit Index, Nonnormed Fit Index, root mean…

  5. Cadmium-1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2'-bipyridines: syntheses, crystal structures and photoluminescence studies.

    PubMed

    Rosales-Vázquez, Luis D; Sánchez-Mendieta, Víctor; Dorazco-González, Alejandro; Martínez-Otero, Diego; García-Orozco, Iván; Morales-Luckie, Raúl A; Jaramillo-Garcia, Jonathan; Téllez-López, Antonio

    2017-09-26

    Four coordination polymers have been synthesized using self-assembly solution reactions under ambient conditions, reacting Cd(ii) ions with 1,4-cyclohexanedicarboxylic acid in the presence of different 2,2'-bipyridine co-ligands: {[Cd(H 2 O)(e,a-cis-1,4-chdc)(2,2'-bpy)]·H 2 O} n (1); [Cd 2 (H 2 O) 2 (e,a-cis-1,4-chdc) 2 (4,4'-dmb) 2 ] n (2); {[Cd(e,a-cis-1,4-chdc)(5,5'-dmb)]·H 2 O·CH 3 OH} n (3) and {[Cd(e,e-trans-1,4-chdc)(4,4'-dtbb)]·CH 3 OH} n (4), where 1,4-chdc = 1,4-cyclohexanedicarboxylato, 2,2'-bpy = 2,2'-bipyridine, 4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmb = 5,5'-dimethyl-2,2'-bipyridine and 4,4'-dtbb = 4,4'-di-tert-butyl-2,2'-bipyridine. Crystallographic studies show that compound 1 has a 1D structure propagating along the crystallographic b-axis; the Cd ion in 1 is six-coordinated with a distorted-octahedral coordination sphere. Compound 2 has two crystallographic different Cd ions and both are six-coordinated with a distorted-octahedral coordination sphere. Compound 3 exhibits a seven-coordinated Cd ion having a distinctive distorted-monocapped trigonal prismatic geometry. In compound 4, the Cd ion is also seven-coordinated in a distorted monocapped octahedral geometry. Compounds 2, 3 and 4 possess rhombic-shaped dinuclear units (Cd 2 O 2 ) as nodes to generate larger cycles made up of four dinuclear units, a Cd 4 motif, bridged by four 1,4-chdc ligands, accomplishing, thus, 2D structures. Remarkably, in compound 4 the 1,4-chdc ligand conformation changes to the equatorial, equatorial trans, unlike the other compounds where the bridging ligand conformation is the more typical equatorial, axial cis. The solid state luminescence properties of 1-4 were investigated; polymers 3 and 4 exhibited a strong blue emission (λ em = 410-414 nm) compared to 1 and 2; structure-related photoluminescence is attributed to the degree of hydration of the compounds. Furthermore, Cd-polymer 3 suspended in acetone allows the fluorescence selective sensing of acetonitrile over common organic solvents such as alcohols and DMF, based on turn-on fluorescence intensity with a limit of 53 μmol L -1 .

  6. Nuclear Magnetic Resonance Studies of an N2-Guanine Adduct Derived from the Tumorigen Dibenzo[a,l]pyrene in DNA: Impact of Adduct Stereochemistry, Size, and Local DNA Sequence on Solution Conformations

    PubMed Central

    2015-01-01

    The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID:24617538

  7. Relating electronic and geometric structure of atomic layer deposited BaTiO 3 to its electrical properties

    DOE PAGES

    Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; ...

    2016-03-24

    Atomic layer deposition allows the fabrication of BaTiO 3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO 2 and SiO 2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energymore » with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO 2 and its distorted growth on SiO 2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less

  8. N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena

    2017-10-01

    Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.

  9. The influence of vision, touch, and proprioception on body representation of the lower limbs.

    PubMed

    Stone, Kayla D; Keizer, Anouk; Dijkerman, H Chris

    2018-04-01

    Numerous studies have shown that the representation of the hand is distorted. When participants are asked to localize unseen points on the hand (e.g. the knuckle), it is perceived to be wider and shorter than its physical dimensions. Similar distortions occur when people are asked to judge the distance between two tactile points on the hand; estimates made in the longitudinal direction are perceived as significantly shorter than those made in the transverse direction. Yet, when asked to visually compare the shape and size of one's own hand to a template hand, individuals are accurate at estimating the size of their own hands. Thus, it seems that body representations are, at least in part, a function of the most prominent underlying sensory modality used to perceive the body part. Yet, it remains unknown if the representations of other body parts are similarly distorted. The lower limbs, for example, are structurally and functionally very different from the hands, yet their representation(s) are seldom studied. What does the body representation for the leg look like? And is leg representation dependent on which sense is probed when making judgments about its shape and size? In the current study, we investigated what the representation of the leg looks like in visually-, tactually-, and proprioceptively-guided tasks. Results revealed that the leg, like the hand, is distorted in a highly systematic manner. Distortions seem to rely, at least partly, on sensory input. This is the first study, to our knowledge, to systematically investigate leg representation in healthy individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Introducing causality violation for improved DPOAE component unmixing

    NASA Astrophysics Data System (ADS)

    Moleti, Arturo; Sisto, Renata; Shera, Christopher A.

    2018-05-01

    The DPOAE response consists of the linear superposition of two components, a nonlinear distortion component generated in the overlap region, and a reflection component generated by roughness in the DP resonant region. Due to approximate scaling symmetry, the DPOAE distortion component has approximately constant phase. As the reflection component may be considered as a SFOAE generated by the forward DP traveling wave, it has rapidly rotating phase, relative to that of its source, which is also equal to the phase of the DPOAE distortion component. This different phase behavior permits effective separation of the DPOAE components (unmixing), using time-domain or time-frequency domain filtering. Departures from scaling symmetry imply fluctuations around zero delay of the distortion component, which may seriously jeopardize the accuracy of these filtering techniques. The differential phase-gradient delay of the reflection component obeys causality requirements, i.e., the delay is positive only, and the fine-structure oscillations of amplitude and phase are correlated to each other, as happens for TEOAEs and SFOAEs relative to their stimulus phase. Performing the inverse Fourier (or wavelet) transform of a modified DPOAE complex spectrum, in which a constant phase function is substituted for the measured one, the time (or time-frequency) distribution shows a peak at (exactly) zero delay and long-latency specular symmetric components, with a modified (positive and negative) delay, which is that relative to that of the distortion component in the original response. Component separation, applied to this symmetrized distribution, becomes insensitive to systematic errors associated with violation of the scaling symmetry in specific frequency ranges.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zotti, G. De; Negrello, M.; Castex, G.

    We review aspects of Cosmic Microwave Background (CMB) spectral distortions which do not appear to have been fully explored in the literature. In particular, implications of recent evidences of heating of the intergalactic medium (IGM) by feedback from active galactic nuclei are investigated. Taking also into account the IGM heating associated to structure formation, we argue that values of the y parameter of several × 10{sup −6}, i.e. a factor of a few below the COBE/FIRAS upper limit, are to be expected. The Compton scattering by the re-ionized plasma also re-processes primordial distortions, adding a y-type contribution. Hence no pure Bose-Einstein-likemore » distortions are to be expected. An assessment of Galactic and extragalactic foregrounds, taking into account the latest results from the Planck satellite as well as the contributions from the strong CII and CO lines from star-forming galaxies, demonstrates that a foreground subtraction accurate enough to fully exploit the PIXIE sensitivity will be extremely challenging. Motivated by this fact we also discuss methods to detect spectral distortions not requiring absolute measurements and show that accurate determinations of the frequency spectrum of the CMB dipole amplitude may substantially improve over COBE/FIRAS limits on distortion parameters. Such improvements may be at reach of next generation CMB anisotropy experiments. The estimated amplitude of the Cosmic Infrared Background (CIB) dipole might be detectable by careful analyses of Planck maps at the highest frequencies. Thus Planck might provide interesting constraints on the CIB intensity, currently known with a ≅ 30% uncertainty.« less

  12. Temperature-induced local and average structural changes in BaTiO3-xBi(Zn1/2Ti1/2)O3 solid solutions: The origin of high temperature dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Usher, Tedi-Marie; Zhou, Hanhan; Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.; Forrester, Jennifer S.; Jones, Jacob L.

    2017-08-01

    The existence of local tetragonal distortions is evidenced in the BaTiO3-xBi(Zn1/2Ti1/2)O3 (BT-xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2-3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transforms to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.

  13. Temperature-induced local and average structural changes in BaTiO 3- xBi(Zn 1/2Ti 1/2)O 3 solid solutions: The origin of high temperature dielectric permittivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan

    The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less

  14. Temperature-induced local and average structural changes in BaTiO 3- xBi(Zn 1/2Ti 1/2)O 3 solid solutions: The origin of high temperature dielectric permittivity

    DOE PAGES

    Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan; ...

    2017-08-11

    The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less

  15. All substituted nickel porphyrins are highly nonplanar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelnutt, J.A.; Song, X.Z.; Jentzen, W.

    1996-12-31

    X-ray crystallographic and resonance Raman studies show that only un-substituted Ni porphine is planar in solution; all substituted Ni porphyrin derivatives either are nonplanar or exist as a mixture of planar and nonplanar conformers in solution. Recent modifications in a molecular mechanics force field improve the ability the MM calculations to predict the X-ray structures of porphyrins and also the planar-nonplanar conformational equilibria in many cases. Calculations using the new force field suggests that all geoporphyrins will be highly nonplanar, especially those having meso substituents. The nonplanarity is expected to influence properties such as solubility and metallation/dematallation reactions. Further, amore » method of quantifying these nonplanar structures has been devised; any porphyrin structure can be decomposed into displacements along the out-of-plane normal coordinates. However, usually distortions along only the lowest-frequency normal modes of each symmetry type are required to adequately describe the structure. The lowest-frequency normal coordinates of b{sub lu}, a{sub 2u}, b{sub 2u}, and e{sub g} symmetries correspond to commonly observed symmetric distortions called ruffling (ruf), doming(dom), saddling (sad), and waving (wav(x), wav(y)). The application of this structural decomposition method to several problems including the influences of steric crowding and protein folding on porphyrin conformation will be described.« less

  16. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  17. High pressure phase transitions in the rare earth metal erbium to 151 GPa

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2011-08-01

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  18. Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.; hide

    2009-01-01

    We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.

  19. The MCH2+ Systems: Do ScCH2+ and TiCH2+ Have C(sub s) or C(sub 2v) Symmetry and A Comparison of the B3LYP Method to Other Approaches

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    ScCH2(+) and TiCH2(+) are found to have C(sub s) symmetry, while the remaining systems have the expected C(sub 2v) symmetry. The C(sub s) symmetry structure is favored for ScCH2(+) and TiCH2(+) because it allows donation from one of the CH bonds into an empty 3d orbital. This distortion stabilizes the systems by less than 2 kcal/mol at the B3LYP, CASSCF, and CCSD(T) levels of theory. The SCF and B3LYP approaches find the C2(sub v) structure to be a saddle point, while the CASSCF approach finds the C(sub 2v) structure to be a stationary point. For V-Cu there are no empty 3d orbitals of the correct symmetry, and therefore the distortion to C(sub s), is unfavorable. The B3LYP binding energies are in good agreement with experiment and our previous best estimates.

  20. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy

    PubMed Central

    Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha

    2018-01-01

    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels. PMID:29464187

  1. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi

    2018-03-01

    To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.

  2. Do Ag{sub n} (up to n = 8) clusters retain their identity on graphite? Insights from first-principles calculations including dispersion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Akansha; Sen, Prasenjit, E-mail: prasen@hri.res.in; Majumder, Chiranjib

    Adsorption of pre-formed Ag{sub n} clusters for n = 1 − 8 on a graphite substrate is studied within the density functional theory employing the vdW-DF2 functional to treat dispersion interactions. Top sites above surface layer carbon atoms turn out to be most favorable for a Ag adatom, in agreement with experimental observations. The same feature is observed for clusters of almost all sizes which have the lowest energies when the Ag atoms are positioned over top sites. Most gas phase isomers retain their structures over the substrate, though a couple of them undergo significant distortions. Energetics of the adsorptionmore » can be understood in terms of a competition between energy cost of disturbing Ag–Ag bonds in the cluster and energy gain from Ag–C interactions at the surface. Ag{sub 3} turns out to be an exceptional candidate in this regard that undergoes significant structural distortion and has only two of the Ag atoms close to surface C atoms in its lowest energy structure.« less

  3. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  4. A Two-Dimensional Liquid Structure Explains the Elevated Melting Temperatures of Gallium Nanoclusters.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2016-01-13

    Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.

  5. Structural origins of broadband emission from layered Pb–Br hybrid perovskites† †Electronic supplementary information (ESI) available. CCDC 1521053–1521055, 1521057–1521060 and 1521067. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc01590a Click here for additional data file. Click here for additional data file.

    PubMed Central

    Smith, Matthew D.; Jaffe, Adam; Dohner, Emma R.; Lindenberg, Aaron M.

    2017-01-01

    Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb–(μ-Br)–Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron–lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure. PMID:28970879

  6. Electronic structure and electron-phonon coupling in TiH$$_2$$

    DOE PAGES

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less

  7. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy.

    PubMed

    Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha

    2018-01-01

    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels.

  8. Crystalline Structure and Surface Reactivity: Atomistic models are unique tools for dealing with the chemical and physical properties of surfaces.

    PubMed

    Gatos, H C

    1962-08-03

    The role of crystalline structure in the surface reactivity of predominantly covalent materials has been examined in terms of chemical bonding concepts. In this context a solid surface can be viewed as a giant lattice defect characterized by dangling bonds. Although it is difficult, at the present stage of development of the quantum mechanical approach to surfaces, to define precisely the perturbations resulting from the abrupt termination of the lattice at the surface, a host of experimental observations can be understood by assuming displacements of surface atoms and distortions of bonding configurations in accordance with simple chemical bonding principles. A purely atomistic approach has been shown to account not only for the chemical behavior but also for certain structural and electrical characteristics of the surfaces considered. A number of phenomena, such as crystal growth and the behavior of certain lattice defects (for example, dislocations), are intimately related to the presence of dangling bonds and the associated distortions of the lattice at the surface (32).

  9. Synthesis, crystal structure and characterization of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III)

    NASA Astrophysics Data System (ADS)

    Saritha, A.; Raju, B.; Ramachary, M.; Raghavaiah, P.; Hussain, K. A.

    2012-11-01

    The synthesis, crystal structure and physical properties of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III) [K3Fe(C2O4)3] are described. X-ray analysis reveals that the compound crystallized in the chiral space group P4132 of cubic system with a=b=c=13.5970(2), Z=4. The structure of the complex consists of infinite anionic [Fe(C2O4)3]3- units with distorted octahedral environment of iron surrounded by six oxygen atoms of three oxalato groups. The anionic units are interlinked through K+ ions of three different coordination environments of distorted octahedral, bicapped trigonal prismatic and trigonal prismatic yielding a three-dimensional motif. The two broad absorption bands at 644 and 924 nm from UV-vis-NIR transmittance spectra were ascribed to a ligand-to-metal charge transfer. The room temperature crystalline EPR spectra indicate the high-spin (S=5/2) of Fe(III) ion. The vibrating sample magnetometer measurement shows the paramagnetic nature at room temperature. Thermal studies of the compound confirm the absence of water molecule.

  10. Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH 3 CH 2 NH 3 ) 4 Pb 3 Br 10–x Cl x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C.

    Two-dimensional (2D) hybrid halide perovskites come as a family (B) 2(A) n-1PbnX 3n+1 (B and A= cations; X= halide). These perovskites are promising semiconductors for solar cells and optoelectronic applications. Among the fascinating properties of these materials is white-light emission, which has been mostly observed in single-layered 2D lead bromide or chloride systems (n = 1), where the broad emission comes from the transient photoexcited states generated by self-trapped excitons (STEs) from structural distortion. Here we report a multilayered 2D perovskite (n = 3) exhibiting a tunable white-light emission. Ethylammonium (EA+) can stabilize the 2D perovskite structure in EA 4Pbmore » 3Br 10–xCl x (x = 0, 2, 4, 6, 8, 9.5, and 10) with EA + being both the A and B cations in this system. Because of the larger size of EA, these materials show a high distortion level in their inorganic structures, with EA4Pb3Cl10 having a much larger distortion than that of EA 4Pb 3Br 10, which results in broadband white-light emission of EA 4Pb 3Cl 10 in contrast to narrow blue emission of EA4Pb3Br10. The average lifetime of the series decreases gradually from the Cl end to the Br end, indicating that the larger distortion also prolongs the lifetime (more STE states). The band gap of EA 4Pb 3Br 10–xCl x ranges from 3.45 eV (x = 10) to 2.75 eV (x = 0), following Vegard’s law. First-principles density functional theory calculations (DFT) show that both EA 4Pb 3Cl 10 and EA 4Pb 3Br 10 are direct band gap semiconductors. The color rendering index (CRI) of the series improves from 66 (EA 4Pb 3Cl 10) to 83 (EA 4Pb 3Br 0.5Cl 9.5), displaying high tunability and versatility of the title compounds.« less

  11. Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH3CH2NH3)4Pb3Br10-xClx.

    PubMed

    Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Traore, Boubacar; Katan, Claudine; Even, Jacky; Wasielewski, Michael R; Kanatzidis, Mercouri G

    2017-08-30

    Two-dimensional (2D) hybrid halide perovskites come as a family (B) 2 (A) n-1 Pb n X 3n+1 (B and A= cations; X= halide). These perovskites are promising semiconductors for solar cells and optoelectronic applications. Among the fascinating properties of these materials is white-light emission, which has been mostly observed in single-layered 2D lead bromide or chloride systems (n = 1), where the broad emission comes from the transient photoexcited states generated by self-trapped excitons (STEs) from structural distortion. Here we report a multilayered 2D perovskite (n = 3) exhibiting a tunable white-light emission. Ethylammonium (EA + ) can stabilize the 2D perovskite structure in EA 4 Pb 3 Br 10-x Cl x (x = 0, 2, 4, 6, 8, 9.5, and 10) with EA + being both the A and B cations in this system. Because of the larger size of EA, these materials show a high distortion level in their inorganic structures, with EA 4 Pb 3 Cl 10 having a much larger distortion than that of EA 4 Pb 3 Br 10 , which results in broadband white-light emission of EA 4 Pb 3 Cl 10 in contrast to narrow blue emission of EA 4 Pb 3 Br 10 . The average lifetime of the series decreases gradually from the Cl end to the Br end, indicating that the larger distortion also prolongs the lifetime (more STE states). The band gap of EA 4 Pb 3 Br 10-x Cl x ranges from 3.45 eV (x = 10) to 2.75 eV (x = 0), following Vegard's law. First-principles density functional theory calculations (DFT) show that both EA 4 Pb 3 Cl 10 and EA 4 Pb 3 Br 10 are direct band gap semiconductors. The color rendering index (CRI) of the series improves from 66 (EA 4 Pb 3 Cl 10 ) to 83 (EA 4 Pb 3 Br 0.5 Cl 9.5 ), displaying high tunability and versatility of the title compounds.

  12. Generic distortion model for metrology under optical microscopes

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  13. Role of annealing on the structural and optical properties of nanostructured diaceto bis-benzimidazole Mn(II) complex thin films

    NASA Astrophysics Data System (ADS)

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2017-02-01

    A coordination complex, manganese incorporated benzimidazole, thin films were prepared by chemical bath deposition method. Structural characterization of the deposited films, carried out by Fourier transform infrared spectroscopy, Raman and electron paramagnetic resonance spectral analyses, reveals the distorted tetrahedral environment of the metal ion with bis-benzimidazole ligand. Further the molecular composition of the deposited metal complex was estimated by energy-dispersive X-ray spectroscopy. The prepared thin films were thermally treated to study the effect of annealing temperature on the surface morphology and the results showed that the surface homogeneity of the films increased for thermally treated films up to 150 °C. But distortion and voids were observed for the films annealed at 200 °C. The Raman analysis reveals the molecular hydrogen bond distortion which leads to the evaporation of the metal complex from the thin film surface with respect to annealing temperature. The linear and nonlinear optical properties of the as prepared and annealed films were studied using ultraviolet-visible transmittance spectroscopy, second harmonic generation and Z-scan analyses. Films annealed at 150 °C show a better linear transmittance in the visible region and larger SHG efficiency and third order nonlinear susceptibility when compared with the other samples. Further, the film annealed at 150 °C was subjected to optical switching analysis and demonstrated to have an inverted switching behavior.

  14. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  15. Monoclinic distortion and magnetic coupling in the double perovskite Sr{sub 2−x}Ca{sub x}YRuO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, P.L.; Ghivelder, L.; Eslava, G.G.

    2014-12-15

    Abstracts: This work investigates in the insulating double perovskites Sr{sub 2−x}Ca{sub x}YRuO{sub 6}. We address the angular dependence of the strength of the magnetic coupling due to the deviation from planarity of the basal layers of the monoclinic structure, characterized by the in-plane angle α<180°, in order to probe the impact of the structural distortions in the magnetic properties of the compounds. High resolution x-ray powder diffraction, susceptibility, and specific heat measurements were performed. The deviation from planarity significantly increases (α=144° for x=1) while the bond distances vary in a complex way as a consequence of the strong monoclinic distortion.more » We found that the magnetic transition temperature, T{sub M}, shows a linear dependence on cos [(π−α)/2]. This result is discussed in terms of t{sub 2g}(π)–e{sub g}(σ) mixing of the magnetic orbitals of the Ru{sup 5+} ions and unbalanced competitive super-exchange interactions. The deleterious effect of Ca doping for the magnetic coupling is confirmed by the reduction in the short-range antiferromagnetic correlations characteristic of the parent compound at T>>T{sub M} and the enhancement of magnetic frustration for T« less

  16. ToF-SIMS measurements with topographic information in combined images.

    PubMed

    Koch, Sabrina; Ziegler, Georg; Hutter, Herbert

    2013-09-01

    In 2D and 3D time-of-flight secondary ion mass spectrometric (ToF-SIMS) analysis, accentuated structures on the sample surface induce distorted element distributions in the measurement. The origin of this effect is the 45° incidence angle of the analysis beam, recording planar images with distortion of the sample surface. For the generation of correct element distributions, these artifacts associated with the sample surface need to be eliminated by measuring the sample surface topography and applying suitable algorithms. For this purpose, the next generation of ToF-SIMS instruments will feature a scanning probe microscope directly implemented in the sample chamber which allows the performance of topography measurements in situ. This work presents the combination of 2D and 3D ToF-SIMS analysis with topographic measurements by ex situ techniques such as atomic force microscopy (AFM), confocal microscopy (CM), and digital holographic microscopy (DHM). The concept of the combination of topographic and ToF-SIMS measurements in a single representation was applied to organic and inorganic samples featuring surface structures in the nanometer and micrometer ranges. The correct representation of planar and distorted ToF-SIMS images was achieved by the combination of topographic data with images of 2D as well as 3D ToF-SIMS measurements, using either AFM, CM, or DHM for the recording of topographic data.

  17. Broadband distortion modeling in Lyman-α forest BAO fitting

    DOE PAGES

    Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; ...

    2015-11-23

    Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b F and the redshift-space distortion parameter β F for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination b F(1+β F) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39 +0.11 +0.24 +0.38 -0.10 -0.19 -0.28 and bF(1+βF)=-0.374 +0.007 +0.013 +0.020 -0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less

  18. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.

  19. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.

  20. Stereotactic radiosurgery planning of vestibular schwannomas: Is MRI at 3 Tesla geometrically accurate?

    PubMed

    Schmidt, M A; Wells, E J; Davison, K; Riddell, A M; Welsh, L; Saran, F

    2017-02-01

    MRI is a mandatory requirement to accurately plan Stereotactic Radiosurgery (SRS) for Vestibular Schwannomas. However, MRI may be distorted due not only to inhomogeneity of the static magnetic field and gradients but also due to susceptibility-induced effects, which are more prominent at higher magnetic fields. We assess geometrical distortions around air spaces and consider MRI protocol requirements for SRS planning at 3 T. Hardware-related distortion and the effect of incorrect shimming were investigated with structured test objects. The magnetic field was mapped over the head on five volunteers to assess susceptibility-related distortion in the naso-oro-pharyngeal cavities (NOPC) and around the internal ear canal (IAC). Hardware-related geometric displacements were found to be less than 0.45 mm within the head volume, after distortion correction. Shimming errors can lead to displacements of up to 4 mm, but errors of this magnitude are unlikely to arise in practice. Susceptibility-related field inhomogeneity was under 3.4 ppm, 2.8 ppm, and 2.7 ppm for the head, NOPC region and IAC region, respectively. For the SRS planning protocol (890 Hz/pixel, approximately 1 mm 3 isotropic), susceptibility-related displacements were less than 0.5 mm (head), and 0.4 mm (IAC and NOPC). Large displacements are possible in MRI examinations undertaken with lower receiver bandwidth values, commonly used in clinical MRI. Higher receiver bandwidth makes the protocol less vulnerable to sub-optimal shimming. The shimming volume and the CT-MR co-registration must be considered jointly. Geometric displacements can be kept under 1 mm in the vicinity of air spaces within the head at 3 T with appropriate setting of the receiver bandwidth, correct shimming and employing distortion correction. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. Broadband distortion modeling in Lyman-α forest BAO fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomqvist, Michael; Kirkby, David; Margala, Daniel, E-mail: cblomqvi@uci.edu, E-mail: dkirkby@uci.edu, E-mail: dmargala@uci.edu

    2015-11-01

    In recent years, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≅ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b{sub F} and the redshift-space distortion parameter β{sub F} for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on β{sub F} and the combination b{sub F}(1+β{sub F}) by more than a factor of seven. The measured values at redshift z=2.3 are β{sub F}=1.39{sup +0.11 +0.24 +0.38}{sub −0.10 −0.19 −0.28} and b{sub F}(1+β{sub F})=−0.374{sup +0.007 +0.013 +0.020}{sub −0.007 −0.014 −0.022} (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less

  2. Synthesis, characterization and crystal structure of a 1D thiocyanato bridged [Cu(en)2Zn(NCS)4]ṡH2O. Comparison of the three structures with the same [Cu(en)2Zn(NCS)4] unit - different in structural terms

    NASA Astrophysics Data System (ADS)

    Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia

    2015-03-01

    In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).

  3. A first-principles study on new high-pressure metastable polymorphs of MoO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Nils; Dronskowski, Richard; Jülich-Aachen Research Alliance

    The pressure-dependence of the stabilities of several MoO{sub 2} phases has been investigated by density-functional theory (GGA/PBE/PAW). Out of a set of 15 MX{sub 2} structures, the [SnO{sub 2}(II)], [α-PbO{sub 2}], and a modified rutile structure type were identified as possible metastable MoO{sub 2} polymorphs based on the analysis of thermodynamic properties and dynamic stability. High-pressure calculations suggest an orthorhombic TiO{sub 2} structure, dubbed [ortho-TiO{sub 2}], as a high-pressure polymorph at around 25 GPa. Furthermore, we find that the previously reported rutile-type MoO{sub 2} may be understood as a modified rutile type similar to the [VO{sub 2}] structure. - Graphicalmore » abstract: First-principles electronic structure and thermochemical calculations reveal four structure candidates as possible metastable polymorphs of MoO{sub 2}. Most promising is a distorted rutile-type similar to the known [VO{sub 2}] structure. An orthorhombic polymorph is proposed as a high-pressure polymorph. Display Omitted - Highlights: • Three possible metastable structure candidates for MoO{sub 2}. • Undistorted rutile type is improbable, a new distorted rutile-type MoO{sub 2} was suggested. • Orthorhombic phase of MoO{sub 2} (ortho-TiO{sub 2} type) should form at 25 GPa. • ab initio thermochemical data provided for MoO{sub 2}.« less

  4. Spin and orbital disordering by hole doping in P r1 -xC axV O3

    NASA Astrophysics Data System (ADS)

    Reehuis, M.; Ulrich, C.; Abdala, P. M.; Pattison, P.; Khaliullin, G.; Fujioka, J.; Miyasaka, S.; Tokura, Y.; Keimer, B.

    2016-09-01

    High-resolution powder x-ray diffraction and single-crystal neutron diffraction were used to investigate the crystal structure and magnetic ordering of the compound P r1 -xC axV O3 (0 ≤x ≤0.3 ), which undergoes an insulator-to-metal transition for x ˜0.23 . Since the ionic radii of P r3 + and C a2 + are almost identical and structural disorder is minimal, P r1 -xC axV O3 is a good model system for the influence of hole doping on the spin and orbital correlations in transition metal oxides. The end member PrV O3 is a Mott-Hubbard insulator, which exhibits a structural phase transition at TS=180 K from an orthorhombic to a monoclinic structure with space groups Pbnm and P 21/b , respectively. This transition is associated with the onset of orbital ordering and strong Jahn-Teller distortions of the V O6 octahedra. Antiferromagnetic C -type order with vanadium moments oriented in the a b plane is observed below TN=140 K . Upon cooling, the vanadium moments induce a progressive magnetic polarization of the praseodymium sublattice, resulting in a ferrimagnetic structure with coexisting modes (Cx, Fy) and (Fx, Cy). In the insulating range of the P r1 -xC axV O3 phase diagram, Ca doping reduces both the orbital and magnetic transition temperatures so that TS=108 K and TN=95 K for x =0.20 . The Jahn-Teller distortions and ordered vanadium moments also decrease upon doping. In a metallic sample with x =0.30 , Jahn-Teller distortions and long-range orbital ordering are no longer observable, and the average crystal structure remains orthorhombic down to low temperature. However, broadening of some lattice Bragg reflections indicate a significant increase in lattice strain. Antiferromagnetic short-range order with a weak ordered moment of 0.14(3) μB per vanadium atom could still be observed on the vanadium site below T ˜60 K . We discuss these observations in terms of doping-induced spin-orbital polaron formation.

  5. Interface structure between tetraglyme and graphite

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  6. Stresses in and general instability of monocoque cylinders with cutouts II : calculation of the stresses in a cylinder with a symmetric cutout

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Boley, Bruno A; Klein, Bertram

    1945-01-01

    A numerical procedure is presented for the calculation of the stresses in a monocoque cylinder with a cutout. In the procedure the structure is broken up into a great many units; the forces in these units corresponding to specified distortions of the units are calculated; a set of linear equations is established expressing the equilibrium conditions of the units in the distorted state; and the simultaneous linear equations are solved. A fully worked out numerical example, corresponding to the application of a pure bending moment, gave results in good agreement with experiments carried out earlier at the Polytechnic Institute of Brooklyn.

  7. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  8. Operation Program for the Spatially Phase-Shifted Digital Speckle Pattern Interferometer - SPS-DSPI

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Jones, Joycelyn T.; Hostetter, Carl F.; Greenfield, Perry; Miller, Todd

    2010-01-01

    SPS-DSPI software has been revised so that Goddard optical engineers can operate the instrument, instead of data programmers. The user interface has been improved to view the data collected by the SPS-DSPI, with a real-time mode and a play-back mode. The SPS-DSPI has been developed by NASA/GSFC to measure the temperature distortions of the primary-mirror backplane structure for the James Webb Space Telescope. It requires a team of computer specialists to run successfully, because, at the time of this reporting, it just finished the prototype stage. This software improvement will transition the instrument to become available for use by many programs that measure distortion

  9. Switchable Ni–Mn–Ga Heusler nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayak, Alexey T.; Beckman, Scott P.; Tiago, Murilo L.

    2008-10-02

    Here, we examined bulk-like Heusler nanocrystals using real-space pseudopotentials constructed within density functional theory. The nanocrystals were made of various compositions of Ni-Mn-Ga in the size range from 15 up to 169 atoms. Among these compositions, the closest to the stoichiometric Ni 2MnGa were found to be the most stable. The Ni-based nanocrystals retained a tendency for tetragonal distortion, which is inherited from the bulk properties. Surface effects suppress the tetragonal structure in the smaller Ni-based nanocrystals, while bigger nanocrystals develop a bulk-like tetragonal distortion. We suggest the possibility of switchable Ni-Mn-Ga nanocrystals, which could be utilized for magnetic nano-shape-memorymore » applications.« less

  10. Hierarchic Agglomerative Clustering Methods for Automatic Document Classification.

    ERIC Educational Resources Information Center

    Griffiths, Alan; And Others

    1984-01-01

    Considers classifications produced by application of single linkage, complete linkage, group average, and word clustering methods to Keen and Cranfield document test collections, and studies structure of hierarchies produced, extent to which methods distort input similarity matrices during classification generation, and retrieval effectiveness…

  11. Detection and Rectification of Distorted Fingerprints.

    PubMed

    Si, Xuanbin; Feng, Jianjiang; Zhou, Jie; Luo, Yuxuan

    2015-03-01

    Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task. Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.

  12. New insight into the properties of proton conducting oxides from neutron total scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffen, Thomas E; Kim, Hyunjeong; Malavasi, Lorenzo

    In recent years there has been a growing interest in searching for new proton conducting materials that could be successfully used in medium temperature solid oxide fuel cells (SOFC). In particular, proton conducting oxides have been the subject of a massive research activity. Among the most promising oxide the acceptor doped cerates appears to be those most appealing in view of practical applications. A relevant aspect of these materials is the investigation of the local distortion of the structure arising from water incorporation. This kind of study is of great help in defining how the structure changes in order tomore » accommodate the proton which is usually thought to enter the structure in form of hydroxyl group where the oxygen vacancy results from the acceptor doping on the Ce site. Atomistic simulation work confirmed that the preferential location of dopant ions is on the Ce site. To the best of our knowledge the only experimental work addressing the role of dopant and water incorporation on the local structure of V-doped cerates is a X-ray absorption spectroscopy (XAS) work carried out by Longo and coworkers at the Y K-edge. The main conclusion of that work was the observation that Y-doping induces a distortion of the parent BaCe0{sub 3} structure resulting in a significantly distorted Y local environment. However, local structure information derived from XAS study does not provide a direct structural information and depends strongly upon the model used to calcualte theoretical {chi}(k) which is not unique. Moreover, the XAS analysis usually provide significant information only up to the second shell. As a consequence, a more reliable and useful technique to investigate the local arrangement in these proton conducting oxides appears to be the Pair Distribution Function (PDF) analysis derived from total neutron scattering measurements. In the present work we investigated the pure BaCeO{sub 3} and the acceptor doped BaCe{sub 0.90}Y{sub 0.10}O{sub 2.85} compounds. In both cases the samples have been measured at room temperature and after being exposed to dry and wet air (humidification attained through bubbling air in D{sub 2}O). Aim of this work is to look at the effect of Y-doping and water doping on the local structure of the above mentioned samples.« less

  13. Deflection and Distortion of CME internal magnetic flux rope due to the interaction with a structured solar wind

    NASA Astrophysics Data System (ADS)

    Shiota, D.; Iju, T.; Hayashi, K.; Fujiki, K.; Tokumaru, M.; Kusano, K.

    2016-12-01

    CMEs are the most violent driver of geospace disturbances, and therefore their arrival to the Earth position is an important factor in space weather forecast. The dynamics of CME propagation is strongly affected by the interaction with background solar wind. To understand the interaction between a CME and background solar wind, we performed three-dimensional MHD simulations of the propagation of a CME with internal twisted magnetic flux rope into a structured bimodal solar wind. We compared three different cases in which an identical CME is launched into an identical bimodal solar wind but the launch dates of the CME are different. Each position relative to the boundary between slow and fast solar winds becomes almost in the slow wind stream region, almost in the fast wind stream region, or in vicinity of the boundary of the fast and slow solar wind stream (that grows to CIR). It is found that the CME is most distorted and deflected eastward in the case near the CIR, in contrast to the other two cases. The maximum strength of southward magnetic field at the Earth position is also highest in the case near CIR. The results are interpreted that the dynamic pressure gradient due to the back reaction from pushing the ahead slow wind stream and due to the collision behind fast wind stream hinders the expansion of the CME internal flux rope into the direction of the solar wind velocity gradient. As a result, the expansion into the direction to the velocity gradient is slightly enhanced and results in the enhanced deflection and distortion of the CME and its internal flux rope. These results support the pileup accident hypothesis proposed by Kataoka et al. (2015) to form unexpectedly geoeffective solar wind structure.

  14. Temperature dependence of local structural changes around transition metal centers Cr3+ and Mn2+ in RAl3(BO3)4 crystals studied by EMR

    NASA Astrophysics Data System (ADS)

    Açıkgöz, Muhammed; Rudowicz, Czesław; Gnutek, Paweł

    2017-11-01

    Theoretical investigations are carried out to determine the temperature dependence of the local structural parameters of Cr3+ and Mn2+ ions doped into RAl3(BO3)4 (RAB, R = Y, Eu, Tm) crystals. The zero-field splitting (ZFS) parameters (ZFSPs) obtained from the spin Hamiltonian (SH) analysis of EMR (EPR) spectra serve for fine-tuning the theoretically predicted ZFSPs obtained using the semi-empirical superposition model (SPM). The SPM analysis enables to determine the local structure changes around Cr3+ and Mn2+ centers in RAB crystals and explain the observed temperature dependence of the ZFSPs. The local monoclinic C2 site symmetry of all Al sites in YAB necessitates consideration of one non-zero monoclinic ZFSP (in the Stevens notation, b21) for Cr3+ ions. However, the experimental second-rank ZFSPs (D =b20 , E = 1 / 3b22) were expressed in a nominal principal axis system. To provide additional insight into low symmetry aspects, the distortions (ligand's distances ΔRi and angular distortions Δθi) have been varied while preserving monoclinic site symmetry, in such way as to obtain the calculated values (D, E) close to the experimental ones, while keeping b21 close to zero. This procedure yields good matching of the calculated ZFSPs and the experimental ones, and enables determination of the corresponding local distortions. The present results may be useful in future studies aimed at technological applications of the Huntite-type borates with the formula RM3(BO3)4. The model parameters determined here may be utilized for ZFSP calculations for Cr3+ and Mn2+ ions at octahedral sites in single-molecule magnets and single-chain magnets.

  15. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis.

    PubMed

    Sánchez-Lombardo, Irma; Alvarez, Santiago; McLauchlan, Craig C; Crans, Debbie C

    2015-06-01

    Shape analysis of coordination complexes is well-suited to evaluate the subtle distortions in the trigonal bipyramidal (TBPY-5) geometry of vanadium coordinated in the active site of phosphatases and characterized by X-ray crystallography. Recent studies using the tau (τ) analysis support the assertion that vanadium is best described as a trigonal bipyramid, because this geometry is the ideal transition state geometry of the phosphate ester substrate hydrolysis (C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans, Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2014.12.012 ; D.C. Crans, M.L. Tarlton, C.C. McLauchlan, Eur. J. Inorg. Chem. 2014, 4450-4468). Here we use continuous shape measures (CShM) analysis to investigate the structural space of the five-coordinate vanadium-phosphatase complexes associated with mechanistic transformations between the tetrahedral geometry and the five-coordinate high energy TBPY-5 geometry was discussed focusing on the protein tyrosine phosphatase 1B (PTP1B) enzyme. No evidence for square pyramidal geometries was observed in any vanadium-protein complexes. The shape analysis positioned the metal ion and the ligands in the active site reflecting the mechanism of the cleavage of the organic phosphate in a phosphatase. We identified the umbrella distortions to be directly on the reaction path between tetrahedral phosphate and the TBPY-5-types of high-energy species. The umbrella distortions of the trigonal bipyramid are therefore identified as being the most relevant types of transition state structures for the phosphoryl group transfer reactions for phosphatases and this may be related to the possibility that vanadium is an inhibitor for enzymes that support both exploded and five-coordinate transition states. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of three decellularisation protocols on the mechanical behaviour and structural properties of sheep aortic valve conduits.

    PubMed

    Khorramirouz, Reza; Sabetkish, Shabnam; Akbarzadeh, Aram; Muhammadnejad, Ahad; Heidari, Reza; Kajbafzadeh, Abdol-Mohammad

    2014-09-01

    To determine the best method for decellularisation of aortic valve conduits (AVCs) that efficiently removes the cells while preserving the extracellular matrix (ECM) by examining the valvular and conduit sections separately. Sheep AVCs were decellularised by using three different protocols: detergent-based (1% SDS+1% SDC), detergent and enzyme-based (Triton+EDTA+RNase and DNase), and enzyme-based (Trypsin+RNase and DNase) methods. The efficacy of the decellularisation methods to completely remove the cells while preserving the ECM was evaluated by histological evaluation, scanning electron microscopy (SEM), hydroxyproline analysis, tensile test, and DAPI staining. The detergent-based method completely removed the cells and left the ECM and collagen content in the valve and conduit sections relatively well preserved. The detergent and enzyme-based protocol did not completely remove the cells, but left the collagen content in both sections well preserved. ECM deterioration was observed in the aortic valves (AVs), but the ultrastructure of the conduits was well preserved, with no media distortion. The enzyme-based protocol removed the cells relatively well; however, mild structural distortion and poor collagen content was observed in the AVs. Incomplete cell removal (better than that observed with the detergent and enzyme-based protocol), poor collagen preservation, and mild structural distortion were observed in conduits treated with the enzyme-based method. The results suggested that the detergent-based methods are the most effective protocols for cell removal and ECM preservation of AVCs. The AVCs treated with this detergent-based method may be excellent scaffolds for recellularisation. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. X ray absorption fine structure of systems in the anharmonic limit

    NASA Astrophysics Data System (ADS)

    Mustredeleon, J.; Conradson, S. D.; Batistic, I.; Bishop, A. R.; Raistrick, I.; Jackson, W. E.; Brown, G. E.

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion Hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allows the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca3Fe2Si3O12) and magnesiowustite (Mg(0.9)Fe(0.1)O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe2SiO4). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa2Cu3O7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and Tc. The relation of the observed lattice distortion to mechanisms of superconductivity is discussed.

  18. Wire-based laser metal deposition for additive manufacturing of TiAl6V4: basic investigations of microstructure and mechanical properties from build up parts

    NASA Astrophysics Data System (ADS)

    Klocke, Fritz; Arntz, Kristian; Klingbeil, Nils; Schulz, Martin

    2017-02-01

    The wire-based laser metal deposition (LMD-W) is a new technology which enables to produce complex parts made of titanium for the aerospace and automotive industry. For establishing the LMD-W as a new production process it has to be proven that the properties are comparable or superior to conventional produced parts. The mechanical properties were investigated by analysis of microstructure and tensile test. Therefore, specimens were generated using a 4.5 kW diode laser cladding system integrated in a 5-Axis-machining center. The structural mechanical properties are mainly influence by crystal structure and thereby the thermal history of the work piece. Especially the high affinity to oxide, distortion and dual phase microstructure make titanium grade 5 (TiAl6V4) one of the most challenging material for additive manufacturing. By using a proper local multi-nozzle shielding gas concept the negative influence of oxide in the process could be eliminated. The distortion being marginal at a single bead, accumulated to a macroscopic effect on the work piece. The third critical point for additive processing of titanium, the bimodal microstructure, could not be cleared by the laser process alone. All metallurgical probes showed α-martensitic-structure. Therefore, a thermal treatment became a necessary production step in the additive production chain. After the thermal treatment the microstructure as well as the distortion was analyzed and compared with the status before. Although not all technical issues could be solved, the investigation show that LMD-W of titanium grade 5 is a promising alternative to other additive techniques as electronic beam melting or plasma deposition welding.

  19. Synthesis, structure and property of diorganotin complexes with chiral N-(5-chlorosalicylidene)valinate ligand

    NASA Astrophysics Data System (ADS)

    Tian, Laijin; Yao, Yanze; Wang, Yuhua; Liu, Jin

    2018-03-01

    Six new diorganotin N-[(5-chloro-2-oxyphenyl)methylene]valinates, R2SnL (R = Me, 1; Et, 2; L = 5-Cl-2-OC6H3CH = NCH(i-Pr)COO: (S)-, a; (R)-, b; (RS)-, c), have been synthesized from the reaction of R2SnCl2 with the chiral ligand KHL (potassium salt of HL) in different solvents and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra. In benzene, the configuration of the chiral ligand was retained. (S)-Enantiomers (1a and 2a) and (R)-enantiomers (1b and 2b) display discrete molecular structures with distorted trigonal bipyramidal geometries in which two C atoms of organic groups (R) and the imino N atom occupy the equatorial positions and a phenoxide O and an unidentate carboxylate group O atom are in the axial orientation. In the methanol, the chiral ligand was racemized. 1cṡMeOH is a centrosymmetric dimers formed by (R)- and (S)- enantiomers through two Snsbnd OṡṡṡSn bridges. The coordination geometry of the Sn atom can be described as a distorted pentagonal bipyramid with two methyl groups in axial positions. The crystal of 2c is composed of two threefold symmetric trimers, a [Et2SnL-(R)]3 and a [Et2SnL-(S)]3, with a macrocyclic 12-membered ring structure formed by the bidenate bridging coordination of carboxylate group to tin atoms. Each tin atom is six-coordinated in distorted [SnC2NO3] octahedron geometry. The fluorescence properties of ligand KHL and complexes 1 (1a-1c) and 2 (2a-2c) have been measured. The results show the complexes may be explored for potential luminescent materials.

  20. Mapping B(1)-induced eddy current effects near metallic structures in MR images: a comparison of simulation and experiment.

    PubMed

    Vashaee, S; Goora, F; Britton, M M; Newling, B; Balcom, B J

    2015-01-01

    Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) eddy currents induced by switched magnetic field gradients and (3) radio frequency (RF) induced eddy currents. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced eddy current artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced eddy currents in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Formation, stability and crystal structure of mullite-type Al{sub 6−x}B{sub x}O{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de; Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße/NW2, Universität Bremen, D-28359 Bremen; Hooper, T.J.N.

    2016-11-15

    Mullite-type Al{sub 6−x}B{sub x}O{sub 9} compounds were studied by means of powder diffraction and spectroscopic methods. The backbones of this structure are chains of edge-connected AlO{sub 6} octahedra crosslinked by AlO- and BO-polyhedra. Rietveld refinements show that the a and b lattice parameters can be well resolved, thus representing an orthorhombic metric. A continuous decrease of the lattice parameters most pronounced in c-direction indicates a solid solution for Al{sub 6−x}B{sub x}O{sub 9} with 1.09≤x≤2. A preference of boron in 3-fold coordination is confirmed by {sup 11}B MAS NMR spectroscopy and Fourier calculations based on neutron diffraction data collected at 4more » K. Distance Least Squares modeling was performed to simulate a local geometry avoiding long B-O distances linking two octahedral chains by planar BO{sub 3} groups yielding split positions for the oxygen atoms and a strong distortion in the octahedral chains. The lattice thermal expansion was calculated using the Grüneisen first-order equation of state Debye-Einstein-Anharmonicity model. - Graphical abstract: Local distortion induced by boron linking the octahedral chains. - Highlights: • Decreasing lattice parameters indicate a solid solution for Al{sub 6−x}B{sub x}O{sub 9} (1.09≤x≤2). • B-atoms induce a local distortion of neighboring AlO{sub 6} octahedra. • A preference of boron in BO{sub 3} coordination is confirmed by {sup 11}B MAS NMR spectroscopy. • An optimized structural model for Al{sub 6−x}B{sub x}O{sub 9} is presented.« less

  2. Evaluation of range and distortion tolerance for high Mach number transonic fan stages. Task 2: Performance of a 1500-foot-per-second tip speed transonic fan stage with variable geometry inlet guide vanes and stator

    NASA Technical Reports Server (NTRS)

    Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.

    1972-01-01

    A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.

  3. Grids in topographic maps reduce distortions in the recall of learned object locations.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2014-01-01

    To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.

  4. Optimization of the axial compressor flow passage to reduce the circumferential distortion

    NASA Astrophysics Data System (ADS)

    Popov, G.; Kolmakova, D.; Shklovets, A.; Ermakov, A.

    2015-08-01

    This work is motivated by the necessity to reduce the effects of the flow circumferential distortion in the flow passage of the aircraft gas turbine engine (GTE). In previous research, the authors have proposed the approaches to decrease of the flow circumferential distortion arising from the mid-support racks of GTE compressor and having a negative impact on the blade rows, located upstream. In particular, the idea of introducing the circumferentially non-uniform blade pitch and profile stagger angle of guide vanes located in front of the support was contributed in order to redistribute the flow and decrease the dynamic stresses in the rotor wheel of the same stage. During the research presented in this paper, another principal of reduction of the flow circumferential distortion was chosen. Firstly, the variants of upgrading the existing support racks were found. Secondly, the new design of support was offered. Both the first and the second version of the support design variation took into account the availability of technological and structural limitations associated with the location of oil pipes, springs and others elements in the support racks. Investigations of modified design showed that the support with altered racks provides a reduction of dynamic stresses by 20% at resonance with the most dangerous harmonic, and the new design of support can give the decrease of 30%.

  5. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    NASA Astrophysics Data System (ADS)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  6. An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure

    PubMed Central

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure. PMID:22163987

  7. Cognitive Distortions Associated with Imagination of the Thin Ideal: Validation of the Thought-Shape Fusion Body Questionnaire (TSF-B)

    PubMed Central

    Wyssen, Andrea; Debbeler, Luka J.; Meyer, Andrea H.; Coelho, Jennifer S.; Humbel, Nadine; Schuck, Kathrin; Lennertz, Julia; Messerli-Bürgy, Nadine; Biedert, Esther; Trier, Stephan N.; Isenschmid, Bettina; Milos, Gabriella; Whinyates, Katherina; Schneider, Silvia; Munsch, Simone

    2017-01-01

    Thought-shape fusion (TSF) describes the experience of body-related cognitive distortions associated with eating disorder (ED) pathology. In the laboratory TSF has been activated by thoughts about fattening/forbidden foods and thin ideals. This study aims at validating a questionnaire to assess the trait susceptibility to TSF (i.e., body-related cognitive distortions) associated with the imagination of thin ideals, and developing an adapted version of the original TSF trait questionnaire, the Thought-Shape Fusion Body Questionnaire (TSF-B). Healthy control women (HC, n = 317) and women diagnosed with subthreshold and clinical EDs (n = 243) completed an online-questionnaire. The factor structure of the TSF-B questionnaire was examined using exploratory (EFA) and subsequent confirmatory factor analysis (CFA). EFA pointed to a two-factor solution, confirmed by CFA. Subscale 1 was named Imagination of thin ideals, containing five items referring to the imagination of female thin ideals. Subscale 2 was named Striving for own thin ideal, with seven items about pursuing/abandoning attempts to reach one’s own thin ideal. The total scale and both subscales showed good convergent validity, excellent reliability, and good ability to discriminate between individuals with subthreshold/clinical EDs and HCs. Results indicate that cognitive distortions are also related to the imagination of thin ideals, and are associated with ED pathology. With two subscales, the TSF-B trait questionnaire appropriately measures this construct. Future studies should clarify whether TSF-B is predictive for the development and course of EDs. Assessing cognitive distortions with the TSF-B questionnaire could improve understanding of EDs and stimulate the development of cognitively oriented interventions. Clinical Trial Registration Number: DRKS-ID: DRKS00005709. PMID:29312059

  8. Substrate-dependent structural and CO sensing properties of LaCoO3 epitaxial films

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Sun, Hongjuan; Xie, Ruishi; Zhang, Xingquan; Zheng, Kui; Peng, Tongjiang; Wu, Xiaoyu; Zhang, Yanping

    2018-06-01

    LaCoO3 thin films were grown on different (0 0 1) oriented LaAlO3, SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 by the polymer assisted deposition method, respectively. All the LaCoO3 thin films are in epitaxial growth on these substrates, with tetragonal distortion of CoO6 octahedrons. Due to different in-plane lattice mismatch, the LaCoO3 film on LaAlO3 has the largest tetragonal distortion of CoO6 octahedrons while the film grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 has the smallest tetragonal distortion. The relative contents of the surface absorbed oxygen species are found to increase for the LaCoO3 epitaxial films grown on (0 0 1) oriented (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and LaAlO3 substrates, sequentially. The film sensors exhibit good CO sensing properties at 150 °C, and the LaCoO3 film on LaAlO3 shows the highest response but the film on (LaAlO3)0.3(Sr2AlTaO6)0.7 shows the lowest. It reveals that the larger degree of Jahn-Teller-like tetragonal distortion of CoO6 octahedrons may greatly improve the surface absorbing and catalytic abilities, corresponding to more excellent CO sensing performance. The present study suggests that the formation of epitaxial films is an efficient methodology for controlling the octahedral distortion and thereby improving the gas sensing performance of perovskite transition metal oxides.

  9. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  10. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement

    PubMed Central

    Gunning, Paul S.; Saikrishnan, Neelakantan; Yoganathan, Ajit P.; McNamara, Laoise M.

    2015-01-01

    Transcatheter aortic valve replacements (TAVRs) are a percutaneous alternative to surgical aortic valve replacements and are used to treat patients with aortic valve stenosis. This minimally invasive procedure relies on expansion of the TAVR stent to radially displace calcified aortic valve leaflets against the aortic root wall. However, these calcium deposits can impede the expansion of the device causing distortion of the valve stent and pericardial tissue leaflets. The objective of this study was to elucidate the impact of eccentric TAVR stent distortion on the dynamic deformation of the tissue leaflets of the prosthesis in vitro. Dual-camera stereophotogrammetry was used to measure the regional variation in strain in a leaflet of a TAVR deployed in nominal circular and eccentric (eccentricity index = 28%) orifices, representative of deployed TAVRs in vivo. It was observed that (i) eccentric stent distortion caused incorrect coaptation of the leaflets at peak diastole resulting in a ‘peel-back’ leaflet geometry that was not present in the circular valve and (ii) adverse bending of the leaflet, arising in the eccentric valve at peak diastole, caused significantly higher commissure strains compared with the circular valve in both normotensive and hypertensive pressure conditions (normotension: eccentric = 13.76 ± 2.04% versus circular = 11.77 ± 1.61%, p = 0.0014, hypertension: eccentric = 15.07 ± 1.13% versus circular = 13.56 ± 0.87%, p = 0.0042). This study reveals that eccentric distortion of a TAVR stent can have a considerable impact on dynamic leaflet deformation, inducing deleterious bending of the leaflet and increasing commissures strains, which might expedite leaflet structural failure compared to leaflets in a circular deployed valve. PMID:26674192

  11. 30 CFR 77.1434 - Retirement criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Personnel... corrosion; (e) Distortion of the rope structure; (f) Heat damage from any source; (g) Diameter reduction due...

  12. Local and average structure of Mn- and La-substituted BiFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Selbach, Sverre M., E-mail: selbach@ntnu.no

    2017-06-15

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO{sub 3} is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space groupmore » symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO{sub 3}. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions. - Graphical abstract: The experimental and simulated partial pair distribution functions (PDF) for BiFeO{sub 3}, BiFe{sub 0.875}Mn{sub 0.125}O{sub 3}, BiFe{sub 0.75}Mn{sub 0.25}O{sub 3} and Bi{sub 0.9}La{sub 0.1}FeO{sub 3}.« less

  13. X-ray scattering studies of structural phase transitions in pyrochlore Cd2Nb2O7

    NASA Astrophysics Data System (ADS)

    Tachibana, Makoto; Fritsch, Katharina; Gaulin, Bruce D.

    2013-10-01

    Structural phase transitions in pyrochlore Cd2Nb2O7 were studied by means of single crystal x-ray scattering. On cooling below the ferroelastic transition at T1 = 204 K, the cubic Bragg peaks broaden in a manner consistent with weak orthorhombic distortion. The distortion evolves rather smoothly through the ferroelectric transition at T2 = 196 K, which explains the absence of sharp anomalies in the heat capacity and dielectric constant at this transition. At lower temperatures, the anomalous relaxor-like character of this compound is evident as a gradual reduction in the Bragg peak intensities, which continues down to the onset of another transition at T3 = 85 K. The studies of two Bragg peaks that are forbidden within the cubic phase reveal an interesting disparity: while the intensity for one of them increases in a classical mean-field manner below T1, the other shows unconventional behavior that is reminiscent of the pyrochlore superconductor Cd2Re2O7.

  14. (±)-Pestalachloride D, an antibacterial racemate of chlorinated benzophenone derivative from a soft coral-derived fungus Pestalotiopsis sp.

    PubMed

    Wei, Mei-Yan; Li, Dan; Shao, Chang-Lun; Deng, Dong-Sheng; Wang, Chang-Yun

    2013-03-28

    A new antibacterial chlorinated benzophenone derivative, (±)-pestalachloride D (1), along with a related analog, (±)-pestalachloride C (2), was recently isolated from the marine-derived fungus Pestalotiopsis sp. isolated from a soft coral Sarcophyton sp. collected from Yongxing Island in the South China Sea. Both chiral HPLC analysis and single-crystal X-ray data indicated that 1 is a racemic mixture. Interestingly, 1 did not exhibit any effect in the zebrafish embryo teratogenicity assay, while 2 led to abnormal growth. The potential impact on zebrafish embryo growth is discussed based on their crystal structures. The main difference of crystal structures between 1 and 2 is that the six-member non-aromatic ring (O4, C10, C9, C8, C2', and C3') in 1 exhibits a distorted chair conformation, while 2 shows a distorted boat conformation. Moreover, compounds 1 and 2 both exhibited moderate antibacterial activity.

  15. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.

    PubMed

    Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  16. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  17. Co3(PO4)2·4H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  18. Arc Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing

    2009-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc seconds. These mirror segments are 0.4mm thick, and 200 to 400mm in size, which makes it hard not to impart distortion at the subarc second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  19. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  20. Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides

    NASA Astrophysics Data System (ADS)

    Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf

    2018-02-01

    While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.

  1. Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure

    NASA Technical Reports Server (NTRS)

    Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.

    2010-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard not to impart distortion at the subare- second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.

  2. Conceptual distortions of hand structure are robust to changes in stimulus information.

    PubMed

    Ambroziak, Klaudia B; Tamè, Luigi; Longo, Matthew R

    2018-05-01

    Previous studies showed stereotyped distortions in hand representations. People judge their knuckles as farther forward in the hand than they actually are. The cause of this bias remains unclear. We tested whether both visual and tactile information contribute to the bias. In Experiment 1, participants judged the location of their knuckles by pointing to the location on their palm with: (1) a metal baton (using vision and touch), (2) a metal baton while blindfolded (using touch), or (3) a laser pointer (using vision). Distal mislocalisations were found in all conditions. In Experiment 2, we investigated whether judgments are influenced by visual landmarks such as creases. Participants localized their knuckles on either a photograph of their palm or a silhouette. Distal mislocalisations were apparent in both conditions. These results show that distal biases are resistant to changes in stimulus information, suggesting that such mislocalisations reflect a conceptual mis-representation of hand structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Regioselectivity of H Cluster Oxidation

    PubMed Central

    2011-01-01

    The H2-evolving potential of [FeFe] hydrogenases is severely limited by the oxygen sensitivity of this class of enzymes. Recent experimental studies on hydrogenase from C. reinhardtii point to O2-induced structural changes in the [Fe4S4] subsite of the H cluster. Here, we investigate the mechanistic basis of this observation by means of density functional theory. Unexpectedly, we find that the isolated H cluster shows a pathological catalytic activity for the formation of reactive oxygen species such as O2– and HO2–. After protonation of O2–, an OOH radical may coordinate to the Fe atoms of the cubane, whereas H2O2 specifically reacts with the S atoms of the cubane-coordinating cysteine residues. Both pathways are accompanied by significant structural distortions that compromise cluster integrity and thus catalytic activity. These results explain the experimental observation that O2-induced inhibition is accompanied by distortions of the [Fe4S4] moiety and account for the irreversibility of this process. PMID:22106822

  4. (±)-Pestalachloride D, an Antibacterial Racemate of Chlorinated Benzophenone Derivative from a Soft Coral-Derived Fungus Pestalotiopsis sp

    PubMed Central

    Wei, Mei-Yan; Li, Dan; Shao, Chang-Lun; Deng, Dong-Sheng; Wang, Chang-Yun

    2013-01-01

    A new antibacterial chlorinated benzophenone derivative, (±)-pestalachloride D (1), along with a related analog, (±)-pestalachloride C (2), was recently isolated from the marine-derived fungus Pestalotiopsis sp. isolated from a soft coral Sarcophyton sp. collected from Yongxing Island in the South China Sea. Both chiral HPLC analysis and single-crystal X-ray data indicated that 1 is a racemic mixture. Interestingly, 1 did not exhibit any effect in the zebrafish embryo teratogenicity assay, while 2 led to abnormal growth. The potential impact on zebrafish embryo growth is discussed based on their crystal structures. The main difference of crystal structures between 1 and 2 is that the six-member non-aromatic ring (O4, C10, C9, C8, C2′, and C3′) in 1 exhibits a distorted chair conformation, while 2 shows a distorted boat conformation. Moreover, compounds 1 and 2 both exhibited moderate antibacterial activity. PMID:23538869

  5. The design of the intelligent monitoring system for dam safety

    NASA Astrophysics Data System (ADS)

    Yuan, Chun-qiao; Jiang, Chen-guang; Wang, Guo-hui

    2008-12-01

    Being a vital manmade water-control structure, a dam plays a very important role in the living and production of human being. To make a dam run safely, the best design and the superior construction quality are paramount; moreover, with working periods increasing, various dynamic, alternative and bad loads generate little by little various distortions on the dam structure inevitably, which shall lead to potential safety problems or further a disaster (dam burst). There are many signs before the occurrence of a dam accident, so the timely and effective surveying on the distortion of a dam is important. On the basis of the cause supra, two intelligent (automatic) monitoring systems about the dam's safety based on the RTK-GPS technology and the measuring robot has been developed. The basic principle, monitoring method and monitoring process of these two intelligent (automatic) monitoring systems are introduced. It presents examples of monitor and puts forward the basic rule of dam warning based on data of actual monitor.

  6. Solvothermal synthesis and structural characterization of a three-dimensional metal organic polymer [NaZn(1,2,4-BTC)] (1,2,4-BTC=1,2,4-benzenetricarboxylate)

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shi, Zhan; Li, Guanghua; Fan, Yong; Fu, Wensheng; Feng, Shouhua

    2004-01-01

    A new three-dimensional metal-organic polymer, [NaZn(1,2,4-BTC)] (where 1,2,4-BTC=1,2,4-benzenetricarboxylate), has been prepared under solvothermal conditions and characterized by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2 1/ c, with cell parameters: a=9.7706(4) Å, b=12.3549(5) Å, c=6.8897(3) Å, β=91.640(2)°, V=831.35(6) Å 3 and Z=4. In the three-dimensional structure of the compound, each Zn atom is five-coordinated in distorted trigonal bipyramidal geometry, while the sixfold coordination of Na corresponds to a slightly distorted triangular prism. The organic ligand, 1,2,4-BTC, shows a novel and unprecedented coordination mode: 11 bonds to 10 metals with each carboxylate function exhibiting different linkages. It remains stable when desolvated and when heated up to 410 °C.

  7. Numerical Simulation of Boundary Layer Ingesting (BLI) Inlet-Fan Interaction

    NASA Technical Reports Server (NTRS)

    Giuliani, James; Chen, Jen-Ping; Beach, Timothy; Bakhle, Milind

    2014-01-01

    Future civil transport designs may incorporate engine inlets integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlet ingests the lower momentum boundary layer flow. Previous studies have shown, however, that efficiency benefits of Boundary Layer Ingesting (BLI) ingestion are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This paper presents an effort to extend the modeling capabilities of an existing rotating turbomachinery unsteady analysis code to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations, such as the development of rotating stall and inlet distortion through compressor stages. This paper describes the first phase of an effort to extend the TURBO model to calculate the external and inlet flowfield upstream of fan so that accurate pressure distortions that result from BLI configurations can be computed and used to analyze fan aerodynamics and structural response. To validate the TURBO program modifications for the BLI flowfield, experimental test data obtained by NASA for a flushmounted S-duct with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Quantitative data is presented that indicates good predictive capability of the model in the upstream flow. A representative fan is attached to the inlet and results are presented for the coupled inlet/fan model. The impact on the total pressure distortion at the AIP after the fan is attached is examined.

  8. Determining the structure of tetragonal Y 2WO 6 and the site occupation of Eu 3+ dopant

    NASA Astrophysics Data System (ADS)

    Huang, Jinping; Xu, Jun; Li, Hexing; Luo, Hongshan; Yu, Xibin; Li, Yikang

    2011-04-01

    The compound Y 2WO 6 is prepared by solid state reaction at 750 °C using sodium chloride as mineralizer. Its structure is solved by ab-initio methods from X-ray powder diffraction data. This low temperature phase of yttrium tungstate crystallizes in tetragonal space group P4/ nmm (No. 129), Z=2, a=5.2596(2) Å, c=8.4158(4) Å. The tungsten atoms in the structure adopt an unusual [WO 6] distorted cubes coordination, connecting [YO 6] distorted cubes with oxygen vacancies at the O 2 layers while other yttrium ions Y 2 form [YO 8] cube coordination. Y 3+ ions occupy two crystallographic sites of 2 c ( C4v symmetry) and 2 a ( D2d symmetry) in the Y 2WO 6 host lattice. With Eu 3+ ions doped, the high resolution emission spectrum of Y 2WO 6:Eu 3+ suggests that Eu 3+ partly substituted for Y 3+ in these two sites. The result of the Rietveld structure refinement shows that the Eu 3+ dopants preferentially enter the 2 a site. The uniform cube coordination environment of Eu 3+ ions with the identical eight Eu-O bond lengths is proposed to be responsible for the intense excitation of long wavelength ultraviolet at 466-535 nm.

  9. Structural, theoretical and corrosion inhibition studies on some transition metal complexes derived from heterocyclic system

    NASA Astrophysics Data System (ADS)

    Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.

    2017-06-01

    A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.

  10. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities.

    PubMed

    Neumann, Piotr; Tittmann, Kai

    2014-12-01

    Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Multiple Aromaticity and Antiaromaticity in Silicon Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hua JIN.; Kuznetsov, A E.; Boldyrev, Alexander I.

    A series of silicon clusters containing four atoms but with different charge states (Si{sub 4}{sup 2+}, Si{sub 4}, Si{sub 4}{sup 2-}, and NaSi{sub 4}{sup -}) were studied by photoelectron spectroscopy and ab initio calculations. Structure evolution and chemical bonding in this series were interpreted in terms of aromaticity and antiaromaticity, which allowed the prediction of how structures of the four-atom silicon clusters change upon addition or removal of two electrons. It is shown that Si{sub 4}{sup 2+} is square-planar, analogous to the recently discovered aromatic Al{sub 4}{sup 2-} cluster. Upon addition of two electrons, neutral Si{sub 4} becomes {sigma}-antiaromatic andmore » exhibits a rhombus distortion. Adding two more electrons to Si{sub 4} leads to two energetically close structures of Si{sub 4}{sup 2-}: either a double antiaromatic parallelogram structure or an aromatic system with a butterfly distortion. Because of the electronic instability of doubly charged Si{sub 4}{sup 2-}, a stabilizing cation (Na{sup +}) was used to produce Si{sub 4}{sup 2-} in the gas phase in the form of Na{sup +}[Si{sub 4}{sup 2-}], which was characterized experimentally by photoelectron spectroscopy. Multiple antiaromaticity in the parallelogram Na{sup +}[Si{sub 4}{sup 2-}] species is highly unusual.« less

  12. On the importance of preserving the harmonics and neighboring partials prior to vocoder processing: implications for cochlear implants.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2010-01-01

    Pre-processing based noise-reduction algorithms used for cochlear implants (CIs) can sometimes introduce distortions which are carried through the vocoder stages of CI processing. While the background noise may be notably suppressed, the harmonic structure and/or spectral envelope of the signal may be distorted. The present study investigates the potential of preserving the signal's harmonic structure in voiced segments (e.g., vowels) as a means of alleviating the negative effects of pre-processing. The hypothesis tested is that preserving the harmonic structure of the signal is crucial for subsequent vocoder processing. The implications of preserving either the main harmonic components occurring at multiples of F0 or the main harmonics along with adjacent partials are investigated. This is done by first pre-processing noisy speech with a conventional noise-reduction algorithm, regenerating the harmonics, and vocoder processing the stimuli with eight channels of stimulation in steady speech-shaped noise. Results indicated that preserving the main low-frequency harmonics (spanning 1 or 3 kHz) alone was not beneficial. Preserving, however, the harmonic structure of the stimulus, i.e., the main harmonics along with the adjacent partials, was found to be critically important and provided substantial improvements (41 percentage points) in intelligibility.

  13. Crystal structure of dimanganese(II) zinc bis­[ortho­phosphate(V)] monohydrate

    PubMed Central

    Alhakmi, Ghaleb; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2015-01-01

    The title compound, Mn2Zn(PO4)2·H2O, was obtained under hydro­thermal conditions. The structure is isotypic with other transition metal phosphates of the type M 3− xM′x(PO4)2·H2O, but shows no statistical disorder of the three metallic sites. The principal building units are distorted [MnO6] and [MnO5(H2O)] octa­hedra, a distorted [ZnO5] square pyramid and two regular PO4 tetra­hedra. The connection of the polyhedra leads to a framework structure. Two types of layers parallel to (-101) can be distinguished in this framework. One layer contains [Zn2O8] dimers linked to PO4 tetra­hedra via common edges. The other layer is more corrugated and contains [Mn2O8(H2O)2] dimers and [MnO6] octa­hedra linked together by common edges. The PO4 tetra­hedra link the two types of layers into a framework structure with channels parallel to [101]. The H atoms of the water mol­ecules point into the channels and form O—H⋯O hydrogen bonds (one of which is bifurcated) with framework O atoms across the channels. PMID:25878806

  14. Thermally induced distortion of a high-average-power laser system by an optical transport system

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don

    1999-11-01

    The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.

  15. Atomic-Scale Fingerprint of Mn Dopant at the Surface of Sr3(Ru1−xMnx)2O7

    PubMed Central

    Li, Guorong; Li, Qing; Pan, Minghu; Hu, Biao; Chen, Chen; Teng, Jing; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.

    2013-01-01

    Chemical doping in materials is known to give rise to emergent phenomena. These phenomena are extremely difficult to predict a priori, because electron-electron interactions are entangled with local environment of assembled atoms. Scanning tunneling microscopy and low energy electron diffraction are combined to investigate how the local electronic structure is correlated with lattice distortion on the surface of Sr3(Ru1−xMnx)2O7, which has double-layer building blocks formed by (Ru/Mn)O6 octahedra with rotational distortion. The presence of doping-dependent tilt distortion of (Ru/Mn)O6 octahedra at the surface results in a C2v broken symmetry in contrast with the bulk C4v counterpart. It also enables us to observe two Mn sites associated with the octahedral rotation in the bulk through the “chirality” of local electronic density of states surrounding Mn, which is randomly distributed. These results serve as fingerprint of chemical doping on the atomic scale. PMID:24108411

  16. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  17. Mechanocaloric effects in shape memory alloys.

    PubMed

    Mañosa, Lluís; Planes, Antoni

    2016-08-13

    Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. © 2016 The Author(s).

  18. Ferroelectric and structural instability in double perovskites Me1+Bi3+Me3+Nb5+O6 (Me1+ = Na, K, Rb; Me3+ = Sc, Ga, In, Lu)

    NASA Astrophysics Data System (ADS)

    Zinenko, V. I.; Zamkova, N. G.; Zhandun, V. S.; Pavlovskii, M. S.

    2012-06-01

    Within the Gordon-Kim generalized model with regard to the polarizabilities of ions, the lattice constants, the high-frequency permittivity, the Born dynamic charges, and the vibration constants of the crystal lattice are calculated for cation-ordered double perovskites Me1+Bi3+Me3+Nb5+O6. The vibration spectra of all the compounds exhibit two types of instabilities: instability associated with the rotation of the oxygen octahedron and ferroelectric instability. Various combinations of distortions with respect to the rotation mode yield five energetically most favorable distorted phases. The symmetry and the energy characteristics of these phases are discussed. In four of the five phases, the distortions associated with the oxygen octahedron rotation lead to polar phases, thus allowing one to speak of improper ferroelectricity in these compounds. One phase turns out to be nonpolar; however, it contains unstable polar modes such that a displacement along the eigenvectors of these modes gives rise to polarization in the crystal.

  19. What do we perceive from motion pictures? A computational account.

    PubMed

    Cheong, Loong-Fah; Xiang, Xu

    2007-06-01

    Cinema viewed from a location other than a canonical viewing point (CVP) presents distortions to the viewer in both its static and its dynamic aspects. Past works have investigated mainly the static aspect of this problem and attempted to explain why viewers still seem to perceive the scene very well. The dynamic aspect of depth perception, which is known as structure from motion, and its possible distortion, have not been well investigated. We derive the dynamic depth cues perceived by the viewer and use the so-called isodistortion framework to understand its distortion. The result is that viewers seated at a reasonably central position experience a shift in the intrinsic parameters of their visual systems. Despite this shift, the key properties of the perceived depths remain largely the same, being determined in the main by the accuracy to which extrinsic motion parameters can be recovered. For a viewer seated at a noncentral position and watching the movie screen at a slant angle, the view is related to the view at the CVP by a homography, resulting in various aberrations such as noncentral projection.

  20. Optical technique to measure distortion on heat treated parts

    NASA Astrophysics Data System (ADS)

    Sciammarella, Federico Mariano

    The use of aluminum for structural applications grows with the continual improvement of their physical properties. Through the various amounts of heat treatments that are available, aluminum can vary in properties for all different types of applications. The automotive industry has benefited the most from the use of aluminum and they continue to seek more uses. The heat treatments of these parts are very vital in providing the properties needed for their particular applications. Moreover understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is a pre and post measurement after part has experienced its treatment. In this study, we carry out in-situ measurements of the distortions that a heat-treated part undergoes when subjected to temperatures near melting followed by a slow cooling. In order to confirm the experimental measurements we used HOTPOINT to simulate the experiment and compare results. This study will provide much needed insight to the complex occurrences that aluminum parts undergo during heat treatment.

  1. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion

    NASA Astrophysics Data System (ADS)

    Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe

    2012-05-01

    A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.

  2. Compensation of X-ray mirror shape-errors using refractive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the sizemore » of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.« less

  3. Peculiarities of section topograms for the multiple diffraction of X rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G., E-mail: kohnvict@yandex.ru; Smirnova, I. A.

    The distortion of interference fringes on the section topograms of single crystal due to the multiple diffraction of X rays has been investigated. The cases of the 220 and 400 reflections in a silicon crystal in the form of a plate with a surface oriented normally to the [001] direction are considered both theoretically and experimentally. The same section topogram exhibits five cases of multiple diffraction at small azimuthal angles for the 400 reflection and MoK{sub α} radiation, while the topogram for the 220 reflection demonstrates two cases of multiple diffraction. All these cases correspond to different combinations of reciprocalmore » lattice vectors. Exact theoretical calculations of section topograms for the aforementioned cases of multiple diffraction have been performed for the first time. The section topograms exhibit two different distortion regions. The distortions in the central region of the structure are fairly complex and depend strongly on the azimuthal angle. In the tails of the multiple diffraction region, there is a shift of two-beam interference fringes, which can be observed even with a laboratory X-ray source.« less

  4. Foil Face Seal Testing

    NASA Technical Reports Server (NTRS)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  5. Effect of exit beam phase aberrations on coherent x-ray reconstructions of Au nanocrystals

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, Stephan; Harder, Ross; Fuoss, Paul

    2010-03-01

    Current studies in coherent x-ray diffractive imaging (CXDI) are focusing on in-situ imaging under a variety of environmental conditions. Such studies often involve environmental sample chambers through which the x-ray beam must pass before and after interacting with the sample: i.e. cryostats or high pressure cells. Such sample chambers usually contain polycrystalline x-ray windows with structural imperfections that can in turn interact with the diffracted beam. A phase object in the near field that interacts with the beam exiting the sample can introduce distortions at the detector plane that may affect coherent reconstructions. We investigate the effects of a thin beryllium membrane on the coherent exit beam of a gold nanoparticle. We compare three dimensional reconstructions from experimental diffraction patterns measured with and without a 380 micron thick Be dome and find that the reconstructions are reproducible within experimental errors. Simulated near-field distortions of the exit beam consistent with micron sized voids in Be establish a ``worst case scenario'' where distorted diffraction patterns inhibit accurate inversions.

  6. Mechanocaloric effects in shape memory alloys

    PubMed Central

    2016-01-01

    Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402931

  7. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    PubMed Central

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  8. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  9. Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Benedek, Nicole

    Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.

  10. Structural and electronic investigations of PbTa4O11 and BiTa7O19 constructed from α-U3O8 types of layers

    NASA Astrophysics Data System (ADS)

    Boltersdorf, Jonathan; Maggard, Paul A.

    2015-09-01

    The PbTa4O11 and BiTa7O19 phases were prepared by ion-exchange and solid-state methods, respectively, and their structures were characterized by neutron time-of-flight diffraction and Rietveld refinement methods (PbTa4O11, R 3 (No. 146), a=6.23700(2) Å, c=36.8613(1) Å; BiTa7O19, P 6 bar c 2 (No. 188), a=6.2197(2) Å, c=20.02981(9) Å). Their structures are comprised of layers of TaO6 octahedra surrounded by three 7-coordinate Pb(II) cations or two 8-coordinate Bi(III) cations. These layers alternate down the c-axis with α-U3O8 types of single and double TaO7 pentagonal bipyramid layers. In contrast to earlier studies, both phases are found to crystallize in noncentrosymmetric structures. Symmetry-lowering structural distortions within PbTa4O11, i.e. R 3 bar c →R3, are found to be a result of the displacement of the Ta atoms within the TaO7 and TaO6 polyhedra, towards the apical and facial oxygen atoms, respectively. In BiTa7O19, relatively lower reaction temperatures leads to an ordering of the Bi/Ta cations within a lower-symmetry structure, i.e., P63/mcm→ P 6 bar c 2 . In the absence of Bi/Ta site disorder, the Ta-O-Ta bond angles decrease and the Ta-O bond distances increase within the TaO7 double layers. Scanning electron microscopy images reveal two particle morphologies for PbTa4O11, hexagonal rods and finer irregularly-shaped particles, while BiTa7O19 forms as aggregates of irregularly-shaped particles. Electronic-structure calculations confirm the highest-energy valence band states are comprised of O 2p-orbitals and the respective Pb 6s-orbital and Bi 6s-orbital contributions. The lowest-energy conduction band states are composed of Ta 5d-orbital contributions that are delocalized over the TaO6 octahedra and layers of TaO7 pentagonal bipyramids. The symmetry-lowering distortions in the PbTa4O11 structure, and the resulting effects on its electronic structure, lead to its relatively higher photocatalytic activity compared to similar structures without these distortions.

  11. Orbital effects in cobaltites by neutron scattering

    NASA Astrophysics Data System (ADS)

    Louca, Despina

    2005-03-01

    The orbital degree of freedom can play a central role in the physics of transition metal perovskite oxides because of its intricate coupling with other degrees of freedom such as spin, charge and lattice. In this talk the case of La1-xSrxCoO3 will be presented. Using elastic and inelastic neutron scattering, we investigated the thermal evolution of the local atomic structure and lattice dynamics in the pure sample and with the addition of charge carriers as the system crosses over from a paramagnetic insulator to a ferromagnetic metal. In LaCoO3, the thermal activation of the Co ions from a nonmagnetic ground state to an intermediate spin state gives rise to orbital degeneracy. This leads to Jahn-Teller distortions that are dynamical in nature. Doping stabilizes the intermediate spin configuration of the Co ions in the paramagnetic insulating phase. Evidence for local static Jahn-Teller distortions is observed but without long-range ordering. The size of the JT lattice is proportional to the amount of charge. However, with cooling to the metallic phase, static JT distortions disappear for x <= 30 %, the percolation limit. This coincides with narrowing of two modes at φ=22,nd,4,eV in the phonon spectrum in which we argue is due to localized dynamical JT fluctuations^1. The implications of the orbital effects to the structural and magnetic properties will be discussed. ^1D. Louca and J. L. Sarrao, Phys. Rev. Lett. 91, 155501 (2003).

  12. Cosmological Constraints from the Redshift Dependence of the Volume Effect Using the Galaxy 2-point Correlation Function across the Line of Sight

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.

    2017-08-01

    We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  13. Electronic structures of filled tetrahedral semiconductors LiMgN and LiZnN: conduction band distortion

    NASA Astrophysics Data System (ADS)

    Yu, L. H.; Yao, K. L.; Liu, Z. L.

    2004-12-01

    The band structures of the filled tetrahedral semiconductors LiMgN and LiZnN, viewed as the zinc-blende (MgN) - and (ZnN) - lattices partially filled with He-like Li + ion interstitials, were studied using the full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory. The conduction band distortions of LiMgN and LiZnN, compared to their “parent” zinc-blende analog AlN and GaN, are discussed. It was found that the insertion of Li + ions at the interstitial sites near the cation or anion pushes the conduction band minimum of the X point in the Brillouin zone upward, relative to that of the Γ point, for both (MgN) - and (ZnN) - lattices (the valence band maximum is at Γ for AlN, GaN, LiMgN, and LiZnN), which provides a method to convert a zinc-blende indirect gap semiconductor into a direct gap material, but the conduction band distortion of the β phase (Li + near the cation) is quite stronger than that of the α phase (Li + near the anion). The total energy calculations show the α phase to be more stable than the β phase for both LiMgN and LiZnN. The Li-N and Mg-N bonds exhibit a strong ionic character, whereas the Zn-N bond has a strong covalent character in LiMgN and LiZnN.

  14. Selective harmonic elimination strategy in eleven level inverter for PV system with unbalanced DC sources

    NASA Astrophysics Data System (ADS)

    Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.

    2017-02-01

    The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.

  15. Role of annealing on the structural and optical properties of nanostructured diaceto bis-benzimidazole Mn(II) complex thin films.

    PubMed

    Praveen, P A; Babu, R Ramesh; Ramamurthi, K

    2017-02-15

    A coordination complex, manganese incorporated benzimidazole, thin films were prepared by chemical bath deposition method. Structural characterization of the deposited films, carried out by Fourier transform infrared spectroscopy, Raman and electron paramagnetic resonance spectral analyses, reveals the distorted tetrahedral environment of the metal ion with bis-benzimidazole ligand. Further the molecular composition of the deposited metal complex was estimated by energy-dispersive X-ray spectroscopy. The prepared thin films were thermally treated to study the effect of annealing temperature on the surface morphology and the results showed that the surface homogeneity of the films increased for thermally treated films up to 150°C. But distortion and voids were observed for the films annealed at 200°C. The Raman analysis reveals the molecular hydrogen bond distortion which leads to the evaporation of the metal complex from the thin film surface with respect to annealing temperature. The linear and nonlinear optical properties of the as prepared and annealed films were studied using ultraviolet-visible transmittance spectroscopy, second harmonic generation and Z-scan analyses. Films annealed at 150°C show a better linear transmittance in the visible region and larger SHG efficiency and third order nonlinear susceptibility when compared with the other samples. Further, the film annealed at 150°C was subjected to optical switching analysis and demonstrated to have an inverted switching behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis.

    PubMed

    Kona, Fathima; Tao, Peng; Martin, Philip; Xu, Xingjue; Gatti, Domenico L

    2009-04-28

    Aquifex aeolicus 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) is active with a variety of different divalent metal ions bound in the active site. The Cd(2+), Zn(2+), and Cu(2+) substituted enzymes display similar values of k(cat) and similar dependence of K(m)(PEP) and K(m)(A5P) on both substrate and product concentrations. However, the flux-control coefficients for some of the catalytically relevant reaction steps are different in the presence of Zn(2+) or Cu(2+), suggesting that the type of metal bound in the active site affects the behavior of the enzyme in vivo. The type of metal also affects the rate of product release in the crystal environment. For example, the crystal structure of the Cu(2+) enzyme incubated with phosphoenolpyruvate (PEP) and arabinose 5-phosphate (A5P) shows the formed product, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), still bound in the active site in its linear conformation. This observation completes our structural studies of the condensation reaction, which altogether have provided high-resolution structures for the reactants, the intermediate, and the product bound forms of KDO8PS. The crystal structures of the Cd(2+), Zn(2+), and Cu(2+) substituted enzymes show four residues (Cys-11, His-185, Glu-222, and Asp-233) and a water molecule as possible metal ligands. Combined quantum mechanics/molecular mechanics (QM/MM) geometry optimizations reveal that the metal centers have a delocalized electronic structure, and that their true geometry is square pyramidal for Cd(2+) and Zn(2+) and distorted octahedral or distorted tetrahedral for Cu(2+). These geometries are different from those obtained by QM optimization in the gas phase (tetrahedral for Cd(2+) and Zn(2+), distorted tetrahedral for Cu(2+)) and may represent conformations of the metal center that minimize the reorganization energy between the substrate-bound and product-bound states. The QM/MM calculations also show that when only PEP is bound to the enzyme the electronic structure of the metal center is optimized to prevent a wasteful reaction of PEP with water.

  17. Mid-infrared beam splitter for ultrashort pulses.

    PubMed

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  18. Distribution analysis for F100(3) engine

    NASA Technical Reports Server (NTRS)

    Walter, W. A.; Shaw, M.

    1980-01-01

    The F100(3) compression system response to inlet circumferential distortion was investigated using an analytical compressor flow model. Compression system response to several types of distortion, including pressure, temperature, and combined pressure/temperature distortions, was investigated. The predicted response trends were used in planning future F100(3) distortion tests. Results show that compression system response to combined temperature and pressure distortions depends upon the relative orientation, as well as the individual amplitudes and circumferential extents of the distortions. Also the usefulness of the analytical predictions in planning engine distortion tests is indicated.

  19. Raman study of transition-metal oxides with perovskite-like structure

    NASA Astrophysics Data System (ADS)

    Kolev, Nikolay Iliev

    Perovskite-like oxides exhibit a rich variety of properties of fundamental scientific interest and potential application value. The motivation for this work is to contribute to our knowledge of perovskite-like systems and strongly correlated systems in general. The polarized Raman spectra of single crystal and thin film CaCu3Ti4O12, single crystal and thin film CaRuO3, microcrystals of La0.5Ca 0.5MnO3, and ceramic and thin film CaMnO3 have been investigated. In close comparison to results from lattice dynamics calculations most of the Raman lines in the CaCu3Ti4O12, CaRuO3, La0.5Ca0.5MnO3 and CaMnO 3 spectra, have been assigned to definite phonon modes. The validity of the model for twin orientation in the Pnma structure for CaRuO3 and La0.5Ca0.5MnO3 is confirmed. The analysis of the CaMnO3 spectra contributed to the development of a model, based on four basic distortions of the (distorted) perovskite structure. The temperature behavior of the CaCu3Ti4O 12 spectra shows that there is no evidence for structural phase transition in the temperature range 20--600 K, so such a transition cannot be responsible for the sharp drop in the dielectric constant below 100 K. The Raman spectra indirectly support the mechanism of formation of barrier layer capacitances in CaCu3Ti4O12.The observation of additional Raman mode of nominal Ag symmetry is discussed in terms of coexistence of domains of different atomic arrangement, or alternatively of non-stoichiometry (Cu deficiency). In the case of the thin film, the tetragonal distortions could be responsible for the greater separation of the additional Ag line. No anomalies in the temperature behavior of the Raman lines of CaRuO3 is observed, which is an indirect evidence for its lack of long-range magnetic ordering at low temperatures (depending on whether this ordering would be observable by Raman spectroscopy through spin-phonon coupling). In La0.5Ca0.5MnO 3 the appearance of several Raman lines below TN is analyzed in terms of ordering and freezing of the Jahn-Teller distortions in a superstructure. Polarized Raman spectra confirmed their usefulness in studying thin films and their properties.

  20. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

Top