Science.gov

Sample records for distributary deep-water deposits

  1. Distribution of palaeosols and deposits in the temporal evolution of a semiarid fluvial distributary system (Bauru Group, Upper Cretaceous, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Basilici, Giorgio; Bo, Patrick Führ Dal'; de Oliveira, Emerson Ferreira

    2016-07-01

    The stratigraphic and sedimentological knowledge of the Bauru Group (Upper Cretaceous, SE Brazil) is still generally insufficient and controversial. A sedimentological and palaeopedological study allowed to interpret the south-eastern portion of the Bauru Group according to the model of a fluvial distributary system. This work has two objectives: (1) to include palaeosols in the interpretation of a fluvial distributary system and (2) to give detailed information on the sedimentological and stratigraphic features of the SE portion of the Bauru Group in order to support biostratigraphical, taphonomic and palaeoecological studies. In the south-eastern portion of the Bauru Group, three genetic stratigraphic units were described and interpreted, here informally called lower, intermediate and upper units. The lower unit is constituted of muddy sandstone salt flat deposits and sandstone sheet deltas deposits and is interpreted as a basinal part of a fluvial distributary system. The intermediate unit is formed of very fine to fine-grained sandstone-filled ribbon channel and sandy sheet-shaped beds, suggesting a distal or medial portion of a fluvial distributary system. The upper unit does not match with the present models of the fluvial distributary system because mostly constituted of moderately developed, well-drained, medium- to fine-grained sandstone palaeosols, which testify pauses of sedimentation to the order of 104 years. Preserved features of sedimentary structures suggest that the parent material was formed by occasional catastrophic unconfined flows. This unit may represent the most distal portion of a fluvial distributary system generated by retrogradation of the alluvial system due to aridification of the climate. The upper unit may be interpreted also as proximal portion of fluvial distributary system if considering the coarser-grained and the well-drained palaeosols. However, the absence of channel deposits makes this interpretation unconvincing.

  2. Depositional conditions in the Dead Sea and reinterpretations of ancient deep-water evaporites

    SciTech Connect

    Kendall, A.C. )

    1991-03-01

    Published work on post-1979 changes affecting the Dead Sea brine body imply that alternative explanations for some ancient deep-water evaporites are possible. Seasonally variable thermohaline stratification in the Dead Sea brine body allows gypsum-supersaturated brines to be transported to the basin floor, permitting growth of gypsum crusts, as long as the basin floor lies above the thermocline (20-25 m). Below this, only laminated gypsum and carbonates are likely to form in appreciable amounts. Complete brine overturns are ephemeral events, unlikely to cause significant growth of bottom-grown gypsum. The occurrence of numerous basin-wide layers of former gypsum crusts (now nodular anhydrite layers) in such deep-water evaporites as the Castile, Elk Point, and Zechstein suggests that these evaporite layers were deposited in brine depths less than that of the local thermocline, i.e. at depths of only a few tens of meters. Abrupt brine-deepening events caused laminated sediments to be deposited above former gypsum crusts. The continuation of calcium sulfate precipitation in these laminated sediments from the Castile and Zechstein evaporites indicates brine deepening was not accompanied by brine dilutions sufficient to cause gypsum undersaturation. This imposes limits upon the amount of brine deepening and implies that even the deepest of the laminated sulfate sediments were deposited from brines only tens of meters deep. Where crusts are overlain by laminated carbonates (Elk Point and some Zechstein evaporites), greater amounts of brine deepening and dilution are suggested.

  3. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Christeleit, Elizabeth C.; Brandon, Mark T.; Zhuang, Guangsheng

    2015-10-01

    Scientific drilling of the abyssal evaporites beneath the deepest parts of the Mediterranean basin gave rise to the idea that the Mediterranean sea completely evaporated at the end of the Messinian. Herein, we show, using new organic geochemical data, that those evaporites were deposited beneath a deep-water saline basin, not in a subaerial saltpan, as originally proposed. Abundant fossil organic lipids were extracted from evaporites in Mediterranean Deep Sea Drilling Project cores. The archaeal lipid distribution and new analyses, using the ACE salinity proxy and TEX86 temperature proxy, indicate that surface waters at the time of evaporite deposition had normal marine salinity, ranging from ∼26 to 34 practical salinity units, and temperatures of 25-28 °C. These conditions require a deep-water setting, with a mixed layer with normal marine salinity and an underlying brine layer at gypsum and halite saturation. After correction for isostatic rebound, our results indicate maximum drawdown of ∼2000 m and ∼2900 m relative to modern sea level in the western and eastern Mediterranean basins, respectively. Our results are consistent with previously proposed scenarios for sea level drawdown based on both subaerial and submarine incision and backfilling of the Rhone and Nile rivers, which require Messinian sea level drops of ∼1300 m and ∼200 m, respectively. This study provides new evidence for an old debate and also demonstrates the importance of further scientific drilling and sampling of deeper part of the abyssal Messinian units.

  4. Highstand fans in the California borderland: the overlooked deep-water depositional systems

    USGS Publications Warehouse

    Covault, Jacob A.; Normark, William R.; Romans, Brian W.; Graham, Stephan A.

    2007-01-01

    Contrary to widely used sequence-stratigraphic models, lowstand fans are only part of the turbidite depositional record; our analysis reveals that a comparable volume of coarse-grained sediment has been deposited in California borderland deep-water basins regardless of sea level. Sedimentation rates and periods of active sediment transport have been determined for deep-water canyon-channel systems contributing to the southeastern Gulf of Santa Catalina and San Diego Trough since 40 ka using an extensive grid of high-resolution and deep-penetration seismic-reflection data. A regional seismic-reflection horizon (40 ka) has been correlated across the study area using radiocarbon age dates from the Mohole borehole and U.S. Geological Survey piston cores. This study focused on the submarine fans fed by the Oceanside, Carlsbad, and La Jolla Canyons, all of which head within the length of the Ocean-side littoral cell. The Oceanside Canyon–channel system was active from 45 to 13 ka, and the Carlsbad system was active from 50 (or earlier) to 10 ka. The La Jolla system was active over two periods, from 50 (or earlier) to 40 ka, and from 13 ka to the present. One or more of these canyon-channel systems have been active regardless of sea level. During sea-level fluctuation, shelf width between the canyon head and the littoral zone is the primary control on canyon-channel system activity. Highstand fan deposition occurs when a majority of the sediment within the Oceanside littoral cell is intercepted by one of the canyon heads, currently La Jolla Canyon. Since 40 ka, the sedimentation rate on the La Jolla highstand fan has been >2 times the combined rates on the Oceanside and Carlsbad lowstand fans.

  5. Evidence for deep-water evaporite deposition in the Miocene Kareem Formation, Gemsa basin, eastern Egypt

    SciTech Connect

    May, J.A.; Stonecipher, S.A.; Steinmetz, J.C. ); Dyess, J.N. )

    1991-03-01

    The correct interpretation of intercalated Miocene siliciclastics and evaporites of Gemsa basin is crucial for understanding early rift tectonics of the Gulf of Suez, pinpointing the timing of isolation of the Gulf from the Mediterranean, and developing exploration plays. Evaporites of the Kareem Formation comprise celestites and massive, 'chicken-wire,' and laminated anhydrites. Although previously interpreted as sabkha deposits; sedimentologic, petrographic, and paleontologic analyses indicate these evaporites more likely formed in a submarine setting. Marls that encase the evaporites contain a diverse and abundant assemblage of nannoplankton, planktonic foraminifera, diatoms, pteropods, and fish scales indicative of basinal deposition. Associated turbidites also denote deep-water sedimentation. The paucity of benthic diatoms and foraminifera, plus the presence of unburrowed shales, phosphate nodules, early ferroan carbonate cements, and authigenic pyrite, suggest periodic anoxic, or at least disaerobic, bottom waters. These sequences probably represent partial isolation of the Gulf of Suez by middle Miocene, producing periodic basin restriction and evaporative drawdown. Episodes of increasing salinity likely caused the progressive decreases in foram abundance and diversity in marls beneath the anhydrites, culminating in subaqueous evaporite formation. Diverse, indigenous nannoplankton assemblages from shale seams within the anhydrites suggest Gemsa basin was stratified; shallow open-marine conditions coexisted with anhydrite crystallization from deeper hypersaline waters.

  6. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems

    NASA Astrophysics Data System (ADS)

    Borka, Szabolcs

    2016-01-01

    The aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin. Of course it was necessary to interpret the stratigraphy of the sequences in terms of "general" sedimentology, focusing on the structural elements. For this purpose, well-logs and standard deep-water models were applied. The cyclicity of sedimentary sequences can be easily revealed by using Markov chains. Though Markov chain analysis has broad application in mainly fluvial depositional environments, its utilization is uncommon in deep-water systems. In this context genetic lithofacies was determined and analysed by embedded Markov chains. The randomness in the presence of a lithofacies within a cycle was estimated by entropy tests (entropy after depositional, before depositional, for the whole system). Subsequently the relationships between lithofacies were revealed and a depositional model (i.e. modal cycle) was produced with 90% confidence level of stationarity. The non-randomness of the latter was tested by chi-square test. The consequences coming from the comparison of "general" sequences (composed of architectural elements), the genetic-based sequences (showing the distributions of the genetic lithofacies) and the lithofacies relationships were discussed in details. This way main depositional channel has the best, channelized lobes have good potential hydrocarbon reservoir attributes, with symmetric alternation of persistent fine-grained sandstone (Facies D) and muddy fine-grained sandstone with traction structures (Facies F)

  7. North Atlantic Ocean deep-water processes and depositional environments: A study of the Cenozoic Norway Basin

    NASA Astrophysics Data System (ADS)

    Oline Hjelstuen, Berit; Andreassen, Elin V.

    2015-04-01

    Despite the enormous areas deep-water basins occupy in modern oceans, our knowledge about them remains poor. At depths of greater than 2000 m, the Cenozoic Norway Basin in the northernmost part of the Atlantic Ocean, is one such basin. Interpretation of 2D multichannel seismic data suggests a three-stage evolution for the Norway Basin. (1) Eocene-Pliocene. This time period is characterised by deposition of ooze-rich sediments in a widening and deepening basin. (2) Early-Middle Pleistocene. A significant shift in sedimentary processes and depositional environments took place in the Early Pleistocene. Mass failures initiated on the Norwegian continental slope, and three Early and Middle Pleistocene slide debrites, with maximum thicknesses of 600 m and sediment volumes of up to 25000 km3, were deposited. With ages estimated at c. 2.7-1.7 Ma, 1.7-1.1 Ma and 0.5 Ma, these slide deposits are among the largest identified worldwide, and among the oldest mapped along the entire NE Atlantic continental margin. (3) Late Pleistocene-Present. Since c. 0.5 Ma the Norway Basin has been effected by glacigenic debris flows, the Storegga Slide and hemipelagic-glacimarine sedimentation. These sedimentary processes were active during a time of repeated shelf-edge ice advances along the NE Atlantic continental margin. This study shows that deep-water basins represent dynamic depositional environments reflecting regional tectonic and climatic changes trough time.

  8. Dynamic depositional and early diagenetic processes in a deep-water shelf setting, upper cretaceous Austin Chalk, North Texas

    SciTech Connect

    Hovorka, S.D.; Nance, H.S.

    1994-12-31

    The Austin Chalk of north Texas was deposited on a deep-water shelf north of the Sea Marcos Platform during a worldwide Coniacian and Santonian sea-level highstand. Transgressive (lowermost lower Austin Chalk), highstand (uppermost lower Austin Chalk), and regressive (middle and upper Austin Chalk) phases of cyclic chalk and marl sedimentation are recognized in excavations and tunnels created in Ellis County for the Superconducting Super Collider provide new evidence of sediment transport during Austin Chalk deposition. During transgression, bottom currents syndepositionally reworked nannoplankton oozes, incising channels as much as 120 ft across and 8 ft deep. Weakly burrowed channel fills having preservation of fine lamination document rapid infilling. Channel fills are composed of pyritized and carbonized wood and Inoceramus lag deposits, pellets, echinoderm fragments, and globigerinid grainstones, and coccolith ooze. During maximum highstand, bottom reworking was suppressed. Detrital content of highstand marls is low (>20 percent); organic content is high (1.4 to 3.5 percent). Coccolith preservation is excellent because of minimal diagenetic alteration. Regression is marked by resumed channel cutting and storm-bed winnowing in the middle and upper Austin Chalk. Suppressed resistivity log response and recessive weathering characteristics of the middle Austin Chalk are not primarily related to depositional environment but rather to increased input of volcanic ash during the accumulation of this interval. Early stabilization of ash produced clay-coated microfabrics in sediments that are otherwise similar to the transgressive deposits.

  9. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    NASA Astrophysics Data System (ADS)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  10. Origin and architecture of deep-water levee deposits: Insight from the ancient rock record and experiments

    NASA Astrophysics Data System (ADS)

    Khan, Zishann

    Although levee deposits make up a significant part of modern and ancient deep-marine slope systems, details of their internal lithological composition and stratal architecture remain poorly documented. At the Castle Creek study area, strata of the Neoproterozoic Isaac Formation (Windermere Supergroup) crop out superbly in a kilometre-scale section through a sinuous deep-water channel-levee system (ICC3). Levee deposits near the outer bend of the channel consist of sandstone-rich (sandstone-to-mudstone ratio of 68:42), medium- to thick-bedded turbidites interstratified with thinly-bedded turbidites. Structureless sandstone (T a), planar laminated sandstone (Tb), non-climbing ripple cross-stratified sandstone (Tc) and massive and laminated siltstone (Td) are common. Thick beds generally thicken and then thin and fine laterally over about 300 m. Thin-bedded strata, in contrast, thin and fine negligibly over similar distances. In the distal part of the outer-bend levee (up to 700 m laterally away from the channel) strata consist predominantly of thin-bedded Tcd turbidites with a much lower sandstone-to-mudstone ratio (35:65). On the opposite side of the channel, inner-bend levee deposits are mudstone-rich, locally as low as 15:85, and consist mostly of thin-bedded, Tcd turbidites, although thicker-bedded, Ta-d turbidites are more common in the lower part of the section. Lateral thinning and fining of beds is more rapid than their outer-bend counterpart. Levee deposits of ICC3 comprise three stacked decametre-scale upward-thinning and -fining successions. Each is interpreted to record a depositional history consisting of lateral channel migration, levee deposition, channel filling, and distal levee deposition. During the early stage of increasing levee relief it is proposed that the termini of individual beds progressively backstep towards the channel margin resulting in an overall lateral thinning of the stratal profile. This interpretation notably contrasts the common

  11. Deep-water environments for the putative Early Archean life: Chert units depositional facies, Warrawoona Group, Western Australia

    NASA Astrophysics Data System (ADS)

    Dromart, G.; Coltice, N.; Flament, N.; Olivier, N.; Rey, P.

    2008-12-01

    The principal objective of this work is to find and interpret evidence for the depositional conditions of the greenstone-belt facies that possibly hosted primitive life forms. That information is critical to any attempt to assess the habitability of Early Earth's environments, as well as their potential for fossil preservation. Chert members of the Duffer Fm and the Apex chert, which bears fossil-like filaments (3.465 Ga), are exposed in the vicinity of Marble Bar. The Marble Bar Chert is made up of dm-scale sequences of interbedded red, white and black finely crystalline silica. Sticky beds consist of flow-oriented clasts (i.e., large, angular, elongated, light-colored clasts showing load-structures, and regularly-inclined and vertically- oriented imbrications) interpreted here as gravity flows of early-lithified sediments. The Chinaman Pool Chert Mb is incised by a deep scour upon which sandstone beds with chert interlayers onlap. This unit includes coarse mafic sands, and conglomerates with chert lithoclasts and felsic pebbles. Locally, m-scale growth faults localize sand-filled channels. The depositional architectures and facies of this upper unit are indicative of a deep-water fan depositional system. This interpretation conflicts with the current view that chert units derived from hydrothermalism overprint of original shallow deposits, and that hydrothermalism hampered microfossil preservation. Alternatively, we suggest that deep-water environments and early lithification of siliceous sediments may have favored life preservation. Earth's oldest stromatolites (3.49-3.47 Ga) of the Dresser Fm are exposed in the North Pole Dome area. Autochtonous stromatolites consist of banded microstructures with iron-rich, wavy and wrinkle laminae, and form regular domes. The stromatolite layers cap a sandstone bed at the top of which asymmetric ripples show steeply-inclined sets of laminae that typically represent overturned ripples at uppermost turbiditic flow deposits. The

  12. Shallow to deep-water deposition in a Cratonic basin: an example from the Proterozoic Penganga Group, Pranhita Godavari Valley, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Joydip; Chaudhuri, Asru K.

    2003-03-01

    The unmetamorphosed Proterozoic succession dominated by deep-water lithographic limestone and shale in the western flank of the Pranhita-Godavari Valley is designated as the Penganga Group. The succession in different parts of the Valley includes the Pranhita Sandstone (25-400 m), the Chanda Limestone (300 m), and the Sat Nala Shale (>2000 m) in ascending order. The Pranhita Sandstone and the Chanda Limestone reveal considerable variations in the character of the stratal packages and depositional settings from Mancherial in the south to Adilabad in the north. The Sat Nala Shale in both southern and northern outcrop belts is completely devoid of sand. It is brown to purple in colour and resembles present-day deep-water mud deposits. In the Mancherial area, the Pranhita Sandstone consists of 25-400 m thick conglomerate, pebbly red arkose and quartzose sandstone succession of coastal alluvial fan to shallow shelf origin. The Chanda Limestone is micritic and locally includes interbedded lenses of cross-stratified quartzose sandstone in the lower part. The depositional milieu varies from shallow shelf to below wave base outer ramp carbonate platform. Around Adilabad, the Pranhita Sandstone (25 m) lacks the conglomerate-pebbly arkose association at the base and comprises only quartzose sandstone and shale of shoreface to muddy shelf settings. The Chanda Limestone is essentially micritic but, in contrast to the Mancherial area, includes several interbedded intervals of slope-related, autoclastic debris flow limestone conglomerates and calciturbidites, and represents deep, outer ramp to slope and basinal settings. A predominantly deep-water micritic limestone and deep-water shale succession suggests that the Penganga basin evolved to a vast, deep epicratonic sea connected to an open ocean. The absence of a coastal alluvial fan association at the lower part of the Pranhita Sandstone and presence of a slope to basinal association in the Chanda Limestone in the northern

  13. The Influence of Topography on Subaqueous Sediment Gravity Flows and the Resultant Deposits: Examples from Deep-water Systems in Offshore Morocco and Offshore Trinidad

    NASA Astrophysics Data System (ADS)

    Deng, H.; Wood, L.; Overeem, I.; Hutton, E.

    2016-12-01

    Submarine topography has a fundamental control on the movement of sediment gravity flows as well as the distribution, morphology, and internal heterogeneity of resultant overlying, healing-phase, deep-water reservoirs. Some of the most complex deep-water topography is generated through both destructive and constructive mass transport processes. A series of numerical models using Sedflux software have been constructed over high resolution mass transport complexes (MTCs) top paleobathymetric surfaces mapped from 3D seismic data in offshore Morocco and offshore eastern Trinidad. Morocco's margin is characterized by large, extant rafted blocks and a flow perpendicular fabric. Trinidad's margin is characterized by muddier, plastic flows and isolated extrusive diapiric buttresses. In addition, Morocco's margin is a dry, northern latitude margin that lacks major river inputs, while Trinidad's margin is an equatorial, wet climate that is fed by the Orinoco River and delta. These models quantitatively delineate the interaction of healing-phase gravity flows on the tops of two very different topographies and provide insights into healing-phase reservoir distribution and stratigraphic trap development. Slopes roughness, curvatures, and surface shapes are measured and quantified relative to input points to quantify depositional surface character. A variety of sediment gravity flow types have been input and the resultant interval assessed for thickness and distribution relative to key topography parameters. Mathematical relationships are to be analyzed and compared with seismic data interpretation of healing-phase interval character, toward an improved model of gravity sedimentation and topography interactions.

  14. Using synthetic forward seismic models of channelized deep-water slope deposits to inform stratigraphic interpretation, Tres Pasos Formation, Magallanes Basin, Chile

    NASA Astrophysics Data System (ADS)

    Nielson, A.; Stright, L.; Hubbard, S. M.; Romans, B.

    2016-12-01

    Subsurface interpretation of deep-water channels from seismic-reflection profiles is inherently challenging due to the sub-seismic scale of key stratigraphic surfaces and facies transitions. Synthetic seismic modeling can provide valuable insight into multi-scale (bed to composite channel complexes) stratigraphic architecture and is ideal for understanding uncertainties inherent to seismic interpretation through seismic attributes and assessing the interpretation error from seismic reflectivity profiles at different frequencies. Cretaceous slope channel-fill deposits in the Magallanes Basin of southern Chile were used as the basis for a bed-scale model (0.25 m vertical resolution) of a single 14 m thick by 300 m wide channel element. This channel element was used to generate synthetic seismic models using rock properties from analogous deep-water Gulf of Mexico deposits. The results were analyzed to quantify the error in predicting channel thickness at different frequencies and how the error scales with true channel thickness, internal channel architecture, and wavelet frequency. Two channel elements were then stacked to elucidate the stacking patterns and seperability of multiple channel elements and finally expanded to a composite channel complex ( 100 m thick). Single channel elements are tuned at 60 Hz and below, upon which a predictive error model was generated relating true channel thickness to interpreted thickness as a function of frequency. Furthermore, RMS amplitude analysis of a single symmetrical channel element shows a linear relationship between decreasing frequency and increasing RMS amplitude as well as a positive correlation between increasing channel thickness and increasing amplitude. Tuning effects are dampened by the natural heterogeneity of the channels towards the margins. These seismic attributes aid in the recognition of channel stacking patterns and enhance channel seperability within a composite channel complex.

  15. Facies variability of transgressive and regressive systems of gravity deposits in deep-water carbonates (Mesozoic, French Alps)

    SciTech Connect

    Ferry, S.; Dromart, G. )

    1991-03-01

    From the several tens of depositional sequences that can be platform-to-basin traced in the Mesozoic of the Vocontian Trough and nearby platforms, the following rules may be set: (1) there are two basic systems of gravity deposits - a regressive one and a transgressive one - but unequally developed depending on sequences; (2) thick bundles of bioclastic turbidites, tied to parasequence channels and representing 'shingled turbidites,' are emplaced mainly at the basis of lowstand systems tracts, but may last the whole low stand; the complex organization of siliciclastic fans is not found; (3) debris-flow deposits, as a result of catastrophic margin collapses, are almost always within transgressive systems tracts; (4) slumps deposits are scattered throughout when frequent; when scarce, they are mainly within transgressive systems tracts, and replace debris flow deposits; (5) Upper Jurassic to Berriasian 'resedimentation breccias,' a peculiar type of gravity deposits, are emplaced at both rises and falls in relative sea level, and cannot be used as reliable markers of sequence boundaries; and (6) both transgressive and regressive gravity systems are more developed during second order lowstands in sea level marked by strong carbonate platform progradation. As a whole, third order transgressive gravity systems are often more developed than regressive ones. Comparisons with siliciclastic depositional systems suggest that sandstone turbidites could be transgressive systems, as a result of stronger parasequential ( glacio-eustatic) high-frequency oscillations during third order rises in relative sea level.

  16. Cambrian–Ordovician of the central Appalachians:Correlations and event stratigraphy of carbonate platform andadjacent deep-water deposits

    USGS Publications Warehouse

    Brezinski, David K.; Taylor, John F.; Repetski, John E.; Loch, James D.

    2015-01-01

    deposited within the Pennsylvania and Maryland portion of the Great American Carbonate Bank. From the Early Cambrian (Dyeran) through Late Ordovician (Turinan), the Laurentian paleocontinent was rimmed by an extensive carbonate platform. During this protracted period of time, a succession of carbonate rock, more than two miles thick, was deposited in Maryland and Pennsylvania. These strata are now exposed in the Nittany arch of central Pennsylvania; the Great Valley of Pennsylvania, Maryland, and Virginia; and the Conestoga and Frederick Valleys of eastern Pennsylvania and Maryland. This fi eld trip will visit key outcrops that illustrate the varied depositional styles and environmental settings that prevailed at different times within the Pennsylvania reentrant portion of the Great American Carbonate Bank. In particular, we will contrast the timing and pattern of sedimentation in off-shelf (Frederick Valley), outer-shelf (Great Valley), and inner-shelf (Nittany arch) deposits. The deposition was controlled primarily by eustasy through the Cambrian and Early Ordovician (within the Sauk megasequence), but was strongly infl uenced later by the onset of Taconic orogenesis during deposition of the Tippecanoe megasequence.

  17. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill.

    PubMed

    Romero, Isabel C; Toro-Farmer, Gerardo; Diercks, Arne-R; Schwing, Patrick; Muller-Karger, Frank; Murawski, Steven; Hollander, David J

    2017-09-01

    The blowout of the Deepwater Horizon (DWH) drilling rig in 2010 released an unprecedented amount of oil at depth (1,500 m) into the Gulf of Mexico (GoM). Sedimentary geochemical data from an extensive area (∼194,000 km(2)) was used to characterize the amount, chemical signature, distribution, and extent of the DWH oil deposited on the seafloor in 2010-2011 from coastal to deep-sea areas in the GoM. The analysis of numerous hydrocarbon compounds (N = 158) and sediment cores (N = 2,613) suggests that, 1.9 ± 0.9 × 10(4) metric tons of hydrocarbons (>C9 saturated and aromatic fractions) were deposited in 56% of the studied area, containing 21± 10% (up to 47%) of the total amount of oil discharged and not recovered from the DWH spill. Examination of the spatial trends and chemical diagnostic ratios indicate large deposition of weathered DWH oil in coastal and deep-sea areas and negligible deposition on the continental shelf (behaving as a transition zone in the northern GoM). The large-scale analysis of deposited hydrocarbons following the DWH spill helps understanding the possible long-term fate of the released oil in 2010, including sedimentary transformation processes, redistribution of deposited hydrocarbons, and persistence in the environment as recycled petrocarbon. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Impact of structural and autocyclic basin-floor topography on the depositional evolution of the deep-water Valparaiso forearc basin, central Chile

    USGS Publications Warehouse

    Laursen, J.; Normark, W.R.

    2003-01-01

    The Valparaiso Basin constitutes a unique and prominent deep-water forearc basin underlying a 40-km by 60-km mid-slope terrace at 2.5-km water depth on the central Chile margin. Seismic-reflection data, collected as part of the CONDOR investigation, image a 3-3.5-km thick sediment succession that fills a smoothly sagged, margin-parallel, elongated trough at the base of the upper slope. In response to underthrusting of the Juan Ferna??ndez Ridge on the Nazca plate, the basin fill is increasingly deformed in the seaward direction above seaward-vergent outer forearc compressional highs. Syn-depositional growth of a large, margin-parallel monoclinal high in conjunction with sagging of the inner trough of the basin created stratal geometries similar to those observed in forearc basins bordered by large accretionary prisms. Margin-parallel compressional ridges diverted turbidity currents along the basin axis and exerted a direct control on sediment depositional processes. As structural depressions became buried, transverse input from point sources on the adjacent upper slope formed complex fan systems with sediment waves characterising the overbank environment, common on many Pleistocene turbidite systems. Mass failure as a result of local topographic inversion formed a prominent mass-flow deposit, and ultimately resulted in canyon formation and hence a new focused point source feeding the basin. The Valparaiso Basin is presently filled to the spill point of the outer forearc highs, causing headward erosion of incipient canyons into the basin fill and allowing bypass of sediment to the Chile Trench. Age estimates that are constrained by subduction-related syn-depositional deformation of the upper 700-800m of the basin fill suggest that glacio-eustatic sea-level lowstands, in conjunction with accelerated denudation rates, within the past 350 ka may have contributed to the increase in simultaneously active point sources along the upper slope as well as an increased

  19. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    . Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.

  20. Composition and Significance of Pteropod Ooze Deposits from Deep-Water Lophelia Reefs, Blake Plateau, NE Florida.

    NASA Astrophysics Data System (ADS)

    Zuccarelli, C. L.; Oleinik, A. E.

    2016-02-01

    Shelled microinvertebrates preserved in biogenic oozes contribute significantly to the overall structure and function of Deep-Sea Coral Ecosystems (DSCE). However, their composition and distribution, which is directly related to their deposition, remains poorly documented. The Blake Plateau contains a region known as the east Florida Lophelia reef (EFLR), which incorporates a 222 km belt with numerous high relief deep-sea coral mounds. Branching ahermatypic corals baffle pelagic sediment and develop into large bioherms that provide habitat for a countless number of deep-sea organisms. Calcareous ooze was collected in situ from gullies between Lophelia coral reef mounds on the EFLR region at a depth of 792.48 m via the Johnson Sea Link submersible in 2004. Qualitative review of these samples reveals a composition of well-preserved microfossils primarily of holoplanktonic marine mollusks - Euthecosomatous Pteropods. Statistical analysis of ooze samples resulted in the identification of 9 genera and 15 different thecosome pteropod species, with an overall sediment composition consisting of 85.6% pteropods, 8% forams, 3.1% gastropods, 2.3% bryozoan/coral fragments, and less than 1% of other microfossils (heteropods, echinoids, scaphopods, etc.). This unique assemblage of well-preserved microfossils is classified as pteropod ooze (>25% pteropods) with Styliola subula being the most abundant pteropod species comprising 46% of the sediment. Taxonomic analysis of the pteropod ooze deposits in the EFLR region will help characterize the sources and dynamics of sediment supply to the substrate and infrastructure of these critically important DSCE's.

  1. Depositional environments of late glacial to Holocene sediments on the deep water levees of Setúbal and Nazaré Canyons, offshore Portugal: preliminary results

    NASA Astrophysics Data System (ADS)

    Pascoletti, F. C.; Masson, D.; Innocenti, C.

    2010-12-01

    The west Iberian margin is indented by a network of submarine canyons that create rugged seafloor morphology and act as major pathways for the transport of sediment from land to the abyssal plains. The Setúbal and Nazaré Canyons are part of this complex environment and strongly influence sediment distribution, capturing sediments from the Tagus River and the littoral cell transport respectively. Deep submarine sedimentary sequences thus reflect changes in sediment input and depositional environments. The high-resolution sedimentological study here presented was applied in four cores of the deep water levees of Nazaré and Setúbal Canyons in order to explore how sediment input to the canyons changed during the last glacial - interglacial transition, and how this reflects changing environmental conditions on land. By means of non-destructive corelogger measurements and analyses of spectral signatures, geochemical compositions and colour variations, it was possible to identify ice-rafted debris (IRD) deposits, to characterize hemipelagic and turbidite layers and to investigate terrestrial-derived sediments input variation during the last 26 ka. Preliminary results from the sedimentological and turbidite frequency analyses show that highest turbidite occurrence is recorded during the glacial stage, confirming that the generation of turbidity flows in submarine canyons is tightly related to low sea-level stands. We found that major peaks in frequency and thickness of turbidite deposits in the deep Portuguese margin are mainly coeval with abrupt climatic (H2 and 1) and sea-level changes (~ 19 and ~ 23 ka BP), as a consequence of which a major amount of continentally-derived material was transported into the deep sea. During the Holocene, the inception of sea-level rises, independent of their magnitude, has been found to be sufficient to generate turbidity currents, particularly in the Nazaré system. Moreover, a multiple regression analysis was attempted in order to

  2. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-12-22

    Final Report 3. DATES COVERED (From - To) 7/1/15 to 12/22/16 4. TITLE AND SUBTITLE Deep Water Ocean Acoustics 5a. CONTRACT NUMBER...NUMBER Ocean Acoustical Services and Instrumentation Systems, Inc. 5 Militia Drive, Ste. 104 Lexington, MA 02421-4706...FR-14C0172- Ocean Acoustics- 123116 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Office of Naval

  3. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-10-07

    OASIS, INC. 1 Report No. QSR-14C0172- Ocean Acoustics-093016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...Award No.: N00014-14-C-0172 Report No. QSR-14C0172- Ocean Acoustics-093016 Prepared for: Office of Naval Research For the period: July 1, 2016...to September 30, 2016 Submitted by: Principal Investigator/Author: Kevin Heaney Ocean Acoustical Services and Instrumentation Systems, Inc. 5

  4. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-08-03

    OASIS, INC. 1 Report No. QSR-14C0172- Ocean Acoustics-063016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...Award No.: N00014-14-C-0172 Report No. QSR-14C0172- Ocean Acoustics-063016 Prepared for: Office of Naval Research For the period: April 1...2016 to June 30, 2016 Submitted by: Principal Investigator/Author: Kevin Heaney Ocean Acoustical Services and Instrumentation Systems, Inc. 5

  5. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172- Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...Award No.: N00014-14-C-0172 Report No. QSR-14C0172- Ocean Acoustics-093015 Prepared for: Office of Naval Research For the period: January 1...2016 to March 31, 2015 Submitted by: Principal Investigator/Author: Kevin Heaney Ocean Acoustical Services and Instrumentation Systems, Inc. 5

  6. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2015-07-17

    under-ice scattering , bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1...QSR-14C0172-Ocean Acoustics -063015 Figure 10. Estimated reflection coefficient as a function of frequency by taking the difference of downgoing and...OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics -063015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics

  7. Distributary channels in the fluvial to tidal transition zone

    NASA Astrophysics Data System (ADS)

    Kästner, K.; Hoitink, A. J. F.; Vermeulen, B.; Geertsema, T. J.; Ningsih, N. S.

    2017-03-01

    Coastal lowland plains under mixed fluvial-tidal influence may form complex, composite channel networks, where distributaries blend the characteristics of mouth bar channels, avulsion channels, and tidal creeks. The Kapuas coastal plain exemplifies such a coastal plain, where several narrow distributaries branch off the Kapuas River at highly asymmetric bifurcations. A comprehensive geomorphological analysis shows that trends in the channel geometry of all Kapuas distributaries are similar. They consist of a short, converging reach near the sea and a nonconverging reach upstream. The two parts are separated by a clear break in scaling of geometrical properties. Such a break in scaling was previously established in the Mahakam Delta, which suggests that this may be a general characteristic in the fluvial to tidal transition zone. In contrast to the geometrical trend similarities, a clear difference in bed material between the main and side distributaries is found. In the main distributary, a continuous trend of downstream fining is established, similar to what is often found in lowland rivers. In the side distributaries, bed material coarsens in the downstream direction. This indicates an undersupply of sediment to the side distributaries, which may contribute to their long-term stability as established from historical maps. Tides may be the main agent preventing fine sediment to settle, promoting residual transport of fine material to the coastal ocean.

  8. Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Killworth, P. D.

    1984-01-01

    Some simple arguments on plumes of dense water and filling boxes were given. What determines the time for a large-scale environment to be modified by the injection of dense water at its edge is the mass flux, not the buoyancy flux. However, it is the denser buoyancy flux, when there are several competing plumes (e.g., the Mediterranean outflow versus the Denmark Strait outflow) that determines which plume will provide the bottom water for that ocean basin. It was noted that the obvious laboratory experiment (rotate a pie-shaped annulus, and heat/cool it on the surface) had never been performed. Thus, to some extent our belief that deep convection is somehow automatic at high latitudes to close off some ill-defined meridional circulation has never been tested. A summary of deep convection was given. The two fundamental formation mechanisms were shown. Of the two, it is open-ocean convection which forms the water which supplies the Denmark Strait overflow -- in all likelihood, as formation in the Greenland Sea remains stubbornly unobserved. But it is the slope convection which finally creates North Atlantic deep water, following the Denmark Strait overspill.

  9. Is there evidence for Cretaceous-Tertiary boundary-age deep-water deposits in the Caribbean and Gulf of Mexico?

    NASA Astrophysics Data System (ADS)

    Keller, G.; MacLeod, N.; Lyons, J. B.; Officer, C. B.

    1993-09-01

    Over most of the Gulf of Mexico and Caribbean a hiatus is present between the lower upper Maastrichtian and lowermost Tertiary deposits; sedimentation resumed ˜200 ka (upper zone Pla) after the K-T boundary. Current-bedded volcaniclastic sedimentary rocks at Deep Sea Drilling Project (DSDP) Sites 536 and 540, which were previously interpreted as impact-generated megawave deposits of K-T boundary age, are biostratigraphically of pre-K-T boundary age and probably represent turbidite or gravity-How deposits. The top 10 to 20 cm of this deposit at Site 536 contains very rare Micula prinsii, the uppermost Maastrichtian index taxon, as well as low values of Ir (0.6 pbb) and rare Ni-rich spinels. These indicate possible reworking of sediments of K-T boundary age at the hiatus. Absence of continuous sediment accumulation across the K-T boundary in the 16 Gulf of Mexico and Caribbean sections examined prevents their providing evidence of impact-generated megawave deposits in this region. Our study indicates that the most complete trans-K-T stratigraphic records may be found in onshore marine sections of Mexico, Cuba, and Haiti. The stratigraphic records of these areas should be investigated further for evidence of impact deposits.

  10. Integrated biostratigraphy of foraminifers, radiolarians and conodonts in shallow and deep water Middle Permian (Capitanian) deposits of the "Rader slide", Guadalupe Mountains, West Texas

    USGS Publications Warehouse

    Nestell, M.K.; Nestell, G.P.; Wardlaw, B.R.; Sweatt, M.J.

    2006-01-01

    A diverse assemblage of microfossils is present in a 6m thick sequence of three debris flow deposits interbedded with thin turbidite limestone beds and fine grained siliciclastics exposed above the megaconglomerate in a section (known as the "Rader Slide" in numerous guidebook stops) of the Rader Limestone Member of the Bell Canyon Formation of Capitanian age (Middle Permian) in the Guadalupe Mountains of West Texas. Each debris flow, derived from nearby Capitan Reef shelf-margin and slope deposits, contains a distinct microfossil assemblage. Small foraminifers and fusulinaceans, conodonts, radiolarians, sponge spicules, fish dermal plates and teeth, and other fragmental fossils are present in this sequence. Conodonts are relatively scarce in the first (or lowest) debris flow, except in its upper part, but they are common to abundant in the other two debris flows, and very abundant in several of the thin turbidite limestone beds. All of the conodonts present appear to be morphotypes of one population of the species Jinogondolella postserrata, except for one new conodont species, and the Jinogondolella postserrata Zone is clearly documented in this sequence. The debris flows contain the fusulinaceans Rauserella, rare Codonofusiella, Polydiexodina, Leella? and various species of the small foraminifers Globivalvulina, Hemigordius, Baisalina, Abadehella, Deckerella, Neoendothyranella, Vachardella, Geinitzina, and Polarisella. Some of the thin turbidite limestone beds contain a foraminiferal assemblage similar to that found in the debris flows, but with lower diversity. Many small foraminiferal species appear to be endemic, although a few are closely related to species known in Permian age strata in Italy, Greenland, the Russian Far East, northeastern part of Russia (Omolon massif), and the Zechstein of Germany and the Baltic area. Two thin limestone beds above the second debris flow contain primarily radiolarian species known from the Follicucullus japonicus Zone of

  11. Structural/stratigraphic reconstruction of frontal [open quotes]Choctaw[close quotes] triangle zone within Oklahoma Atoka Trend - early controls (Prethrusting) on deposition of deep-water clastic reservoirs

    SciTech Connect

    Cox, D.; Foshee, R. )

    1993-09-01

    A structural and stratigraphic study in southwestern Oklahoma, encompassing approximately 30 townships in Atoka, Coal, and Pittsburg counties, was done using several hundred wells, surface geologic maps, and more than 400 mi of 1980 seismic data. Isopach maps of six Atokan sands covered various areas, all within a deep-water fan setting. Structural balancing, done on numerous geologic cross sections of six mi or less, allowed correlation of logs of the various reservoirs and structural details within the frontal [open quotes]Choctaw[close quotes] triangle zone. Two regional cross sections were made based, respectively. on 12 and 16 mi or recent high-fold common-depth-point seismic lines, with a minimum of one-well-per-mile control, diameter data, and surface geology. These cross sections were reconstructed by line balancing to illustrate the amount of thrusting in the section and the pre-Pennsylvanian normal faulting that subtly controlled the Atoka sands depositional framework. The thickest and most channelized sands are found downthrown to these earlier faults, with is past relationship now obscured by post-Atokan thrusting.

  12. Surface water-groundwater connectivity in deltaic distributary channel networks

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Edmonds, Douglas A.; Knights, Deon

    2015-12-01

    Delta distributary channel networks increase river water contact with sediments and provide the final opportunity to process nutrients and other solutes before river water discharges to the ocean. In order to understand surface water-groundwater interactions at the scale of the distributary channel network, we created three numerical deltas that ranged in composition from silt to sand using Delft3D, a morphodynamic flow and sediment transport model. We then linked models of mean annual river discharge to steady groundwater flow in MODFLOW. Under mean annual discharge, exchange rates through the numerical deltas are enhanced relative to a single-threaded river. We calculate that exchange rates across a <10 km2 network are equivalent to exchange through ~10-100 km of single-threaded river channel. Exchange rates are greatest in the coarse-grained delta due to its permeability and morphology. Groundwater residence times range from hours to centuries and have fractal tails. Deltas are vanishing due to relative sea level rise. River diversion projects aimed at creating new deltaic land should also aim to restore surface water-groundwater connectivity, which is critical for biogeochemical processing in wetlands. We recommend designing diversions to capture more sand and thus maximize surface water-groundwater connectivity.

  13. Deep water recycling through time

    PubMed Central

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-01-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881

  14. Deep water recycling through time.

    PubMed

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-11-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs ), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10(5) kg/m(2)), as a function of vs (cm/yr), a (Myrs), and Tm (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10(5) kg/m(2) of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10(8) Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10(8) Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga.

  15. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-02-01

    Distributary channel bifurcations on river deltas are important features in both actively prograding river deltas and in lithified deltas within the stratigraphic record. Attributes of distributary channels have long been thought to be defined by flow velocity, grain size and channel aspect ratio where the channel enters the basin. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to grow and bifurcate independent of flow within the exposed channel network. These networks possess a characteristic bifurcation angle of 72°, based on Laplacian flow (water surface concavity equals zero) in the groundwater flow field near tributary channel tips. Based on the tributary channel model, we develop and test the hypothesis that bifurcation angles in distributary channels are likewise dictated by the external flow field, in this case the surface water surrounding the subaqueous portion of distributary channel tips in a deltaic setting. We measured 64 unique distributary bifurcations in an experimental delta, yielding a characteristic angle of 70.2°±2.2° (95% confidence interval), in line with the theoretical prediction for tributary channels. This similarity between bifurcation angles suggests that (A) flow directly outside of the distributary network is Laplacian, (B) the external flow field controls the bifurcation dynamics of distributary channels, and (C) that flow within the channel plays a secondary role in network dynamics.

  16. Potential flood hazards and hydraulic characteristics of distributary-flow areas in Maricopa County, Arizona

    USGS Publications Warehouse

    Hjalmarson, H.W.

    1994-01-01

    Flood hazards of distributary-flow areas in Maricopa County, Arizona, can be distinguished on the basis of morphological features. Five distributary-flow areas represent the range of flood-hazard degree in the study area. Descriptive factors, including the presence of desert varnish and the absence of saguaro cactus, are more useful than traditional hydraulic-based methods in defining hazards. The width, depth, and velocity exponents of the hydraulic-geometry relations at the primary diffluences of the sites are similar to theoretical exponents for streams with cohesive bank material and the average exponents of stream channels in other areas in the United States. Because of the unexplained scatter of the values of the exponent of channel width, however, the use of average hydraulic-geometry relations is con- sidered inappropriate for characterizing flood hazards for specific distributary-flow in Maricopa County. No evidence has been found that supports the use of stochastic modeling of flows or flood hazards of many distributary-flow areas. The surface of many distributary-flow areas is stable with many distributary channels eroded in the calcreted surface material. Many distributary- flow areas do not appear to be actively aggrading today, and the paths of flow are not changing.

  17. Early Oligocene initiation of North Atlantic Deep Water formation.

    PubMed

    Davies, R; Cartwright, J; Pike, J; Line, C

    2001-04-19

    Dating the onset of deep-water flow between the Arctic and North Atlantic oceans is critical for modelling climate change in the Northern Hemisphere and for explaining changes in global ocean circulation throughout the Cenozoic era (from about 65 million years ago to the present). In the early Cenozoic era, exchange between these two ocean basins was inhibited by the Greenland-Scotland ridge, but a gateway through the Faeroe-Shetland basin has been hypothesized. Previous estimates of the date marking the onset of deep-water circulation through this basin-on the basis of circumstantial evidence from neighbouring basins-have been contradictory, ranging from about 35 to 15 million years ago. Here we describe the newly discovered Southeast Faeroes drift, which extends for 120 km parallel to the basin axis. The onset of deposition in this drift has been dated to the early Oligocene epoch ( approximately 35 million years ago) from a petroleum exploration borehole. We show that the drift was deposited under a southerly flow regime, and conclude that the initiation of deep-water circulation from the Norwegian Sea into the North Atlantic Ocean took place much earlier than is currently assumed in most numerical models of ancient ocean circulation.

  18. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-12-01

    Distributary channel bifurcations on river deltas are important features in both modern systems, where the channels control water, sediment, and nutrient routing, and in ancient deltas, where the channel networks can dictate large-scale stratigraphic heterogeneity. Geometric features of distributary channels, such as channel dimensions and network structure, have long been thought to be defined by factors such as flow velocity, grain size, or channel aspect ratio where the channel enters the basin. We use theory originally developed for tributary networks fed by groundwater seepage to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow patterns around the channel network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow (gradient2h2=0, where h is water surface elevation) in the groundwater flow field near tributary channel tips. We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. This similarity implies that flow outside of the distributary channel network is also Laplacian, which we use scaling arguments to justify. We conclude that the dynamics of the unchannelized flow control bifurcation formation in distributary networks.

  19. Bottom morphology in the Song Hau distributary channel, Mekong River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Allison, Mead A.; Dallon Weathers, H.; Meselhe, Ehab A.

    2017-09-01

    Field studies in the Song Hau distributary of the Mekong Delta in Vietnam conducted at high (Sept.-Oct 2014) and low (March 2015) Mekong River discharge are utilized to examine channel bottom morphology and links with sediment transport in the system. Multibeam bathymetric mapping surveys over the entire channel complex in the lower 80 km of the distributary channel, and over 12- to 24-h tidal periods at six transect locations in the reach are used to characterize bottom type and change on seasonal and tidal timescales, supplemented by bottom sampling. The results of this study indicate that the largest proportion of channel floor (up to 80% of the total area) is composed of substratum outcrops of relict sediment units deposited during the progradation of the delta in the last 3.5 ka. These take the form of outcrops that are either (1) steep-sided, tabular channel floor, (2) steep-sided sidewall, or (3) relatively flat channel floor. Flatter outcrops of channel floor substratum are identified by the presence of sedimentary furrows (<0.5 m deep) incised into the channel bottom that are exposed at high discharge and oriented along channel and laterally continuous for kilometers. These furrows are persistent in location and extent across tidal cycles and appear to be incised into relict units, sometimes with a thin surficial layer of modern sediment observable in bottom grabs. The extent of substratum exposure, greater than that observed previously in low tidal energy systems like the Mississippi River, may relate both to a relatively low sand supply from the catchment, and/or to an efficient transfer of both sand and mud through this tidally energetic channel. Sand bottom areas forming dunes, comprise about 19% of the channel floor over the study area and are generally less than a few meters thick except on bar extensions of mid-channel islands. Both sandy and substratum areas are mantled by soft muds 0.25-1 m thick during low discharge in the estuarine section of

  20. Hydraulic and sediment transport properties of autogenic avulsion cycles on submarine fans with supercritical distributaries

    NASA Astrophysics Data System (ADS)

    Hamilton, Paul B.; Strom, Kyle B.; Hoyal, David C. J. D.

    2015-07-01

    Submarine fans, like other distributive systems, are built by repeated avulsion cycles. However, relative to deltas and alluvial fans, much less is known about avulsions in subaqueous settings. In this study, we ran a set of subaqueous fan experiments to investigate the mechanics associated with autogenic avulsion cycles of self-formed channels and lobe deposits on steep slopes. The experiments used saline density currents with crushed plastic to emulate sustained turbidity currents and bed load transport. We collected detailed hydraulic and bathymetric measurements and made use of a 1-D laterally expanding density current model to better understand different aspects of the avulsion cycle. Our results reveal three major components of the avulsion cycles: (1) distributary channel incision, extension, and stagnation; (2) mouth bar aggradation and hydraulic jump initiation; and (3) hydraulic jump sedimentation and upstream retreat. Interestingly, in all but one experiment, the avulsion cycles led to fans that remained perched above the basin slope break. Experimental data and hydraulic theory were used to unravel actual mechanics associated with cycles. We found that channels stopped extending into the basin due to a decay in sediment transport capacity relative to sediment supply and that the reduction in capacity was primarily an outcome of expansion-driven velocity reduction; dilution played a secondary role. Once channel extension ceased, mouth bar deposits aggraded to a thickness approximately equal to the critical step height needed to create a choked flow condition. The choke then initiated a hydraulic jump on the upstream side of the bar. Once formed, the jump detained a majority of the incoming sediment and forced the channel-to-lobe transition upstream, filling the channel with steep backset bedding and capping the entire channel with a mounded lobate deposit. These intrinsic processes repeated through multiple avulsion cycles to build the fan.

  1. Biology of deep-water chondrichthyans: Introduction

    NASA Astrophysics Data System (ADS)

    Cotton, C. F.; Grubbs, R. D.

    2015-05-01

    Approximately half of the known chondrichthyans (sharks, skates, rays, and chimaeras), 575 of 1207 species (47.6%, Table 1), live in the deep ocean (below 200 m), yet little is known of the biology or life histories of most of these fishes (Kyne and Simpfendorfer, 2007). The limited information available for deep-water chondrichthyans is compounded by their rarity, as well as the prevalent uncertainty in the alpha taxonomy of deep-water species. Many species are known only from the type materials, which are generally limited to nondestructive sampling, e.g., morphometrics, imaging (X-ray, MRI, CT scanning). Thus, research has been hindered by a lack of specimens available for investigation that requires destructive sampling or live specimens (e.g., life history, diet, telemetry). The need for more research and dissemination of information about deep-water chondrichthyans has become imperative as fisheries worldwide continue to expand into deeper waters and exploit deep-water stocks, usually in the absence of data required for appropriate management (Morato et al., 2006; Kyne and Simpfendorfer, 2010).

  2. Long Range Acoustic Communication in Deep Water

    DTIC Science & Technology

    2013-09-30

    ocean is challenging due to the substantial propagation loss, multipath delay spread , and channel variability. Analysis of deep-water data collected...were exploited. In addition, a robust algorithm (double differentially coded spread spectrum) was demonstrated recently using the LRAC10 data [10...Spray gliders with a commercial acoustic modem for data retrieval from subsurface moorings and seafloor systems installed with a similar modem in deep

  3. Deep Water Single Point Mooring Design

    DTIC Science & Technology

    1997-09-10

    Technology E-1 Introduction This Appendix provides design and performance information for various types of tension members which might be used as mooring...TTINwSC.6OI AD-A286 939 Inulun Deep Water Single Point Mooring Design John F. Flory Henry A. McKenna Tension Technology International, Inc. 9...ORGANIZATIONJ (if appdicable) Tension Technology International J Naval Surface Warfare Center, Carderock Division Sc. ADDRESS (City, State, and ZIP Code

  4. Deep Water Ambient Noise and Mode Processing

    DTIC Science & Technology

    2012-09-30

    Deep Water Ambient Noise and Mode Processing Kathleen E. Wage George Mason University Electrical and Computer Engineering Department 4400...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) George Mason University Electrical and Computer Engineering Department 4400 University...analysis of the Church Opal data set showed that noise levels decreased substantially (on the order of 20 dB) below the critical depth [5]. This project

  5. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  6. Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA

    USDA-ARS?s Scientific Manuscript database

    Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the central Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study 1) characterized physical and chemical properties of the sprin...

  7. Suspended sediment transport in distributary channel networks and its implication on the evolution of delta

    NASA Astrophysics Data System (ADS)

    Suying, Ou; hao, Yang

    2016-04-01

    Suspended sediment (SS) transport in distributary channels play an important role on the evolution of deltas and estuaries. Under the interactions between river discharge, tide, and bathymetry of Pearl River delta (PRD) in south China, the spatial and temporal characteristics of suspended sediment transport are investigated by using the field data of July 16 to 25, 1999 and February 7 to 15, 2001. The PRD, as one of the most complex tributary system in the world and composed of 324 transversal and longitudinal tributaries, with eight outlets to the three sub-estuaries, has higher suspended sediment load in middle delta including six outlets than in right and left tidal dominant channels of PRD, that is Humen channel and Yamen channel system. Under large river discharge of one flood in summer, the tidal averaged SS transport from channel to the estuaries, the SS concentration of middle delta is 10~20 times and the transport rate is 100~500 times of dry season. But the transport rate changes little between flood season and dry season in the upper channel system of Yamen and Humen, and in dry season the tidal averaged transport change direction from estuary to these channel systems. About 70~85% of total Pearl River SS load transport along the main channel of West River, then transport about 45~55% into the lower West river delta, about 30% of total SS load flushed into the Modaomen outlets. Under the bathymetry of branched channels, SS load which advected from the Pearl River and resuspended from bed, redistributed 4~8 times in the PRD and then cause the different changes of channels. It found that in flood season, the suspended sediment load from Pearl River including East, West, North River and Tanjiang, Liuxi River into the PRD is less than that discharged into the estuaries through eight outlets, which indicated the erosion in the channels of PRD especially in the lower part of PRD. Suspended sediment budget in dry season during neap-spring cycle indicated that

  8. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    SciTech Connect

    Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.

    1995-08-01

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge. Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.

  9. Distributary-mouth bar development and role of submarine landslides in delta growth, South Pass, Mississippi delta

    SciTech Connect

    Lindsay, J.F.; Coleman, J.M.; Prior, D.B.

    1984-11-01

    Submarine landslides play a major role in the development of distributary-mouth bars and are of major importance in transporting sediment from the bar front to deeper water along the Mississippi delta front. Historic maps of the South Pass of the Mississippi delta show that the bar advanced seaward more than 1 mi (1.6 km) between 1867 and 1953. Details of the growth of the bar have been elucidated using an elaborate computer modeling program to analyze these historic maps. The analysis has shown that the geometry of the bar was controlled by the dynamics of the freshwater plume of river water as it mixed with saline Gulf water. Approximately half the sediment deposited on the bar was moved into deeper water by submarine landslides. The underlying causes of bar failure were established during major floods with the deposition of thick blankets of unstable, watersaturated sediments on the bar front. Failure occurred one to four years later in response to a variety of triggering mechanisms, which either changed the shear strength of the sediment or modified local bottom slope. The triggering mechanisms include: major storms and hurricanes, mudlump activity, and possibly, increased pore pressures resulting from generation of biogenic gas. Bar growth and basinward movement of sediment thus represent a multilvariate problem that can be approached by means of a computer analysis of bathymetric data.

  10. Deep-water Circulation: Processes & Products (16-18 June 2010, Baiona): introduction and future challenges

    NASA Astrophysics Data System (ADS)

    Hernández-Molina, Francisco Javier; Stow, Dorrik A. V.; Llave, Estefanía; Rebesco, Michele; Ercilla, Gemma; van Rooij, David; Mena, Anxo; Vázquez, Juan-Tomás; Voelker, Antje H. L.

    2011-12-01

    Deep-water circulation is a critical part of the global conveyor belt that regulates Earth's climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16-18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean's role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of

  11. Non-Fickian diffusion and the accumulation of methane bubbles in deep-water sediments.

    PubMed

    Goldobin, D S; Brilliantov, N V; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P D; Haywood, A M; Hunter, S J; Rees, J G

    2014-05-01

    In the absence of fractures, methane bubbles in deep-water sediments can be immovably trapped within a porous matrix by surface tension. The dominant mechanism of transfer of gas mass therefore becomes the diffusion of gas molecules through porewater. The accurate description of this process requires non-Fickian diffusion to be accounted for, including both thermal diffusion and gravitational action. We evaluate the diffusive flux of aqueous methane considering non-Fickian diffusion and predict the existence of extensive bubble mass accumulation zones within deep-water sediments. The limitation on the hydrate deposit capacity is revealed; too weak deposits cannot reach the base of the hydrate stability zone and form any bubbly horizon.

  12. Breaking of waves in deep water

    NASA Astrophysics Data System (ADS)

    Ruiz-Chavarria, Gerardo

    2013-11-01

    The breaking of waves is a nonlinear phenomenon during which a fraction of the energy is dissipated. In the previous stage the wave undergoes a growth of its amplitude and the wave pattern is modified in the sense that the crests become more pronounced than the troughs. The breaking has been extensively studied in the case of waves approaching the shore. However, the wave breaking in deep water remains an open problem in fluid dynamics. In this work we study the wave breaking due to focusing of an initially parabolic wave front. To this end the evolution of wave is numerically investigated using a meshless code (Smoothed Particle Hydrodynamics). We present some results about the evolution of waves excited by a parabolic wave maker, among others, the growth induced by the focusing, the behavior around the Huygens' cusp and the process of wave breaking. Then, we compare the numerical results with the criteria given in the literature about the onset of breaking and we discuss how the energy dissipates, for example by the rise of short waves. In addition we compare the numerical results with data obtained in two different experiments made by our team. Author acknowledges DGAPA-UNAM by support under project IN116312, ``Vorticidad y ondas no lineales en fluidos.''

  13. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  14. Sedimentary facies of distributary channels of the whole Mekong River delta

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Nguyen, V. L.; Ta, T. K. O.; Tamura, T.; Kanai, Y.; Nakashima, R.; Uehara, K.

    2016-02-01

    The Mekong River delta, one of the world's largest deltas, has extended from Phnom Penh in Cambodia (apex) to the Vietnam coast from the Saigon River mouth in its eastern end to Cape Camau in its western end, and has the delta plain area of > 50,000 km2. The delta has prograded more than 200 km for the last 6-7 ka. The river-mouth area of the delta is meso-tidal with the mean tidal range of 2.5 ± 0.1 m and the maximum tidal range is 3.2-3.8 m. Sea level in winter (dry season) is higher than summer by 30-40 cm due to setup in the South China Sea basin by northerly. Mean wave height is 0.9 m. The water discharge of the Mekong is 470 km3/y and its sediment discharge is 160 million t/y, or tenth and ninth largest in the world, respectively. The water discharge varies by season, controlled by a monsoonal tropical-subtropical regime. The flow at Phnom Penh, Cambodia, reaches a maximum in October and a minimum in May. SSC has also a seasonal change from more than 300 mg/L in a wet season to less than 50 mg/L in a dry season at the Cambodia-Vietnam border. 1m tidal water-level changes are observed at the border in a dry season. To understand the combined influences of rivers and tides on river-bottom sediments, we have collected 210 surface samples from distributary channels of the whole Mekong River delta in Vietnam from the Cambodia border to five river mouths during a dry season from January to May 2015. Additional sampling expedition in a wet season will be conducted in October 2015 for one distributary channel from the border to its river mouth. The characteristics of channel bottom sediments in a dry season show clearly river- and tide-dominated areas spatially, based on sedimentary facies (grain size and sedimentary structures). Tidal rhythmites are well recognized within 100km from the river mouths and mud balls are well found in the middle reach of the survey area. The spatial distribution of river- and tide-dominated areas is closely linked with the morphology

  15. Patterns in life history traits of deep-water chondrichthyans

    NASA Astrophysics Data System (ADS)

    Rigby, Cassandra; Simpfendorfer, Colin A.

    2015-05-01

    Life history traits are important indicators of the productivity of species, and their ability to tolerate fishing pressure. Using a variety of life history traits (maximum size, size and age at maturity, longevity, growth rate, litter and birth size) we demonstrated differences in chondrichthyan life histories between shelf, pelagic and deep-water habitats and within the deep habitat down the continental slope and across geographic regions. Deep-water species had lower growth rates, later age at maturity, and higher longevity than both shelf and pelagic species. In the deep habitat, with increasing depth, species matured later, lived longer, had smaller litters and bred less frequently; regional differences in traits were also apparent. Deep-water species also had a smaller body size and the invariants of relative size and age at maturity were higher in deep water. The visual interaction hypothesis offers a potential explanation for these findings and it is apparent habitat influences the trade-offs in allocation of energy for survival and reproduction. Body size is not appropriate as a predictor of vulnerability in deep-water chondrichthyans and regional trait differences are possibly due to a fishing pressure response. Deep-water chondrichthyans are more vulnerable to exploitation than shelf and pelagic species and this vulnerability markedly increases with increasing depth. The life history traits of deep-water chondrichthyans are unique and reflect adaptations driven by both mortality and resource limitations of their habitat.

  16. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  17. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  18. Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin V.; Lerch, Robert N.; Groves, Christopher G.; Polk, Jason S.

    2015-05-01

    Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study (1) characterized physical and chemical properties of springs and recharge sources; (2) developed end-member mixing models to estimate contributing proportions of CC and WG; and (3) created a conceptual model for the system. Samples analyzed for major ions and specific conductivity, in conjunction with a rotating continuous monitoring program to identify statistically comparable baseflow conditions, were used to assess differences among the sites. Monitoring data showed that the springs differed depending upon recharge proportions. Cluster analysis of average ion concentrations supported the choice of CC and WG as mixing model end members. Results showed a range in the proportions of the recharge sources, from surface-water to groundwater dominated. A conceptual model suggests that a system of distinct conduits beneath the WG flood plain transmits water to the individual springs. These conduits controlled the end-member recharge contributions and water chemistry of the springs. Interpretation of relative proportions of recharge contributions extends existing knowledge of karst hydrologic geometry beyond that of point-to-point connections to revealing complex surface-water/groundwater mixing in heterogeneous distributary spring systems.

  19. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water...coherence of the received signal, while the ambient noise field is in direct competition with the received signal. Research conducted in the North Pacific ...The scientific objectives of the North Pacific Acoustic Laboratory and Deep Water Acoustics research are: 1. To study the spatial and temporal

  20. Lithofacies and depositional environment of the Amasiri Sandstone, southern Benue Trough, Nigeria

    NASA Astrophysics Data System (ADS)

    Okoro, A. U.; Igwe, E. O.

    2014-12-01

    Eight lithofacies typical of tidally-influenced shelf, mass flow and turbidity current processes characterize the Amasiri Sandstone (Cenomanian - Turonian) in the southern Benue Trough, Nigeria. The cross bedded sandstone lithofacies (Sxm) in Afikpo area were deposited in tidally influenced, shallow sandy shoreline environment while similar lithofacies associated with the conglomeratic lithofacies (Sfc) in Akpoha are proximal canyon-fill deposits. The conglomeratic lithofacies with rip-up clasts together with the massive, horizontal-bedded lithofacies (Smm) and parallel-laminated sandstone lithofacies (Sfl) in Akpoha were deposited in confined channels in proximal submarine canyon setting. The wavy/ripple-laminated sandstone lithofacies (Sfw) and very fine grained bioturbated sandstones lithofacies (Sfb) represent weakly confined distributary splay and unconfined associations in proximal to distal submarine canyon settings. The bioturbated mudstone lithofacies (Msb) and parallel-laminated mudstones lithofacies (Msl) comprise the bypass/levees association in the inner to outer shelf and in the distal canyon settings. Overall, these lithofacies indicate deposition in shelf to deep water depositional environments.

  1. The Coastline Evolution of an Abandoned Deltaic Lobe and the Fate of its Relict Distributary Channel: A Case Study from the Huanghe (Yellow River) Delta, China.

    NASA Astrophysics Data System (ADS)

    Carlson, B.; Nittrouer, J. A.; Kineke, G. C.; Moodie, A. J.; Ma, H.; Kumpf, L.

    2016-12-01

    A high sediment load and frequent flooding events drive rapid modification to the coastline of the Huanghe (Yellow River) delta, China. Distributary channel avulsions occur every 7-10 years, and each event results in the shifting of fluvial sediment supply over hundreds of square kilometers across the deltaic coastline. Upon lobe abandonment, the shoreline erodes at rates that reach kilometers per year, and low-lying regions of the delta are routinely inundated by tides. These processes rework the sediment deposit, and while much of this material is advected basinward, some is transported landward via tidal channels that occupy the abandoned distributary channel. Over a yearly timescale, the relict channel fills with sediment, the delta lobe converts to a tidal flat, and the rate of coastline retreat decreases. The focus of this study is to validate a physical model of the time evolution of the morphodynamics using data collected from field studies, as well as time-series satellite imagery. Sedimentological analysis of seventeen 6-m cores extracted from a lobe abandoned in 1996 documents the abrupt transition from the relict channel bed (comprised of sand) to the ongoing tidal flat sedimentation (comprised of mud). The thickness of the tidally-influenced mud deposit varies across the old channel, and is based on the inherited bed morphology and proximity to the active tidal channel. For example, sedimentation rates, as estimated using a numerical model, are higher near the tidal channel and decrease with lateral distance from this source, and are also a function of the local elevation of the tidal flat surface relative to the tidal amplitude. Overall, predicted sedimentation rates on the tidal flat - reaching several centimeters per year - are in agreement with field observations. Our results indicate that after 20 years of morphological adjustment following abandonment, this particular Yellow River delta lobe remains highly dynamic as result of active reworking of

  2. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Mesoscale mechanics of distributive channel systems with supercritical distributaries: an experimental study of alluvial and submarine fans

    NASA Astrophysics Data System (ADS)

    Hamilton, Paul; Strom, Kyle; Hoyal, David

    2014-05-01

    Cyclicity is a feature of distributive channel systems whereby the landform is modified by either: variation in boundary conditions, e.g., sea-level rise/fall on deltas, or feedbacks triggered and maintained by intrinsic system mechanics, i.e., autogenic processes. The intrinsic organization of coupled fluid/sediment systems is predictable over small scales, i.e., bedform development and evolution; similar relationships can be developed for sedimentary systems over the mesoscale, i.e., the channel and lobe scale. The most prevalent mesoscale process at work in a variety of settings is the avulsion cycle which takes a generic form of: distributive channel formation and basinward extension, deceleration and mouth bar deposition, flow interaction with the aggrading mouth bar and upstream retreat, and flow reorganization. Though this generic description holds in a general sense, a system's particular response is a function of several variables but is most deterministically tied to hydraulic regime relative to critical flow. Herein we describe the supercritical autogenic response of fan systems using experimental results that include data pertaining to both phases of the morphodynamic feedback cycle, the fluid flow and the mobile sediment bed. Non-invasive, image-based techniques were used to quantify the velocity field on evolving fans. Hydraulic characterization is combined with topographic scans to create a complete picture of mesoscale development. This combination makes for a unique data set in mesoscale geomorphology experiments where data is typically restricted to topography evolution with inferred hydraulic process. Via experiments we show that supercritical distributaries experience hydraulic jump controlled backfilling and avulsion as distinguished from the backwater controlled avulsions occurring with subcritical distributive systems. Further, we consider both alluvial and submarine fan experiments to better examine the relative importance of setting

  4. Buried Distributaries as a Conduit for Groundwater Flow in Barataria Bay, Louisiana

    NASA Astrophysics Data System (ADS)

    Breaux, A.; Schneider, A.; Kolker, A.; Telfeyan, K.; Kim, J.; Johannesson, K. H.; Cable, J. E.; Coleman, D.

    2013-12-01

    Many studies have focused on hydrological and geochemical fluxes to the ocean from land to the ocean via submarine groundwater discharge (SGD), however few have assessed these contributions of SGD in deltaic settings. The Mississippi River delta is the largest delta in North America, and the magnitude of groundwater that discharges from the River into its delta is relatively unknown. Hydrological budgets have indicated that there is a large magnitude of water lost in the Mississippi's Delta. Recent evidence in our study indicates that paleochannels, or semi-permeable buried sandy channels that were former distributaries of the River, allow for water to discharge out of the Mississippi's main channel and into its Delta. Our study uses geophysical data, including CHIRP and resistivity methods, to detect the location of these paleochannels in Barataria Bay, a coastal bay located in the Mississippi Delta. CHIRP data shows that these paleochannel features are ubiquitous in the Mississippi Delta, while resistivity data indicates that lower salinity water is found during high river flow in bays proximate to the River. Sediment core analysis is also used to characterize the area of study, as well as further understand the regional geology of the Mississippi Delta. The geophysical and sediment core data will be used to contextualize geochemical data collected in the field, which includes an assessment of major cations and anions, as well as in situ Rn-222 activities, a method that has been proven to be useful as a tracer of groundwater movement. The results may be useful in understanding potential global magnitude of hydrological and geochemical fluxes of other large rivers with abandoned distributaries.

  5. Deep-water anoxygenic photosythesis in a ferruginous chemocline.

    PubMed

    Crowe, S A; Maresca, J A; Jones, C; Sturm, A; Henny, C; Fowle, D A; Cox, R P; Delong, E F; Canfield, D E

    2014-07-01

    Ferruginous Lake Matano, Indonesia hosts one of the deepest anoxygenic photosynthetic communities on Earth. This community is dominated by low-light adapted, BChl e-synthesizing green sulfur bacteria (GSB), which comprise ~25% of the microbial community immediately below the oxic-anoxic boundary (OAB; 115-120 m in 2010). The size of this community is dependent on the mixing regime within the lake and the depth of the OAB-at ~117 m, the GSB live near their low-light limit. Slow growth and C-fixation rates suggest that the Lake Matano GSB can be supported by sulfide even though it only accumulates to scarcely detectable (low μm to nm) concentrations. A model laboratory strain (Chlorobaculum tepidum) is indeed able to access HS- for oxidation at nm concentrations. Furthermore, the GSB in Lake Matano possess a full complement of S-oxidizing genes. Together, this physiological and genetic information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea, GSB would have contributed little to global ocean primary production, nutrient cycling, and banded iron formation (BIF) deposition in the Precambrian. Before the proliferation of oxygenic photosynthesis, shallower OABs and lower light absorption in the ocean's surface waters would have permitted greater light availability to GSB, potentially leading to a greater role for GSB in global biogeochemical cycles.

  6. Detailed anatomy of a deep-water carbonate breccia lobe (Upper Jurassic, French subalpine basin)

    NASA Astrophysics Data System (ADS)

    Courjault, Thomas; Grosheny, Danièle; Ferry, Serge; Sausse, Judith

    2011-06-01

    Detailed correlations across Tithonian carbonate breccia deposits in the Drôme River area (northern part of the so-called "Vocontian Through") suggest the depositional system was that of an elongated deep-water lobe, up to 70 km long and 20 to 30 km wide, for a thickness reaching 200 m. The Drôme lobe, as it is now called, is mainly made of slope to basinal mudstones breccias with minor platform components, interpreted as debris flow and mud flow deposits, associated with slump deposits. It is basically a base-of-slope system, whose elongated depositional area implies it was a "point-sourced" gravity system, thus perhaps connected to a small canyon cut onto the western slope of the basin. But the mostly mudstone material of the breccias also suggests that the walls of this inferred canyon were the main supplier of the lobe, not the carbonate platform proper. The updip part of the lobe has a complex internal geometry as the deposition of breccia bed packages is interrupted by scourings locally 50 m-deep, indicating maybe a canyon mouth environment. The middle part of the lobe is dominated by pure vertical aggradation of breccia beds with minor intervening erosion. In the downdip part of the system a morphological compensation mechanism occurs as breccia beds tend to spread laterally. A huge slump carrying large mudstone olistoliths ends the breccia deposition at the beginning of the Berriasian. This megaslump deposit was mostly emplaced on the right side of the breccia lobe supporting the idea of a depositional relief. Our observations thus show that previous interpretations as a submarine canyon infilling or as shallow-water breccias formed in-situ by cyclic loading under attenuating hurricane waves approaching the platform are not consistent with our observations. The internal geometry of the system studied brings new data about a poorly-studied kind of "turbidite" systems that of deep-water carbonate breccias.

  7. Geology of Sarawak deep water and its surroundings

    SciTech Connect

    Ismail, M.I.; Mohamad, A.M.; Ganesan, M.S.; Aziz, S.A. )

    1994-07-01

    A geological and geophysical investigation based primarily on seismic data indicates that four tectonostratigraphic zonations are recognizable in the Sarawak deep water and its surroundings. Zone A is a 7-8-km-thick Tertiary sedimentary basin in Sarawak deep water characterized by north-south-trending buried hills, extensional fault-bounded features, and local occurrences of compressional structures, and is separated from the northwest Sabah platform (zone B) by a major north-south-trending basin margin fault. This margin fault is distinct from the northwest-southeast transform fault known as Baram-Tinjar Line. The northwest Sabah platform, an attenuated continental crust that underwent late Mesozoic-Tertiary crystal stretching and rifting, is characterized by northeast-southwest-tending rift systems and generally up to 4 km-thick sedimentary cover. The leading edge of the northwest Sabah platform that was subducted beneath the northwest Borneo crust is marked by the Sabah trough (zone C). The western Sarawak deep water is occupied by a 13-km-thick, north-south-trending basin, the west Luconia delta province (zone D), demonstrating post mid-Miocene deltaic growth faults and toe-thrusts. Crustal offsets of the South China Sea Basin, north-south-trending basin margin fault between zones A and B, and extensional and compressional structures in zone A are evidence for north-south-directed transform motions leading to the development of the Sarawak deep-water Tertiary basin. Four main sedimentation phases describe the sedimentation history in Sarawak deep water and its surroundings. Oligocene-Miocene coastal plain sediments form the main hydrocarbon plays in the Sarawak deep water, and the numerous occurrences of amplitude anomalies clearly suggest a working hydrocarbon charge system.

  8. Three new records of deep-water goniasterids (Echinodermata: Asteroidea: Goniasteridae) from China seas

    NASA Astrophysics Data System (ADS)

    Xiao, Ning; Liao, Yulin

    2013-09-01

    In this paper, three deep-water species of the family Goniasteridae, Ceramaster misakiensis (Goto, 1914), Nymphaster arthrocnemis Fisher, 1913 and Pontioceramus grandis Fisher, 1911, are recorded for the first time from Chinese waters based on collections deposited in the Marine Biological Museum, Chinese Academy of Sciences. The specimens examined were collected during the period 1956 to 1978 from the East China and South China Seas at depths of 184 to 472 m. Diagnosis, detailed figures, and the geographic distributions are provided. A revised list of Goniasteridae recorded from Chinese waters is proposed.

  9. Early colonization of metazoans in the deep-water: Evidences from the lowermost Cambrian black shales of South China

    NASA Astrophysics Data System (ADS)

    Zhu, M.-Y.; Yang, A.-H.; Zhang, J.-M.; Li, G.-X.; Yang, X.-L.

    2003-04-01

    Diversity of metazoans is high in the deep-water of the present ocean. But it is unknown that when the metazoans began to colonize in the deep-water and what kinds of metazoans first colonized in the deep-water since origin and radiation of metazoans during the Precambrian-Cambrian transition interval. Up to the present, colonization of the deep-sea began in the Ordovician. Although it is suggested that animals were penetrated into the intermediate water depth during the Precambrian, evidences support such suggestion are based on the problematic Ediacaran-grade fossils. However, almost fossil materials that support the Cambrian Explosion hypothesis were discovered from the lowermost Cambrian shallow-water deposits. The abundant earliest Cambrian mineralized small shelly fossils (SSF) are globally from the shallow-water deposits, and the well-known Chengjiang fauna that may records most complete features of metazoans in the ocean after the Cambrian Explosion, occurs as well in the shallow basin near an old land on the Yangtze Platform. In order to understand ecology of the Cambrian Explosion time interval and how happened of the onshore-offshore trends of metazoans, we focused our attention on collecting fossils in the lowermost Cambrian deposits under the varied facies on the Yangtze Platformm during recent years. Investigations of the shallow-water carbonate facies and the oxygen-depleted deep-water black shale facies revealed additional biological and ecological information that are not recorded in the Chengjiang fauna in the siliclastic shallow-water facies. Here we report our discovery of a particular fossil association from more than 10 sections in the deep-water black shales (Qiongzhusian) in the out shelf and slope area of the Yangtze Platform. The fossil association is composed of pelagic and sessile organisms, including abundant sponges, 3 types of bivalved arthropods, 3 types of tubular animals and few problematic organisms. The fossils have either

  10. GCM studies of intermediate and deep waters in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Haines, Keith; Wu, Peili

    1998-12-01

    Results from GCM simulations of the Mediterranean thermohaline circulation are presented under repeating year wind and surface buoyancy forcings and the reproduction of important physical processes is discussed. It is shown that baroclinic eddies are critical to the effective dispersal of Levantine intermediate water (LIW) throughout the eastern Mediterranean basin. These develop rapidly even in a 1/4 degree model which does not resolve the deformation radius, provided horizontal friction is small enough. It is shown that LIW enters the Adriatic basin and pre-conditions deep water formation which would not otherwise occur due to low surface salinity in winter. The dispersal of Adriatic deep waters is modelled, and it is shown that the introduction of the Gent and McWilliams advective scheme greatly improves the distribution of deep waters in the eastern basin by permitting the formation of dense overflow waters from the Otranto straits. This is achieved with very small parametrised advection that still permits the formation of baroclinic eddies unlike most applications which use the scheme to replace eddies. Results from a 100-year climate simulation are then presented in which the thermohaline circulation has reached equilibrium conditions. Dense water formation in both eastern and western basin still occur after 100 years. While the eastern basin water masses are reasonably realistic, the western basin is a little too cold and fresh, suggesting that insufficient LIW is reaching the deep water formation site in the northwest basin. Further work is needed in this area.

  11. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  12. Seismic Evaluation of Hydorcarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-10-31

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  13. The Circulation of Newly Formed Deep Water in the Atlantic

    NASA Astrophysics Data System (ADS)

    Rhein, M.; Kieke, D.; Steinfeldt, R.

    2012-04-01

    The circulation of newly formed deep water masses (Labrador Sea Water, LSW, and Denmark Strait Overflow Water, DSOW) is examined by discussing the distribution of two parameters (age τ and fraction F of young water) calculated from the chlorofluorocarbon data measured between 1980 and 2005 in the Atlantic. Compared to previous studies, a much larger data set was used with an improved gridding procedure, allowing to resolve the distributions in more detail.

  14. Pressure induced breather overturning on deep water: Exact solution

    NASA Astrophysics Data System (ADS)

    Abrashkin, A. A.; Oshmarina, O. E.

    2014-08-01

    A vortical model of breather overturning on deep water is proposed. The action of wind is simulated by nonuniform pressure on the free surface. The fluid motion is described by an exact solution of 2D hydrodynamic equations for an inviscid fluid in Lagrangian variables. Fluid particles rotate in circles of different radii. Formation of contraflexure points on the breather profile is studied. The mechanism of wave breaking and the role of flow vorticity are discussed.

  15. Modulational instabilities of periodic traveling waves in deep water

    NASA Astrophysics Data System (ADS)

    Akers, Benjamin F.

    2015-04-01

    The spectrum of periodic traveling waves in deep water is discussed. A multi-scale method is used, expanding the spectral data and the Bloch parameter in wave amplitude, to compute the size and location of modulated instabilities. The role of these instabilities in limiting the spectrum's analyticity is explained. Both two-dimensional and three-dimensional instabilities are calculated. The asymptotic predictions are compared to numerical simulations.

  16. Ocean Ambient Noise Studies for Shallow and Deep Water Environments

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Ambient Noise Studies for Shallow and Deep Water...Siderius.php LONG-TERM GOALS The objective of this research is to study the ocean ambient noise field by means of new physics-based processing... ambient -noise field using a vertical line array has been developed by Harrison and Simons [Harrison, 2002]. The advantages of passive bottom-survey

  17. Deep-sea channel/submarine-yazoo system of the Labrador Sea: A new deep-water facies model

    SciTech Connect

    Hesse, R.; Rakofsky, A. )

    1992-05-01

    The deep-sea channel/submarine-yazoo system is a newly recognized deep-water depositional environment that is significantly different from previously documented turbidite environments. The new system is in many ways the antithesis of classical deep-sea fans. The purpose of this paper is to present the characteristics and elements of the system, develop a facies model for it, establish the system variables, and discuss its possible significance in the geologic record and in subsurface exploration. Previous investigators of deepwater turbidite sediments often faced difficulties in trying to fit their sequences into traditional single-source, deep-sea fan models. The present model fills part of an obvious gap in interpretation schemes for deep-water clastic sediments.

  18. Is Centrophorus squamosus a highly migratory deep-water shark?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cabello, Cristina; Sánchez, Francisco

    2014-10-01

    Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.

  19. Chronobiology of deep-water decapod crustaceans on continental margins.

    PubMed

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the

  20. Fluvial ecosystem services in the Rhine delta distributaries between 1995 and 2035

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Kleinhans, Maarten

    2016-04-01

    Mapping of ecosystem services (ES) and documenting their change over time provides important information for the societal debate and decision making on river management. Large and Gilvear (2014) showed how to score fluvial ES using imagery and tools available through Google Earth, linking observable features, or landcover to ES through inferred fluvial processes, and natural ecosystem functions. While the use of Google Earth enables application anywhere on the globe, their method is labor intensive, and involves subjective judgement as not all parameters are easily observable in spectral data, e.g. the location of embankments. In addition, the method does not take advantage of readily available spatial databases, and existing hydrodynamic model parameterizations, nor can it be used in scenario studies of future fluvial landscapes. Therefore, we aimed at the development of a generic GIS routine to extract the ecosystem services from existing spatial and hydrodynamic model data, and its application to historic and future fluvial landscapes in the Rhine delta. Here, we consider the Rhine distributaries, sized 400 km2, where river restoration measures were carried out between 1995 and 2015 to reduce flood risk reduction and simultaneously improve the ecological status. We computed ES scores for provisioning ES (fisheries, agriculture, timber, water supply), regulating ES (flood mitigation, carbon sequestration, water quality), and supporting ES (biodiversity). Historic ES were derived for the years 1997, 2005, and 2012, based on ecotope maps for these respective years, combined with a water levels and flow velocities derived from a calibrated 2D hydrodynamic model (WAQUA). Ecotopes are defined as 'spatial landscape units that are homogeneous as to vegetation structure, succession stage, and the main abiotic factors that are relevant to plant growth'. ES for 2035 were based on scenarios of landscaping measures. Suitable locations for the measures were determined

  1. Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years

    NASA Astrophysics Data System (ADS)

    Schmiedl, Gerhard; Kuhnt, Tanja; Ehrmann, Werner; Emeis, Kay-Christian; Hamann, Yvonne; Kotthoff, Ulrich; Dulski, Peter; Pross, Jörg

    2010-11-01

    oxygen levels fell below a critical threshold, the benthic ecosystems collapsed almost synchronously with the onset of S1 deposition. The recovery of benthic ecosystems during the terminal phase of S1 formation is controlled by subsequently deeper convection and re-ventilation over a period of approximately 1500 years. After the re-ventilation of the various sub-basins had been completed during the middle and late Holocene, deep-water renewal was more or less similar to recent rates. During that time, deep-sea ecosystem variability was driven by short-term changes in food quantity and quality as well as in seasonality, all of which are linked to millennial-scale changes in riverine runoff and associated nutrient input.

  2. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand

    SciTech Connect

    King, P.R.; Browne, G.H.; Slatt, R.M.

    1995-08-01

    Approximately 700m of deep water clastic deposits of Mt. Messenger Formation are superbly exposed along the Taranaki coast of North Island, New Zealand. Biostratigraphy indicates the interval was deposited during the time span 10.5-9.2m.y. in water depths grading upward from lower bathyal to middle-upper bathyal. This interval is considered part of a 3rd order depositional sequence deposited under conditions of fluctuating relative sea-level, concomitant with high sedimentation rates. Several 4th order depositional sequences, reflecting successive sea-level falls, are recognized within the interval. Sequence boundaries display a range of erosive morphologies from metre-wide canyons to scours several hundred metres across. All components of a generic lowstand systems tract--basin floor fan, channel-levee complex and progading complex--are present in logical and temporal order. They are repetitive through the interval, with the relatively shallower-water components becoming more prevalent upward. Basin floor fan lithologies are mainly m-thick, massive and convolute-bedded sandstones that alternate with cm- and dm-thick massive, horizontally-stratified and ripple-laminated sandstones and bioturbated mudstones. Channel-levee deposits consist of interleaving packages of thin-bedded, climbing-rippled and parallel-laminated sandstones and millstones; infrequent channels are filled with sandstones and mudstones, and sometimes lined with conglomerate. Thin beds of parallel to convoluted mudstone comprise prograding complex deposits. Similar lowstand systems tracts can be recognized and correlated on subsurface seismic reflection profiles and wireline logs. Such correlation has been aided by a continuous outcrop gamma-ray fog obtained over most of the measured interval. In the adjacent Taranaki peninsula, basin floor fan and channel-levee deposits comprise hydrocarbon reservoir intervals. Outcrop and subsurface reservior sandstones exhibit similar permeabilities.

  3. Maximal physiological responses to deep water running at thermoneutral temperature.

    PubMed

    Nakanishi, Y; Kimura, T; Yokoo, Y

    1999-03-01

    This study investigated the metabolic demands of deep water running (DWR) compared with those of treadmill running (TMR) while the water and ambient temperatures were kept under thermoneutral condition. Two maximal tests, one on treadmill and the other running in deep water using the Wet Vest (Lincoln life jacket) were undertaken by twenty healthy non-smoker males (Age = 28.0 +/- 9.2 years). The order of trials was counterbalanced with half of the subjects completing the treadmill first and the rest completing the water running first. Oxygen consumption (VO2), ventilation, heart rate (HR), respiratory exchange ratio (RQ), ratings of perceived exertion (RPE) and blood lactate were measured. VO2max (2.68 vs 3.40 ml/kg/min), HRmax (171.5 vs 190.8 beats/min), maximal minute ventilation (98.5 vs 113.31/min), and peak blood lactate value (10.44 vs 12.47 mmol/l) in response to DWR were significantly lower than those of TMR in the thermoneutral conditions. The lower VO2max and HRmax values of DWR compared to those of TMR are shown to be attributed to the hydrostatic effects caused by water and different muscle recruitment patterns between DWR and TMR.

  4. Deep water drilling risers in calm and harsh environments

    SciTech Connect

    Olufsen, A.; Nordsve, N.T.

    1994-12-31

    The overall objective of the work presented in this paper is to increase the knowledge regarding application of deep water drilling risers in different environmental conditions. Identification of key parameters and their impact on design and operation of deep water drilling risers are emphasized. Riser systems for two different cases are evaluated. These are: drilling offshore Nigeria in 1,200 m water depth; drilling at the Voering Plateau offshore Northern Norway in 1,500 m water depth. The case studies are mainly referring to requirements related to normal drilling operation of the riser. They are not complete with respect to describe of total riser system design. The objectives of the case studies have been to quantify the important of various parameters and to establish limiting criteria for drilling. Dynamic riser analyses are also performed. For the Nigeria case, results for a design wave with 100 years return period show that the influence of dynamic response is only marginal (but it may of course be significant for fatigue damage/life time estimation). The regularity of the drilling operation is given as the probability that jointly occurring wave heights and current velocities are within the limiting curve.

  5. North Atlantic Deep Water and the World Ocean

    NASA Technical Reports Server (NTRS)

    Gordon, A. L.

    1984-01-01

    North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.

  6. Deep water installation -- Heavy mooring and riser systems

    SciTech Connect

    Alvheim, N.

    1995-12-31

    While the move into deep water has provided exciting challenges often resulting in ingenious and novel equipment it is usually the equipment or the solution itself that is remembered and discussed. Too often one overlooks just how that novel equipment was actually installed. Perhaps one of the most exciting and ingenious equipment designs of recent times is the Submerged Turret Loading (STL) system. To date the authors have had the privilege of installing each of the 3 systems so far produced. Their work is well on course for installing the fourth during the coming summer. This paper addresses the installation of two of these systems in the summer of 94 in 350m of the hostile Halten Bank waters as part of the Conoco Heidrun development. Because the Norwegian oil industry has always been at the cutting edge of technology each new development results in the usual plethora of statistics which when presented in papers Re this are accompanied with a long list of superlatives like tallest, heaviest, deepest, quickest etc. etc. Installation work at Heidrun has a similar list. Because the 2 STL systems at Heidrun (called Direct Shuttle Loading DSL) were to be installed in such deep water the sheer size of the system components are worthy of review.

  7. Piping coarse-grained sediment to a deep water fan through a shelf-edge delta bypass channel: Tank experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yuri; Kim, Wonsuck; Cheong, Daekyo; Muto, Tetsuji; Pyles, David R.

    2013-12-01

    is now generally accepted that deltas that prograde to the shelf edge are able to transport coarse sediment to deep water either with or without sea level changes. However, it is still unclear how feeder rivers behave differently in the shelf-edge delta case to rivers found in a delta that progrades over the shelf. A series of nine shelf-edge delta experiments are presented to investigate the lateral mobility of the feeder channel at the shelf edge and the associated deep water depositional system under a range of sediment supply rates and shelf-front depths. In the experiments, constant sediment supply from an upstream point source under static sea level led the fluviodeltaic system to prograde over the shallow shelf surface and advance beyond the shelf edge into deep water. The feeder river of the fluviodeltaic system became a bypass system once the toe of the delta front reached the shelf edge. After the delta front was perched at the shelf edge, a submarine fan developed in deep water although remaining disconnected from the delta. In this bypass stage, no regional avulsion or lateral migration of the feeder river occurred and all sediment from the upstream source bypassed the river, delta front, and shelf-front slope. The duration of the bypass stage is proportional to shelf-front depth and inversely proportional to sediment discharge. The combined duration of the shelf-transit phase of the fluviodeltaic system and the bypass phase is the characteristic time scale for the continental margin to "anneal" transgression-inducing perturbation due to high-frequency and/or high-amplitude relative sea level rise. The sequential evolution in the experiment compares favorably to the Eocene Sobrarbe Formation, a shelf-edge delta in Spain, although natural variations are noted. This comparison justifies the application of concepts proposed herein to natural systems and provides insight into interpreting processes from ancient shelf-edge delta systems.

  8. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our

  9. Precession resonance mechanism in deep-water gravity surface waves

    NASA Astrophysics Data System (ADS)

    Bustamante, Miguel; Lucas, Dan

    2016-11-01

    Discovered by Bustamante et al. in 2014 and published in Phys. Rev. Lett. in the same year, precession resonance is a mechanism whereby strong nonlinear energy transfers occur between modes of oscillations whose frequencies are detuned: the amplitude-dependent precession frequencies of the phases help restore the resonance, hence the name "precession resonance". After explaining how this mechanism works and how robust it is, we will discuss new applications of this effect in systems of technological interest, focusing on deep-water gravity surface waves. We report transfer efficiencies of up to 40%, depending on the numerical-experimental setup. All evidence gathered so far points to the conclusion that, to leading order, this effect is dominated by triad interactions at small (but finite) amplitudes. Joint work with Dan Lucas (DAMTP, Cambridge). Financially supported by Science Foundation Ireland (SFI) under research Grant No. 12/IP/1491.

  10. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  11. Nonlinear vibration behaviors of casing pipe in the deep water

    NASA Astrophysics Data System (ADS)

    Tang, You-Gang; Zhang, Su-Xia; Yi, Cong

    2006-10-01

    The vortex-induced nonlinear vibration of casing pipes in the deep water was investigated considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up with considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wave-current.

  12. North Atlantic Deep Water Production during the Last Glacial Maximum.

    PubMed

    Howe, Jacob N W; Piotrowski, Alexander M; Noble, Taryn L; Mulitza, Stefan; Chiessi, Cristiano M; Bayon, Germain

    2016-06-03

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

  13. Deep-water antipatharians: Proxies of environmental change

    USGS Publications Warehouse

    Williams, B.; Risk, Michael J.; Ross, S.W.; Sulak, K.J.

    2006-01-01

    Deep-water (307-697 m) antipatharian (black coral) specimens were collected from the southeastern continental slope of the United States and the north-central Gulf of Mexico. The sclerochronology of the specimens indicates that skeletal growth takes place by formation of concentric coeval layers. We used 210Pb to estimate radial growth rate of two specimens, and to establish that they were several centuries old. Bands were delaminated in KOH and analyzed for carbon and nitrogen stable isotopes. Carbon values ranged from -16.4??? to -15.7???; oldest specimen displayed the largest range in values. Nitrogen values ranged from 7.7??? to 8.6???. Two specimens from the same location and depth had similar 15N signatures, indicating good reproducibility between specimens. ?? 2006 Geological Society of America.

  14. Deep-water fisheries at the Atlantic Frontier

    NASA Astrophysics Data System (ADS)

    Gordon, J. D. M.

    2001-05-01

    The deep sea is often thought of as a cold, dark and uniform environment with a low-fish biomass, much of which is highly adapted for life in a food-poor environment. While this might be true of the pelagic fish living in the water column, it is certainly not true of the demersal fish which live on or close to the bottom on the continental slopes around the British Isles (the Atlantic Frontier). These fish are currently being commercially exploited. There is growing evidence to support the view that success of the demersal fish assemblages depends on the pelagic or benthopelagic food sources that impinge both vertically and horizontally onto the slope. There are several quite separate and distinct deep-water fisheries on the Atlantic Frontier. It is a physical barrier, the Wyville-Thomson Ridge, which results in the most significant division of the fisheries. The Ridge, which has a minimum depth of about 500 m, separates the warmer deep Atlantic waters from the much colder Norwegian Sea water and as a result, the deep-water fisheries to the west of the Hebrides and around the offshore banks are quite different from those of the Faroe-Shetland Channel (West of Shetland). The fisheries to the West of the Hebrides can be further divided by the fishing method used into bottom trawl, semipelagic trawl and longline. The bottom-trawl fisheries extend from the shelf-slope break down to about 1700 m and the target species varies with depth. The smallest vessels in the fleet fish on the upper slope, where an important target species is the anglerfish or monkfish ( Lophius spp.). On the mid-slope the main target species are blue ling ( Molva dypterygia) and roundnose grenadier ( Coryphaenoides rupestris), with bycatches of black scabbardfish ( Aphanopus carbo) and deep-water sharks. On the lower slope orange roughy ( Hoplostethus atlanticus) is an important target species. The major semipelagic trawl fishery is a seasonal fishery on spawning aggregations of blue whiting

  15. The hydrography of the mid-latitude northeast Atlantic Ocean. I: The deep water masses

    NASA Astrophysics Data System (ADS)

    van Aken, Hendrik M.

    2000-05-01

    The circulation of the deep water masses in the mid-latitude northeast Atlantic Ocean was studied by analysis of the distributions of potential temperature, salinity, dissolved oxygen, phosphate, nitrate, and silicate. Pre-formed nutrients were used to allow a quantitative description of the deep water masses, especially the Northeast Atlantic Deep Water, in terms of four local source water types: Iceland-Scotland Overflow Water, Lower Deep Water, Labrador Sea Water, and Mediterranean Sea Water. Over the Porcupine Abyssal Plain between 2500 and 2900 dbar Northeast Atlantic Deep Water appears to be a mixture of mainly Iceland-Scotland Overflow Water and Labrador Sea Water (˜80%), with minor contributions of Lower Deep Water and Mediterranean Sea Water. When the Northeast Atlantic Deep Water re-circulates in the north-eastern Atlantic and flows southwards towards the Madeira Abyssal Plain, contributions of the former two water types of northern origin diminish to about 50% due to diapycnal mixing with the overlying and underlying water masses. The observed meridional and zonal trends of dissolved oxygen and nutrients in the Northeast Atlantic Deep Water appear to be caused both by diapycnal mixing with the underlying Lower Deep Water and by mineralization of organic matter. The eastward decrease of oxygen and increase of nutrients especially require considerable mineralization of organic matter near the European continental margin. At deeper levels (˜4100 dbar), where the nutrient rich Lower Deep Water is found near the bottom, the meridional gradients of oxygen and nutrients are opposite to those found between 2500 and 2900 dbar. Diapycnal mixing cannot explain this change in gradients, which is therefore considered to be a qualitative indication of ageing of the Lower Deep Water when it flows northwards. A considerable part of the Iceland-Scotland Overflow Water and the Lower Deep Water that enter the northeast Atlantic may be removed by deep upwelling in the Bay

  16. Seismic sequence stratigraphy of Tertiary sediments, offshore Sarawak deep-water area

    SciTech Connect

    Mohammad, A.M. )

    1994-07-01

    Tectonic processes and sea level changes are the main key factors that have strongly influenced clastic and carbonate sedimentations in the Sarawak deep-water area. A seismic sequence stratigraphy of Tertiary sediments was conducted in the area with the main objective of developing a workable genetic chronostratigraphic framework that defines the sequence and system tracts boundaries within which depositional systems and lithofacies can be identified, mapped and interpreted. This study has resulted in the identification of eight major depositional sequences that are bounded by regional unconformities and correlative conformities. These sequences can generally be grouped into four megasequences, based on the main tectonic events observed in the area. Three system tracts of a type-1, third-order sequence boundary were recognized in most of the sequences: lowstand, transgressive, and highstand systems tracts. The lowstand system tract includes basin-floor fans, slope fans, and lowstand prograding wedges. Paleoenvironmental distribution maps constructed for each of the sequences using seismic facies analysis and nearby well control suggest that the sequence intervals are predominantly transgressive units that have been intermittently interrupted by regressive pulses brought about by changes in eustatic sea level. The trend of paleocoastline observed during Oligocene to Miocene times changes from northwest-southeast orientation to a position roughly parallel to the present coastline. Seismic facies maps generated from late Oligocene to early Miocene indicate the depositional environment was coastal to coastal plain in the western and the middle part of the study area, becoming more marine toward the east and northeast.

  17. Cestodes from deep-water squaliform sharks in the Azores

    NASA Astrophysics Data System (ADS)

    Caira, Janine N.; Pickering, Maria

    2013-12-01

    The majority of our knowledge on marine tapeworms (cestodes) is limited to taxa that are relatively easy to obtain (i.e., those that parasitize shallower-water species). The invitation to participate in a deep-water research survey off the Condor seamount in the Azores offered the opportunity to gain information regarding parasites of the less often studied sharks of the mesopelagic and bathypelagic zone. All tapeworms (Platyhelminthes: Cestoda) found parasitizing the spiral intestine of squaliform shark species (Elasmobranchii: Squaliformes) encountered as part of this survey, as well as some additional Azorean sampling from previous years obtained from local fishermen are reported. In total, 112 shark specimens of 12 species of squaliform sharks representing 4 different families from depths ranging between 400 and 1290 m were examined. Cestodes were found in the spiral intestines from 11 of the 12 squaliform species examined: Deania calcea, D. cf. profundorum, D. profundorum, Etmopterus princeps, E. pusillus, E. spinax, Centroscyllium fabricii, Centroscymnus coelolepis, C. cryptacanthus, C. crepidater, and Dalatias licha. No cestodes were found in the spiral intestines of Centrophorus squamosus. Light microscopy and scanning electron microscopy revealed several potentially novel trypanorhynch and biloculated tetraphyllidean species. Aporhynchid and gilquiniid trypanorhynchs dominated the adult cestode fauna of Etmopterus and Deania host species, respectively, while larval phyllobothriids were found across several host genera, including, Deania, Centroscyllium, and Centroscymnus. These results corroborate previous findings that deep-water cestode faunas are relatively depauperate and consist primarily of trypanorhynchs of the families Gilquiniidae and Aporhynchidae and larval tetraphyllideans. A subset of specimens of most cestode species was preserved in ethanol for future molecular analysis to allow more definitive determinations of the identification of the

  18. Temporal coherence of sound transmissions in deep water revisited.

    PubMed

    Yang, T C

    2008-07-01

    This paper examines the signal coherence loss due to internal waves in deep water in terms of the signal coherence time and compare to data reported in the literature over the past 35 years. The coherence time of the early raylike arrivals was previously modeled by Munk and Zachariasen ["Sound propagation through a fluctuating stratified ocean: Theory and observation," J. Acoust. Soc. Am. 59, 818-838 (1976)] using the supereikonal approximation and by Dashen et al. ["Path-integral treatment of acoustic mutual coherence functions for arrays in a sound channel," J. Acoust. Soc. Am. 77, 1716-1722 (1985)] using the path integral approach; a -1 [corrected] power frequency dependence and a -1/2 [corrected] power range dependence were predicted. Recent data in shallow water in downward refractive environments with internal waves suggested that the signal coherence time of the mode arrivals follows a -3/2 power frequency dependence and a -1/2 power range dependence. Since the temporal coherence of the acoustic signal is related to the temporal coherence of the internal waves, based on the observation that the (linear) internal waves in deep and shallow waters have a similar frequency spectrum, it is argued that the modelike arrivals in deep water should exhibit a similar frequency dependence in deep and shallow waters. This argument is supported by a brute-force application of the path integral to mode arrivals based on the WKB relation between the ray and mode. It is found that the data are consistent with the -3/2 power frequency dependence but more data are needed to further test the hypothesis.

  19. Implementation and testing of a Deep Water Correlation Velocity Sonar

    SciTech Connect

    Dickey, F.R.; Bookheimer, W.C.; Rhoades, K.W.

    1983-05-01

    The paper describes a new sonar designated the Magnavox MX 810 Deep Water Correlation Sonar which is under development by the General Electric Company and the Magnavox Advanced Products and Systems Company. The sonar measures ship's velocity relative to the bottom but instead of using the conventional doppler effect, it uses the correlation method described by Dickey and Edward in 1978. In this method, the narrow beams required for doppler are not needed and a low frequency that penetrates to the bottom in deep water is used. The sonar was designed with the constraint that it use a transducer that mounts through a single 12 inch gate valve. Most offshore geophysical surveys at present make use of an integrated navigation system with bottom referenced velocity input from a doppler sonar which, because of limitations on the sonar bottomtracking range, has difficulty in areas where the water depth is greater than about 500 meters. The MX 810 provides bottom tracking in regions of much greater water depth. It also may be applied as an aid in continuous positioning of a vessel over a fixed location. It also should prove useful as a more general navigation aid. The sonar is undergoing a series of tests using Magnavox's facilities for the purpose of verifying the performance and obtaining data to support and quantify planned improvements in both software and hardware. A prototype transducer of only 5 watts power output was used, but in spite of this low power, successful operation to depths of 1900 meters was obtained. Extrapolation to system parameters to be implemented in production models predicts operation to depths of 5000 meters.

  20. Intermediate and deep water formation in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirohiko; Nishina, Ayako; Liu, Zhaojun; Tanaka, Fumiyo; Wimbush, Mark; Park, Jae-Hun

    2013-12-01

    Water mass formation in the intermediate and deep layers of the Okinawa Trough is investigated using two distinct data sets: a quasi-climatological data set of the water properties of the minimum salinity surface produced from Argo float profiles and historical CTD data, and a velocity data set in the Kerama Gap measured by moored current meters during June 2009 to June 2011. The formation process of Okinawa Trough Intermediate Water is explained on the basis of horizontal advection and mixing of North Pacific Intermediate Water (NPIW) and South China Sea Intermediate Water (SCSIW). The salinity-minimum water intruding into the Okinawa Trough through the channel east of Taiwan is approximately composed of 45% NPIW and 55% SCSIW, while that through the Kerama Gap is 75% NPIW and 25% SCSIW. Salinities of these water masses increase in the Okinawa Trough due to strong diapycnal diffusion; its coefficient is estimated as 6.8-21.5 × 10-4 m2 s-1 based on a simple advection-diffusion equation. On the other hand, deep water in the Okinawa Trough, below the sill depth of the Kerama Gap (˜1100 m), is ventilated by overflow in the bottom layer of the Kerama Gap down to the deepest layer (˜2000 m) in the southern Okinawa Trough. A simple box model predicts that this bottom overflow (0.18-0.35 Sv) causes strong upwelling (3.8-7.6 × 10-6 m s-1) in the southern Okinawa Trough, which must be maintained by buoyancy gain of the deep water due to strong diapycnal diffusion (4.8-9.5 × 10-4 m2 s-1).

  1. Implications of Subduction Rehydration for Earth's Deep Water Cycle

    NASA Astrophysics Data System (ADS)

    Ruepke, L. H.; Phipps Morgan, J.; Dixon, J.

    2006-12-01

    The presence of liquid water is the principle difference between our Earth and other planets in the solar system. The global ocean is the obvious surface expression of this. The 'standard model' for the genesis of the oceans is that they are exhalations from Earth's deep interior continually rinsed through surface rocks by the global hydrologic cycle. The question of how much water resides within the Earth's deep interior remains unresolved and is a matter of vigorous ongoing scientific debate. We have addressed the question of water distribution between the exosphere and the mantle throughout Earth's history with simple mass balance considerations. In our model, water is outgassed from the mantle into the exosphere (atmosphere + continental crust) during pressure-release melting at mid-ocean ridges and hotspots. Plate subduction may transport water back from the surface into the deeper mantle thereby 'closing' the global geologic water cycle. In series of some 5000 model runs we have thoroughly explored the mutual effect of model parameters. All models correctly predict the formation of the present-day oceans but differ in their predicted sea-level changes through time and in the amount of water in the present-day mantle. To distinguish which model runs are the most realistic we use geochemical constraints and observed sealevel changes during the Phanerozoic. Recently Dixon et al. [2002] estimated water concentrations for some of the major mantle components and concluded that the most primitive (FOZO) are significantly wetter than the recycling associated EM or HIMU mantle components and the even drier depleted mantle source that melts to form MORB. Sealevel changes over hundreds of million of years are notoriously bad constrained. But a maximum drop in sealevel of 400-600m appears to be an upper bound. We find that only those model runs are consistent with these constraints in which deep water subduction is limited and in which the present-day mantle is

  2. Dunes versus ripples in deep-water, fine-grained sediments

    NASA Astrophysics Data System (ADS)

    Masalimova, L.; Lowe, D. R.

    2012-12-01

    The Lower Mount Messenger Formation (LMMF) is characterized by fine- to very fine-grained sediments. While the grain size doesn't change much within the formation, the sedimentary structures do. Perhaps the most striking difference between the channels in the upper part of the LMMF and the lobes in the lower part of the LMMF is the abundance of large-scale, climbing-dune cross-stratification in the lobes and of small-scale, climbing-ripple cross-lamination within channels. The sole presence of climbing dunes in fine-grained sandstones in deep-water lobe complex is surprising. Firstly, dunes are characteristic features largely in fluvial environments. Cross-stratification is not a widespread sedimentary structure in deep-water, part of the reason might be the difficulty in recognizing subtle stratification in weathered outcrop. The absence can be also explained by the fact that the flows might be insufficiently deep or there is never sufficient time for dune formation. Secondly, the hydraulics of the cross-stratification requires sand coarser than 0.2 mm (middle fine sand) to form dunes based on flume experiments. The cross-stratification mostly was documented in deep-water in coarse-grained sediments such as pebbles and gravels in southern Chile and in Quebec, medium to granule-grade sands in Oceanographer Canyon, and medium to coarse-grained sands in the Eocene Hecho Group, etc. Nevertheless, the dunes are documented in fine-grained systems such as Brushy Canyon Formation (the authors use "plow-and-fill" term instead of "dunes"). Thirdly, the cross-stratification is generally documented in confined setting such as channels and scours. But this study shows that the cross-stratification can be present in largely unconfined depositional setting of the LMMF. We postulate that the dunes found in the LMMF can be unusually high ripples from the hydrodynamic point of view. Considering the facts that (1) ripples are different from dunes in outcrop by size and the size of

  3. Turbidite systems in deep-water basin margins classified by grain size and feeder system

    SciTech Connect

    Reading, H.G. ); Richards, M. )

    1994-05-01

    Depositional system in deep-water basin margins can be classified on the basis of grain size and feeder system into 12 classes: mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]point-source submarine fans,[close quotes] mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]multiple-source submarine ramps;[close quotes] and mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]linear-source slope aprons.[close quotes] The size and stability of channels and the organization of the depositional sequences decreases toward a linear source as does the length:width ratio of the system. As grain size increases, so does slope gradient, impersistence of channel systems, and tendency for channels to migrate. As grain size diminishes, there is an increase in the size of the source area, the size of the depositional system, the downcurrent length, the persistence and size of flows, fan channels, channel-levee systems, and in the tendency to meander and for major slumps and sheet sands to reach the lower fan and basin plan. The exact positioning of any one depositional system within the scheme cannot always be precise and the position may be altered by changes in tectonic, climate, supply, and sea level. The models derived from each system are sufficiently different to significantly affect the nature of petroleum prospectivity and reservoir pattern. Understanding and recognizing this variability is crucial to all elements of the exploration-production chain. In exploration, initial evaluations of prospectivity and commerciality rely on the accurate stratigraphic prediction of reservoir facies, architecture, and trapping styles. For field appraisal and reservoir development, a similar appreciation of variability aids reservoir description by capturing the distribution and architecture of reservoir and nonreservoir facies and their impact on reservoir delineation, reservoir behavior, and production performance. 161 refs., 19 figs., 4 tabs.

  4. Climatically induced sedimentary cycles in Pliocene deep-water carbonates

    SciTech Connect

    Gardulski, A.F. )

    1991-03-01

    Two DSDP sites (86 and 94) on the Campeche ramp in the southern Gulf of Mexico penetrated more than 100 m of Pliocene pelagic ooze. The ooze is primarily carbonate, with a much smaller volcanic ash component than occurs in some Pleistocene sediments at these sites. Cores recovered from these holes display variations in carbonate mineralogy as well as total carbonate and sand abundances that are correlated with the oxygen isotope stratigraphy. Diagenetic loss of Mg-calcite is complete by the base of the Pleistocene, but aragonite, especially high-Sr aragonite forming algal needles that were transported off the shelf to the slope, persists through upper Pliocene cores. Variations in oxygen isotope ratios in planktonic foraminifera occur throughout the Pliocene, although the amplitude of those cycles is smaller than for the Pleistocene, with its more dramatic glacial-interglacial contrasts. As in overlying Pleistocene slope sediments, cooler intervals correspond with greater abundances of aragonite in the upper Pliocene section, reflecting a shift of the shallow, productive shelf seaward across the ramp surface during times of relatively low sea level. However, the aragonite abundances in the Pliocene are reduced on average compared to the Pleistocene. This difference is due in part to diagenetic loss, but also it likely reflects the overall higher sea level that apparently characterized Pliocene oceans, trapping more algal aragonite landward. Although sea level and climatic fluctuations were indeed less extreme in the Pliocene, they were still sufficient to generate sedimentary cycles in deep-water carbonates.

  5. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  6. Ireland's deep-water coral carbonate mounds: multidisciplinary research results

    NASA Astrophysics Data System (ADS)

    Kozachenko, M.; Wheeler, A.; Beyer, A.; Blamart, D.; Masson, D.; Olu-Le Roy, K.

    2003-04-01

    Recent international research activity, involving a strong Irish collaboration, has shown that coral reefs are not exclusively associated with warm tropical waters but are also present in the deeper and colder Northeast Atlantic. In the Porcupine Seabight west of Ireland, coral-colonised carbonate mounds (up to 350m high) are present at 600-900m water depth. The corals Lophelia pertusa L. and Madrepora oculata L. contribute to this diverse ecosystem that may also play a significant role in expanding deep-water fisheries. New side-scan sonar, multibeam echosounder, sub-bottom profiler and underwater video imagery supplemented with sedimentological sample material were used to map the seabed in the environs of the Belgica Carbonate Mound province, eastern Porcupine Seabight. The data were integrated in a GIS and provides information on sediment pathways and benthic current patterns within the study area. A facies map of the study area highlights differing sedimentary processes showing evidences for strong northward bottom currents whose interaction has an influence on mounds growth and morphology. This survey revealed mound flanks dominated by sediment waves that give way to coral banks towards the mound summits. A form of coral accumulation was also documented. Detailed analyses of sediment properties from long cores through sediment drifts have generated a high-resolution palaeoclimate record revealing temporal patterns in bottom current strength variations. An accurate assessment of this influence on mound through a comparison with coral growth rates is ongoing.

  7. High archaeal diversity in Antarctic circumpolar deep waters.

    PubMed

    Alonso-Sáez, Laura; Andersson, Anders; Heinrich, Friederike; Bertilsson, Stefan

    2011-12-01

    Archaea are abundant in polar oceans but important ecological aspects of this group remain enigmatic, such as patterns of diversity and biogeography. Here, we provide the first high-throughput sequencing population study of Antarctic archaea based on 198 bp fragments of the 16S rRNA gene, targeting different water masses across the Amundsen and Ross Seas. Our results suggest that archaeal community composition is strongly shaped by hydrography and significantly influenced by environmental parameters. Archaeal communities from cold continental shelf waters (SW) of the Ross Sea were similar over depth with a single thaumarchaeal phylotype dominating Antarctic surface waters (AASW) and deeper SW (contributing up to 80% of reads). However, this phylotype contributed less than 8% of reads in circumpolar deep waters (CDW). A related thaumarchaeon (98% identity) was almost absent in AASW, but contributed up to 30% of reads in CDW, suggesting ecological differentiation of closely related phylotypes. Significantly higher archaeal richness and evenness were observed in CDW, with Shannon indices (c. 2.5) twice as high as for AASW, and high contributions of Group II Euryarchaeota. Based on these results, we suggest that CDW is a hotspot of archaeal diversity and may play an important role in the dispersal of archaeal phylotypes to other oceanic water masses.

  8. Mechanical stratigraphy of deep-water sandstones: insights from a multisciplinary field and laboratory study

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; di Celma, Claudio; Tondi, Emanuele; Corradetti, Amerigo; Cantalamessa, Gino

    2010-05-01

    -perpendicular joint spacing/bed thickness (S/T) relationships on sandstone bodies that experienced similar diagenetic and tectonic histories. The field area is located in the Periadriatic foreland basin, eastern central Italy, which show late Pliocene slope turbidites in excellent 3d views. The Periadriatic foreland basin is an elongated, roughly N-S oriented trough located immediately east of the Apennines fold-thrust belt. The basin fill mostly consists of deepwater Plio-Pleistocene sediments partially incorporated into the frontal part of the orogenic wedge. During the late Pliocene, gravel and sand originated from the uplifting Apennines were abundantly supplied to the deep-water basin through a series of erosional conduits that, in the rock record, appear as a series of N-S oriented slope submarine canyon systems deeply incised into the hemipelagic mudstones of the adjacent slope. The studied exposure allows direct observation of spatial and temporal relationships among the various depositional elements comprising the canyon system and related lithofacies, as well as the bed-perpendicular joint density within each lithofacies. We performed a multidisciplinary work involving the following tasks: (i) 3D stratigraphic model of the depositional architecture of the Castignano and Ascensione canyon systems (Marche region, Italy); (ii) 2D scanline survey of several outcrops displaying bed-perpendicular joints; (iii) digital image analysis of selected thin-section obtained from oriented hand samples to characterize the 3D intergranualr porosity; (iv) Stiffness analysis of representative sandstone bodies by mean of Schmidt hammer tests. The first results of this ongoing study on the mechanical stratigraphy of the two Late Pliocene canyon systems are consistent with the joint density being effected by both geometrical (i.e., bed thickness) and mechanical properties. This data set will help field and experimental geologists to better define common strategies to assess the controlling

  9. Experimental study on plunging breaking waves in deep water

    NASA Astrophysics Data System (ADS)

    Lim, Ho-Joon; Chang, Kuang-An; Huang, Zhi-Cheng; Na, Byoungjoon

    2015-03-01

    This study presents a unique data set that combines measurements of velocities and void fraction under an unsteady deep water plunging breaker in a laboratory. Flow properties in the aerated crest region of the breaking wave were measured using modified particle image velocimetry (PIV) and bubble image velocimetry (BIV). Results show that the maximum velocity in the plunging breaker reached 1.68C at the first impingement of the overturning water jet with C being the phase speed of the primary breaking wave, while the maximum velocity reached 2.14C at the beginning of the first splash-up. A similarity profile of void fraction was found in the successive impinging and splash-up rollers. In the highly foamy splashing roller, the increase of turbulent level and vorticity level were strongly correlated with the increase of void fraction when the range of void fraction was between 0 and 0.4 (from the trough level to approximately the center of the roller). The levels became constant when void fraction was greater than 0.5. The mass flux, momentum flux, kinetic energy, potential energy, and total energy were computed and compared with and without the void fraction being accounted for. The results show that all the mean and turbulence properties related to the air-water mixture are considerably overestimated unless void fraction is considered. When including the density variation due to the air bubbles, the wave energy dissipated exponentially a short distance after breaking; about 54% and 85% of the total energy dissipated within one and two wavelengths beyond the breaking wave impingement point, respectively.

  10. Stability of steep gravity capillary solitary waves in deep water

    NASA Astrophysics Data System (ADS)

    Calvo, David C.; Akylas, T. R.

    2002-02-01

    The stability of steep gravity capillary solitary waves in deep water is numerically investigated using the full nonlinear water-wave equations with surface tension. Out of the two solution branches that bifurcate at the minimum gravity capillary phase speed, solitary waves of depression are found to be stable both in the small-amplitude limit when they are in the form of wavepackets and at finite steepness when they consist of a single trough, consistent with observations. The elevation-wave solution branch, on the other hand, is unstable close to the bifurcation point but becomes stable at finite steepness as a limit point is passed and the wave profile features two well-separated troughs. Motivated by the experiments of Longuet-Higgins & Zhang (1997), we also consider the forced problem of a localized pressure distribution applied to the free surface of a stream with speed below the minimum gravity capillary phase speed. We find that the finite-amplitude forced solitary-wave solution branch computed by Vanden-Broeck & Dias (1992) is unstable but the branch corresponding to Rayleigh’s linearized solution is stable, in agreement also with a weakly nonlinear analysis based on a forced nonlinear Schrödinger equation. The significance of viscous effects is assessed using the approach proposed by Longuet-Higgins (1997): while for free elevation waves the instability predicted on the basis of potential-flow theory is relatively weak compared with viscous damping, the opposite turns out to be the case in the forced problem when the forcing is strong. In this régime, which is relevant to the experiments of Longuet-Higgins & Zhang (1997), the effects of instability can easily dominate viscous effects, and the results of the stability analysis are used to propose a theoretical explanation for the persistent unsteadiness of the forced wave profiles observed in the experiments.

  11. Deep-Water Resedimented Carbonate Exploration Play Types: Controls and Models

    NASA Astrophysics Data System (ADS)

    Minzoni, M.; Janson, X.; Kerans, C.; Playton, T.; Winefield, P.; Burgess, P. M.

    2016-12-01

    Deepwater resedimented deposits have been described in both modern and ancient carbonate sequences, many with good reservoir potential, for example the giant Cretaceous Poza Rica field in Mexico ( 40 MMBoe), the Mississippian Tangiz field in Kazakhstan, and several fields in the U.S. Permian basin (several Tcf gas). Nevertheless, carbonate slope and basin systems remain poorly understood when compared to their siliciclastic counterparts. Legacy published and unpublished work, combined with a global database of surface and sub-surface examples of resedimented carbonates, has highlighted that downslope resedimentation of carbonate material is in large part controlled by the evolution of the parent platform margin, which in turn is best characterized in terms of various controlling processes such as the carbonate factory type, tectonic setting, eustatic variations, and prevailing wind direction and ocean current patterns. Two generic play types emerge: (i) attached carbonate slope play -developed immediately adjacent to the parent carbonate platform and dominated by rock fall and platform collapse deposits or in situ boundstone; and (ii) detached carbonate slope play - deposited further from the platform margin via channelized turbidity currents and other mass-flow processes. High-rising, steep, bypass platform margins with collapse scars and grain-dominated factories have the highest potential to generate channelized and detached deep-water reservoirs with high initial porosity and permeability. Best reservoirs are aragonitic grainstones transported from the platform into the adjacent basin, and undergoing dissolution in submarine undersaturated water with early formation of secondary porosity to further enhance reservoir properties. Any exploration model aiming at identifying potential resedimented carbonate plays should be based on carbonate platform configurations and factory types favorable for re-sedimentation of large sedimentary bodies and preservation or

  12. Climate variability and deep water mass characteristics in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Georgiou, S.; Mantziafou, A.; Sofianos, S.; Gertman, I.; Özsoy, E.; Somot, S.; Vervatis, V.

    2015-01-01

    The main objective of this study is to investigate the variability of the thermohaline characteristics of the deep-water masses in the Aegean Sea and the possible impact of the regional atmospheric forcing variability by analyzing the available oceanographic and atmospheric datasets for the period of 1960-2012. During this period the variability of the deep water characteristics of the Aegean sub-basins is found to be very large as well as the diversity of the deep water characteristics among the sub-basins. The Central Aegean seems to play the key role in the Aegean deep water formation processes. Due to its small size, the Aegean Sea surface responds rapidly to the meteorological changes and/or the variability of the lateral fluxes and this variability propagates in the thermohaline characteristics of the deep water masses of the basin through deep water formation processes. There are many episodes characterized by a tight coupling of the atmosphere and the ocean during the examined period, with the Eastern Mediterranean Transient (EMT) being the most prominent case. We suggest that deep water formation is triggered mostly by the combination of preconditioning during early winter and/or previous winters together with the number of subsequent extreme events during present winter and not only by the total amount of the extreme heat loss winter days.

  13. One-Dimensional Hydraulic Theory Applied to Experimental Subaqueous Fans with Supercritical Distributaries

    NASA Astrophysics Data System (ADS)

    Hamilton, P.; Strom, K.; Hoyal, D. C. J. D.

    2015-12-01

    Subaqueous fans are distributive channel systems that form in a variety of settings including offshore marine, sub-lacustrine, and reservoirs. These distributive systems create complex sedimentation patterns through repeated avulsion to fill in a basin. Here we ran a series of experiments to explore the intrinsic controls on avulsion cycles on subaqueous fans. Experiments are a convenient way to study these systems since the time-scale of fan development is dramatically shortened compared to natural settings, all boundary conditions can be controlled, and the experimental domain can be instrumented to monitor the pertinent hydraulic and morphologic variables. Experiments in this study used saline underflows and crushed plastic sediment fed down an imposed slope covered in the sediment. Avulsion cycles are a central feature in these experiments which are characterized by: (1) channel extension and stagnation; (2) bar aggradation and hydraulic jump initiation; (3) upstream retreat; and (4) flow avulsion. Looking at and analyzing these cycles yield the following conclusions: (1) distributive channels cease progradation due to a drop in sediment transport capacity in an expanded region ahead of the channel; (2) mouth bar aggradation leads to a large flow obstacle to cause the hydraulic jump feedback; (3) hydraulic jump regions are a significant locus of deposition; and (4) the upstream retreat rate is a function of sediment supply and the strength of the jump. We found that simple one-dimensional hydraulic principles such as the choked flow condition and the sequent depth ratio help to explain hydraulic jump initiation and emplaced lobe thickness respectively.

  14. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2016-06-21

    the "Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...15. SUBJECT TERMS ocean acoustics, deep water acousti c propagati on 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c...the 2009- 2011 NPAL Philippine Sea experiments funded by ONR Grant NOOO 14- 08-1-0840, although some additional work on deep-water ocean acoustics is

  15. Distribution of deep-water Scleractinian corals in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Keller, N. B.; Oskina, N. S.; Savilova, T. A.

    2017-03-01

    The distribution pattern of deep-water Scleractinian corals was studied in the Atlantic Ocean at a depth more than 2 km on the basis of our own and published data. It was shown that deep-water corals predominate (with respect to species diversity and number) in the eastern part of the ocean. In its western part, some species ( Desmophyllum dianthus, Flabellum angulare, etc.) were not revealed. In the tropical zone of the North Atlantic, the distribution pattern of shallow- and deep-water corals differs. At the coast of South America, deepwater corals are absent, which is probably related to the deep part of the global oceanic conveyor belt.

  16. Detailed subsurface descriptions drive record breaking wells in the deep water Gulf of Mexico

    SciTech Connect

    Guderjahn, C.; Hill, P.; Blankenship, C.; Epps, D.

    1996-12-31

    Increased well productivity is motivating development teams to successfully complete record breaking wells. Advances in subsurface description are leveraging with breakthroughs in drilling and completion technology to achieve new levels of financial performance. Gulf of Mexico industry and company records have recently been set in extended reach drilling, horizontal drilling, curvilinear completions, and frac-packed high angle completions. These advanced well designs are establishing new production records in the deep water Gulf of Mexico. Improvements in 3D seismic imaging, geologic depositional models, and reservoir pressure predictions are enhancing the subsurface model such that significant productivity benefits are achieved by targeting completions in specific geometries. Advances in directional drilling accuracy and the utilization of synthetic oil-base muds are assuring that wells are placed precisely on target. In the BP operated Pompano Field horizontal wells have been placed down turbidite channel axes, high angle wells are used to connect separate reservoir compartments, extended reach wells have been steered away from over-pressured sections identified from seismic, and a multi-lateral completion is next on the drilling schedule. Multi-disciplinary innovation and focused teamwork is also changing behavioral working styles. It is now accepted that the {open_quote}teams{close_quotes} consist of geoscientists, engineers, and offshore drilling hands. Well planning takes place both on the rig floor and in the office. The payoff for further integration is higher profits, lower risk, and a safer working environment.

  17. Detailed subsurface descriptions drive record breaking wells in the deep water Gulf of Mexico

    SciTech Connect

    Guderjahn, C.; Hill, P.; Blankenship, C.; Epps, D. )

    1996-01-01

    Increased well productivity is motivating development teams to successfully complete record breaking wells. Advances in subsurface description are leveraging with breakthroughs in drilling and completion technology to achieve new levels of financial performance. Gulf of Mexico industry and company records have recently been set in extended reach drilling, horizontal drilling, curvilinear completions, and frac-packed high angle completions. These advanced well designs are establishing new production records in the deep water Gulf of Mexico. Improvements in 3D seismic imaging, geologic depositional models, and reservoir pressure predictions are enhancing the subsurface model such that significant productivity benefits are achieved by targeting completions in specific geometries. Advances in directional drilling accuracy and the utilization of synthetic oil-base muds are assuring that wells are placed precisely on target. In the BP operated Pompano Field horizontal wells have been placed down turbidite channel axes, high angle wells are used to connect separate reservoir compartments, extended reach wells have been steered away from over-pressured sections identified from seismic, and a multi-lateral completion is next on the drilling schedule. Multi-disciplinary innovation and focused teamwork is also changing behavioral working styles. It is now accepted that the [open quote]teams[close quotes] consist of geoscientists, engineers, and offshore drilling hands. Well planning takes place both on the rig floor and in the office. The payoff for further integration is higher profits, lower risk, and a safer working environment.

  18. Deep-water renewal by turbidity currents in the Sulu Sea

    NASA Astrophysics Data System (ADS)

    Quadfasel, Detlef; Kudrass, Hermann; Frische, Andrea

    1990-11-01

    THE ventilation of the intermediate and deep layers of the ocean is governed by convection: dense water formed at the sea surface through air-sea interaction processes (mainly at high latitudes) sinks to great depths. Convection determines the heat, salt and dissolved-gas budgets of the ocean's interior and therefore exerts a significant influence on the Earth's climate. Convective processes can also be initiated by the flow of dense water over submarine sills separating ocean basins with water masses of different buoyancy. Here we report the observation of relatively light deep water in the overflow region near the sill in the northern part of the 5,000-m-deep Sulu Sea. Because of its buoyancy, this water could not have reached the sea floor of its own accord. Turbidity currents, induced by changes in water density that result from sediment influx, occur in this region at intervals of several decades, as indicated by the frequent deposition of graded sequences of silty mud on the abyssal plain. We suggest that such turbidity currents, combined with the effects of classical hydrological plume convection, are capable of bringing light water to large depths. In tropical regions, where normal oceanic convection is relatively weak, this mechanism may contribute significantly to the ventilation of deep basins.

  19. A Possible Role for Agglutinated Foraminifers in the Growth of Deep-Water Coral Bioherms

    NASA Astrophysics Data System (ADS)

    Messing, C. G.; Reed, J. K.; Brooke, S. D.

    2008-05-01

    Exploration of deep-water bioherms dominated by the scleractinian corals Lophelia pertusa and Enallopsammia profunda along the east coast of Florida in ~400-800 m depth reveals an often dense and rich assemblage of small (~1-30 mm) epifauna on dead coral branches, which is often dominated by agglutinated astrorhizacean foraminifers accompanied by thecate and athecate hydroids, sponges, stylasterids, anemones and barnacles. The dominant agglutinated foraminifer is an arborescent form up to 15 mm tall, consisting of a basal tube that gives rise to branchlets of successively decreasing diameter and thickly coated with fine-grained material including coccoliths and diatom frustules. The large numbers of foraminifers generate an enormous adhesive, sediment-trapping surface area and may represent an important accelerated route for sediment deposition and bioherm growth relative to baffling of suspended sediment particles by the coral branches themselves. These foraminifers also occur on still living coral, suggesting that they may either contribute to coral death or invade stressed colonies. They may thus be responsible for or contribute to the small percent of living corals observed in many of these habitats. Other epifauna appear to colonize after the coral has died.

  20. 75 FR 23189 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using Trawl Gear in the Gulf of Alaska... comprise the deep-water species fishery by vessels using trawl gear in the Gulf of Alaska (GOA). This... prohibiting directed fishing for the deep-water species fishery by vessels using trawl gear in the GOA....

  1. 77 FR 46338 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using Trawl Gear in the Gulf of Alaska... comprise the deep-water species fishery by vessels using trawl gear in the Gulf of Alaska (GOA). This..., NMFS is prohibiting directed fishing for the deep-water species fishery by vessels using trawl gear...

  2. 76 FR 23511 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using Trawl Gear in the Gulf of Alaska... comprise the deep-water species fishery by vessels using trawl gear in the Gulf of Alaska (GOA). This... prohibiting directed fishing for the deep-water species fishery by vessels using trawl gear in the GOA....

  3. 77 FR 24154 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using Trawl Gear in the Gulf of Alaska... comprise the deep-water species fishery by vessels using trawl gear in the Gulf of Alaska (GOA). This... specified for the deep-water species fishery in the GOA has been reached. DATES: Effective 1200 hrs, Alaska...

  4. 76 FR 39790 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher Vessels in the Gulf of Alaska AGENCY... the deep-water species fishery for catcher vessels subject to sideboard limits established under the... Pacific halibut prohibited species catch (PSC) sideboard limit specified for the deep-water...

  5. 75 FR 38939 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher/Processor Rockfish Cooperatives in the Gulf... for species that comprise the deep-water species fishery by catcher/processor rockfish cooperatives... limit specified for the deep-water species fishery by catcher/processor rockfish cooperatives subject...

  6. 75 FR 38937 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher Vessels in the Gulf of Alaska AGENCY... the deep-water species fishery for catcher vessels subject to sideboard limits established under the... Pacific halibut prohibited species catch (PSC) sideboard limit specified for the deep-water...

  7. Deep water masses and sediments are main compartments for polychlorinated biphenyls in the Arctic Ocean.

    PubMed

    Sobek, Anna; Gustafsson, Örjan

    2014-06-17

    There is a wealth of studies of polychlorinated biphenyls (PCB) in surface water and biota of the Arctic Ocean. Still, there are no observation-based assessments of PCB distribution and inventories in and between the major Arctic Ocean compartments. Here, the first water column distribution of PCBs in the central Arctic Ocean basins (Nansen, Amundsen, and Makarov) is presented, demonstrating nutrient-like vertical profiles with 5-10 times higher concentrations in the intermediate and deep water masses than in surface waters. The consistent vertical profiles in all three Arctic Ocean basins likely reflect buildup of PCBs transported from the shelf seas and from dissolution and/or mineralization of settling particles. Combined with measurement data on PCBs in other Arctic Ocean compartments collected over the past decade, the total Arctic Ocean inventory of ∑7PCB was estimated to 182 ± 40 t (±1 standard error of the mean), with sediments (144 ± 40 t), intermediate (5 ± 1 t) and deep water masses (30 ± 2 t) storing 98% of the PCBs in the Arctic Ocean. Further, we used hydrographic and carbon cycle parametrizations to assess the main pathways of PCBs into and out of the Arctic Ocean during the 20th century. River discharge appeared to be the major pathway for PCBs into the Arctic Ocean with 115 ± 11 t, followed by ocean currents (52 ± 17 t) and net atmospheric deposition (30 ± 28 t). Ocean currents provided the only important pathway out of the Arctic Ocean, with an estimated cumulative flux of 22 ± 10 t. The observation-based inventory of ∑7PCB of 182 ± 40 t is consistent with the contemporary inventory based on cumulative fluxes for ∑7PCB of 173 ± 36 t. Information on the concentration and distribution of PCBs in the deeper compartments of the Arctic Ocean improves our understanding of the large-scale fate of POPs in the Arctic and may also provide a means to test and improve models used to assess the fate of organic pollutants in the Arctic.

  8. New records of Primnoidae (Cnidaria: Octocorallia) in Brazilian deep waters

    NASA Astrophysics Data System (ADS)

    Arantes, Renata C. M.; Loiola, Livia L.

    2014-01-01

    The knowledge of octocorals occurring in Brazilian deep waters is still lacking, with only a few studies conducted so far, most of which focused on large-scale marine habitats characterization. Primnoidae are common and characteristic of seamounts and deepwater coral banks, often providing habitat for other marine species. Although primnoids occur in all ocean basins, only Primnoella and Plumarella species were recorded along the Brazilian coast before this study. Primnoid specimens were obtained through dredging and remotely operated vehicles (ROV) sampling, collected by research projects conducted off the Brazilian coast, between 15 and 34°S. Taxonomic assessment resulted in 5 new records of Primnoidae genera in Brazil: Calyptrophora, Candidella, Dasystenella, Narella and Thouarella. The occurrences of Narella-off Salvador and Vitória, and in Campos Basin (935-1700 m), and Calyptrophora-in Campos Basin (1059-1152 m), are herein reported for the first time in the South Atlantic. Calyptrophora microdentata was previously known in Lesser Antilles, New England and Corner Rise Seamounts, between 686 and 2310 m. Candidella imbricata geographical distribution includes Western and Eastern Atlantic (514-2063 m and 815-2139 m, respectively), being registered herein in Campos Basin, between 1059 and 1605 m. Dasystenella acanthina collected off Rio Grande do Sul state (810 m) and occurs also off Argentina and Southern Ocean, between 150 and 5087 m. Plumarella diadema, which type locality is off São Sebastião, Brazil, has its geographical range extended northwards, occurring in Campos Basin (650 m). Thouarella koellikeri previously known for Patagonia and Antartic Peninsula, is registered for the off Brazil for the first time, in Campos Basin and off São Sebastião (609-659 m). There is a lot of work yet to be done in terms of taxonomic knowledge of Brazilian deep-sea octocorals. Research projects focusing on the investigations, including ROV sampling, of other

  9. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California

    USGS Publications Warehouse

    Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.R.; Caress, D.W.; McGann, M.

    2011-01-01

    New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (<10 m), discontinuous conduits over ~70 km2. Continuous channel thalwegs were interpreted originally from lower-resolution images, but newly acquired AUV data indicate that a single sinuous channel fed a series of discontinuous lower-relief channels. These discontinuous channels were created by at least four avulsion events. Channel relief, defined as the height from the thalweg to the levee crest, controls avulsions and overall stratigraphic architecture of the depositional area. Flowstripped turbidity currents separated into and reactivated multiple channels to create a distributary pattern and developed discontinuous trains of cyclic scours and megaflutes, which may be erosional precursors to continuous channels. The diverse features now imaged in the Lucia Chica channel system (offshore California) are likely common in modern and ancient systems with similar overall morphologies, but have not been previously mapped with lower-resolution detection methods in any of these systems. ?? 2011 Geological Society of America.

  10. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    PubMed

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts.

  11. Fluorescence characteristics in the deep waters of South Gulf of México.

    PubMed

    Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C

    2017-09-07

    Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A new pathway for Deep water exchange between the Natal Valley and Mozambique Basin?

    NASA Astrophysics Data System (ADS)

    Wiles, Errol; Green, Andrew; Watkeys, Mike; Jokat, Wilfried; Krocker, Ralf

    2014-12-01

    Although global thermohaline circulation pathways are fairly well known, the same cannot be said for local circulation pathways. Within the southwest Indian Ocean specifically there is little consensus regarding the finer point of thermohaline circulation. We present recently collected multibeam bathymetry and PARASOUND data from the northern Natal Valley and Mozambique Ridge, southwest Indian Ocean. These data show the Ariel Graben, a prominent feature in this region, creates a deep saddle across the Mozambique Ridge at ca. 28°S connecting the northern Natal Valley with the Mozambique Basin. Results show a west to east change in bathymetric and echo character across the northern flank of the Ariel Graben. Whereby eroded plastered sediment drifts in the west give way to aggrading plastered sediment drift in the midgraben, terminating in a field of seafloor undulations in the east. In contrast, the southern flank of the Ariel Graben exhibits an overall rugged character with sediments ponding in bathymetric depressions in between rugged sub/outcrop. It is postulated that this change in sea-floor character is the manifestation of deep water flow through the Ariel Graben. Current flow stripping, due to increased curvature of the graben axis, results in preferential deposition of suspended load in an area of limited accommodation space consequently developing an over-steepened plastered drift. These deposited sediments overcome the necessary shear stresses, resulting in soft sediment deformation in the form of down-slope growth faulting (creep) and generation of undulating sea-floor morphology. Contrary to previous views, our works suggests that water flows from west to east across the Mozambique Ridge via the Ariel Graben.

  13. A Modeling Study of Deep Water Renewal in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  14. Deep Water Ocean Acoustics (DWOA): The Philippine Sea, OBSANP, and THAAW Experiments

    DTIC Science & Technology

    2015-09-30

    and without the travel-time data showed significant changes to the temperature and salinity were made to fit the acoustic observations. The state...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Deep Water Ocean Acoustics (DWOA): The Philippine Sea...deep- water acoustic propagation and ambient noise has been collected in a wide variety of environments over the last few years with ONR support

  15. APL-UW Deep Water Propagation: Philippine Sea Signal Physics and North Pacific Ambient Noise

    DTIC Science & Technology

    2015-10-15

    DISTRIBUTION STATEMENT A: Approved for public release: distribution is unlimited APL-UW Deep Water Propagation: Philippine Sea Signal Physics and...2015 1 Abstract We proposed a program involving two inter-related components of ASW: signal and noise. Deep water signal propagation is largely thought...fundamental statis- tics of broadband low-frequency acoustical signals evolve during propagation through a dynamically-varying deep ocean, and how

  16. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2012-09-30

    high power, rubidium oscillator that is turned on once a day to check the frequency of a less precise, but low power, Q-Tech Microcomputer...understanding of (i) the basic physics of low- frequency , broadband propagation in deep water, including the effects of oceanographic variability on signal...stability and coherence, (ii) the structure of the ambient noise field in deep water at low frequencies , and (iii) the extent to which acoustic

  17. Morphological divergence between three Arctic charr morphs – the significance of the deep-water environment

    PubMed Central

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-01-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere. PMID:26357540

  18. Seismic blanking zones in the deep-water Ullung Basin, East Sea of Korea.

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Riedel, Michael; Yoo, Dong-Geun

    2015-04-01

    A total 12366.395 L.km of 2D multichannel seismic data were acquired by the Korea Institute of Geoscience and Mineral Resources (KIGAM) for detecting and mapping seismic indicators for the presence of gas hydrate in the deep-water Ulleung Basin, East Sea of Korea. The seismic data were acquired using Trilogy System of Geco-Prakla, Bolt Air-gun System onboard the R/V TAMHAE II of KIGAM during the years of 2000 to 2004. The seismic faices of shallow sediments were also analyzed to understand the sedimentary strata developed in the basin. Seismic data were processed to define gas hydrate indicators such as bottom simulating reflectors (BSRs) and seismic blank zones. The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone, on heat flow and other thermal data for the region and on seismic velocity data. The seismic velocity analysis was also conducted for determining the velocity deviation effect of high-velocity gas hydrate and underlying low-velocity free gas. The BSRs occur mainly in the southern part of the basin where mass transport deposits are widely occurring. A number of vertical to sub-vertical seismic blanking zones were identified in the basin. The blanking zones are near-vertical broad chimney-like structures of reduced seismic reflectivity. They may be formed by gas and/or fluid upwelling through fractures and faults. Many of the blanking zones show apparent velocity pull-up effects of sediment layering structures that are interpreted to be a result of higher velocity gas hydrate. The presence of substantial amounts of gas hydrate in the blank zones were first found by piston coring in 2007, and subsequently confirmed by two deep-drilling expeditions in 2007 and 2010. Most of the blanking zones occur in well-bedded turbidite/hemi-pelagic sediments in the northern deep basin. The

  19. Changes in the deep-water benthos of eastern Lake Erie between 1979 and 1993

    SciTech Connect

    Dermott, R.; Kerec, D.

    1995-06-01

    In order to examine changes of the benthic community and benthic biomass as a result of mussel colonization, a survey of the deep-water benthic fauna in eastern Lake Erie was repeated in 1993 using the same sites and methods as in a 1979 survey. During 1979, the community beyond 30 m was dominated by oligochaete worms and the burrowing amphipod Diporeia, which represented 50 and 40% of the total benthic biomass respectively. By 1993, quagga mussels (Dreissena bugensis) formed over 90% of the benthic biomass. Mussels were present at all 13 sites. Densities of individuals >2 mm in length averaged 3,241 mussels m{sup -2}. Of these mussels, 97% were quagga mussels. Total density of all sizes retained on a 180 {mu}m sieve averaged 34,800 mussels m{sup -2} but total biomass decreased from 1.58 to 0.98 g m{sup -2}. The density of the amphipod Diporeia was reduced from 1,844 in 1979 to 218 m{sup -2} in 1993. While present at all sites during 1979, Diporeia remained common only at two sites and were absent at 8 of the 13 sites in 1993. The native fingernail clams, Pisidium spp., were reduced from 327 to 82 m{sup -2}. No significant reduction occurred in the worm and chironomid populations, however the dry biomass of the chironomids was reduced from 0.07 to 0.0008 g m{sup -2}. These reductions may be due to competition with the mussels for freshly settling algae. The meiofauna, which included small nematodes, ostracods, and harpacticoids retained on a 180 {mu}m sieve, all increased in density. Perhaps they benefited from an increase in the detritus deposited as pseudofeces around the mussels.

  20. Source rock in the lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-12-31

    The MC-84 (King) well was drilled in the deep-water Gulf of Mexico in 1993, in Mississippi Canyon Block 84 in a water depth of 5,149 ft. This well drilled an anticlinal feature. The well penetrated an Upper Cretaceous section and crossed Middle Cretaceous Unconformity with final total depth in the Lower Cenomanian. Numerous sidewall cores were taken throughout the Lower Tertiary and Cretaceous. Six of the sidewall cores (from 14,230 to 15,170 ft subsea) are organic rich and contain Type II oil-prone kerogen (TOC values from 2.6 to 5.2% and hydrogen indices from 360 to 543 ppm). The Lower Tertiary through Lower Cenomianian section is thermally immature for oil generation, on the basis of biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous section had biomarker characteristics similar to oil recovered from the Miocene in the MC-84 well. The oil was generated from a similar but more mature source rock, probably of Early Cretaceous age. Results of thermal modeling indicate that the only section thermally mature for oil generation is in the lower portion of the Lower Cretaceous, below the total depth of the well. The model also indicates that the organic-rich section equivalent to that penetrated by the MC-84 well could be mature farther to the north, where water depths are shallower, overburden thickness is greater, and heat flow is higher. Late Tertiary sediment loading in this area, primarily during the Miocene, is probably the driving mechanism for hydrocarbon generation from the Cretaceous (and possibly the Lower Tertiary) potential source rocks. This offers a favorable geological setting for capturing hydrocarbons because reservoirs and traps associated with Miocene deposition and subsequent loading-induced salt movement had formed prior to the onset of oil generation and migration.

  1. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    PubMed

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  2. An analysis of characteristics of variation of the Taiwan Warm Current Deep Water

    NASA Astrophysics Data System (ADS)

    Weng, Xuechuan; Wang, Congmin

    1985-06-01

    The Taiwan Warm Current Deep Water (or the East China Sea Upper Layer Water, or the East China Sea Subsurface Water) lying in the deep and bottom layers off the coast of Fujian-Zhejiang is one of the main watermasses in the continental shelf region of the western East China Sea. The hydrographical conditions and the fishery productions in this region are affected remarkably by the decline and growth of the Taiwan Warm Current Deep Water. Although the temperature, salinity and origin of the Taiwan Warm Current Deep Water have been investigated[3] by oceanographers the world over, there are up to now few papers published on its characteristics of ariations (seasonal and multiyear variations). Understanding of this problem will be helpful to further characterize this watermass. For this reason, in this paper, section 28°N representing the middle Taiwan Warm Current Deep Water and section 30°N representing the northern Taiwan Warm Current Deep Water are taken for examples, and the method of similar coefficient is used for analysis of this problem.

  3. Deep-water riser fatigue monitoring systems based on acoustic telemetry

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Wang, Haiyan; Shen, Xiaohong; Yan, Yongsheng; Yang, Fuzhou; Hua, Fei

    2014-12-01

    Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers' fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.

  4. The distribution of anthropogenic REE in the Dutch distributaries of the Rhine: the role of suspended matter

    NASA Astrophysics Data System (ADS)

    Roskam, Gerlinde; Verheul, Marc; Klaver, Gerard; Bakker, Ingrid

    2014-05-01

    In nature rare earth elements (REE) occur in fixed ratios; contamination with a single rare earth element causes a clear deviation from the natural NASC normalized REE-patterns: an anomaly. REE are progressively used in many high technology products and processes. For example, gadolinium-containing chelates have been used since the '80s as contrasting agent in MRI-imaging. The pertaining anomaly is currently used as a tracer for distinguishing waste water from water unaffected by anthropogenic contamination. In the Dutch monitoring program in the Rhine-Meuse distributaries, total (10% HNO3 digested) and dissolved (< 0.45 µm) fractions in surface water are routinely analysed, and with two-week intervals suspended matter samples are collected with a centrifuge. Since 2008, the set of analysed elements was extended with REE, enabling this study. Lobith, the entry point of the River Rhine in The Netherlands, shows an annual oscillation in the magnitude of the lanthanum (La) anomaly. This positive La-anomaly was reported by Kulaksiz and Bau in 2011; they identified the point source as a production plant for catalysts used in petroleum refining in the German city of Worms. Since the spring of 2011, samarium (Sm) is used in the same process, resulting in matching La- and Sm-anomalies. The anthropogenic La and Sm concentrations are predominantly present in the total fraction, which suggests that the anthropogenic La and Sm concentrations are associated with suspended matter. The anthropogenic La and Sm concentrations are lower in the suspended matter samples collected with the centrifuge, suggesting a bias of these La and Sm concentrations in the finer fraction of the suspended matter. The anthropogenic La en Sm concentrations remain relatively constant throughout the rivers, but close to Lake IJsselmeer and the North Sea, sedimentation causes a sharp decrease in the anthropogenic concentrations. Detailed sampling of sediments, suspended matter and water could give a

  5. Tidal inlet processes and deposits along a low energy coastline: easter Barataria Bight, Louisiana

    SciTech Connect

    Moslow, T.F.; Levin, D.R.

    1985-01-01

    Historical, seismic and vibracore data were used to determine the geologic framework of sand deposits along the predominantly muddy coastline of eastern Barataria Bight, Louisiana. Three inlet types with distinct sand body geometries and morphologies were identified and are found 1) at flanking barrier island systems spread laterally across the front of interdistributary bays; 2) in old distributary channels; 3) at overwash breaches; or 4) combination of these. Barataria Bight, a sheltered barrier island shoreline embayment with limited sand supply, minimal tidal range (36 cm) and low wave energies (30 cm) can be used to show examples of each inlet type. Barataria Pass and Quatre Bayou Pass are inlets located in old distributary channels. However, Barataria Pass has also been affected by construction between barrier islands. Pass Ronquille is located where the coastline has transgressed a low area in the delta plain. This breach is situated in a hydraulically efficient avenue between the Gulf and Bay Long behind it. Pass Abel is a combination of a low-profile barrier breach and the reoccupation of an old distributary channel. Shelf and shoreline sands are reworked from abandoned deltaic distributaries and headlands. Inner shelf sands are concentrated in thick (10 m) shore-normal relict distributary channels with fine grained cross-bedded and ripple laminated sand overlain by burrowed shelf muds. Shoreface sand deposits occur as 2-3 m thick, fine-grained, coarsening upward and burrowed ebb-tidal delta sequences and shore-parallel relict tidal inlet channels filled through lateral accretion.

  6. Quaternary North Atlantic Surface Paleoceanography in Regions of Potential Deep-water Formation

    NASA Technical Reports Server (NTRS)

    Ruddiman, W. F.

    1984-01-01

    At the time scale of the Quaternary climate cycles, the sites of formation of North Atlantic Deep Water are not known. The interglacial extreme is presumably exemplified by the modern regions; the Norwegian, Greenland and Labrador Seas. During the major glacial-age coolings in the North Atlantic, the sites may have shifted well to the south, perhaps as far as the limit of the polar front at 40 to 50 N. Still other sites may have been important during intermediate climatic conditions. Because of the close coupling of high-latitude surface waters to North Atlantic Deep Water in the modern ocean, the history of sea-surface temperature (SST) oscillations across the high-latitude North Atlantic is relevant to an understanding of deep-water formation on the longer time scales.

  7. Upwelling at the ice edge - A mechanism for deep water formation?

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    This study sets forward a hypothesis which anticipates deep water formation due to ice edge upwelling. The upwelling can raise thermocline waters (the lower Arctic Intermediate Water) to the surface or near it, where the water is exposed to cooling, evaporation, mixing, and oxygenation. Thus, upwelling can act as a preconditioning mechanism for deep convection. The conjecture would also explain the salinity range of the Greenland Sea Deep Water if the upper and lower Arctic Intermediate Water masses are mixed so that the latter has at least an 80-percent contribution. It is also anticipated that the convection events induced by ice edge upwelling during winter season could give rise to a new deep water annual production rate consistent with observations.

  8. Deep water exchanges between the South China Sea and the Pacific since the last glacial period

    NASA Astrophysics Data System (ADS)

    Wan, Sui; Jian, Zhimin

    2014-12-01

    Deep ocean circulation is widely considered as one of the important factors for increasing CO2 concentration and decreasing radiocarbon activity (Δ14C) of the atmosphere during the last deglaciation. The AMS 14C ages of benthic and planktonic foraminifers from 18 samples of Core MD05-2904 (water depth of 2066 m) in the northern South China Sea (SCS) and 15 samples of Core MD05-2896 (water depth of 1657 m) in the southern SCS were analyzed in this study for reconstructing the intrabasin deep oceanic processes and hence exploring the deep water exchanges between the SCS and the Pacific since the last glacial period. The results show that during the Holocene the average apparent ventilation age of deep water was younger in the southern SCS (~1350 years) than in the northern SCS (~1850 years) due to relatively strong vertical mixing and advection, consistent with modern observations. However, during the last glacial period and deglaciation the deep water was older in the southern SCS (~2050 years and ~1800 to 1200 years, respectively) than in the northern SCS (~1600 years and ~670 years, respectively), indicating reduced deep mixing and advection. Moreover, the northern SCS deep water was significantly younger during the last deglaciation than during the Holocene and the last glacial period, implying the existence of northern sourced newly formed and relatively young North Pacific deep water. Our records do not support the intrusion of anomalously 14C-depleted deep water to the middepth of the low-latitude western Pacific and the SCS during the "Mystery Interval" (17.5-14.5 kyr B.P.).

  9. Changes in deep-water epibenthic megafaunal assemblages in relation to seabed slope on the Nigerian margin

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Mrabure, Charles O.; Gates, Andrew R.

    2013-08-01

    Local-scale habitat heterogeneity associated with changes in slope is a ubiquitous feature of bathyal continental margins. The response of deep-sea species to high habitat heterogeneity is poorly known and slope can be used as a proxy for many important ecological variables, such as current flow, sedimentation and substratum type. This study determines how slope angle effects megafaunal species density and diversity at the Usan field, offshore Nigeria, between 740 and 760 m depth. This deep-water area is increasingly exploited for hydrocarbons, yet lacking in baseline biological information. Replicated remotely operated vehicle video transect surveys were carried out using industry infrastructure (through the SERPENT Project) at a representative range of slopes (1°, 3°, 11° and 29°). Twenty-four species of benthic megafaunal invertebrate were found, numerically dominated by the echinoid Phormosoma placenta, and nine species of fish were observed. Megafaunal invertebrate deposit feeder density decreased significantly with increasing slope (density range 0.503-0.081 individuals m-2). Densities of megafaunal suspension feeders were very low except at the highest slope site (mean density 0.17 m-2). Overall species richness was greater on steeper slopes, although the richness of deposit feeders was not affected. Reduced labile organic matter in sediments on steeper slopes likely reduced deposit feeder densities, but increased current flow at higher slopes allowed both increased richness and density of suspension feeders.

  10. Are high p-wave velocity sediments on thin Tethyan crust, deep-water carbonates?

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-Andre; Graindorge, David; Klingelhoefer, Frauke; Dellong, David; Kopp, Heidrun; Sallares, Valenti; Bartolome, Rafael; Gallais, Flora

    2016-04-01

    Seismic reflection profiles from the Central Mediterranean and Gulf of Cadiz regions indicate the widespread presence of a seismic unit, marked by strong continuous reflectors, directly overlying the basement. Seismic velocity analysis from seismic reflection and refraction studies indicate high p-wave velocities of 3.5 - 4.5 km/s in this layer. These same seismic studies image a thin crust, typically 6-9 km thick, in most cases thought to be oceanic in nature and related to the Tethys oceanic domain separating Africa (Gondwana) from Laurussia. We interpret this 2-3 km thick reflective layer to be carbonates, deposited in the late Triassic, Jurassic and early Cretaceous in the Tethys Ocean, in deep marine basins. Few drilling studies have penetrated into this layer. In one case (DSDP site 135, drilled at 4152 m water depth on Coral Patch Ridge in the western Gulf of Cadiz), Aptian (early Cretaceous) marls and limestone were drilled (560-689 m sub-seafloor depth). The Calcite compensation depth during the Jurassic to Early Cretaceous was about 4000 m to 3500 m according to compilations from the Atlantic and Indian Oceans and is consistent with deposition of deep-water carbonates. For the NW Moroccan margin (Mazagan transect near El Jadida) there is a 2 km thick sedimentary layer with p-wave velocities of 4.0 - 4.5 km/s at the base of a 4 - 6 km thick sedimentary section. This layer extends from seafloor thought to be oceanic crust (west of the West African Coast magnetic anomaly) across a domain of thin/transitional crust with abundant Triassic salt diapirs to the foot of the margin. This reflective basal layer is also observed in reflection and refraction profiles from the Seine abyssal plain, below the toe of the Cadiz accretionary wedge (S. Algarve margin), in the Ionian abyssal plain and below the toe of the Calabrian accretionary wedge, all regions floored by this thin Tethyan crust. Work is in progress to determine the exact nature of this crust.

  11. Developing Deep Water Excercise Equipment for Low Back Pain (LBP) Patients: medical validation experiences.

    PubMed

    Jókai, Erika; Hárságyi, Ágnes

    2015-01-01

    Authors describe a joint work of practicing physicians and rehabilitation specialist engineers. In our work we wanted to prove the efficacy of deep-water physiotherapy among the hydrotherapy treatments in patients with degenerative chronic low back pain, by monitoring both objective and subjective parameters. On the other hand, we are also seeking the possibilities of developing a water exercise tool which can spare the shoulders, can be used in deep water and is suitable for helping the three-dimensional movements of the spine without burdening the upper limbs and shoulders.

  12. Understanding how gravity flows shape deep-water channels. The Rhone delta canyon (Lake Geneva, Switzerland/France)

    NASA Astrophysics Data System (ADS)

    Corella, Juan Pablo; Loizeau, Jean Luc; Hilbe, Michael; le Dantec, Nicolas; Sastre, Vincent; Girardclos, Stéphanie

    2014-05-01

    Deep-water marine channels are highly dynamic environments due to the erosive power of sediment-laden currents that are continuously reshaping the morphology of these major sediment conduits. Proximal levees are prone to scarp failures generating gravity flows that can be transported thousands of kilometres from the original landslide. Nevertheless, the evolution of these underflows is still poorly understood because of the spatial scale of the processes and their difficult monitoring. For this reason, the smaller size, well-known boundary conditions and detailed bathymetric data makes Lake Geneva's sub-aquatic canyon in the Rhone delta an excellent analogue to understand these types of sedimentary processes that usually occur in deep-water channels in the marine realm. A multidisciplinary research strategy including innovative coring via MIR submersibles, in-situ geotechnical tests, geophysical and sedimentological analyses, as well as acquisition of different multibeam bathymetric data sets, were applied to understand the triggering processes, transport mechanisms and deposit features of gravity flows throughout the Rhone delta active canyon. The difference between two bathymetric surveys in 1986 and 2000 revealed an inversion in the topography of the distal active canyon, as a former distal canyon was transformed into a mound-like structure. A 12 m-thick layer was deposited in the canyon and modified the sediment transfer conduit. Sediment cores from this deposit were retrieved in-situ in 2002 and 2011 via the "F.-A. Forel" and Russian MIR submersibles, respectively. These cores contained a homogeneous, sandy material. Its sediment texture, grain-size, high density and shear strength, and low water content suggests that it corresponds to a debris-flow deposit that possibly took place after the initiation of a mass movement due to a scarp failure in proximal areas of the canyon. In addition, in-situ geotechnical tests on the modern canyon floor have shown a soft

  13. Eastern-Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep-water formation from Adriatic and Aegean Seas

    NASA Astrophysics Data System (ADS)

    Filippidi, A.; Triantaphyllou, M. V.; De Lange, G. J.

    2016-07-01

    Present-day bottom-water ventilation in the Eastern Mediterranean basin occurs through deep-water convection originating from the two marginal basins, i.e. Adriatic and Aegean Seas. In the paleo record, long periods of enhanced deep-water formation have been alternating with shorter periods of reduced deep-water formation. The latter is related mainly to low-latitude humid climate conditions and the enhanced deposition and preservation of organic-rich sediment units (sapropels). This study focuses on sedimentary archives of the most-recent sapropel S1, retrieved from two sites under the direct influence of the two deep-water formation areas. Restricted oxygen conditions have developed rapidly at the beginning of S1 deposition in the Adriatic site, but bottom-water conditions have not persistently remained anoxic during the full interval of sapropel deposition. In fact, the variability in intensity and persistence of sedimentary redox conditions at the two deep-water formation sites is shown to be related to brief episodes of climate cooling. In the Adriatic site, sapropel deposition appears to have been interrupted twice. The 8.2 ka event, only recovered at the Adria site, is characterized by gradually increasing suboxic to possibly intermittently oxic conditions and decreasing Corg fluxes, followed by an abrupt re-establishment of anoxic conditions. Another important event that disrupted sapropel S1 formation, has taken place at ca. 7.4 cal ka BP. The latter event has been recovered at both sites. In the Adriatic site it is followed by a period of sedimentary conditions that gradually change from suboxic to more permanently oxic, as deduced from the Mn/Al pattern. Using the same proxy for suboxic/oxic sedimentary redox conditions, we observe that conditions in the Aegean Sea site shift to more permanently oxic from the 7.4 ka event onwards. However, at both sites the accumulation and preservation of enhanced amounts of organic matter have continued under these

  14. Forming a deep-water forearc basin by subduction erosion--exploring this idea for the prominent Aleutian forearc basin

    NASA Astrophysics Data System (ADS)

    Scholl, D.; Huene, R. V.; Ryan, H.

    2003-04-01

    INTRODUCTION: A widely cited model links the formation of deep-water forearc basins to the outward growth of an accretionary prism along the seaward and uplifted edge of a slab of ocean crust that is abandoned in the forearc when a new oceanic subduction (SZ) forms. Because the structurally prominent Aleutian forearc basin (AFB) formed ~50 Myr after the initiation of the Aleutian SZ, we explore the notion that the AFB was substantially created by basal subduction erosion. THE AFB. The Aleutian Ridge (arc) is fronted by a wide (~50 km), laterally continuous (1500-2000 km), and bathymetrically prominent platform--the Aleutian Terrace. The terrace overlies the deep-water (4-5 km) AFB, which contains a 2-3-km thick fill of latest Miocene and younger sedimentary deposits overlying an older pre-basinal sedimentary sequence (~0.5 km thick) and an underlying basement that in part or in whole consists of the arc massif. Seaward of the AFB, the lower landward trench slope is constructed of a 30-40-km wide frontal prism of presumably mostly offscraped trench floor deposits. SUBDUCTION EROSION. Basal subduction erosion thins the forearc crust by processes of tectonic erosion that detach rock from the upper plate and transports this material toward the mantle. Evidence for subduction erosion gained by drilling and geophysical studies of SZ margins includes (1) rapid (~0.2-0.8 km/Myr) and substantial (3-5 km) forearc subsidence, and (2) long-term (>10-15 Myr) landward migration of the arc magmatic front. Observations that subduction erosion has thinned Aleutian crust include (1) the landward migration of the volcanic front (~30 km since ~34 Ma and 20 km since ~12 Ma), and, bordering the AFB, (2), a deeply (1-1.5 km) subsided and seaward tilted shelf edge of late Neogene age. We speculate that during the past 5-6 Myr underthrusting beneath the forearc of a nearly horizontal slab covered by a ~1-km-thick layer of subducted trench sediment enhanced subduction erosion and created

  15. Pathways of upwelling deep waters to the surface of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  16. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna

    2017-04-01

    North Atlantic deep water formation processes and properties in climate models are indicative of their ability to simulate future ocean circulation, ventilation, carbon and heat uptake, and sea level rise. Historical time series of temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to reveal the causes and consequences of North Atlantic deep water formation in models. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. The trigger of deep convection varies among models; for one third it is intense surface cooling only, while the remaining two thirds also need upward mixing of subsurface warm salty water. The models with the most intense deep convection have the most accurate deep water properties, which are warmer and fresher than in the other models. They also have the strongest Atlantic Meridional Overturning Circulation (AMOC). For over half of the models, 40% of the variability of the AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas, with 3 and 4 years lag respectively. Understanding the dynamical drivers of the AMOC in models is key to realistically forecast a possible slow down and its consequences on the global circulation and marine life.

  17. Deep-Water Waves: on the Nonlinear Schrödinger Equation and its Solutions

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.; Chabchoub, Amin; Hoffmann, Norbert

    2013-06-01

    We present a brief discussion on the nonlinear Schrödinger equation for modelling the propagation of the deep-water wavetrains and a discussion on its doubly-localized breather solutions, that can be connected to the sudden formation of extreme waves, also known as rogue waves or freak waves.

  18. The deep-water circulation during the Neogene and the impact of the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Blanc, Paul-Louis; Duplessy, Jean-Claude

    1982-12-01

    The 13C: 12C ratio of benthic foraminiferal calcite preserves the indications of the 13C: 12C ratio of the total dissolved CO 2 and can be used as a tracer of the residence time of the oceanic deep water. The tracer is applied to the reconstruction of the deep-water exchanges between the Atlantic and Pacific oceans, from middle Miocene times (15 × 10 6 y ago) to the Pliocene. Results from two Atlantic DSDP sites are compared with results from another Atlantic and three Pacific sites. The present pattern of thermohaline circulation was initiated 13.2 × 10 6 y ago, when the Scotland-Faeroe-Iceland-Greenland Ridge was sufficiently subsided to allow Arctic Bottom Water (ABW) to overflow the ridge. During the Messinian the salt deficiency due to the closure of the Mediterranean Sea caused all deep-water formation in the northern hemisphere to stop; the present deep circulation started again in the North Atlantic when the Mediterranean reopened at the beginning of the Pliocene, but deep-water formation did not resume in the North Pacific because the transfer of deep, saline water from the Atlantic was hindered by the shoaling of the Balboa Sill.

  19. Lagrangian pathways of deep water upwelling in the Southern Ocean State Estimate

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.; Wang, J.

    2016-02-01

    Pathways of upwelling of deep waters in the Southern Ocean are investigated using Lagrangian particle trajectories advected offline in the 1/6th°, data-assimilating Southern Ocean State Estimate (sose.ucsd.edu). A total of 18 million particles released at 1000 m - 3500 m at 30° S in each basin were tracked for 60 years by looping velocities from the latest 2005-2010 SOSE iteration. 5% of particles upwelled to 500 m or shallower by the end of the simulation with 37%, 42% and 21% from the Atlantic, Indian and Pacific basins, respectively. Trajectories indicate that particles in the neutral density range 26.7-28.1 from all basins enter the Antarctic Circumpolar Current (ACC), follow the fronts of the ACC, and tend to upwell to the surface ocean toward the southern edge of the ACC and south of the ACC. We analyze differences in upwelling pathways between North Atlantic Deep Water and Indian and Pacific deep waters and explore the role of topography in the upwelling of these deep water masses. These upwelling pathways are important to understanding the 3-dimensional structure of the Southern Ocean overturning circulation and the supply of carbon and nutrient-rich waters to the surface of the Southern Ocean.

  20. Laboratory Studies of Steep and Breaking Deep Water Waves in a Convergent Channel

    DTIC Science & Technology

    1985-08-21

    Area Code) (202)767-2904 22c. OFFICE SYMBOL Code 5841 DD FORM 1473, 34 MAR 33 APR edition nay be used until exhausted. All other editions are...of deep-water waves," J. Fluid Mech., Vol. 115, 165-185. M. Miche, June 1954, " Undulatory movements of the sea in constant or decreasing

  1. The contribution of the Greenland and Barents Seas to the deep water of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Swift, James H.; Takahashi, Taro; Livingston, Hugh D.

    1983-07-01

    The deep waters of the Arctic Ocean are traditionally held to be fed by an influx of Norwegian Sea Deep Water (NSDW) via the northward flowing West Spitsbergen Current. Discrete sample and CTD observations obtained from the Greenland-Spitsbergen Passage in August 1981 during the Transient Tracers in the Ocean (TTO) North Atlantic expedition showed a ≈ 100-m-thick layer of modified Greenland Sea Deep Water (GSDW: colder and fresher than NSDW) at 2500 m, spreading northward along the bottom of a deep, unimpeded channel, underneath the NSDW. Since the available data indicate that Arctic Ocean Deep Water (AODW) has a higher salinity than NSDW, mixing of NSDW and GSDW can not produce AODW. Therefore, other sources, such as the peripheral arctic shelf seas, must contribute dense saline water to the Arctic Ocean. Concentrations of 137Cs and 90Sr observed in AODW are greater than those observed in GSDW and NSDW. The concentrations of these radionuclides on the Barents Sea shelf are sufficiently high and in the correct relative proportions to support this proposition.

  2. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.

    PubMed

    Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart

    2007-10-16

    Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change.

  3. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity

    PubMed Central

    Graham, Michael H.; Kinlan, Brian P.; Druehl, Louis D.; Garske, Lauren E.; Banks, Stuart

    2007-01-01

    Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km2 unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change. PMID:17913882

  4. Messinian deep-water turbidites and glacioeustatic sea-level changes in the North Atlantic: Linkage to the Mediterranean Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Zhang, Jijun; Scott, David B.

    1996-06-01

    Our benthic foraminiferal data clearly indicate eight layers of deep-water turbidites during the Messinian (MTL 1-8) and one in the early Pliocene (PTL 1) in Ocean Drilling Program Leg 105, Site 646B. These deep-water tuibidite deposits are characterized by highly concentrated agglutinated marsh benthic foraminifera (e.g., Trochammina cf. squamata, Ammotium sp. A, Miliammina fusca), rounded quartz, polished thick-walled benthic foraminifera, wood fragments, plant seeds, plant fruit, and highly concentrated mica and are interbedded with sediments containing deep-water benthic faunas. We suggest these turbidites deposited during sea-level low stands (˜80-100 m below sea level), and their ages are tentatively correlated to 6.59, 6.22, 6.01, 5.89, 5.75, 5.7, 5.65, 5.60, and 5.55 Ma, respectively, based on the Messinian oxygen isotope enrichments at Site 552A of Deep Sea Drilling Project Leg 81. The turbidites layers during the late Messinian, coeval with frequent climate changes suggested by six oxygen enrichment excursions of Site 552A, may have been in part linked to the late Messinian evaporite deposits in the Mediterranean Basin. The most profound climate changes at 5.75 and 5.55 Ma may have been related to the Lower and Upper Evaporites in the Mediterranean Basin. An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS .AGU.ORG, (LOGIN toAGU's FTP account using ANONYMOUS as the username and GUESTas the password. Go to the right directory by typing CD APEND. TypeLS to see what files are available. Type GET and the name of the file toget it. Finally, type EXIT to leave the system. (Paper 96PA00572,Messinian deep-water turbidites and glacioeustatic sea-level changes inthe North Atlantic: Linkage to the Mediterranean Salinity Crisis, JijunZhang and David B. Scott). Diskette may be ordered from AmericanGeophysical Union, 2000 Florida Avenue, N.W., Washington, D.C.20009; $15.00. Payment must accompany order.

  5. Analysis of deep-water exchange in the Caspian Sea based on environmental tracers

    NASA Astrophysics Data System (ADS)

    Peeters, F.; Kipfer, R.; Achermann, D.; Hofer, M.; Aeschbach-Hertig, W.; Beyerle, U.; Imboden, D. M.; Rozanski, K.; Fröhlich, K.

    2000-04-01

    In order to quantify deep-water exchange in the Caspian Sea, the world's largest inland water body, water samples were analyzed for the transient tracers H3, He3, He4, CFC-11, CFC-12 and atmospheric noble gases. Measurements of temperature, salinity (calculated from conductivity for the ionic composition of Caspian Sea water), and dissolved oxygen were employed to investigate the processes responsible for deep-water renewal. The Caspian Sea consists of two deep basins, the southern and central basins, separated by a sill, and a shallow northern basin. The deep water (below 200 m) accounts for almost 60% of the total water mass. Below 200 m the concentrations of H3 and He3 are much lower in the southern basin than at the same depths in the central basin, but this is not the case for either of the CFCs. However, apparent water ages calculated from H3-He3 and from CFC-12 concentrations are the same for the deep water of the southern and central basins, and yield deep-water exchange rates of approximately 7% per year for each of the two basins. This implies volume fluxes across the 200-m level of about 2220 km 3 yr -1 within the southern basin and 770 km 3 yr -1 within the central basin. Based on the apparent water ages, the oxygen depletion in the deep water is estimated to be about 0.35 mg l -1 yr -1. The processes responsible for deep-water exchange have not yet been identified conclusively. However, vertical temperature and salinity gradients observed during two expeditions, in September 1995 and 1996, suggest that within the southern and central basins large-scale convection cannot be triggered by seasonal cooling alone, but requires the surface water to be cold/saline or to contain high suspended sediment loads. In the central basin the increase in salinity occurring during ice formation in early winter is possibly sufficient to cause convection. In late summer, the horizontal transport of water from the upper 170 m of the central basin into the southern basin

  6. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  7. Insight into the microbial community structure of a Norwegian deep-water coral reef environment

    NASA Astrophysics Data System (ADS)

    Jensen, Sigmund; Neufeld, Josh D.; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, J. Colin

    2008-11-01

    Deep-water coral reefs support rich biological communities below the photic zone of fjords and continental shelves around the world. In this environment, life is enclosed within cold permanent darkness, in stark contrast to life in tropical coral reefs. We collected samples of water, sediment and a Desmacidon sp. sponge from a deep-water coral reef off the coast of Norway, and characterised bacterial communities with focus on primary producers in the dark. Following DNA extraction, PCR amplification and 16S rRNA gene library sequencing, bioinformatic analyses demonstrated significant differences between bacterial communities associated with the three samples. The finding that 50% of the clones showed <90% identity to cultured bacteria reflects the novel and uncharacterised diversity associated with these deep-water coral reefs. A total of 13 bacterial phyla were identified. Acidobacteria dominated the sponge library and Proteobacteria dominated the bacterioplankton and sediment libraries. Phylogenetic analysis revealed a possible new clade of sponge-associated Acidobacteria, which includes representatives from the Desmacidon sp. (Norway), Rhopaloeides odorabile (Australia) and Discodermia dissoluta (Curacao). Furthermore, the targeted recovery of a particulate methane monooxygenase ( pmoA) gene from the Desmacidon sp. DNA extract suggests that as yet uncultivated type I methanotrophs may mediate methane oxidation in this deep-water coral reef. Methanotrophs were not identified in the 16S rRNA gene libraries, but the presence of a high number (8%) of clones related to sulfide-, nitrite- and iodide-oxidising bacteria suggests chemosynthesis to be involved with maintenance of the deep-water coral reef ecosystem.

  8. Deep Water Circulation during the Past 180 Thousand Years in the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Wei, K. Y.

    2016-12-01

    Some evidence appears to suggest that the North Pacific played a bigger role in forming deep waters during the end of the last ice age (particularly H1) than it does today (Okazaki et al., 2010; Rae et al., 2014). More recent data from the Bering Sea indicates that the relatively well-ventilated intermediate waters might be formed during the late Pleistocene but in a depth shallower than 1000 m. To understand whether the northern source deep-waters affected the deep circulation and its extent in the northwest Pacific in the late Pleistocene, we measured δ13C and δ18O of benthic foraminifera Uvigerina peregrina (300-425 µm) of OPD1210A (32o13.4'N, 158o15.6'E, water depth 2574 m) from the Shatsky Rise. By assembling data collected from the Northwest Pacific and comparing the integrated d13C time-series with others from the Southwest Pacific, North and South Atlantic, we concluded that the δ13C records of 2500 - 4000 m deep in western Pacific during the last 180 kyrs was composed by 60% NADW and 40% AABW modified with a remineralization constant (Lisiecki, 2010). The constant for the western equatorial and northwestern Pacific is -0.5‰ and for the southwestern Pacific is -0.2‰. The transportation of deep waters from the southwestern Pacific to the northern Pacific Basin was faster in glacial times than that during the interglacial times. We consider that the Pacific deep waters were affected mainly by the Circumpolar Deep Water (CDW) from Atlantic during the past 180 kyrs. The shifts of the deep ocean δ13C minima during glacial times were not caused by any additional freshly-formed water in the form of Glacial North Pacific Intermediate Water (GNPIW) in the North Pacific.

  9. Polychaete Annelid (segmented worms) Species Composition in the Deep Gulf of Mexico following the Deep Water Horizon (DWH) Oil Spill

    NASA Astrophysics Data System (ADS)

    QU, F.; Rowe, G.

    2012-12-01

    Sediments 5 to 9 km from the Deep Water Horizon (DWH) Oil Spill site were sampled using a 0.2 m2 box corer 5 months after the event to assess the effects of the oil spill on polychaete annelid (segmented worms) community structure. Numbers of species, abundance, and biodiversity indices were all significantly lower than pre-spill values from similar depths in the eastern Gulf of Mexico (GoM). All of the five dominant species were different. Non-selective deposit feeders and selective deposit feeders were still the most frequent feeding guilds, but their abundances decreased significantly after the event. A large number of carnivorous Sigalionidae may be a response to an accumulation of PAHs on the sediment. Multivariate analyses (CLUSTER and multidimensional scaling (MDS)) illustrate the differences between assemblages near the DWH and those from prior studies in similar deep GoM habitats. In sum, the polychaete populations appeared to be at an early stage of succession in the recovery from the spill or they could be a resident assemblage that is the natural characteristic infauna in or adjacent to natural seeps of fossil hydrocarbons.

  10. Gas hydrates in the deep water Ulleung Basin, East Sea, Korea.

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae

    2016-04-01

    Studies on gas hydrates in the deep-water Ulleung Basin, East Sea, Korea was initiated by the Korea Institute of Geoscience and Mineral Resources (KIGAM) to secure the future energy resources in 1996. Bottom simulating reflectors (BSRs) were first identified on seismic data collected in the southwestern part of the basin from 1998 to 1999. Regional geophysical surveys and geological studies of gas hydrates in the basin have been carried out by KIGAM from 2000 to 2004. The work included 12,367 km of 2D multi-channel seismic reflection lines and 38 piston cores 5 to 8 m long. As a part of the Korean National Gas Hydrate Program that has been performed since 2005, 6690 km of 2D multi-channel reflection seismic lines, 900 km2 of 3D seismic data, 69 piston cores and three PROD cores were additionally collected. In addition, two gas hydrate drilling expeditions were performed in 2007 and 2010. Cracks generally parallel to beddings caused by the dissociation of gas hydrate were often observed in cores. The lack of higher hydrocarbons and the carbon isotope ratios indicate that the methane is primarily biogenic. The seismic data showed clear and wide-spread bottom-simulating reflectors (BSRs). The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone. Several vertical to sub-vertical chimney-like blank zones up to several kilometers in diameter were also identified in the study area. They are often associated with velocity pull-up structures that are interpreted due to higher velocity in gas hydrate-bearing deposits. Seismic velocity analysis also showed a high velocity anomaly within the pull-up structure. Gas hydrate samples were collected from the shallow sedimentary section of blanking zone by piston coring in 2007. BSRs mainly occur in the southern part of the basin. They also locally observed in the

  11. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40

  12. Diatreme-forming volcanism in a deep-water faulted basin margin: Lower Cretaceous outcrops from the Basque-Cantabrian Basin, western Pyrenees

    NASA Astrophysics Data System (ADS)

    Agirrezabala, L. M.; Sarrionandia, F.; Carracedo-Sánchez, M.

    2017-05-01

    Deep-water diatremes and related eruption products are rare and they have been mainly interpreted from seismic-based data. We present lithofacies and geochemistry analysis of two Lower Cretaceous (Albian) deep-water diatremes and associated extra-diatreme volcaniclastic deposits at a well-exposed outcrop of the northern margin of the Basque-Cantabrian Basin (north Iberia). The studied diatremes are located along a N-S trending Albian fault and present sub-circular to elongate sections, inward-dipping steep walls and smooth to very irregular contacts with the host rocks. They are filled by un-bedded mixed breccias constituted by juvenile and lithic (sedimentary, igneous and metamorphic) clasts. Their textural and structural characteristics indicate that they represent lower diatreme and root zones of the volcanic system. Mapping, geochemical and petrologic data from diatreme-fills support their genetic relationship with the extra-diatreme volcaniclastic beds, which would be generated by the eruption of an incipiently vesicular trachytic magma. Studied diatremes result from multiple explosions that lasted over an estimated period of 65 k.y. during the Late Albian (H. varicosum ammonite Zone, pro parte), and reached up to a maximum subsurface depth of ca. 370 m, whereas extra-diatreme volcaniclastic beds were formed by eruption-fed gravity-driven flows on the deep-water (200-500 m) paleoseabed. Petrological features suggest that these diatremes and related extra-diatreme deposits resulted mainly from phreatomagmatic explosions. In addition, organic geochemistry data indicate that the thermal effect of the trachytic melts on the sedimentary host caused the conversion of the abundant organic matter to methane and CO2 gases, which could also contribute significantly to the overpressure necessary for the explosive fragmentation of the magma and the host rocks. Considering the inferred confining pressures (ca. 8-11 MPa) and the possible participation of unvesiculated (or

  13. Deep water formation in the North Pacific and deglacial CO2 rise

    NASA Astrophysics Data System (ADS)

    Rae, James W. B.; Sarnthein, Michael; Foster, Gavin L.; Ridgwell, Andy; Grootes, Pieter M.; Elliott, Tim

    2014-06-01

    Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic δ11B. We suggest that this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric δ13C and Δ14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However, we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in δ15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data and suggest that the regional pulse of export production observed during the B

  14. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation

    SciTech Connect

    Sarkar, A.; Bhattacharya, S.K.; Sarin, M.M. )

    1993-03-01

    Various paleoceanographic studies have indicated that the deep ocean was probably depleted in dissolved oxygen during the last glacial period ([approximately]18 kyr B.P.; [delta][sup 18]O, stage 2) compared to present time. However, direct evidence of low oxygen content in the deep waters has been lacking. Here, the authors report geochemical evidence of near anoxic conditions in the deep Arabian Sea during the entire last glacial cycle ([delta][sup 18]O; stages 2, 3, and 4). Anoxia is inferred from the concomitant enrichment of organic carbon and authigenic uranium in the glacial sections of a core from the deep eastern Arabian Sea. The anoxic conditions during the last glacial period, probably caused by a change in deep water circulation, evidently enhanced preservation of organic matter and simultaneous removal of uranium from seawater. 57 refs., 3 figs., 2 tabs.

  15. Deep-water octocorals (Cnidaria: Octocorallia) from Brazil: Family Chrysogorgiidae Verrill, 1883.

    PubMed

    Cordeiro, Ralf T S; Castro, Clovis B; Pérez, Carlos D

    2015-12-15

    Current knowledge about the Brazilian deep-water octocoral fauna remains scarce, fragmented, and mostly based on unpublished, regional scale surveys. The present work provides the first comprehensive study of the family Chrysogorgidae Verrill, 1883 in Brazil, based on morphological analysis of specimens collected in the last decade and those currently placed in museums. Members of this family are common mainly at great depths and remarkable for the iridescent aspect of their colonies. In Brazil, to the present, only four species were reported: Chrysogorgia elegans (Verrill, 1883), Chrysogorgia multiflora Deichmann, 1936, Stephanogorgia rattoi Castro, Medeiros & Loiola, 2010 and Trichogorgia brasiliensis Castro, Medeiros & Loiola, 2010-the last two are shallow-water species. In this study, three new deep-water species are described, Chrysogorgia tuberculata, Chrysogorgia upsilonia and Radicipes kopelatos, and a new record to Brazil is reported, Chrysogorgia fewkesii Verrill, 1883, as well as latitudinal expansions in distributions of Chrysogorgia elegans and Chrysogorgia multiflora are presented.

  16. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming.

    PubMed

    Whitehead, Hal; McGill, Brian; Worm, Boris

    2008-11-01

    Understanding the effects of natural environmental variation on biodiversity can help predict response to future anthropogenic change. Here we analyse a large, long-term data set of sightings of deep-water cetaceans from the Atlantic, Pacific and Indian Oceans. Seasonal and geographic changes in the diversity of these genera are well predicted by a convex function of sea-surface temperature peaking at c. 21 degrees C. Thus, diversity is highest at intermediate latitudes - an emerging general pattern for the pelagic ocean. When applied to a range of Intergovernmental Panel on Climate Change global change scenarios, the predicted response is a decline of cetacean diversity across the tropics and increases at higher latitudes. This suggests that deep-water oceanic communities that dominate > 60% of the planet's surface may reorganize in response to ocean warming, with low-latitude losses of diversity and resilience.

  17. Depositional architecture and evolution of inner shelf to shelf edge delta systems since the Late Oliocene and their respone to the tectonic and sea level change, Pear River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing

    2016-04-01

    The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge

  18. Antarctic climate, Southern Ocean circulation patterns, and deep water formation during the Eocene

    NASA Astrophysics Data System (ADS)

    Huck, Claire E.; van de Flierdt, Tina; Bohaty, Steven M.; Hammond, Samantha J.

    2017-07-01

    We assess early-to-middle Eocene seawater neodymium (Nd) isotope records from seven Southern Ocean deep-sea drill sites to evaluate the role of Southern Ocean circulation in long-term Cenozoic climate change. Our study sites are strategically located on either side of the Tasman Gateway and are positioned at a range of shallow (<500 m) to intermediate/deep ( 1000-2500 m) paleowater depths. Unradiogenic seawater Nd isotopic compositions, reconstructed from fish teeth at intermediate/deep Indian Ocean pelagic sites (Ocean Drilling Program (ODP) Sites 738 and 757 and Deep Sea Drilling Project (DSDP) Site 264), indicate a dominant Southern Ocean-sourced contribution to regional deep waters (ɛNd(t) = -9.3 ± 1.5). IODP Site U1356 off the coast of Adélie Land, a locus of modern-day Antarctic Bottom Water production, is identified as a site of persistent deep water formation from the early Eocene to the Oligocene. East of the Tasman Gateway an additional local source of intermediate/deep water formation is inferred at ODP Site 277 in the SW Pacific Ocean (ɛNd(t) = -8.7 ± 1.5). Antarctic-proximal shelf sites (ODP Site 1171 and Site U1356) reveal a pronounced erosional event between 49 and 48 Ma, manifested by 2 ɛNd unit negative excursions in seawater chemistry toward the composition of bulk sediments at these sites. This erosional event coincides with the termination of peak global warmth following the Early Eocene Climatic Optimum and is associated with documented cooling across the study region and increased export of Antarctic deep waters, highlighting the complexity and importance of Southern Ocean circulation in the greenhouse climate of the Eocene.

  19. The Mediterranean deep-water kelp Laminaria rodriguezii is an endangered species in the Adriatic Sea.

    PubMed

    Žuljević, Ante; Peters, Akira F; Nikolić, Vedran; Antolić, Boris; Despalatović, Marija; Cvitković, Ivan; Isajlović, Igor; Mihanović, Hrvoje; Matijević, Slavica; Shewring, Dawn M; Canese, Simonepietro; Katsaros, Christos; Küpper, Frithjof C

    Deep-water kelps are little-known large brown algae occurring close to the lower limit of photosynthetic life in the sea. This study compares historical and recent records of the deep-water Mediterranean kelp Laminaria rodriguezii in the Adriatic Sea. Historical records include data from herbarium collections and trawling fishery expeditions in the mid-twentieth century, while recent data comprise records of the last 17 years from MEDITS expeditions, ROV surveys of historical kelp locations, benthic surveys and records by fishermen. Altogether, these findings demonstrate that the Adriatic population of L. rodriguezii has suffered a decline of more than 85 % of its historical range and is now present only around the small offshore island of Palagruža. Bottom trawling activities are presumably responsible for the disappearance elsewhere. We propose to classify L. rodriguezii as "Endangered" in the Adriatic Sea under IUCN criteria B1ab(i,iii,iv), ver 3.1. Oceanographic characteristics of the habitat suggest that besides high water transparency, presence of North Adriatic Dense Water with both strong currents and stable low temperatures of around 14 °C are essential oceanographic factors for the development of L. rodriguezii in the Central Adriatic. The origin of cold water thus differs from that at upwelling sites permitting populations of tropical deep-water kelps. The phylogenetic position of L. rodriguezii is so far unknown. DNA sequences from nuclear and cytoplasmic markers of two thalli from Croatia and the western Mediterranean confirmed that L. rodriguezii is a member of the Laminariaceae and most closely related to L. ochroleuca, L. pallida and the Brazilian deep-water kelp L. abyssalis.

  20. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2014-09-30

    capitalize on the three-dimensional character of the sound and noise fields. OBJECTIVES During 2009–2011 three experiments were conducted to study...Worcester et al., 2009). The DVLA consisted of two 1000-m subarrays: an axial subarray spanning the sound -channel axis and a deep subarray spanning... Octave Research Array (FORA). PhilSea10. The 2010–2011 NPAL Philippine Sea deep-water acoustic propagation experiment combined measurements of

  1. First description of deep-water elasmobranch assemblages in the Exuma Sound, The Bahamas

    NASA Astrophysics Data System (ADS)

    Brooks, Edward J.; Brooks, Annabelle M. L.; Williams, Sean; Jordan, Lance K. B.; Abercrombie, Debra; Chapman, Demian D.; Howey-Jordan, Lucy A.; Grubbs, R. Dean

    2015-05-01

    Deep-sea chondrichthyans, like many deep-water fishes, are very poorly understood at the most fundamental biological, ecological and taxonomic levels. Our study represents the first ecological investigation of deep-water elasmobranch assemblages in The Bahamas, and the first assessment of species-specific resilience to capture for all of the species captured. Standardised deep-water longline surveys (n=69) were conducted September to December 2010 and 2011 between 472 m and 1024 m deep, resulting in the capture of 144 sharks from 8 different species. These included the Cuban dogfish, Squalus cubensis, the bigeye sixgill shark, Hexanchus nakamurai, the bluntnose sixgill shark, Hexanchus griseus, the smooth dogfish, Mustelus canis insularis, the roughskin dogfish, Centroscymnus owstoni, Springer's sawtail catshark, Galeus springeri and the false catshark, Pseudotriakis microdon. Preliminary genetic analysis indicated two or more species of gulper sharks, Centrophorus spp.; however, for the present study they were treated as a single species complex. Water depth and distance from the rocky structure of the Exuma Sound wall were inversely correlated with species richness, whereas seabed temperature was directly correlated with species richness. These variables also had a significant influence on the abundance and distribution of many species. Expanded depth ranges were established for S. cubensis and H. nakamurai, which, in the case of S. cubensis, is thought to be driven by thermal preferences. At-vessel mortality rates increased significantly with depth, and post-release mortality was thought to be high for some species, in part due to high post-release predation. This study highlights the importance of utilising strategic geographic locations that provide easy access to deep water, in combination with traditional expedition-based deep-ocean science, to accelerate the acquisition of fundamental ecological and biological insights into deep-sea elasmobranchs.

  2. Study of sleeper’s impact on the deep-water pipeline lateral global buckling

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Li, Bin

    2017-08-01

    Pipelines are the most important transportation way for offshore oil and gas, and the lateral buckling is the main global buckling form for deep-water pipelines. The sleeper is an economic and efficient device to trigger the lateral buckling in preset location. This paper analyzed the lateral buckling features for on-bottom pipeline and pipeline with sleeper. The stress and strain variation during buckling process is shown to reveal the impact of sleeper on buckling.

  3. Possible deep-water gas hydrate accumulations in the Bering Sea

    USGS Publications Warehouse

    Barth, Ginger A.; Scholl, David W.; Childs, Jonathan R.

    2006-01-01

    Seismic reflection images from the deep-water Aleutian and Bowers Basins of the Bering Sea contain many hundreds of acoustic Velocity-AMPlitude (VAMP) anomalies, each of which may represent a large accumulation of natural gas hydrate. Against a backdrop of essentially horizontal sedimentary reflections, the VAMP anomalies stand out as both high-amplitude bright spots and zones of vertically aligned horizon distortions. The VAMPs are interpreted as natural gas chimneys overlain by concentrated hydrate caps.

  4. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults.

    PubMed

    Kanitz, Ana Carolina; Delevatti, Rodrigo Sudatti; Reichert, Thais; Liedtke, Giane Veiga; Ferrari, Rodrigo; Almada, Bruna Pereira; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2015-04-01

    This study aimed to investigate the effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Thirty-four older adults men were placed into two groups: deep water endurance training (ET; n = 16; 66 ± 4 years) and deep water strength prior to endurance training (concurrent training: CT; n = 18; 64 ± 4 years). The training period lasted 12 weeks, with three sessions a week. The resting heart rate and the oxygen uptake at peak (VO2peak) and at the second ventilatory threshold (VO2VT2) were evaluated during a maximal incremental test on a cycle ergometer before and after training. In addition, maximal dynamic strength (one repetition maximum test--1RM) and local muscular resistance (maximum repetitions at 60% 1RM) of the knee extensors and flexors were evaluated. After the training period, the heart rate at rest decreased significantly, while the VO2peak and VO2VT2 showed significant increases in both groups (p<0.05). Only the VO2VT2 resulted in significantly greater values for the ET compared to the CT group after the training (p<0.05). In addition, after training, there was a significant increase in the maximal dynamic strength of the knee extensors and the local muscular endurance of the knee extensors and flexors, with no difference between the groups (p > 0.05). In summary, the two training programs were effective at producing significant improvements in cardiorespiratory and muscular strength responses in older adult men. However, deep water endurance training at high intensities provides increased cardiorespiratory responses compared to CT and results in similar muscular strength responses.

  5. Carbonate Microfabrics Permeability Characteristics of Continental Slope and Deep-Water Carbonates from a Microfabric Perspective

    DTIC Science & Technology

    1994-01-01

    the Precipitation of fine- algal remnants, pteropods, coccoliths, foraminifers , sponge grimed magnesian calcite in the Bahamas. Roberts and spicules...volumes of authigenic deep-water carbonate constituents am planktonic foraminifers carbonates. Some of the authigenic carbonates described by and...such as pteropods (500 to 1000 pm) and foraminifers (50 to 100 am). Samples from the slopes of Exuma Sound were more frequently matrix supported, with

  6. Dynamic Autoinoculation and the Microbial Ecology of a deep Water Hydrocarbon Irruption

    DTIC Science & Technology

    2012-12-11

    fundamental principles of chemistry , microbiology, and ocean physics without the need for tuning or optimization. In light of the model’s overall success...diagnostics for mixing (16) that have not been used in previous models of deep water circu- lation (17). We defined a dairy input flux of hydrocarbons dis...daily Dux estimates of oil and natural gas from the well based on rcf. 1 and subtracted the dairy recovery volumes reported from active collection

  7. Rapid vertical mixing rates in deep waters of the Andaman Basin.

    PubMed

    Dutta, Koushik; Bhushan, Ravi; Somayajulu, B L K

    2007-10-01

    The Andaman Basin is an enclosed region in the northeastern Indian Ocean with its deep water below approximately 1800 m almost isolated with respect to horizontal ventilation by the Andaman-Nicobar Islands separating it from the Bay of Bengal. The physical and chemical properties including radiocarbon ((14)C) measured at two stations of the Andaman Basin show negligible variation with depth in the waters below 1300 m, indicating a well-mixed water mass. This study attempts to derive the mixing rates for deep waters of the Andaman Basin. Model calculations based on (14)C profile measurements indicate rapid vertical mixing (vertical advection velocity, w>200 m year(-1)) in waters deeper than 1800 m of the basin. For a basin with deep water thickness of 1000 m below 1800 m, deduced mixing rate of >200 m year(-1) translates to mixing time of <5 years. As shown for other regions, the possible mechanism responsible for such high vertical mixing rates could be the internal waves generated from tidal currents flowing through rough topography. In addition, Andaman Basin is underlain with a young crust and is known for its high heat flow, which also could contribute to the high vertical mixing.

  8. Spatial correlation of the high intensity zone in deep-water acoustic field

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Zheng-Lin; Ren, Yun

    2016-12-01

    The spatial correlations of acoustic field have important implications for underwater target detection and other applications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterborne modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  9. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline

    2017-07-01

    Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  10. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  11. Stratigraphic hierarchy of organic carbon rich siltstones in deep-water facies, Brushy Canyon Formation (Guadalupian), Delaware Basin, West Texas

    NASA Astrophysics Data System (ADS)

    Sageman, Bradley B.; Gardner, Michael H.; Armentrout, John M.; Murphy, Adam E.

    1998-05-01

    The first systematic test for a predictive relationship between organic carbon content and stratigraphic hierarchy in a deep-water slope to basin-floor deposit was performed. The studied section includes the Pipeline Shale, the Brushy Canyon Formation, and the lower part of the Cherry Canyon Formation of the Delaware Mountain Group, West Texas. This interval represents one large-scale, 3rd-order genetic sequence within which 4th- and 5th-order stratigraphic cycles are recognized. Samples of fine-grained facies throughout the section were collected from outcrop and analyzed for organic carbon content and hydrogen index. Degree of pyritization was also determined for a subset of the samples. The results indicate that organic enrichment is closely correlated to the stratigraphic hierarchy at the 3rd-, 4th-, and 5th-order levels. The data suggest that quantity and quality of preserved organic matter are controlled by changes in bulk sedimentation rate (dilution vs. condensation), which affect organic matter inputs to the sediment, as well as the balance between (1) burial and preservation of organic matter and (2) its degradation on the sea floor during times of sediment starvation.

  12. Inter-annual variability and potential for selectivity in the diets of deep-water Antarctic echinoderms

    NASA Astrophysics Data System (ADS)

    Wigham, B. D.; Galley, E. A.; Smith, C. R.; Tyler, P. A.

    2008-11-01

    The continental shelf of the West Antarctic Peninsula (WAP) is a highly productive region but also unusually deep as a result of isostatic depression by the polar ice cap. The close coupling of surface processes with those of the benthos would be expected in such a seasonally variable environment; however, the cold, deep conditions of the WAP shelf may allow for the persistence of organic material in the sediments as a "food bank". Chlorophyll and carotenoid pigments were determined from the gut contents of seven species of echinoderm and from the surficial sediment on the bathyal continental shelf. Samples were collected as part of the FOODBANCS programme during successive cruises in austral spring (October 2000) and austral autumn (March 2001). Pigments were identified and quantified using reverse-phase high-performance liquid chromatography (HPLC). A lack of qualitative selectivity was observed among species, compared to that observed for deep-water assemblages at temperate latitudes, supporting the theory of a persistent "food bank". However, significant quantitative differences were observed among species and between years and sampling location on the shelf. Species differences were marked between those we classified as "true" deposit feeders and those species whose diet also may be supplemented by scavenging and/or grazing.

  13. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

  14. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  15. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    deposits, and their implications for global climate change, considering the heat transport, maturation of organic matter and the release of carbon-rich fluids associated to these systems. Hydrothermal vent complexes have been found all over the world in the fossil record related to large igneous provinces as those found in the North Atlantic margins. Nevertheless, studies focused on modern deep water magmatic hydrothermal systems are generally confined to ocean spreading centers, while scarce works address their study in deep oceanic intraplate basins. This study reports and documents for the first time the discovery of a recent deep water system of magmatic-induced hydrothermal vents at 4800-5200 m depth in an unexplored area of the Canary Basin (eastern central Atlantic), located about 500 km west of the Canary Islands. The analysis and interpretation of the newly acquired data set has shown that the study area is characterized by the presence of a huge magmatic complex of sills that intrudes the sedimentary sequence and exceptionally deep volcanoes so far unknown.

  16. 240Pu/239Pu isotopic ratios and 239 + 240Pu total measurements in surface and deep waters around Mururoa and Fangataufa atolls compared with Rangiroa atoll (French Polynesia).

    PubMed

    Chiappini, R; Pointurier, F; Millies-Lacroix, J C; Lepetit, G; Hemet, P

    1999-09-30

    The average values of 240Pu/239Pu mass isotopic ratios of plutonium deposited in Mururoa and Fangataufa atoll sediments by French atmospheric nuclear tests range from 3.5 to 5%. In order to assess the near field and far field influence of those deposits in the open ocean, two water profiles were measured for 239 + 240Pu and 240Pu/239Pu using, for the first time, an Inductively Coupled Plasma Mass Spectrometer which was developed to achieve femtogram detection limits. One site was located at the limit of the French territorial waters, which is 22 km distant from Mururoa. The second site was located close to Rangiroa atoll, at a distance of approximately 1200-km from French nuclear test sites. The sample volumes were approximately 500 litres and plutonium was purified prior to mass spectrometry and alpha spectrometry measurements. In Rangiroa, the 239 + 240Pu profile is comparable with those already determined in world open oceans but the maximum detected activity, 9 mBq/m3 at 500-600 m is a lot lower than those measured in the northern hemisphere. 240Pu/239Pu ratios were measured between 500 and 1000 m and were not statistically different from the typical 0.18 +/- 0.01 ratio which characterises the global fallout. Consequently, any influence of plutonium from the tests in Mururoa and Fangataufa is not apparent at Rangiroa. The vertical distribution of 239 + 240Pu near Mururoa shows similar changes with depth but with a slight increase in concentration. 240Pu/239Pu mass ratios vary with depth, from 7 to 10% in the upper 500 m and in the deep waters (below 1000 m) to 15-16% between 600 and 1000 m. A contribution from plutonium deposited in the sediments at Mururoa and Fangataufa is observed at the limit of territorial waters, especially in surface and deep waters.

  17. Detection and Characterization of Deep Water Wave Breaking Using Moderate Incidence Angle Microwave Backscatter from the Sea Surface

    DTIC Science & Technology

    1990-06-01

    with the detected events. (A discussion of the distribution of Fmax follows in the next section.) These plots confirm that very few non-breaking waves ...8217 and 0 Oceanographic Engineering 1930 DOCTORAL DISSERTATION Detection and Characterization of Deep Water Wave Breaking Using Moderate Incidence...Characterization of Deep Water Wave Breaking Using Moderate Incidence Angle Microwave Backscatter from the Sea Surface by -- Andrew Thomas Jessup ,. D, Woods

  18. Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, Alberto C.; Heywood, Karen J.; Stevens, David P.

    2002-04-01

    An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance. Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia. A more saline WSDW variety from the South Sandwich Trench may leak into the eastern Scotia Sea through Georgia Passage, but mainly flows around the Northeast Georgia Rise to the northern Georgia Basin. In Drake Passage, the inflowing CDW displays a previously unreported bimodal property distribution, with CDW at the Subantarctic Front receiving a contribution of deep water from the subtropical Pacific. This bimodality is eroded away in the Scotia Sea by vigorous mixing with WSDW and CDW from the Weddell Gyre. The extent of ventilation follows a zonation that can be related to the CDW pathways and the frontal anatomy of the ACC. Between the Southern Boundary of the ACC and the Southern ACC Front, CDW cools by 0.15°C and freshens by 0.015 along isopycnals. The body of CDW in the

  19. Seismic Imaging of Circumpolar Deep Water Exchange across the Shelf Break of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Gunn, K.; White, N.; Larter, R. D.; Falder, M.; Caulfield, C. C. P.

    2016-02-01

    The western Antarctic Peninsula is an area of recent extreme atmospheric warming. In the adjacent ocean, there is particular interest in on-shelf movement of Circumpolar Deep Water as a possible link to changing climate by affecting ice shelf processes. Here, we investigate on-shelf intrusions using two-dimensional seismic imaging of the water column which has vertical and horizontal resolutions of 10 m. 8 seismic profiles were acquired in February 2015 using the RRS James Clark Ross. These profiles traverse the shelf break and cross two bathymetric features, the Marguerite and Biscoe troughs, which may play a role in water exchange processes. Seismic data were acquired using two Generator-Injector air guns fired every 10 s with a pressure of 2000 psi. Reflections were recorded on a 2.4 km streamer of 192 receivers spaced every 12.5 m. Observed reflections in the processed records are caused by rapid changes of temperature ( 80%) and salinity ( 20%), delineating water masses of different properties. 13 XCTDs and XBTs plus a 38 kHz echo-sounder profile were simultaneously acquired along seismic profiles and used for calibration. Preliminary results show the top of the Winter Water layer as a bright reflection at 50-120 m depth across the entire survey, corresponding to temperatures ≤ -1°C. Curved, discontinuous, eddy-like reflections, also seen on echo-sounder profiles, are attributed to modified Upper Circumpolar Deep Water with temperatures ≥ 1.34°C. A warm core eddy, 11 km long and 220 m high, is visible 2 km inland of the shelf break. Pure Upper Circumpolar Deep Water of temperatures ≥ 1.80°C is aligned with weak but discernible, lens-shaped reflections. Eddy-like structures and the overall reflective morphology yield useful insights into shelf exchange processes, suggestive of three potential mechanisms: (i) topography controlled flow; (ii) an 'ice-pump' mechanism; and (iii) mesoscale eddies.

  20. Response of South Atlantic deep waters to deglacial warming during Terminations V and I

    NASA Astrophysics Data System (ADS)

    Vázquez Riveiros, Natalia; Waelbroeck, Claire; Skinner, Luke; Roche, Didier M.; Duplessy, Jean-Claude; Michel, Elisabeth

    2010-10-01

    New deep-sea core data from the Atlantic sector of the Southern Ocean, covering MIS12 to MIS10 and the last deglaciation, show a clear lag of the changes in deep water properties with respect to changes in surface conditions. The development of a chronology based on the correlation of Southern Ocean sea surface temperature with air temperature over Antarctica allows the quantification and comparison of phase lags within the marine records during Termination V (TV) and Termination I (TI). Deglacial changes in the South Atlantic are interpreted as the response to changes in the state of the Atlantic meridional ocean circulation (AMOC). The warming of South Atlantic surface waters and air temperature over Antarctica at the beginning of both TV and TI is attributable to a reduction in interhemispheric heat transport due to the weakening of the AMOC. Comparison of our results with CLIMBER-2 simulations indicates that the response of bottom waters seen in the benthic isotopic records, delayed with respect to South Atlantic surface warming, can be explained by the increased inflow of North Atlantic Deep Water (NADW) to the South Atlantic site at the time of the AMOC recovery. Reconstructed sea surface temperature at our South Atlantic site exhibits a cold spell at the end of TV, resembling the Antarctic Cold Reversal of the last deglaciation. The presence of cold spells during TV and TI may be explained by the fact that the recovery of the AMOC took place early during the termination in both cases. The sequence of events is similar during both terminations; however, the magnitude of the phase shifts between South Atlantic surface and deep waters conditions differs from one termination to the other, suggesting variations in the magnitude and duration of the AMOC perturbation.

  1. Bearing splitting and near-surface source ranging in the direct zone of deep water

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Nan; Zhou, Shi-Hong; Peng, Zhao-Hui; Zhang, Yan; Zhang, Ren-He

    2016-12-01

    Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a bearing-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz-360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The bearing-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations. Project supported by the Program of One Hundred Talented People of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  2. Asymmetric oceanic response to a hurricane: Deep water observations during Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Spencer, Laura J.; DiMarco, Steven F.; Wang, Zhankun; Kuehl, Joseph J.; Brooks, David A.

    2016-10-01

    The eye of Hurricane Isaac passed through the center of an array of six deep water water-column current meter moorings deployed in the northern Gulf of Mexico. The trajectory of the hurricane provided for a unique opportunity to quantify differences in the full water-column oceanic response to a hurricane to the left and right of the hurricane trajectory. Prior to the storm passage, relative vorticity on the right side of the hurricane was strongly negative, while on the left, relative vorticity was positive. This resulted in an asymmetry in the near-inertial frequencies oceanic response at depth and horizontally. A shift in the response to a slightly larger inertial frequencies ˜1.11f was observed and verified by theory. Additionally, the storm passage coincided with an asymmetric change in relative vorticity in the upper 1000 m, which persisted for ˜15 inertial periods. Vertical propagation of inertial energy was estimated at 29 m/d, while horizontal propagation at this frequency was approximately 5.7 km/d. Wavelet analysis showed two distinct subinertial responses, one with a period of 2-5 days and another with a period of 5-12 days. Analysis of the subinertial bands reveals that the spatial and temporal scales are shorter and less persistent than the near-inertial variance. As the array is geographically located near the site of the Deep Water Horizon oil spill, the spatial and temporal scales of response have significant implications for the fate, transport, and distribution of hydrocarbons following a deep water spill event.

  3. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.

    2014-04-01

    Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.

  4. Seismic characterization of deep-water pipe structures in the Levant Basin, SE Mediterranean

    NASA Astrophysics Data System (ADS)

    Eruteya, Ovie Emmanuel; Waldmann, Nicolas; Schalev, Dagan; Makovsky, Yizhaq; Ben-Avraham, Zvi

    2015-04-01

    Analysis of a new deep-water (1100 m - 1500 m) high resolution 3D seismic dataset covering part of the central Levant Basin, offshore Israel reveals previously undocumented evidences for subsurface fluid flow in the post-Messinian overburden manifested as pipe structures. Interestingly, these pipe structures are genetically and spatially contextualized east and west of the study area, all emanating from the Messinian evaporite substratum. Pipes in the western group accounts for 83% of the pipe population, are crudely cylindrical, oval to elliptical in planform, with diameter and height ranging ca. 350 m - 2000 m and 320 m - 420 m, respectively. Internal configuration within this group varies from chaotic to concave upward reflections diagnostic of fluid induced collapse. Pipes in the eastern group are seepage pipes appearing conical in shape, with height of ~350 m - 510 m and diameter of 320 m - 420 m. The western group indicates an episode of fluid flow till the mid-Pliocene, compared to late Pliocene in the eastern group where successive mass wasting events during the late Pliocene plugged piping. A conceptual model for the pipes in the western group is proposed to have occurred from subjacent dissolution of the Messinian evaporite under deep-water marine conditions during the Pliocene by vertically focused fluid flow from intra-Messinian realm dissolving the top evaporites and inducing systematic collapse in the overburden. The onset of which may have been triggered by seismicity. Conversely, pipes in the eastern group are proposed to develop from breaching the top evaporite by pressurized fluids that developed from lateral pressure transfer due to differential loading of the overburden and salt tectonics. Most likely, these fluids are biogenic gas since the major gas fields in deep-waters offshore Israel and close to the study area are of this composition. The pipe structures identified in the study area extend the current understanding of fluid flow subsequent

  5. Deep water challenges: Oil industry moves off continental shelf; meets new oceanographic data-gathering challenges

    SciTech Connect

    Mardell, G.; Flynn, J.

    1995-08-01

    While offshore oil industry activities move from the continental shelves to the continental slope and even onto the abyssal plains of the deep oceans, new oceanographic problems arise - from riser-deforming internal waves to ocean-floor avalanches. As well as soliton-induced currents, other subsurface flows need to be monitored to provide data in support of wide ranging underwater activities, including exploration drilling, deployment of subsea systems, diver and ROV operations, and pipe design, lay and inspection. This article examines some of the work carried out over the past year or so with data-gathering deep water moorings.

  6. AUV Reveals Deep-Water Coral Mound Distribution, Morphology and Oceanography in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Eberli, G. P.; Viggiano, D. A.; Correa, T.; Rathwell, G.; Luo, J.

    2006-12-01

    Since the 1960's dredge sampling and submersible dives have discovered numerous mound-forming deep- water corals in water depths of 400-800 m in the Straits of Florida. This extensive collection of samples and observations however can not be put into a geomorphologic context as existing bathymetric charts do not resolve coral mounds. To make progress in understanding the distribution and genesis of coral mounds, maps of morphology and oceanographic conditions resolving features at the 1-10 m scale are needed. On 11-18 December 2005 the C-Surveyor II(TM) mapped five sites ranging from 14-48 km2 in 590-875 m water acquiring 1-3 m resolution bathymetry and acoustic backscatter together with subbottom profiles, current vectors, salinity, and temperature. The areas mapped with the AUV contain hundreds of coral mounds with heights of 1-120 m. Mound distribution, morphology and currents are different for each survey site. Coral mounds develop on off-bank transported sediment ridges and slump features at the toe-of-slope of Great Bahama bank, while chevron pattern ridges and sinusoidal ridges are found further east in the Straits. Currents range from 0.1-0.5 m/s. At two sites currents reversed every 6 hours indicating tidal control. The AUV surveys and subsequent ground truthing with a drop camera and a submersible revealed a surprising abundance and diversity of deep-water coral habitats. The boundaries between mound fields and the barren muddy or sandy seafloor are sharp. Hull- mounted multi-beam reconnaissance mapping helped us select the most promising coral mound areas to optimize the use of valuable AUV time. Such combined use of hull-mounted and AUV-based mapping enables efficient environmental characterization of large deep-water regions such as the Florida Straits. The synoptic high-resolution datasets acquired by the multiple sensors on board the AUV enable for the first time a comprehensive assessment of deep-water coral mound ecosystems. Utilization of such

  7. Dissolved inorganic carbon isotopic composition of the Gulf of Mexico deep-water masses.

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, J. G.; Herguera, J. C.; Ferreira-Bartrina, V.; Hernández-Ayón, J. M.; Camacho-Ibar, V.

    2014-12-01

    This study provides new data for the establishment of a carbon biogeochemical dynamics baseline in the deep Gulf of Mexico (GM) based on carbon isotopes in dissolved inorganic carbon. Water samples from 40 deep-water stations south of 25˚N were collected during XIXIMI-2 cruise, July 2011, aboard BO/Justo Sierra. Vertical profiles of temperature, salinity and dissolved oxygen (DO) were further measured in each station. In the Stable Isotopes Laboratory at CICESE we determined the carbon isotopic composition of the dissolved inorganic carbon (DIC) (δ13CDIC). Remarkably, density, DO and δ13CCID profiles showed a clear difference between the Loop current and the deep-waters of the GM south of 25˚N. We found the following average δ13CCID values in the Loop current and in the deep-waters of the Gulf: subtropical underwater (SUW): 0.73±0.06‰ and 0.86±0.04‰; 18 degree water (18W): 0.76 ± 0.08‰ and 0.58± 0.06‰; North Atlantic central water (NACW): 0.77 ± 0.05‰ and 0.71 ± 0.09‰; South Atlantic central water (SACW): 0.80 ± 0.08‰ and 0.77 ± 0.07‰; Antartic intermediate water (AAIW): 1.00 ± 0.06‰ and 0.90 ± 0.08‰; North Atlantic deep water (NADW): 1.03 ± 0.06‰ and 1.01 ± 0.10‰. We will discuss how the biological component, δ13CCID-BIO, of subsurface water masses match very closely the apparent oxygen utilization relation described by Kroopnick, 1985, with the exception of SUW, and as a consequence the 18W is probably the water mass most affected by organic carbon remineralization processes in the GM south of 25˚N. We further show how these waters seem to store a larger proportion of anthropogenic carbon than the deeper water masses.

  8. Lepidapedon sereti n. sp. (Digenea: Lepidapedidae) in Coelorinchus sereti (Gadiformes: Macrouridae) from deep waters off Vanuatu.

    PubMed

    Bray, Rodney A; Faliex, Elisabeth; Allienne, Jean François; Mouahid, Gabriel

    2013-12-01

    Lepidapedon sereti n. sp. is described from the macrourid Coelorinchus sereti from the deep water off Vanuatu. It is placed in the Elongatum group and Elongatum subgroup. It differs from the other species described in this subgroup by the distinctly dorsally subterminal excretory pore. It also differs from other species in combinations of size, excretory vesicle length, proportions of forebody, post-testicular region and other metric features. This constitutes the first record of a Lepidapedon (sensu stricto) from the Central Western Pacific Ocean.

  9. Cathodic protection survey of deep-water structures and subsea installations

    SciTech Connect

    Leask, L.J. )

    1989-11-01

    The successful and efficient cathodic protection (CP) survey of a deep water structure using a remotely operated vehicle (ROV) has remained an enigma to many corrosion engineers in oil companies. The location of the corrosion group within the company structure often plays a major role in the success of the project. Operators locate their corrosion departments in different groups, some in the offshore/onshore operations and others in the design group. This location often has a bearing on the financial and operational approach to the project. The author discusses how a successful CP survey is both an achievable and exciting project with experienced preplanning and selection of the correct equipment.

  10. CP survey of deep water structures and subsea installations using an ROV

    SciTech Connect

    Leask, L.J. )

    1989-01-01

    The successful and efficient CP survey of a deep water structure using a remotely operated vehicle (ROV) has remained an enigma to many corrosion engineers in oil companies. The location of the corrosion group within the company structure often plays a major role in the success of the project. Operators locate their corrosion departments in different groups, some in the offshore/onshore operations and others in the design group. This location often has a bearing on the financial and operational approach to the project. This paper discusses how a successful CP survey is both an achievable and exciting project with experienced pre- planning and selection of the correct equipment.

  11. The tectono-stratigraphic evolution of basement highs in hyper extended deep-water rifted margins : the example of the Briançonnais domain in the Alps and comparisons with modern analogues

    NASA Astrophysics Data System (ADS)

    Haupert, Isabelle; Manatschal, Gianreto; Unternehr, Patrick; Decarlis, Alessandro

    2013-04-01

    The discovery of hydrocarbon systems in hyper-extended deep-water rifted margins, in conjunction with technical developments, expanded the hydrocarbon exploration into domains that are yet little investigated. The increasing number of high-quality reflection and refraction seismic surveys and drill hole data show that deep-water rifted margins are very different from proximal rifted margins. The new data show evidence for a polyphase rift evolution resulting in complex rift architectures with variable amounts of magmatic addition and local mantle exhumation that cannot be predicted by classical rift models. Thus, understanding the thermal structure, subsidence history, depositional environment and sedimentary architecture is a prerequisite to apply the "play elements" in these yet little investigated domains, which is essential to evaluate the survivability of syn- to post-rift petroleum systems. Although a big progress was made in the understanding of deep water rifted margins in the last 5 years, there are still many fundamental questions that remain open and ask for further research on this topic. One open scientific question is related to the tectono-sedimentary evolution and subsidence history of basement highs in deep water rifted margins. Péron-Pinvidic and Manatschal (2010) showed that different types of basement highs can be distinguished in rifted margins. These highs include micro-continents, continental ribbons, H-blocks and extensional allochthons. Mapping these highs and properly define their stratigraphic and tectonic evolution provide important insights into the tectonic evolution of rifted margins. However, these blocks are often at deep-water and sealed by thick post-rift sediments. Therefore access to direct observations requires expensive drillings. An alternative way to study these blocks is to use field analogues. One of which is the Briançonnais domain in the Alps. To achieve our goal we propose to review the existing structural

  12. Lower Paleozoic deep-water facies of the Medfra area, central Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1997

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.; Repetski, John E.

    1999-01-01

    Deep-water facies, chiefly hemipelagic deposits and turbidites, of Cambrian through Devonian age are widely exposed in the Medfra and Mt. McKinley quadrangles. These strata include the upper part of the Telsitna Formation (Middle-Upper Ordovician) and the Paradise Fork Formation (Lower Silurian-Lower Devonian) in the Nixon Fork terrane, the East Fork Hills Formation (Upper Cambrian-Lower Devonian) in the East Fork subterrane of the Minchumina terrane, and the chert and argillite unit (Ordovician) and the argillite and quartzite unit (Silurian- Devonian? and possibly older) in the Telida subterrane of the Minchumina terrane.In the western part of the study area (Medfra quadrangle), both hemipelagic deposits and turbidites are largely calcareous and were derived from the Nixon Fork carbonate platform. East- ern exposures (Mt. McKinley quadrangle; eastern part of the Telida subterrane) contain much less carbonate; hemipelagic strata are mostly chert, and turbidites contain abundant rounded quartz and lesser plagioclase and potassium feldspar. Deep-water facies in the Medfra quadrangle correlate well with rocks of the Dillinger terrane exposed to the south (McGrath quadrangle), but coeval strata in the Mt. McKinley quadrangle are compositionally similar to rocks to the northeast (Livengood quadrangle). Petrographic data thus suggest that the Telida subterranes presently defined is an artificial construct made up of two distinct sequences of disparate provenance.Restoration of 90 and 150 km of dextral strike-slip on the Iditarod and Farewell faults, respectively, aligns the deep-water strata of the Minchumina and Dillinger terranes in a position east of the Nixon Fork carbonate platform. This restoration supports the interpretation that lower Paleozoic rocks in the Nixon Fork and Dillinger terranes, and in the western part of the Minchumina terrane (East Fork subterrane and western part of the Telida subterrane), formed along a single continental margin. Rocks in the

  13. Deep-water running: a practical review of the literature with an emphasis on biomechanics.

    PubMed

    Killgore, Garry L

    2012-02-01

    Deep-water running (DWR) is used as an adjunct to training and conditioning, and as an injury-rehabilitation technique. It is important for the physician or sports medicine practitioner to focus on the underlying physics and biomechanics of running in water in order to better produce the desired physiological, metabolic, and psychological outcomes. Deep-water running maximal heart rate and oxygen consumption values have been consistently shown to be lower than those found during treadmill running. However, recent evidence reveals that there is less of a difference between these maximal values relative to treadmill running and DWR with increased DWR experience. Submaximal values have been shown to be strikingly similar. The skill level of DWR technique, psychological comfort, perception of work, muscular recruitment patterns, and running kinematics are all affected by the physics (ie, temperature, buoyancy, hydrostatic pressure, specific gravity, and drag) of running in water. Therefore, the relationship between the biomechanics and the corollary practical physiological indicators of workload found in DWR must be factored into the appropriate prescription of training and conditioning workloads and rehabilitation protocols.

  14. Test installation of subsea production system and flowlines in deep water

    SciTech Connect

    Madsen, T.; Andersen, S.; Vetaas, L.

    1983-09-01

    A single-well Subsea Production System (SPS) was installed in 300m of water depth for test purposes in the Onarheimsfjord on the west coast of Norway in the autumn of 1982. Two different ways of connecting flowlines to the SPS were tested; a remote off-bottom pull-in operation featuring the ''J''-method. All operations were performed diverless, a remotely operated observation vehicle (ROV) and an Atmospheric Diving Suit (ADS) being used for general assistance and back-up. In order to optimise the operations, extensive analyses had been performed on the equipment and on the operational plan. These analyses included a failure mode and effect analysis (FMEA) on equipment and operations in general as well as computer simulations of the flowline operations. The objective of the test was to gain experience related to operations in deep water, state limitations in today's level of technology. The paper gives a review of the test and planning phase. The problems related to deep waters are pin-pointed, and some results are given.

  15. Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific

    PubMed Central

    Umling, Natalie E.; Thunell, Robert C.

    2017-01-01

    The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may obscure our understanding of the phase relationship between inter-ocean ventilation changes. Here we reconstruct changes in deep water and thermocline radiocarbon content over the last deglaciation in the eastern equatorial Pacific (EEP) using benthic and planktonic foraminiferal 14C. Our records demonstrate that ventilation of EEP thermocline and deep waters occurred synchronously during the last deglaciation. In addition, both gradual and rapid deglacial radiocarbon changes in these Pacific records are coeval with changes in the Atlantic records. This in-phase behaviour suggests that the Southern Ocean overturning was the dominant driver of changes in the Atlantic and Pacific ventilation during deglaciation. PMID:28112161

  16. Impact of deep-water fish farms on benthic macrofauna communities under different hydrodynamic conditions.

    PubMed

    Valdemarsen, Thomas; Hansen, Pia Kupka; Ervik, Arne; Bannister, Raymond J

    2015-12-30

    In this study the environmental impacts of two fish farms located over deep water (180-190 m) were compared. MC-Farm was located at a site with slightly higher water currents (mean current speed 3-5 cms(-1)) than LC-farm (<2 cms(-1)). Macrofauna composition, bioirrigation and benthic fluxes (CO2 and NH4(+)) were quantified at different stages of the production cycle, revealing very different impact of the two farms. Macrofauna abundance and bioirrigation were stimulated compared to a non-impacted reference site at MC-farm, while macrofauna diversity was only moderately reduced. In contrast, macrofauna communities and related parameters were severely impoverished at LC-Farm. This study suggests that deep-water fish farms should not be sited in low current areas (<2 cms(-1)), since this will hamper waste dispersal and aggravate environmental impacts. On the other hand, fish farming at slightly more dynamic sites can lead to stimulated benthic macrofauna communities and only moderate environmental impacts.

  17. Geology of deep-water sandstones in the Mississippi Stanley Shale at Cossatot Falls, Arkansas

    SciTech Connect

    Coleman, J.L. Jr. )

    1993-09-01

    The Mississippian Stanley Shale crops out along the Cossatot River in the Ouachita Mountains of western Arkansas. Here, exposures of deep-water sandstones and shales, on recently established public lands, present a rare, three-dimensional look at sandstones of the usually obscured Stanley. Cossatot Falls, within the Cossatot River State Park Natural Area, is a series of class IV and V rapids developed on massive- to medium-bedded quartz sandstones on the northern flank of an asymmetric, thrust-faulted anticline. In western Arkansas, the Stanley Shale is a 10,000-ft (3200-m) succession of deep-water sandstone and shale. At Cossatot Falls, approximately 50 ft (155 m) of submarine-fan-channel sedimentary rocks are exposed during low-river stages. This section is composed primarily of sets of thinning-upward sandstone beds. With rare exceptions, the sandstones are turbidites, grading from massive, homogeneous, basal beds upward through festoon-cross-bedded thick beds, into rippled medium and thin beds. Sandstone sets are capped by thin shales and siltstones. Regional, north-northwestward paleocurrent indicators are substantiated by abundant, generally east-west ripple crests asymmetric to the north-northwest. Flute casts at the top of the sandstone sequence indicate an additional east-ward flow component. Based on regional, lithologic characteristics, the sandstones at Cossatot Falls appear to be within the Moyers Formation. The Moyers is the upper sandstone unit of the Stanley and is an oil and gas reservoir in the eastern Oklahoma Ouachita Mountains.

  18. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway

    PubMed Central

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ13C and δ18O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  19. Environmental risk management and preparations for the first deep water well in Nigeria

    SciTech Connect

    Berger, F.

    1996-12-31

    Statoil is among the leaders in protecting health, environment and safety in all aspects of the business. The evaluations of business opportunities and development of blocks opened by authorities for petroleum exploration, are assessed in accordance with the goals for environmental protection. Progressive improvement of environmental performance is secured through proper environmental risk management. In 1995, Statoil, the technical operator on Block 210 off the Nigerian coast, was the first company to drill in deep waters in this area. An exploration well was drilled in a water depth of about 320 meters. The drilling preparations included environmental assessment, drillers Hazop, oil spill drift calculations, oil spill response plans and environmental risk analysis. In the environmental preparations for the well, Statoil adhered to local and national government legislation, as well as to international guidelines and company standards. Special attention was paid to the environmental sensitivity of potentially affected areas. Statoil co-operated with experienced local companies, with the authorities and other international and national oil companies. This being the first deep water well offshore Nigeria, it was a challenge to co-operate with other operators in the area. The preparations that were carried out, will set the standard for future environmental work in the area. Co-operation difficulties in the beginning were turned positively into a attitude to the environmental challenge.

  20. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1994-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of wastewater pretreatment. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metals, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, fed sequentially with untreated water. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In seven-day chronic tests with Ceriodaphnia dubia, the NOEC of influent water was as low as 20%, and 100% mortality occurred at 40%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC was > 50% but complete mortality occurred in undiluted effluent. Further reduction in toxicity occurred in the second lagoon. Its undiluted effluent had no effect on survival, but did markedly reduce fecundity. The final effluent discharged from the treatment plant affected neither survival nor fecundity. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  1. Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Umling, Natalie E.; Thunell, Robert C.

    2017-01-01

    The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may obscure our understanding of the phase relationship between inter-ocean ventilation changes. Here we reconstruct changes in deep water and thermocline radiocarbon content over the last deglaciation in the eastern equatorial Pacific (EEP) using benthic and planktonic foraminiferal 14C. Our records demonstrate that ventilation of EEP thermocline and deep waters occurred synchronously during the last deglaciation. In addition, both gradual and rapid deglacial radiocarbon changes in these Pacific records are coeval with changes in the Atlantic records. This in-phase behaviour suggests that the Southern Ocean overturning was the dominant driver of changes in the Atlantic and Pacific ventilation during deglaciation.

  2. A new deep-water Astyris species (Buccinoidea: Columbellidae) from the southeastern Pacific.

    PubMed

    Araya, Juan Francisco; Catalán, Ricardo; Aliaga, Juan Antonio

    2016-07-19

    Marine mollusks from northern Chile and from the Región de Atacama in particular have been sparsely documented, and only a few works have reviewed the area (see Araya & Araya, 2015; Labrín et al. 2015; Araya & Valdés 2016). Mollusks from deep water and offshore areas are one of the least known groups and, apart from some classic works from the 19th century, only McLean (1970), Bernard (1983), Véliz and Vásquez (2000), Fraussen & Haddorn (2000), Houart (2003), Vilvens & Sellanes (2010), and Araya (2013) have included deep-water molluscan species from northern Chile. Among the Neogastropoda, the Columbellidae constitute a quite diverse and well-distributed family of small snails, with about seven hundred extant species distributed in 70 genera (deMaintenon, 2014). Most columbellids are active epibenthic carnivores or scavengers; their shells are small, normally between 3 and 20 mm in height and they can have determinate growth, with many adult shells presenting a thickened outer lip with denticles on the interior surface (Squires, 2015). In the southeastern Pacific off Chile this family is represented by only 14 species, all from shallow water, mostly found in the northern and central parts of the country (Valdovinos, 1999).

  3. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard-Oeschger events

    NASA Astrophysics Data System (ADS)

    Gottschalk, Julia; Skinner, Luke C.; Misra, Sambuddha; Waelbroeck, Claire; Menviel, Laurie; Timmermann, Axel

    2015-12-01

    The glacial climate system transitioned rapidly between cold (stadial) and warm (interstadial) conditions in the Northern Hemisphere. This variability, referred to as Dansgaard-Oeschger variability, is widely believed to arise from perturbations of the Atlantic Meridional Overturning Circulation. Evidence for such changes during the longer Heinrich stadials has been identified, but direct evidence for overturning circulation changes during Dansgaard-Oeschger events has proven elusive. Here we reconstruct bottom water [CO32-] variability from B/Ca ratios of benthic foraminifera and indicators of sedimentary dissolution, and use these reconstructions to infer the flow of northern-sourced deep water to the deep central sub-Antarctic Atlantic Ocean. We find that nearly every Dansgaard-Oeschger interstadial is accompanied by a rapid incursion of North Atlantic Deep Water into the deep South Atlantic. Based on these results and transient climate model simulations, we conclude that North Atlantic stadial-interstadial climate variability was associated with significant Atlantic overturning circulation changes that were rapidly transmitted across the Atlantic. However, by demonstrating the persistent role of Atlantic overturning circulation changes in past abrupt climate variability, our reconstructions of carbonate chemistry further indicate that the carbon cycle response to abrupt climate change was not a simple function of North Atlantic overturning.

  4. Study on dynamic characteristics of coupled model for deep-water lifting system

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Lu, Jianhui; Zhang, Chunlei

    2016-10-01

    The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve work accuracy. To provide a theoretical basis for the heave compensation system, in this paper, the continuous modeling method is employed to build up a coupled model of deep-water lifting systems in vertical direction. The response characteristics of dynamic movement are investigated. The simulation results show that the resonance problem appears in the process of the whole releasing load, the lifting system generates resonance and the displacement response of the lifting load is maximal when the sinking depth is about 2000 m. This paper also analyzes the main influencing factors on the dynamic response of load including cable stiffness, damping coefficient of the lifting system, mass and added mass of lifting load, among which cable stiffness and damping coefficient of the lifting system have the greatest influence on dynamic response of lifting load when installation load is determined. So the vertical dynamic movement response of the load is reduced by installing a damper on the lifting cable and selecting the appropriate cable stiffness.

  5. A new deep-water goatfish of the genus Upeneus (Mullidae) from Vanuatu, South Pacific.

    PubMed

    Uiblein, Franz; Causse, Romain

    2013-01-01

    A new goatfish, Upeneus vanuatu (Mullidae), is described based on five specimens collected off two islands of Vanuatu (South Pacific), at depths of 191-321 m, and compared with five closely related species: Upeneus davidaroni (Red Sea), U. mascareinsis (Western Indian Ocean), U. stenopsis (northern Australia, Philippines, 127-275 m), and the more shallow-occurring Indo-West Pacific species U. subvittatus (26-120 m) and U. vittatus (deep-water Upeneus species, the so-called "stenopsis" species group can be distinguished from four other species groups that were established in earlier studies in order to facilitate intrageneric comparisons. The ecological and evolutionary significance of deep-water goatfishes is briefly discussed.

  6. Observations of a Diapycnal Shortcut to Adiabatic Upwelling of Antarctic Cirumpolar Deep Waters

    NASA Astrophysics Data System (ADS)

    Lenn, Y. D.; Silvester, J. M.; Polton, J.; Rippeth, T. P.; Morales Maqueda, M. A.

    2016-02-01

    In the Southern Ocean, small-scale turbulence can drive diapycnal mixing resulting in the transformation of water masses that are key compnents of the large-scale Meridional Overturning Circulation (MOC). We present direct observations of mixing over the Antarctic continental slope involving Circumpolar Deep Water which comprises the poleward limb of the Southern Ocean MOC. A 12-hour time-series of microstructure turbulence measurements, hydrography and velocity observations on the Antarctic Peninsula continental slope north of Elephant Island, reveals two concurrent bursts of elevated dissipation of shape O(10-6)Wkg-1, resulting in heat fluxes ˜10 times higher than basin-integrated Drake Passage estimates. This occurs across the boundary between adjacent adiabatic upwelling and downwelling overturning cells. Ray tracing and topography show mixing between 300-400m consistent with the breaking of locally-generated internal tidal waves. Since similar conditions extend to much of the Antarctic continental slope where these water masses outcrop, their transformation may contribute significantly to Southern Ocean upwelling of Circumpolar Deep Water.

  7. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway.

    PubMed

    Bell, David B; Jung, Simon J A; Kroon, Dick; Hodell, David A; Lourens, Lucas J; Raymo, Maureen E

    2015-07-20

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate.

  8. Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon

    USGS Publications Warehouse

    McIntire, C.D.; Phinney, H.K.; Larson, Gary L.; Buktenica, M.W.

    1994-01-01

    A one-person submersible was used to examine the vertical distribution of the deep-water moss Drepanocladus aduncus (Hedw.) Warnst in Crater Lake (Oregon). Living specimens were found attached to sediment and rocks at depths between 25 m and 140 m. Dense beds of the moss were observed at depths between 30 m and 80 m, a region that corresponded roughly to the zone of maximum primary production by phytoplankton. The moss population supported a diverse assemblage of epiphytic algae, of which the most abundant genera included Cladophora,Oedogonium, Rhizoclonium, Tribonema, Vaucheria, and the diatoms Cocconeis, Cymbella, Epithemia, Fragilaria, Gomphonema, Melosira, Navicula, and Synedra. Chemical and physical data supported the hypothesis that the lower limit of distribution of the moss is determined by light limitation, whereas the upper limit is related to the availability of nutrients, particularly nitrate-nitrogen and trace elements. Deep-water videotapes of the moss population indicated that D. aduncus with its epiphytic algae was abundant enough in regions associated with the metalimnion and upper hypolimnion to have a potential influence on the nutrient dynamics of the Crater Lake ecosystem. Although the maximum depth at which living bryophytes occur in Crater Lake is similar to that found for Lake Tahoe, conditions in Lake Tahoe allow the growth and survival of a much more diverse assemblage of bryophytes and charophytes than is present in Crater Lake.

  9. Deep-water fossorial shrimps from the Oligocene Kiscell Clay of Hungary: Taxonomy and palaeoecology

    PubMed Central

    HYŽNÝ, MATÚŠ; DULAI, ALFRÉD

    2015-01-01

    We describe deep-water ghost shrimp assemblages from the otherwise well known Oligocene Kiscell Clay in Hungary. The described fossorial shrimps (Decapoda: Callianassidae and Ctenochelidae) include: Ctenocheles rupeliensis (younger synonym Callianassa nuda) and Lepidophthalmus crateriferus (younger synonym Callianassa brevimanus). The fossil material of the former species is assigned to Ctenocheles based on the morphology of the major cheliped, particularly the pectinate fingers, bulbous propodus, cup-shaped carpus and elongated merus. Lepidophthalmus crateriferus from the Oligocene of Hungary is the first unequivocal fossil record of the genus, which is distinguished in the fossil record on the basis of the presence of a meral blade and meral hook on the major cheliped. Lepidophthalmus is today known exclusively from shallow-water environments. The finding of a deep-water fossil representative of Lepidophthalmus therefore appears to be a reverse of the common pattern of groups shifting environments from onshore to offshore over geological time, as seen in many taxa. The presence of Lepidophthalmus crateriferus comb. nov. in the Kiscell Clay therefore suggests different ecological requirements for at least some populations of this genus in the geological past. PMID:25908897

  10. High Biodiversity on a Deep-Water Reef in the Eastern Fram Strait

    PubMed Central

    Meyer, Kirstin S.; Soltwedel, Thomas; Bergmann, Melanie

    2014-01-01

    We report on the distribution and abundance of megafauna on a deep-water rocky reef (1796–2373 m) in the Fram Strait, west of Svalbard. Biodiversity and population density are high, with a maximum average of 26.7±0.9 species m−2 and 418.1±49.6 individuals m−2 on the east side of the reef summit. These figures contrast with the surrounding abyssal plain fauna, with an average of only 18.1±1.4 species and 29.4±4.3 individuals m−2 (mean ± standard error). The east side of the reef summit, where the highest richness and density of fauna are found, faces into the predominant bottom current, which likely increases in speed to the summit and serves as a source of particulate food for the numerous suspension feeders present there. We conclude that the observed faunal distribution patterns could be the result of hydrodynamic patterns and food availability above and around the reef. To our knowledge, this study is the first to describe the distribution and diversity of benthic fauna on a rocky reef in deep water. PMID:25153985

  11. Changes in the South Pacific deep water Nd isotope composition over the last 140 ka

    NASA Astrophysics Data System (ADS)

    Fröllje, Henning; Basak, Chandranath; Lamy, Frank; Gersonde, Rainer; Ullermann, Johannes; Pahnke, Katharina

    2015-04-01

    The Southern Ocean plays a central role in the global overturning circulation of the ocean through the formation of intermediate and bottom waters and the import and redistribution of deep waters from all major ocean basins that make up Circumpolar Deep Water (CDW). The South Pacific is an ideal location to study the evolution of CDW over the last glacial-interglacial cycles with little direct overprint by fluctuating North Atlantic Deep Water (NADW) input. Here were present a 140ky-long record of neodymium isotope ratios (143Nd/144Nd, expressed as ɛNd) analyzed on fossil fish teeth and debris from sediment core PS75/056-1 (55° 09.74 S, 114° 47.31 W, 3581 m water depth) in the open South Pacific that is bathed today by Lower Circumpolar Deep Water (LCDW) with a small contribution from Pacific Deep Water. The Late Holocene and Marine Isotope Stage (MIS) 5 ɛNd values of -7.5 to -7.7 are close to the modern seawater isotopic composition near the core site [1]. Glacial ɛNd of about -6 is observed during MIS 2 and 6. The decrease in the ɛNd record during the penultimate deglaciation is more gradual compared to that during the last deglaciation and the most negative values of the last interglacial are reached during MIS 5c. The transition from MIS 5 into MIS 4 is characterized by a shift towards more negative ɛNd (-6.5) but full glacial values are not reached. The change to more positive ɛNd at the MIS 4/3 transition is followed by a long-term increase to maximum values reached during the last glacial maximum. The timing of the observed transitions is comparable to a nearby δ13C record (core E11-2) [2] and to published ɛNd records from the deep South Atlantic and Indian Oceans [3, 4]. We observe consistently more positive absolute ɛNd values in the South Pacific compared to the Atlantic. The offset is around one ɛNd unit during cold periods (MIS 2, 4, 6) and 1.5 ɛNd units during the interglacials. During MIS 3, on the other hand, there is little difference

  12. Deep-water carbonate slope failure events in a newly discovered Silurian basin, Blue Ridge province, southern Appalachians, Tennessee

    SciTech Connect

    Unrug, R. )

    1991-03-01

    Siliciclastic deep-water turbidites of the Walden Creek Group, Ocoee Supergroup, underlying the foothills of the Great Smoky Mountains, contain olistolith blocks and olistostromal debris-flow breccia beds. Paleozoic fossils discovered recently in the olistoliths indicate Silurian age of the carbonates. The Walden Creek Group is therefore Silurian or younger, not late Proterozoic in age, as believed previously. The carbonate olistoliths and breccias formed by collapse of post-Taconic Silurian carbonate-dominated basin present in the Blue Ridge province of the Southern Appalachians into the younger basin of the Walden Creek Group. Two modes of occurrence of the olistoliths are present: (1) discrete horizons in which olistoliths are sitting spaced ten to hundreds of meters apart underneath a widespread conglomerate bed and (2) accumulations of olistoliths in localized stacked horizons in the vertical sequence of the enclosing siliciclastic rocks. Both modes can be related to failure of active fault scarps. Rocks of the olistolith are lithologically varied and record an older event of slope failure within the Silurian carbonate-dominated basin. Three facies assemblages representing two sedimentary environments are present in the olistoliths. Facies assemblage A includes oolitic limestone, stromatolite, carbonate breccia encrusted by stromatolite, and massive sandy limestone. It represents a high-energy, shallow-water, carbonate platform environment. Facies assemblage B consists of bedded dark limestone, alternating with black shale, and represents sediments of the carbonate platform slope. Facies assemblage C includes carbonate breccias intercalated in the bedded limestones and shales and is interpreted as deposits of the lower slope formed by failure of the carbonate platform margin.

  13. Strong linkages between surface and deep-water dissolved organic matter in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hoon; Kim, Guebuem; Shen, Yuan; Benner, Ronald

    2017-05-01

    Vertical and horizontal distributions of total dissolved amino acids (TDAAs), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) were measured in the East/Japan Sea (EJS). The euphotic zone of this sea is N-limited, and the N : P ratio is ˜ 13 below 200 m depth. Elevated TDAA concentrations (137 ± 34 nM) and DOC-normalized yields (0.8 ± 0.2 % of DOC) were observed in deep waters ( ≥ 1000 m) of the EJS and compared with those in the deep North Pacific Ocean. Significantly high TDAA concentrations and yields were observed in a region of deep-water formation, indicating the convection of margin-derived bioavailable dissolved organic matter (DOM) to deep waters. Declining TDAA concentrations (36 ± 12 %) and yields (33 ± 13 %) were observed between 1000 and 3000 m throughout the EJS, indicating the utilization of bioavailable DOM in deep waters. Concentrations of the D-enantiomers of amino acids (Ala, Glx, Asx, and Ser) were relatively high in deep waters of the EJS, indicating substantial bacterial contributions to DOM from surface and upper mesopelagic waters. Climate warming during the past few decades in the EJS is weakening deep convection during the winter, and one consequence of this reduction in deep convection is a decline in the supply of bioavailable DOM from surface waters.

  14. Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval.

    PubMed

    Thomas, Deborah J

    2004-07-01

    The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era (approximately 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific approximately 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.

  15. Interpretation of depositional systems in lower Silurian Medina group of western New York

    SciTech Connect

    Davis, R.J.; Johnson, C.A.; Gilreath, J.A. )

    1988-08-01

    Depositional systems in the Medina Group (Lower Silurian) of western New York have been studied using stratigraphic dipmeter data. Results of this study indicate a nearshore-deltaic-interdeltaic depositional environment. Only minor deltaic episodes are preserved in the study area. This fits the generally arid climate with seasonal wet periods suggested by C.D. Laughrey. Facies recognized include: longshore-current sand waves in a shoreface environment, distributary mouth bars, distributary channels, tidal inlets, flood deltas, beaches, sandy tidal flats on which beach ridges were formed, and possible upper delta-plain sediments. Once the depositional sequences are recognized, paleocurrents within key sand units can be interpreted to determine favorable directions for successfully locating offset wells.

  16. Deciduous and Evergreen Trees Rely on Deep Water Throughout the Year in a Subtropical Seasonal Forest

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.

    2010-12-01

    In subtropical and tropical seasonal forests, trees have adapted to low shallow soil water availability during the dry season by modifying root density, rooting depth, and leaf phenology. Here we test the well known hypothesis that water uptake in deciduous trees is restricted to the shallow soil layer, which prevents them from sustaining transpiring leaves during the dry season. Evergreens, on the other hand, access perennially available deep water sources, allowing them to maintain their transpiring leaves during the dry season. To determine where in the soil profile deciduous and evergreen trees take up water, we used stable isotope analysis to measure water source use of two deciduous and three evergreen species for a period of 13 months. In addition, to test the possibility that leaflessness could alter the isotopic composition of stem water, we measured the isotopic variation in stem water caused by artificial defoliation of an evergreen species. Deciduous and evergreen trees took up water from the same depths in both the wet and dry seasons. Deciduous and evergreen trees used approximately 51% deep water (50-150cm) throughout the year, while soil from 0-20cm was the least important water source with 24 and 6% of water uptake for wet and dry seasons, respectively. Low use of shallow water (0-20cm) in the wet season was due to inconstant water availability. Though the top 20cm of soil is the location of most nutrients, the soil’s limited water availability requires plants to have access to a more reliable deep water source to meet both their dry and wet season transpirational demands. This apparent spatial uncoupling in water and nutrient uptake denotes separate resource allocation for nutrient and water acquisition. Deciduous trees showed isotopic enrichment of stem water compared to evergreen plants only during the period that deciduous trees were leafless. We explain this as isotopic enrichment of fixed pool of stem water by evaporation as our defoliation

  17. Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda

    USGS Publications Warehouse

    Jones, R. Ll; Whatley, R.C.; Cronin, T. M.; Dowsett, H.J.

    1999-01-01

    The distribution of Ostracoda in three long cores from the deep eastern Arctic Ocean was studied to determine the palaeoceanographical history of the Eurasian Basin during the late Quaternary. The samples for this study were obtained from the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau during the Arctic 91 expedition. Ostracoda previously studied in coretops at the same sites as the present study have shown that individual species have a strong association with different water masses and bathymetry. Throughout the late Quaternary, cores exhibit ostracod-rich layers separated by barren intervals. On the basis of biostratigraphical, isotopic and palaeomagnetic data the fossiliferous levels are interpreted as representing interglacial stages. The twenty most significant species were selected for subsequent quantitative investigation using Cluster and Factor analyses, in order to determine similarity and variance between the assemblages. An additional statistical method employing Modern Analogues and the Squared Chord Distance dissimilarity coefficient was utilized to compare the present late Quaternary fossil samples with a modern Arctic database. The results reveal a major faunal division within the Arctic Ocean Deep Water (AODW). Highly abundant and diverse assemblages within the cores were found to group and have good analogues with the Recent bathyal depth (1000-2500 m) upper AODW assemblages. Conversely, assemblages with low abundance and diversity correlate well with abyssal depth (> 3000 m) lower AODW assemblages. The palaeoceanographical history is complicated by the influence of adjacent water masses such as Canada Basin Deep Water (CBDW), Greenland Sea Deep Water (GSDW) and most importantly, Arctic Intermediate Water (AIW), which all had an influence on the ostracod assemblages during the late Quaternary. An enhanced flow of warm saline AIW into the Eurasian Basin results in species-rich upper AODW assemblages having good analogues down to 2750 m

  18. Increased carbonate ion saturation in shallow deep waters at the Eocene-Oligocene Transition

    NASA Astrophysics Data System (ADS)

    Bohaty, S. M.; Lear, C. H.; Paelike, H.

    2013-12-01

    Global cooling and growth of large ice sheets across the Eocene-Oligocene Transition (EOT) were associated with a two-stage deepening of the calcite compensation depth (CCD) in the equatorial Pacific Ocean. It is uncertain, however, if changes in carbonate chemistry in the deep Pacific were mirrored in other ocean basins and in higher levels of the water column. In conjunction with CCD histories, geochemical records from benthic foraminifera can provide information on the timing and nature of changes in deep-water carbonate chemistry and may pinpoint mechanisms of EOT climate change and related shifts in global carbon cycling. We use benthic foraminiferal boron/calcium (B/Ca) ratios to reconstruct changes in carbonate ion saturation (Δ[CO32-]) at multiple drillsites in the Atlantic and Indian Ocean basins occupying a range of paleodepths (~1000 to 3500 m). In shallow deep waters of the Indian Ocean (ODP Site 763; ~1000 m), a pronounced increase in Δ[CO32-] is evident at the onset of the EOT that corresponds to the first step of the positive global shift in benthic δ18O values (EOT-1). More subdued increases in Δ[CO32-] occurred synchronously at deeper sites in both the Atlantic and Indian basins (ODP Sites 522 and 711). These results, in conjunction with observed multi-site patterns of CCD change, indicate that the initial phase of climate change during the EOT was associated with major fluctuations in deep-ocean carbonate chemistry that were sustained for ~150 kyr immediately prior to and during EOT-1. Earth system and carbon-cycle box models are currently being employed to help interpret these results. Combined information from both proxy data and models suggest that destabilization of deep-ocean carbonate chemistry at the onset of the EOT resulted from a perturbation in the long-term carbon cycle involving changes in continental weathering rates and/or shifting patterns of marine carbonate burial. We further hypothesize that the shift to more alkaline deep

  19. Sustainable development of deep-water seaport: the case of Lithuania.

    PubMed

    Burskyte, Vilma; Belous, Olga; Stasiskiene, Zaneta

    2011-06-01

    In 2003, the Japan International Cooperation Agency carried out a development feasibility study of Klaipeda Seaport (Lithuania). The focus in this study was the evaluation of environmental impacts of the port expansion because it is located in an ecologically sensitive area. While the Japanese researchers focused on the environmental impact analysis, they did not provide unambiguous conclusions. The problems remained unresolved and required further, more detailed consideration and deeper analysis. Environmental sustainability in seaports is an issue of timely importance in many countries given the rapid increase in port-to-port traffic and harbor capacity. This paper explores the situation in Klaipeda Seaport (Lithuania) which is the northernmost ice-free port on the Eastern coast of the Baltic Sea and its challenges in terms of environmental aspects and current pollution situation. This port plays an important role in the economic development of the region and in creating a sustainable society, i.e., a society that continues to develop economically without increasing its impact on our living environment and where the possible reduction of its current impact can be huge due to the fact that the seaport is a place where transport and logistics intersect and constitute large-scale industrial estates. Increasingly, they also turn towards sustainability. Society faces the need for radical change because of increasing technological progress and increasing environmental impact. Environmental and public issues must be addressed by a systemic approach to find harmony among all the subsystems. Therefore, the authors of the article performed an assessment of the deep-water port of Klaipeda sustainable development opportunities tackling the following tasks: (1) Assessing Klaipeda port and the projected deep-water port of the current environment state; (2) Assessing the impact of the water quality of Klaipeda port, depending on the intensity of activity; (3) Assessing the

  20. Increasing presence of Arctic Ocean deep waters in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Somavilla Cabrillo, Raquel; Schauer, Ursula; Budeus, Gedeon

    2013-04-01

    Deep convection has been known to provide the coldest and freshest waters to the deep Greenland Sea, whose properties are balanced with the advection of warmer and saltier waters from the deep Arctic Ocean. However, during the last three decades, deep convection has come to a halt in the Greenland Sea. As previously reported and updated in this work through the analysis of the free available hydrographic data in the central Greenland Sea and in the Arctic Ocean from 1950 to 2010 (Pangaea and ICES data bases), as a consequence of this, two major hydrographic changes are observed: (1) the appearance and deepening of an intermediate temperature maximum and (2) a continuous warming and saltening of the deep Greenland Sea. The origin of both findings is found in the advection of Arctic Ocean deep waters from the Amerasian and Eurasian basins, respectively, into the central Greenland Sea. Associated to the first, a temperature increase of 0.35° C from 1993 to 2009 is observed at 1700 m. Below 2000 m, the temperature and salinity have increased at a mean rate of 0.136° C/decade and 0.01decade-1 in the last three decades. Overall, the stop of deep convection and the advection of Arctic Ocean deep waters result among the highest deep warming and saltening trends of the World Ocean in the Greenland Sea. In addition to the described update of the state of these changes, two new accomplishments are fulfilled in this study. First, in absence of deep convection, the continuous changing of the thermohaline properties of the deep Greenland Sea requires exchanges with adjacent ocean basins. This scenario enables us the estimation of the necessary transports from the deep Arctic to explain the observed changes. A transport of Eurasian Basin Deep Water of 0.31±0.04 Sv is obtained. Secondly, the warming and saltening of the deep Greenland Sea contributes, as any other ocean basin, to the World Ocean heat content and sea level rise. The estimation of these contributions shows larger

  1. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  2. Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation

    NASA Astrophysics Data System (ADS)

    Wu, Peili; Haines, Keith

    1996-03-01

    This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for

  3. Diversity-based acoustic communication with a glider in deep water.

    PubMed

    Song, H C; Howe, Bruce M; Brown, Michael G; Andrew, Rex K

    2014-03-01

    The primary use of underwater gliders is to collect oceanographic data within the water column and periodically relay the data at the surface via a satellite connection. In summer 2006, a Seaglider equipped with an acoustic recording system received transmissions from a broadband acoustic source centered at 75 Hz deployed on the bottom off Kauai, Hawaii, while moving away from the source at ranges up to ∼200 km in deep water and diving up to 1000-m depth. The transmitted signal was an m-sequence that can be treated as a binary-phase shift-keying communication signal. In this letter multiple receptions are exploited (i.e., diversity combining) to demonstrate the feasibility of using the glider as a mobile communication gateway.

  4. Plastic debris ingested by deep-water fish of the Ionian Sea (Eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Anastasopoulou, Aikaterini; Mytilineou, Chryssi; Smith, Christopher J.; Papadopoulou, Konstantia N.

    2013-04-01

    Debris has been recognized as a global environmental problem including within deep habitats. From 26 fish species (1504 specimens) caught in the Eastern Ionian Sea during deep-water long-line surveys, plastic debris was found in 24 individuals of Galeus melastomus (3.2%) and single individuals of Pteroplatytrygon violacea, Squalus blainville, Etmopterus spinax, and Pagellus bogaraveo. The occurrence of debris among their food was infrequent. Ingested debris included primarily plastics (86.5%) and to a lesser extent pieces of metal and wood. Among ingested plastics, fragments of hard plastic material constituted the highest proportion (56.0%), followed by plastic bag fragments (22.0%), fragments of fishing gears (19.0%) and textile fibers (3.0%). Among the species with ingested debris, G. melastomus swallowed all debris categories; P. violacea and S. blainville ingested plastic bag fragments, whereas pieces of hard plastics were found in E. spinax and P. bogaraveo.

  5. High mercury concentrations reflect trophic ecology of three deep-water chondrichthyans.

    PubMed

    Newman, Michael C; Xu, Xiaoyu; Cotton, Charles F; Tom, Kyle R

    2011-05-01

    The relative contributions of proximity to mercury sources and trophic ecology to realized axial muscle mercury concentrations were explored for three deep-water chondrichthyans (Etmopterus princeps, Centroscymnus coelolepis, and Hydrolagus affinis), two species of which are harvested for human consumption. Samples were taken at three North Atlantic Ocean locations: the Azores, the Charlie Gibbs Fracture Zone, and the Bear Seamount. Despite the long distances between anthropogenic sources and the sampling locations, all species from all locations had muscle mercury concentrations exceeding the United States human health screening value of 0.3 mg/kg wet weight. Proximity to anthropogenic sources was not an obvious determinant of these elevated concentrations. Generally, mercury concentrations appeared to increase with increased dependence on benthic versus pelagic food sources (as indicated by interspecies differences in δ(13)C), and with higher position in the trophic web (as indicated by differences in δ(15)N).

  6. Lignification in rapidly elongating internodes of deep water rice as a limiting factor in growth

    SciTech Connect

    Sauter, M.; Kende, H. )

    1990-05-01

    Internodes of deep water rice are induced to elongate rapidly by partial submergence, or by treatment with ethylene or gibberellin. This growth response is based, in part, on enhanced cell elongation and an increase in the size of the internodal growing zone. For this to occur, processes that limit growth, e.g. lignification, must be delayed. We examined the activity and distribution of two enzymes of the lignin biosynthetic pathway, phenylalanine ammonia-lyase (PAL) and coniferylalcohol dehydrogenase (CAD) in rapidly growing and control internodes. CAD activity decreased in the rapidly growing region of submerged or gibberellin-treated internodes to about 25% of the activity found in air-grown control internodes. No comparable change in CAD activity was observed in the older, non-growing portions of the internodes. PAL activity changed in similar fashion upon induction of rapid growth.

  7. Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Cavalieri, Donald J.

    1989-01-01

    To investigate the role of Siberian Shelf polynyas in water mass formation, and that of Whalers Bay in the cooling of the West Spitsbergen Current, satellite observations from the Nimbus 7 scanning multichannel microwave radiometer are used to determine the size and location of polynyas for November-March, 1978-1982. If salt contributes only to the Arctic Intermediate Water, the results show that the continental shelves can produce 20-60 percent of this water. Alternatively, if the salt contributes only to the deep water of the Eurasian Basin, then without consideration of the mixing of the bottom water with the Greenland and Norwegian Sea water, the contribution from the shelves yields a renewal time of about 100 years. These results imply that there is insufficient water produced in the shelf polynyas to perform all of the roles that have historically been assigned to it.

  8. Preparation and assessment of a candidate reference sample of Lake Baikal deep water

    NASA Astrophysics Data System (ADS)

    Suturin, A. N.; Paradina, L. F.; Epov, V. N.; Semenov, A. R.; Lozhkin, V. I.; Petrov, L. L.

    2003-02-01

    The possibility of the creation of a multi-element reference sample of Lake Baikal deep-water composition is justified. This is a new type of reference sample composed of natural water with a wide range of macro- and microelements. This candidate reference sample has a matrix composition consisting of hydrocarbonate and calcium water, a composition that is typical of many rivers and lakes of the world, as well as rain water. The creation of a candidate reference sample of Lake Baikal water is possible due to the stable water composition at a depth of 500 m, and to the use of water sampling technology which results in the preservation of the initial composition of water and its absolute sterility. Trial batches of Baikal water collected annually and stored in special polyethylenetereftalate bottles for a period of 9 years remained stable and homogenous for most elements. Preliminary data for a range of elements and compounds are presented.

  9. Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic

    NASA Astrophysics Data System (ADS)

    Keigwin, Lloyd D.; Swift, Stephen A.

    2017-03-01

    The prevailing view of western Atlantic hydrography during the Last Glacial Maximum (LGM) calls for transport and intermixing of deep southern and intermediate northern end members. However, δ13C and Δ14C results on foraminifera from a sediment core at 5.0 km in the northern subtropics show that there may have also been a northern source of relatively young, very dense, nutrient-depleted water during the LGM (18 ky to 21 ky ago). These results, when integrated with data from other western North Atlantic locations, indicate that the ocean was poorly ventilated at 4.2 km, with better ventilation above and below that depth. If this is a signal of water mass source and not nutrient storage, it would indicate that a previously unrecognized deep water end member originated along the western margin of the Labrador Sea, analogous to dense water formation today around Antarctica and in the Okhotsk Sea.

  10. Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period.

    PubMed

    Galaasen, Eirik Vinje; Ninnemann, Ulysses S; Irvalı, Nil; Kleiven, Helga Kikki F; Rosenthal, Yair; Kissel, Catherine; Hodell, David A

    2014-03-07

    Deep ocean circulation has been considered relatively stable during interglacial periods, yet little is known about its behavior on submillennial time scales. Using a subcentennially resolved epibenthic foraminiferal δ(13)C record, we show that the influence of North Atlantic Deep Water (NADW) was strong at the onset of the last interglacial period and was then interrupted by several prominent centennial-scale reductions. These NADW transients occurred during periods of increased ice rafting and southward expansions of polar water influence, suggesting that a buoyancy threshold for convective instability was triggered by freshwater and circum-Arctic cryosphere changes. The deep Atlantic chemical changes were similar in magnitude to those associated with glaciations, implying that the canonical view of a relatively stable interglacial circulation may not hold for conditions warmer and fresher than at present.

  11. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific

    PubMed Central

    de la Fuente, Maria; Skinner, Luke; Calvo, Eva; Pelejero, Carles; Cacho, Isabel

    2015-01-01

    Consistent evidence for a poorly ventilated deep Pacific Ocean that could have released its radiocarbon-depleted carbon stock to the atmosphere during the last deglaciation has long been sought. Such evidence remains lacking, in part due to a paucity of surface reservoir age reconstructions required for accurate deep-ocean ventilation age estimates. Here we combine new radiocarbon data from the Eastern Equatorial Pacific (EEP) with chronostratigraphic calendar age constraints to estimate shallow sub-surface reservoir age variability, and thus provide estimates of deep-ocean ventilation ages. Both shallow- and deep-water ventilation ages drop across the last deglaciation, consistent with similar reconstructions from the South Pacific and Southern Ocean. The observed regional fingerprint linking the Southern Ocean and the EEP is consistent with a dominant southern source for EEP thermocline waters and suggests relatively invariant ocean interior transport pathways but significantly reduced air–sea gas exchange in the glacial southern high latitudes. PMID:26137976

  12. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution

    NASA Astrophysics Data System (ADS)

    Sultan, N.; Bohrmann, G.; Ruffine, L.; Pape, T.; Riboulot, V.; Colliat, J.-L.; De Prunelé, A.; Dennielou, B.; Garziglia, S.; Himmler, T.; Marsset, T.; Peters, C. A.; Rabiu, A.; Wei, J.

    2014-04-01

    In previous works, it has been suggested that dissolution of gas hydrate can be responsible for pockmark formation and evolution in deep water Nigeria. It was shown that those pockmarks which are at different stages of maturation are characterized by a common internal architecture associated to gas hydrate dynamics. New results obtained by drilling into gas hydrate-bearing sediments with the MeBo seafloor drill rig in concert with geotechnical in situ measurements and pore water analyses indicate that pockmark formation and evolution in the study area are mainly controlled by rapid hydrate growth opposed to slow hydrate dissolution. On one hand, positive temperature anomalies, free gas trapped in shallow microfractures near the seafloor and coexistence of free gas and gas hydrate indicate rapid hydrate growth. On the other hand, slow hydrate dissolution is evident by low methane concentrations and almost constant sulfate values 2 m above the Gas Hydrate Occurrence Zone.

  13. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments

    NASA Astrophysics Data System (ADS)

    Pickering, Kevin; Stow, Dorrik; Watson, Mike; Hiscott, Richard

    1986-03-01

    A review of previous work on modern and ancient deep-water facies, processes and models is presented with a new classification scheme involving 40 distinct facies related to 15 conceptually distinct facies groups. These facies are fixed points in a spectrum of facies generated in a process continuum from resedimentation processes, through semi-permanent bottom-currents, to pelagic settling. In essence, the scheme is descriptive of the sedimentary attributes of sediments, although it is designed to aid interpretation of possible sediment transport/deposition processes. The classification scheme is three-tier with facies classes, groups and constituent facies, and is hierarchical to allow flexibility in its use. There are seven facies classes, with Classes A-E defined largely on the basis of grain-size differences, Class F on the basis of internal organization, and Class G on composition. The facies classes are: Class A, gravels, muddy gravels, gravelly muds, and pebbly sands, with ⩾ 5% gravel grade; Class B, sands, with ⩾ 80% sand grade and < 5% pebble grade; Class C, sand-mud couplets and muddy sands, with 20-80% sand grade and < 80% mud grade (mostly silt); Class D, silts, silty muds and silt-mud couplets, with > 80% mud, ⩾ 40% silt and 0-20% sand; Class E, muds and clays, with ⩾ 95% mud grade, < 40% silt grade and < 5% sand and coarser grade; Class F, chaotic deposits, with variable grain or clast sizes, and Class G, biogenic oozes, hemipelagites and chemogenic sediments, with < 5% terrigenous sand and gravel. The second-order classification into facies groups (A1, A2 etc.) is based mainly on organized versus disorganized sediments, the latter lacking marked stratification or grading and the former having clearly-defined primary sedimentary structures. At the level of facies, the criteria used to distinguish different types is more complex and more flexible. For the purpose of large-scale mapping or reconnaissance fieldwork, either the level of facies

  14. Early life history of deep-water gorgonian corals may limit their abundance.

    PubMed

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200-1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions.

  15. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    Reinthaler, Thomas; Álvarez Salgado, Xosé Antón; Álvarez, Marta; van Aken, Hendrik M.; Herndl, Gerhard J.

    2013-12-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64-79%) and local mineralization processes (21-36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW.

  16. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    PubMed Central

    Reinthaler, Thomas; Salgado, Xosé Antón Álvarez; Álvarez, Marta; van Aken, Hendrik M.; Herndl, Gerhard J.

    2014-01-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64–79%) and local mineralization processes (21–36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW. PMID:24683294

  17. Modification of deep waters in Marguerite Bay, western Antarctic Peninsula, caused by topographic overflows

    NASA Astrophysics Data System (ADS)

    Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander

    2017-05-01

    Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.

  18. Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Rhein, Monika; Kieke, Dagmar; Steinfeldt, Reiner

    2015-04-01

    Recently formed Labrador Seawater (LSW) and overflow water from Denmark Strait (DSOW) are main components of the Atlantic Meridional Overturning Circulation. Both exhibit a distinct chlorofluorocarbon (CFC) maximum. Here we use 25 years of CFC observations in the Atlantic to study the main features of the circulation of LSW and DSOW. From the CFC data, the age and fraction of young deep water are inferred. Due to the superior spatial data resolution compared to former attempts, regional differences in the spreading velocity and pathways of young deep water become evident, dependent on the regional circulation. The observed distributions of young LSW and DSOW showed that the DWBC is the fastest pathway to reach the southern hemisphere. The downstream decrease of the fractions of young LSW in the DWBC is slower compared to model studies. From 47°N to 42°N, DWBC transports of young LSW and DSOW decrease by 44% and 49%, respectively. At 26°N, the DWBC transport of young water is still 39% of the LSW formation rate and 44% of the DSOW overflow transport. Interior pathways also exist, especially in the subpolar North Atlantic and in the transition zone between the subpolar and subtropical gyre. Compared to DSOW, the distributions indicate a higher tendency for LSW to follow additional interior pathways. North of 45°N the major part of LSW is younger than 20 years. The general weakening of new LSW formation since the 1990s worked toward a homogenization between the LSW in the western and the eastern subpolar North Atlantic.

  19. The petroleum potential of deep-water northwestPalawan Block GSEC 66

    NASA Astrophysics Data System (ADS)

    Sales, Alessandro O.; Jacobsen, Eric C.; Morado, Arturo A.; Benavidez, Jeciel J.; Navarro, F. A.; Lim, Antonette E.

    This paper presents the results of the evaluation of the petroleum, potential of thedeep-water acreage of Philodrill, GSEC 66, or what the authors call the "Northwest Malampaya Block". All the elements necessary for a major hydrocarbon accumulation are believed to be present in the block. Probable source rocks are the deep-water Nido Limestone, the pre-Nido Early Tertiary syn-rift section, and pre-Tertiary sediments. Potential reservoirs include the Nido reefal buildups, Nido and pre-Nido detrital and/or fractured carbonates, Early Miocene Galoc elastic equivalent turbidites and pre-Nido sediments. The principal play-types recognized in the area are the Late Oligocene to Early Miocene reefs and the erosional/karsted carbonate highs. After evaluation of available pre-1982 seismic data, an acquisition program of 1625 km was undertaken. Eleven leads/prospects were delineated in the area after the interpretation of this new seismic data. Two prospects were upgraded to drillable status (the Santa Monica Prospect and the Ipil Prospect). The Santa Monica Prospect is a well-defined four-way dip closure on the Nido Limestone with a vertical closure of over 1500 feet and an areal closure of over 20,500 acres. The Ipil Prospect is a gently closed feature developed at the Nido Limestone platform level with an areal closure of over 11,600 acres and a vertical relief of 400 feet. The technical merits of the delineated huge prospects, combined with the very favorable deep-water exploration terms of the Philippines and their proximity to the soon-to-be-developed Malampaya-Camago Field, make this block a very promising area for further exploration work.

  20. Deep water velocities and particle displacements induced by acoustic-gravity waves from submarine earthquakes

    NASA Astrophysics Data System (ADS)

    Oliveira, T. C. A.; Kadri, U.

    2016-02-01

    An uplift of the ocean bottom caused by a submarine earthquake can generate Acoustic-Gravity Waves (AGW), progressive compression-type waves that travel at near the speed of sound in water. The role of AGW for oceans hydrodynamics has recently became a topic of increasing scientific interest. Kadri [Deep ocean water transport by acoustic-gravity waves, J.Geo. Res. Oceans, 119, (2014)] showed theoretically that AGW can contribute to deep ocean currents and circulation. We analyze and simulate the fundamental AGW modes generated by a submarine earthquake. We consider the first five AGW modes and show that they may all induce comparable temporal variations in water particle velocities at different depths in regions far from the epicenter. Results of temporal variations of horizontal and vertical fluid parcel velocities induced by AGW confirm chaotic flow trajectories at different water depths. A realistic example based on the 2004 Indian Ocean earthquake shows that vertical water particle displacements of O(10-2 ) m can be generated at 1 Km depth in a 4 km water depth ocean. We show that the velocity field depends on the presence of the leading AGW modes. Each AGW mode becomes evanescent at a critical time, at which energy is transferred to the next higher modes. Consequently, the main pattern of the velocity field changes as the leading mode change. As an example, for a reference point located at 1000 Km from the epicenter, the first five AGW become evanescent after 1.6, 4.6, 7.7, 10.8 and 13.8 hours, respectively. Our analysis and simulations shed light on the spatio-temporal evolution of the deep water velocities and particle displacements induced by AGW that radiate during submarine earthquakes. Thus, this work is a contribution to understand the role of high moment magnitude submarine earthquakes in deep water mixing mechanism.

  1. Deep water renewal in Lake Baikal: A model for long-term analyses

    NASA Astrophysics Data System (ADS)

    Piccolroaz, Sebastiano; Toffolon, Marco

    2013-12-01

    The phenomenon of deep water renewal in the South Basin of Lake Baikal is investigated by means of a simplified one-dimensional model. The downwelling process, whereby large volumes of superficial, cold, and oxygenated water periodically sink to the lake bottom (>1400m) due to thermobaric instability, is simulated by means of three main submodules: a reaction-diffusion equation for temperature and other tracers, and two Lagrangian algorithms, the first for the vertical stabilization of unstable density regions (including thermobaric effects) and the second handling the downwelling mechanism. A self-consistent procedure for the dynamical reconstruction of the diapycnal diffusivity profile is included to account for the effect of the variability of external conditions. The model has been developed aimed at providing a detailed description of deep-ventilation and a quantification of its consequences at the basin scale; the core algorithms have been designed suitably to perform long-term simulations (hundreds of years) and to deal with a limited amount of information about boundary conditions, which are expressed in terms of wind forcing and surface water temperature. The main parameters have been calibrated using measured profiles of temperature and chlorofluorocarbons (CFC-12) concentration over a 40 year historical period. A long-term simulation (one millennium), in which the current meteorological conditions have been kept statistically unchanged, has been used to determine the asymptotic dynamics. The results are consistent with previous measurements and estimates, suggesting that the model is suitable to qualitatively and quantitatively simulate deep water renewal in deep, temperate lakes, capturing the relative contribution and interaction of the different processes involved.

  2. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1995-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of minimizing toxicity and reducing wastewater parameters. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metal concentrations, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, which received municipal waste. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In a definitive seven-day chronic test with Ceriodaphnia dubia, the NOEC of influent water was 20%, and the IC{sub 50} for reproduction was 22.3%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC and IC{sub 50} were 80 and 71.8%, respectively. Further reduction in toxicity occurred in the second lagoon. The NOEC was 80% and the IC{sub 50} was 75.9. The final effluent discharged from the treatment plant affected neither survival nor fecundity. A 7-day embryo larval test conducted with Pimephales promelas yielded similar results. NOEC values increased through the lagoon system and were 2.5, 40.0, 40.0 and 100%, respectively. Acute TIE procedures implicated both metals and ammonia as primary toxicants. In all tests a sequential reduction in toxicity was observed through the lagoons. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  3. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal

    NASA Astrophysics Data System (ADS)

    Kipfer, R.; Aeschbach-Hertig, W.; Baur, H.; Hofer, M.; Imboden, D. M.; Signer, P.

    1994-07-01

    Helium, neon and tritium concentrations have been measured to study long-term vertical mixing and deep water renewal in Lake Van (Eastern Turkey), the largest soda lake on Earth. Helium excesses were found in the water column of Lake Van, although neon concentrations were close to air saturation. The excesses of both isotopes are strictly correlated and increase with depth. In the bottom water, 4He supersaturation is about 20% and the corresponding 3He concentration is 2.5 times the air saturation value. The mean excess 3He/ 4He ratio, of 1 1.2 · 10 -5, is slightly higher than the MORB ratio found in Lake Nemrut, a neighbouring volcanic crater lake, in which a large input of mantle helium was detected. Mantle helium accounts for the majority of the helium excesses in Lake Van, although part of the 3He excess is attributed to the presence of tritium. A one-dimensional lake model was used, which describes tritium input, vertical mixing and gas exchange, to reconstruct the evolution of the helium isotopes and the tritium. As a conclusion, the model, based on the measured 3He and 4He profiles, shows that: (1) the vertical exchange of deep water occurs within 1-2 yr; (2) the flux of mantle helium into the lake, averaged over the total cross-section of Lake Van, is 0.23-0.35 cm 3 STP · m -2 yr -1 (2-3 · 10 11 atoms · m -2 s -1). The present estimate of the global mantle helium flux averaged over the total surface area of the Earth is < 3.9 · 10 9 atoms · m -2 s -1; the flux into Lake Van would account for at least 0.04-0.06% of this.

  4. Neodymium isotopic composition of intermediate and deep waters in the glacial southwest Pacific

    NASA Astrophysics Data System (ADS)

    Noble, Taryn L.; Piotrowski, Alexander M.; McCave, I. Nick

    2013-12-01

    Neodymium (Nd) isotopes, tracers of deep water mass source and mixing, were measured on sedimentary planktic foraminifera with authigenic coatings from a depth-transect of cores (1400-4800 m) from Chatham Rise in the southwest Pacific, over the past 30 ka. We observe deglacial variations in the Nd isotopic composition, which showed an average glacial composition of ɛNd=-5.0 (1σ; ±0.3n=4) for cores sites below 3200 mbsl. No significant deglacial variation was observed in the Nd isotopic composition of intermediate depth waters (1400 mbsl), in contrast with benthic foraminifera δC13 data. The deglacial ɛNd shift of CDW in the southwest Pacific is consistent with changes observed in the deep South Atlantic and Equatorial Indian Ocean, but ɛNd values are offset by ˜1ɛNd-unit to more radiogenic values throughout the deglacial records, likely due to admixture of a Nd isotope signal which was modified in the Southern Ocean or Pacific, perhaps by boundary exchange. However, this modification did not overprint the deglacial Nd isotope change. The consistent deglacial evolution of ɛNd in the South Atlantic, Equatorial Indian and southwest Pacific CDW, is evidence for the connection of CDW during the glacial, and propagation of diminished North Atlantic Deep Water export to the glacial Southern Ocean. In contrast, spatial heterogeneities in the benthic foraminifera δC13 of CDW have been observed in the Atlantic, Indian and Pacific basins of the deep glacial Southern Ocean. The Nd isotope data implies a well-connected deep Southern Ocean, which transported waters from the Atlantic to the Indian and Pacific oceans, during the glacial. This suggests that basin-scale variability in the glacial δC13 composition of CDW was unrelated to circulation changes.

  5. Deep-water exchange between the Atlantic, Caribbean, and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sturges, Wilton

    The deep waters of the Caribbean Sea are renewed by sporadic flow over the two deep sills connecting with the open Atlantic. In turn, the deep waters of the Gulf of Mexico are renewed by flow from the northwest Caribbean over the sill in Yucatan Channel, between Mexico and Cuba. So we examine the obvious question: if all this renewal water is coming in, what is going out? The view that emerges is a three-layer mean deep flow in the Caribbean and the Gulf. There is strong vertical shear in the water above 800 m associated with the primary upperlayer flow. Surprisingly, this shear continues to at least 1400 m. In the three-layer scenario described here, the upper-most "deep layer" flows into the Gulf at depths of ˜800-1100 m as an extension of the upper-layer circulation. The deepest inflow is sporadic, just above sill depth. The third layer, containing the required mean return flow to achieve mass balance, is found between these two mean flows at depths of ˜1100 to ˜1900 m. There is little information about the horizontal pattern of this deep return flow. The transport in these deep flows into the Gulf and in the return flow is slightly less than 1 Sv. These conclusions are inferred from the computed mean vertical shear, conservation of potential vorticity in the deep layers, the observed salinity gradients, and the assumption that there can be no net flow between 800 and 2000 m. The deep return flow of water from the Gulf of Mexico, having salinity ˜34.96 psu, appears to flow from Yucatan Channel all the way back to Windward and Jungfern Passages, leaving the Caribbean above the entering deep renewal water.

  6. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  7. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Elderfield, Henry

    2007-06-01

    Boron/calcium ratios were measured in four benthic foraminiferal species (three calcitic: Cibicidoides wuellerstorfi, Cibicidoides mundulus, and Uvigerina spp., and one aragonitic: Hoeglundina elegans) from 108 core-top samples located globally. Comparison of coexisting species shows: B/Ca of C. wuellerstorfi > C. mundulus > H. elegans > Uvigerina spp., suggestive of strong "vital effects" on benthic foraminiferal B/Ca. A dissolution effect on benthic B/Ca is not observed. Core-top data show large intra-species variations (50-130 μmol/mol) in B/Ca. Within a single species, benthic foraminiferal B/Ca show a simple linear correlation with deep water Δ[CO 32-], providing a proxy for past deep water [CO 32-] reconstructions. Empirical sensitivities of Δ[CO 32-] on B/Ca have been established to be 1.14 ± 0.048 and 0.69 ± 0.072 μmol/mol per μmol/kg for C. wuellerstorfi and C. mundulus, respectively. The uncertainties associated with reconstructing bottom water Δ[CO 32-] using B/Ca in C. wuellerstorfi and C. mundulus are about ± 10 μmol/kg. A preliminary application shows that the Last Glacial Maximum (LGM) B/Ca ratios were increased by 12% at 1-2 km and decreased by 12% at 3.5-4.0 km relative to Holocene values in the North Atlantic Ocean. This implies that the LGM [CO 32-] was higher by ˜ 25-30 μmol/kg at intermediate depths and lower by ˜ 20 μmol/kg in deeper waters, consistent with glacial water mass reorganization in the North Atlantic Ocean inferred from other paleochemical proxies.

  8. Early Life History of Deep-Water Gorgonian Corals May Limit Their Abundance

    PubMed Central

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200–1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions. PMID:23762358

  9. A long history of equatorial deep-water upwelling in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Yi Ge; Pagani, Mark; Henderiks, Jorijntje; Ren, Haojia

    2017-06-01

    Cold, nutrient- and CO2-rich waters upwelling in the eastern equatorial Pacific (EEP) give rise to the Pacific cold tongue. Quasi-periodic subsidence of the thermocline and attenuation in wind strength expressed by El Niño conditions decrease upwelling rates, increase surface-water temperatures in the EEP, and lead to changes in regional climates both near and far from the equatorial Pacific. EEP surface waters have elevated CO2 concentrations during neutral (upwelling) or La Niña (strong upwelling) conditions. In contrast, approximate air-sea CO2 equilibrium characterizes El Niño events. One hypothesis proposes that changes in physical oceanography led to the establishment of a deep tropical thermocline and expanded mixed-layer prior to 3 million years ago. These effects are argued to have substantially reduced deep-water upwelling rates in the EEP and promoted a ;permanent El Niño-like; climate state. For this study, we test this supposition by reconstructing EEP ;excess CO2; and upwelling history for the past 6.5 million years using the alkenone-pCO2 methodology. Contrary to previous assertions, our results indicate that average temporal conditions in the EEP over the past ∼6.5 million years were characterized by substantial CO2 disequilibrium and high nutrient delivery to surface waters - characteristics that imply strong upwelling of deep waters. Upwelling appears most vigorous between ∼6.5 to 4.5 million years ago coinciding with high accumulation rates of biogenic material during the late Miocene - early Pliocene ;biogenic bloom;.

  10. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Kwasnitschka, Tom; Metaxas, Anna; Dullo, Wolf-Christian

    2016-12-01

    Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50-65 cm in length grew 3.7 cm yr-1 between 2006 and 2010. Minimum growth rates of 1.6-2.7 cm yr-1 were estimated for two recruits (<23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.

  11. Pre-drill predictions versus post-drill results: use of sequence stratigraphic methods in reduction of exploration risk, Sarawak Deep-water Blocks, Malaysia

    NASA Astrophysics Data System (ADS)

    Mansor, Md Yazid; Snedden, J. W.; Sarg, J. F.; Smith, B. S.; Kolich, T.; Carter, M.

    1999-04-01

    Limited well control, great distances from age-equivalent producing fields, and a largely unknown stratigraphy necessitated use of sequence stratigraphic methods to assess exploration risk associated with reservoir, source and seal distribution in the Mobil-operated Deep-water Blocks of Sarawak, Malaysia. These methods allowed predictions to be made and reservoir risks to be halved in each of the locations drilled in 1995. Predictions regarding reservoir and stratigraphy proved correct, as the Mulu-1 and Bako-1 wells penetrated numerous high-quality, thick sandstone reservoirs in the Middle to Lower Miocene section. Shallow marine sandstones dominate the vertical succession in both wells, with characteristic aggradational, upward-coarsening log motifs. Cores display classic wave-generated stratification and hummocky cross-bedding. Evidence, such as marginal-marine to neritic microfauna in cuttings of both wells, supports these interpretations. Lack of hydrocarbon charge in the two wells may be due to their position relative to coaly hydrocarbon source beds. These prospects have high trap and seal integrity, being well defined on seismics as high relief horst blocks covered by a very thick shale-prone section. The Mulu-1 well, for example, is located at least 20-30 km down stratigraphic dip from mapped coeval lower coastal-plain deposits. Amplitude anomalies on the flank of the Mulu horst are probably derived from transported organics buried in deep Plio-Pleistocene kitchens in the northwest portion of the Mobil blocks. Remaining potential of mapped prospects is high and efforts continue at characterizing the petroleum system of the Deep-water Blocks. Seismic attribute and interval velocity analyses provide new clues to the location of probable coaly source rocks, especially when viewed in their regional and sequence stratigraphic context. Future work is planned and will serve to reduce risk to acceptable levels and support further drilling in this prospective

  12. Deep water circulation in the eastern Mediterranean Sea for the last 95 kyr: new insights from stable isotopes and benthic foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Cornuault, Marine; Vidal, Laurence; Tachikawa, Kazuyo; Licari, Laetitia; Rouaud, Guillaume; Sonzogni, Corinne; Revel, Marie

    2016-04-01

    The response of the Eastern Mediterranean Sea circulation to climate forcing over the last 95 kyr BP was studied using core MD04-2722 collected at 1780m water depth in the Levantine Sea. Foraminiferal stable isotopes and benthic foraminiferal assemblages were combined to reconstruct deep water ventilation and oxygenation in relation to surface water freshening. Over the last deglaciation, benthic foraminiferal δ13C values and benthic foraminiferal oxygen index decreased while δ18O gradient between benthic and planktonic foraminifera increased. These results testify respectively of slower ventilation, bottom water oxygen depletion and stronger stratification prior to S1 sapropel deposition. Similar conditions were deduced for S3 sapropel. Combination of deglacial sea level rise and fresher North Atlantic surface water contribution were evaluated to be a precondition of S1 formation in the Levantine Sea. Local Nile freshwater supply during the African Humid Period further strengthened the water column stratification. For the last glacial period, three events at around 53, 46 and 37 ka BP were marked by benthic δ13C decrease demonstrating deep water circulation reduction at the core location. Bottom water oxygenation was only slightly lowered. Considering the effect of North Atlantic surface water salinity to the Mediterranean Sea circulation, we propose the 46 and 37 ka BP events as responses to the Heinrich Events 4 and 5 that supplied fresher surface water to the Mediterranean Sea. Since the '53 ka event' is characterized by the appearance of an anoxic benthic foraminiferal species observed for S1 and S3 layers, we tentatively attributed it to the 'missing' sapropel S2. Our results indicate that intense stagnation in the Eastern Mediterranean Sea could occur when both local freshwater supply and fresher North Atlantic surface water contributed. The influence of North Atlantic condition was significant on the eastern Mediterranean circulation under warm and cold

  13. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes

    Treesearch

    Suzanne Peyer; John C. Hermanson; Carol Eunmi Lee

    2010-01-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such...

  14. Reproductive biology of the deep-water coral Acanella arbuscula (Phylum Cnidaria: Class Anthozoa: Order Alcyonacea), northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Beazley, Lindsay I.; Kenchington, Ellen L.

    2012-10-01

    Knowledge of the reproductive life-history of deep-water corals is important for assessing their vulnerability to anthropogenic impacts. Yet, the reproductive biology of many deep-water corals, especially members of the subclass Octocorallia, has not been examined. We used histological techniques to describe the reproductive biology of the deep-water gorgonian coral Acanella arbuscula from the northwest Atlantic. All colonies examined were gonochoric, and no embryos or planula larvae were observed in the polyps. Mean polyp-level fecundity (females: 21.0±17.5 oocytes polyp-1, and males: 13.9±13.5 sperm sacs polyp-1) is high compared to other deep-water gorgonians, and polyps closer to the branch tips had the highest fecundities in both females and males. The presence of large oocytes (maximum diameter 717.8 μm) suggests that A. arbuscula produces lecithotrophic larvae. Despite the potentially high fecundity and small size at first reproduction, the paucity of information on dispersal and recruitment, combined with its longevity, vulnerability to bottom fishing gear, and ecological role as a structure-forming species, still warrants the classification of A. arbuscula as a vulnerable marine ecosystem indicator.

  15. Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    NASA Astrophysics Data System (ADS)

    Molina-Kescher, Mario; Frank, Martin; Tapia, Raúl; Ronge, Thomas A.; Nürnberg, Dirk; Tiedemann, Ralf

    2016-06-01

    The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for ɛNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

  16. Deep-Water Benthic Foraminifers from the Paleocene and Eocene of the North Pacific Region: Paleontology, Biostratigraphy, and Paleoceanological Reconstructions

    NASA Astrophysics Data System (ADS)

    Olshanetskiy, D. M.

    2015-12-01

    A zonal scheme for the Lower Paleogene of the northern Pacific Ocean is proposed on the basis of the stratigraphic distribution of benthic foraminifers in the lower bathyal-abyssal beds studied in boreholes in the North and South Pacific regions. This scheme includes eight subdivisions (six zones and two subzones). The boundaries of the benthic zonal subdivisions are defined by bioevents (appearance or disappearance of stratigraphically important taxa) and are linked to the zonal scales based on planktonic foraminifers and calcareous nannoplankton. It is established that most of these bioevents are recognized subglobally. Apart from the evolutionary events, changes in the deep-water benthic foraminiferal assemblages were caused by changes in the paleooceanological environment. This allowed detailed characterization of a global mass extinction of assemblages of deep-water benthic foraminifers in the region studied. It is also established that changes in the assemblages of deep-water benthic foraminifers, observed in either change in their taxonomic composition or changes in abundance and diversity, resulted from the presence of different deep-water masses in the region.

  17. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg

  18. Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years

    NASA Astrophysics Data System (ADS)

    Oppo, Delia W.; Lehman, Scott J.

    1995-10-01

    We generated ˜200-kyr-long proxy records of surface and deepwater variability from a subpolar North Atlantic core (V29-202), enabling us to assess the linkage between surface and deepwater changes on suborbital timescales. In particular, we used a benthic δ13C record to evaluate the deep water response to Dansgaard-Oeschger temperature oscillations and to Heinrich events, times of massive iceberg delivery to the North Atlantic. We found that the reduction of North Atlantic Deep Water (NADW) production was generally associated with cold or dropping sea surface temperatures (SSTs) as indicated by planktonic foraminiferal assemblages. The NADW contribution to the site did not drop appreciably during Heinrich events H4 through H2, probably because these events followed intervals of prolonged surface cooling already characterized by low rates of NADW production. By contrast NADW reduction appears to have been synchronous with H5. SST rise associated with both Dansgaard-Oeschger oscillations and Heinrich events was usually accompanied by increasing NADW strength. In a few cases the NADW recovery appeared to lag the SST rise; however, the apparent delay is most likely an artefact of the sedimentary record (low concentrations of benthic foraminifera). As a result of low benthic foraminiferal abundances during stage 6, the stage 6 benthic foraminiferal δ13C record is of lower resolution than the younger part of the record. The stage 6 proxy records for surface hydrography nevertheless reveal millennial-scale oscillations similar to those seen in stage 3. The available δ13C data suggest that NADW weakened in association with the cold portions of stage 6 SST oscillations. We also sought to confirm a recent study which concluded that there was little NADW variability during the peak of the last interglaciation, marine oxygen isotope substage 5e (Eemian). Isotope stage 5 was marked by a trend of increasing benthic δ13C in V29-202. Rising δ13C through isotope stage 5 is

  19. Glacial/Interglacial changes of southwest Pacific intermediate- and deep-water circulation over the last 350,000 years

    NASA Astrophysics Data System (ADS)

    Ronge, Thomas; Tiedemann, Ralf; Prange, Matthias; Merkel, Ute; Kuhn, Gerhard; Lamy, Frank

    2015-04-01

    On glacial/interglacial timescales, Southern Ocean air-sea gas exchange is considered to be an important factor, driving the variability of atmospheric CO2 concentrations. To understand the role of oceanic variability in the global carbon cycle, it is necessary to reconstruct changes in deep- and intermediate-water circulation and chemistry of Southern Ocean water masses. In this context, our study aims on the reconstruction of glacial/interglacial changes in the vertical expansion of southwest Pacific Antarctic Intermediate Water. For our study, we compared isotope records (δ13C and δ18O) measured on the epibenthic foraminifera Cibicidoides wuellerstorfi from the Antarctic Intermediate Water and the Upper Circumpolar Deep Water (943 - 2066 m water depth) off New Zealand. We used two sediment cores from the Tasman Sea (MD06-2990 and MD06-2986), retrieved during R/V Marion Dufresne cruise MD152, and three sediment cores from the Bounty Trough east of New Zealand (MD97-2120, SO 213-82-1 and SO 213-84-1). Comparing these records, we can monitor changes in southwest Pacific water mass circulation over the past 350,000 years. Over this time period, we record a significant shoaling of the boundary between Antarctic Intermediate Water and Upper Circumpolar Deep Water during all glacial stages. We propose that freshwater input by melting sea ice into the glacial intermediate-water increased the buoyancy difference to underlying deep-waters, thus hampering the downward expansion of southwest Pacific Antarctic Intermediate Water during glacials. This interpretation is consistent with our modeling results, based on the Community Climate System model version 3, which also indicate a shoaling of glacial intermediate waters due to the input of meltwater. The glacial upward displacement of the water mass boundary significantly increased the vertical extent of circumpolar deep-waters, consequently extending the volume of the proposed glacial deep-water carbon pool.

  20. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    NASA Astrophysics Data System (ADS)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the

  1. Navy Fan, California Borderland: Growth pattern and depositional processes

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.

    1984-01-01

    Navy Fan is a Late Pleistocene sand-rich fan prograding into an irregularly shaped basin in the southern California Borderland. The middle fan, characterized by one active and two abandoned 'distributary' channels and associated lobe deposits, at present onlaps part of the basin slope directly opposite from the upper-fan valley, thus dividing the lower-fan/basin-plain regions into two separate parts of different depths. Fine-scale mesotopographic relief on the fan surface and correlation of individual turbidite beds through nearly 40 cores on the middle and lower fan provide data for evaluating the Late Pleistocene and Holocene depositional processes. ?? 1984 Springer-Verlag New York Inc.

  2. Mapping cold seeps with high-resolution deep water multibeam echosounders in the Black Sea

    NASA Astrophysics Data System (ADS)

    Wintersteller, P.; dos Santos Ferreira, C.; Klaucke, I.; Ivanov, M.; Sahling, H.; Bohrmann, G.

    2011-12-01

    Cold seeps are locations at the seafloor where gas and/or fluids are emitting. In contrast to mud volcanoes, which distinctly change the seafloor morphology, cold seeps often lack significant relief. However, in comparison with surrounding sediments seep locations on the sea floor are often characterized by high acoustic backscatter intensity. This was documented during several investigations with deep towed side-scan sonar (SSS) systems in recent years. Authigenic carbonates, free gas and gas hydrates, as evidenced by ground truthing, are responsible for the high backscatter values. Last year's upgrade of the 1°x2° KONGSBERG deep water echosounder EM120 to EM122 on RV Meteor enhanced the system to almost 4 times the previous resolution due to multi-ping and high density signal processing. Based on the physics of sound propagation in the water column, multibeam echosounders (MBES) for deep water use relatively low frequencies of about 12-15 kHz. Apparently highly water-saturated sediments are penetrated by these signals and can cause artificial offsets in bottom detection in comparison to high-frequency echosounders. Nevertheless the effect of the slightly penetrating signal has a useful side effect on the backscatter. Investigations on several seep sites in the Black Sea, carried out with both EM122 and EM710 during Meteror cruise M84-2, resulted in maps of remarkable bathymetric resolution but also showed multibeam backscatter information of a 12 kHz signal to be an excellent tool to map seep-influenced seafloor areas. New seep locations have been mapped in regions of the western Turkish continental margin close to Eregli and of the eastern Turkish margin off Samsun. In both areas high backscatter patches were mapped with nearly comparable resolution as achieved by deep-tow SSS systems. At Eregli the new data is compared with data from a deep-towed EdgeTech SSS system recorded with a frequency of 75 kHz. At Samsun the results are compared with data from a MAK-1

  3. Can Plume-Forming Asteroid Airbursts Generate Meteotsunami in Deep Water?

    NASA Astrophysics Data System (ADS)

    Boslough, M.

    2015-12-01

    Hydrocode simulations suggest that the 1908 Tunguska explosion was a plume-forming airburst analogous to those caused by Comet Shoemaker-Levy 9 (SL9) collisions with Jupiter in 1994. A noctilucent cloud that appeared over Europe following the Tunguska event is similar to post-impact features on Jupiter, consistent with a collapsed plume containing condensation from the vaporized asteroid. Previous workers treated Tunguska as a point explosion and used seismic records, barograms, and extent of fallen trees to determine explosive yield. Estimates were based on scaling laws derived from nuclear weapons data, neglecting directionality, mass, and momentum of the asteroid. This point-source assumption, with other simplifications, led to a significant overestimate. Tunguska seismic data were consistent with ground motion from a vertical point impulse of 7×1018dyn sec caused by the downward blast wave of a 12.5-megaton nuclear explosion at an altitude of 8.5 km for an effective momentum multiplication factor (β) of ~80. However, simulations of a 3-megaton collisional airburst reveal that the upward-directed momentum contained in a ballistic plume can reach this level within the first minute after the explosion (β≈300). The reaction impulse from such an airburst is therefore similar to a much larger non-plume-forming nuclear explosion. Momentum is coupled through the atmosphere to the surface, generating disproportionately large seismic signatures. This result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast because the characteristic time of the plume is closer to that of a long-period wave in deep water. As the plume accelerates upward, it creates a slowly-rising and sustained overpressure with a ramp wave that propagates outward at the speed of sound, generating a tsunami in deep ocean by the same mechanism that yields slower meteotsunami in shallow

  4. Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar.

    PubMed

    García-Sánchez, María Jesús; Delgado-Huertas, Antonio; Fernández, José Antonio; Flores-Moya, Antonio

    2016-03-01

    Mechanisms of inorganic carbon assimilation were investigated in the four deep-water kelps inhabiting sea bottoms at the Strait of Gibraltar; these species are distributed at different depths (Saccorhiza polysiches at shallower waters, followed by Laminaria ochroleuca, then Phyllariopsis brevipes and, at the deepest bottoms, Phyllariopsis purpurascens). To elucidate the capacity to use HCO3(-) as a source of inorganic carbon for photosynthesis in the kelps, different experimental approaches were used. Specifically, we measured the irradiance-saturated gross photosynthetic rate versus pH at a constant dissolved inorganic carbon (DIC) concentration of 2 mM, the irradiance-saturated apparent photosynthesis (APS) rate versus DIC, the total and the extracellular carbonic anhydrase (CAext), the observed and the theoretical photosynthetic rates supported by the spontaneous dehydration of HCO3(-) to CO2, and the δ(13)C signature in tissues of the algae. While S. polyschides and L. ochroleuca showed photosynthetic activity at pH 9.5 (around 1.0 µmol O2 m(-2) s(-1)), the activity was close to zero in both species of Phyllariopsis. The APS versus DIC was almost saturated for the DIC values of natural seawater (2 mM) in S. polyschides and L. ochroleuca, but the relationship was linear in P. brevipes and P. purpurascens. The four species showed total and CAext activities but the inhibition of the CAext originated the observed photosynthetic rates at pH 8.0 to be similar to the theoretical rates that could be supported by the spontaneous dehydration of HCO3(-). The isotopic (13)C signatures ranged from -17.40 ± 1.81 to -21.11 ± 1.73 ‰ in the four species. Additionally, the δ(13)C signature was also measured in the deep-water Laminaria rodriguezii growing at 60-80 m, showing even a more negative value of -26.49 ± 1.25 ‰. All these results suggest that the four kelps can use HCO3(-) as external carbon source for photosynthesis mainly by the action of external CAext, but

  5. North Atlantic Surface and Deep-Water Hydrography during the Early Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Voelker, A. H. L.; Evans, H. F.; Naafs, B. D.; Cavaleiro, C. D.; Rebotim, A.; Ventura, C.; Stein, R. H.; Channell, J. E. T.

    2014-12-01

    The early Pliocene, with atmospheric carbon dioxide concentrations at levels similar to today, is seen as a case study for Earth's future climate evolution. During this period the progressive closing of the Central American Seaway led to increased poleward heat and salt transport within the Atlantic with North Atlantic Deep Water (NADW) becoming warmer and saltier and resulting in an enhanced Atlantic Meridional Overturning Circulation (AMOC). In order to understand how stable the AMOC really was we produced millennial-scale (1-2 kyr) surface and deep-water records for IODP Site U1313 (41°N, 33°W, 3412m) for the interval from 3.4 to 4.1 Ma. This site is ideally located to monitor past AMOC changes with North Atlantic Drift waters at the surface and NADW in the deep. Although interglacial/glacial cycles are visible, the higher frequency oscillations recorded in both the planktonic G. ruber (white) and benthic Cibicidoides sp. δ18O records impede tuning to the LR04 stack (Lisiecki and Raymo, 2005). We therefore exploit a different approach: using the magnetic polarity chrons (Gilbert, Cochiti) as recorded at Site U1313 as framework, we tune our benthic δ18O record to that of ODP Site 1085 (on LR04 ages). The benthic δ13C record shows millennial-scale oscillations, and the values indicate nearly continuous NADW presence and confirm a strong AMOC, also during most of the glacial periods. Varying surface water conditions, especially during the younger interglacial periods, are reflected in the G. ruber isotope data and appear to be linked to salinity changes since they are not recorded in the alkenone sea-surface temperature data. Although glacial stages Gi 2 and Gi 4 show the expected higher benthic δ18O values, Gi 6 was the glacial period with the strongest impact on the AMOC as revealed by cooler, less ventilated surface waters and a less ventilated NADW. Overall, the AMOC was strong throughout, but experienced high frequency oscillations at a level similar to

  6. Geochemistry of the Deep Water Bamboo Coral Isidella; Intermediate Depth and Surface Ocean Chemical Recorder

    NASA Astrophysics Data System (ADS)

    Spero, H. J.; Jang, N. A.; Adkins, J. F.

    2003-12-01

    Geochemical analyses of deep water corals have provided a wealth of data on past ocean circulation and chemical changes. Information obtained from these carbonate precipitating organisms generally reflects ambient conditions at the depth of growth. The bamboo coral, Isidella sp., belongs to a group of deep water Octocorals that live at intermediate ocean depths ( ˜200-1500m) and produce a calcite skeleton that is divided by proteinaceous gorgonin internodes. Because, the calcite and organic regions of the skeleton are precipitated simultaneously, their chemistries are temporally coupled. Stable isotope, radiocarbon and 210Pb data were obtained from several specimens of Isidella sp. that were collected in fishing dredges from the outer continental shelf near Pt. Reyes, CA (38° N 123.4° W ˜220 m). 210Pb analyses on one of the specimens suggests the coral was ~15-80 years old. δ 13C and δ 18O data from the calcite skeleton display the typical nonequilibrium covariation that has been described previously, thereby limiting the use of these data in reconstructing environmental temperatures. Although δ 13C analyses of the organic internodes produced typical marine values of -16.9+/-0.1‰ (n=17), δ 15N values were unusually high, 13.8+/-0.4‰ . Because the internode geochemistry records the organic chemistry of sinking particulate matter ingested by the coral, the enriched δ 15N data reflect the chemistry of local upwelled NO3 that was strongly influenced by subsurface denitrification. AMS analyses of the center and outer edge of the skeleton (branch diameter = 2.2 cm) and adjacent organic internodes (growth proceeds from center outwards) yield 14C ages of 2065 and 2000+/-35 years for the calcite (Δ 14C = -226.4 and -220.3‰ ) and 785 and 765+/-35 years for the organic node (Δ 14C = -93.1 and -90.7‰ ) respectively. The calcite AMS ages record the 14C reservoir age of upper N. Pacific thermocline waters whereas the organic data record the surface ocean

  7. Is substrate composition a suitable predictor for deep-water coral occurrence on fine scales?

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Metaxas, Anna

    2017-06-01

    Species distribution modelling can be applied to identify potentially suitable habitat for species with largely unknown distributions, such as many deep-water corals. Important variables influencing species occurrence in the deep sea, e.g. substrate composition, are often not included in these modelling approaches because high-resolution data are unavailable. We investigated the relationship between substrate composition and the occurrence of the two deep-water octocoral species Primnoa resedaeformis and Paragorgia arborea, which require hard substrate for attachment. On a scale of 10s of metres, we analysed images of the seafloor taken at two locations inside the Northeast Channel Coral Conservation Area in the Northwest Atlantic. We interpolated substrate composition over the sampling areas and determined the contribution of substrate classes, depth and slope to describe habitat suitability using maximum entropy modelling (Maxent). Substrate composition was similar at both sites - dominated by pebbles in a matrix of sand (>80%) with low percentages of suitable substrate for coral occurrence. Coral abundance was low at site 1 (0.9 colonies of P. resedaeformis per 100 m2) and high at site 2 (63 colonies of P. resedaeformis per 100 m2) indicating that substrate alone is not sufficient to explain varying patterns in coral occurrence. Spatial interpolations of substrate classes revealed the difficulty to accurately resolve sparsely distributed boulders (3-5% of substrate). Boulders were by far the most important variable in the habitat suitability model (HSM) for P. resedaeformis at site 1, indicating the fundamental influence of a substrate class that is the least abundant. At site 2, HSMs identified cobbles and sand/pebble as the most important variables for habitat suitability. However, substrate classes were correlated making it difficult to determine the influence of individual variables. To provide accurate information on habitat suitability for the two coral

  8. Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.

    2012-04-01

    The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement

  9. AN EARLY MIOCENE DEEP-WATER DECAPOD CRUSTACEAN FAUNULE FROM THE SLOVENIAN PART OF THE STYRIAN BASIN, AND ITS PALAEOENVIRONMENTAL AND PALAEOBIOGEOGRAPHICAL SIGNIFICANCE

    PubMed Central

    GAŠPARIČ, ROK; HYŽNÝ, MATÚŠ

    2015-01-01

    A new decapod crustacean faunule is described from the early Miocene of the Slovenian part of the Styrian Basin. The Ivnik Beds exposed at the Činžat locality contain seven species: Calliax michelottii (Axiidea: Callianassidae), Lepidophthalmus paratethyensis sp. nov. (Axiidea: Callianassidae), Jaxea kuemeli (Gebiidea: Laomediidae), Styrioplax exiguus (Brachyura: Chasmocarcinidae), Goneplax gulderi (Brachyura: Goneplacidae), Neopilumnoplax pohorjensis sp. nov. (Brachyura: Mathildellidae) and Retropluma slovenica sp. nov. (Brachyura: Retroplumidae). Numerous specimens of well-preserved Styrioplax exiguus permitted its redescription and re-assignment of its familial placement to Chasmocarcinidae. Neopilumnoplax pohorjensis sp. nov. constitutes the first fossil occurrence of the genus known to date. The decapod association, as well as other faunal elements, suggests low-energy deep-water depositional environment with epibathyal water depth of more than 125 m. The studied locality is situated in the Ribnica–Selnica graben filled with sediments once deposited in the Central Paratethys sea. Based on the affinities of decapod genera of the Central Paratethys and the Proto-Mediterranean, we conclude that the exchange of decapod faunas between these regions was probably regulated by an anti-estuarine circulation permitting an easier incursion of species from the Proto-Mediterranean into the Paratethys and simultaneous hindering the Paratethyan endemics (Styrioplax) from entering the Mediterranean. PMID:26689949

  10. Diversity and taphonomic gradients from shoreface to deep water: Case studies based on sea urchin assemblages from the Miocene of Sardinia

    NASA Astrophysics Data System (ADS)

    Nebelsick, James; Mancosu, Andrea

    2016-04-01

    Echinoid faunas from Miocene sediments from Sardinia allow diversity to be correlated to variations in depositional environments as well as taphonomic pathways. Taxonomic richness and preservation potentials vary among both carbonate and siliciclastic dominated shelf environments. Studies include detailed investigation of stratigraphy, sedimentology, palaeontology and taphonomy in both the field and in the laboratory. Environmental Interpretations are based on composition and diversity of taxa, functional morphological interpretation of life habits as well as taphonomic signatures. These investigations have revealed: 1) various mass accumulations of clypeasteroid echinoids ranging from autochthonous assemblages to multiple in situ reworked accumulations in shore face environments, 2) the distribution of morphotypes of the common genus Clypeaster, 3) echinoid assemblages dominated by both irregular and regular echinoids in siliciclastic and carbonate shelf environments, 4) spatangoid assemblages in heavily bioturbated coarse sands, and 5) monotypic shell beds of well-preserved regular echinoids and spatangoid from deeper siliciclastic environments. Variations in the diversity of echinoid taxa are correlated to biotic and abiotic ecological factors in specific depositional environments. Preservation potentials vary highly as determined by ambient environmental conditions and skeletal architectures. A synthesis of faunal diversities and preservation potentials along shelf gradient ranging from shoreface to deep water is presented.

  11. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Relief for Pre-Act Deep Water Leases and for Development and Expansion Projects § 203.60 Who may apply...

  12. Genetic divergence and geographic variation in the deep-water Conus orbignyi complex (Mollusca: Conoidea)

    PubMed Central

    Puillandre, Nicolas; Meyer, Christopher P.; Bouchet, Philippe; Olivera, Baldomero M.

    2011-01-01

    Puillandre, N. et al. (2010) Genetic divergence and geographic variation in a deep-water cone lineage: molecular and morphological analyses of the Conus orbignyi complex (Mollusca: Conoidea). The cone snails (family Conidae) are a hyperdiverse lineage of venomous gastropods. Two standard markers, COI and ITS2, were used to define six genetically-divergent groups within a subclade of Conidae that includes Conus orbignyi; each of these was then evaluated based on their shell morphology. We conclude that three forms, previously regarded as subspecies of Conus orbignyi are distinct species, now recognized as Conus orbignyi, Conus elokismenos and Conus coriolisi. In addition, three additional species (Conus pseudorbignyi, Conus joliveti and Conus comatosa) belong to this clade. Some of the proposed species (e.g., Conus elokismenos) are possibly in turn complexes comprising multiple species. Groups such as Conidae illustrate the challenges generally faced in species delimitation in biodiverse lineages. In the case of the Conus orbignyi complex, not only are there definable, genetically divergent lineages, but also considerable geographic variation within each group. Our study suggests that an intensive analysis of multiple specimens within a single locality helps to minimize the confounding effects of geographic variation and can be a useful starting point for circumscribing different species within such a confusing complex. PMID:21712968

  13. Genetic divergence and geographic variation in the deep-water Conus orbignyi complex (Mollusca: Conoidea).

    PubMed

    Puillandre, Nicolas; Meyer, Christopher P; Bouchet, Philippe; Olivera, Baldomero M

    2011-07-01

    Puillandre, N. et al. (2010) Genetic divergence and geographic variation in a deep-water cone lineage: molecular and morphological analyses of the Conus orbignyi complex (Mollusca: Conoidea).The cone snails (family Conidae) are a hyperdiverse lineage of venomous gastropods. Two standard markers, COI and ITS2, were used to define six genetically-divergent groups within a subclade of Conidae that includes Conus orbignyi; each of these was then evaluated based on their shell morphology. We conclude that three forms, previously regarded as subspecies of Conus orbignyi are distinct species, now recognized as Conus orbignyi, Conus elokismenos and Conus coriolisi. In addition, three additional species (Conus pseudorbignyi, Conus joliveti and Conus comatosa) belong to this clade. Some of the proposed species (e.g., Conus elokismenos) are possibly in turn complexes comprising multiple species. Groups such as Conidae illustrate the challenges generally faced in species delimitation in biodiverse lineages. In the case of the Conus orbignyi complex, not only are there definable, genetically divergent lineages, but also considerable geographic variation within each group. Our study suggests that an intensive analysis of multiple specimens within a single locality helps to minimize the confounding effects of geographic variation and can be a useful starting point for circumscribing different species within such a confusing complex.

  14. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    PubMed

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  15. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    SciTech Connect

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  16. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  17. Pigmentation and Spectral Absorbance Signatures in Deep-Water Corals from the Trondheimsfjord, Norway

    PubMed Central

    Elde, Anette C.; Pettersen, Ragnhild; Bruheim, Per; Järnegren, Johanna; Johnsen, Geir

    2012-01-01

    The pigmentation and corresponding in vivo and in vitro absorption characteristics in three different deep-water coral species: white and orange Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are described. Pigments were isolated and characterized by High-Performance Liquid Chromatography (HPLC) analysis and High-Performance Liquid Chromatography Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and skeleton of orange L. pertusa contained 2 times more astaxanthin g−1 wet weight compared to white L. pertusa. White and orange L. pertusa were characterized with in vivo absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance spectra (400–700 nm) were species-specific, indicated by in vivo, in vitro and the corresponding difference spectra. The results may provide important chemotaxonomic information for pigment when bonded to their proteins in vivo, bio-prospecting, and for in situ identification, mapping and monitoring of corals. PMID:22822381

  18. Pigmentation and spectral absorbance signatures in deep-water corals from the Trondheimsfjord, Norway.

    PubMed

    Elde, Anette C; Pettersen, Ragnhild; Bruheim, Per; Järnegren, Johanna; Johnsen, Geir

    2012-06-01

    The pigmentation and corresponding in vivo and in vitro absorption characteristics in three different deep-water coral species: white and orange Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are described. Pigments were isolated and characterized by High-Performance Liquid Chromatography (HPLC) analysis and High-Performance Liquid Chromatography Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and skeleton of orange L. pertusa contained 2 times more astaxanthin g(-1) wet weight compared to white L. pertusa. White and orange L. pertusa were characterized with in vivo absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance spectra (400-700 nm) were species-specific, indicated by in vivo, in vitro and the corresponding difference spectra. The results may provide important chemotaxonomic information for pigment when bonded to their proteins in vivo, bio-prospecting, and for in situ identification, mapping and monitoring of corals.

  19. Glider observations of the biological response to Modified Circumpolar Deep Water Variability in the Ross Sea

    NASA Astrophysics Data System (ADS)

    O'Connell, D.; Kaufman, D.; Friedrichs, M. A.; Smith, W.

    2011-12-01

    The Ross Sea is the most productive area within the Southern Ocean, and is believed to play a significant role in the global marine carbon cycle. This region is also characterized by strong spatial and temporal variability in both physical and biogeochemical conditions; however this variability occurs on spatial and temporal scales that are difficult to resolve with traditional data sources. In order to better understand this variability, two gliders were deployed in the Ross Sea in late November 2010 during the early stages of the summer plankton bloom. Together, the two gliders made over 1500 dives and collected data (salinity, temperature, fluorescence and oxygen) throughout the water column for roughly two months. The data from these gliders were used to identify the presence of the relatively high-nutrient Modified Circumpolar Deep Water (MCDW), which has been hypothesized to be a significant factor affecting the spatial and temporal extent of the summer plankton blooms. Preliminary data analyses indicate a positive correlation between areas of MCDW and high chlorophyll concentrations. The glider data were also compared to contemporaneous cruise data and satellite data and were found to fit well with these other data, yet were better able to resolve the high temporal and spatial variability of this region. Specifically, the lower resolution of the cruise data, as compared to the glider data, made it difficult to resolve the correlation of MCDW to high chlorophyll from the cruise data alone.

  20. Tsukamurella spongiae sp. nov., a novel actinomycete isolated from a deep-water marine sponge.

    PubMed

    Olson, Julie B; Harmody, Dedra K; Bej, Asim K; McCarthy, Peter J

    2007-07-01

    A Gram-positive, rod-shaped, non-spore-forming bacterium (strain K362(T)) was isolated from a deep-water marine sponge collected off the coast of Curaçao in the Netherlands Antilles. On the basis of 16S rRNA gene sequence similarities, strain K362(T) was shown to belong to the genus Tsukamurella, being most closely related to Tsukamurella pulmonis (99.2 %), Tsukamurella tyrosinosolvens (98.9 %), Tsukamurella strandjordii (98.8 %), Tsukamurella pseudospumae (98.8 %) and Tsukamurella spumae (98.8 %). A combination of the substrate utilization patterns, the fatty acid and mycolic acid profiles and the DNA-DNA hybridization results supported the affiliation of strain K362(T) to the genus Tsukamurella and enabled the genotypic and phenotypic differentiation of strain K362(T) from the seven recognized Tsukamurella species. Strain K362(T) therefore represents a novel species of the genus Tsukamurella, for which the name Tsukamurella spongiae sp. nov. is proposed. The type strain is K362(T) (=DSM 44990(T)=NRRL B-24467(T)).

  1. On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Timmermann, R.; Schröder, M.; Hellmer, H. H.

    2014-12-01

    In the Amundsen Sea, warm Circumpolar Deep Water (CDW) intrudes onto the continental shelf and flows into the ice shelf cavities of the West Antarctic Ice Sheet, resulting in high basal melt rates. However, none of the high resolution global models resolving all the small ice shelves around Antarctica can reproduce a realistic CDW flow onto the Amundsen Sea continental shelf, and previous studies show simulated bottom potential temperature at the Pine Island Ice Shelf front of about -1.8 °C. In this study, using the Finite-Element Sea ice-ice shelf-Ocean Model (FESOM), we reproduce warm CDW intrusions onto the Amundsen Sea continental shelf and realistic melt rates of the ice shelves in West Antarctica. To investigate the importance of horizontal resolution, forcing, horizontal diffusivity, and the effect of grounded icebergs, eight sensitivity experiments are conducted. To simulate the CDW intrusion realistically, a horizontal resolution of about 5 km or smaller is required. The choice of forcing is also important and the cold bias in the NCEP/NCAR reanalysis over the eastern Amundsen Sea prevents warm CDW from intruding onto the continental shelf. On the other hand, the CDW intrusion is not highly sensitive to the strength of horizontal diffusion. The effect of grounded icebergs located off Bear Peninsula is minor, but may act as a buffer to an anomalously cold year.

  2. Distribution of Upper Circumpolar Deep Water on the warming continental shelf of the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Couto, N.; Schofield, O.; Martinson, D. G.; Dinniman, M. S.; Graham, J. A.

    2016-02-01

    Sub-pycnocline water on the continental shelf of the West Antarctic Peninsula (WAP) is strongly influenced by intrusions of Upper Circumpolar Deep Water (UCDW), a relatively warm water mass that originates off the shelf within the Antarctic Circumpolar Current. Shipboard measurements over the past two decades indicate that the deep shelf waters are warming, but they are unable to resolve the dimensions and frequency of the UCDW intrusions. Here, we use autonomous underwater vehicles (gliders) to characterize the spatial distribution of UCDW on the WAP continental shelf. We use a ROMS model to study the pathways by which UCDW crosses onto the shelf and travels toward the coast. We find that in both the traditional shipboard CTD dataset and the recent high-resolution glider dataset, there are consistent spatial patterns with UCDW commonly found in deep bathymetric depressions in the region. UCDW on the shelf is found in features with widths on the order of 10 km, suggesting the importance of mesoscale processes in the transport of heat onto the shelf. The features observed here contribute 10-33% of the heat flux required to balance the heat budget of the WAP and lose heat at a rate of 1.7 ± 0.8 x 106 J/m2 between the shelf break and the coast. Drifters released in the ROMS model also follow bathymetric channels toward the coast and showed preference for entering at specific locations along the shelf break.

  3. Nonlinear quasi-static analysis of ultra-deep-water top-tension riser

    NASA Astrophysics Data System (ADS)

    Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun

    2017-09-01

    In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.

  4. High diversity of microplankton surrounds deep-water coral reef in the Norwegian Sea.

    PubMed

    Jensen, Sigmund; Bourne, David G; Hovland, Martin; Murrell, J Colin

    2012-10-01

    Coral reefs that exist in the depths of the oceans are surrounded by Eukarya, Archaea and bacterial communities that may play an important role in the nutrition and health of the reef. The first interdomain community structure of planktonic organisms in seawater from a deep-water coral reef is described. Community profiling and analysis of ribosomal RNA gene sequences from a coral reef system at 350 m depth in the Norwegian Sea revealed a rich diversity of Eukarya and Bacteria and a moderate diversity of Archaea. Most sequences affiliated with marine microplankton from deep-sea to cold-surface regions, with many sequences being similar to those described in studies of mesopelagic and oxygen minimum zones. Dominant phylotypes belonged to the Alveolata (group I, II, dinoflagellates), Stramenopiles (silicoflagellates), Alphaproteobacteria (Pelagibacter ubique), Gammaproteobacteria (ARCTIC96BD-19), Bacteroidetes (Flavobacteria) and mesophilic Crenarchaeota (Nitrosopumilus maritimus). Several rare and novel members of the community fell into distinct phylogenetic groups. The inferred function of dominant community members suggested autotrophs that utilise light, ammonium or sulphide, and lifestyles based on host associations. The high diversity reflected a microplankton community structure, which is significantly different from that of microplankton collected at the same depth at a pelagic station away from reefs.

  5. Seismic Reflection Imaging of the Boundary between Norwegian Atlantic Current and Norwegian Sea Deep Water

    NASA Astrophysics Data System (ADS)

    Nandi, P.; Holbrook, W. S.; Pearse, S.; Paramo, P.

    2003-12-01

    Water-column reflections acquired on a seismic survey in the Norwegian Sea and corroborated by an XBT survey suggest that traditional multi-channel seismic methods can distinguish boundaries between major water masses. The study area traverses the boundary between the Norwegian Atlantic Current (NwAC) and the adjacent, and underlying, Norwegian Sea Deep Water (NSDW). Stacked seismic reflection profiles clearly delineate an upper acoustically transparent surface layer separated from a lower transparent water mass by a highly reflective boundary layer. We interpret the upper water mass to be the NwAC and the lower water mass to be NSDW. Depth to the bottom of the upper layer and thickness of the boundary layer correspond to the published depth of the NwAC and thickness of a layer of rapidly varying temperature separating it from the NSDW. Reflections seen in the seismic data result from abrupt, but subtle, changes in sound speed caused by change in temperature on the order of 0.1° C in the boundary layer. These results suggest that the boundaries between major water masses can be seismically imaged if they contain fine-scale thermohaline structure.

  6. On the interaction of gravity-capillary lumps in deep water

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Duncan, James

    2016-11-01

    The nonlinear response of a water surface to a pressure source moving at a speed just below the minimum phase speed of linear gravity-capillary waves in deep water (cmin = 23 . 1 cm/s) consists of periodic generation of pairs of three-dimensional solitary waves (lumps) in a V-shaped pattern downstream of the source. In the reference frame of the laboratory, these unsteady lumps propagate in a direction oblique to the motion of the source and are damped by viscosity. In the current study, the interaction of lumps generated by two equal strength pressure sources moving side by side in parallel straight lines is investigated experimentally via photography-based techniques. The first lump generated by each source, collides with the lump from the other source in the center-plane of the two sources. It is observed that a steep depression is formed during the collision. Soon after the collision, this depression radiates energy in the form of small-amplitude radial waves. After the radiation, a quasi-stable pattern is formed with several rows of localized depressions that are qualitatively similar to lumps but exhibit periodic oscillations in depth, similar to a "breather". The shape of the wave pattern and the period of oscillations depend strongly on the distance between the soures.

  7. A trophic ecology of two grenadier species (Macrouridae, Pisces) in deep waters of the Southwest Atlantic

    NASA Astrophysics Data System (ADS)

    Laptikhovsky, V. V.

    2005-08-01

    The feeding habits of slope-dwelling macrourid fishes from the southern Southwest Atlantic is unknown. In this study the feeding ecology of the two most abundant species, Macrourus carinatus and M. holotrachys, was investigated. Both these grenadiers fed on a variety of prey, including gelatinous plankton, crustaceans, mesopelagic and benthic fish and cephalopods, echinoderms, as well as fishery discards. M. carinatus forage mostly in depths shallower than 900 m and its feeding spectrum and hunting strategy display important seasonal variability. It consumes more pelagic fish, squid and crustaceans than M. holotrachys, which probably indicates occasional feeding in the water column and higher availability of pelagic prey. M. holotrachys forages mostly in depths deeper than 1100 m and is a specialised bottom feeder. Macrourids are able to switch their feeding strategy from browsing on abundant food sources in summer and autumn (a narrow niche breadth and high number of prey per stomach) to hunting occasional prey in winter and spring (a wide niche breadth, low number of prey per stomach). Both species are of similar size and hard to distinguish morphologically, but in deep water M. holotrachys males are smaller than, and females larger than, those of M. carinatus. A probable reason for such energy re-distribution within a population in M. holotrachys is to achieve a higher reproductive output in a food-poor and harsh deep-sea environment.

  8. Potential vorticity and across ACC eddy transport in the Upper Circumpolar Deep Waters

    NASA Astrophysics Data System (ADS)

    Balwada, D.; Roach, C. J.; Speer, K. G.; Deremble, B.

    2016-02-01

    Eddy transport processes are of first order importance for the meridional transport of the Upper Circumpolar Deep Waters (UCDW) in the Southern Ocean, as the transport due to the geostrophic mean flow integrated along a closed PV contour on an isopycnal vanishes. In this study we quantify this eddy mass transport using a downgradient PV diffusivity parameterization, where the PV gradients are calculated using a climatology produced using ARGO float profile data, and eddy diffusivities quantified using ARGO float trajectories. The results show a southward transport of approximately 10-15SV along the neutral density layer centered at 27.8 (UCDW). Significant portions of the transport are localized around topographic features encountered by the ACC, primarily due to greater diffusivities associated with these energetic regions. We also discuss the large scale PV structure of the ACC, addressing the primary question that what is creating and controlling the large scale PV gradients? This is done by calculating the PV budgets, using the flux form of the PV equation, for both ARGO climatology and SOSE model output. The structure is set locally by the interactions of the ACC with topography and non-locally by sources and sinks of PV in individual ocean basins and at outcropping sites.

  9. Spreading of the Western Mediterranean Deep Water after winter 2005: Time scales and deep cyclone transport

    NASA Astrophysics Data System (ADS)

    Beuvier, J.; BéRanger, K.; Lebeaupin Brossier, C.; Somot, S.; Sevault, F.; Drillet, Y.; Bourdallé-Badie, R.; Ferry, N.; Lyard, F.

    2012-07-01

    This work is dedicated to the study of the propagation of the Western Mediterranean Deep Water (WMDW) formed in the Gulf of Lions during the exceptional winter 2005. A simulation of the 1998-2008 period has been carried out with an eddy-resolving Ocean General Circulation Model of the Mediterranean Sea, driven by interannual high-resolution air-sea fluxes. This study first presents a validation of the recently improved model configuration against satellite observations. Then, we assess the ability of the model to reproduce the particularly intense deep convection event of winter 2005 in the Gulf of Lions. A huge volume of very dense water is formed in the simulation at that time (annual formation rate higher than 3 Sv). The thermohaline characteristics of the new WMDW allow a monitoring of its deep propagation. We identify several deep cyclones as mainly responsible of the fast spreading of the WMDW southwards in the Western Mediterranean. By comparing Eulerian and Lagrangian approaches, we estimate different transport times of the WMDW by these cyclonic eddies and compare them to those deduced from several observations. Finally, we argue that these cyclones favor the propagation of the WMDW thermohaline characteristics toward the Channel of Sardinia and decrease the volume of WMDW which can reach the Strait of Gibraltar.

  10. Stability of Steep Gravity--Capillary Solitary Waves in Deep Water

    NASA Astrophysics Data System (ADS)

    Akylas, T. R.; Calvo, D. C.

    2000-11-01

    The stability of steep gravity--capillary solitary waves in deep water is numerically investigated using the full nonlinear water-wave equations with surface tension. As was found in prior work based on model equations for small-amplitude solitary waves in shallow water, out of the two solution branches that bifurcate at the minimum gravity--capillary phase speed, solitary waves of depression again turn out to be stable while those of elevation are unstable to small disturbances. Motivated by the experiments of Longuet-Higgins & Zhang (Phys. Fluids 9:1963--1968, 1997), we also consider the forced problem of a localised pressure distribution applied to the free surface of a stream with speed below the minimum gravity--capillary phase speed. We find that the finite-amplitude forced solitary-wave solution branch computed by Vanden-Broeck & Dias (J. Fluid Mech. 240:549--557, 1992) is unstable but the branch corresponding to Rayleigh's linearised solution is stable. The significance of viscous effects is assessed; the effects of instability in steep waves generally are comparable to, and in some cases greater than, those of dissipation. These findings are discussed in connection with the experimental observations of Longuet-Higgins & Zhang.

  11. Petroleum geology of Campos Basin, Brazil: A successful case history of deep water exploration

    SciTech Connect

    Franke, M.R.; Lugon, H.A.F.; Beraldo, W.L. )

    1990-05-01

    Campos Basin, the most prolific Brazilian basin, produces almost 400,000 bbl of oil per day and contains 70% of the national reserves. The basin is located on the southeastern coast of Brazil, covering a prospectable area of 100,000 km{sup 2} Campos is a passive continental margin basin originated by the breakup of Pangea and the rifting of the South American and African plates in the Early Cretaceous. The basin's sedimentary section encompasses three megasequences: nonmarine, transitional, and marine, ranging in age from Neocomian to Holocene. Hydrocarbon generation is related to nonmarine organic-rich shales and marls, and hydrocarbon entrapment assumes ascendent migration along fault planes and through salt gaps toward reservoirs ranging in age from Neocomian to Tertiary (mainly turbiditic sandstones). The first onshore stratigraphic well was drilled based on gravity surveys in 1958. The acquisition of new geophysical data, mainly seismic reflection data, followed after 1968. The first offshore well was drilled in 1971, and in 1974, the first oil field, Garopua, was discovered. Giant hydrocarbon accumulations have been discovered in water depths ranging from 400 to 1,800 m since 1984. As of mid-1989, 35 offshore oil fields have been discovered, 760 million bbl of oil, and 490 bcf of gas have been produced. The basin oil and equivalent gas reserves are estimated in 6.0 billion bbl, 60% of which is located in the deep-water giant oil fields.

  12. Benthic foraminiferal biogeography: controls on global distribution patterns in deep-water settings.

    PubMed

    Gooday, Andrew J; Jorissen, Frans J

    2012-01-01

    Benthic foraminifera, shell-bearing protists, are familiar from geological studies. Although many species are well known, undescribed single-chambered forms are common in the deep sea. Coastal and sublittoral species often have restricted distributions, but wide ranges are more frequent among deep-water species, particularly at abyssal depths. This probably reflects the transport of tiny propagules by currents across ocean basins that present few insurmountable barriers to dispersal, combined with slow rates of evolution. Undersampling of the vast deep-sea habitat, however, makes it very difficult to establish the ranges of less common foraminiferal species, and endemism may be more prevalent than currently realized. On continental slopes, some species have restricted distributions, but wide-ranging bathyal species that exhibit considerable morphological variation are more common. This may be linked to the greater heterogeneity of continental slopes compared with oceans basins. Improved knowledge of deep-sea foraminiferal biogeography requires sound morphology-based taxonomy combined with molecular genetic studies.

  13. On the Impacts of Different Surface Forcing Regimes for Deep Water Formation in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Josey, S.; Tsimplis, M.; Gomis, D.; Ruiz, S.; Marcos, M.; Somot, S.

    2009-04-01

    Deep water formation is known to occur at 3 major sites (the Gulf of Lions, Adriatic and Aegean Seas) in the Mediterranean basin. However, the role played by air-sea interaction in setting the frequency and strength of formation events (including major transient episodes such as that experienced in the Aegean sea in the early 1990s) is not well understood. We will explore this relationship using air-sea heat, freshwater and density flux fields, including output from downscaled versions (HIPOCAS and ARPERA) of the NCEP/NCAR and ECMWF reanalyses. The downscaled fields reveal small scale forcing features (including jet-like structures over the dense water formation sites) that are not present in the coarser resolution reanalysis datasets. They also show greater variability in the forcing of the Aegean and the Gulf of Lions than the Adriatic Sea. The differences between the forcing distributions of the Aegean and Adriatic will be discussed in detail and will be advanced as a potential cause for variations in frequency of dense water formation in these two regions.

  14. Endemic Lake Baikal sponges from deep water. 2: Taxonomy and Bathymetric Distribution.

    PubMed

    Itskovich, Valeria B; Kaluzhnaya, Oxana V; Veynberg, Elena; Erpenbeck, Dirk

    2017-02-22

    Unique samples of deep-water sponges of Lake Baikal were collected between 120 and 1450 m depth and their taxonomy and bathymetric distribution were studied. Based on morphological studies with scanning electron microscopy (SEM) and molecular analyses (CO1, ITS) we describe a new species, Baikalospongia abyssalis sp. nov. Spicule morphology of this new species is similar to Palaeoephydatia sp., a species previously known only from fossils in Late Pliocene (3.2-2.8 mya) sediments. Other sponge samples collected were identified as Baikalospongia intermedia intermedia, B. intermedia profundalis, B. bacillifera, B. fungiformis, B. martinsoni and Swartschewskia papyracea, all from the family Lubomirskiidae. Sponge specimens with giant spicules, identified as B. fungiformis, were found at great depths. B.i. intermedia and B. i. profundalis are dominating species at great depth. Light is a limiting factor for distribution of Lubomirskia baicalensis, possibly due to its symbiosis with photosynthetic protists. The current study extends our knowledge on the distribution boundaries of Lubomirskiidae at great depths.

  15. EMG activity of hip and trunk muscles during deep-water running.

    PubMed

    Kaneda, Koichi; Sato, Daisuke; Wakabayashi, Hitoshi; Nomura, Takeo

    2009-12-01

    The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.

  16. Spectrum response estimation for deep-water floating platforms via retardation function representation

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Liu, Chengcheng; Chen, Jiefeng; Wang, Bin

    2017-08-01

    The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures.

  17. About transformation of the deep-water methane bubbles into hydrate powder and hydrate foam

    NASA Astrophysics Data System (ADS)

    Egorov, A. V.; Nigmatulin, R. I.; Rozhkov, A. N.; Sagalevich, A. M.; Chernyaev, E. S.

    2012-04-01

    During the Russian Academy of Sciences "MIRI na Baikale, 2008-2010" expedition, deep-water experiments with the bubbles of methane seeping from the bottom at depths 405, 860 and 1400 meters were carried out. These depths correspond to gas hydrate stability zone. Bubbles were caught by the trap which was looked like an inverted glass. It was found that the behavior of bubbles in a trap depends on the depth. At depth of 405 meters formation of hydrates was not observed. Having got to a trap at the depth of 860 meters, bubbles became covered by solid hydrate envelope, kept the initial form, and after a time period collapsed in a number of hydrate fragments which showed all properties of a granular matter. No visible changes in the hydrate granular matter were observed in the course of lifting it to a depth of 380 meters. Shallower, the decomposition of the hydrate granular matter into methane gas was observed. In the experiments at depth of 1400 meters the caught bubbles, becoming covered by hydrate envelope formed solid hydrate foam in the trap. At lifting this foam structure was deformed slightly but simultaneously a free gas left the foam and filled the trap. The volume of free gas in the trap at lifting varied according to the Boyle-Mariotte law.

  18. Organic matter fluxes and the sites of oxygen consumption in deep water

    NASA Astrophysics Data System (ADS)

    Tsunogai, Shizuo; Noriki, Shinichiro

    1987-06-01

    Sediment trap experiments at various stations in the Pacific and Antarctic Ocean compare observed particulate organic carbon fluxes with those obtained indirectly from vertical profiles of dissolved oxygen in the Pacific deep water. The observed carbon fluxes are characterized by large spatial variation and small vertical variation. The organic carbon fluxes at the 1000 m level ranged from 2 mg C m -2 d -1 in the subtropical ocean to more than 100 mg C m -2 d -1 in the highly productive subpolar sea, and decreased by 25 ± 10% at intervals 1000 m in depth. These results suggest that much particulate matter is transferred rapidly to the bottom of comparatively small areas of the polar, subpolar, hemipelagic and coastal seas and degraded there, and that the bottom water imprint resulting from the effects of degradation of particulate matter is transported fairly quickly to the pelagic ocean by isopycnal mixing and advection. Many unsolved phenomena occurring in the deep ocean can be explained by this suggestion.

  19. The virial theorem for water waves and its application to deep-water wave breaking

    NASA Astrophysics Data System (ADS)

    Pizzo, Nicholas; Melville, W. Ken

    2014-11-01

    The connection between the geometry, kinematics and dynamics of steep and breaking waves is crucial for an improved understanding of air-sea interaction processes. In this study, we present a virial theorem for deep-water surface gravity waves, related to a conserved integral quantity originally derived by Benjamin and Olver (1982), and we apply this theorem to the study of properties of steep and breaking waves. Specifically, we relate the geometry and dynamics of these wave scenarios in an attempt to better understand the breakdown of equipartition between the kinetic and potential energy. The virial theorem will be studied both analytically and numerically, where in the latter case we make use of a variational description of water waves in a conformally mapped reference frame (Balk 1996) that we have developed for use in a numerical model. Particular attention will be given to the application of these findings to recent theoretical and laboratory studies in which it has been shown that the potential energy available to breaking waves plays a crucial role in setting the scales of post-breaking phenomena; for example, the breaking induced energy dissipation rate (Drazen et al. 2008) and the circulation generated by breaking (Pizzo and Melville 2013).

  20. Climatic Impact of a Change in North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1984-01-01

    The response of the ocean to climate changes is one of the most uncertain questions regarding the impact of increasing CO2 on climate and society. North Atlantic deep water (NADW) formation apparently depends on a complex confluence of different water masses originating in different areas, all of which will presumably be affected by changes in wind, evaporation, etc., as the atmosphere warms. To analyze from first principles what the effect will be on NADW formation is a task which requires an ocean modeling capability not yet available. As a substitute, past climates can be investigated to see if there is any evidence for alterations in NADW formation. In addition, the possible impact of such changes on climate can be explored. An estimate of NADW sensitivity (at least in the past) and of the climate consequences can be studied. The North Atlantic surface water temperatures can be reconstructed to indicate a substantial cooling between 11,000 and 10,000 years B.P. Were NADW formation to have ceased, it would have resulted in cooler surface waters; whether the reconstructed temperatures were due to this or some other effect cannot be determined at this time. Nevertheless, it was decided that it would be useful to see what the effect these colder temperatures would have had on the climate.

  1. Southern Ocean Circumpolar Deep Water warming: isopycnal mixing vs overturning as drivers of change

    NASA Astrophysics Data System (ADS)

    Meijers, Andrew; Farneti, Riccardo; Meredith, Michael

    2017-04-01

    Using an adiabatic as possible coordinate system we examine temperature and salinity trends in the three primary repeat hydrography sections that cross the Antarctic Circumpolar Current (ACC). These are the SR1b south of South America, Good Hope south of South Africa, and SR3 south of Australia. A similar pattern of change over the last 20 years is seen in all three, with cooling and freshening in the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) layers and warming and salinification in the upper Circumpolar Deep Water (CDW). We compare this fingerprint of change with the results from an eddy permitting general circulation model perturbation experiment forced by a near doubling in zonal wind stress with a corresponding increase of around 15% in the residual overturning circulation. A disparate fingerprint in temperature and salinity in the model to that observed suggests that the observed increase in zonal winds over the last 20 years has not driven a change in the residual overturning circulation. Instead we present analysis based on the observed climatic trend and background property gradients to argue that increased winter water temperatures in the outcropping zones are driving CDW warming via isopycnal mixing.

  2. Basin-wide N2 fixation in the deep waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Bonnet, Sophie; Hernández, Nauzet; Martínez-Pérez, Alba María.; Nieto-Cid, Mar; Álvarez-Salgado, Xosé Antón; Baños, Isabel; Montero, María. F.; Mazuecos, Ignacio P.; Gasol, Josep M.; Osterholz, Helena; Dittmar, Thorsten; Berman-Frank, Ilana; Arístegui, Javier

    2016-06-01

    Recent findings indicate that N2 fixation is significant in aphotic waters, presumably due to heterotrophic diazotrophs depending on organic matter for their nutrition. However, the relationship between organic matter and heterotrophic N2 fixation remains unknown. Here we explore N2 fixation in the deep chlorophyll maximum and underneath deep waters across the whole Mediterranean Sea and relate it to organic matter composition, characterized by optical and molecular methods. Our N2 fixation rates were in the range of those previously reported for the euphotic zone of the Mediterranean Sea (up to 0.43 nmol N L-1 d-1) and were significantly correlated to the presence of relatively labile organic matter with fluorescence and molecular formula properties representative for peptides and unsaturated aliphatics and associated with the presence of more oxygenated ventilated water masses. Finally, and despite that the aphotic N2 fixation contributes largely to total water column diazotrophic activity (>50%), its contribution to overall nitrogen inputs to the basin is negligible (<0.5%).

  3. Footprint of Deepwater Horizon blowout impact to deep-water coral communities.

    PubMed

    Fisher, Charles R; Hsing, Pen-Yuan; Kaiser, Carl L; Yoerger, Dana R; Roberts, Harry H; Shedd, William W; Cordes, Erik E; Shank, Timothy M; Berlet, Samantha P; Saunders, Miles G; Larcom, Elizabeth A; Brooks, James M

    2014-08-12

    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations.

  4. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Stevenson, Angela; Rocha, Carlos

    2013-01-01

    In situ video observations of echinoids interacting with deep-sea coral are common in the deep-sea, but paradoxically the deep-sea literature is devoid of reports of bioerosion by extant echinoids. Here we present evidence of contemporary bioerosion of cold-water coral by four species of deep-sea echinoids, Gracilechinus elegans, Gracilechinus alexandri, Cidaris cidaris, and Araeosoma fenestratum, showing that they actively predate on the living framework of reef building corals, Lophelia pertusa and Madrepora oculata, in the NE Atlantic. Echinoid specimens were collected in six canyons located in the Bay of Biscay, France and two canyons on the north side of the Porcupine Bank and Goban Spur, Ireland. A total of 44 live specimens from the four taxa (9 of G. elegans, 4 of G. alexandri, 21 of C. cidaris and 10 of A. fenestratum) showed recent ingestion of the coral infrastructure. Upon dissection, live coral skeleton was observed encased in a thick mucus layer within the gastrointestinal tract of G. elegans and G. alexandri while both live and dead coral fragments were found in C. cidaris and A. fenestratum. Echinoid bioerosion limits the growth of shallow-water reefs. Our observations suggest that echinoids may also play an important role in the ecology of deep-water coral reefs.

  5. Investigation of jack-up leg extension for deep water operations

    NASA Astrophysics Data System (ADS)

    Welaya, Yousri M. A.; Elhewy, Ahmed; Hegazy, Mohamed

    2015-06-01

    Since the first jack-up was built, jackups have become the most popular type of mobile offshore drilling unit (MODU) for offshore exploration and development purposes in shallow water. The most pivotal component of the jack-up unit is the leg, which can directly affect the global performance of the unit. In this paper, an investigation into extending the length of the jack up leg is carried out in order to study the enhancement of the rig capability to drill in deeper water approaching the range of the Semisubmersible Drilling Unit (SSDU) (300-1000ft). A study of the performance of a deep-water jack-up unit is performed with different leg lengths. Typical leg scantling dimensions and identical external loads are assigned, and then a detailed Finite Element Analysis (FEA) model is created in order to simulate the jack-up leg unit's structural behavior. A Multi-point Constraint (MPC) element together with the spring element is used to deal with the boundary conditions. Finally, a comparative analysis for five leg lengths is carried out to illustrate their performance, including the ultimate static strength, and weight.

  6. Deep water pipeline intervention work with an acoustically controlled power module

    SciTech Connect

    Conter, A.; Launaro, F.; Bigoni, G.

    1995-12-31

    The stabilisation of submarine pipeline free spans along uneven sea bottoms is conventionally performed using technologies such as gravel dumping, post trenching, matresses installation etc.. A new technology has been developed to support free spans along the 26 inches Transmed Gas Pipelines crossing the Sicily Channel in water depths ranging from 50m to 510m. This technology is based on the pipeline mechanical supports {open_quotes}Atlantis{close_quotes} and their installation module {open_quotes}Pegaso{close_quotes} and was developed having in mind requirements such as short installation time, system redundancy, operational flexibility and simple interface with the support vessel. The installation time reduction is achieved by automatic operational procedures which are acoustically controlled from surface. Power is stored inside two dedicated battery packs placed onboard Pegaso; no umbilical cable is necessary so that a vessel equipped with a normal crane is enough to launch and operate the system. Marine operations carried out in 1993 showed that a support can be installed in about one hour; in good weather conditions three Atlantis were installed in 24 hours including deck operations for recharging the battery packs; as a total sixteen supports were installed along the 4th and 5th Transmed Gas Pipelines. The system has proved to be a cost effective and flexible alternative to conventional technologies for free span support, especially in deep waters. A cost/benefit analysis also shows the breakeven point of the new technology versus gravel dumping.

  7. Deep water current profile measurements for operational support and design statistics

    SciTech Connect

    Moore, A.N.; Stephens, R.V.

    1995-09-01

    This paper describes the use of Acoustic Doppler Current Profilers (ADCP) to provide real-time current profile information for drilling vessels operating in deep water and also discusses the quality control and post-processing of associated recorded data to provide design current statistics. Experience gained from many such deployments over the last seven years is drawn upon to make specific recommendations for instrument system configuration and data management procedures. Practicalities and limitations of the use of ADCPs from drilling vessels are also discussed. Consideration is given to mooring design details specific to this type of deployment. Practical measurement difficulties are examined such as data contamination due to direct acoustic signal reflection from sub-sea drilling components and also the case of operating in an environment of high background acoustic noise associated with vessel dynamic positioning. Quality control procedures are discussed, both for the current profile data displayed in real-time for operational support and for subsequent post-analysis of recorded data. The paper is concluded with examples of specific details of current profile structure which have been identified using rigmounted ADCPs but would not have been possible to observe using any other measurement technology.

  8. Allochthonous deep-water basin deposits of the western US: Implications for Paleozoic paleogeography and plate margin tectonics

    SciTech Connect

    Miller, E.L. . Geology Dept.)

    1993-04-01

    The stratigraphy and sedimentology of the lower Paleozoic Roberts Mts. and upper Paleozoic Golconda allochthons can be used to reconstruct their general paleogeographic setting in the Paleozoic. Basalt pillow lavas and radiolarian chert, were once considered straightforward evidence that the allochthons represented imbricated ocean crust formed at sites far removed from continental influences. Better stratigraphic definition, provenance studies and geochemistry of lavas now indicate that clastic components were derived from the continental shelf or interior and basalts in the Roberts Mountains allochthon were erupted in an intraplate setting through thinned continental crust (Madrid, 1987). Both in the earliest Mississippian and in the Late Permian, the Antler Basin (Roberts Mts.) and the Havallah Basin (Golconda) received proximal detritus from island arc sources to the west, immediately prior to closure of the basins by thrust-faulting. These data suggest that both systems of basins formed as marginal basins by rifting on the continental shelf (Antler Basin) and along the continental margin (Havallah Basin) and were flanked to the west by active island arcs at least during part of their history. As such, their stratigraphy provides a great deal of insight regarding tectonism along the western plate margin of North America during the Paleozoic.

  9. Impact of sedimentary degradation and deep water column production on GDGT abundance and distribution in surface sediments in the Arabian Sea: Implications for the TEX86 paleothermometer

    NASA Astrophysics Data System (ADS)

    Lengger, Sabine K.; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2014-10-01

    the sinking through the water column, or differential degradation of IPL-GDGTs per head group could be the causes for the observed change in TEX86 values. The effect of differential degradation might cause differences between oxic and anoxically deposited sediments, and, together with a potential deep water contribution on TEX86 values, could translate into changes in reconstructed temperature of <3 °C, which might have to be accounted for in TEX86 calibration and paleotemperature studies of deep water sedimentary records.

  10. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean

    USGS Publications Warehouse

    Banakar, V.K.; Hein, J.R.

    2000-01-01

    A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher

  11. Six new deep-water sternaspid species (Annelida, Sternaspidae) from the Pacific Ocean.

    PubMed

    Salazar-Vallejo, Sergio I; Buzhinskaja, Galina

    2013-01-01

    Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species by having a bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp. n. was found off Peru in 1296-6489 m water depths and in the Southwestern Pacific in 795-3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592-1366 m, off California in 1585 m, Gulf of California in 1200-1274 m, and Western Mexico in 2548 m; it

  12. Six new deep-water sternaspid species (Annelida, Sternaspidae) from the Pacific Ocean

    PubMed Central

    Salazar-Vallejo, Sergio I.; Buzhinskaja, Galina

    2013-01-01

    Abstract Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species by having a bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp. n. was found off Peru in 1296–6489 m water depths and in the Southwestern Pacific in 795–3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592–1366 m, off California in 1585 m, Gulf of California in 1200–1274 m, and Western Mexico

  13. Highly Compressed Free Gas in Deep-Water Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Barth, G. A.

    2006-12-01

    Natural gas, predominantly methane, is stored in a highly compact form within solid gas hydrate. The large volume of free gas that can be liberated by dissociation of hydrate (at standard surface conditions) is a prominent aspect of this potential energy resource. In contrast, the highly compressed state of free gas under pressure-temperature conditions found in deep-water marine settings is rarely noted. To facilitate comparison of gas quantities present within and below the hydrate stability zone in marine gas hydrate systems, particularly those in the deep-water Bering Sea basins, a suite of volume expansion ratios for 100% methane gas have been calculated. These ratios relate free gas volume under in-situ pressure (P) and temperature (T) conditions to free gas volume at standard surface conditions. The volume calculation is routine, using the Peng-Robinson equation of state (Peng and Robinson, 1976). Because most geophysical field studies aim to resolve the quantities of solid hydrate or free gas as a volume fraction of bulk rock in-situ, whereas gas resource volumes are reported as volume of free gas at STP, results here are presented as free gas volume ratios describing expansion between depth and surface conditions. This presentation also allows direct comparison with free gas yield of solid hydrate. Volume expansion ratio is presented for general reference for the pressure range 1 to 60 MPa and temperature range 0° to 80°C. (See USGS Open File Report 05-1451 online.) For pressures in the range 30 to 52 MPa and temperatures from 4° to 80°C, a more detailed evaluation of the P (water depth) and T (geotherm) effects on gas volumes has been undertaken. Ideal gas deviation factors, or z-factors, are also included. For free methane gas near the base of the hydrate stability zone at 360 m below seafloor in the Bering Sea, under conditions of 3,600 m water depth, 4°C seafloor temperature and 60°C/km geothermal gradient, the ratio of gas volume at standard

  14. On the interaction of deep water waves and exponential shear currents

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Cang, Jie; Liao, Shi-Jun

    2009-05-01

    A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.

  15. Source rock in the Lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-09-01

    Amoco drilled three wells in the deep-water Gulf of Mexico in 1993. One well, in Mississippi Canyon Block 84 (W.D. 5200 ft), drilled a structural feature. The well penetrated Cretaceous section and crossed the middle Cenomanian unconformity. Six sidewall cores from 14,230-15,200 ft (subsea) contained TOC values from 2.6 to 5.2% with hydrogen indices front 360 to 543 ppm in lower Tertiary and Cretaceous shales. All six cores were thermally immature, for oil generation, based on biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous had biomarker characteristics similar to oil reservoired in the Miocene. The oil was probably generated from a similar, but more mature, source rock. The high structural position of the well prevented the lower Tertiary and Upper Cretaceous section from entering the oil window at this location. There are over 2000 ft of structural relief and an additional 6000-8000 ft of Lower Cretaceous section below the level penetrated by the well. It is probable that an equivalent section off structure is in the oil window. Prior to drilling, estimates of expected thermal maturities and temperatures were made using {sub BASINMOD}, a hydrocarbon generation/expulsion modeling package. The model predicted higher well temperatures (e,g., 225{degrees}F vs. 192{degrees}F) and lower vitrinite maturity (0.44% vs. 0.64%) than encountered in the well. Vitrinite reflectance equivalents of 0.41% and 0.43% were calculated from biomarker ratios of the Cretaceous core extracts, matching the {sub BASINMOD} predicted value of 0.44%.

  16. Reversed flow of Atlantic deep water during the Last Glacial Maximum.

    PubMed

    Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L

    2010-11-04

    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.

  17. Influence of Conowingo Reservoir Infill on Chesapeake Bay Deep Water Hypoxia

    NASA Astrophysics Data System (ADS)

    Linker, L. C.; Cerco, C. F.; Batiuk, R.

    2014-12-01

    The Chesapeake Bay Total Maximum Daily Load (TMDL) requires the reduction of nitrogen, phosphorus, and sediment loads in the Chesapeake watershed because of the tidal water quality impairments and the damage to living resources they cause. Within the Chesapeake watershed the Conowingo Reservoir has been filling in with sediment for almost a century, and is now in a state of near-full capacity called dynamic equilibrium. The development of the Chesapeake TMDL in 2010 was with the hydrology of a 1991-2000 simulation period, and carried with this simulation period the implicit model calibration assumption, based on the 1991-2000 nutrient and sediment observations, of a Conowingo Reservoir that was still effectively trapping sediment. In a TMDL, pollutant loads beyond the TMDL allocation, which are brought about by growth or other conditions, must be offset. Using the analysis tools of the Chesapeake TMDL for assessing the degree of attainment of living resource based water quality standards, the estimated nutrient and sediment loads from a simulated infill of the Conowingo Reservoir was determined. The influence on Chesapeake water quality by a large storm and scour event of January 1996 on the Susquehanna was estimated and the same storm and scour events were also evaluated in the more critical living resource periods of June and October. An analysis was also made on the estimated influence of more moderate but frequent high flow events. The infill of the Conowingo reservoir had estimated impairments of water quality at both the simulated high flow scour events and at the more frequent moderate storm flows. The estimated impairment was primarily on the deep water and deep channel dissolved oxygen because of increased scour and transport of dissolved particulate organic nutrients under conditions of Conowingo infill. Figure 1 describes the linked models used to assess the impact of Conowingo Reservoir infill on Chesapeake hypoxia.

  18. Man-induced salinity and temperature increases in Western Mediterranean Deep Water

    NASA Astrophysics Data System (ADS)

    Rohling, E. J.; Bryden, Harry L.

    1992-07-01

    The historical data base is used to study property changes in both the Western Mediterranean Deep Water (WMDW) and the Levantine Intermediate Water (LIW). Changes in WMDW properties during the past century have been described previously, although on a more limited data base. We are not aware of any previous study of changes in LIW properties. In the extensive data base we used, increases appear in both WMDW temperature and salinity, from 1909 to the present, which substantiate previously reported observations. In addition, we find that the density of WMDW seems to have increased as well, which disagrees with previous suggestions that it has remained constant. We observe that the WMDW temperature increase displays a distinct acceleration starting about 1955 and that a similar, although less conspicuous, acceleration occurs in the WMDW salinity increase. From our study of historical data on LIW properties, the LIW salinity also appears to have increased since 1909. We argue that the warming trend in WMDW may well be a response to the salinity increase, which seems to be imported from the eastern Mediterranean by LIW, and as such our observations endorse a recently published hypothesis. The increase in LIW salinity, in turn, is attributed to changes in the eastern Mediterranean freshwater budget, resulting from damming of major rivers that drain either directly or indirectly into the eastern Mediterranean. Finally, we demonstrate that the basin has not yet reached a new steady state after this freshwater disturbance and that the response time of the system seems to be of the order of 100 years.

  19. Deep-water sponges (Porifera) from Bonaire and Klein Curaçao, Southern Caribbean.

    PubMed

    Van Soest, Rob W M; Meesters, Erik H W G; Becking, Leontine E

    2014-10-29

    Four submersible dives off the coast of Bonaire (Caribbean Netherlands) and Klein Curaçao (Curaçao) to depths of 99.5-242 m, covering lower mesophotic and upper dysphotic zones, yielded 52 sponge specimens belonging to 31 species. Among these we identified 13 species as new to science. These are Plakinastrella stinapa n. sp., Pachastrella pacoi n. sp., Characella pachastrelloides n. sp., Geodia curacaoensis n. sp., Caminus carmabi n. sp., Discodermia adhaerens n. sp., Clathria (Microciona) acarnoides n. sp., Antho (Acarnia) pellita n. sp., Parahigginsia strongylifera n. sp., Calyx magnoculata n. sp., Neopetrosia dutchi n. sp., Neopetrosia ovata n. sp. and Neopetrosia eurystomata n. sp. We also report an euretid hexactinellid, which belongs to the rare genus Verrucocoeloidea, recently described (2014) as V. liberatorii Reiswig & Dohrmann. The remaining 18 already known species are all illustrated by photos of the habit, either in situ or 'on deck', but only briefly characterized in an annotated table to confirm their occurrence in the Southern Caribbean. The habitat investigated-steep limestone rocks, likely representing Pleistocene fossil reefs--is similar to deep-water fossil reefs at Barbados of which the sponges were sampled and studied by Van Soest and Stentoft (1988). A comparison is made between the two localities, showing a high degree of similarity in sponge composition: 53% of the present Bonaire-Klein Curaçao species were also retrieved at Barbados. At the level of higher taxa (genera, families) Bonaire-Klein Curaçao shared approximately 80% of its lower mesophotic and upper dysphotic sponge fauna with Barbados, despite a distance between them of 1000 km, indicating high faunal homogeneity. We also preliminarily compared the shallow-water (euphotic) sponge fauna of Curaçao with the combined data available for the Barbados, Bonaire and Klein Curaçao mesophotic and upper dysphotic sponges, which resulted in the conclusion that the two faunas show only

  20. New glass sponges (Porifera: Hexactinellida) from deep waters of the central Aleutian Islands, Alaska.

    PubMed

    Reiswig, Henry M; Stone, Robert P

    2013-01-01

    Hexactinellida from deep-water communities of the central Aleutian Islands, Alaska, are described. They were mostly collected by the remotely operated vehicle 'Jason II' from 494–2311 m depths during a 2004 RV 'Roger Revelle' expedition, but one shallow-water species collected with a shrimp trawl from 155 m in the same area is included. The excellent condition of the ROV-collected specimens enabled valuable redescription of some species previously known only from badly damaged specimens. New taxa include one new genus and eight new species in five families. Farreidae consist of two new species, Farrea aleutiana and F. aspondyla. Euretidae consists of only Pinulasma fistulosum n. gen., n. sp. Tretodictyidae include only Tretodictyum amchitkensis n. sp. Euplectellidae consists of only the widespread species Regadrella okinoseana Ijima, reported here over 3,700 km from its closest previously known occurrence. The most diverse family, Rossellidae, consists of Aulosaccus ijimai (Schulze), Aulosaccus schulzei Ijima, Bathydorus sp. (young stage not determinable to species), Caulophacus (Caulophacus) adakensis n. sp., Acanthascus koltuni n. sp., Staurocalyptus psilosus n. sp., Staurocalyptus tylotus n. sp. and Rhabdocalyptus mirabilis Schulze. We present argument for reinstatement of the abolished rossellid subfamily Acanthascinae and return of the subgenera  Staurocalyptus Ijima and Rhabdocalyptus Schulze to their previous generic status. These fauna provides important complexity to the hard substrate communities that likely serve as nursery areas for the young stages of commercially important fish and crab species, refuge from predation for both young and adult stages, and also as a focal source of prey for juvenile and adult stages of those same species.

  1. Millennial-scale oscillations between sea ice and convective deep water formation

    NASA Astrophysics Data System (ADS)

    Saha, Raj

    2015-11-01

    During the last ice age there were several quasiperiodic abrupt warming events. The climatic effects of the so-called Dansgaard-Oeschger (D-O) events were felt globally, although the North Atlantic experienced the largest and most abrupt temperature anomalies. Similar but weaker oscillations also took place during the interglacial period. This paper proposes an auto-oscillatory mechanism between sea ice and convective deep water formation in the North Atlantic as the source of the persistent cycles. A simple dynamical model is constructed by coupling and slightly modifying two existing models of ocean circulation and sea ice. The model exhibits mixed mode oscillations, consisting of decadal-scale small-amplitude oscillations and a large-amplitude relaxation fluctuation. The decadal oscillations occur due to the insulating effect of sea ice and leads to periodic ventilation of heat from the polar ocean. Gradually, an instability builds up in the polar column and results in an abrupt initiation of convection and polar warming. The unstable convective state relaxes back to the small-amplitude oscillations from where the process repeats in a self-sustained manner. Freshwater pulses mimicking Heinrich events cause the oscillations to be grouped into packets of progressively weaker fluctuations, as observed in proxy records. Modulation of this stable oscillation mechanism by freshwater and insolation variations could account for the distribution and pacing of D-O and Bond events. Physical aspects of the system such as sea ice extent and oceanic advective flow rates could determine the characteristic 1500 year time scale of D-O events. The model results with respect to the structure of the water column in the Nordic seas during stadial and interstadial phases are in agreement with paleoproxy observations.

  2. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.

    2014-05-01

    As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  3. On triad nonlinear resonant interactions of deep water waves trapped by jet currents

    NASA Astrophysics Data System (ADS)

    Shrira, Victor; Slunyaev, Alexey

    2014-05-01

    We derive an asymptotic description of weakly nonlinear wave interactions between waves trapped by opposing jet currents by extending the asymptotic modal approach developed in Shrira & Slunyaev (2014). It is widely believed that to the leading order the nonlinear interactions between water waves in deep water are always quartic and potential. We show that for waves trapped on the jet currents it is not true: triad resonant interactions between trapped modes are always allowed. Moreover, the nonlinear evolution of the wave field is to the leading order determined by these triad interactions if the current is sufficiently strong or wave field nonlinearity is appropriately weak. To the leading order the corresponding interaction coefficients are controlled by the background vorticity due to the jet. More specifically, we consider waves upon a longitudinally uniform jet current; the current is assumed to be stationary and without vertical shear. The approximate separation of variables allows us to find the two-dimensional mode structure by means of one-dimensional boundary value problem (BVP) for wave Fourier harmonics along the current. The asymptotic weakly nonlinear theory taking into account quadratic nonlinearity for broad but not necessary weak currents is developed. The evolution equations for three interacting modes are written explicitly, the nonlinear interaction coefficients are computed. The three-wave interactions weaken when the current is weak. When the ratio of the current magnitude to wave celerity is of order of wave steepness the effects of 3-wave and 4-wave resonances appear at the same asymptotic order. These regimes, as well as the identified regimes where triad resonant interactions between trapped waves are dominant, lead to a qualitatively new wave dynamics which remains to be explored yet. V.I. Shrira, A.V. Slunyaev, Trapped waves on jet currents: asymptotic modal approach. J. Fluid Mech. 738, 65-104 (2014).

  4. Emergence of coherent wave groups in deep-water random sea.

    PubMed

    Viotti, C; Dutykh, D; Dudley, J M; Dias, F

    2013-06-01

    Extreme surface waves in a deep-water long-crested sea are often interpreted as a manifestation in the real world of the so-called breathing solitons of the focusing nonlinear Schrödinger equation. While the spontaneous emergence of such coherent structures from nonlinear wave dynamics was demonstrated to take place in fiber-optics systems, the same point remains far more controversial in the hydrodynamic case. With the aim to shed further light on this matter, the emergence of breatherlike coherent wave groups in a long-crested random sea is investigated here by means of high-resolution spectral simulations of the fully nonlinear two-dimensional Euler equations. The primary focus of our study is to parametrize the structure of random wave fields with respect to the Benjamin-Feir index, which is a nondimensional measure of the energy localization in Fourier space. This choice is motivated by previous results, showing that extreme-wave activity in a long-crested sea is highly sensitive to such a parameter, which is varied here by changing both the characteristic spectral bandwidth and the average wave steepness. It is found that coherent wave groups, closely matching realizations of Kuznetsov-Ma breathers in Euler dynamics, develop within wave fields characterized by sufficiently narrow-banded spectra. The characteristic spatial and temporal scales of wave group dynamics, and the corresponding occurrence of extreme events, are quantified and discussed by means of space-time autocorrelations of the surface elevation envelope and extreme-event statistics.

  5. Noble gas tracers of ventilation during deep-water formation in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Khatiwala, S.; Heimbach, P.

    2016-05-01

    To explore the dynamics and implications of incomplete air-sea equilibration during the formation of abyssal water masses, we simulated noble gases in the Estimating the Circulation & Climate of the Ocean (ECCO) global ocean state estimate. A novel computation approach utilizing a matrix-free Newton-Krylov (MFNK) scheme was applied to quickly compute the periodic seasonal solutions for noble gas tracers. MFNK allows for quick computation of a cyclo-stationary solution for tracers (i.e., a spun-up, repeating seasonal cycle), which would otherwise be computationally infeasible due to the long time scale of dynamic adjustment of the abyssal ocean (1000’s of years). A suite of experiments isolates individual processes, including atmospheric pressure effects, the solubility pump and air-sea bubble fluxes. In addition to these modeled processes, a volumetric contribution of 0.28 ± 0.07% of glacial melt water is required to reconcile deep-water observations in the Weddell Sea. Another primary finding of our work is that the saturation anomaly of heavy noble gases in model simulations is in excess of two-fold more negative than is suggested from Weddell Sea observations. This result suggests that model water masses are insufficiently ventilated prior to subduction and thus there is insufficient communication between atmosphere and ocean at high latitudes. The discrepancy between noble gas observations and ECCO simulations highlights that important inadequacies remain in how we model high-latitude ventilation with large implications for the oceanic uptake and storage of carbon.

  6. Emergence of coherent wave groups in deep-water random sea

    NASA Astrophysics Data System (ADS)

    Viotti, C.; Dutykh, D.; Dudley, J. M.; Dias, F.

    2013-06-01

    Extreme surface waves in a deep-water long-crested sea are often interpreted as a manifestation in the real world of the so-called breathing solitons of the focusing nonlinear Schrödinger equation. While the spontaneous emergence of such coherent structures from nonlinear wave dynamics was demonstrated to take place in fiber-optics systems, the same point remains far more controversial in the hydrodynamic case. With the aim to shed further light on this matter, the emergence of breatherlike coherent wave groups in a long-crested random sea is investigated here by means of high-resolution spectral simulations of the fully nonlinear two-dimensional Euler equations. The primary focus of our study is to parametrize the structure of random wave fields with respect to the Benjamin-Feir index, which is a nondimensional measure of the energy localization in Fourier space. This choice is motivated by previous results, showing that extreme-wave activity in a long-crested sea is highly sensitive to such a parameter, which is varied here by changing both the characteristic spectral bandwidth and the average wave steepness. It is found that coherent wave groups, closely matching realizations of Kuznetsov-Ma breathers in Euler dynamics, develop within wave fields characterized by sufficiently narrow-banded spectra. The characteristic spatial and temporal scales of wave group dynamics, and the corresponding occurrence of extreme events, are quantified and discussed by means of space-time autocorrelations of the surface elevation envelope and extreme-event statistics.

  7. Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests

    PubMed Central

    Marzinelli, Ezequiel M.; Williams, Stefan B.; Babcock, Russell C.; Barrett, Neville S.; Johnson, Craig R.; Jordan, Alan; Kendrick, Gary A.; Pizarro, Oscar R.; Smale, Dan A.; Steinberg, Peter D.

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  8. Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Castagno, Pasquale; Falco, Pierpaolo; Dinniman, Michael S.; Spezie, Giancarlo; Budillon, Giorgio

    2017-02-01

    The intrusion of Circumpolar Deep Water (CDW) is the primary source of heat, salt and nutrients onto Antarctica's continental shelves and plays a major role in the shelf physical and biological processes. Different studies have analyzed the processes responsible for the transport of CDW across the Ross Sea shelf break, but until now, there are no continuous observations that investigate the timing of the intrusions. Also, few works have focused on the effect of the tides that control these intrusions. In the Ross Sea, the CDW intrudes onto the shelf in several locations, but mostly along the troughs. We use hydrographic observations and a mooring placed on the outer shelf in the middle of the Drygalski Trough in order to characterize the spatial and temporal variability of CDW inflow onto the shelf. Our data span from 2004 to the beginning of 2014. In the Drygalski Trough, the CDW enters as a 150 m thick layer between 250 and 400 m, and moves upward towards the south. At the mooring location, about 50 km from the shelf break, two main CDW cores can be observed: one on the east side of the trough spreading along the west slope of Mawson Bank from about 200 m to the bottom and the other one in the central-west side from 200 m to about 350 m depth. A signature of this lighter and relatively warm water is detected by the instruments on the mooring at bottom of the Drygalski Trough. High frequency periodic CDW intrusion at the bottom of the trough is related to the diurnal and spring/neap tidal cycles. At lower frequency, a seasonal variability of the CDW intrusion is noticed. A strong inflow of CDW is observed every year at the end of December, while the CDW inflow is at its seasonal minimum during the beginning of the austral fall. In addition an interannual variability is also evident. A change of the CDW intrusion before and after 2010 is observed.

  9. Eddy-Mediated Transport of Circumpolar Deep Water Across the Antarctic Shelf Break

    NASA Astrophysics Data System (ADS)

    Stewart, A.; Thompson, A. F.

    2014-12-01

    The continental shelves of Antarctica produce the ocean's densest water, Antarctic Bottom Water (AABW), which ventilates over 50% of the sub-surface global ocean. The heat needed to melt marine-terminating Antarctic ice sheets and produce dense water is supplied by Circumpolar Deep Water (CDW), a relatively warm, mid-depth water mass found offshore. The onshore transport of CDW is obstructed by the Antarctic Slope Front (ASF), a westward current at the continental shelf break that almost completely encircles the continent. Relatively little is understood about the processes that control the exchange of water masses and shoreward heat transport across the ASF, due to a scarcity of observations and the prohibitive cost of simulating turbulent flows in this region. Using a process model of the ASF that resolves the mesoscale eddies at the shelf break, we show that the ASF is shaped by an interplay between the surface wind forcing, transport by mesoscale eddies, and the geometry of the continental shelf. Consequently the onshore transport of CDW and the properties of the outflowing AABW are strongly sensitive to the wind and buoyancy forcing at the ocean surface, and to the geometry of the continental shelf. The onshore mass transport of CDW occurs through an eddy thickness flux. We develop a scaling for this transport that accurately captures the strong sensitivity to forcing and geometry, which is largely controlled by the eddy kinetic energy (EKE) over the continental slope. We find that the EKE is enhanced in the CDW density classes over the continental slope, but cross-slope mixing is constrained by the strong topographic potential vorticity gradient. Our results offer an explanation for the substantial changes in the structure of the ASF around Antarctica, and provide insight into future rates of dense water production and shoreward heat transport around Antarctica.

  10. Wave-current interactions in deep water conditions: field measurements and analyses

    NASA Astrophysics Data System (ADS)

    Rougier, Gilles; Rey, Vincent; Molcard, Anne

    2015-04-01

    The study of wave - current interaction has drawn interest in oceanography, ocean engineering, maritime navigation and for tides or waves power device design. In the context of the hydrodynamics study along the French Mediterranean coast, a current profiler was deployed near Toulon at the south of the "Port Cros" island. This coastal zone is characterized by a steep slope, the water depth varying from tens meters to several thousand meters over few kilometers from the coast. An ambient current, the "Northern Current", coming from the Ligurian sea (area of Genoa, Italy) and following the coast up to Toulon, is present all over the year. Its mean surface velocity is of about 0.30 m/s, its flow rate of about 1.5 Sv. The region is exposed to two dominating winds: the Mistral, coming from North-West, and Eastern winds. Both generate swell and/or wind waves in either following or opposing current conditions with respect to the Northern Current. A current profiler equipped with a wave tracking system (ACPD workhorse from RDI) was deployed from July to October 2014 in deep water conditions (depth of about 500m). The mooring system allowed the ADCP to measure the current profile from the sea surface down to 25m depth, which corresponds more or less to the depth of influence of waves of periods up to 10s. The collected data include energetic wave conditions in either following or opposing current conditions. The current intensity and its vertical profiles have shown a significant temporal variability according to the meteorological conditions. Effects of the wave conditions on the current properties are discussed. ACKNOWLEDGEMENTS This work was supported by the program BOMBYX and the ANR grant No ANR-13-ASTR-0007.

  11. Response of deep-water corals to oil and chemical dispersant exposure

    NASA Astrophysics Data System (ADS)

    DeLeo, Danielle M.; Ruiz-Ramos, Dannise V.; Baums, Iliana B.; Cordes, Erik E.

    2016-07-01

    Cold-water corals serve as important foundation species by building complex habitat within deep-sea benthic communities. Little is known about the stress response of these foundation species yet they are increasingly exposed to anthropogenic disturbance as human industrial presence expands further into the deep sea. A recent prominent example is the Deepwater Horizon oil-spill disaster and ensuing clean-up efforts that employed chemical dispersants. This study examined the effects of bulk oil-water mixtures, water-accommodated oil fractions, the dispersant Corexit 9500A®, and the combination of hydrocarbons and dispersants on three species of corals living near the spill site in the Gulf of Mexico between 500 and 1100 m depths: Paramuricea type B3, Callogorgia delta and Leiopathes glaberrima. Following short-term toxicological assays (0-96 h), all three coral species examined showed more severe health declines in response to dispersant alone (2.3-3.4 fold) and the oil-dispersant mixtures (1.1-4.4 fold) than in the oil-only treatments. Higher concentrations of dispersant alone and the oil-dispersant mixtures resulted in more severe health declines. C. delta exhibited somewhat less severe health declines than the other two species in response to oil and oil/dispersant mixture treatments, likely related to its increased abundance near natural hydrocarbon seeps. These experiments provide direct evidence for the toxicity of both oil and dispersant on deep-water corals, which should be taken into consideration in the development of strategies for intervention in future oil spills.

  12. Evolution of surface and deep water conditions in the Antarctic Southern Ocean across the MPT

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A. P.; Jaccard, S.; Martinez-Garcia, A.; Hodell, D. A.; Vance, D.; Bernasconi, S. M.; Kleiven, H. F.; Haug, G. H.

    2016-12-01

    The mid-Pleistocene transition (MPT; 1.25-0.7 Myr) marked a fundamental change in the periodicity of the climate cycles, shifting from a 41-kyr to a high-amplitude, asymmetric 100-kyr cycle without any noticeable change in orbital forcing. Hypotheses to explain the MPT involve non-linear responses to orbital forcing, changes in glacial dynamics and internal changes in the carbon cycle. Specifically, a decrease in pCO2 during peak ice age conditions and the associated global cooling has been proposed as one of the possible triggers for the MPT. Previous results have indicated that the Southern Ocean provides a coherent two-part mechanism for the timing and amplitude of the glacial/interglacial pCO2 variations. However, there is still much uncertainty and debate regarding the response of the Antarctic Southern Ocean biogeochemistry to changes invoked for the MPT, and its contribution to the proposed pCO2 variations. Here, we show 1.5 Myr-long records of export production, and planktonic (Neogloboquadrina pachyderma) and benthic (Melonis pompilioides) foraminiferal stable isotopes and trace metals from ODP Site 1094 retrieved from the Atlantic sector of the Antarctic Southern Ocean (53.2°S, 5.1°E, 2807m). While glacial planktonic δ18O increases across the MPT, glacial Mg/Ca-derived SST decrease later, around 700 ka, when glacial atmospheric pCO2 has already dropped. As glacial export production that is crucially related to micronutrients upwelled from the subsurface ocean remains unchanged across the past 1.5 Myr, it seems that cooling of the glacial surface ocean did not significantly alter the stability of the water column. Furthermore, paired measurements of benthic δ18O and Mg/Ca enables the determination of seawater δ18O of the deep ocean, which allows us to estimate changes in the density gradient and the salinity of the deep water.

  13. Footprint of Deepwater Horizon blowout impact to deep-water coral communities

    PubMed Central

    Fisher, Charles R.; Hsing, Pen-Yuan; Kaiser, Carl L.; Yoerger, Dana R.; Roberts, Harry H.; Shedd, William W.; Cordes, Erik E.; Shank, Timothy M.; Berlet, Samantha P.; Saunders, Miles G.; Larcom, Elizabeth A.; Brooks, James M.

    2014-01-01

    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations. PMID:25071200

  14. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  15. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses.

    PubMed

    Muck, Simone; Griessler, Thomas; Köstner, Nicole; Klimiuk, Adam; Winter, Christian; Herndl, Gerhard J

    2014-01-01

    We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses.

  16. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    NASA Astrophysics Data System (ADS)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  17. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses

    PubMed Central

    Muck, Simone; Griessler, Thomas; Köstner, Nicole; Klimiuk, Adam; Winter, Christian; Herndl, Gerhard J.

    2014-01-01

    We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses. PMID:24917857

  18. The intensification of deep-water mass changes in the deep Atlantic Ocean throughout the Mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Billups, K.

    2012-12-01

    We examine the deep-water hydrography at Ocean Drilling Project (ODP) Site 1063 (subtropical North Atlantic, ~4600 meter water depth) using high-resolution benthic stable isotope (δ18O, δ13C) and grain size (% coarse, % Sortable Silt - SS, SS mean diameter) analyses from ~490 to 740 ka. The benthic foraminiferal δ13C record from Site 1063 provides a proxy for changes in the relative flux of lower North Atlantic Deep Water (NADW) through time. This record will refine the timing of increases in the formation of the densest components of NADW on the orbital and millennial-scale. We explore whether or not grain size analyses provide a proxy for changes in the relative velocity of the deep current. The new stable isotope data from Site 1063, when combined with the records of Poli et al. (2000), Ferretti et al. (2005), and Billups et al. (2011), tuned to the global benthic isotope stack (LR05) of Liesicki and Raymo (2004), provides a complete deep water record spanning Marine Isotope Stage (MIS) 25 to MIS 8 (~1020 to ~240 ka). Compiling published records from 16 additional sites, we use the Ocean Data View (ODV) program (Schlitzer, 2012) to map deep-water mass distributions through time. Results reveal an increasing distribution and influence of the NADW in relation to the Antarctic Bottom Water mass within interglacial periods beginning at MIS 15 continuing though the end of the Site 1063 record within MIS 9. Preliminary grain size analyses over a short interval of time reveal regular high frequency variations on the millennial scale. We anticipate having complete, high-resolution stable isotope and grain size records to discuss the hydrographic changes within the MIS 16/15 glacial/interglacial transition, as well as throughout the Mid-Pleistocene transition (MPT).

  19. On the deep water masses outflow in the Aegean Sea: a pre- and post-EMT analysis

    NASA Astrophysics Data System (ADS)

    Bellacicco, Marco; Falcini, Federico; Salusti, Ettore

    2017-04-01

    In the last decades, the Aegean Sea (AS) has drawn attention and interest from the oceanographic community about the role that this sea has played in the Eastern Mediterranean Transient (EMT), with the key result of a "new" deep-water formation site in the eastern Mediterranean basin. This deep-water formation was due to different reasons: i) water budget anomalies that increased salinity of the surface and intermediate water masses; ii) the enters of these waters in the AS from Eastern Mediterranean Sea thought the Cretan Straits, and iii) episodes of strong winter cooling. Here, we explore the importance of deep water masses outflow from Aegean Sea throughout the Cretan Sea into the oriental basin of the Mediterranean Sea, in relation to last recent studies, focusing on the EMT event and its time table. To such goal we use all available, in situ, hydrologic data collected in the period 1985-1999, by trying to describe the outflow of the deep-water masses in the Levantine basin. Preliminary results revealed that the main source of dense water was beween Samarcande and its northern coast while the entrance of dense water in the Cyclades Plateau was essentially a flow between the Islands of Euboea and Andros, confirming what found by Bellacicco et al. (2016) from numerical results and marine geological evidences. The new analysis, moreover, points out the presence of a dense water mass debouching in the Levantine from the Cretean Sea during the spring time (i.e., maximum mixing period)of 1986-1988.Our results may allow to open new research question on the actual EMT timing and triggering, also considering theoretical model analyses (Smith 1975, Bellacicco et al., 2016).

  20. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    PubMed Central

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W. J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems. PMID:22454495

  1. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.

    PubMed

    White, Helen K; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M; Cordes, Erik E; Quattrini, Andrea M; Nelson, Robert K; Camilli, Richard; Demopoulos, Amanda W J; German, Christopher R; Brooks, James M; Roberts, Harry H; Shedd, William; Reddy, Christopher M; Fisher, Charles R

    2012-12-11

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  2. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    USGS Publications Warehouse

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  3. Assessing linkages between ice sheet calving, subpolar gyre density and deep water ventilation during the last glaciation

    NASA Astrophysics Data System (ADS)

    Rutledal, Sunniva; Ninnemann, Ulysses S.; Kleiven, Helga (Kikki) F.; Irvali, Nil

    2017-04-01

    Deep ocean circulation plays an important role in the Earth's climate system and is postulated to be closely linked to ice sheet dynamics and abrupt climate oscillations. However, the nature of this coupling remains unclear. Iceberg and freshwater pulses have been hypothesized as both the trigger for, and the response to, reduced Atlantic meridional overturning circulation (AMOC). Differentiating between these two hypotheses requires high-resolution records constraining the relative timing of ice sheet, freshwater, and ocean circulation changes. Here we assess the relative timing and linkages between iceberg discharge, surface water physical properties in the subpolar gyre, and North Atlantic deep water ventilation using proxy records co-registered in the same sediment sequence. High-resolution stable isotope analysis (δ18O & δ13C ) of planktonic (N. pachyderma (s)) and benthic (C. wuellerstorfi) foraminifera and ice-rafted debris (IRD) records from the core GS15-196-02GC taken in the Irminger basin (59o37.1 N, 40o44.25 W, 2468 water depth) document a clear relationship between increasing freshwater fluxes (IRD and planktonic δ18O), decreasing deep water ventilation (benthic δ13C), and temperature and salinity changes in the subpolar gyre surface waters (planktonic δ18O). Our benthic (C. wuellerstorfi) carbon isotope record documents clear variability in deep ocean ventilation throughout the last glacial and deglacial periods. Notably, periods of high iceberg discharge and freshening of the subpolar gyre surface waters are preceded by decreases in deep water ventilation (benthic δ13C); consistent with the hypothesis that reduced AMOC is important for triggering ice sheet melting/collapse. However, ventilation decreases of similar scale occur without accompanying peaks in IRD, suggesting circulation changes do not always trigger ice sheet collapse. In addition, the periods of weakest ventilation (low benthic δ13C ) are clearly coincident with the largest IRD

  4. Monitoring of Intense Events of Deep Water Formations in the Northwestern Mediterranean over the last five years

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Durrieu de Madron, Xavier; Testor, Pierre; Bosse, Anthony; Mortier, Laurent

    2014-05-01

    A multi-platforms and integrated monitoring system in the framework of the Mediterranean Ocean Observing System on Environment (MOOSE) enables to monitor the deep water formation processes. Since 2007, it provides high frequency in-situ temperature, salinity vertical profiles, derived from CTD measurements on moorings, ships, and gliders, as well as horizontal and vertical currents from moorings. The aim of this study is to investigate the temporal scales associated to the deep convection phases. We also studied the interannual variability of the deep convection and its implication in the evolution of deep water thermohaline characteristics. Recent measurements from the mooring lines reveal the temporal evolution of the physical processes interfering in the phases of deep convection. Horizontal currents were strongly equivalent barotropic during each deployment and strong currents were also recorded during the different events of deep ocean convection: high frequencies vertical velocities exceeded 10 cm.s-1 during the violent vertical mixing phase and strong mesoscale horizontal currents reached 40cm.s-1 during the spreading/restratification phase. Using a eddy-detection method based on a kinematic model, more than 34 eddies crossing the mooring line were detected between November 2009 and July 2012, 19 cyclones and 15 anticyclones. The radii (resp. velocities) ranging from 1.9 km to 20.0 km (resp. 2.5 cm.s-1 to 25.1 cm.s-1 ). The main mode of the distribution of eddies radii is centered at 4km for the cyclones and 5km for the anticyclones. The apparition of newly-formed deep waters was detected in winter 2009, 2010, 2011 and 2012. In winter 2010, two newly-formed deep waters were detected after the deep convection event, both present a different potential temperature but a similar salinity, suggesting that both might be formed in the cyclonic gyre, but in different locations. In 2012, two new deep waters were detected at the mooring location, one was identified as

  5. Biological source and provenance of deep-water derived isoprenoid tetraether lipids along the Portuguese continental margin

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Villanueva, Laura; Zell, Claudia; Sinninghe Damsté, Jaap S.

    2016-01-01

    There is increasing evidence that nitrifying Thaumarchaeota in the deep ocean waters may contribute to the sedimentary composition of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs), impacting TEX86 paleothermometry. We investigated the potential effect of deep-water dwelling Thaumarchaeota in the warm and saline Mediterranean Outflow Water (MOW) on the distribution of isoGDGTs by analysing suspended particulate matter (SPM) and surface sediments collected along five land-ocean transects along the southern Portuguese continental margin. To this end, we directly compared for the first time the composition of intact polar lipid (IPL)-derived isoGDGTs of SPM with the diversity, abundance, and activity of Thaumarchaeota based on the genetic analysis of the genes coding for the archaeal ammonia monooxygenase (amoA) and the geranylgeranylglyceryl phosphate (GGGP) synthase involved in the isoGDGT biosynthetic pathway. Our results revealed a strong positive relationship between water depth and TEX86H values for both SPM and surface sediments. The increasing TEX86H trends for both core lipid (CL) and IPL-derived fractions were accompanied by increasing fractional abundances of GDGT-2 and crenarchaeol regio-isomer and decreasing fractional abundances of GDGT-1 and GDGT-3 with increasing water depth. Phylogenetic analyses based on the archaeal amoA and the GGGP synthase proteins showed that Thaumarchaeota populations detected at 1 m and 50 m water depth were different from those detected in 200 m and 1000 m water depth, which had an increased contribution of so-called 'deep water' Thaumarchaeota. The differences in the fractional abundances of isoGDGTs with water depth were compatible with the increasing contribution of 'deep water' Thaumarchaeota harboring a different GGGP synthase enzyme which has been suggested to relate to changes in the relative proportion of synthesized isoGDGTs. Accordingly, it appears that the sedimentary distribution of CL isoGDGTs used

  6. Bering Sea deep water ventilation over the last 2 Ma, evidence from foraminiferal assemblages and stable isotopes

    NASA Astrophysics Data System (ADS)

    Kender, S.; Ravelo, C.; Asahi, H.; Becker, J.; Hall, I.; Leng, M.; Kaminski, M.; Radi, T.; Aiello, I.

    2012-04-01

    We present benthic foraminiferal stable isotope and assemblage data from the Bering Sea continental slope (U1343, ~2000m water depth), in order to elucidate changes in productivity and deep water ventilation over the last ~2 Ma. The Bering Sea is the third largest marginal sea in the world, connecting the Pacific and Arctic Oceans, but there is still very little known of its palaeoceanographic past. Its open connections to the North Pacific make it an important location to monitor subarctic North Pacific palaeoceanography. Site U1343 is situated near the continental slope, and its high latitude location makes it sensitive to sea ice and glacial meltwater input, which caused large fluctuations in stratification, primary productivity and deep water properties through time. Although there is very little deep water forming in the Bering Sea today, potential intmediate and/or deep water formation in the past may also have affected water properties. High productivity in surface water adds to the nutrient content of the aged waters entering the Bering Sea at depth from the Pacific, causing oxygen levels in some locations to be significantly depleted and benthic foraminifera tolerant to low oxygen levels and high primary productivity to thrive. Changes in the proportions of the low oxygen and high productivity species (e.g. Bulimina, Globobulimina, Globocassidulina) show large fluctuations through time, with an overall increase from the beginning of the Mid-Pleistocene Transition (MPT) onwards (~1.2 Ma) indicating more prevalent episodes of low oxygen conditions persisted after this time. Bottom water δ13C(Uvigerina) exhibit more negative values before the MPT compared with eastern equatorial Pacific Site 849, suggesting the presence of aged deep water in the Bering Sea for at least the last 2 Ma. During the MPT bottom water δ13C becomes more negatively offset from the Pacific which, coupled with the presence of lower oxygen benthic foraminifera, suggests a lower oxygen

  7. Movements of a deep-water fish: establishing marine fisheries management boundaries in coastal Arctic waters.

    PubMed

    Hussey, Nigel E; Hedges, Kevin J; Barkley, Amanda N; Treble, Margaret A; Peklova, Iva; Webber, Dale M; Ferguson, Steven H; Yurkowski, David J; Kessel, Steven T; Bedard, Jeannette M; Fisk, Aaron T

    2017-04-01

    in 2014. The community fishery can now develop an open-water fishery in addition to the winter fishery to exploit the TAC, which will ensure the longevity of the fishery under projected climate-change scenarios. Telemetry shows great promise as a tool for understanding deep-water species and for directly informing fisheries management of these ecosystems that are inherently complex to study. © 2016 by the Ecological Society of America.

  8. Total Mercury in Surface and Deep Waters in the Western and Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Varde', M.; Cofone, F.; Servidio, A.; Rosselli, A.; Hedgecock, I. M.; Ammoscato, I.; Mannarino, V.; Sprovieri, F.; Gensini, M.; Pirrone, N.

    2014-12-01

    In the framework of the Italian National Research Council (CNR) Med-Oceanor measurement program and as part of the Global Mercury Observation System (GMOS) objectives, we performed two cruise campaigns with the CNR's Research Vessel (RV) Urania, in the western and eastern Mediterranean Basin, in the summers of 2012 and 2013. Total Mercury (THg) concentration in seawater was systematically measured at different depths from the sea bottom to the surface. A total of 155 surface and deep seawater samples at 25 selected stations were collected during the cruise campaigns using a stainless-steel rosette system on which 24 Niskin bottles (10L) were mounted. Continuous monitoring of temperature, conductivity, salinity and oxygen with depth were obtained by CTD measurements. All fluorinated containers were cleaned prior to use following GMOS SOPs. The chemical reagents used were suitable for ultra-trace Hg analysis. After sampling, samples were preserved by adding HCl solution to the sample bottles, which were refrigerated during transportation and analyzed within four weeks of the end of the oceanographic campaign. Sea water samples were analyzed in the laboratory following the US-EPA 1631 method revision E (US-EPA, 2002). To assess the critical issues related to mercury (Hg) contamination and to prevent leakage of Hg through volatilization we used all necessary precautions for sampling, sample stabilization, preservation and subsequent analysis in the laboratory. Quality assurance and quality control were performed using transport blanks, laboratory blanks and use of seawater certified reference materials. The accuracy of the analytical procedures for the determination of THg in sea water was corroborated by participation in a global inter-laboratory comparison study for THg in natural waters. THg concentrations in surface and deep waters found in the Mediterranean basin during the last two cruise campaigns Med-Oceanor as well as the THg measurements in sea water

  9. Long Term Geoelectrical Monitoring of Deep-water Horizon Oil Spill in the Gulf Coast

    NASA Astrophysics Data System (ADS)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.

    2011-12-01

    In the aftermath of the catastrophic Deep-water Horizon (DWH) spill in the Gulf Coast, opportunities exist to study the evolution of fresh crude oil contamination in beach sediments and marshes. Grand Terre 1 Island, off the coast of Grand Isle in southern Louisiana, is an uninhabited barrier island, heavily impacted by the DWH spill, and ideal for undisturbed long term monitoring of crude oil degradation processes. A 10 channel Syscal-Pro resistivity / IP instrument (IRIS Instruments, France) is the heart of the fully autonomous geoelectrical monitoring system; the system, which is housed in a weatherproof container, relies solely on solar power, is controlled by an energy efficient PC and can be accessed remotely via web tools. The monitoring scheme involves collecting bi-daily resistivity measurements from surface and shallow boreholes, ranging from January 2011 to the present; environmental parameters, such as T, are continuously recorded at several depths. During regular field trips we perform larger scale geophysical surveys, and geochemical measurements (pH, DO, T, fluid C) to support the continuous geophysical monitoring. The contaminated layer on site is a visually distinctive layer of crude oil, isolated by cleaner sands above and below which is identified by a clear and obvious resistive anomaly in preliminary surveys. Early results show a decrease in average of the resistance values of each dataset over time. Further processing of the data yields a linearly shaped resistive anomaly, which coincides with the location of the oil layer. The changes in subsurface resistivity appear to be focused within this anomaly. Time filtering of the data by the time that they were collected, morning or evening, reveals a diurnal variation. While both time frames follow the same overall trend, the measurements in the morning are slightly more resistive than those in the evening. This indicates that there are environmental factors, such as temperature, that need to be

  10. Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break

    NASA Astrophysics Data System (ADS)

    Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon

    2017-04-01

    The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a

  11. Sulfide, iron, manganese, and phosphate in the deep water of the Chesapeake Bay during anoxia

    NASA Astrophysics Data System (ADS)

    Gavis, Jerome; Grant, Virginia

    1986-10-01

    Concentrations of dissolved oxygen and sulfide, and of dissolved and particulate iron, manganese, and phosphate were measured as functions of salinity at a station in the Chesapeake Bay during stratification and deep water anoxia in spring and summer, 1981. The observed concentration/salinity profiles showed that oxygen was transported in a direction opposite to that of salt, while dissolved sulfide was transported in the same direction as salt through the anoxic water to be oxidized in oxygen consumption zones located below the steepest parts of the halocline. Both oxygen and sulfide were transported conservatively on 18 June. Their fluxes were 1·2 and 2 mol m -2 d -1, respectively. The oxygen flux was 30% of that stoichiometrically needed to oxidize the sulfide transported, suggesting that the oxygen consumption zone was advancing to shallower, less saline water, thus increasing the volume of anoxic water. Although oxygen was transported conservatively, sulfide was produced as it was transported through the anoxic water on 8 July. The anoxic water was supersaturated with respect to ferrous sulfide on 18 June, but most of the anoxic water was saturated on 8 July. Precipitation of ferrous sulfide had little effect on the sulfide flux on 18 June. The manganese(II) concentration/salinity profile exhibited a maximum in the oxygen consumption zone on 18 June. On 8 July the profile was independent of salinity at high salinities. Iron(II) and manganese(II) consumed little if any oxygen in the oxygen consumption zone. Soluble reactive phosphate was transported conservatively through the anoxic water on 18 June. It was produced as it was transported on 8 July. All of the phosphate was consumed in the oxygen consumption zones by sulfide oxidizing bacteria. On 18 June its flux, estimated to be 2·8 mmol m -2 d -1, was less than 10% of that required for bacterial oxidation of the sulfide reaching the oxygen consumption zone. The rest was oxidized chemically. The growth and

  12. Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Falco, P.; Castagno, P.; Budillon, G.; Spezie, G.

    2016-02-01

    The Circumpolar Deep Water (CDW) intrusion on the Antarctic continental shelves is the primary source of heat, salt and nutrients playing a major role on the shelf physical and biological processes. Different studies have analyzed the processes responsible for the transport of CDW across the Ross Sea shelf break, but until now, there are no continuous observations that investigate the time of the intrusions. Besides, few works focused on the effect of the tide that controls the intrusion itself. In the Ross Sea, the CDW intrudes onto the shelf in several locations mostly along the troughs, such as the Glomar Challenger, the Joides and the Drygalski. We use hydrographic observations and three moorings placed (one) on the outer shelf in the middle of the Drygalski Trough and (two) on the upper slope at the mouth of the Glomar Challenger basin, in order to characterize the spatial and temporal variability of the CDW inflow onto the shelf. Our data span from 2004 to 2014. In the Drygalski Trough the CDW enters as a thick layer of about 150 m between 250 - 400 m moving upward toward south. At the mooring location, about 50 Km from the shelf break, two main CDW cores can be observed: one on east side of the trough spreading along the west slope of Mawson Bank from about 200 m to the bottom and the other one in the central-west side from 200 m to about 350 m. A signature of this lighter and relatively warm water is detected by the instruments on the mooring at bottom of the Drygalski Trough. The CDW intrusion at the bottom of the trough is strictly related to the diurnal and spring/neap tidal cycles, but a strong seasonal variability of the CDW is clear. A strong inflow of CDW is observed every year at the end of December (after few months that the salinity minimum is registered), while the CDW inflow is at its seasonal minimum during the end of the austral summer in correspondence of the salinity maximum associated with the High Salinity Shelf Water (HSSW). Indeed, the

  13. Polychaete annelid (segmented worms) abundance and species composition in the proximity (6-9 km) of the Deep Water Horizon (DWH) Oil Spill in the Deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Qu, Fangyuan; Nunnally, Clifton C.; Lemanski, Joseph R.; Wade, Terry L.; Amon, Rainer M. W.; Rowe, Gilbert T.

    2016-07-01

    Polychaete annelids (segmented worms) dominated the macrobenthos in sediments located 6-9 km from the Deep Water Horizon (DWH) Oil Spill site five months after the event, based on nine 0.2 m2 box core samples. Numbers of species, abundance, and biodiversity indices in the polychaete taxa were significantly lower than pre-spill values from similar depths in the eastern Gulf of Mexico (GoM). Both non-selective and selective deposit feeders were the most frequent feeding guilds, as expected, but their abundances were significantly lower. An increase in the number of carnivorous Sigalionidae may be a response to an accumulation of petroleum hydrocarbons on the sediment. The concentration of oil in the sediments was low and the source of the oil remains equivocal. Multivariate analyses illustrated the differences between communities near the DWH and those from prior studies in similar deep GoM habitats. In summary, Deep Water Horizon Oil Spill appears to have had a measurable impact on the polychaetes.

  14. Flow dynamics and sedimentation of lateral accretion packages in sinuous deep-water channels: A 3D seismic case study from the northwestern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Gong, Chenglin

    2016-07-01

    The current study uses 3D seismic data to document architectural styles and flow dynamics of lateral accretion packages (LAPs) associated with sinuous deep-water channels, contributing to a better understanding of flow processes and sedimentation associated with LAPs. The documented LAPs underwent three main stages of architectural evolution, including the early incision stages characterized by intense downcutting, active migration stages characterized by active migration and avulsion of the individual channels, and late abandonment stages characterized by the termination of sediment gravity-flows and LAP growth. These three stages of LAP growth repeated through time, yielding a fining-upward pattern from sandy channel-fill turbidites, into sand-mud couplets, all capped by muddy turbidites. A river-reversed helical flow circulation was created by an imbalance, through the flow depth, of inwardly directed pressure gradient forces near the bed and outwardly directed centrifugal forces near the surface. It consists of low-velocity cores near the outer banks and low-velocity cores along the inner banks. Such river-reversed helical flow pattern is evidenced by volumetrically extensive LAPs and toplap and downlap terminations along the gentle banks and by aerially restricted, seismically unresolvable levees and truncation terminations near the steep banks. This river-reversed helical flow circulation favors asymmetric intra-channel deposition characterized by inner bank deposition versus outer bank erosion, and which, in turn, forced individual channels to consistently migrate towards outer banks, resulting in significant asymmetric cross-channel profiles with aerially extensive LAPs along inner banks.

  15. Effectiveness of a deep-water coral conservation area: Evaluation of its boundaries and changes in octocoral communities over 13 years

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Metaxas, Anna

    2017-03-01

    Over the past 15 years, multiple areas in the North Atlantic have been closed to destructive fishing practices to protect vulnerable deep-water coral ecosystems, known to provide habitat for diverse associated fauna. Despite the growing number of conservation measures, long-term studies on the recovery of deep-water coral communities from fisheries impacts remain scarce. In the Gulf of Maine, the Northeast Channel Coral Conservation Area (NECCCA)1

  16. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... basis in deep water in the Gulf of Mexico or offshore of Alaska? You may apply for royalty relief under...

  17. Permian and Triassic sedimentation in the northeastern Brooks Range, Alaska: Deposition of the Sadlerochit Group

    SciTech Connect

    Crowder, R.K. )

    1990-09-01

    Terrigenous clastic rocks of the Sadlerochit Group in the Arctic National Wildlife Refuge are separated from underlying carbonates of the Lisburne Group by a regional unconformity marking the Pennsylvanian-Permian systemic boundary. Lithologic and diagenetic patterns of rocks above and below the sub-Sadlerochit unconformity vary systematically with substantial paleotopography along the erosional surface. Within the Sadlerochit Group, nonmarine conglomerate of the basal Echooka Formation rills erosional channels and valleys and grades upsection into a retrogradational succession of tempestites deposited during episodic storm-surge in shallow-marine environments. The overlying Ivishak Formation records an abrupt reversal of environmental migration pattern and the beginning of southerly progradation of a broad suite of deltaic environments. Depositional units in the Ivishak are strongly progradational and cyclic at a variety of scales, reflecting alternating episodes of progradation and transgression inherent in delta construction. The basal Kavik Member of the Ivishak Formation is an upward-coarsening depositional assemblage recording initial migration of prodelta environments and evolution of an extensive subaqueous delta platform. The overlying Ledge Sandstone Member is organized into three depositional assemblages recording the evolution of delta-fringe, distributary-channel, and crevasse-splay environments of the lower delta plain. The Fire Creek Siltstone Member is an aggradational and transgressive assemblage deposited in shallow-marine environments that reworked sediment originally deposited on the lower delta plain. The most favorable reservoir strata are developed immediately above and below the sub-Sadlerochit unconformity and in distributary-mouth bar and distributary-channel deposits of the Ledge Sandstone Member.

  18. The Moroccan Turbidite System: a modern example of a multi-basin mixed siliciclastic-volcaniclastic deep-water sedimentary system

    NASA Astrophysics Data System (ADS)

    Hunt, James; Wynn, Russell; Talling, Peter

    2010-05-01

    restricted by basin topography. There are also a number of small volcaniclastic turbidites relating to barranco canyon outwash events, which though not regionally extensive, could still yield important information regarding climate controls on weathering rates. Adding to these siliciclastic and volcaniclastic deposits are a number of carbonate-rich turbidites originating from volcaniclastic draped seamounts such as the Selvage Islands. Understanding the provenance area of each turbidite, its composition and pathway are pivotal in understanding the mechanics of the gravity flows that deposited them. Understanding how turbidity currents, debris flows and debris avalanches react to the basin settings is in turn important, since this records how the basin is evolving through time both distally here in the deep sea and within the hinterland. Wynn, R.B., Weaver, P.P.E., Masson, D.G., & Stow, D.A.V. 2002. Turbidite depositional architecture across three interconnected deep-water basins on the north-west African margin. Sedimentology, 49, p.669-695. Talling, P.J., Wynn, R.B., Masson, D.G., Frenz, M., Cronin, B.T., Schiebel, R., Akhmetzhanov, A.M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P.P.E., Georgiopoulou, A., Zuhlsdorff, C., & Amy, L.A. 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature, 450, 541-544.

  19. Continental crust in deep-water basins of East Arctic region

    NASA Astrophysics Data System (ADS)

    Artyushkov, Eugene; Belyaev, Igor; Chekhovich, Peter; Poselov, Victor

    2013-04-01

    The nature of the crust in deep-water basins (1.5-4 km) in East Arctic is a matter of debates. The occurrence of continental crust has been demonstrated by deep-sea drilling only for the central part of the Lomonosov Ridge. Many authors suggest that the Mendeleev High and the Makarov and Podvodnikov basins in the Amerasian Basin are underlain by oceanic crust. In these regions the mean P-wave velocities in the consolidated crust are higher than in most continental areas. However, the thickness of this layer is several times larger (15-30 km) than that of the oceanic crust (7 km) and it includes a thin granitic layer (2-5 km). To explain this anomalous structure and thickness of the crust it is commonly supposed that in the Late Jurassic and Cretaceous the oceanic crust was formed in the above regions by sea-floor spreading accompanies by melting out of large masses of crustal material on a hot spot like on the present Iceland hot spot. Other investigators consider the crust in the above regions as a continental one. An important argument is the evolution of the subsidence in time which is quite different from a square root of time that typical of oceanic crust. Thus, according to the dredging data, the Mendeleev High remained near to sea level for 170 Myr since the Late Silurian and until the Early Permian. This would be absolutely impossible for a cooling hot spot on the oceanic crust. Furthermore, the structure of consolidated crust in these areas is similar to that in some ultradeep basins within the continents and on their passive margins, e.g., in the East Barents, North Caspian and North Chukchi basins which were originally formed on continental crust. To produce the water loaded subsidence by 1.5-4 km by lithospheric stretching, the lithosphere should be stretched by 1.5-4 times. However, in most of the seismic reflection profiles, no large tensile deformations can be observed. Under such circumstances the transformation of gabbro in the lower crust into

  20. Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Yuan, K.

    2011-12-01

    The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as

  1. Reproductive traits of tropical deep-water pandalid shrimps ( Heterocarpus ensifer) from the SW Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Briones-Fourzán, Patricia; Barradas-Ortíz, Cecilia; Negrete-Soto, Fernando; Lozano-Álvarez, Enrique

    2010-08-01

    Heterocarpus ensifer is a tropical deep-water pandalid shrimp whose reproductive features are poorly known. We examined reproductive traits of a population of H. ensifer inhabiting the continental slope (311-715 m in depth) off the Yucatan Peninsula, Mexico (SW Gulf of Mexico). Size range of the total sample ( n=816) was 10.4-38.9 mm carapace length. Females grow larger than males, but both sexes mature at 57% of their maximum theoretical size and at ˜30% of their total lifespan. Among adult females, the proportion of ovigerous females was high in all seasons, indicating year-round reproduction. Most females carrying embryos in advanced stages of development had ovaries in advanced stages of maturation, indicating production of successive spawns. In the autumn, however, the proportion of ovigerous females and the condition index of these females were lower compared to other seasons. This pattern potentially reflects a reduction in food resources following the summer minimum in particulate organic carbon flux to the deep benthos, as reported in previous studies. Spawns consisting of large numbers (16024±5644, mean±SD) of small eggs (0.045±0.009 mm 3) are consistent with extended planktotrophic larval development, an uncommon feature in deep-water carideans. Egg number increased as a power function of female size but with substantial variability, and egg size varied widely within and between females. There was no apparent trade-off between egg number and egg size and neither of these two variables was influenced by female condition. These results indicate iteroparity and a high and variable reproductive effort, reflecting a reproductive strategy developed to compensate for high larval mortality. The present study provides a baseline to compare reproductive traits between Atlantic populations of this tropical deep-water pandalid.

  2. Suborbital-scale surface and deep water records in the subtropical North Atlantic: implications on thermohaline overturn

    NASA Astrophysics Data System (ADS)

    Billups, Katharina; Rabideaux, Nathan; Stoffel, Jared

    2011-10-01

    We reconstruct millennial-scale variations in sea surface hydrography and deep water flow in the northwestern subtropical Atlantic (Ocean Drilling Program Leg 172 Sites 1056 and 1063) with a focus on Marine Isotope Stage (MIS) 9. Together with published records from this region, the new data also afford a longer-term perspective on millennial-scale changes in meridional overturning circulation spanning two full interglacial intervals (MIS 9 and 11) as well as two full glacial intervals (MIS 10 and 12). Planktic foraminiferal δ 18O values indicate relatively stable conditions during the peak warmth of MIS 9, but three large cold excursions disrupt the otherwise smooth transition toward glacial MIS 8. There is no unique response in the Site 1063 benthic foraminiferal δ 13C values that would suggest a concomitant decrease in the relative flux of NADW during these events. Similarly, there is no persistent correlation between millennial-scale variations in surface and deep water hydrography over the entire MIS 8-13 interval. While millennial-scale variations at the sea surface are most pronounced during glacial intervals (and the transitions toward glacial intervals), millennial-scale variations in the deep water hydrography tend to be largest during the warm periods. This observation supports that rapid changes in thermohaline circulation are sensitive to driving forces other than those directly related to ice sheet size. Time series analysis shows that spectral power in the benthic foraminiferal δ 13C record contains periodicities related to the second (˜10 kyr) and fourth harmonics (˜5 kyr) of precession in this record (˜20 kyr) pointing to the importance of tropical processes.

  3. Deep-water sediment transport processes in the northeastern South China Sea: Mooring and shipboard-based observations

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhao, Y.; Zhang, Y.; Li, J.; Li, X.; Wang, W.; Xu, J.

    2013-12-01

    Six moorings equipped with acoustic doppler current profiler (ADCP), recording current meter (RCM), and sediment trap have been deployed in the northeastern South China Sea at water depths ranging from 1700-3900 m to collect time-series data that can hopefully help better characterize the bottom current system and transport process in the region. Shipboard-based measurements including CTD, transmissometer, optical backscatter (OBS), and in-situ layered suspended particle sampling using large volume pump (LVP) were undertaken along three deep-water transects in the region during two cruises in the spring of 2012 and 2013. Preliminary results show for the first time the presence of continuous and relative stable contour currents and widespread deep-water nepheloid layers in the deep South China Sea. The contour currents flow southwestwards with average speeds of 2-4 cm/s (occasionally up to 11 cm/s) along lower slope of the northern South China Sea at depths of 1700-2500 m. The large-scale sediment waves recorded by high-resolution multibeam bathymetry appear to be related to activities of the contour currents. Intermediate and bottom nepheloid layers with an average suspended particle concentration of 0.6 mg/l are extended from the lower slope to the deep basin of the South China Sea. The intermediate nepheloid layers in depths ranging from 900 to 1100 m are thought to be controlled mainly by the interaction between the North Pacific Intermediate Water and the Pacific Deep Water masses. A sedimentary core (MD01-2905) previously collected on the sediment drift of ODP Site 1144, where three of the mooring systems are located, indicates that 60% of total fine-grained terrigenous sediment budget since the last glacial time have sourced from Taiwan. Our data suggest that the observed contour currents are the major carrier for transporting Taiwan-derived sediments to the northern slope of the South China Sea.

  4. The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends

    NASA Astrophysics Data System (ADS)

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick

    2015-09-01

    Using benthic stable isotope records from 10 sites in the Atlantic Ocean, including two new records from Walvis Ridge in the Southeast Atlantic (Sites 1264 and 1267), we review changes in Atlantic deep-water circulation in the context of Plio-Pleistocene climate. Overall, we find non-linear responses of Atlantic deep-water circulation to a cooling climate, with differently evolving glacial and interglacial states. Our main conclusion is that peak North Atlantic Deep Water (NADW) production was reached between ˜2.0 and 1.5 Ma, most prominently seen by a maximum in ventilated (high δ13C) conditions in the mid-depth Southeast Atlantic (Site 1264). We infer that a major source of NADW at this time was the export of dense overflow water from the Nordic Seas into the abyssal East Atlantic. Sea surface temperature records from the North and South Atlantic support this notion and indicate that the peak NADW production between ˜2.0 and 1.5 Ma was compensated by a stronger warm surface-water return flow (i.e. Atlantic Meridional Overturning Circulation (AMOC) was enhanced), causing long-term (>105 year) heat piracy from the South to the North Atlantic. In the wider picture of Plio-Pleistocene climate evolution, we find that a long-term enhancement in the average state of AMOC (˜2.4-1.3 Ma) coincides with the "41-kyr world". Hence, we speculate that the transitory negative feedback response of enhanced AMOC to a cooling climate supplied heat to key areas of ice-sheet growth, acting to limit their size and maintain the "41-kyr world". Once a threshold in global cooling was reached, the strength of AMOC lessened, providing a positive feedback for the Early-Middle Pleistocene Transition and the associated build-up of northern hemisphere ice-sheets.

  5. An eddy resolving numerical study of the general circulation and deep-water formation in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Mantziafou, A.; Lascaratos, A.

    2004-07-01

    General circulation and deep-water formation (DWF) processes in the Adriatic basin in a climatological year were numerically simulated in a high-resolution (1/20th of a degree) implementation of the Princeton Ocean Model (POM). The "perpetual" year atmospheric data were computed from the ECMWF Reanalysis data (1°×1°) covering the period 1979-1994. The model reproduces the main basin features of the general circulation, water mass distribution and their seasonal variability. The Adriatic Deep Water exiting through the Otranto Strait is produced with two different mechanisms inside the basin: (a) by open ocean deep convection over the Southern Adriatic Pit and Middle Adriatic Pit (b) on the continental shelf of the Northern and Middle Adriatic. The estimated contributions of both mechanisms suggest that 82% of the Adriatic Deep Water is formed inside the Southern Adriatic Pit, while all the higher density water in this water mass comes from the northern regions. The role of mesoscale eddies at the periphery of the dense-water chimney in the Southern Adriatic Pit was examined and their contribution to the lateral buoyancy flux, during the convection process, found to be small. The DWF rate at Otranto Strait is 0.28 Sv with σθ over 29.15. The sensitivity of the DWF processes to interannual variability of the buoyancy forcing and river runoff was assessed with a number of process-study numerical experiments. In these experiments the effect of an imposed "extreme" buoyancy forcing during 1 year, on the DWF rates, was to modify them during the specific year, but the effects were still present in the following normal climatological year. This shows that the DWF rates and their mass characteristics at a specific year depend not only on the atmospheric conditions prevailing that specific year but on the previous year's as well, thus leading to the concept of a "memory" of the basin.

  6. Report on two deep-water caridean shrimp species (Crustacea: Decapoda: Caridea: Alvinocarididae, Acanthephyridae) from the northeastern South China Sea.

    PubMed

    Li, Xinzheng

    2015-01-16

    Two deep-water species of caridean shrimps collected during recent dives by the Chinese manned submersible "Jiaolong" represents new records for the South China Sea: Alvinocaris longirostris Kikuchi & Ohta, 1995 (Alvinocarididae) and Acanthephyra faxoni Calman, 1939 (Acanthephyridae). Specimens of these two species were collected from Jiaolong Cold Seep I, off Guangdong Province, China (depth 1138 m). Alvinocaris longirostris is known to be associated with chemosynthetic community, whereas Acanthephyra faxoni is a bathypelagic inhabitant, of which the occurrence in seep site is merely opportunistic. An identification key to species of Alvinocaris is provided. 

  7. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has

  8. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites

    PubMed Central

    Wright, Amy E.; Killday, K. Brian; Chakrabarti, Debopam; Guzmán, Esther A.; Harmody, Dedra; McCarthy, Peter J.; Pitts, Tara; Pomponi, Shirley A.; Reed, John K.; Roberts, Bracken F.; Rodrigues Felix, Carolina; Rohde, Kyle H.

    2017-01-01

    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines. PMID:28085024

  9. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites.

    PubMed

    Wright, Amy E; Killday, K Brian; Chakrabarti, Debopam; Guzmán, Esther A; Harmody, Dedra; McCarthy, Peter J; Pitts, Tara; Pomponi, Shirley A; Reed, John K; Roberts, Bracken F; Rodrigues Felix, Carolina; Rohde, Kyle H

    2017-01-11

    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines.

  10. Update of the genus Leptochiton (Mollusca: Polyplacophora) in Chilean deep waters: three new reports and description of two new species.

    PubMed

    Sirenko, Boris; Sellanes, Javier

    2016-10-04

    We update the list of the bathyal chitons of the genus Leptochiton inhabiting Chilean waters. We report new records of Leptochiton belknapi and L. laurae, the first record of L. sigwartae for the area and the new species L. ibanezi sp. nov. and L. ferreirai sp. nov. With 12 species, including those described herein as new, the highest species richness of Leptochiton is found in Chilean deep waters. Taking into consideration the potential late Paleozoic origin of the genus Leptochiton, we propose that Leptochiton originated in the old Pacific Ocean and migrated to the young Atlantic Ocean. However, the genus has also been considered non-monophyletic.

  11. A micropalaeontological perspective on export productivity, oxygenation and temperature in NE Atlantic deep-waters across Terminations I and II

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Skinner, Luke; Hodell, David A.; Piller, Werner E.

    2015-08-01

    Census counts of benthic foraminifera were studied from the SW Iberian Margin to reconstruct past changes in deep-water hydrography across Terminations I and II. Detailed benthic faunal data (> 125 μm size-fraction) allow us to evaluate the limitations imposed by taphonomic processes and restricted size-fractions. The comparison of recent (mudline) and fossil assemblages at IODP Site U1385 indicates the quick post-mortem disintegration of shells of astrorhizoid taxa (~ 80% of the present-day fauna), resulting in impoverished fossil assemblages. While the application of quantitative proxy methods is problematic under these circumstances, the fossil assemblages can still provide a qualitative palaeoenvironmental signal that, while most fully expressed in the 125-212 μm size-fraction, is nonetheless also expressed to some degree in the > 212 μm size-fraction. Variations in the benthic foraminiferal assemblages reveal information about changing organic matter supply, deep-water oxygenation and temperature. MIS 2 is generally characterized by an elevated trophic state and variable oxic conditions, with oxygenation minima culminating in the Younger Dryas (YD) and Heinrich Stadials (HS) 1, 2 and 3. Low oxic conditions coincide with decreased water-temperature and lower benthic δ13C, pointing to the strong influence of a southern sourced water-mass during these periods. HS 1 is the most extreme of these intervals, providing further evidence for a severe temporary reduction or even shutdown of AMOC. With the inception of MIS 1, organic matter supply reduced and a better ventilated deep-water environment bathed by NEADW is established. For Termination II, clear indications of southern-sourced water are limited to the early phase of HS 11. During the latter part of HS 11, the deep-water environment seems to be determined by strongly increased supply of organic matter, potentially explaining the decoupling of benthic δ13C and Mg/Ca records of earlier studies as a

  12. Deep-water parasite diversity in Lake Tanganyika: description of two new monogenean species from benthopelagic cichlid fishes.

    PubMed

    Kmentová, Nikol; Gelnar, Milan; Koblmüller, Stephan; Vanhove, Maarten P M

    2016-08-03

    Lake Tanganyika is the world's second deepest lake. Its diverse cichlid assemblage offers a unique opportunity for studying a deep-water host-parasite model in freshwater. Low host specificity and a broad host range including representatives of the Bathybatini tribe in the only monogenean parasite described from this habitat, Cichlidogyrus casuarinus Pariselle, Muterezi Bukinga & Vanhove, 2015 suggest a link between lower specificity and lower host density. Conversely, high host specificity and species richness are reported for monogeneans of the lake's littoral cichlids. We further investigated whether the deep-water environment in Lake Tanganyika is really monogenean species-depauperate by investigating the monogenean fauna of Trematocara unimaculatum (a representative of the tribe Trematocarini, the sister lineage of the Bathybatini) and Benthochromis horii, a member of the tribe Benthochromini, found in the same deep-water habitat as the already known hosts of C. casuarinus. Sclerotised structures of the collected monogenean individuals were characterised morphologically using light microscopy and morphometrics. Both examined cichlid species are infected by a single monogenean species each, which are new to science. They are described as Cichlidogyrus brunnensis n. sp., infecting T. unimaculatum, and Cichlidogyrus attenboroughi n. sp., parasitising on B. horii. Diagnostic characteristics include the distal bifurcation of the accessory piece in C. brunnensis n. sp. and the combination of long auricles and no heel in C. attenboroughi n. sp. In addition C. brunnensis n. sp. does not resemble C. casuarinus, the only species of Cichlidogyrus thus far reported from the Bathybatini. Also Cichlidogyrus attenboroughi n. sp. does not resemble any of the monogenean species documented from the pelagic zone of the lake and is among the few described species of Cichlidogyrus without heel. As two new and non-resembling Cichlidogyrus species are described from T. unimaculatum

  13. The South American radiation of Jerrybuccinum (Gastropoda, Buccinidae), with a new deep-water species from Chile

    PubMed Central

    Fraussen, Koen; Sellanes, Javier; Stahlschmidt, Peter

    2014-01-01

    Abstract A new deep water species from off the Chilean coast, Jerrybuccinum kantori sp. n., is described. The animal is equipped with a large statocyst. Kryptos explorator Fraussen & Sellanes, 2008 from off Concepción is found to be congeneric and transferred to the genus Jerrybuccinum. Differences in size and sculpture serve to distinguish the new species from J. explorator. Both Chilean species are associated with methane seep or low oxygen environments. They are compared with J. malvinense Kantor & Pastorino, 2009 and two still unnamed species from the Falkland Plateau. PMID:24899844

  14. A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water, Beaufort Sea, northern Alaska.

    PubMed

    Valentich-Scott, Paul; Powell, Charles L; Ii; Lorenson, Thomas D; Edwards, Brian E

    2014-01-01

    Bivalve mollusk shells were collected in 2350 m depth in the Beaufort Sea, Arctic Ocean off northern Alaska. Initial identification suggested the specimens were a member of the bivalve family Thyasiridae, but no known eastern Pacific or Arctic living or fossil thyasirid resembled these deep-water specimens. Comparisons were made with the type of the genera Maorithyas Fleming, 1950, Spinaxinus Oliver & Holmes, 2006, Axinus Sowerby, 1821, and Parathyasira Iredale, 1930. We determined the Beaufort Sea species represents a new genus, herein described as Wallerconcha. These specimens also represent a new species, herein named Wallerconchasarae. These new taxa are compared with known modern and fossil genera and species of thyasirds.

  15. Lead isotopes in North Pacific deep water - Implications for past changes in input sources and circulation patterns

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2003-01-01

    The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10 Be/9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/204Pb from low values in the Miocene (??? 18.57) to high values at present day (??? 18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/204Pb and 208Pb/ 204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb-Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young

  16. Lead isotopes in North Pacific deep water - implications for past changes in input sources and circulation patterns

    NASA Astrophysics Data System (ADS)

    van de Flierdt, Tina; Frank, Martin; Halliday, Alex N.; Hein, James R.; Hattendorf, Bodo; Günther, Detlef; Kubik, Peter W.

    2003-04-01

    The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10Be/ 9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/ 204Pb from low values in the Miocene (≤18.57) to high values at present day (≥18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/ 204Pb and 208Pb/ 204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb-Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young

  17. Gulf Coast Deep Water Port Facilities Study. Appendix D. Adverse Environmental Effects.

    DTIC Science & Technology

    1973-04-01

    to support the contention of Mansueti (1962) and Huet (1965) that deposition of suspended matter may interfere with or prevent fish reproduction by...collected by towing a neuston net, which skims the surface. The investigators found that the tar balls were more abundant than the normal sargassum

  18. Depositional environments of the Wilcox Group, Texas Gulf Coast: Stratigraphic and early diagenetic signatures

    SciTech Connect

    May, J.A.; Stonecipher, S.A. )

    1990-09-01

    Deposition of the late Paleocene-early Eocene Wilcox Group is controversial. Are Wilcox reservoirs entirely of shallow-marine origin, or are basinal turbidites also present The authors analyzed over 5,000 ft of core from 15 wells along the Texas Gulf Coast to constrain the environments of deposition. They attribute all cores examined to date to 12 subenvironments of the delta plain to continental shelf. These include distributary channel, lake, marine bay, crevasse-splay delta, shoreface, lagoon, tidal flat, tidal channel, distributary-mouth bar, distal bar, prodelta, and shelf. Each subenvironment displays a characteristic well-log signature. Criteria for recognition in core include grain-size variations, physical sedimentary structures, trace fossils, mineralogy, bedding styles, and vertical sequences, all resulting from the interplay of specific physical, biological, and chemical processes operative in each subenvironment. They did not identify any submarine-fan deposits. They also attempted to determine the importance of depositional facies and provenance on diagenetic trends. Early diagenetic patterns appear to be related to factors such as sediment texture, detrital composition, organic content, and original water chemistry, which were, in turn, controlled directly or indirectly by depositional environment. Rapid lateral and vertical changes in depositional environments produced markedly different early diagenetic patterns in sand units only a few feet or even inches apart. Thus, diagenetic facies defined on the basis of texture, composition, and cements can be used to complement, and test, their interpretations of depositional environments based solely on traditional sedimentologic and genetic-sequence criteria.

  19. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    SciTech Connect

    Twichell, D.C.; Schwab, W.C. ); Nelson, C.H.; Lee, H.J. ); Kenyon, N.H. )

    1992-08-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  20. The diversity, distribution and status of deep-water elasmobranchs in the Rockall Trough, north-east Atlantic Ocean.

    PubMed

    Neat, F C; Burns, F; Jones, E; Blasdale, T

    2015-12-01

    Data from a scientific deep-water trawl fisheries survey in the north-east Atlantic were analysed to determine the spatial and bathymetric distribution of elasmobranch species and assess the change in relative abundance over the period 1998-2013. During this period, commercial fisheries for deep-water sharks went from being entirely unregulated, to being briefly managed, to being completely prohibited. A total of 22 species of shark and 10 species of skate were recorded between depths of 300 and 2030 m. All showed strong species-specific depth-related trends in abundance. Out of the 11 more common species, five showed no change in relative abundance over time, two (Centrophorus squamosus and Centroselachus crepidater) declined significantly and four increased in relative abundance (Apristurus aphyodes, Apristurus microps, Galeus melastomus and Deania calcea). Assuming these populations were depleted by fisheries in the past, the current data do not suggest there has been an overall recovery. Positive signs for some species in the most recent years suggest movement or recruitment back into the area; however, it is of concern that two species continued to decline. There is a continued need to have precautionary management of these elasmobranch species, and the current ban on landing these species in European waters remains appropriate.

  1. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  2. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    USGS Publications Warehouse

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  3. Study of how hydrological conditions affect the propagation of pseudorandom signals from the shelf in deep water

    NASA Astrophysics Data System (ADS)

    Morgunov, Yu. N.; Bezotvetnykh, V. V.; Burenin, A. V.; Voitenko, E. A.

    2016-05-01

    The paper examines how hydrological conditions affect manifestation of the acoustic "landslide" effect, which consists in focusing of acoustic energy in the near-bottom layer on the shelf and its transition to the axis of an underwater sound channel in deep water. We compare the results of experiments performed in the Sea of Japan in April 2014 and August 2006 on the same acoustic track, where the distance between corresponding points was more than 100 km. In April, the hydrological conditions in the shelf region of the track and in the upper layer of the deep-water part of the sea were characterized by the presence of a relatively weak (~0.35 s-1) negative vertical sound velocity gradient, whereas in August 2006, it was ~1.5 s-1. Experimental and numerical studies showed that the acoustic landslide effect also manifests itself under conditions of a weak negative sound velocity gradient, but the structure of the acoustic field trapped by the underwater sound channel has a more complex character with a time-expanded pulse characteristic. Nevertheless, its ordered, stable, and well-identified structure at all track points chosen for measurements make it possible to reliably create an efficient (with accuracies to hundredths of a percent) underwater navigation systems like GLONASS and GPS for the spring hydrology season.

  4. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    PubMed Central

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-01-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China. PMID:26538179

  5. Endemic Lake Baikal sponges from deep water. 1: Potential cryptic speciation and discovery of living species known only from fossils.

    PubMed

    Itskovich, Valeria B; Kaluzhnaya, Oxana V; Veynberg, Elena; Erpenbeck, Dirk

    2015-07-23

    We revealed new deep-water species and cryptic speciation within freshwater sponges of the endemic family Lubomirskiidae (Porifera; Demospongiae; Spongillina) based on molecular and spicule morphology analyses of ITS and CO1 mtDNA. Lubomirskiidae contains a group of closely related species which are a dominant component of the benthos in Lake Baikal, the world's deepest and most ancient lake. Spicule morphology was similar between two Recent samples and species only known previously from fossils in Late Pliocene (3.2-2.8 mya) sediments. Despite the morphological similarity with the cosmopolitan family Spongillidae, molecular analysis of ITS sequences has reliably assigned these species to Lubomirskiidae. This not only indicates that species identification of freshwater fossil sponge spicules should be made with caution, but also suggests that the structure of megascleres may not be a reliable character for interpretations of paleoclimatic reconstructions for the Baikal region. Our results do not support the current classification of Lubomirskiidae into its morphologically defined genera and species, suggesting a strong discrepancy between molecular and morphological variation in Baikalian sponges. This present contribution is the first part of a study on the phylogenetic relationships of the Lake Baikal deep water sponge fauna.

  6. Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.

    PubMed

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-05

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  7. Biology of a deep-water sea anemone (Anthozoa: Actiniidae) from eastern Canada: Spawning, development, and growth

    NASA Astrophysics Data System (ADS)

    Mercier, Annie; Baillon, Sandrine; Daly, Marymegan; Macrander, Jason; Hamel, Jean-François

    2017-03-01

    Knowledge of the general biology and reproductive ecology of deep-water species can help predict their resilience to environmental and anthropogenic disturbances. The present study centers on live specimens of a deep-water sea anemone which were collected at bathyal depths between 1100 and 1400 m and kept in a mesocosm for over 6 years. Morphology and DNA sequencing confirmed that the species belongs to the genus Urticina. Male and female (9-10 cm pedal disk diameter, 90 tentacles) spawned 4 years post collection, in early spring (March). Both sexes released gametes through the mouth. The negatively buoyant oocytes (550-600 μm in diameter) quickly settled on the rocks and soft sediments surrounding the female. Lecithotrophic embryonic and larval development occurred on the substratum. Fully developed planula larvae were detected after 17-21 days. Planulae started to crawl and swim around but remained demersal. Metamorphosis and settlement occurred after 30-35 days, exclusively on hard substrata and preferentially on undersurfaces. Offspring grew slowly, developing 8 tentacles after 5 months and 24 tentacles after 12 months (3-4 mm pedal disk diameter). After 2.6 years of growth, the captive-born sea anemones reached 12-16 mm in pedal disk diameter and possessed 48-54 tentacles.

  8. Impact of deep-water derived isoprenoid tetraether lipids on the TEX86 paleothermometry along the portuguese continental margin

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Villanueva, Laura; Zell, Claudia; Sinninghe Damsté, Jaap S.

    2016-04-01

    The TEX86 proxy was developed based on isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) biosynthesized by Thaumarchaeota and afterwards slightly modified to TEX86-H, a logarithmic function for TEX86. However, it remains uncertain how well this proxy reconstructs annual mean SST, especially due to the water depth influence. We investigated the potential effect of deep-water dwelling Thaumarchaeota in the warm and saline Mediterranean Outflow Water (MOW) on the distribution of isoGDGTs by analysing suspended particulate matter (SPM) and surface sediments collected along five land-ocean transects along the southern Portuguese continental margin. To this end, we directly compared for the first time the composition of intact polar lipid (IPL)-derived isoGDGTs of SPM with the diversity, abundance, and activity of Thaumarchaeota based on the genetic analysis of the genes coding for the archaeal ammonia monooxygenase (amoA) and the geranylgeranylglyceryl phosphate (GGGP) synthase involved in the isoGDGT biosynthetic pathway. Our results show that the sedimentary distribution of CL isoGDGTs used in TEX86-H along the Portuguese margin is primarily influenced by water depth due to the increasing contribution of the deep-water population of Thaumarchaeota residing in the MOW.

  9. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic

  10. Facies Variations Along an Ancient Deep-Water Axial Channel Belt: Insights from the Upper Cretaceous Cerro Toro Formation, Magallanes-Austral Basin, Patagonia

    NASA Astrophysics Data System (ADS)

    Malkowski, M. A.; Jobe, Z. R.; Sharman, G.; Graham, S. A.

    2015-12-01

    The Upper Cretaceous Cerro Toro Formation preserves a >150 kilometer long deep-water axial channel belt in the Magallanes-Austral Basin in southern Patagonia. Considerable work over the past decade in the Chilean basin sector reveals a 3.5-8 km wide channel-levee system that transported coarse-grained sediment from north to south via a range of low- to high-density turbidity currents, debris flows, and transitional/hybrid flows. In contrast, the more proximal deposits preserved in the Argentine basin sector to the north received little focus. This study documents new sedimentology, stratigraphy, and U-Pb geochronology from the Cerro Toro Formation in Argentina, allowing for a basin-scale comparison of the timing of deposition, sediment sources, and facies and grain size variability. Two ash beds from the base of the section yield U-Pb zircon ages of 90.4 ± 2 Ma and 88.0 ± 3 Ma, suggesting similar, if not slightly older, ages for the lower Cerro Toro Formation when compared to equivalent units to the south. U-Pb detrital zircon age spectra reveal similar provenance trends along the entire outcrop belt, with peak age populations at 310-260, 160-135, and 110-82 Ma. Preliminary statistical analyses of more than 5700 meters of new and previously published detailed stratigraphic sections suggest that, in general, characteristics such as mean bed thickness and net to gross remain fairly consistent along the outcrop belt. However, the bed thickness distributions are log-normal, and the northern sector has higher maximum bed thickness than the southern sector. There are also gradual variations in the down-system (north to south) proportion of lithofacies. For instance, in the northern (Argentine) sector, lithofacies representing mass wasting processes (e.g., debris flow conglomerates and mass-transport deposits) account for as much as ~80 percent of the stratigraphic thickness, whereas near the southern end of the channel belt, coarse-grained facies are almost entirely

  11. The relationships between soft-sediment deformation structures and synsedimentary extensional tectonics in Upper Triassic deep-water carbonate succession (Southern Tethyan rifted continental margin - Central Sicily)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-10-01

    We describe soft-sediment deformation structures into the Upper Triassic cherty limestone outcropping in the Pizzo Lupo section (Central Sicily, Italy), pertaining to the deep-water palaeodomain of the Southern Tethyan margin. In the study section, mainly consisting of thin-bedded mudstone/marl alternations with bedded chert intercalations, some lithofacies have been separated on the basis of the abundance of the calcium carbonate/clay content and the overall textural features. The deformational structures, displaying different deformational styles as folded and faulted beds, disturbed layers, clastic dikes, and slumps occur mainly in the deformed horizons that involve marl-dominated lithofacies. Small-scale water-escape structures involve beds with nodular fabric. Synsedimentary faults affect the mud-limestone dominated lithofacies, which are characterized by fault-rotating blocks producing lateral thinning. These bodies appear to have moved coherently along an overall planar surface. We relate these soft-sediment deformations to slump sheets, associated with down-slope sliding of sedimentary masses. The deformation mechanism and driving force for these soft-sediment deformations are due essentially to gravitational instability and dewatering. Detailing, rotational (slump) and translational (glide) slides and water-escape are the main processes causing the distinguished deformational styles. The synsedimentary extensional tectonics that affected the Upper Triassic pelagic deposits was the triggering process responsible for the instability of the seafloor inducing loss of coherence of the unconsolidated sediments on the sea bottom, developing a large number of gravity-driven slides. The analysis of both of these SSDSs and their relationships with the structural scenario allow us to hypothesise that they are seismically-induced.

  12. Strange bedfellows - A deep-water hermatypic coral reef superimposed on a drowned barrier island; Southern Pulley Ridge, SW Florida platform margin

    USGS Publications Warehouse

    Jarrett, B.D.; Hine, A.C.; Halley, R.B.; Naar, D.F.; Locker, S.D.; Neumann, A.C.; Twichell, D.; Hu, C.; Donahue, B.T.; Jaap, W.C.; Palandro, D.; Ciembronowicz, K.

    2005-01-01

    The southeastern component of a subtle ridge feature extending over 200 km along the western ramped margin of the south Florida platform, known as Pulley Ridge, is composed largely of a non-reefal, coastal marine deposit. Modern biostromal reef growth caps southern Pulley Ridge (SPR), making it the deepest hermatypic reef known in American waters. Subsurface ridge strata are layered, lithified, and display a barrier island geomorphology. The deep-water reef community is dominated by platy scleractinian corals, leafy green algae, and coralline algae. Up to 60% live coral cover is observed in 60-75 m of water, although only 1-2% of surface light is available to the reef community. Vertical reef accumulation is thin and did not accompany initial ridge submergence during the most recent sea-level rise. The delayed onset of reef growth likely resulted from several factors influencing Gulf waters during early stages of the last deglaciation (???14 kyr B.P.) including; cold, low-salinity waters derived from discrete meltwater pulses, high-frequency sea-level fluctuations, and the absence of modern oceanic circulation patterns. Currently, reef growth is supported by the Loop Current, the prevailing western boundary current that impinges upon the southwest Florida platform, providing warm, clear, low-nutrient waters to SPR. The rare discovery of a preserved non-reefal lowstand shoreline capped by rich hermatypic deep-reef growth on a tectonically stable continental shelf is significant for both accurate identification of late Quaternary sea-level position and in better constraining controls on the depth limits of hermatypic reefs and their capacity for adaptation to extremely low light levels. ?? 2004 Elsevier B.V. All rights reserved.

  13. Deep Water Compositions From the Los Angeles Basin and the Origin of Formation Water Salinity

    NASA Astrophysics Data System (ADS)

    Boles, J.; Giles, G.; Lockman, D.

    2005-12-01

    Deep basin formation waters represent original depositional waters that have been modified by diagenetic processes at elevated temperatures and pressures. In addition, they may be diluted by meteoric incursion from elevated structural blocks along basin flanks. It has long been thought that deep basin formation waters have salinities greater than sea water due to various processes like clay membrane filtration or other types of water-rock interaction. However, our work and similar studies in the San Joaquin basin show that formation waters in deep basins are more likely to become diluted rather than concentrated in the absence of soluble evaporite deposits that might underlie the basin. The idea of increased salinity with depth arose from studies in which the underpinning of the basin consisted of soluble evaporate deposits such as the Texas Gulf Coast, Illinois, Michigan, and some North Sea areas. There are very few deep formation water analyses from the Los Angeles Basin. Furthermore, very few of the current produced waters from any depth can be considered pristine because of the widespread formation water injection programs and commingling of fluids from different levels. Here, we describe the first analyses from a deep, previously untouched part of the basin that is currently being developed in the Inglewood Oil Field. We have analyzed a suite of formation waters from the mid-Miocene marine Sentous sandstone from sub-sea level depths of 2250 m to 2625 m at temperatures of about 110 to 126°C and pressures of about 27 MPa. The original depositional waters in the Sentous Formation were sea water whereas the sampled waters are diluted by about 20% from sea water and some show as much as 50% dilution. Based on comparison of oxygen and deuterium isotopes between the meteoric water trend and these waters, we conclude that the smectite to illite dehydration reaction is the major cause of dilution to the original formation water. Other notable differences include

  14. A deep water turbidity origin for the Altuda Formation (Capitanian, Permian), Northwest Glass Mountains, Texas

    USGS Publications Warehouse

    Haneef, Mohammad; Rohr, D.M.; Wardlaw, B.R.

    2000-01-01

    The Altuda Formation (Capitanian) in the northwestern Glass Mountains is comprised of thin, even bedded limestones, dolostones, mixed clastic-carbonates, and silt/sandstones interbedded with basin-ward dipping wedge-shaped clinoforms of the Captian Limestone. The formation is characterized by graded bedding, planar laminations, flame structures, contorted/convolute bedding, horizontal branching burrows, and shelf-derived normal marine fauna. A detailed study of the Altuda Formation north of Old Blue Mountain, Glass Mountains, reveals that the formation in this area was deposited by turbidity currents in slope to basinal settings.

  15. Simulation of deep water wet weld microstructures using electrodes with high oxidizing potential

    SciTech Connect

    Pope, A.M.; Liu, S.; Olson, D.L.

    1994-12-31

    The properties of underwater wet (UWW) welds are greatly affected by water depth. Ibarra and Olson [1] showed that the oxygen content of the weld increases with increasing depth while the amount of deoxidants such as Mn and Si decreases. This change in chemical composition adversely affects both the tensile strength and toughness of the weld. The present research was designed to understand the influence of oxidizing ingredients in the electrode covering on the chemical composition, weld bead appearance and microstructure of wet welds. Changes in the ability of the electrode to supply oxygen to the weld pool were made through modifications of the hematite to rutile (Fe{sub 2}O{sub 3}/TiO{sub 2}) ratio in the covering.The weld deposited by the rutile electrode (no hematite addition) presented the lowest oxygen content (1700 ppm). When the oxidizing character of the electrode increased the concentration of inclusions, mainly FeO, in the weld also increased. However, the increase in oxygen pickup was not monotonous but reached a `saturation` value at approximately 2100 ppm. These results suggest that the microstructure and properties of wet welds deposited at great depths by rutile electrodes will be similar to those made by oxidizing electrodes at much shallower depths. Hence studying oxidizing electrodes and improving their properties will help the development of electrodes for wet welding at greater depths. It is also a much cheaper way of `simulating` welding at higher pressures.

  16. Effects of Wind and Sea Ice Drift on the Seasonal Variation of Warm Circumpolar Deep Water in the Amundsen Sea

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Wahlin, A.; Ha, H. K.; Lee, S.; Lee, J. H.

    2014-12-01

    We examined the effect of wind and sea ice on seasonal variation in the thickness of circumpolar deep water, to better understand the processes causing mass loss in the West Antarctic ice sheet (WAIS). Spatial and temporal variation of the layer of warm and salty circumpolar deep water (CDW) at the center of the Amundsen Shelf was measured during two oceanographic surveys and a two-year mooring deployment. A hydrographic transect from the deep ocean, across the shelf break, and into the Dotson Trough shows a local elevation of the warm deep water layer at the shelf break. On the shelf, the water flows south-east along the trough. The thickness of the warm layer displays seasonal variation with maximum thickness in austral summer and minimum thickness in austral winter. The variation in warm layer thickness gives rise to a seasonal variation of the modified CDW heat content. In order to investigate the effects of wind and sea ice drift on the heat content, ocean surface stress was calculated using the ERA interim reanalysis wind data and observed sea ice velocity and concentration from satellites. The Ekman pumping velocity was calculated from the ocean surface stress field. The Ekman pumping at the shelf break, where the warm layer is elevated, shows a strong seasonal variation coinciding with the mooring data. The average wind field is eastward north of the shelf break and westward south of the shelf break during all seasons. The main effect of a layer of sea ice (between the wind and the water) is to reduce the surface stress which can intensify the horizontal gradient of surface stress at the marginal ice zone. This creates a divergence of the Ekman transport and a positive Ekman pumping at the marginal ice zone, if the wind direction is eastward. From February to April, a marginal ice zone close to the shelf break gives rise to a positive Ekman pumping that may explain the seasonal signal seen in the mooring data. At northern boundaries of coastal polynya

  17. Multiproxy constraints on alteration and primary compositions of Ediacaran deep-water carbonate rocks, Yangtze Platform, South China

    NASA Astrophysics Data System (ADS)

    Hohl, Simon V.; Becker, Harry; Herzlieb, Steffen; Guo, Qingjun

    2015-08-01

    The occurrence of shallow and deep-water sedimentary facies has established the Yangtze Platform in South China as a key site for the study of Neoproterozoic ocean oxidation and Ediacaran animal evolution following the Marinoan glaciation. The Yanwutan section in Hunan Province is one of the few coherent sections on the Yangtze Platform where Ediacaran deep-water carbonate sediments (predominantly dolostones) are preserved together with organic carbon-rich shales. Here we present new major and trace element abundance data as well as Sr-, O- and C-isotope compositions of leachates from carbonates of the Doushantuo Formation. We evaluate the role of diagenetic modification of the carbonate rocks and constrain the redox evolution of Ediacaran seawater in space and time. 87Sr/86Sr systematically varies with δ18Ocarb, Sr- and Ba abundances, indicating variable but mostly strong modification of fluid-mobile elements by continental basin fluids. In contrast, REE+Y patterns have preserved seawater-like compositions. Cap dolostones (unit I) on top of the Nantuo diamictites differ from cap dolostones at shallow-water sections on the Yangtze Platform in that they show no Ce-anomalies, and little alteration near the top (87Sr/86Sr = 0.7078, δ18O = -4.0, δ13Ccarb = 1.1), suggesting that δ13Ccarb and δ18O of cap dolostones at many other sections were compromised by hydrothermal alteration. The overlying organic carbon poor micritic dolostone (unit II) shows negative Ce-anomalies that disappear towards the top of the unit. No Ce-anomalies occur in subsequent organic carbon-rich muddy dolostone units (units III to IV). These observations, enrichments in TOC that correlate with variations in redox-sensitive metals in the carbonates, negative δ13Ccarb in units II to IV and the decoupling of δ13Ccarb from δ13Corg argue for the existence of mostly anoxic deep-water at the Yangtze passive continental margin during the Ediacaran. The negative Ce-anomalies at the base of unit II

  18. Novel techniques and insights into the deployment of pop-up satellite archival tags on a small-bodied deep-water chondrichthyan

    NASA Astrophysics Data System (ADS)

    Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.

    2017-01-01

    Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.

  19. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific

    USGS Publications Warehouse

    Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W.

    2012-01-01

    A unique set of ferromanganese crusts and nodules collected from Shatsky Rise (SR), NW Pacific, were analyzed for mineralogical and chemical compositions, and dated using Be isotopes and cobalt chronometry. The composition of these midlatitude, deep-water deposits is markedly different from northwest-equatorial Pacific (PCZ) crusts, where most studies have been conducted. Crusts and nodules on SR formed in close proximity and some nodule deposits were cemented and overgrown by crusts, forming amalgamated deposits. The deep-water SR crusts are high in Cu, Li, and Th and low in Co, Te, and Tl concentrations compared to PCZ crusts. Thorium concentrations (ppm) are especially striking with a high of 152 (mean 56), compared to PCZ crusts (mean 11). The deep-water SR crusts show a diagenetic chemical signal, but not a diagenetic mineralogy, which together constrain the redox conditions to early oxic diagenesis. Diagenetic input to crusts is rare, but unequivocal in these deep-water crusts. Copper, Ni, and Li are strongly enriched in SR deep-water deposits, but only in layers older than about 3.4 Ma. Diagenetic reactions in the sediment and dissolution of biogenic calcite in the water column are the likely sources of these metals. The highest concentrations of Li are in crust layers that formed near the calcite compensation depth. The onset of Ni, Cu, and Li enrichment in the middle Miocene and cessation at about 3.4 Ma were accompanied by changes in the deep-water environment, especially composition and flow rates of water masses, and location of the carbonate compensation depth.

  20. Transverse instability and viscous dissipation of forced 3-D gravity-capillary solitary waves on deep water

    NASA Astrophysics Data System (ADS)

    Cho, Yeunwoo

    2014-11-01

    The shedding phenomena of 3-D viscous gravity-capillary solitary waves generated by a moving air-forcing on the surface of deep water are investigated. Near the resonance where the forcing speed is close to 23 cm/s, two kinds of shedding modes are possible; Anti-symmetric and symmetric modes. A relevant theoretical model equation is numerically solved for the identification of shedding of solitary waves, and is analytically studied in terms of their linear stability to transverse perturbations. Furthermore, by tracing trajectories of shed solitary waves, the decay rate of a 3-D solitary wave due to viscous dissipation is estimated. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002441).

  1. A new genus and species of Thyasiridae (Mollusca, Bivalvia) from deep-water, Beaufort Sea, northern Alaska

    PubMed Central

    Valentich-Scott, Paul; Powell, Charles L.; II; Lorenson, Thomas D.; Edwards, Brian E.

    2014-01-01

    Abstract Bivalve mollusk shells were collected in 2350 m depth in the Beaufort Sea, Arctic Ocean off northern Alaska. Initial identification suggested the specimens were a member of the bivalve family Thyasiridae, but no known eastern Pacific or Arctic living or fossil thyasirid resembled these deep-water specimens. Comparisons were made with the type of the genera Maorithyas Fleming, 1950, Spinaxinus Oliver & Holmes, 2006, Axinus Sowerby, 1821, and Parathyasira Iredale, 1930. We determined the Beaufort Sea species represents a new genus, herein described as Wallerconcha. These specimens also represent a new species, herein named Wallerconcha sarae. These new taxa are compared with known modern and fossil genera and species of thyasirds. PMID:25589851

  2. Dynamic analysis for the design of C.A.L.M. system in shallow and deep waters

    SciTech Connect

    Hwang, Y.L.

    1996-12-31

    This paper presents a time domain analysis approach to evaluate the dynamic behavior of the Catenary Anchor Leg Mooring (CALM) system under the maximum operational condition when a tanker is moored to the terminal, and in the survival condition when the terminal is not occupied by a tanker. An analytical model, integrating tanker, hawser, buoy, and mooring lines is developed to dynamically predict the extreme mooring loads and buoy orbital motions, when responding to the effect of wind, current, wave frequency and wave drift response. Numerical results describing the dynamic behaviors of the CALM system in both shallow and deep water situations are presented and discussed. The importance of the line dynamics and hawser coupled buoy-tanker dynamics is demonstrated by comparing the present dynamic analysis with catenary calculation approach. Results of the analysis are compared with model test data to validate the mathematical model presented.

  3. An unusual new species of paguroid (Crustacea, Anomura, Paguridae) from deep waters of the Gulf of Mexico

    PubMed Central

    Lemaitre, Rafael; Vázquez-Bader, Ana Rosa; Gracia, Adolfo

    2014-01-01

    Abstract A new hermit crab species of the family Paguridae, Tomopaguropsis ahkinpechensis sp. n., is described from deep waters (780–827 m) of the Gulf of Mexico. This is the second species of Tomopaguropsis known from the western Atlantic, and the fifth worldwide. The new species is morphologically most similar to a species from Indonesia, Tomopaguropsis crinita McLaughlin, 1997, the two having ocular peduncles that diminish in width distally, reduced corneas, dense cheliped setation, and males lacking paired pleopods 1. The calcified figs on the branchiostegite and anterodorsally on the posterior carapace, and the calcified first pleonal somite that is not fused to the last thoracic somite, are unusual paguroid characters. A discussion of the affinities and characters that define this new species is included, along with a key to all five species of Tomopaguropsis. PMID:25408613

  4. Apristurus breviventralis, a new species of deep-water catshark (Chondrichthyes: Carcharhiniformes: Scyliorhinidae) from the Gulf of Aden.

    PubMed

    Kawauchi, Junro; Weigmann, Simon; Nakaya, Kazuhiro

    2014-11-03

    A new deep-water catshark of the genus Apristurus Garman, 1913 is described based on nine specimens from the Gulf of Aden in the northwestern Indian Ocean. Apristurus breviventralis sp. nov. belongs to the 'brunneus group' of the genus and is characterized by having pectoral-fin tips reaching beyond the midpoint between the paired fin bases, a much shorter pectoral-pelvic space than the anal-fin base, a low and long-based anal fin, and a first dorsal fin located behind pelvic-fin insertion. The new species most closely resembles the western Atlantic species Apristurus canutus, but is distinguishable in having greater nostril length than internarial width and longer claspers in adult males. Apristurus breviventralis sp. nov. represents the sixth species of Apristurus from the western Indian Ocean and the 38th species globally. 

  5. In Equilibrium Stable Isotope Chemistry of The Deep Water Coral Stylaster Sp. From Rockall Trough: Paleoceanographic Implications

    NASA Astrophysics Data System (ADS)

    Mienis, F.

    Living corals, molluscs and associated water samples were collected from deep sea coral reefs along the margins of Rockall Trough (N. Atlantic). Oxygen (d18O) and carbon (d13C) isotope analyses of seawater and skeletal CaCO3 indicate that vari- ous organisms do not precipitate CaCO3 in isotopic equilibrium with host water. Par- ticularly the most abundant coral genera Lophelia sp and Madrepora sp fractionate markedly, as was already observed by a number of previous studies. However, our new data shows that the coral genus Stylaster, occuring in small numbers in the Rock- all Trough area, is in isotopic equilibrium with seawater. Like for the aragonitic bi- valves and gastropods inhabiting the same deep water reefs, microsampling of growth banded Stylaster specimens can be applied to obtain high resolution time series of in-equilibrium d13C and d18O data covering the life span of individual specimens.

  6. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In

  7. Multivariate Statistical Analysis of Distribution of Deep-Water Gorgonian Corals in Relation to Seabed Topography on the Norwegian Margin

    PubMed Central

    Tong, Ruiju; Purser, Autun; Unnithan, Vikram; Guinan, Janine

    2012-01-01

    Investigating the relationship between deep-water coral distribution and seabed topography is important for understanding the terrain habitat selection of these species and for the development of predictive habitat models. In this study, the distribution of the deep-water gorgonians, Paragorgia arborea and Primnoa resedaeformis, in relation to terrain variables at multiple scales of 30 m, 90 m and 170 m were investigated at Røst Reef, Traena Reef and Sotbakken Reef on the Norwegian margin, with Ecological Niche Factor Analysis applied. To date, there have been few published studies investigating this aspect of gorgonian distribution. A similar correlation between the distribution of P. arborea and P. resedaeformis and each particular terrain variable was found at each study site, but the strength of the correlation between each variable and distribution differed by reef. The terrain variables of bathymetric position index (BPI) and curvature at analysis scales of 90 m or 170 m were most strongly linked to the distribution of both species at the three geographically distinct study sites. Both gorgonian species tended to inhabit local topographic highs across all three sites, particularly at Sotbakken Reef and Traena Reef, with both species observed almost exclusively on such topographic highs. The tendency for observed P. arborea to inhabit ridge crests at Røst Reef was much greater than was indicated for P. resedaeformis. This investigation identifies the terrain variables which most closely correlate with distribution of these two gorgonian species, and analyzes their terrain habitat selection; further development of predictive habitat models may be considered essential for effective management of these species. PMID:22912887

  8. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    NASA Astrophysics Data System (ADS)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-01-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  9. Sedimentation processes and new age constraints on rifting stages in Lake Baikal: results of deep-water drilling

    NASA Astrophysics Data System (ADS)

    Kuzmin, M. I.; Karabanov, E. B.; Prokopenko, A. A.; Gelety, V. F.; Antipin, V. S.; Williams, D. F.; Gvozdkov, A. N.

    With this paper we present a first attempt to combine the direct results on lithology, composition and age dating in the boreholes BDP-93, BDP-96 and BDP-97 with geological and seismic data from the areas where those sections were drilled. The sedimentary environments represented by the BDP boreholes are markedly different and possess characteristic lithological features. The results of the deep drilling provide the essential means for testing numerous age models used in geological reconstructions of the Lake Baikal rifting dynamics. Neither the basin-wide unconformity interpreted from seismic data, nor the interpreted change from shallow-water to deep-water facies at the boundary of the seismic stratigraphic complexes were found in the BDP-96 boreholes on Academician Ridge. Also, lithology does not support the proposed reconstructions of intense lake level fluctuations and transgressions during the Pliocene at Academician Ridge. The continuous deep-water hemipelagic sedimentation at Academician Ridge has existed for the past 5Ma. The beginning of an intense rifting phase of the Neobaikalian sub-stage and related drastic changes in sedimentation processes were interpreted on seismic sections as the basin-wide unconformity B10. Different age estimates for this boundary ranged from Late Pliocene (3.5Ma) to Plio-Pleistocene boundary. As shown by BDP-96 borehole, B10 is associated with a lithological change from diatomaceous ooze to dense silty clay and not with an erosional contact. The new age for this boundary in BDP-96 is approximately 2.5Ma. This new age constraint suggests that the upper sedimentary strata of Northern Baikal (1.5-1.7km thick) have formed during the past 2.5Ma with average sedimentation rates of 60-70cm/ka. The BDP-93 boreholes at Buguldeika suggest that uplift in Primorsky Range took place prior to 1.07-1.31Ma, a date which exceeds the age of previous geological models.

  10. Near-surface mixing and pronounced deep-water stratification in a compartmentalised, human-disturbed atoll lagoon system

    NASA Astrophysics Data System (ADS)

    Gardner, J. P. A.; Garton, D. W.; Collen, J. D.

    2011-03-01

    Palmyra Atoll has four partially isolated lagoons up to 50 m in depth, each with complex and variable bottom topographies. Measurements of depth, temperature, salinity, turbidity and dissolved oxygen (DO) revealed a well-mixed shallow surface layer (0-10 m depth) and below that pronounced stratification of DO in the absence of a pycnocline. Turbidity increased in a step-like manner at ~25 m depth, at the oxycline. For all deep sections of the lagoon (>30 m), DO declined uniformly to 0% saturation. As determined from filtration, mass of particulates was independent of depth. Surface mixing and deep-water stratification are both stable at different temporal scales, including day versus night, daily, weekly and annually. We suggest that lagoon circulation is represented by a shallow, westward-moving surface layer of well-to-partially mixed water with high DO and low turbidity, underlain by a relatively static and temporally stable layer with low to zero DO and elevated turbidity. This is the first report of such conditions within a deep lagoon system, and only the second report of anoxic conditions in any such system. In deep-water, stable euxinic conditions reflect bottom topography, with dysoxic and anoxic water being constrained within silled basins. The occurrence and depth of large volumes of sediment-laden and dysoxic/anoxic water need to be considered in management proposals designed to increase water flow through the lagoon. These novel water column conditions most probably arose as a consequence of military construction work, consistent with published reports of profound changes to the atoll during 1940-1945. If so, they highlight the need to better understand the possible consequences of cutting channels and modification of lagoon flow at many atolls across the central Pacific Ocean.

  11. Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans

    NASA Astrophysics Data System (ADS)

    Bostock, H. C.; Mikaloff Fletcher, S. E.; Williams, M. J. M.

    2013-10-01

    Using ocean carbon data from global datasets, we have developed several multiple linear regression (MLR) algorithms to estimate alkalinity and dissolved inorganic carbon (DIC) in the intermediate and deep waters of the Southern Hemisphere (south of 25° S) from only hydrographic data (temperature, salinity and dissolved oxygen). A Monte Carlo experiment was used to identify a potential density (σθ) of 27.5 as an optimal break point between the two regimes with different MLR algorithms. The algorithms provide a good estimate of DIC (R2=0.98) and alkalinity (R2=0.91), and excellent agreement for aragonite and calcite saturation states (R2=0.99). Combining the algorithms with the CSIRO Atlas of Regional Seas (CARS), we have mapped the calcite saturation horizon (CSH) and aragonite saturation horizon (ASH) for the Southern Ocean at a spatial resolution of 0.5°. These maps are more detailed and more consistent with the oceanography than the previously gridded GLODAP data. The high-resolution ASH map reveals a dramatic circumpolar shoaling at the polar front. North of 40° S the CSH is deepest in the Atlantic (~ 4000 m) and shallower in the Pacific Ocean (~ 2750 m), while the CSH sits between 3200 and 3400 m in the Indian Ocean. The uptake of anthropogenic carbon by the ocean will alter the relationships between DIC and hydrographic data in the intermediate and deep waters over time. Thus continued sampling will be required, and the MLR algorithms will need to be adjusted in the future to account for these changes.

  12. Physiological responses to maximal treadmill and deep water running in the young and the middle aged males.

    PubMed

    Nakanishi, Y; Kimura, T; Yokoo, Y

    1999-05-01

    In this study we investigated the effects of age factors on physiological responses to deep water running (DWR) compared with those of treadmill running (TMR) while the water and ambient temperatures were kept in thermoneutral conditions. Fourteen young healthy non-smoker males (Age = 20.4 +/- 3.3 years, Height = 170.7 +/- 6.2 cm, Weight = 65.1 +/- 11.4 kg) and fourteen middle aged healthy non-smoker males (Age = 38.6 +/- 4.4 years, Height = 171.8 +/- 4.7 cm, Weight = 75.4 +/- 9.6 kg) were selected for the study. Two maximal tests, one on the treadmill and the other running in deep water using the Wet Vest (Lincoln life jacket) were completed by each subject. The order of trial was counterbalanced with half of the subjects in each group completing TMR first and the rest of those completing DWR first. Although the young males had significantly (P < 0.05) higher relative VO2max, HRmax than the middle aged males, there were no significant differences in absolute VO2max, respiratory exchange ratio (RER), maximal ventilation (VEmax), ratings of perceived exhaustion (RPE), and peak blood lactate values between the two groups. In conclusion, the VO2max, HRmax, VEmax, and peak blood lactate value in response to DWR were significantly lower than those to TMR in both the young and the middle aged males in the thermoneutral conditions. However, there was no significant interaction between age and exercise modes other than RPE of legs at maximal efforts in the present study. We found that the decrease in the maximal physiological responses to DWR compared to TMR is not different between the young and middle aged males.

  13. First autonomous bio-optical profiling float in the Gulf of Mexico reveals dynamic biogeochemistry in deep waters.

    PubMed

    Green, Rebecca E; Bower, Amy S; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local "hot spots", including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for

  14. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network

  15. Dispersion of channel-sediment contaminants in distributary fluvial systems: Application to fluvial tephra and radionuclide redistribution following a potential volcanic eruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; DeLong, Stephen B.; Cline, Michael L.; Harrington, Charles D.; Keating, Gordon N.

    2008-02-01

    Predicting the fluvial transport and mixing of channel-sediment contaminants is necessary for assessing and mitigating heavy-metal and nuclear-waste contamination in rivers. The dilution-mixing model is widely used for this purpose in tributary channel systems that transport contaminants as bed-material load without significant overbank sedimentation. Here a more general, three-dimensional (3D) contaminant transport numerical model is developed and tested based on bed scour, turbulent mixing of contaminant material with uncontaminated channel-bed sediments, and re-deposition of the mixture by the cumulative effect of many flood events. First, the model is applied to a synthetic alluvial-fan environment downstream from a localized contaminant source in order to illustrate the model behavior. Second, the model is validated against measured tephra concentrations in channels downstream from the Lathrop Wells scoria cone volcano, a localized source of basaltic tephra to downstream channels otherwise comprised of non-basaltic sediments. Third, the model is applied to the problem of predicting the concentration of radionuclide-bound tephra in channels downstream from the proposed nuclear-waste repository at Yucca Mountain, Nevada, in the event of a volcanic eruption through the repository. Contaminated tephra is mobilized from the landscape in this model using threshold criteria for hillslope gradient and channel stream power. Mobilized contaminated tephra is mixed with uncontaminated channel-bed sediments using the contaminant transport model and deposited in channels of the Fortymile Wash alluvial fan where the residents nearest to the proposed repository live. The results of twenty Monte Carlo simulations of eruption fallout and post-eruption redistribution corresponding to a range of wind conditions and eruption magnitudes provide information on the mean and variability of contaminated tephra concentrations to be expected in channels of the Fortymile Wash alluvial fan

  16. Seafloor Morphology Associated With Deep-Water Gas Plumes Near Eel Canyon

    NASA Astrophysics Data System (ADS)

    Gwiazda, R.; Paull, C. K.; Caress, D. W.; Lundsten, E.; Anderson, K.; Thomas, H.

    2011-12-01

    During a surface ship multibeam mapping cruise associated with NOAA's Ocean Exploration (OE) program, five water column acoustic anomalies that extended up to 1,400 m upwards from the seafloor were encountered above both sides of the Eel Submarine Canyon off the coast of northern California (Gardner et al., 2010). These anomalies are believed to be methane gas plumes, originating from the seafloor at depths well within the gas hydrate stability field. To explore the sources of these plumes, higher resolution multi-beam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) and 1-4.5 kHz chirp seismic reflection profiles of the seafloor, surrounding these plumes, were collected in July 2011. These surveys were conducted during four 17.5-hour-long autonomous underwater vehicle (AUV) dives in up to 2 km water depths. The largest persistent water column plume appears to emanate from a distinctive topographic mound that is ~650 m long, 350 m wide, and stands nearly 60 m higher than the surrounding seafloor at 1,850 m depth. This topographic mound occurs on a ~2 km wide relatively level bench formed at the base of a 3.5 km wide scallop-shaped slide scar. Chirp profiles show that at least 40 m of layered sediment drape the bottom and sidewalls of this scar, suggesting that the slope failure that shaped this landscape was not a recent event. The surface of this mound is characterized by a distinctive hummocky topography consisting of small sometimes circular ~0.5 m deep pits, local highs and lows, separated by ~0.5 m high ledges that could have been formed by irregular erosion of the bedding surfaces. A semicircular crater-like depression occurs on the flank of this mound that is ~80 m across and more than 10 m deep. Because similar seafloor textures have been observed in other AUV surveys associated with methane-derived carbonate bearing sites known to overlie nearby seafloor gas hydrate deposits (e.g., Hydrate Ridge, Bullseye Vent, Santa Monica

  17. Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Li, Chao; Zhou, Lian; Feng, LianJun; Algeo, Thomas J.; Zhang, FeiFei; Romaniello, Stephen; Jin, ChengSheng; Ling, HongFei; Jiang, ShaoYong

    2017-08-01

    Many late Neoproterozoic to early Cambrian fossils of multicellular eukaryotes, including those of benthic animals, are found preserved under anoxic and even euxinic bottom-water conditions, which is contradictory to the consensus that oxygen is essential to eukaryotes. To investigate this conundrum, we conducted an integrated study of iron speciation, redox-sensitive trace elements, and Mo isotopes (δ98Mo) on the black shale interval of the lower Cambrian Hetang Formation (∼535-521 Ma) at Lantian, South China, in which benthic sponge fossils are abundant in the lower member (LM) but absent in the upper member (UM). Iron speciation data point to uniformly anoxic-ferruginous conditions in the LM and euxinic conditions in the UM, whereas the trace-element and δ98Mo data show greater secular variation in redox conditions. The LM shows higher mean trace element concentrations (Mo: 108 ppm, U: 36 ppm, V: 791 ppm) and lower and more variable δ98Mo (+0.13 to +1.76‰) relative to the UM (Mo: 45 ppm, U: 18 ppm, V: 265 ppm, δ98Mo: +1.59 to +1.67‰), and ratios of redox-sensitive trace element concentrations to total organic carbon are significantly more variable and higher on average in the LM relative to the UM. The appearance of sponge fossils and lower δ98Mo values correlate strongly with gray (i.e., lighter-colored) layers in the LM. These patterns can best be interpreted as recording mainly euxinic conditions throughout deposition of the study units, with more intense background euxinia in the LM relative to the UM, but also with frequent transient oxygenation events in the LM that do not appear in the UM. The transient oxygenation events of the LM led to the initial colonization of the deep Nanhua Basin by sponges, and the termination of these events in the UM caused sponge faunas to disappear until a general rise in O2 levels later in the Cambrian permitted their return to deeper-water habitats. Our study also illustrates that multiple geochemical and

  18. Experience of cathodic protection, fabrication and installation of anodes for deep water pipelines in the North Sea and the Norwegian Sea

    SciTech Connect

    Eliassen, S.; Pettersen, N.H.

    1996-08-01

    Statoil is the major operator of the oil and gas pipelines in the North Sea and the Norwegian Sea. Different coating systems have been used for external corrosion protection of the pipelines. The paper presents the company`s experience regarding cathodic protection design and fabrication and installation of anodes for deep water pipelines.

  19. Outer Continental Shelf Deep Water Royalty Relief Act. Introduced in the Senate, One Hundred Third Congress, Second Session, April 11, 1994

    SciTech Connect

    Not Available

    1994-01-01

    This is a report on the bill (S.318) which provides for the energy security of the Nation through encouraging the production of domestic oil and gas resources in deep water on the Outer Continental Shelf in the Gulf of Mexico, and on possible amendments it.

  20. Deep water bottom current evolution in the northern South China Sea during the last 150 kyr: Evidence from sedimentary sortable silt and magnetic fabric

    NASA Astrophysics Data System (ADS)

    Li, Niu; Yang, Xiaoqiang; Peng, Jie; Zhou, Qixian; Su, Zhihua

    2017-04-01

    Deep water bottom current (DWBC) plays a central role in global climate. Relative to the Atlantic, the evolution of Pacific deepwater circulation is still unclear. Luzon Strait with a sill depth of about 2600 m serves as the only important deep connection between the South China Sea (SCS) and the Pacific, providing a unique opportunity to monitor the western Pacific deep water circulation. We present a magnetic and grain size analysis of two sediment cores (PC111 and PC83) located in Xisha Trough, northern SCS in order to reconstruct past changes of DWBC during the last 150 kyrs. Variations in the mean size of sortable silt and the magnetic grain size was interpreted to indicate past changes of DWBC, which suggest abrupt, millennial-scale increasing DWBC strength corresponding to Heinrich Stadials (HS1, HS2, HS3, HS4. HS5, HS6, HS7, HS8, HS9, HS10, HS11) for past 150 kyr, times of weak North Atlantic Deep Water formation. The direction of DWBC reconstructed from the anisotropy of magnetic susceptibility (AMS) is mostly N-S direction in core PC111 from 30 to 0 ka and NW-SE direction in core PC83 from 50 to 0 ka, which are parallel to the local topography. The good relationship between DWBC strength and the relative positive value of the planktonic foraminifera δ18O suggests the evolution of DWBC in northern SCS, sourced probably from North Pacific Deep Water, closely linking to the global climate.

  1. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program

    PubMed Central

    York, Paul H.; Carter, Alex B.; Chartrand, Kathryn; Sankey, Tonia; Wells, Linda; Rasheed, Michael A.

    2015-01-01

    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts. PMID:26279474

  2. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

    DTIC Science & Technology

    2015-09-30

    mammal sounds in range and depth from a single mooring or platform (e.g. glider), by exploiting the propagation effects of the deep-water sound...makes mitigation decisions problematic. The range of a marine mammal sound from a compact platform can also be obtained by detecting the same event

  3. Investigating the flux of North Atlantic Deep Water into the South Atlantic Basin during Termination I: Observations from Neodymium Isotopes

    NASA Astrophysics Data System (ADS)

    Hartman, A. E.; Goldstein, S. L.; Hemming, S. R.; Pahnke, K.

    2010-12-01

    The South Atlantic is a region of intermixing between North Atlantic Deep Water (NADW) and southern-sourced deep waters. The strength of NADW formation can be used to monitor changes in meridional overturning circulation. Neodymium (Nd) isotopes have been shown to be a valuable water mass tracer in this region because the ɛNd value of intermediate and deep waters is dependent on the mixing ratio of southern- and northern-sourced water. A spliced record from cores RC11-83 (42.07°S, 9.717°E, 4718m) and TNO57-21 (40.6°S, 7.816°E, 4918 m) showed a decrease (>2ɛNd units) during the last termination, indicative of a retreat or shoaling of NADW in the South Atlantic during glacial periods1. Nearby core TNO57-6 (42.92°S, 8.88°E, 3750m) is slightly further south and significantly shallower than RC11-83/TNO57-21. A substantially greater Last Glacial Maximum (LGM) to Holocene offset (>4 ɛNd units) at this site was replicated in two studies1,2. The more dramatic shift was interpreted to record more Pacific-like waters reaching the TNO57-6 site, and the Circum-Antarctic in general, during the LGM. Here we show that the methods for obtaining the bottom water ɛNd signal were likely compromised by a contaminating phase within the fine sediment during leaching. To develop a reliable record for TNO57-6, we modified our previous procedure, in line with the Cambridge group3, and are extracting the ɛNd values of dissolved Fe-Mn oxide encrusted, mixed-species planktonic foraminifera. The ɛNd values of fish debris from the same depth confirm that the foram record is representing the bottom water signal. Although the new record still predicts an ɛNd unit decrease during Termination I, the bottom waters at this site during the LGM are less Pacific-like than originally thought. Therefore, the new record shows a very similar trend to RC11-83/TNO57-21 and both core sites were likely bathed in the same bottom waters during the LGM and Holocene. However, there are clues that the

  4. Reconstructing deglacial Atlantic deep water circulation using the Nd isotopic composition of Fe-Mn oxide coatings from planktonic foraminfera

    NASA Astrophysics Data System (ADS)

    Piotrowski, A. M.; Galy, A.; Roberts, N. L.; Nicholl, J.; Yu, J.; Clegg, J.; Pomies, C.; Scrivner, A. E.

    2009-12-01

    During the last few decades, neodymium isotopes have been increasingly used as a paleoceanographic proxy, to reconstruct past changes in deep ocean circulation [1,2] and river outputs to the surface ocean [3]. The widespread use of the Nd isotope proxy depends on whether the Nd isotopic composition of past seawater can be reliably extracted from authigenic sediment phases. Here we show that the Fe-Mn oxide coatings which are removed from planktonic foraminifera during reductive cleaning can be used to reconstruct past deep water Nd isotopic composition. In effect, we are using the planktonic foraminiferal calcite as a low-Nd carrier phase to leach authigenic Fe-Mn oxides, which have higher Nd concentration and record the Nd isotopic composition of bottom water. Leaching experiments on northeastern North Atlantic core BOFS 8K (52N, 22W, 4045mbsl) show methodological artifacts during bulk sediment leaching, but that the Fe-Mn oxide coatings from the planktonic foraminifera have the same Nd isotopic composition as bottom water. Interestingly, the Nd isotopic composition of planktonic foraminifera which have not been cleaned of Fe-Mn oxide coatings, and planktonic foraminifera which have been reductively cleaned by the Boyle and Kiegwin (1987) [4] method are within error of each other throughout the deglacial records, suggesting incomplete removal or significant re-scavenging of Nd from Fe-Mn oxides to cleaned foraminiferal calcite during reductive cleaning. There is no indication that we are incorporating a significant surface-water Nd isotopic signal. Instead, these records and laboratory tests may suggest that some published “cleaned” planktonic foraminiferal records are preserving a deep water signal, rather than a surface ocean signal. The downcore BOFS 8K record of planktonic foraminferal Fe-Mn coating Nd isotopes shows a large deglacial change consistent with benthic carbon isotopes, supporting more southern-sourced water reaching the site during the last

  5. The long-term variability of chemical structure of deep-water basins of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Serebrennikova, Ekaterina

    2017-04-01

    The Caspian Sea is a unique water object: the biggest lake on Earth, so large that it actually functions as a sea, but totally isolated from the World Ocean and extremely responsive to the climatic changes. The Caspian Sea is characterized by periodical large-scale sea level oscillations - it is one of the manifestations of multidecadal climatic fluctuations on East European Plain. In order to monitor the environmental conditions staff of the Laboratory of Hydrochemistry of Russian Federal Research Institution of Fisheries and Oceanography (FSBSI "VNIRO") in collaboration with other russian scientific institutions conducts annual research cruises to the Caspian Sea. For the last 40 years natural and anthropogenic climatic changes caused a stable stratification of the water column in both Caspian basins and the nourishment depletion of the photic layer, created and annually aggravated by the biological pump. The data, collected in annual expeditions since 1995, shows the progressing hypoxia below the depth of 400 meters and the formation of hydrogen sulfidic contamination in bottom waters. The cumulative effect of natural variability and extremely intensive anthropogenic stress creates a very depressing environment for all the aquatics, from phytoplankton to unique commercial species. In the last 20 years the level of the Caspian Sea has lowered for 2,5 meters. This is a result of changes in the water balance of the Caspian Sea, that includes the decrease of freshwater income. In long-term perspective this leads to an increase in surface water density and in winter convection depth. However up until 2016 the stratification of the water column stayed stable, so the deep waters were isolated form the atmosphere. Annual monitoring since 1995 has shown gradual oxygen depletion and intensive accumulation of biogenic elements. In 2016 concentrations of phosphate and nitrate were the highest ever registered for the Caspian Sea. The analysis of the research conducted in

  6. Controls on iron distributions in the deep water column of the North Pacific Ocean: Iron(III) hydroxide solubility and marine humic-type dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Kitayama, Saori; Kuma, Kenshi; Manabe, Eri; Sugie, Koji; Takata, Hyoe; Isoda, Yutaka; Toya, Kenji; Saitoh, Sei-Ichi; Takagi, Shohgo; Kamei, Yoshihiko; Sakaoka, Keiichiro

    2009-08-01

    Dissolved Fe in the western and central North Pacific Ocean was characterized by surface depletion, middepth maxima and, below that, a slight decrease with depth similar to the vertical distributions of nutrients, apparent oxygen utilization, Fe(III) hydroxide solubility, and humic-type fluorescence (H-flu) intensity. Dissolved Fe concentrations ([D-Fe], <0.22-μm fraction) in the deep water column were one-half lower in the central region (0.3-0.6 nM) than the western region (0.5-1.2 nM) although the Fe(III) solubility ([Fe(III)sol], <0.025-μm fraction) levels and distributions in deep waters were almost the same between both regions with middepth maxima (˜0.6 nM) at 500-1500-m depth range and then a gradual decrease to ˜0.3 nM at 5000-m depth. Higher [D-Fe] than [Fe(III)sol] in the deep water column of the western region results from the higher production of dissolved Fe from the decomposition of sinking particulate organic matter in the western region than the central region because of the high atmospheric and/or lateral Fe inputs in the western region. Similarity between [D-Fe] level and [Fe(III)sol] value at each deep water depth in the central region may be attributed to [D-Fe] being nearly in the solubility equilibrium with Fe(III) hydroxide in seawater. Strong linear correlation between [D-Fe] and H-flu intensity in the central region and relatively similar linear relationships between [Fe(III)sol] and H-flu intensity in the western and central regions are the first confirmation that humic-type fluorescent dissolved organic matter may be responsible for [D-Fe] in the deep water column as natural organic ligands complexing with Fe(III).

  7. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction

    PubMed Central

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M.; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world’s largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  8. [Upward and regeneration fluxes of inorganic nitrogen and phosphorus in the deep-water areas of the Black-Sea].

    PubMed

    Krivenko, O V; Parkhomenko, A V

    2014-01-01

    Upward and regeneration fluxes of inorganic nitrogen and phosphorusin the euphotic zone of the Black Sea deep waters were estimated using data from long-term observations of nitrate and phosphate vertical distribution and modeling of plankton month- and area-averaged nutrients excretion. The upward fluxes were calculated using monthly average nitrate and phosphate conce