Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum
2018-01-01
In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.
Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum
2018-01-01
In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284
Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO
NASA Astrophysics Data System (ADS)
Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.
2013-03-01
Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.
Material influence on hot spot distribution in the nanoparticle heterodimer on film
NASA Astrophysics Data System (ADS)
Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia
2018-04-01
The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.
Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, L.; Balakrishnan, A.; Sanosh, K.P.
2010-08-15
Silver (Ag) nanoparticles ({approx}6 nm) were synthesized using a novel dialysis process. Silver nitrate was used as a starting precursor, ethylene glycol as solvent and hydroxy propyl cellulose (HPC) introduced as a capping agent. Different batches of reaction mixtures were prepared with different concentrations of silver nitrate (AgNO{sub 3}). After the reduction and aging, these solutions were subjected to ultra-violet visible spectroscopy (UVS). Optimized solution, containing 250 mg AgNO{sub 3} revealed strong plasmon resonance peak at {approx}410 nm in the spectrum indicating good colloidal state of Ag nanoparticles in the diluted solution. The optimized solution was subjected to dialysis processmore » to remove any unreacted solvent. UVS of the optimized solution after dialysis showed the plasmon resonance peak shifting to {approx}440 nm indicating the reduction of Ag ions into zero-valent Ag. This solution was dried at 80 {sup o}C and the resultant HPC capped Ag (HPC/Ag) nanoparticles were studied using transmission electron microscopy (TEM) for their particle size and morphology. The particle size distribution (PSD) analysis of these nanoparticles showed skewed distribution plot with particle size ranging from 3 to 18 nm. The nanoparticles were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform infrared spectroscopy (FT-IR).« less
Gold core@silver semishell Janus nanoparticles prepared by interfacial etching
NASA Astrophysics Data System (ADS)
Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei
2016-07-01
Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface. Electronic supplementary information (ESI) available: Additional TEM, UV-vis, XPS, and electrochemical data. See DOI: 10.1039/c6nr03368g
Toxicity of silver nanoparticles in zebrafish models
NASA Astrophysics Data System (ADS)
Asharani, P. V.; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh
2008-06-01
This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.
High magnetic coercivity of FePt-Ag/MgO granular nanolayers
NASA Astrophysics Data System (ADS)
Roghani, R.; Sebt, S. A.; Khajehnezhad, A.
2018-06-01
L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.
Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, A., E-mail: ana.maria.nowak@gmail.com; Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów; Szade, J.
Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover,more » UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.« less
Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V
2015-07-21
Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.
Wu, Jian; Zheng, Yudong; Song, Wenhui; Luan, Jiabin; Wen, Xiaoxiao; Wu, Zhigu; Chen, Xiaohua; Wang, Qi; Guo, Shaolin
2014-02-15
Bacterial cellulose has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity, which is one of critical skin-barrier functions in wound healing. To overcome such deficiency, we developed a novel method to synthesize and impregnate silver nanoparticles on to bacterial cellulose nanofibres (AgNP-BC). Uniform spherical silver nano-particles (10-30 nm) were generated and self-assembled on the surface of BC nano-fibers, forming a stable and evenly distributed Ag nanoparticles coated BC nanofiber. Such hybrid nanostructure prevented Ag nanoparticles from dropping off BC network and thus minimized the toxicity of nanoparticles. Regardless the slow Ag(+) release, AgNP-BC still exhibited significant antibacterial activities with more than 99% reductions in Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, AgNP-BC allowed attachment and growth of epidermal cells with no cytotoxicity emerged. The results demonstrated that AgNP-BC could reduce inflammation and promote wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.
2011-01-01
Background The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials. Results AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG) staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc. Using transmission electron microscopy (TEM), nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver. Conclusions The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver granules containing selenium and sulfur in the intestinal wall of rats exposed to either of the silver forms suggests a common mechanism of their formation. Additional studies however, are needed to gain further insight into the underlying mechanisms of the granule formation, and to clarify whether AgNPs dissolve in the gastrointestinal system and/or become absorbed and translocate as intact nanoparticles to organs and tissues. PMID:21631937
NASA Astrophysics Data System (ADS)
Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick
2010-08-01
This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).
Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles
NASA Astrophysics Data System (ADS)
Tchaplyguine, M.; Andersson, T.; Zhang, Ch.; Björneholm, O.
2013-03-01
Core-shell segregation of copper and silver in self-assembled, free nanoparticles is established by means of photoelectron spectroscopy in a wide range of relative Cu-Ag concentrations. These conclusions are based on the analysis of the photon-energy-dependent changes of the Cu 3d and Ag 4d photoelectron spectra. The nanoparticles are formed from mixed Cu-Ag atomic vapor created by magnetron sputtering of a bimetallic sample in a gas-aggregation cluster source. Even at similar Cu and Ag fractions in the primary vapor the surface of the nanoparticles is dominated by silver. Only at low Ag concentration copper appears on the surface of nanoparticles. For the latter case, a threefold decrease in the Ag 4d spin-orbit splitting has been detected. The specific component distribution and electronic structure changes are discussed in connection with the earlier results on Cu-Ag macroscopic and surface alloys.
NASA Astrophysics Data System (ADS)
Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang
Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.
Gold core@silver semishell Janus nanoparticles prepared by interfacial etching.
Chen, Limei; Deming, Christopher P; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei
2016-08-14
Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.
Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James
2009-12-09
A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO(3) concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).
NASA Astrophysics Data System (ADS)
Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James
2009-12-01
A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO3 concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).
Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity.
Qin, Rui; Li, Guian; Pan, Liping; Han, Qingyan; Sun, Yan; He, Qiao
2017-04-01
At normal atmospheric temperature, the modified sol–gel method was employed to synthesize SiO2 nanospheres (SiO2 NSs) whose average size was about 352 nm. Silver nanoparticles (Ag NPs) were uniformly distributed on the surface of SiO2 nanospheres (SiO2 NSs) by applying chemical reduction method at 95 °C and the size of silver nanoparticles (Ag NPs) could be controlled by simply tuning the reaction time and the concentration of sodium citrate. Besides, the size, morphology, structure and optical absorption properties of SiO2@Ag composite nanoparticles were measured and characterized by laser particle size analyzer (LPSA), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and ultraviolet visible absorption spectrometer (UV-Vis), respectively. Furthermore, antimicrobial effect experiments that against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were carried out to characterize the antibacterial activity of synthesized SiO2@Ag composite nanoparticles. The results show that the prepared SiO2@Ag composite nanoparticles have strong antimicrobial activity, which is associated with the size of silver nanoparticles.
Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method.
Ueno, Shintaro; Nakashima, Kouichi; Sakamoto, Yasunao; Wada, Satoshi
2015-03-24
Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr 2+ ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-10-08
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-01-01
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599
Fatema, Ummul K; Rahman, M Muhibur; Islam, M Rakibul; Mollah, M Yousuf A; Susan, Md Abu Bin Hasan
2018-03-15
Water in oil microemulsion (w/o) is a simple preparative route for nanoparticles where water droplets (dispersed in continuous oil medium and stabilized by surfactants and cosurfactants) act as nanoreactors to carry out chemical reactions. If polymeric matrix is incorporated inside the core of the microemulsions, it should prevent the agglomeration of nanoparticles after separation from microemulsions. Thus polymer nanocomposite films prepared from w/o microemulsions are expected to give narrow and homogeneous size distribution of nanoparticles throughout the polymer host. Silver/poly(vinyl alcohol) (Ag/PVA) nanocomposite film was successfully prepared, for the first time, using Triton X-100 (TX-100)/1-butanol/cyclohexane/water microemulsion. Reduction of the metal salt was carried out in the core of w/o microemulsion droplets containing PVA polymeric matrix. After separation from the microemulsion, Ag/PVA nanocomposite film was then prepared by solution casting method. The antibacterial activity of the nanocomposites was tested against Gram-negative, Escherichia coli and Gram-positive, Staphylococcus aureus by agar diffusion method. Ag nanoparticles with an average diameter of 105 nm could be synthesized using PVA, whereas in the absence of PVA the nanoparticles agglomerated. The distribution of Ag nanoparticles on PVA surface of the nanocomposite film prepared using microemulsion was uniform, whereas the film prepared through in situ generation of Ag nanoparticles by chemical reduction process on PVA host showed non-uniform, coagulated, bunches of Ag nanoparticles. The film synthesized using microemulsion exhibited enhanced antibacterial efficacy compared to that prepared through in situ synthesis under the same test condition. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun
2017-08-01
Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.
NASA Astrophysics Data System (ADS)
Martínez-Bernett, D.; Silva-Granados, A.; Correa-Torres, S. N.; Herrera, A.
2016-02-01
It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution.
2013-01-01
We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.
2016-09-01
A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.
NASA Astrophysics Data System (ADS)
López-Miranda, A.; Viramontes-Gamboa, G.; López-Valdivieso, A.
2014-02-01
The synthesis of silver nanoparticles has been investigated using Ag(CN) 2 - species as precursor, citrate ions as reducing agent, and dodecyl sulfate ions as stabilizer, at pH 11 and 97 °C, in a batch stirred glass reactor. The role of Cu2+ ions in the synthesis was also studied. Bird- of- paradise flower-type nanostructures composed of AgCN nanowires having inside Ag and AgCN nanoparticles were produced in the absence of Cu2+ ions. The nanostructures slowly grew and transformed to AgCN nanowires with embedded Ag and AgCN nanoparticles, having a mean size of 9.7 ± 3.6 nm. The presence of Cu2+ ions in the synthesis significantly enhanced the production of the nanostructures. Nanowires having a thickness of 63 ± 33 nm and length of up to 20 μm were produced. Cu2+ ions also simultaneously lead to the synthesis of ordinary free Ag nanoparticles with a bimodal size distribution (mean sizes of 9.9 ± 3.9 and 65.5 ± 27 nm) and a low experimental formation kinetic rate constant of 1.22 × 10-4 s-1. Feasible mechanisms are presented for the origin of the AgCN nanowires, Ag and AgCN nanoparticles inside the nanowires, and for the free Ag nanoparticles. UV/Vis spectrometry was used to measure the surface plasmon resonance of the nanoparticles and the synthesis kinetic rate constant of the free Ag nanoparticles. ATR-FTIR spectroscopy, EDS-SEM, EDS-TEM, and HRTEM were used to characterize the size, crystal structure, texture, and chemical composition of the synthesis products.
One-step preparation of antimicrobial silver nanoparticles in polymer matrix
NASA Astrophysics Data System (ADS)
Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.
2015-03-01
Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV-Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.
MBE growth of GaAs and InAs nanowires using colloidal Ag nanoparticles
NASA Astrophysics Data System (ADS)
Ilkiv, I. V.; Reznik, R. R.; Kotlyar, K. P.; Bouravleuv, A. D.; Cirlin, G. E.
2017-11-01
Ag colloidal nanoparticles were used as a catalyst for molecular beam epitaxy of GaAs and InAs nanowires on the Si(111) substrates. The scanning electron microscopy measurements revealed that nanowires obtained are uniform and have small size distribution.
Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin
2018-06-22
A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.
NASA Astrophysics Data System (ADS)
Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin
2018-06-01
A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.
NASA Astrophysics Data System (ADS)
Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.
2017-04-01
Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.
Jung, Jae Hee; Hwang, Gi Byoung; Lee, Jung Eun; Bae, Gwi Nam
2011-08-16
Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ∼32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.
NASA Astrophysics Data System (ADS)
Rao Kummara, Madhusudana; Kumar, Anuj; Soo, Han Sung
2017-11-01
Sodium hyaluronate (HA) stabilized curcumin-Ag (Cur-Ag) hybrid nanoparticles were prepared in the water-ethanol mixture under constant mechanical stirring condition. The obtained HA stabilized Cur-Ag hybrid nanoparticles were characterized by fourier transform infrared spectroscopy, UV-visible spectroscopy, and x-ray diffraction to confirm the formation and structural interactions. The obtained Cur-Ag hybrid nanoparticles showed spherical shape with their size range 5-12 nm that was increased with the increasing a amount of silver ions as confirmed by transmission electron microscopic analysis. Further, a fibrous cellulose filter paper was impregnated with these hybrid nanoparticles and chitosan (CS) as biopolymer via polyelectrolyte complexation. The morphological analysis confirmed the uniform distribution of hybrid nanoparticle system onto the cellulose fibers of the fibrous filter paper. As per disc diffusion method, the Cur-Ag hybrid nanoparticles impregnated CS-coated filter paper exhibited excellent antibacterial properties against gram-negative Escherichia coli (E.coli) bacteria compared to HA stabilized Cur only. Moreover, as prepared hybrid nanoparticles impregnated biocomposite system is eco-friendly with efficient antibacterial property and have good potential to be used in medical applications.
The reported size distribution of silver nanoparticles (AgNPs) is strongly affected by the underlying measurement method, agglomeration state, and dispersion conditions. A selection of AgNP materials with vendor-reported diameters ranging from 1 nm to 100 nm, various size distrib...
Seyhan, Merve; Kucharczyk, William; Yarar, U Ecem; Rickard, Katherine; Rende, Deniz; Baysal, Nihat; Bucak, Seyda; Ozisik, Rahmi
2017-01-01
The structure and properties of nanocomposites of poly(ethylene oxide), with Ag and Au nanoparticles, surface modified with a 1:1 (by volume) oleylamine/oleic acid mixture, were investigated via transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, dynamic mechanical analysis, and static mechanical testing. Results indicated that there was more oleylamine on Ag nanoparticles but more oleic acid on Au nanoparticles. This difference in surfactant populations on each nanoparticle led to different interfacial interactions with poly(ethylene oxide) and drastically influenced the glass transition temperature of these two nanocomposite systems. Almost all other properties were found to correlate strongly with dispersion and distribution state of Au and Ag nanoparticles, such that the property in question changed direction at the onset of agglomeration. PMID:28461744
Novel method for synthesis of silver nanoparticles and their application on wool
NASA Astrophysics Data System (ADS)
Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria
2015-08-01
In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.
Auvinen, Hannele; Sepúlveda, Viviana Vásquez; Rousseau, Diederik P L; Du Laing, Gijs
2016-11-01
The growing production and commercial application of engineered nanoparticles (ENPs), such as Ag, CeO 2 , and TiO 2 nanoparticles, induce a risk to the environment as ENPs are released during their use. The comprehensive assessment of the environmental risk that the ENPs pose involves understanding their fate and behavior in wastewater treatment systems. Therefore, in this study, we investigate the effect of plants and different substrates on the retention and distribution of citrate-coated silver nanoparticles (Ag-NPs) in batch experimental setups simulating constructed wetlands (CWs). Sand, zeolite, and biofilm-coated gravel induce efficient removal (85, 55, and 67 %, respectively) of Ag from the water phase indicating that citrate-coated Ag-NPs are efficiently retained in CWs. Plants are a minor factor in retaining Ag as a large fraction of the recovered Ag remains in the water phase (0.42-0.58). Most Ag associated with the plant tissues is attached to or taken up by the roots, and only negligible amounts (maximum 3 %) of Ag are translocated to the leaves under the applied experimental conditions.
Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.
Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H
2013-01-11
Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. Copyright © 2012 Elsevier B.V. All rights reserved.
Parlinska-Wojtan, Magdalena; Kus-Liskiewicz, Małgorzata; Depciuch, Joanna; Sadik, Omowunmi
2016-08-01
Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.
Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K
2011-08-01
The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.
Stegemeier, John P; Colman, Benjamin P; Schwab, Fabienne; Wiesner, Mark R; Lowry, Gregory V
2017-05-02
Aquatic ecosystems are expected to receive Ag 0 and Ag 2 S nanoparticles (NPs) through anthropogenic waste streams. The speciation of silver in Ag-NPs affects their fate in ecosystems, but its influence on interactions with aquatic plants is still unclear. Here, the Ag speciation and distribution was measured in an aquatic plant, duckweed (Landoltia punctata), exposed to Ag 0 or Ag 2 S NPs, or to AgNO 3 . The silver distribution in duckweed roots was visualized using synchrotron-based micro X-ray fluorescence (XRF) mapping and Ag speciation was determined using extended X-ray absorption fine structure (EXAFS) spectroscopy. Duckweed exposed to Ag 2 S-NPs or Ag 0 -NPs accumulated similar Ag concentrations despite an order of magnitude smaller dissolved Ag fraction measured in the exposure medium for Ag 2 S-NPs compared to Ag 0 -NPs. By 24 h after exposure, all three forms of silver had accumulated on and partially in the roots regardless of the form of Ag exposed to the plants. Once associated with duckweed tissue, Ag 0 -NPs had transformed primarily into silver sulfide and silver thiol species. This suggests that plant defenses were active within or at the root surface. The Ag 2 S-NPs remained as Ag 2 S, while AgNO 3 exposure led to Ag 0 and sulfur-associated Ag species in plant tissue. Thus, regardless of initial speciation, Ag was readily available to duckweed.
Plasmonic Ag coated Zn/Ti-LDH with excellent photocatalytic activity
NASA Astrophysics Data System (ADS)
Zhu, Yanping; Zhu, Runliang; Zhu, Gangqiang; Wang, Miaomiao; Chen, Yannan; Zhu, Jianxi; Xi, Yunfei; He, Hongping
2018-03-01
Nowadays, two-dimensional (2D) nanosheets, such as layered double hydroxides (LDH), have received considerable attention for their potential to meeting clean energy demand and solving environmental problems. In this work, novel and efficient photocatalysts of plasmonic Ag nanoparticles coated Zn/Ti-LDH nanosheets have been synthesized through low-temperature reduction method. The structural characteristics of the as-prepared products were investigated by a series of characteristic methods The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that Ag nanoparticles were distributed on the surface of Zn/Ti-LDH uniformly. The UV-vis diffuse reflectance spectra (DRS) showed that the absorbance of Ag/LDH in visible-light region enhanced markedly and presented a broad band at 500-600 nm, which was resulted from the surface plasmon resonance (SPR) effect of Ag nanoparticles. The photocatalytic activities of Ag/LDH were evaluated by degradation of Rhodamine-B (RhB) and NO. The photocatalytic experiments showed that Ag/LDH had higher photocatalytic activity than that of pure LDH, and 2%Ag/LDH exhibited the highest photocatalytic activity. In addition, the 2%Ag/LDH exhibited high photochemical stability after multiple reaction runs. The obtained results from photoluminescence (PL) spectroscopic measurement and transient photocurrent (I-V) analysis both revealed the existence of Schottky barriers between LDH and Ag nanoparticles. The electron spin resonance (ESR) showed that rad OH were the dominant active species in the photo-degradation process. The enhanced photocatalytic performance of the composite should be ascribed to both the SPR effect of Ag nanoparticles in visible light and the Schottky barriers between LDH and Ag nanoparticles.
NASA Astrophysics Data System (ADS)
Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti
2013-09-01
The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.
Transport of silver nanoparticles in single fractured sandstone
NASA Astrophysics Data System (ADS)
Neukum, Christoph
2018-02-01
Silver nanoparticles (Ag-NP) are used in various consumer products and are one of the most prevalent metallic nanoparticle in commodities and are released into the environment. Transport behavior of Ag-NP in groundwater is one important aspect for the assessment of environmental impact and protection of drinking water resources in particular. Ag-NP transport processes in saturated single-fractured sandstones using triaxial flow cell experiments with different kind of sandstones is investigated. Ag-NP concentration and size are analyzed using flow field-flow fractionation and coupled SEM-EDX analysis. Results indicate that Ag-NP are more mobile and show generally lower attachment on rock surface compared to experiments in undisturbed sandstone matrix and partially fractured sandstones. Ag-NP transport is controlled by the characteristics of matrix porosity, time depending blocking of attachment sites and solute chemistry. Where Ag-NP attachment occur, it is heterogeneously distributed on the fracture surface.
Crouch, Garrison M; Han, Donghoon; Fullerton-Shirey, Susan K; Go, David B; Bohn, Paul W
2017-05-23
Nanoscale conductive filaments, usually associated with resistive memory or memristor technology, may also be used for chemical sensing and nanophotonic applications; however, realistic implementation of the technology requires precise knowledge of the conditions that control the formation and dissolution of filaments. Here we describe and characterize an addressable direct-write nanoelectrochemical approach to achieve repeatable formation/dissolution of Ag filaments across a ∼100 nm poly(ethylene oxide) (PEO) film containing either Ag + alone or Ag + together with 50 nm Ag-nanoparticles acting as bipolar electrodes. Using a conductive AFM tip, formation occurs when the PEO film is subjected to a forward bias, and dissolution occurs under reverse bias. Formation-dissolution kinetics were studied for three film compositions: Ag|PEO-Ag + , Ag|poly(ethylene glycol) monolayer-PEO-Ag + , and Ag|poly(ethylene glycol) monolayer-PEO-Ag + /Ag-nanoparticle. Statistical analysis shows that the distribution of formation times exhibits Gaussian behavior, and the fastest average initial formation time occurs for the Ag|PEO-Ag + system. In contrast, formation in the presence of Ag nanoparticles likely proceeds by a noncontact bipolar electrochemical mechanism, exhibiting the slowest initial filament formation. Dissolution times are log-normal for all three systems, and repeated reformation of filaments from previously formed structures is characterized by rapid regrowth. The direct-write bipolar electrochemical deposition/dissolution strategy developed here presents an approach to reconfigurable, noncontact in situ wiring of nanoparticle arrays-thereby enabling applications where actively controlled connectivity of nanoparticle arrays is used to manipulate nanoelectronic and nanophotonic behavior. The system further allows for facile manipulation of experimental conditions while simultaneously characterizing surface conditions and filament formation/dissolution kinetics.
NASA Astrophysics Data System (ADS)
Hirai, Toshiro; Yoshioka, Yasuo; Izumi, Natsumi; Ichihashi, Ko-Ichi; Handa, Takayuki; Nishijima, Nobuo; Uemura, Eiichiro; Sagami, Ko-Ichi; Takahashi, Hideki; Yamaguchi, Manami; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Ishii, Ken J.; Higashisaka, Kazuma; Tsutsumi, Yasuo
2016-09-01
Many people suffer from metal allergy, and the recently demonstrated presence of naturally occurring metal nanoparticles in our environment could present a new candidate for inducing metal allergy. Here, we show that mice pretreated with silver nanoparticles (nAg) and lipopolysaccharides, but not with the silver ions that are thought to cause allergies, developed allergic inflammation in response to the silver. nAg-induced acquired immune responses depended on CD4+ T cells and elicited IL-17A-mediated inflammation, similar to that observed in human metal allergy. Nickel nanoparticles also caused sensitization in the mice, whereas gold and silica nanoparticles, which are minimally ionizable, did not. Quantitative analysis of the silver distribution suggested that small nAg (≤10 nm) transferred to the draining lymph node and released ions more readily than large nAg (>10 nm). These results suggest that metal nanoparticles served as ion carriers to enable metal sensitization. Our data demonstrate a potentially new trigger for metal allergy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, John R.; Torian, Udana; McCraw, Dustin
While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanismmore » of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.« less
Gallagher, John R; Torian, Udana; McCraw, Dustin M; Harris, Audray K
2017-02-01
While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines. Published by Elsevier Inc.
Structure and optical properties of ZnO with silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyadov, N. M., E-mail: nik061287@mail.ru; Gumarov, A. I.; Kashapov, R. N.
Textured nanocrystalline ZnO thin films are synthesized by ion beam assisted deposition. According to X-ray diffraction data, the crystallite size is ∼25 nm. Thin (∼15 nm) ZnO layers containing Ag nanoparticles are formed in a thin surface region of the films by the implantation of Ag ions with an energy of 30 keV and a dose in the range (0.25–1) × 10{sup 17} ion/cm{sup 2}. The structure and optical properties of the layers are studied. Histograms of the size distribution of Ag nanoparticles are obtained. The average size of the Ag nanoparticles varies from 0.5 to 1.5–2 nm depending onmore » the Ag-ion implantation dose. The optical transmittance of the samples in the visible and ultraviolet regions increases, as the implantation dose is increased. The spectra of the absorption coefficient of the implanted films are calculated in the context of the (absorbing film)/(transparent substrate) model. It is found that the main changes in the optical-density spectra occur in the region of ∼380 nm, in which the major contribution to absorption is made by Ag nanoparticles smaller than 0.75 nm in diameter. In this spectral region, absorption gradually decreases, as the Ag-ion irradiation dose is increased. This is attributed to an increase in the average size of the Ag nanoparticles. It is established that the broad surface-plasmon-resonance absorption bands typical of nanocomposite ZnO films with Ag nanoparticles synthesized by ion implantation are defined by the fact that the size of the nanoparticles formed does not exceed 1.5–2 nm.« less
Ansari, Asma; Pervez, Sidra; Javed, Urooj; Abro, Muhammad Ishaque; Nawaz, Muhammad Asif; Qader, Shah Ali Ul; Aman, Afsheen
2018-04-22
Metallic nanoparticles have a substantial scientific interest because of their distinctive physicochemical and antimicrobial properties and the emergence of multidrug resistant pathogens could unlock the potential of nanoparticles to combat infectious diseases. The aim of the current study is to enhance the antibacterial potential of purified bacteriocin by combining bacteriocin and antibacterial silver nanoparticles (AgNPs). Hence, the interaction of natural antimicrobial compounds and antibacterial nanoparticles can be used as a potential tool for combating infectious diseases. In this study, a green, simple and effective approach is used to synthesize antibacterial AgNPs using fungal exopolysaccharide as both a reducing and stabilizing agent. The AgNPs were characterized by spectroscopic analysis, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Dynamic Light Scattering (DLS). Furthermore, the synergistic effect of bacteriocin-AgNPs was determined against pathogenic strains. The histogram of AgNPs indicated well-dispersed, stabilized and negatively charged particles with variable size distribution. The combination of bacteriocin with nanoparticles found to be more effective due to broad antibacterial potential with possibly lower doses. The current study is imperative to provide an alternative for the chemical synthesis of silver nanoparticles. It showed environmental friendly and cost effective green synthesis of antibacterial nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Kyllinga brevifolia mediated greener silver nanoparticles
NASA Astrophysics Data System (ADS)
Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia
2017-12-01
Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.
NASA Astrophysics Data System (ADS)
Behera, S. S.; Jha, S.; Arakha, M.; Panigrahi, T. K.
2012-03-01
TRACT Nanoparticles synthesis by biological methods using various microorganisms, plants, and plant extracts and enzymes have attracted a great attention as these are cost effective, nontoxic, eco-friendly and an alternative to physical and chemical methods. In this research, Silver nanoparticles (Ag-NPs) were synthesized from AgNO3 solution by green synthesis process with the assistance of microbial source only. The detailed characterization of the Ag NPs were carried out using UV-visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray Spectroscopy (EDS), Dynamic light scattering (DLS) analysis, and their antimicrobial evaluation was done against Escherichia coli. The UV-visible spectroscopy analysis showed the surface plasmon resonance property of nanoparticles. The DLS analysis showed the particle distribution of synthesized silver nanoparticles in solution, and SEM analysis showed the morphology of nanoparticles. The elemental composition of synthesized sample was confirmed by EDS analysis. Antibacterial assay of synthesized Ag NP was carried out in solid (Nutrient Agar) growth medium against E.coli. The presence of zone of inhibition clearly indicated the antibacterial activity of silver nanoparticles.
NASA Astrophysics Data System (ADS)
Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun
2017-05-01
This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 106 and detection limit of 1.0 × 10-7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.
NASA Astrophysics Data System (ADS)
Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang
2018-06-01
We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.
NASA Astrophysics Data System (ADS)
Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie
2016-06-01
A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.
In situ characterization of silver nanoparticle synthesis in maltodextrin supramolecular structures
Bell, Nelson S.; Dunphy, Darren R.; Lambert, Timothy N.; ...
2015-06-26
In this study, the use of maltodextrin supramolecular structures (MD SMS) as a reducing agent and colloidal stabilizing agent for the synthesis of Ag nanoparticles (Ag NPs) identified three key points. First, the maltodextrin (MD) solutions are effective in the formation of well-dispersed Ag NPs utilizing alkaline solution conditions, with the resulting Ag NPs ranging in size from 5 to 50 nm diameter. Second, in situ characterization by Raman spectroscopy and small angle X-ray scattering (SAXS) are consistent with initial nucleation of Ag NPs within the MD SMS up to a critical size of ca. 1 nm, followed by amore » transition to more rapid growth by aggregation and fusion between MD SMS, similar to micelle aggregation reactions. Third, the stabilization of larger Ag NPs by adsorbed MD SMS is similar to hemi-micelle stabilization, and monomodal size distributions are proposed to relate to integer surface coverage of the Ag NPs. Conditions were identified for preparing Ag NPs with monomodal distributions centered at 30–35 nm Ag NPs.« less
2010-01-01
examine the stability to oxidation of the silver nanoparticles , SERS measurements were carried out on a single dielectric ZnO nanowire core/silver...employed a simple and effective electroless (EL) plating approach to produce silver nanoparticles (NPs) on bare silicon, on dielectric ZnO nanowires (NWs...nature of silver, the Ag surface is easily oxidized in the air. Hence, it is important to understand the silver nanoparticle oxidation processes in
In Vitro Toxicity of Silver Nanoparticles in Human Lung Epithelial Cells
2009-03-01
software from the particle distributions measured and the polydispersity index (PdI) given is a measure of the size ranges present in the solution...Transmission Electron Microscopy Figure 22 shows the TEM primary particles size and distribution determined from measurement of over 100 particles from...nm uncoated. (B) Ag 80 nm uncoated. (C) Ag 10 nm coated. (D) Ag 80 nm coated Table 4 shows the TEM primary particles size and distribution
Highly luminescent material based on Alq3:Ag nanoparticles.
Salah, Numan; Habib, Sami S; Khan, Zishan H
2013-09-01
Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices.
NASA Astrophysics Data System (ADS)
Zhang, Ke-Xin; Wen, Xing; Yao, Cheng-Bao; Li, Jin; Zhang, Meng; Li, Qiang-Hua; Sun, Wen-Jun; Wu, Jia-Da
2018-04-01
Silver (Ag) nanoparticles decorated Zinc oxide (A-ZnO) nanowires have been successfully synthesized by two-step chemical vapour deposition and magnetron sputtering method. The X-ray diffraction patterns revealed their hexagonal wurtzite structure. SEM images indicated the Ag nanoparticles are distributed uniformly on the surface of A-ZnO nanowires. By extending the sputtering time, the atomic percent of Ag increased gradually. Moreover, the photoluminescence results demonstrated two major emission peaks for the A-ZnO nanowires. Where, the visible emission peaks were stronger than those of unmodified ZnO nanowires. These studies promise their potential applications in multifunctional optical devices.
Characteristics of silver nanoparticles in vehicles for biological applications.
Kejlová, Kristina; Kašpárková, Věra; Krsek, Daniel; Jírová, Dagmar; Kolářová, Hana; Dvořáková, Markéta; Tománková, Kateřina; Mikulcová, Veronika
2015-12-30
Silver nanoparticles (AgNPs) have been used for decades as anti-bacterial agents in various industrial fields such as cosmetics, health industry, food storage, textile coatings and environmental applications, although their toxicity is not fully recognized yet. Antimicrobial and catalytic activity of AgNPs depends on their size as well as structure, shape, size distribution, and physico-chemical environment. The unique properties of AgNPs require novel or modified toxicological methods for evaluation of their toxic potential combined with robust analytical methods for characterization of nanoparticles applied in relevant vehicles, e.g., culture medium with/without serum and phosphate buffered saline. Copyright © 2015 Elsevier B.V. All rights reserved.
Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination
NASA Astrophysics Data System (ADS)
Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.
2016-05-01
Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol-gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.
Generation and oxidation of aerosol deposited PdAg nanoparticles
NASA Astrophysics Data System (ADS)
Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H.; Lundgren, E.
2013-10-01
PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces.
Anti-proliferative activity of silver nanoparticles
AshaRani, PV; Hande, M Prakash; Valiyaveettil, Suresh
2009-01-01
Background Nanoparticles possess exceptional physical and chemical properties which led to rapid commercialisation. Silver nanoparticles (Ag-np) are among the most commercialised nanoparticles due to their antimicrobial potential. Ag-np based cosmetics, therapeutic agents and household products are in wide use, which raised a public concern regarding their safety associated with human and environmental use. No safety regulations are in practice for the use of these nanomaterials. The interactions of nanomaterials with cells, uptake mechanisms, distribution, excretion, toxicological endpoints and mechanism of action remain unanswered. Results Normal human lung fibroblasts (IMR-90) and human glioblastoma cells (U251) were exposed to different doses of Ag-nps in vitro. Uptake of Ag-nps occurred mainly through endocytosis (clathrin mediated process and macropinocytosis), accompanied by a time dependent increase in exocytosis rate. The electron micrographs revealed a uniform intracellular distribution of Ag-np both in cytoplasm and nucleus. Ag-np treated cells exhibited chromosome instability and mitotic arrest in human cells. There was efficient recovery from arrest in normal human fibroblasts whereas the cancer cells ceased to proliferate. Toxicity of Ag-np is mediated through intracellular calcium (Ca2+) transients along with significant alterations in cell morphology and spreading and surface ruffling. Down regulation of major actin binding protein, filamin was observed after Ag-np exposure. Ag-np induced stress resulted in the up regulation of metallothionein and heme oxygenase -1 genes. Conclusion Here, we demonstrate that uptake of Ag-np occurs mainly through clathrin mediated endocytosis and macropinocytosis. Our results suggest that cancer cells are susceptible to damage with lack of recovery from Ag-np-induced stress. Ag-np is found to be acting through intracellular calcium transients and chromosomal aberrations, either directly or through activation of catabolic enzymes. The signalling cascades are believed to play key roles in cytoskeleton deformations and ultimately to inhibit cell proliferation. PMID:19761582
NASA Astrophysics Data System (ADS)
Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan
2015-04-01
In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket
2011-03-01
Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.
Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles
NASA Astrophysics Data System (ADS)
Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna
2017-05-01
Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.
Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing
2015-02-04
In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.
Garcia-Velasco, Nerea; Gandariasbeitia, Maite; Irizar, Amaia; Soto, Manuel
2016-10-01
Despite the increasing interest in silver nanoparticles toxicity still few works dealt with the hazards of nanosized Ag in soils (either dissolved in pore water or coupled to colloids) although disposal of biosolids in landfills has been reported as the major source of silver nanoparticles in terrestrial environments. Presently, Eisenia fetida was used to assess the toxicity of 5 nm sized PVP-PEI coated silver nanoparticles in soil through the implementation of different exposure media Standard Toxicity Tests (Paper Contact and Artificial Soil -OECD-207- and Reproduction -OECD-222- Tests) together with cellular biomarkers measured in extruded coelomocytes. In order to decipher the mode of action of silver nanoparticles in soil and the uptake routes in earthworms, special attention was given to the Ag accumulation and distribution in tissues. High Ag accumulation rates, weight loss, and mortality due to the disruption of the tegument could be the result of a dermal absorption of Ag ions released from silver nanoparticles (Paper Contact Test). However, autometallography showed metals mainly localized in the digestive tract after Artificial Soil Test, suggesting that Ag uptake occurred mostly through soil ingestion. That is, silver nanoparticles attached to soil colloids seemed to be internalized in earthworms after ingestion of soil and transferred to the digestive gut epithelium where at high doses they have triggered severe effects at different levels of biological complexity.
NASA Astrophysics Data System (ADS)
Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang
2016-11-01
Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.
Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways
NASA Astrophysics Data System (ADS)
Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning
2016-04-01
Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells.
Abdelsalam, Nader R; Abdel-Megeed, Ahmed; Ali, Hayssam M; Salem, Mohamed Z M; Al-Hayali, Muwafaq F A; Elshikh, Mohamed S
2018-07-15
The distribution and use of nanoparticles have rapidly increased over recent years, but the available knowledge regarding their mode of action, ecological tolerance and biodegradability remains insufficient. Wheat (Triticum aestivum L.) is the most important crop worldwide. In the current study, the effects of silver nanoparticles (AgNPs) obtained from two different sources, namely, green and chemical syntheses, on chromosomal aberrations and cell division were investigated. Wheat root tips were treated with four different AgNP concentrations (10, 20, 40 and 50 ppm) for three different exposure durations (8, 16 and 24 h), and the different concentrations of the nanoparticles were added to the tested grains until the root lengths reached 1.5-2 cm. For each concentration, the mitotic indexes (%) were obtained from an analysis of ~ 2000 cells. The treated root-tip cells exhibited various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase, fragmentation, scattering, unequal separation, scattering, chromosomal gaps, multipolar anaphase, erosion, and distributed and lagging chromosomes. These results demonstrate that the root tip cells of wheat can readily internalize the AgNPs and that the internalized AgNPs can interfere with the cells' normal function. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudheerkumar, K. H.; Dhananjaya, N.; Reddy Yadav, L. S.
2016-04-01
Silver nanoparticles (Ag NPs) synthesized from silver nitrate solutions using the esterase-containing latex of the E. Tirucalli plant widely found in a large region in Karnataka, India. Plant-mediated synthesis of nanoparticles is a green chemistry approach that intercom-nects nanotechnology and plant biotechnology. The effect of extract concentration, contact time, and temperature on the reaction rate and the shape of the Ag nanoparticles was investigated. The nanoparticles have been characterized by powder X-ray diffraction, UV-visible spectroscopy, photoluminescence spectroscopy and morphology by scanning electron microscope, transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. Powder X-ray diffraction patterns show that the crystal structure obtained is face-centered cubic (fcc). The morphology of the silver nanoparticle was uniform with well-distributed elliptical particles with a range from 15 to 25nm. Ag NPs exhibit significant antibacterial activity against Bacillus cereus using the agar well diffusion method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yongqiang; Huang, Guanbo, E-mail: gbhuang2007@hotmail.com; Pan, Zeng
2015-10-15
Highlights: • A simple route for the in situ preparation of Ag nanoparticles has been developed. • The Ag loaded hydrogel showed catalytic activity for reduction of 4-nitrophenol. • The catalyst can be recovered by simple separation and showed good recyclability. - Abstract: A simple route for the in situ preparation of catalytically active Ag nanoparticles (NPs) in hydrogel networks has been developed. The electronegativity of the amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains caused strong binding of the Ag{sup +} ions which made the ions distribute uniformly inside the hydrogels. When the Ag{sup +} loaded hydrogels weremore » immersed in NaBH{sub 4} solution, the Ag{sup +} ions on the polymer networks were reduced to Ag NPs. The resultant hydrogel showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with sodium borohydride. A kinetic study of the catalytic reaction was carried out and a possible reason for the decline of the catalytic performance with reuse is proposed.« less
Silver Nanoparticles Formed in a Colloidal System and a Polymer Matrix
NASA Astrophysics Data System (ADS)
Potapov, A. L.; Agabekov, V. E.; Belyi, V. N.
2018-05-01
The growth kinetics and particle-size distribution of Ag particles in a polyvinyl alcohol (PVA) composite, PVA film, and aqueous sol were studied using UV and visible spectroscopy, atomic force microscopy, and dynamic light scattering. A hypsochromic shift (55 nm) of the Ag nanoparticle (NP) surface plasmon absorption maximum was measured on going from the PVA composite to the film. The kinetics of Ag NP formation and their sizes were shown to depend considerably on UV irradiation, ultrasound action, and PVA concentration. It was established that UV irradiation accelerated Ag NP formation in the presence of reductants and destroyed the resulting NPs with a deficit of reductant. Partial destruction of the Ag NPs occurred under the influence of ultrasound whereas ultrasound action after UV irradiation reduced Ag+ on the clusters.
NASA Astrophysics Data System (ADS)
Karunakaran, Gopalu; Jagathambal, Matheswaran; Gusev, Alexander; Torres, Juan Antonio Lopez; Kolesnikov, Evgeny; Kuznetsov, Denis
2017-07-01
Silver nanoparticles (AgNPs) are applied in various fields from electronics to biomedical applications as a result of their high surface-to-volume ratio. Even though different approaches are available for synthesis of AgNPs, a nontoxic method for the synthesis has not yet been developed. Thus, this study focused on developing an easy and ecofriendly approach to synthesize AgNPs using Azotobacter vinelandii culture extracts. The biosynthesized nanoparticles were further characterized by ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive spectrum, particle size distribution (PSD), and transmission electron microscopy (TEM). UV absorption noticed at 435 nm showed formation of AgNPs. The XRD pattern showed a face-centered cubic structure with broad peaks of 28.2°, 32.6°, 46.6°, 55.2°, 57.9°, and 67.8°. The FTIR confirmed the involvement of various functional groups in the biosynthesis of AgNPs. The PSD and TEM analyses showed spherical, well-distributed nanoparticles with an average size of 20-70 nm. The elemental studies confirmed the existence of pure AgNPs. The bacterial extract containing extracellular enzyme nitrate reductase converted silver nitrate into AgNPs. AgNPs significantly inhibited the growth of pathogenic bacteria such as Streptomyces fradiae (National Collection of Industrial Microorganisms (NCIM) 2419), Staphylococcus aureus (NCIM 2127), Escherichia coli (NCIM 2065), and Serratia marcescens (NCIM 2919). In addition, biosynthesized AgNPs were found to possess strong antioxidant activity. Thus, the results of this study revealed that biosynthesized AgNPs could serve as a lead in the development of nanomedicine.
Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong
2016-08-02
Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi
2015-12-15
We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less
NASA Astrophysics Data System (ADS)
Agarwal, Rashmi A.; Gupta, Neeraj K.; Singh, Rajan; Nigam, Shivansh; Ateeq, Bushra
2017-03-01
A simple synthesis route for growth of Ag/AgO nanoparticles (NPs) in large quantitative yields with narrow size distribution from a functional, non-activated, Ni (II) based highly flexible porous coordination polymer (PCP) as a template has been demonstrated. This template is a stable storage media for the NPs larger than the pore diameters of the PCP. From EPR study it was concluded that NPs were synthesized via two mechanisms i.e. acid formation and the redox activity of the framework. Size range of Ag/AgO NPs is sensitive to choice of solvent and reaction time. Direct use of Ag/AgO@Ni-PCP shows influential growth inhibition towards Escherichia coli and the pathogen Salmonella typhimurium at extremely low concentrations. The pristine template shows no cytotoxic activity, even though it contains Ni nodes in the framework.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
Prasannaraj, Govindaraj; Venkatachalam, Perumal
2017-02-01
Nanoparticle based drug delivery can rapidly improves the therapeutic potential of anti-cancer agents. The present study focused to evaluate the hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model. The physico-chemical properties of synthesized AgNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectrum, Zeta potential and Dynamic Light Scattering (DLS) analysis. The surface plasmon resonance (SPR) absorption spectrum revealed a strong peak at 420nm for both SaAgNPs and ApAgNPs. FTIR results exhibited the presence of possible functional groups in the synthesized AgNPs. TEM analysis determined the hexagonal, and spherical shape of the synthesized silver nanoparticles. The XRD and SAED pattern confirmed the crystalline nature and crystalline size of the AgNPs. EDX result clearly showed strong silver signals in the range between 2 and 4keV. Zeta potential measurements indicated a sharp peak at -3.93 and -13.8mV for ApAgNPs and SaAgNPs, respectively. DLS measurement expressed the particle size distribution was 70 and 60nm for ApAgNPs and SaAgNPs, respectively. DEN (20mg/kg b.wt.) was subjected to induce liver cancer in mice for 8weeks and treated with biosynthesized silver nanoparticles. Interestingly, ApAgNPs and SaAgNPs treated DEN induced animal groups show a decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity over untreated DEN control animals group. Histopathological investigation reveals decreased fat accumulation, appearance of binucleated cells in nanoparticle treated animals and showed mere normal cells induced by DEN. Argyrophilic nucleolar organiser region (AgNORs) had a significant decrease in number of acidic proteins and mast cells assay showed decrease of metachromatic cells in nanoparticles treated animal groups over control. Present results strongly suggest that biomolecule coated silver nanoparticles exposure showed potential hepatoprotective effect against DEN induced liver cancer and could be used as an effective anticancer nanodrug. Copyright © 2017. Published by Elsevier B.V.
Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays
Zhao, Yu; Xing, Qi; Janjanam, Jagadeesh; He, Kun; Long, Fei; Low, Ke-Bin; Tiwari, Ashutosh; Zhao, Feng; Shahbazian-Yassar, Reza; Friedrich, Craig; Shokuhfar, Tolou
2014-01-01
Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method. PMID:25429214
Ma, Kena; Gong, Lingling; Cai, Xinjie; Huang, Pin; Cai, Jing; Huang, Dan; Jiang, Tao
2017-01-01
Implant-associated infections still pose a serious threat leading to several complications. This study reported an environmentally benign Ag-containing nanocomposite coating with efficient antibacterial property fabricated on the metal implant via electrophoretic deposition (EPD). In such coatings, Ag2O/AgCl mixed with chitosan/gelatin (CS/G) polymers work together to exert the antibacterial property which could act as an alternative to traditional Ag nanoparticles. Scanning electron microscopy images showed the shuttle fiber-like morphology distributed lamellarly and some nanoparticles carved uniformly into the cross section. Transmission electron microscopy results revealed a core–shell-like structure of the released nanoparticles in experimental groups. The Ag-containing coatings exhibited strong antibacterial properties against Staphylococcus aureus strains and Escherichia coli strains. Meanwhile, the CCK-8 tests showed that after assembling with chitosan and gelatin polymers, the cytotoxicity of Ag was largely decreased. In addition, such coatings also exhibited strong bond strength with metal substrates and good degradable properties. Therefore, such Ag-containing CS/G coatings fabricated via EPD may be a promising candidate to be administrated in controlling the implant-associated infections. PMID:28553106
Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang
2014-01-01
The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 109) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 107 and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones. PMID:24514430
Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang
2014-02-11
The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.
Surface Segregation in Ag/TiOx 3D Nanocomposite Prepared by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Xiong, J.; He, L. Y.
2018-05-01
The antimicrobial activities of silver based nanocomposites are usually studied in terms of Ag content and ion release rate. Under this condition, controllable silver ions release with high antibacterial activity is the basis for silver based nanocomposite. The goal is to investigate the influence of O2 content and titanium oxide barrier thickness on the evolution in morphology. The SEM/TEM results showed that the size of Ag nanoparticles has a clear dependence on O2 concentration in reactive sputtering process; increased oxygen implies larger Ag nanoparticles in the matrix. In addition, a clear suppressing effect and better size distribution is obtained after the thickness of coated titanium oxide barrier is verified.
Makama, Sunday; Kloet, Samantha K; Piella, Jordi; van den Berg, Hans; de Ruijter, Norbert C A; Puntes, Victor F; Rietjens, Ivonne M C M; van den Brink, Nico W
2018-03-01
In literature, varying and sometimes conflicting effects of physicochemical properties of nanoparticles (NPs) are reported on their uptake and effects in organisms. To address this, small- and medium-sized (20 and 50 nm) silver nanoparticles (AgNPs) with specified different surface coating/charges were synthesized and used to systematically assess effects of NP-properties on their uptake and effects in vitro. Silver nanoparticles were fully characterized for charge and size distribution in both water and test media. Macrophage cells (RAW 264.7) were exposed to these AgNPs at different concentrations (0-200 µg/ml). Uptake dynamics, cell viability, induction of tumor necrosis factor (TNF)-α, ATP production, and reactive oxygen species (ROS) generation were assessed. Microscopic imaging of living exposed cells showed rapid uptake and subcellular cytoplasmic accumulation of AgNPs. Exposure to the tested AgNPs resulted in reduced overall viability. Influence of both size and surface coating (charge) was demonstrated, with the 20-nm-sized AgNPs and bovine serum albumin (BSA)-coated (negatively charged) AgNPs being slightly more toxic. On specific mechanisms of toxicity (TNF-α and ROS production) however, the AgNPs differed to a larger extent. The highest induction of TNF-α was found in cells exposed to the negatively charged AgNP_BSA, both sizes (80× higher than control). Reactive oxygen species induction was only significant with the 20 nm positively charged AgNP_Chit.
NASA Astrophysics Data System (ADS)
Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia
2018-05-01
Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.
Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films
NASA Astrophysics Data System (ADS)
Dinh, D. A.; Hui, K. S.; Hui, K. N.; Cho, Y. R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan
2014-04-01
A green facile chemical approach to control the dimensions of Ag nanoparticles-graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N2/H2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.
Kumari, Rima; Singh, Jay Shankar; Singh, Devendra Pratap
2017-01-01
The present investigation aimed to study the in vivo synthesis of silver nanoparticles (AgNPs) in the legume Vigna radiata. The level of plant metabolites such as total phenolics, lipid, terpenoids, alkaloids and amino acid increased by 65%, 133%, 19%, 67% and 35%, respectively, in AgNO 3 (100 mg L -1 ) treated plants compared to control. Whereas protein and sugar contents in the treated plants were reduced by 38% and 27%, respectively. FTIR analysis of AgNO 3 (20-100 mg L -1 ) treated plants exhibited changes in the IR regions between 3297 and 3363 cm -1 , 1635-1619 cm -1 , 1249-1266 cm -1 and that corresponded to alterations in OH groups of carbohydrates, OH and NH groups of amide I and II regions of protein, when compared with the control. Transmission electron micrographs showed the spatial distribution of AgNPs in the chloroplast, cytoplasmic spaces, vacuolar and nucleolar plant regions. Metal quantification in different tissues of plants exposed to 20-100 mg L -1 AgNO 3 showed about a 22 fold accumulation of Ag in roots as compared to shoots. The phytotoxic parameters such as percent seed germination and shoot elongation remained almost unaltered at low AgNO 3 doses (20-50 mg L -1 ). However, at higher levels of exposure (100 mg L -1 ), the percent seed germination as well as root and shoot elongation exhibited concentration dependent decline. In conclusion, synthesis of AgNPs in V. radiata particularly at lower doses of AgNO 3 , could be used as a sustainable and environmentally safe technology for large scale production of metal nanoparticles. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Mahmoodi Esfanddarani, Hassan; Abbasi Kajani, Abolghasem; Bordbar, Abdol-Khalegh
2018-06-01
High-quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris . Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic-force microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20-40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli , Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.
NASA Astrophysics Data System (ADS)
Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei
2017-11-01
A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.
Wang, Dandan; Markus, Josua; Kim, Yeon-Ju; Wang, Chao; Jiménez Pérez, Zuly Elizabeth; Ahn, Sungeun; Aceituno, Verónica Castro; Mathiyalagan, Ramya; Yang, Deok Chun
2016-01-01
A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet–visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0–8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation. PMID:28008248
Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract
NASA Astrophysics Data System (ADS)
Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.
2015-03-01
Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.
NASA Astrophysics Data System (ADS)
Tkalec, Živa Pipan; Drobne, Damjana; Vogel-Mikuš, Katarina; Pongrac, Paula; Regvar, Marjana; Štrus, Jasna; Pelicon, Primož; Vavpetič, Primož; Grlj, Nataša; Remškar, Maja
2011-10-01
Micro-proton induced X-ray emission (micro-PIXE) method was applied to study the micro-localization of silver (Ag) in digestive glands of a terrestrial arthropod (Porcellio scaber) after feeding on silver nanoparticles (nano-Ag) dosed food. The aim of our work was to assess whether feeding on nano-Ag results in the assimilation of silver (Ag) in digestive gland cells. To study micro-localization and elemental distribution of Ag, the animals were fed on food dosed with nanoparticles for 14 days under controlled laboratory conditions. At the end of the feeding exposure, the animals were dissected and digestive glands prepared for micro-PIXE analyses and TEM investigation. The results obtained by micro-PIXE documented high amounts of Ag inside S-cells of the digestive gland epithelium; however, TEM investigation did not show particle aggregates inside digestive gland cells. Also no adverse effect on feeding behavior was recorded what is a measure of toxic effects. We explain the presence of Ag inside the cells as a result of the assimilation of dissoluted Ag ions from ingested nano-Ag particles. Assimilation of excessive amounts of ingested metal ions in S-cells is a well known metal detoxification mechanism in isopods. We discuss the advantages of using micro-PIXE for the micro-localization of elements in biological tissue in studies of interactions between nanoparticles and biological systems.
Luna, Carlos; Barriga-Castro, Enrique Díaz; Gómez-Treviño, Alberto; Núñez, Nuria O; Mendoza-Reséndez, Raquel
2016-01-01
Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols). In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM) exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M) are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy studies indicated that the bioreduction of the Ag− ions takes place through their interactions with free amines, carboxylate ions, and hydroxyl groups. As a consequence of such interactions, residues of proteins and polyphenols cap the biosynthesized Ag nanoparticles providing them a hybrid core/shell structure. In addition, these biosynthesized Ag nanomaterials exhibited size-dependent plasmon extinction bands and enhanced bactericidal activities against both Gram-positive and Gram-negative bacteria, displaying minimal inhibitory Ag concentrations lower than typical values reported in the literature for Ag nanoparticles, probably due to the synergy of the bactericidal activities of the Ag nanoparticle cores and their capping ligands. PMID:27703347
Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi
2016-01-01
In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻). PMID:26839126
Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi
2016-02-03
In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.
2015-12-01
Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.
Krajcarová, L; Novotný, K; Kummerová, M; Dubová, J; Gloser, V; Kaiser, J
2017-10-01
The manuscript presents a procedure for optimal sample preparation and the mapping of the spatial distribution of metal ions and nanoparticles in plant roots using laser-induced breakdown spectroscopy (LIBS) in a double-pulse configuration (DP LIBS) in orthogonal reheating mode. Two Nd:YAG lasers were used; the first one was an ablation laser (UP-266 MACRO, New Wave, USA) with a wavelength of 266nm, and the second one (Brilliant, Quantel, France), with a fundamental wavelength of 1064nm, was used to reheat the microplasma. Seedlings of Vicia faba were cultivated for 7 days in CuSO 4 or AgNO 3 solutions with a concentration of 10µmoll -1 or in a solution of silver nanoparticles (AgNPs) with a concentration of 10µmoll -1 of total Ag, and in distilled water as a control. The total contents of the examined metals in the roots after sample mineralization as well as changes in the concentrations of the metals in the cultivation solutions were monitored by ICP-OES. Root samples embedded in the TissueTek medium and cut into 40µm thick cross sections using the Cryo-Cut Microtome proved to be best suited for an accurate LIBS analysis with a 50µm spatial resolution. 2D raster maps of elemental distribution were created for the emission lines of Cu(I) at 324.754nm and Ag(I) at 328.068nm. The limits of detection of DP LIBS for the root cross sections were estimated to be 4pg for Cu, 18pg for Ag, and 3pg for AgNPs. The results of Ag spatial distribution mapping indicated that unlike Ag + ions, AgNPs do not penetrate into the inner tissues of Vicia faba roots but stay in their outermost layers. The content of Ag in roots cultivated in the AgNP solution was one order of magnitude lower compared to roots cultivated in the metal ion solutions. The significantly smaller concentration of Ag in root tissues cultivated in the AgNP solution also supports the conclusion that the absorption and uptake of AgNPs by roots of Vicia faba is very slow. LIBS mapping of root sections represents a fast analytical method with sufficient precision and spatial resolution that can provide very important information for researchers, particularly in the fields of plant science and ecotoxicology. Copyright © 2017 Elsevier B.V. All rights reserved.
An evaluation of the influence of size and radiation in silver nanoparticle toxicity
The antimicrobial properties of silver nanoparticles (AgNP) have made them popular in textile manufacturing, medical technology, and biomedical applications. Studies suggest that after ingestion, nanomaterials are distributed throughout the body to different organs, possibly incl...
Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization
NASA Astrophysics Data System (ADS)
Ruíz-Baltazar, Álvaro de Jesús; Reyes-López, Simón Yobanny; Silva-Holguin, Pamela Nair; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro
2018-06-01
Silver-doped hydroxyapatite (Ag-HAP) was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs) were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM), X-ray diffraction, Fourier-transform infrared (FT-IR) and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies.
Enhancement of Ag nanoparticles concentration by prior ion implantation
NASA Astrophysics Data System (ADS)
Mu, Xiaoyu; Wang, Jun; Liu, Changlong
2017-09-01
Thermally grown SiO2 layer on Si substrates were singly or sequentially implanted with Zn or Cu and Ag ions at the same fluence of 2 × 1016/cm2. The profiles of implanted species, structure, and spatial distribution of the formed nanoparticles (NPs) have been characterized by the cross-sectional transmission electron microscope (XTEM) and Rutherford backscattering spectrometry (RBS). It is found that pre-implantation of Zn or Cu ions could suppress the self sputtering of Ag atoms during post Ag ion implantation, which gives rise to fabrication of Ag NPs with a high density. Moreover, it has also been demonstrated that the suppressing effect strongly depends on the applied energy and mobility of pre-implanted ions. The possible mechanism for the enhanced Ag NPs concentration has been discussed in combination with SRIM simulations. Both vacancy-like defects acting as the increased nucleation sites for Ag NPs and a high diffusivity of prior implanted ions in SiO2 play key roles in enhancing the deposition of Ag implants.
Ali, Zainal Abidin; Roslan, Muhammad Aidil; Yahya, Rosiyah; Wan Sulaiman, Wan Yusoff; Puteh, Rustam
2017-03-01
In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC 50 = 15.76 ppm and LC 90 = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X-ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50-120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco-friendly and clean synthesis route to Ag.
Zou, Jing; Hannula, Markus; Misra, Superb; Feng, Hao; Labrador, Roberto Hanoi; Aula, Antti S; Hyttinen, Jari; Pyykkö, Ilmari
2015-01-27
Silver nanoparticles (Ag NPs) displayed strong activities in anti-bacterial, anti-viral, and anti-fungal studies and were reportedly efficient in treating otitis media. Information on distribution of AgNPs in different compartments of the ear is lacking. To detect distribution of Ag NPs in the middle and inner ear and transportation pathways after transtympanic injection. Contrast effect of Ag NPs in the micro CT imaging was assessed in a phantom. AgNPs at various concentrations (1.85 mM, 37.1 mM, and 370.7 mM) were administered to rat middle ear using transtympanic injection and cadaver heads were imaged using micro CT at several time points. The lowest concentration of Ag NPs that could be visualized using micro CT was 37.1 mM. No difference was observed between the solvents, deionized H2O and saline. Ag NPs at 37.1 mM were visible in the middle ear on 7 d post-administration. Ag NPs at 370.7 mM generated signals in the middle ear, ossicular chain, round window membrane, oval window, scala tympani, and Eustachian tube for both 4 h and 24 h time points. A gradient distribution of Ag NPs from the middle ear to the inner ear was detected. The pathways for Ag NPs to be transported from the middle ear into the inner ear are round and oval windows. This study provided the imaging evidence that Ag NPs are able to access the inner ear in a dose-dependent manner after intratympanic administration, which is relevant to design the delivery concentration in the future clinic application in order to avoid adverse inner ear effect.
Shuttling single metal atom into and out of a metal nanoparticle.
Wang, Shuxin; Abroshan, Hadi; Liu, Chong; Luo, Tian-Yi; Zhu, Manzhou; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao
2017-10-10
It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au 24 nanoparticle, forming AgAu 24 and CuAu 24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au 24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au 25 to form the Au 24 nanoparticle occurs mainly through the side entry.Doping a metal nanocluster with heteroatoms dramatically changes its properties, but it remains difficult to dope with single-atom control. Here, the authors devise a strategy to dope single atoms of Ag or Cu into hollow Au nanoclusters, creating precise alloy nanoparticles atom-by-atom.
Photochemical generation of antimicrobial Ag-nanoparticles in intraocular lenses
NASA Astrophysics Data System (ADS)
Badur, Thorben; Kim, Hee-Cheol; Hampp, Norbert
2017-02-01
The antimicrobial properties of silver (Ag) nanoparticles (NP) have been investigated in depth during the last decades.[1] For cataract treatment minimal invasive surgery has become state-of-the-art. The physicians are still fighting against postoperative inflammations, such as endophthalmitis.[2] We present a novel approach to reduce these postoperative complications by equipping the hydrophilic intraocular lenses (IOL) with a Ag NP depot. As the Ag NP are completely entrapped inside the polymeric IOL no direct contact of the nanoparticles with epithelial cells may occur. Using 1-hydroxybenzotriazole (HOBt) or 7-hydroxycumarine (7HOCum) as photo reduction mediators (PRM) the formation of the Ag NP is accomplished in situ. PRM and Ag nitrate are diffused into the ready made IOL. By means of two-photon-absorption (TPA) photochemistry at λTPA = 532 nm the Ag NP generation is precisely controlled to occur inside the IOL only. At no point NP are directly exposed to the surface.[3] Interesting dependencies between the used PRM and the resulting particle size distribution or the effectiveness of the silver ion reduction inside the polymer matrix are reported. The Ag NP were prepared in the outer area of the IOL not to affect the optical properties of the ophthalmic implant. The amount of Ag ions released was determined and found to be sufficient to effectively reduce the counts of airborne germs. Besides HOBt and 7HOCum we also investigated the photo reductive properties of several other organic reagents, such as benzophenone (BP) and 4-hydroxybenzophenone (4HOBP) for the ability to produce even three-dimensional nanoparticle structures inside a polymer matrix.
The effect of chronic silver nanoparticles on aquatic system in microcosms.
Jiang, Hong Sheng; Yin, Liyan; Ren, Na Na; Xian, Ling; Zhao, Suting; Li, Wei; Gontero, Brigitte
2017-04-01
Silver nanoparticles (AgNPs) inevitably discharge into aquatic environments due to their abundant use in antibacterial products. It was reported that in laboratory conditions, AgNPs display dose-dependent toxicity to aquatic organisms, such as bacteria, algae, macrophytes, snails and fishes. However, AgNPs could behave differently in natural complex environments. In the present study, a series of microcosms were established to investigate the distribution and toxicity of AgNPs at approximately 500 μg L -1 in aquatic systems. As a comparison, the distribution and toxicity of the same concentration of AgNO 3 were also determined. The results showed that the surface layer of sediment was the main sink of Ag element for both AgNPs and AgNO 3 . Both aquatic plant (Hydrilla verticillata) and animals (Gambusia affinis and Radix spp) significantly accumulated Ag. With short-term treatment, phytoplankton biomass was affected by AgNO 3 but not by AgNPs. Chlorophyll content of H. verticillata increased with both AgNPs and AgNO 3 short-term exposure. However, the biomass of phytoplankton, aquatic plant and animals was not significantly different between control and samples treated with AgNPs or AgNO 3 for 90 d. The communities, diversity and richness of microbes were not significantly affected by AgNPs and AgNO 3 ; in contrast, the nitrification rate and its related microbe (Nitrospira) abundance significantly decreased. AgNPs and AgNO 3 may affect the nitrogen cycle and affect the environment and, since they might be also transferred to food web, they represent a risk for health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, C; Jiang, S Z; Huo, Y Y; Liu, A H; Xu, S C; Liu, X Y; Sun, Z C; Xu, Y Y; Li, Z; Man, B Y
2015-09-21
We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/silicon pyramid arrays structure (GO/Ag/PSi). The SERS behaviors are discussed and compared by the detection of R6G. Based on the contrast experiments with PSi, GO/PSi, Ag/PSi and GO/AgA/PSi as SERS substrate, the perfect bio-compatibility, good homogeneity and chemical stability were confirmed. We also calculated the electric field distributions using Finite-difference time-domain (FDTD) analysis to further understand the GO/Ag/PSi structure as a perfect SERS platform. These experimental and theoretical results imply that the GO/Ag/PSi with regular pyramids array is expected to be an effective substrate for label-free sensitive SERS detections in areas of medicine, food safety and biotechnology.
The Morphology of Silver Layers on SU8 polymers prepared by Electroless Deposition
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Yuan, Biao; Heinrich, Helge; Grabill, Chris; Williams, Henry; Kuebler, Stephen; Bhattacharya, Aniket
2010-03-01
Silver was deposited onto the functionalized surface of polymeric SU-8 where gold nanoparticles (Au-NPs) act as nucleation sites using electroless metallization chemistry. Here we report on the evolution of the nanoscale morphology of deposited Ag studied by Transmission Electron Microscopy (TEM). In TEM of sample cross sections correlations between the original gold and the silver nanoparticles were obtained while plan-view TEM results showed the distribution of nanoparticles on the surface. Scanning TEM with a high-angle annular dark field detector was used to obtain atomic number contrast. The morphology of the deposited Ag was controlled through the presence and absence of gum Arabic. The thickness and height fluctuations of the Ag layer were determined as a function of time and a statistical analysis of the growth process was conducted for the initial deposition periods.
Active Silver Nanoparticles for Wound Healing
Rigo, Chiara; Ferroni, Letizia; Tocco, Ilaria; Roman, Marco; Munivrana, Ivan; Gardin, Chiara; Cairns, Warren R. L.; Vindigni, Vincenzo; Azzena, Bruno; Barbante, Carlo; Zavan, Barbara
2013-01-01
In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment. PMID:23455461
Schkolnik, Gal; Schmidt, Matthias; Mazza, Marco G.; Harnisch, Falk; Musat, Niculina
2015-01-01
Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats. PMID:26709923
Kokila, T; Ramesh, P S; Geetha, D
2016-12-01
Waste fruit peel mediated synthesis of silver nanoparticles (AgNPs) is a green chemistry approach that links nanotechnology and biotechnology. Using biological medium such as peel extract for the biosynthesis of nanoparticles is an ecofriendly and emerging scientific trend. With this back drop the present study focused on the biosynthesis of AgNPs using Carica Papaya peel extract (CPPE) and evaluation of its antimicrobial potentials of the nanoparticles against different human pathogens and to investigate the free radical scavenging activity. Water soluble antioxidant constituents present in Carica Papaya peel extract were mainly responsible for the reduction of silver ions to nanosized Ag particles. UV-vis spectral analysis shows surface plasmon resonance band at 430nm. The presence of active proteins and phenolic groups present in the biomass before and after reduction was identified by Fourier transform infrared spectroscopy. X-ray diffraction study shows the average size of the silver nanoparticles is in the range of 28nm, as well as revealed their face centered cubic structure. Atomic force microscope image gives the 3D topological characteristic of silver nanoparticles and the particle size ranges from 10 to 30nm. The average particle size distribution of silver nanoparticles is 161nm (Dynamic light scattering) and the corresponding average zeta potential value is -20.5mV, suggesting higher stability of silver nanoparticles. Biologically synthesized nanoparticles efficiently inhibited pathogenic organisms both gram-positive and gram-negative bacteria. The biosynthesized nanoparticles might serve as a potent antioxidant as revealed by DPPH and ABT S+ assay. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.
2016-04-01
The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging. Electronic supplementary information (ESI) available: Details on the estimations of evaporation rates and limits of detection, ESI figures and author contributions. See DOI: 10.1039/c6nr00537c
NASA Astrophysics Data System (ADS)
Mohamad, N. A. N.; Arham, N. A.; Junaidah, J.; Hadi, A.; Idris, S. A.
2018-05-01
This paper reports the green synthesis of Ag, Cu and AgCu nanoparticles at room temperature using palm leaves extract. The purpose of this study is to eliminate the use of chemicals in the synthesis of nanoparticles and evaluate the efficiency of the palm leaves extract as the reducing and stabilizing agents. The palm leaves extract was added to metal salt solution and continuously stirred until reaction completed. The produced nanoparticles were analyzed using atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses revealed that palm leaves extract has efficiently reduced the silver ions, but not the copper ions. During synthesis of AgCu nanoparticles, simultaneous reduction was occurred leading to formation of alloyed nanoparticles. Biomolecules from the palm leaves extract adsorbed on the surface of nanoparticles forming a capping layer thus stabilized the nanoparticles. The produced Ag and Cu nanoparticles were predominantly spherical with the particle size of Cu nanoparticles were larger than Ag nanoparticles. The AgCu nanoparticles closely resembled the Ag nanoparticles due to high Ag content with average size of 13nm. Therefore, palm leaves extract has a potential to be a good reducing and stabilizing agents.
NASA Astrophysics Data System (ADS)
Rezaee, Sahar; Ghobadi, Nader
2018-06-01
The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.
NASA Astrophysics Data System (ADS)
Petruš, Ondrej; Oriňak, Andrej; Oriňaková, Renáta; Orságová Králová, Zuzana; Múdra, Erika; Kupková, Miriam; Kovaľ, Karol
2017-11-01
Two types of metallised nanocavities (single and hybrid) were fabricated by colloid lithography followed by electrochemical deposition of Ni and subsequently Ag layers. Introductory Ni deposition step iniciates more homogenous decoration of nanocavities with Ag nanoparticles. Silver nanocavity decoration has been so performed with lower nucleation rate and with Ag nanoparticles homogeinity increase. By this, two step Ni and Ag deposition trough polystyrene nanospheres (100, 300, 500, 700, 900 nm), the various Ag surfaces were obtained. Ni layer formation in the first step of deposition enabled more precise controlling of Ag film deposition and thus final Ag surface morphology. Prepared substrates were tested as active surfaces in SERS application. The best SERS signal enhancement was observed at 500 nm Ag nanocavities with normalised thickness Ni layer ∼0.5. Enhancement factor has been established at value 1.078 × 1010; time stability was determined within 13 weeks; charge distribution at nanocavity Ag surfaces as well as reflection spectra were calculated by FDTD method. Newly prepared nanocavity surface can be applied in SERS analysis, predominantly.
Swamy, Mallappa Kumara; Akhtar, Mohd Sayeed; Mohanty, Sudipta Kumar; Sinniah, Uma Rani
2015-12-05
Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml. Copyright © 2015. Published by Elsevier B.V.
Nguyen, Thai Phuong; Chang, Wei-Chang; Lai, Yen-Chih; Hsiao, Ta-Chih; Tsai, De-Hao
2017-10-01
In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.
Bai, Bingyang; Qiao, Qi; Arandiyan, Hamidreza; Li, Junhua; Hao, Jiming
2016-03-01
Three-dimensional (3D) ordered mesoporous Ag/MnO2 catalyst was prepared by impregnation method based on 3D-MnO2 and used for catalytic oxidation of HCHO. Ag nanoparticles are uniformly distributed on the polycrystalline wall of 3D-MnO2. The addition of Ag does not change the 3D ordered mesoporous structure of the Ag/MnO2, but does reduce the pore size and surface area. Ag nanoparticles provide sufficient active site for the oxidation reaction of HCHO, and Ag (111) crystal facets in the Ag/MnO2 are active faces. The 8.9% Ag/MnO2 catalyst shows a higher normalized rate (10.1 nmol·s(-1)·m(-2) at 110 °C) and TOF (0.007 s(-1) at 110 °C) under 1300 ppm of HCHO and 150 000 h(-1) of GHSV, and its apparent activation energy of the reaction is the lowest (39.1 kJ/mol). More Ag active sites, higher low-temperature reducibility, more abundant surface lattice oxygen species, oxygen vacancies, and lattice defects generated from interaction Ag with MnO2 are responsible for the excellent catalytic performance of HCHO oxidation on the 8.9% Ag/MnO2 catalyst. The 8.9% Ag/MnO2 catalyst remained highly active and stable under space velocity increasing from 60 000 to 150 000 h(-1), under initial HCHO concentration increasing from 500 to 1300 ppm, and under the presence of humidity, respectively.
NASA Astrophysics Data System (ADS)
Narayanan, Kannan Badri; Park, Hyun Ho
2014-08-01
In this study, the biocompatible unnatural amino acid, 3,4-dihydroxy- l-phenylalanine ( l-dopa), which is used in protein engineering, was employed in the facile synthesis of silver nanoparticles (AgNPs). The surface plasmon resonance (SPR) band of the UV-Vis spectrum at 406 nm demonstrates the possibility of formation of smaller nanoparticles; the symmetrical shape of the band demonstrates a narrow size distribution of AgNPs, the formation of AgNPs, and the face-centered cubic (fcc) crystalline structure of nanoparticles was confirmed by X-ray diffraction (XRD). Additionally, transmission electron microscopic (TEM) images revealed that these particles were spherical in shape with diameters of 2.7-12.2 nm (average = 8.7 nm). These nanoparticles exhibited antifungal activity against both planktonic and biofilm yeast cells of Candida albicans and C. dubliniensis. The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were determined by microdilution assays. C. albicans were shown to be less susceptible than C. dubliniensis to AgNPs based on the MIC (ranging from 7.8 to 15.6 µg ml-1) and MFC (ranging from 31.2 to 62.5 µg ml-1). With regard to biomass quantification, AgNPs did not induce a significant reduction of the biomass of Candida species; however, treatment of biofilm with 500 µg/ml of AgNPs induced a 2.99-log10 ( P < 0.001) and 3.53-log10 ( P < 0.001) significant reduction in the number of culturable cells of CFUs when compared to control samples of C. albicans and C. dubliniensis, respectively. Thus, AgNPs-based antifungal agents would be an effective alternative to conventional drugs to overcome drug resistance in Candida-associated infections.
Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi
2016-01-01
Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs. PMID:27669221
NASA Astrophysics Data System (ADS)
Yuan, Peiyan; Lee, Yih Hong; Gnanasammandhan, Muthu Kumara; Guan, Zhenping; Zhang, Yong; Xu, Qing-Hua
2012-07-01
NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites were prepared to investigate metal-enhanced upconversion luminescence. Two sizes (15 and 30 nm) of Ag nanoparticles were used. The emission intensity of the upconversion nanocrystals was found to be strongly modulated by the presence of Ag nanoparticles (NPs) on the outer shell layer of the nanocomposites. The extent of modulation depended on the separation distance between Ag NPs and upconversion nanocrystals. The optimum upconversion luminescence enhancement was observed at a separation distance of 10 nm for Ag NPs with two different sizes (15 and 30 nm). A maximum upconversion luminescence enhancement of 14.4-fold was observed when 15 nm Ag nanoparticles were used and 10.8-fold was observed when 30 nm Ag NPs were used. The separation distance dependent emission intensity is ascribed to the competition between energy transfer and enhanced radiative decay rates. The biocompatibility of the nanocomposites was significantly improved by surface modification with DNA. The biological imaging capabilities of these nanocomposites were demonstrated using B16F0 cells.NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites were prepared to investigate metal-enhanced upconversion luminescence. Two sizes (15 and 30 nm) of Ag nanoparticles were used. The emission intensity of the upconversion nanocrystals was found to be strongly modulated by the presence of Ag nanoparticles (NPs) on the outer shell layer of the nanocomposites. The extent of modulation depended on the separation distance between Ag NPs and upconversion nanocrystals. The optimum upconversion luminescence enhancement was observed at a separation distance of 10 nm for Ag NPs with two different sizes (15 and 30 nm). A maximum upconversion luminescence enhancement of 14.4-fold was observed when 15 nm Ag nanoparticles were used and 10.8-fold was observed when 30 nm Ag NPs were used. The separation distance dependent emission intensity is ascribed to the competition between energy transfer and enhanced radiative decay rates. The biocompatibility of the nanocomposites was significantly improved by surface modification with DNA. The biological imaging capabilities of these nanocomposites were demonstrated using B16F0 cells. Electronic supplementary information (ESI) available: More TEM images, distribution histograms, UV-Vis extinction spectra, and XRD analysis of the core-shell nanocomposites; the emission enhancement mechanisms, bright field images, the effect of DNA modification on the emission; luminescence stability and size changes of the DNA modified nanocomposites in the cell culture. See DOI: 10.1039/c2nr31241g
Katano, Satoshi; Toma, Koji; Toma, Mana; Tamada, Kaoru; Uehara, Yoichi
2010-11-28
Scanning tunneling microscope light emission (STM-LE) spectroscopy has been utilized to elucidate the luminescence phenomena of Ag nanoparticles capped with myristate (myristate-capped AgNP) and 2-methyl-1-propanethiolate (C(4)S-capped AgNP) on the dodecanethiol-precovered Au substrate. The STM imaging revealed that myristate-capped AgNPs form an ordered hexagonal array whereas C(4)S-capped AgNPs show imperfect ordering, indicating that a shorter alkyl chain of C(4)S-capped AgNP is not sufficient to form rigid interdigitation. It should be noted that such a nanoparticle ordering affects the luminescence properties of the Ag nanoparticle. We found that the STM-LE is only detected from the Ag nanoparticles forming the two-dimensional superlattice. This indicates that the STM-LE of the Ag nanoparticle is radiated via the collective excitation of the local surface plasmon resonance (LSPR) spread over the Ag nanoparticles. Note that the STM-LE spectra of the Ag nanoparticles exhibit spike-like peaks superimposed on the broad light emission peak. Using Raman spectroscopy, we concluded that the spike-like structure appearing in the STM-LE spectra is associated with the vibrational excitation of the molecule embedded between Ag nanoparticles.
Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong
2014-09-22
A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (<20 nm) is much smaller than the Z-average value (76.7 nm) measured by DLS. Meanwhile, the ChS-capped Ag NPs coated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ferromagnetic signal in nanosized Ag particles.
Jo, Younghun; Jung, Myung-Hwa; Kyum, Myung-Chul; Lee, Sung-Ik
2007-11-01
A new technique using an inductively coupled plasma reactor equipped with a liquid-nitrogen cooling system was developed to prepare Ag nanoparticles. The magnetic signal from these Ag particles with diameters of 4 nm showed, surprisingly, a signal with combined ferromagnetic and diamagnetic components, in contrast to the signal with only one diamagnetic component from bulk Ag. The same technique was used to prepare the Ag/Cu nanoparticles, which are Ag nanoparticles coated with a Cu layer. Compared to the Ag nanoparticles, these showed a greatly enhanced superparamagnetic signal in addition to the same value of the ferromagnetism. The comparison between the Ag and the Ag/Cu nanoparticles indicated that the ferromagnetic components are a common feature of Ag nanoparticles while the greatly enhanced paramagnetic component of Ag/Cu, which dominates over the background diamagnetic component from the Ag core, is from the outer Cu shell.
Nanoparticle formation of deposited Agn-clusters on free-standing graphene
NASA Astrophysics Data System (ADS)
Al-Hada, M.; Peters, S.; Gregoratti, L.; Amati, M.; Sezen, H.; Parisse, P.; Selve, S.; Niermann, T.; Berger, D.; Neeb, M.; Eberhardt, W.
2017-11-01
Size-selected Agn-clusters on unsupported graphene of a commercial Quantifoil sample have been investigated by surface and element-specific techniques such as transmission electron microscopy (TEM), spatially-resolved inner-shell X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). An agglomeration of the highly mobile clusters into nm-sized Ag-nanodots of 2-3 nm is observed. Moreover, crystalline as well as non-periodic fivefold symmetric structures of the Ag-nanoparticles are evident by high-resolution TEM. Using a lognormal size-distribution as revealed by TEM, the measured positive binding energy shift of the air-exposed Ag-nanodots can be explained by the size-dependent dynamical liquid-drop model.
The irradiation influence on the properties of silver sulfide (Ag2S) colloidal nanoparticles
NASA Astrophysics Data System (ADS)
Rempel, S. V.; Kuznetsova, Yu. V.; Gerasimov, E. Yu.; Rempel', A. A.
2017-08-01
The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton-plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton-plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton-plasmon interaction) in a metal-semiconductor hybrid nanosystem are elucidated, as well.
Boudreau, Mary D.; Imam, Mohammed S.; Paredes, Angel M.; Bryant, Matthew S.; Cunningham, Candice K.; Felton, Robert P.; Jones, Margie Y.; Davis, Kelly J.; Olson, Greg R.
2016-01-01
There are concerns within the regulatory and research communities regarding the health impact associated with consumer exposure to silver nanoparticles (AgNPs). This study evaluated particulate and ionic forms of silver and particle size for differences in silver accumulation, distribution, morphology, and toxicity when administered daily by oral gavage to Sprague Dawley rats for 13 weeks. Test materials and dose formulations were characterized by transmission electron microscopy (TEM), dynamic light scattering, and inductively coupled mass spectrometry (ICP-MS). Seven-week-old rats (10 rats per sex per group) were randomly assigned to treatments: AgNP (10, 75, and 110 nm) at 9, 18, and 36 mg/kg body weight (bw); silver acetate (AgOAc) at 100, 200, and 400 mg/kg bw; and controls (2 mM sodium citrate (CIT) or water). At termination, complete necropsies were conducted, histopathology, hematology, serum chemistry, micronuclei, and reproductive system analyses were performed, and silver accumulations and distributions were determined. Rats exposed to AgNP did not show significant changes in body weights or intakes of feed and water relative to controls, and blood, reproductive system, and genetic tests were similar to controls. Differences in the distributional pattern and morphology of silver deposits were observed by TEM: AgNP appeared predominantly within cells, while AgOAc had an affinity for extracellular membranes. Significant dose-dependent and AgNP size-dependent accumulations were detected in tissues by ICP-MS. In addition, sex differences in silver accumulations were noted for a number of tissues and organs, with accumulations being significantly higher in female rats, especially in the kidney, liver, jejunum, and colon. PMID:26732888
A review on preparation of silver nano-particles
NASA Astrophysics Data System (ADS)
Haider, Adawiya J.; Haider, Mohammad J.; Mehde, Mohammad S.
2018-05-01
The term "nano particle" (NP) refers to particle diameter in nanometers in size. Nanoparticles contain a small number of constituent atoms or molecules that differ from the properties inherent in their bulk counterparts, found in various forms such as spherical, triangular, cubic, pentagonal, rod-shaped, shells, elliptical and so on. In this chapter, it has been presented the theoretical concepts of the preparation of AgNPS as powders and collide nanoparticles, techniques of preparation with their characterization (morphology, sign charge and potential value, particle distribution ….etc.). Also, included unique properties of AgNPS that are different from those of their bulk materials like: High surface area to volume ratio effects Quantization of electronic and vibration properties.
Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin
2018-06-01
In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.
Baskaran, Xavierravi; Geo Vigila, Antony Varuvel; Parimelazhagan, Thangaraj; Muralidhara-Rao, Doulathabad; Zhang, Shouzhou
2016-01-01
The objective of the study was to characterize silver nanoparticles (Ag-NPs) and their bioactivities in early tracheophytes (Pteridophyta). Aqueous leaf extract of a critically endangered fern, Pteris tripartita Sw., was used for one-step green synthesis of Ag-NPs. The biosynthesized Ag-NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Morphologically, the Ag-NPs showed hexagonal, spherical, and rod-shaped structures. Size distributions of Ag-NPs, calculated using Scherrer’s formula, showed an average size of 32 nm. Ag-NPs were studied for in vitro antioxidant, antimicrobial, and in vivo anti-inflammatory activities. Ag-NPs exhibited significant anti-inflammatory activity in carrageenan-induced paw volume tests performed in female Wistar albino rats. Furthermore, Ag-NPs showed significant antimicrobial activity against 12 different microorganisms in three different assays (disk diffusion, time course growth, and minimum inhibitory concentration). This study reports that colloidal Ag-NPs can be synthesized by simple, nonhazardous methods, and that biosynthesized Ag-NPs have significant therapeutic properties. PMID:27895478
Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef
2008-04-28
Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.
Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles.
Qayyum, Shariq; Khan, Asad Ullah
2016-10-01
Silver nanoparticles (AgNPs) were biosynthesized via a green route using ten different plants extracts (GNP1- Caryota urens , GNP2- Pongamia glabra , GNP3- Hamelia patens , GNP4- Thevetia peruviana , GNP5- Calendula officinalis , GNP6- Tectona grandis , GNP7- Ficus petiolaris , GNP8- Ficus busking , GNP9- Juniper communis, GNP10- Bauhinia purpurea ). AgNPs were tested against drug resistant microbes and their biofilms. These nanoparticles (NPs) were characterised using UV-vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and Image J software. Most of the AgNPs were distributed over a range of 1 of 60 nm size. The results indicated that AgNPs were antibacterial in nature without differentiating between resistant or susceptible strains. Moreover, the effect was more prominent on Gram negative bacteria then Gram positive bacteria and fungus. AgNPs inhibited various classes of microbes with different concentration. It was also evident from the results that the origin or nature of extract did not affect the activity of the NPs. Protein and carbohydrate leakage assays confirmed that the cells lysis is one of the main mechanisms for the killing of microbes by green AgNPs. This study suggests that the action of AgNPs on microbial cells resulted into cell lysis and DNA damage. Excellent microbial biofilm inhibition was also seen by these green AgNPs. AgNPs have proved their candidature as a potential antibacterial and antibiofilm agent against MDR microbes.
Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah
2012-01-01
The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
Rao, V Kesava; Radhakrishnan, T P
2015-06-17
Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki
When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticlesmore » were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.« less
Zhang, Yue; Shen, Hui-Yan; Hai, Xin; Chen, Xu-Wei; Wang, Jian-Hua
2017-01-17
The rapid and accurate detection of hydrogen sulfide is of great concern due to its unique role on environmental pollution and signal transmission in physiological systems. Herein, we report a smart colorimetric probe for the selective detection of H 2 S. The probe is prepared via a surfactant-free route with cross-linked polyhedral oligomeric silsesquioxane (POSS) polymer cage as capping ligand and reducing agent under microwave irradiation, called poly-POSS-formaldehyde polymer (PPF) cage-AgNPs or PPF-AgNPs for short. The caged silver nanoparticles are well-dispersed with narrow size distribution within 6.0-8.4 nm. Chloride ions and aldehyde groups in PPF make the nucleation and growth of Ag nanoparticles accomplished within a very short time of 1 min. The positively charged PPF-AgNPs exhibit excellent selectivity to H 2 S against other anionic species and thiols due to the specific Ag-H 2 S interaction, where the favorable protection effect of PPF polymer cage from the nanoparticle aggregation is demonstrated. The colorimetric probe presents a quick response to H 2 S (<3 min) and favorable sensitivity within a linear range of 0.7-10 μM along with a detection limit of 0.2 μM. The probe is well demonstrated by analysis of H 2 S in various water and biological samples.
Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Yan, Lanqin; Xu, Lihua; Fu, Yaolong
2017-10-18
In this paper, we investigated the optical and electrical characteristics of hybrid solar cells using silicon pyramid/Ag nanoparticle and nanowire/Ag nanoparticle nanocomposite structures, which are obtained by the Ag-assisted electroless etching method. We introduced the application of the physical and chemical properties of Ag nanoparticles on four kinds of solar cells: silicon pyramid, silicon pyramid/PEDOT:PSS, silicon nanowire, and silicon nanowire/PEDOT:PSS. We simulated the absorption of these structures for different parameters. Furthermore, we also show the result of the current density-voltage (J-V) characterization of the sample with Ag nanoparticles, which exhibits an improvement of the power conversion efficiency (PCE) in contrast to the samples without Ag nanoparticles. It was found that the properties of light-trapping of Ag nanoparticles have a prominent impact on improving the PCE of hybrid solar cells.
Biosynthesis and stabilization of Au and Au Ag alloy nanoparticles by fungus, Fusarium semitectum
NASA Astrophysics Data System (ADS)
Dasaratrao Sawle, Balaji; Salimath, Basavaraja; Deshpande, Raghunandan; Dhondojirao Bedre, Mahesh; Krishnamurthy Prabhakar, Belawadi; Venkataraman, Abbaraju
2008-09-01
Crystallized and spherical-shaped Au and Au-Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au-Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au-Ag alloy nanoparticles (Au-AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core-shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au-Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, R.; Srivastava, S.K., E-mail: sunit@chem.iitkgp.ernet.in
Graphical abstract: Probable scheme to demonstrate the mechanism of PnHMAg showing enhanced EMI shielding compared to PnHM. - Highlights: • Hollow polyaniline microsphere (PnHM) exhibits superior properties due to its enhanced surface to volume ratio. • PnHMAg has been used in developing efficient sensor for the detection of sugar. • Presence of Ag nanoparticles enhances the electrical conductivity of PnHMAg resulting in the improvement of electromagnetic interference shielding in both X- and S-band regions. • Such properties could be harnessed effectively for development of devices for commercial as well as national purposes. - Abstract: The present study is focused onmore » synthesis of polyaniline hollow microspheres (PnHM) nanocomposites of silver (Ag) i.e., PnHMAg by emulsion polymerization of aniline and Tollen’s reagent as a source for Ag nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of PnHMAg indicated presence of silver nanoparticles dispersed on polyaniline surface. The electrical conductivity of PnHMAg is increased by ∼6 times compared to PnHM. Cyclic voltammogram of PnHM in sugar sensing exhibits characteristics redox peaks at ∼0.09 (sugar) and ∼0.53 V (polyaniline). Interestingly, PnHMAg showed a single peak at ∼−0.18 V with increased intensity (∼5 times) indicating its high sugar sensing ability. PnHMAg also exhibits high shielding efficiency of 19.5 dB (11.2 GHz) due to the presence of highly conducting Ag nanoparticles. TEM studies confirmed that Ag nanoparticles are well distributed on PnHM. As a result, a continuous electronic path is developed due to enhanced interconnectivity of PnHM.« less
NASA Astrophysics Data System (ADS)
Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru
2018-03-01
The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.
Holmes, Amy M; Lim, Julian; Studier, Hauke; Roberts, Michael S
2016-12-01
The use of silver nanoparticles (Ag NPs) within the healthcare sector and consumer products is rapidly increasing. There are now a range of diverse-shaped Ag NPs that are commercially available and many of the products containing nanosilver are topically applied to human skin. Currently, there is limited data on the extent to which the antimicrobial efficacy and cytotoxicity of Ag NPs is related to their shape and how the shape of the Ag NPs affects their distribution in both intact and burn wounded human skin after topical application. In this study, we related the relative Ag NP cytotoxicity to potential skin pathogens and HaCaT keratinocytes in vitro with the shape of the Ag NPs. We employed multiphoton fluorescence lifetime imaging to map the distribution of the native and unlabeled Ag NPs after topical application to both intact and burn wounded human skin using the localized surface plasmon resonance signal of the Ag NPs. Truncated plate shaped Ag NPs led to the highest cytotoxicity against both bacteria (IC 50 ranges from 31.25 to 125 μg/mL depending on the bacterial species) and HaCaT keratinocytes (IC 50 78.65 μg/mL [95%CI 63.88, 96.83]) thus both with similar orders of magnitude. All Ag NPs were less cytotoxic than solutions of silver nitrate (IC 50 of 7.85 μg/mL [95%CI 1.49, 14.69]). Plate-shaped Ag NPs displayed the highest substantivity within the superficial layers of the stratum corneum when topically applied to intact skin and the highest deposition into the wound bed when applied to burned ex vivo human skin relative to other Ag NP shapes.
Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles.
Ma, Jun; Tai, Guo'an; Guo, Wanlin
2010-03-01
Ag-doped CdS nanoparticles were synthesized by an ultrasound-assisted microwave synthesis method. The X-ray diffraction patterns reveal a structural evolution from cubic to hexagonal with increasing molar ratios of Ag(+)/Cd(2+) from 0% to 5%. It shows that the Ag-doped hexagonal CdS nanoparticles are polycrystal. The X-ray photoelectron spectroscopy of the CdS nanoparticles doping with 5% Ag(+) shows that the doped Ag in CdS is metallic. Simultaneously, the characteristic Raman peaks of the CdS nanoparticles enhance with increasing Ag(+) concentrations. The photocatalytic activity of different Ag-doped samples show a reasonable change due to different ratios of Ag which doped into CdS. Copyright 2009 Elsevier B.V. All rights reserved.
Lu, Zhisong; Xiao, Jing; Wang, Ying; Meng, Mei
2015-08-15
Fabrication of silver nanoparticles (AgNPs)-modified silk for antibacterial application is one of the hottest topics in the textile material research. However, the utilization of a polymer as both 3-dimensional matrix and reductant for the in-situ synthesis of AgNPs on silk fibers has not been realized. In this work, a facile, efficient and green approach was developed to in-situ grow AgNPs on the polydopamine (PDA)-functionalized silk. AgNPs with the size of 30-90 nm were uniformly deposited on the silk fiber surface with the PDA coating layer as a reduction reagent. The AgNPs exhibit excellent face-centered cubic crystalline structures. The bacterial growth curve and inhibition zone assays clearly demonstrate the antibacterial properties of the functionalized silk. Both high Ag(+) release level and long-time release profile were observed for the as-prepared AgNPs-PDA-coated silk, indicating the high-density loading of AgNPs and the possible long-term antibacterial effects. This work may provide a new method for the preparation of AgNPs-functionalized silk with antibacterial activity for the clothing and textile industry. Copyright © 2015 Elsevier Inc. All rights reserved.
Synthesis and characterization of Ag embedded graphitic carbon nitride
NASA Astrophysics Data System (ADS)
Patra, P. C.; Mohapatra, Y. N.
2018-05-01
Silver embedded graphitic carbon nitride (g-C3N4:Ag) was prepared by a simple wet chemical pathway using dimethylformamide (DMF) as a common solvent which facilitate homogenous distribution of Ag nanoparticles under ambient conditions. The phase, chemical structure and thermal stability of the as prepared g-C3N4:Ag composite was characterized by X-ray diffraction (XRD), Fourier transmission infrared (FTIR) spectroscopy and Thermo gravimetric analysis (TGA). The optical properties of g-C3N4:Ag were investigated by diffuse reflectance UV/vis spectroscopy and steady state photoluminescence (PL) spectroscopy. The bandgap of g-C3N4:Ag is determined to be 2.72 eV compared to 2.85 eV for that of pure g-C3N4 using Kubelka-Monk function. Comparing the UV/vis spectra, there is a broad spectrum in the region 2.3 to 2.6 eV in the case of g-C3N4:Ag, which is attributed to the presence of Ag nanoparticles. The emission peak of g-C3N4:Ag is slightly broadened and quenched in intensity to that of pure g-C3N4.
Kinetics of Spontaneous Bimetallization between Silver and Noble Metal Nanoparticles.
Hirakawa, Kazutaka; Kaneko, Tetsuya; Toshima, Naoki
2018-06-05
A physical mixture of polymer-protected Ag nanoparticles and Rh, Pd, or Pt nanoparticles spontaneously forms Ag-core bimetallic nanoparticles. The formed nanoparticles were smaller than the parent Ag nanoparticles. In the initial process of this reaction, the surface plasmon absorption of Ag nanoparticles diminished and then almost ceased within one hour. Within several minutes, the decrease in Ag surface plasmon absorption could be analyzed by second-order reaction. This reaction was accelerated with an increase of temperature and the energy gap in the Fermi level between Ag and the other metals. The activation energy (E a ) of this reaction could be determined. An electron transfer reaction from Ag to other metal nanoparticles was proposed as the initial interaction between these metal nanoparticles because the Fermi level of Ag is relatively high, and the electron transfer is possible in terms of energy. The Marcus plot between the rate constant and the driving force, roughly estimated from the work function of metals, and the observed E a values reasonably explained the proposed electron transfer mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Impellitteri, Christopher A.; Tolaymat, Thabet M.; Scheckel, Kirk G.
2009-07-14
Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that silver nanoparticles undergo in different environments. Thus an antimicrobial sock material containing Ag nanoparticles was examined by X-ray absorption spectroscopy to identify the speciation of Ag. The material was exposed to a hypochlorite/detergent solution and subjected to agitation. An elemental Ag nanopowder was also exposed to the hypochlorite/detergent solution or to a 1 mol L{sup -1} NaCl solution. Results showed that the sock material nanoparticles consisted ofmore » elemental Ag. After exposure to the hypochlorite/detergent solution, a significant portion (more than 50%) of the sock nanoparticles were converted, in situ, to AgCl. Results from exposures to elemental Ag nanopowder suggest that an oxidation step is necessary for the elemental Ag nanoparticles to transform into AgCl as there was no evidence of AgCl formation in the presence of chloride alone. As a result, if Ag ions leach from consumer products, any chloride present may quickly scavenge the ions. In addition, the efficacy of Ag, as an antimicrobial agent in fabrics, may be limited, or even negated, after washing in solutions containing oxidizers as AgCl is much less reactive than Ag ion.« less
Role of silver nanoparticles (AgNPs) on the cardiovascular system.
Gonzalez, Carmen; Rosas-Hernandez, Hector; Ramirez-Lee, Manuel Alejandro; Salazar-García, Samuel; Ali, Syed F
2016-03-01
With the advent of nanotechnology, the use and applications of silver nanoparticles (AgNPs) have increased, both in consumer products as well as in medical devices. However, little is known about the effects of these nanoparticles on human health, more specific in the cardiovascular system, since this system represents an important route of action in terms of distribution, bioaccumulation and bioavailability of the different circulating substances in the bloodstream. A collection of studies have addressed the effects and applications of different kinds of AgNPs (shaped, sized, coated and functionalized) in several components of the cardiovascular system, such as endothelial cells, isolated vessels and organs as well as integrative animal models, trying to identify the underlying mechanisms involved in their actions, to understand their implication in the field of biomedicine. The purpose of the present review is to summarize the most relevant studies to date of AgNPs effects in the cardiovascular system and provide a broader picture of the potential toxic effects and exposure risks, which in turn will allow pointing out the directions of further research as well as new applications of these versatile nanomaterials.
Devi, Th Babita; Ahmaruzzaman, M
2016-09-01
In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation.
Bao, Dongping; Oh, Zhen Guo; Chen, Zhong
2016-01-01
Plants act as a crucial interface between humans and their environment. The wide use of nanoparticles (NPs) has raised great concerns about their potential impacts on crop health and food safety, leading to an emerging research theme about the interaction between plants and NPs. However, up to this day even the basic issues concerning the eventual fate and characteristics of NPs after internalization are not clearly delineated due to the lack of a well-established technique for the quantitative analysis of NPs in plant tissues. We endeavored to combine a quantitative approach for NP analysis in plant tissues with TEM to localize the NPs. After using an enzymatic digestion to release the NPs from plant matrices, single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) is employed to determine the size distribution of silver nanoparticles (Ag NPs) in tissues of the model plant Arabidopsis thaliana after exposure to 10 nm Ag NPs. Our results show that Macerozyme R-10 treatment can release Ag NPs from Arabidopsis plants without changing the size of Ag NPs. The characteristics of Ag NPs obtained by SP-ICP-MS in both roots and shoots are in agreement with our transmission electron micrographs, demonstrating that the combination of an enzymatic digestion procedure with SP-ICP-MS is a powerful technique for quantitative determination of NPs in plant tissues. Our data reveal that Ag NPs tend to accumulate predominantly in the apoplast of root tissues whereby a minor portion is transported to shoot tissues. Furthermore, the fact that the measured size distribution of Ag NPs in plant tissue is centered at around 20.70 nm, which is larger than the initial 12.84 nm NP diameter, strongly implies that many internalized Ag NPs do not exist as intact individual particles anymore but are aggregated and/or biotransformed in the plant instead. PMID:26870057
Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed
2015-11-01
Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Roh, Sung-Hee; Cheong, Hyeonsook; Kim, Do-Heyoung; Woo, Hee-Gweon; Lee, Byeong-Gweon; Yang, Kap-Seung; Kim, Bo-Hye; Sohn, Honglae
2013-01-01
The generation of silver nanoparticle/bis(o-phenolpropyl)silicone composites have been facilitated by the addition of sodium tetrachloroaurate or gold(Ill) chloride (< 1 wt% of NaAuCl4 or AuCl3) to the reaction of silver nitrate (AgNO3) with bis(o-phenolpropyl)silicone [BPPS, (o-phenolpropyl)2(SiMe2O)n, n = 2,3,8,236]. TEM and FE-SEM data showed that the silver nanoparticles having the size of < 20 nm are well dispersed throughout the BPPS silicone matrix in the composites. XRD patterns are consistent with those for polycrystalline silver. The size of silver nanoparticles augmented with increasing the relative molar concentration of AgNO3 added with respect to BPPS. The addition of gold complexes (1-3 wt%) did not affect the size distribution of silver nanoparticles appreciably. In the absence of BPPS, the macroscopic precipitation of silver by agglomeration, indicating that BPPS is necessary to stabilize the silver nanoparticles surrounded by coordination.
Nanostructured Interfaces for Organized Mesoscopic Biotic-Abiotic Materials
2011-09-30
stratified films. Bio-assisted and surface-mediated growth of inorganic nanoparticles . The use of biomolecules as templates for the synthesis of...multi-length scale morphologies of several selected inorganic materials including bi-metal nanoparticles (Au-Ag, Au-Pd) as well as TiO2, ZnO nanodots...polyaminoacid-decorated surfaces which serve for both nucleation and growth of uniformly distributed gold nanoparticles at ambient conditions. We found that
Loeschner, Katrin; Navratilova, Jana; Grombe, Ringo; Linsinger, Thomas P J; Købler, Carsten; Mølhave, Kristian; Larsen, Erik H
2015-08-15
Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass spectrometric detection (AF(4)-ICP-MS) was applied for quantitative analysis of silver nanoparticles (AgNPs) in a chicken meat matrix following enzymatic sample preparation. For the first time an analytical validation of nanoparticle detection in a food matrix by AF(4)-ICP-MS has been carried out and the results showed repeatable and intermediately reproducible determination of AgNP mass fraction and size. The findings demonstrated the potential of AF(4)-ICP-MS for quantitative analysis of NPs in complex food matrices for use in food monitoring and control. The accurate determination of AgNP size distribution remained challenging due to the lack of certified size standards. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Qunhuo; Tian, Ying; Tang, Wenhua; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing
2018-05-01
In this work, we have performed a comprehensive investigation of the Ag+ concentration effect on the morphological, thermal, structural, and mid-infrared emission properties of novel oxyfluoride borosilicate glasses and glass ceramics containing both Ag nanoparticles and erbium-doped hexagonal NaYF4 nanocrystals. The effect of Ag+ ions on the glass forming and crystallization processes was discussed in detail by glass structural analysis. It was found that the Ag+ concentration can affect the distribution of Na+ ion and bridge oxygen in boron-rich and silicon-rich phases, which induced the transformation between BO3 triangles and BO4 tetrahedra during crystallization process. In addition, there was a turning point when the doped Ag+ ion concentration reached its solubility in the borosilicate glass. Furthermore, the enhancement of the 2.7 μm emission and the reduction of the lifetime of the 4I13/2 level were observed both in glasses and in glass ceramics, and its origin was revealed by qualitative and quantitative analyses of the Er3+-Ag nanoparticles (localized electric field enhancement) and Er3+-Er3+ (nonradiative resonance energy transfer) interactions within glasses and glass ceramics. Moreover, the high lifetime of the 4I11/2 level (2.12 ms) and the peak emission cross section in 2.7 μm (6.8×10-21 cm2) suggested that the prepared glass ceramics have promising mid-infrared laser applications.
Pereira, Wyllamanney da Silva; Andrés, Juan; Gracia, Lourdes; San-Miguel, Miguel A; da Silva, Edison Z; Longo, Elson; Longo, Valeria M
2015-02-21
Why and how Ag is formed when electron beam irradiation takes place on α-Ag2WO4 in a vacuum transmission electron microscopy chamber? To find an answer, the atomic-scale mechanisms underlying the formation and growth of Ag on α-Ag2WO4 have been investigated by detailed in situ transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) studies, density functional theory based calculations and ab initio molecular dynamics simulations. The growth process at different times, chemical composition, size distribution and element distribution were analyzed in depth at the nanoscale level using FE-SEM, operated at different voltages (5, 10, 15, and 20 kV), and TEM with energy dispersive spectroscopy (EDS) characterization. The size of Ag nanoparticles covers a wide range of values. Most of the Ag particles are in the 20-40 nm range. The nucleation and formation of Ag on α-Ag2WO4 is a result of structural and electronic changes in the AgOx (x = 2,4, 6, and 7) clusters used as constituent building blocks of this material, consistent with metallic Ag formation. First principle calculations point out that Ag-3 and Ag-4-fold coordinated centers, located in the sub-surface of the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio molecular dynamics simulations and the nudged elastic band (NEB) method were used to investigate the minimum energy pathways of these Ag atoms from positions in the first slab layer to outward sites on the (100) surface of α-Ag2WO4. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process.
Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua
2014-01-01
Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests.
El-Naggar, Mehrez E; Shaheen, Tharwat I; Fouda, Moustafa M G; Hebeish, Ali A
2016-01-20
Herein, we present a new approach for the synthesis of gold nanoparticles (AuNPs) individually and as bimetallic core-shell nanoparticles (AgNPs-AuNPs). The novelty of the approach is further maximized by using curdlan (CRD) biopolymer to perform the dual role of reducing and capping agents and microwave-aided technology for affecting the said nanoparticles with varying concentrations in addition to those affected by precursor concentrations. Thus, for preparation of AuNPs, curdlan was solubilized in alkali solution followed by an addition of tetrachloroauric acid (HAuCl4). The curdlan solution containing HAuCl4 was then subjected to microwave radiation for up to 10 min. The optimum conditions obtained with the synthesis of AuNPs were employed for preparation of core-shell silver-gold nanoparticles by replacing definite portion of HAuCl4 with an equivalent portion of silver nitrate (AgNO3). The portion of AgNO3 was added initially and allowed to be reduced by virtue of the dual role of curdlan under microwave radiation. The corresponding portion of HAuCl4 was then added and allowed to complete the reaction. Characterization of AuNPs and AgNPs-AuNPs core-shell were made using UV-vis spectra, TEM, FTIR, XRD, zeta potential, and AFM analysis. Accordingly, strong peaks of the colloidal particles show surface plasmon resonance (SPR) at maximum wavelength of 540 nm, proving the formation of well-stabilized gold nanoparticles. TEM investigations reveal that the major size of AuNPs formed at different Au(+3)concentration lie below 20 nm with narrow size distribution. Whilst, the SPR bands of AgNPs-AuNPs core-shell differ than those obtained from original AgNPs (420 nm) and AuNPs (540 nm). Such shifting due to SPR of Au nanoshell deposited onto AgNPs core was significantly affected by the variation of bimetallic ratios applied. TEM micrographs show variation in contrast between dark silver core and the lighter gold shell. Increasing the ratio of silver ions leads to significant decrease in zeta potential of the formed bimetallic core-shell. FT-IR discloses the interaction between CRD and metal nanoparticles, which could be the question of reducing and stabilizing metal and bimetallic nanoparticles. XRD patterns assume insufficient difference for the AuNPs and AgNPs-AuNPs core-shell samples due to close lattice constants of Ag and Au. Based on AFM, AuNPs and AgNPs-AuNPs core-shell exhibited good monodispersity with spherical particles possessing different sizes in the studied samples. The average sizes of both metal and bimetallic core-shell were found to be 52 and 45 nm, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shiratsu, Taisuke; Yao, Hiroshi
2018-02-07
Size-dependent magneto-optical activity in Ag nanoparticles with dimensions from 10 to 60 nm is demonstrated with magnetic circular dichroism (MCD) spectroscopy. The Ag nanoparticles are prepared on the basis of a seeded-growth strategy using sodium citrate and/or tannic acid as reducing agents in aqueous solution. The obtained nanoparticles are roughly spherical, but those larger than ∼28 nm have a slight diversity of shapes with quasi-spherical polyhedrons. They exhibit a derivative-like MCD response in the localized surface plasmon resonance (LSPR) region, which originates from two circular modes of surface magnetoplasmons. With an increase in the nanoparticle diameter, the bisignated MCD signal is strongly distorted and weakened. Such a distortion for large-sized Ag nanoparticles can be phenomenologically simulated on the basis of both spectral inhomogeneity and MCD signal lobe asymmetry. Then the maximum value of MCD amplitude (MCD max ), which is obtained by normalization of the amplitude to the LSPR peak absorbance, first increases with increasing particle diameter and then decreases with a maximum for the 23 nm nanoparticle. Interestingly, the MCD max values are inversely correlated with the spectral bandwidth of LSPR extinction. This behaviour is discussed from a viewpoint of inhomogeneous effects of both spectral and size/shape distributions. We believe the present results will advance the design and application of optical devices based on magnetoplasmonics.
NASA Astrophysics Data System (ADS)
Chiu, Chih-Wei; Ou, Gang-Bo; Tsai, Yu-Hsuan; Lin, Jiang-Jen
2015-11-01
Highly electrically conductive films were prepared by coating organic/inorganic nanohybrid solutions with a polymeric dispersant and exfoliated mica nanosheets (Mica) on which silver nanoparticles (AgNPs) had been dispersed in various components. Transmission electronic microscopy showed that the synthesized AgNPs had a narrow size distribution and a diameter of approximately 20 nm. Furthermore, a 60 μm thick film with a sheet resistance as low as 4.5 × 10-2 Ω/sq could be prepared by controlling the heating temperature and by using AgNPs/POE-imide/Mica in a weight ratio of 20:20:1. During the heating process, the surface color of the hybrid film changed from dark golden to white, suggesting the accumulation of the AgNPs through surface migration and their melting to form an interconnected network. These nanohybrid films have potential for use in various electrically conductive devices.
Giessen, Tobias W; Silver, Pamela A
2016-12-16
Engineered biological systems are used extensively for the production of high value and commodity organics. On the other hand, most inorganic nanomaterials are still synthesized via chemical routes. By engineering cellular compartments, functional nanoarchitectures can be produced under environmentally sustainable conditions. Encapsulins are a new class of microbial nanocompartments with promising applications in nanobiotechnology. Here, we engineer the Thermotoga maritima encapsulin EncTm to yield a designed compartment for the size-constrained synthesis of silver nanoparticles (Ag NPs). These Ag NPs exhibit uniform shape and size distributions as well as long-term stability. Ambient aqueous conditions can be used for Ag NP synthesis, while no reducing agents or solvents need to be added. The antimicrobial activity of the synthesized protein-coated or shell-free Ag NPs is superior to that of silver nitrate and citrate-capped Ag NPs. This study establishes encapsulins as an engineerable platform for the synthesis of biogenic functional nanomaterials.
Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas
2016-12-01
In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.
Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver
NASA Astrophysics Data System (ADS)
Meškinis, Šarūnas; Čiegis, Arvydas; Vasiliauskas, Andrius; Šlapikas, Kęstutis; Gudaitis, Rimantas; Yaremchuk, Iryna; Fitio, Volodymyr; Bobitski, Yaroslav; Tamulevičius, Sigitas
2016-03-01
In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2018-05-01
We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.
Understanding the Synthesis and Properties of Molecular Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Ashenfelter, Brian A.
Molecular nanoparticles have emerged as an interesting class of materials whose atomically precise structures and discrete properties set them apart from their larger counterparts. Molecular silver nanoparticles are of particular interest because they provide a host of advantages as optical materials for possible use in sensing and imaging applications. However, relatively little is known about molecular silver nanoparticles including the details of their formation and their optical and mechanical properties. Size control remains a longstanding challenge in the production of glutathionate (SG) protected silver nanoparticles. Singular Ag:SG nanoparticle products have been difficult to obtain directly, but size focusing of larger distributions through attrition has been found to lead to useful isolation of particular species. Here, we present a methodology for controlling the size of Ag:SG molecular nanoparticles that leverages the stability of the most robust species. These results were then used to develop a facile approach for achieving two of the most stable species in the Ag:SG system. Molecular metal nanoparticles are known to be much more fluorescent than larger plasmonic nanoparticles, however the nature and origin of this fluorescence are not fully understood. Fluorescence can originate from either the quantum states within the metal core or mixed ligand states at the inorganic-organic interface. We have presented compelling evidence that fluorescence from molecular silver glutathionate nanoparticles has its origin in interfacial electronic states. Fluorescence spectra were found to be independent of size, with very similar wavelength and bandwidth, although the quantum yield was not. Excitation spectra indicated that the strongest fluorescence had its origin in that part of the spectrum that is dominated by ligand-related states. Further, excitations to strictly core states and to higher lying d-band states had little to no contribution to the fluorescence. Time-resolved spectroscopic measurements show that Ag32(SG)19 and Ag15(SG)11 have a common emissive state, with the same emission wavelength and dynamic, which can be assigned to the metal-ligand state. As hybrid materials whose properties meet at the confluence of hard and soft matter, the structures of molecular silver nanoparticles also have interesting mechanical properties. High-pressure powder x-ray diffraction has been used to investigate the mechanical response to compression by a superlattice of Na4Ag44(p-MBA)30 molecular nanoparticles. Two unique pressure-induced phase transformations have been identified. The bulk modulus and axial compressibility of the material has also been determined. These measurements were also compared to a quantum mechanical simulation of the material under compression.
Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P
2013-12-17
Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.
NASA Astrophysics Data System (ADS)
Hirai, Makoto; Kumar, Ashok
2007-12-01
Utilizing a pulsed laser deposition (PLD) method, silver-copper (Ag-Cu) nanoparticles have been synthesized by changing the surface area ratio of the target ( S R = S Cu/( S Ag + S Cu)) from 0 to 30%. The peak absorption attributed to surface plasmon resonance (SPR) increased when increasing S R up to 15%, above which it decreased. The peak shifts seem to be induced by the changes in the conductivity and morphology of the Ag-Cu nanoparticles. Additionally, the interplanar spacings of the Ag-Cu nanoparticles prepared at S R = 15% corresponded to the Ag {111}, {200}, {220}, and Cu {111} planes. However, since the interplanar spacings attributed to the Cu {200} and {220} planes were not detected, the Ag-Cu nanoparticles were believed to possess a lattice constant ( a) close not to the Cu phase ( a = 3.615 Å) but to the Ag phase ( a = 4.086 Å). Moreover, confirming the presence of Cu atoms in the nanoparticles using energy dispersive X-ray (EDX) spectra, Ag-Cu nanoparticles may be a solid solution in which Cu atoms partially replace Ag atoms in the fcc structure.
Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue
2018-07-20
This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO 3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO 3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO 3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO 3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min -1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO 3 nanocomposites, the 3% (molar ratio) Au decorated AgVO 3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min -1 ) was almost two times higher than that of the pure AgVO 3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.
NASA Astrophysics Data System (ADS)
Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue
2018-07-01
This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer–Emmett–Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5–20 nm) were well distributed on the surface of the nanobelts. The UV–vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min‑1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min‑1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.
NASA Astrophysics Data System (ADS)
Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.
2017-04-01
Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also discussed.
Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G
2017-04-18
Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also discussed.
Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering
2012-01-01
Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection. PMID:22471923
NASA Astrophysics Data System (ADS)
Apostolova, Tzveta; Obreshkov, B. D.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Mel'nik, N. N.; Rudenko, A. A.
2018-01-01
In this work we show that nanometric-thick layers of SiO2, MnO2, and TiO2 may be effectively deposited on various silver nanoparticles (including cubic Ag nanoparticles) covered by a very thin (below 0.4 nm) layer of silver sulphide. The background in Raman measurements generated by sulphide-protected Ag nanoparticles is significantly smaller than that for analogous Ag nanoparticles protected by a monolayer formed from alkanethiols - depositing alkanethiols on a surface of anisotropic silver nanoparticles is the current standard method used for protecting a surface of Ag nanoparticles before depositing a layer of silica. Because of significantly smaller generated Raman background, Ag@SiO2 nanostructures with an Ag2S linkage layer between the silver core and the silica shell are very promising low-background electromagnetic nanoresonators for carrying out Raman analysis of various surfaces - especially using what is known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Sample SHINERS analyses of various surfaces (including pesticide-contaminated surfaces of tomatoes) using cubic-Ag@SiO2 nanoparticles as electromagnetic nanoresonators are also presented.
Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A
2018-05-29
In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.
Adegboyega, Nathaniel F; Sharma, Virender K; Siskova, Karolina; Zbořil, Radek; Sohn, Mary; Schultz, Brian J; Banerjee, Sarbajit
2013-01-15
This study investigated the possible natural formation of silver nanoparticles (AgNPs) in Ag(+)-fulvic acid (FA) solutions under various environmentally relevant conditions (temperature, pH, and UV light). Increase in temperature (24-90 °C) and pH (6.1-9.0) of Ag(+)-Suwannee River fulvic acid (SRFA) solutions accelerated the appearance of the characteristic surface plasmon resonance (SPR) of AgNPs. The rate of AgNP formation via reduction of Ag(+) in the presence of different FAs (SRFA, Pahokee Peat fulvic acid, PPFA, Nordic lake fulvic acid, NLFA) and Suwannee River humic acid (SRHA) followed the order NLFA > SRHA > PPFA > SRFA. This order was found to be related to the free radical content of the acids, which was consistent with the proposed mechanism. The same order of AgNP growth was seen upon UV light illumination of Ag(+)-FA and Ag(+)-HA mixtures in moderately hard reconstituted water (MHRW). Stability studies of AgNPs, formed from the interactions of Ag(+)-SRFA, over a period of several months showed that these AgNPs were highly stable with SPR peak reductions of only ~15%. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements revealed bimodal particle size distributions of aged AgNPs. The stable AgNPs formed through the reduction of Ag(+) by fulvic and humic acid fractions of natural organic matter in the environment may be transported over significant distances and might also influence the overall bioavailability and ecotoxicity of AgNPs.
NASA Astrophysics Data System (ADS)
Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming
2017-02-01
Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.
Wang, Jiale; Alves, Tiago V; Trindade, Fabiane J; de Aquino, Caroline B; Pieretti, Joana C; Domingues, Sergio H; Ando, Romulo A; Ornellas, Fernando R; Camargo, Pedro H C
2015-11-23
By a combination of theoretical and experimental design, we probed the effect of a quasi-single electron on the surface plasmon resonance (SPR)-mediated catalytic activities of Ag nanoparticles. Specifically, we started by theoretically investigating how the E-field distribution around the surface of a Ag nanosphere was influenced by static electric field induced by one, two, or three extra fixed electrons embedded in graphene oxide (GO) next to the Ag nanosphere. We found that the presence of the extra electron(s) changed the E-field distributions and led to higher electric field intensities. Then, we experimentally observed that a quasi-single electron trapped at the interface between GO and Ag NPs in Ag NPs supported on graphene oxide (GO-Ag NPs) led to higher catalytic activities as compared to Ag and GO-Ag NPs without electrons trapped at the interface, representing the first observation of catalytic enhancement promoted by a quasi-single electron. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Rui; Levard, Clément; Marinakos, Stella M.
2012-04-02
The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure asmore » a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.« less
Rajakumar, Govindasamy; Gomathi, Thandapani; Thiruvengadam, Muthu; Devi Rajeswari, V; Kalpana, V N; Chung, Ill-Min
2017-02-01
The aim of this study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using extracts from the medicinal plant, Millettia pinnata flower extract and investigate the effects of Ag-NPs on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antibacterial and cytotoxicity activity. UV-Vis peak at 438 nm confirmed the Ag-NPs absorbance. The SEM analysis results confirmed the presence of spherical shaped Ag-NPs by a huge disparity in the particle size distribution with an average size of 49 ± 0.9 nm. TEM images revealed the formation of Ag-NPs with spherical shape and sizes in the range between 16 and 38 nm. The Ag-NPs showed an excellent inhibitory efficacy against AChE and BChE. The highest antibacterial activity was found against Escherichia coli (20.25 ± 0.91 mm). These nanoparticles showed the cytotoxic effects against brine shrimp (artemia saliana) nauplii with a LD 50 value of 33.92. Copyright © 2016 Elsevier Ltd. All rights reserved.
A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves.
Singh, Priyanka; Kim, Yeon Ju; Yang, Deok Chun
2016-12-01
The study highlights the synthesis of gold nanoparticles and silver nanoparticles by fresh leaves of Panax ginseng, an herbal medicinal plant. The reduction of auric chloride and silver nitrate led to the formation of gold and silver nanoparticles within 3 and 45 min, at 80°C, respectively. The developed methodology was rapid, facile, ecofriendly and the utmost significant is quite economical, which did not require subsequent processing for reduction or stabilization of nanoparticles. The nanoparticles were further characterized by Ultraviolet-visible spectroscopy (UV-vis) which showed the relevant peak for gold and silver nanoparticles at 578 and 420 nm, correspondingly. Field-emission transmission electron microscopy (FE-TEM) displayed the spherical shape of monodispersed nanoparticles. FE-TEM revealed that the gold nanoparticles were 10-20 nm and silver nanoparticles were 5-15 nm. The energy dispersive X-ray (EDX) and elemental mapping results indicated the maximum distribution of gold and silver elements in the respective nanoproducts, which further corresponds the purity. Further, the X-ray diffraction (XRD) results confirm the crystalline nature of synthesized nanoparticles. The biosynthesized AgNPs served as an efficient antimicrobial agent at 3 μg concentration against many pathogenic strains for instance, Escherichia coli, Salmonella enterica, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus anthracis and Bacillus cereus. In addition, AgNPs showed complete inhibition of biofilm formation by S. aureus and Pseudomonas aeruginosa at 4 μg/ml concentration. Moreover, the AuNPs and AgNPs found as a potent anticoagulant agent. Thus, the study claims the rapid synthesis of gold and silver nanoparticles by fresh P. ginseng leaf extract and its biological applications.
NASA Astrophysics Data System (ADS)
Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh
2018-07-01
In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.
NASA Astrophysics Data System (ADS)
Bontempi, E.; Colombi, P.; Depero, L. E.; Cartechini, L.; Presciutti, F.; Brunetti, B. G.; Sgamellotti, A.
2006-06-01
Lustre is known as one of the most significant decorative techniques of Medieval and Renaissance pottery in the Mediterranean basin, characterized by brilliant gold and red metallic reflections and iridescence effects. Previous studies by various techniques (SEM-EDS and TEM, UV-VIS, XRF, RBS and EXAFS) demonstrated that lustre consists of a heterogeneous metal-glass composite film, formed by Cu and Ag nanoparticles dispersed within the outer layer of a tin-opacified lead glaze. In the present work the investigation of an original gold lustre sample from Deruta has been carried out by means of glancing-incidence X-ray diffraction techniques (GIXRD). The study was aimed at providing information on structure and depth distribution of Ag nanoparticles. Exploiting the capability of controlling X-ray penetration in the glaze by changing the incidence angle, we used GIXRD measurements to estimate non-destructively thickness and depth of silver particles present in the first layers of the glaze.
Effect of Ag nanoparticles deposition on photocatalytic activity of Ag{sub 2}SO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuan, E-mail: xzhang@dhu.edu.cn; Wang, Qi; Hu, Jin-Wen
Highlights: • Ag{sub 2}SO{sub 3} was developed as novel photocatalyst. • The effect of Ag nanoparticles deposition on photocatalytic activity was investigated. • The activation and deactivation mechanism was proposed. - Abstract: A novel photocatalyst Ag{sub 2}SO{sub 3} was prepared and the effect of Ag nanoparticles, photo-deposited on the surface of Ag{sub 2}SO{sub 3}, on its photocatalytic activity was investigated. The as-prepared photocatalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflection spectroscopy (DRS). The photocatalytic activity was evaluated by photo-degradation of rhodamine B dye under UV light irradiation. It was found that the photocatalyticmore » activity of Ag{sub 2}SO{sub 3} was initially enhanced with deposition of Ag nanoparticles, but subsequently declined with Ag nanoparticles overloaded. The possible mechanism was proposed based on experimental results. These findings may contribute to developing novel photocatalysts and understanding of fundamentals of Ag-based photocatalytic materials.« less
Kim, Sun Tae; Lee, Yong-Ju; Hwang, Yu-Sik; Lee, Seungho
2015-01-01
In this study, 40 nm silver nanoparticles (AgNPs) were synthesized using the citrate reduction method and then the surface of AgNPs was modified by conjugating Cytochrome C (Cyto C) to improve stability and to enhance bioactivity and biocompatibility of AgNPs. It is known that Cyto C may undergo conformational changes under various conditions of pH, temperature, ionic strength, etc., resulting in aggregation of the particles. These parameters also affect the size and size distribution of Cyto C-conjugated AgNPs (Cyto C-AgNP). ζ-potential measurement revealed that the adsorption of Cyto C on the surface of AgNPs is saturated at the molar ratio [Cyto C]/[AgNPs] above about 300. Asymmetrical flow field-flow fractionation (AsFlFFF) analysis showed that hydrodynamic diameter of AgNPs increases by about 4 nm when the particle is saturated by Cyto C. The aggregation behavior of Cyto C-AgNP at various conditions of pH, temperature and ionic strength were investigated using AsFlFFF and UV-vis spectroscopy. It was found that the aggregation of Cyto C-AgNP increases with decreasing pH, increasing temperature and ionic strength due to denaturation of Cyto C on AgNPs and reduction in the thickness of electrostatic double layer on the surface of Cyto C-AgNP. Copyright © 2014 Elsevier B.V. All rights reserved.
Meng, Yuan; Su, Fenghua; Chen, Yangzhi
2016-08-04
Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.
NASA Astrophysics Data System (ADS)
Meng, Yuan; Su, Fenghua; Chen, Yangzhi
2016-08-01
Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; Easterly, Clay E
Solution synthesis of nanocrystal silver is reviewed. This paper reports a novel thermal electrochemical synthesis (TECS) for producing metal Ag nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25-100oC), low voltage (1-50 V DC) on Ag electrodes, and simple water or aqueous solutions as reaction medium. Furthermore, a tubular dialysis membrane surround electrodes proves favorable to produce nanosized (<10 nm) Ag nanocrystals. Different from those nanocrystals reported in literature, our nanocrystals have several unique features: (1) small nanometer size, (2) nakedness , i.e., surfaces of metal nanocrystals are free of organic ligands or capping moleculesmore » and no need of dispersant in synthesis solutions, and (3) colloidally stable in water solutions. It was discovered that Ag nanoparticles with initially large size distribution can be homogenized into near-monodispersed system by a low power (< 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, stable, and uniform sized. In the presence of stabilizing agent (also as supporting electrolyte) such as polyvinyl alcohol (PVA), large yield of silver nanoparticles (<100nm) in the form of thick milky sols are produced.« less
Meng, Yuan; Su, Fenghua; Chen, Yangzhi
2016-01-01
Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733
NASA Astrophysics Data System (ADS)
Zhao, Jun; Zhang, Zhaochun; Yu, Zhenwei; He, Zhenni; Yang, Shanshan; Jiang, Huiyi
2014-01-01
Herein hydroxyapatite (HA) has been synthesized by the nucleation on the surfaces of reduced graphene oxide/silver nanoparticles (rGO/AgNPs) chemisorbed with thioglycolic acid (TGA). The self-assembled monolayer of TGA formed on rGO/AgNPs was immersed in simplified simulated body fluid under gentle growth conditions, forming rGO/AgNPs/TGA/HA biocomposite. The phase structures and functional groups of biocomposite were analyzed by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Enhanced Raman spectrum of TGA on prepared rGO/AgNPs was obtained with excitation at 633 nm, showing that TGA was chemisorbed on AgNPs through S atom and TGA molecular plane exhibited a tilted orientation with respect to AgNPs. The morphologies of biocomposite were investigated by means of atomic force microscope and transmission electron microscope coupled with energy dispersive spectrum. Analysis shows that the AgNPs uniformly distributed on the rGO nanosheets with the size of about 15-20 nm and HA formation initiated through Ca2+-adsorption upon complexation with sbnd COO- groups of TGA on AgNPs. The results obtained indicated that the rGO/AgNPs/TGA/HA biocomposite may have immense potential application in bone tissue engineering fields for its outstanding and stable activities.
NASA Astrophysics Data System (ADS)
Yao, Hiroshi; Shiratsu, Taisuke
2016-05-01
Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+) (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+ - ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+) (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+ - ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement. Electronic supplementary information (ESI) available: EDX spectroscopic analysis of various Ag nanoparticle samples; MCD signals normalized to absorbance for the Ag(DT)L and Ag(DT)S samples; deconvolution of UV-vis absorption and MCD spectra using three Lorentzian components; IR spectral changes upon photoisomerization; thermal cis-to-trans relaxation of azobenzene in the Ag(ABT) sample; UV-vis absorption spectra of Ag nanoparticle samples in the presence/absence of a magnetic field of 1.6 T. See DOI: 10.1039/c6nr00631k
Li, Cuiping; Li, Xueyuan; Duan, Xuelan; Li, Guangjie; Wang, Jiaqiang
2014-12-15
Halloysite nanotube supported Ag nanoparticles heteroarchitectures have been prepared through a very simple electroless plating method. Robust Ag nanocrystals can be reproducibly fabricated by soaking halloysite nanotubes in ethanolic solutions of AgNO3 and butylamine. By simply adjusting the molar ratio of AgNO3 and butylamine, Ag nanoparticles with tunable size and quantity on halloysite nanotube are achieved. It reveals that the Ag nanoparticles are well-dispersed on the surface of halloysite nanotubes. The halloysite nanotube supported Ag nanoparticles heteroarchitectures can serve as active catalysts for the polymerization of an alkylsilane C18H37SiH3 with water to form silanol/siloxane composite microspheres and exhibit interesting superhydrophobicity ascribed to the micro/nanobinary structure. Copyright © 2014 Elsevier Inc. All rights reserved.
Recordati, Camilla; De Maglie, Marcella; Bianchessi, Silvia; Argentiere, Simona; Cella, Claudia; Mattiello, Silvana; Cubadda, Francesco; Aureli, Federica; D'Amato, Marilena; Raggi, Andrea; Lenardi, Cristina; Milani, Paolo; Scanziani, Eugenio
2016-02-29
Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.
Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity.
Lugade, Amit A; Bharali, Dhruba J; Pradhan, Vandana; Elkin, Galina; Mousa, Shaker A; Thanavala, Yasmin
2013-10-01
Chitosan nanoparticles were evaluated as a vaccine delivery system for hepatitis B surface antigen (HBsAg) in the absence of adjuvant. Nano-encapsulated HBsAg (HBsAg chitosan-NP) was endocytosed more rapidly and efficiently by dendritic cells compared to soluble HBsAg. FRET analysis demonstrated that intact nanoparticles were taken up by DCs. To determine the immunogenicity of adjuvant-free nano-encapsulated HBsAg, mice were immunized with a single dose of non-encapsulated HBsAg, HBsAg chitosan-NP, or HBsAg alum. Mice immunized with adjuvant-free nanoparticle elicited anti-HBs antibodies at significantly higher titers compared to mice immunized with HBsAg alum. Elevated numbers of BAFF-R(+) B cells and CD138+ plasma cells account for the heightened anti-HBs response in nanoparticle immunized mice. Increases in Tfh cells provide a mechanism for the accumulation of anti-HBs secreting cells. Thus, chitosan nanoparticle vaccines represent a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration. In this study, chitosan nanoparticle vaccines are demonstrated as a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration in a murine model. The authors also demonstrated superior antibody response induction compared with non-encapsulated HBs antigen and HBsAg aluminum. Copyright © 2013 Elsevier Inc. All rights reserved.
Gurunathan, Sangiliyandi
2017-01-01
Recently, graphene and graphene related nanocomposite receive much attention due to high surface-to-volume ratio, and unique physiochemical and biological properties. The combination of metallic nanoparticles with graphene-based materials offers a promising method to fabricate novel graphene–silver hybrid nanomaterials with unique functions in biomedical nanotechnology, and nanomedicine. Therefore, this study was designed to prepare graphene oxide (GO) silver nanoparticles (AgNPs) nanocomposite (GO-AgNPs) containing two different nanomaterials in single platform with distinctive properties using luciferin as reducing agents. In addition, we investigated the effect of GO-AgNPs on differentiation in SH-SY5Y cells. The synthesized GO-AgNPs were characterized by ultraviolet-visible absorption spectroscopy (UV-vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The differentiation was confirmed by series of cellular and biochemical assays. The AgNPs were distributed uniformly on the surface of graphene oxide with an average size of 25 nm. As prepared GO-AgNPOs induces differentiation by increasing the expression of neuronal differentiation markers and decreasing the expression of stem cell markers. The results indicated that the redox biology involved the expression of various signaling molecules, which play an important role in differentiation. This study suggests that GO-AgNP nanocomposite could stimulate differentiation of SH-SY5Y cells. Furthermore, understanding the mechanisms of differentiation of neuroblastoma cells could provide new strategies for cancer and stem cell therapies. Therefore, these studies suggest that GO-AgNPs could target specific chemotherapy-resistant cells within a tumor. PMID:29182571
NASA Astrophysics Data System (ADS)
Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol
2018-02-01
The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.
NASA Astrophysics Data System (ADS)
Xu, Yan; Wu, Shumin; Li, Xianliang; Meng, Hao; Zhang, Xia; Wang, Zhuopeng; Han, Yide
2017-07-01
We demonstrate a general strategy to design step by step the Ag nanoparticle-functionalized ZnO micro-flowers (Ag/ZnO composites). XRD patterns confirmed the presence of Ag nanoparticles in ZnO/Ag composites, and the SEM and TEM results further demonstrated that Ag nanoparticles were highly dispersed and anchored onto the surface of each ZnO nanosheets. By using the ZnO/Ag composites, the photodegradation of two herbicide derivatives, metamitron and metribuzin, were studied. The enhanced photocatalytic performance was ascribed to the fact that the Ag deposition could reduce the recombination probability of electron-hole pairs, and the photocatalytic mechanism were also investigated in this paper.
An approach for scalable production of silver (Ag) decorated WS2 nanosheets
NASA Astrophysics Data System (ADS)
Sumesh, C. K.; Kapatel, Sanni; Chaudhari, Arti
2018-05-01
In the Present study we report the synthesis of Ag nanoparticles (NPs) decorated WS2 nanosheets by sonochemical exfoliation followed by simple chemical reduction process at room temperature. The morphology and microstructure of the as-synthesized Ag-WS2 nanocomposite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and optical absorption (UV-Vis.) spectroscopy. X-ray and TEM analysis shows the presence of Ag with significant peak over 38.08°, 44.22°, 64.37° and 77.33° at 2θ angle for (111), (200), (220) and (311) respectively. The Ag nanoparticles are randomly distributed throughout the surface of the WS2 nanosheets without undergoing further oxidation during the formation of composites. The formation of Ag-WS2 nanocomposites shows a clear blue shift in the absorption as we obtained the characteristics absorption valleys at 456, 536 and 631 nm from the UV Vis spectroscopy analysis compared to pure WS2 nanosheets. Henceforth a facile method for the Ag decoration on WS2 nanosheets was put forward and briefly discussed. The proposed synthesis method is very promising for the low cost and large-scale synthesis of other noble metal incorporation TMDC compounds.
The Biological Fate of Silver Nanoparticles from a Methodological Perspective.
Drobne, Damjana; Novak, Sara; Talaber, Iva; Lynch, Iseult; Kokalj, Anita Jemec
2018-06-05
We analyzed the performance and throughput of currently available analytical techniques for quantifying body burden and cell internalization/distribution of silver nanoparticles (Ag NPs). Our review of Ag NP biological fate data shows that most of the evidence gathered for Ag NPs body burden actually points to total Ag and not only Ag NPs. On the other hand, Ag NPs were found inside the cells and tissues of some organisms, but comprehensive explanation of the mechanism(s) of NP entry and/or in situ formation is usually lacking. In many cases, the methods used to detect NPs inside the cells could not discriminate between ions and particles. There is currently no single technique that would discriminate between the metals species, and at the same time enable localization and quantification of NPs down to the cellular level. This paper serves as an orientation towards selection of the appropriate method for studying the fate of Ag NPs in line with their properties and the specific question to be addressed in the study. Guidance is given for method selection for quantification of NP uptake, biodistribution, precise tissue and cell localization, bioaccumulation, food chain transfer and modeling studies regarding the optimum combination of methods and key factors to consider.
Unusual reactivity of a silver mineralizing peptide.
Carter, Carly Jo; Ackerson, Christopher J; Feldheim, Daniel L
2010-07-27
The ability of peptides selected via phage display to mediate the formation of inorganic nanoparticles is now well established. The atomic-level interactions between the selected peptides and the metal ion precursors are in most instances, however, largely obscure. We identified a new peptide sequence that is capable of mediating the formation of Ag nanoparticles. Surprisingly, nanoparticle formation requires the presence of peptide, HEPES buffer, and light; the absence of any one of these compromises nanoparticle formation. Electrochemical experiments revealed that the peptide binds Ag+ in a 3 Ag+:1 peptide ratio and significantly alters the Ag+ reduction potential. Alanine replacement studies yielded insight into the sequence-function relationships of Ag nanoparticle formation, including the Ag+ coordination sites and the residues necessary for Ag synthesis. In addition, the peptide was found to function when immobilized onto surfaces, and the specific immobilizing concentration could be adjusted to yield either spherical Ag nanoparticles or high aspect ratio nanowires. These studies further illustrate the range of interesting new solid-state chemistries possible using biomolecules.
Unusual Reactivity of a Silver Mineralizing Peptide
Carter, Carly Jo; Ackerson, Christopher J.; Feldheim, Daniel L.
2010-01-01
The ability of peptides selected via phage display to mediate the formation of inorganic nanoparticles is now well established. The atomic-level interactions between the selected peptides and the metal ion precursors are in most instances, however, largely obscure. We identified a new peptide sequence that is capable of mediating the formation of Ag nanoparticles. Surprisingly, nanoparticle formation requires the presence of peptide, HEPES buffer, and light; the absence of any one of these compromises nanoparticle formation. Electrochemical experiments revealed that the peptide binds Ag+ in a 3 Ag+:1 peptide ratio and significantly alters the Ag+ reduction potential. Alanine replacement studies yielded insight into the sequence-function relationships of Ag nanoparticle formation, including the Ag+ coordination sites and the residues necessary for Ag synthesis. In addition, the peptide was found to function when immobilized onto surfaces, and the specific immobilizing concentration could be adjusted to yield either spherical Ag nanoparticles or high aspect ratio nanowires. These studies further illustrate the range of interesting new solid-state chemistries possible using biomolecules. PMID:20552994
Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W
2017-11-14
Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.
Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding
2014-01-01
Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736
Li, Cheng-Cheng; Dang, Fei; Li, Min; Zhu, Min; Zhong, Huan; Hintelmann, Holger; Zhou, Dong-Mei
2017-06-01
The widespread use of silver nanoparticles (AgNPs) raises concerns both about their accumulation in crops and human exposure via crop consumption. Plants take up AgNPs through their leaves and roots, but foliar uptake has been largely ignored. To better understand AgNPs-plant interactions, we compared the uptake, phytotoxicity and size distribution of AgNPs in soybean and rice following root versus foliar exposure. At similar AgNP application levels, foliar exposure led to 17-200 times more Ag bioaccumulation than root exposure. Root but not foliar exposure significantly reduced plant biomass, while root exposure increased the malondialdehyde and H 2 O 2 contents of leaves to a larger extent than did foliar exposure. Following either root or foliar exposure, Ag-containing NPs larger (36.0-48.9 nm) than the originally dosed NPs (17-18 nm) were detected within leaves. These particles were detected using a newly developed macerozyme R-10 tissue extraction method followed by single-particle inductively coupled plasma mass spectrometry. In response to foliar exposure, these NPs were stored in the cell wall and plamalemma of leaves. NPs were also detected in planta following Ag ion exposure, indicating their in vivo formation. Leaf-to-leaf and root-to-leaf translocation of NPs in planta was observed but the former did not alter the size distribution of the NPs. Our observations point to the possibility that fruits, seeds and other edible parts may become contaminated by translocation processes in plants exposed to AgNPs. These results are an important contribution to improve the risk assessment of NPs under environmental exposure scenarios.
NASA Astrophysics Data System (ADS)
Ambaye, Almaz
Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.
NASA Astrophysics Data System (ADS)
Sujith, Athiyanathil; Itoh, Tamitake; Abe, Hiroko; Anas, Abdul Aziz; Yoshida, Kenichi; Biju, Vasudevanpillai; Ishikawa, Mitsuru
2008-03-01
We labeled the living yeast cell surface (Saccharomyces cerevisiae strain W303-1A) by silver nanoparticles which can form nanoaggregates and found to show surface enhanced Raman scattering (SERS) activity. Blinking of SERS and its polarization dependence reveal that SERS signals are from amplified electromagnetic field at nanometric Ag nanoparticles gaps with single or a few molecules sensitivity. We tentatively assigned SERS spectra from a yeast cell wall to mannoproteins. Nanoaggregate-by-nanoaggregate variations and temporal fluctuations of SERS spectra are discussed in terms of inhomogeneous mannoprotein distribution on a cell wall and possible ways of Ag nanoaggregate adsorption, respectively.
Ion beam synthesis of Au nanoparticles embedded nano-composite glass
NASA Astrophysics Data System (ADS)
Varma, Ranjana S.; Kothari, D. C.; Kumar, Ravi; Kumar, P.; Santra, S. S.; Thomas, R. G.
2013-02-01
Ion beam mixing using low energy (LE) ion beams (100 keV Ar+) has been used to form Au nanoparticles in the near-surface region of fused silica glasses. Effect of swift heavy ion (SHI) irradiation (with 120 MeV Ag9+), on the nanoparticles has been studied. Diffusion length of Au after the beam mixing and the irradiation has been found to be 14nm. SHI irradiation causes the increase in the size of the nanoparticles, reduction in size-distribution and increase in number density.
NASA Astrophysics Data System (ADS)
Luna, Carlos; Chávez, V. H. G.; Barriga-Castro, Enrique Díaz; Núñez, Nuria O.; Mendoza-Reséndez, Raquel
2015-04-01
Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices.
Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel
2015-04-15
Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. Copyright © 2014 Elsevier B.V. All rights reserved.
Sanyal, Udishnu; Jagirdar, Balaji R
2012-12-03
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Dhanalekshmi, K. I.; Meena, K. S.
2014-07-01
Core-shell type Ag@TiO2 nanoparticles were prepared by one pot simultaneous reduction of AgNO3 and hydrolysis of Ti (IV) isopropoxide and Ag@SiO2 core-shell nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, and HR-TEM techniques. XRD patterns show the presence of anatase form of TiO2 and amorphous form of SiO2 and the noble metal (Ag). High resolution transmission electron microscopy measurements revealed that their size is below 50 nm. The antibacterial properties of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the agar diffusion method. As a result E. coli and S. aureus were shown to be substantially inhibited by Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. These results demonstrated that TiO2 and SiO2 supported on the surface of Ag NPs without aggregation was proved to have enhanced antibacterial activity.
Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles.
Dhanalekshmi, K I; Meena, K S
2014-07-15
Core-shell type Ag@TiO2 nanoparticles were prepared by one pot simultaneous reduction of AgNO3 and hydrolysis of Ti (IV) isopropoxide and Ag@SiO2 core-shell nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, and HR-TEM techniques. XRD patterns show the presence of anatase form of TiO2 and amorphous form of SiO2 and the noble metal (Ag). High resolution transmission electron microscopy measurements revealed that their size is below 50 nm. The antibacterial properties of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the agar diffusion method. As a result E. coli and S. aureus were shown to be substantially inhibited by Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. These results demonstrated that TiO2 and SiO2 supported on the surface of Ag NPs without aggregation was proved to have enhanced antibacterial activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Cacha, Brian Joseph Gonda
Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).
NASA Astrophysics Data System (ADS)
Herbani, Y.; Nakamura, T.; Sato, S.
2017-04-01
This paper reports the synthesis of silver colloids by femtosecond laser ablation of ammonia-containing AgNO3 solution. Effect of ammonia concentration in solution on the production of Ag nanoparticles was discussed. It is found that ammonia rules out significantly to the formation of Ag nanoparticles at which no Ag nanoparticle were formed in the solution without ammonia. Using the solution with the optimum ratio of ammonia to Ag+ ions, we further investigate the growth process of Ag nanoparticle by monitoring the evolution of its absorption spectra at 402 nm as a function of irradiation time. The result showed that the growth process was fit to the simple exponential function, and confirmed that the addition of ammonia alone to the metal ion system can boost the particle production by femtosecond laser.
NASA Astrophysics Data System (ADS)
Ipek Yucelen, G.; Connell, Rachel E.; Terbush, Jessica R.; Westenberg, David J.; Dogan, Fatih
2016-04-01
A novel colloidal method is presented to synthesize silver nanoparticles on aluminosilicate nanotubes. The technique involves decomposition of AgNO3 solution to Ag nanoparticles in the presence of aluminosilicate nanotubes at room temperature without utilizing of reducing agents or any organic additives. Aluminosilicate nanotubes are shown to be capable of providing a unique chemical environment, not only for in situ conversion of Ag+ into Ag0, but also for stabilization and immobilization of Ag nanoparticles. The synthesis strategy described here could be implemented to obtain self-assembled nanoparticles on other single-walled metal oxide nanotubes for unique applications. Finally, we demonstrated that nanotube/nanoparticle hybrid show strong antibacterial activity toward Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli.
NASA Astrophysics Data System (ADS)
Zhao, Yanxiao; Wang, Xinhua; Wang, Zhiwei; Li, Xiufen; Ren, Yueping
2016-05-01
The increasing and wide application of silver nanoparticles (Ag NPs) has resulted in their appearance in wastewater. In consideration of their potential toxicity and environmental impacts, it is necessary to find effective technology for their removal from wastewater. Here, forward osmosis (FO) membrane was applied for Ag NPs removal from wastewater, and single and combined fouling of nanoparticles and organic macromolecules were further investigated during the FO process. The findings demonstrated that FO membrane can effectively remove Ag NPs from wastewater due to its high rejection performance. Fouling tests indicated that water flux declined appreciably even at the beginning of the single Ag NPs fouling test, and more remarkable flux decline and larger amounts of deposited Ag NPs were observed with an increase of Ag NPs concentration. However, the addition of bovine serum albumin (BSA) could effectively alleviate the FO membrane fouling induced by Ag NPs. The interaction between Ag NPs and BSA was responsible for this phenomenon. BSA can easily form a nanoparticle-protein corona surrounded nanoparticles, which prevented nanoparticles from aggregation due to the steric stabilization mechanism. Furthermore, the interaction between BSA and Ag NPs occurred not only in wastewater but also on FO membrane surface.
The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Gebear-Eigzabher, Bellsabel
Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products were also used on in-house synthesized Ag NPs. Commercially available silver nanoparticles have been compared with the in-house synthesized ones and characterized by Photothermal Lens (PTL) Spectroscopy. In respect to particle size and morphology, the Ag NPs synthesized by chemical reduction methods are similar to Ag nanoparticle solution available in the market. However, the synthesized nanoparticles are high in concentration and do not show signs of aggregation or agglomeration. It was concluded that our Ag NPs are superior to the commercially available ones by exhibiting large concentrations in ultra-stable dispersions.
The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared.
Zamiri, Reza; Abbastabar Ahangar, Hossein; Zakaria, Azmi; Zamiri, Golnoosh; Shabani, Mehdi; Singh, Budhendra; Ferreira, J M F
2015-01-01
In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime. Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports for the band gap energy of Ag2S nanoparticles (0.9-1.1 eV). The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K-K method. Graphical abstractThe Far-infrared optical constants of Ag2S semiconductor nanoparticles.
Reddy, Aileni Kaladhar; Kambalyal, Prabhuraj B; Patil, Santosh R; Vankhre, Mallikarjun; Khan, Mohammed Yaser Ahmed; Kumar, Thamtam Ramana
2016-01-01
Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles on shear bond strength (SBS). Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO2, and 1.0% ZnO weight/weight, respectively. An Instron universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov–Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05). Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30–10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07–8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07–6.93), and TiO2 (mean [SD]: 6.33 [1.51], CI: 5.77–0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable. PMID:27843887
Huang, He; Huang, Ni; Wang, Zhonghua; Xia, Guangqiang; Chen, Ming; He, Lingling; Tong, Zhifang; Ren, Chunguang
2017-09-15
The preparation of highly efficient visible-light-driven photocatalyst for the photodegradation of organic pollutants has received much attention due to the increasing global energy crises and environmental pollution. In this study, carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets were successfully prepared via a room-temperature route. The as-prepared ZnO@AgI nanostructures exhibited highly efficient photocatalytic activity under visible light irradiation (λ>400nm). Under optimized AgI content, the ZnO@AgI-5% sample showed high photocatalytic activity, which was 25.7 and 1.5 times the activity of pure ZnO and pure AgI, respectively. Mechanism studies indicated that superoxide anion radicals (O 2 - ) was the main reactive species in the photocatalytic process. The high photocatalytic activity of the ZnO@AgI nanostructures is attributed to the highly active AgI nanoparticles and the heterojunction between AgI nanoparticles and ZnO nanosheets. The heterojunction structure reduced the recombination of the photogenerated electron-hole pairs in the conduction band (CB) and valence band (VB) of AgI nanoparticles by transferring the electrons from the CB of AgI nanoparticles to the CB of ZnO nanosheets. The composite of ZnO and AgI not only improves photocatalytic efficiency but also reduces photocatalyst cost, which is beneficial for practical application. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, Yanni; Xu, Sheng; Wu, Xiaoshan
2018-01-01
The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity (k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.
NASA Astrophysics Data System (ADS)
Gu, Yanni; Xu, Sheng; Wu, Xiaoshan
2018-06-01
The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity ( k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.
NASA Astrophysics Data System (ADS)
Santhanalakshmi, J.; Venkatesan, P.
2011-02-01
Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.
X-ray Reflectivity Study of a Highly Rough Surface: Si Nanowires Grown by Ag Nanoparticle Etching
NASA Astrophysics Data System (ADS)
Kremenak, Jesse; Arendse, Christopher; Cummings, Franscious; Chen, Yiyao; Miceli, Paul
Vertically oriented Si nanowires (SiNWs) formed by Ag-assisted wet chemical etching of a Si(100) substrate was studied by X-ray reflectivity (XRR) in combination with electron microscopy. Si(100) wafers coated with Ag nanoparticles, which serve as a catalyst, were etched for different durations in a HF/H2O2/DI-H2O solution. Because of the extreme roughness of these surfaces, there are challenges for using XRR methods in such systems. Therefore, significant attention is given to the analysis method of the XRR measurements. This sample-average information presents a valuable complement to electron microscopy studies, which focus on small sections of the sample. The present work shows-for the first time-the amount and distribution of Ag during the formation of SiNWs fabricated by Ag-assisted wet chemical etching, which is vital information for understanding the etching mechanisms. Support is gratefully acknowledged from the National Science Foundation (USA) - DGE1069091, the National Research Foundation (RSA) - TTK14052167658, 76568, 92520, and 93212; and the University of Missouri/University of Western Cape Linkage Program.
Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.
Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao
2014-08-01
Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of chemically and biologically synthesized Ag nanoparticles on the algae growth inhibition
NASA Astrophysics Data System (ADS)
Anna, Mražiková; Oksana, Velgosová; Jana, Kavuličová
2017-12-01
Over the past few years green methods for preparation of silver nanoparticles has become necessary due to its friendly influence on ecosystem. In the present work antimicrobial properties of biologically synthesized silver nanoparticles (Bio-AgNPs) using green algae extract and chemically synthesized silver nanoparticles (Chem-AgNPs) using sodium citrate against algae Parachlorella kessleri is investigated. Both used Bio-AgNPs and Chem-AgNPs exhibit long-term stability as demonstrated by UV-vis spectroscopy measurements. The results revealed stronger toxic effects of Bio-AgNPs on agar plates what was confirmed clear inhibition zone around wells impregnated with Bio-AgNPs. On the other hand Bio-AgNPs were confirmed to be less toxic in aquatic environments for the growths of green algae P. kessleri comparing to Chem-AgNPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho
2014-08-18
In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.
NASA Astrophysics Data System (ADS)
Prasanth, S.; RitheshRaj, D.; Vineeshkumar, T. V.; Sudarsanakumar, C.
2018-05-01
The introduction of nanoparticles into biological fluids often leads to the formation of biocorona over the surface of nanoparticles. For the effective use of nanoparticles in biological applications it is very essential to understand their interactions with proteins. Herein, we investigated the interactions of Poly ethylene glycol capped Ag2S nanoparticles with Bovine Serum Albumin by spectroscopic techniques. By the addition of Ag2S nanoparticles, a ground state complex is formed. The CD spectroscopy reveals that the secondary structure of BSA is altered by complexation with PEG-Ag2S nanoparticles, while the overall tertiary structure remains closer to that of native BSA.
Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles.
Ashmore, D'Andrea; Chaudhari, Atul; Barlow, Brandi; Barlow, Brett; Harper, Talia; Vig, Komal; Miller, Michael; Singh, Shree; Nelson, Edward; Pillai, Shreekumar
2018-01-01
Escherichia coli causes various ailments such as septicemia, enteritis, foodborne illnesses, and urinary tract infections which are of concern in the public health field due to antibiotic resistance. Silver nanoparticles (AgNP) are known for their biocompatibility and antibacterial activity, and may prove to be an alternative method of treatment, especially as wound dressings. In this study, we compared the antibacterial efficacy of two polymer-coated silver nanoparticles either containing 10% Ag (Ag 10% + Polymer), or 99% Ag (AgPVP) in relation to plain uncoated silver nanoparticles (AgNP). Atomic force microscopy was used to characterize the nanoparticles, and their antibacterial efficacy was compared by the minimum inhibitory concentration (MIC) and bacterial growth curve assays, followed by molecular studies using scanning electron microscopy (SEM) and (qRT- PCR). AgNP inhibited the growth of E. coli only at 0.621 mg/mL, which was double the concentration required for both coated nanoparticles (0.312 mg/mL). Similarly, bacterial growth was impeded as early as 8 h at 0.156 mg/mL of both coated nanoparticles as compared to 0.312 mg/mL for plain AgNP. SEM data showed that nanoparticles damaged the cell membrane, resulting in bacterial cell lysis, expulsion of cellular contents, and complete disintegration of some cells. The expression of genes associated with the TCA cycle (aceF and frdB) and amino acid metabolism (gadB, metL, argC) were substantially downregulated in E. coli treated with nanoparticles. The reduction in the silver ion (Ag+) concentration of polymer-coated AgNP did not affect their antibacterial efficacy against E. coli.
NASA Astrophysics Data System (ADS)
Nurfadhilah, M.; Nolia, I.; Handayani, W.; Imawan, C.
2018-05-01
The silver nanoparticles generated by biosynthesis have a quite diverse result, both in size and shape. Structures of silver nanoparticles can be controlled by modifying the parameters of the biosynthesis such as the ratio between the precursors and reducing agents, as well as pH of the solution. In this study, the pH of Diospyros discolor (Bisbul) leaves aqueous extract was varied to 4, 7, 9, and 11. The extract then was added to 1 mM AgNO3 precursor (1:2; v/v ratio). The result of the silver nanoparticles characterized using spectrophotometer UV-Vis to find if there was any absorbance peak formed between 400 nm to 500 nm. TEM characterization was used to determine the size and shape of silver nanoparticles, and PSA was used to see their size distribution and stability. The higher pH tends to produce smaller silver nanoparticles rapidly. The synthesis parameters that were varied in this research have affected the size, size distribution patterns, and stability of silver nanoparticles.
Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas
2017-12-01
Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.
NASA Astrophysics Data System (ADS)
Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas
2017-04-01
Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.
Luo, Yuqiong; Shen, Suqin; Luo, Jiwen; Wang, Xiaoying; Sun, Runcang
2015-01-14
This work reported a facile and green method to prepare highly stable and uniformly distributed Ag nanoparticles (AgNPs), in which a biopolymer xylan was used as the stabilizing and reducing agent via the Tollens reaction under microwave irradiation. Different variables were evaluated to optimize the reaction conditions. Complete characterization was performed using UV-Vis, XRD, TEM, size distribution analysis and XPS. The results revealed that AgNPs were well dispersed with diameters of 20-35 nm due to the packing of xylan. The optimal conditions were as follows: microwave irradiation temperature was 60-70 °C, microwave power was 800 W, microwave time was 30 min, the ratio of xylan to AgNO3 was 50 mg: 0.13 mmol, and ammonia concentration was 2%. In addition, the AgNPs were collected via high-speed centrifugal separation, and the supernatant was tested by HPAEC, GPC, FT-IR, and NMR. By comparing the structure of xylan before and after the reaction, the reaction mechanism was discussed. It was noted that the xylan-AgNPs composites showed high selectivity and sensitivity for Hg(2+) detection. The other 15 metal ions used had no obvious effect on the detection of Hg(2+), and the limit of detection (LOD) was 4.6 nM, which is lower than the allowed maximum level of 30 nM for drinking water by WHO. In addition, the xylan-AgNPs composites can be applied for Hg(2+) detection in real water samples. This study provides a novel way for the high-value utilization of a rich biomass resource, and a green method for the synthesis of AgNPs for the selective and sensitive detection of harmful heavy metals.
Thermo-responsive PNIPAM-metal hybrids: An efficient nanocatalyst for the reduction of 4-nitrophenol
NASA Astrophysics Data System (ADS)
Satapathy, Smith Sagar; Bhol, Prachi; Chakkarambath, Aswathy; Mohanta, Jagdeep; Samantaray, Kunal; Bhat, Suresh K.; Panda, Subhendu K.; Mohanty, Priti S.; Si, Satyabrata
2017-10-01
Micron size thermoresponsive cross-linked polymeric microgels of poly(N-isopropylacrylamide) (PNIPAM) are used as "microreactor" for embedding metal nanoparticles of different shapes. Using a simple and robust method, we have synthesized various polymer-metal hybrid nanostructures incorporated with Au nanorods (AuNR), Au nanospheres (AuNS) and Ag nanospheres (AgNS). These hybrid nanostructures have been characterized by transmission electron microscope (TEM), UV-vis spectroscopy, dynamic light scattering (DLS) and static light scattering (SLS) followed by their catalytic activity. TEM studies directly confirmed the mondispersity of synthesized hybrid microgels and stability of the embedded metal nanoparticles within the microgels. Optical studies confirmed the presence of respective absorption bands that correspond to AuNS, AgNS and AuNR respectively. Extensive DLS studies demonstrated that although these hybrid microgels preserve their thermoresponsive properties, i.e their hydrodynamic radius decreased with increasing temperature, their thermosensitivity were comparatively lesser than pure PNIPAM microgels. Combining with studies using static light scattering, we further found that AuNS and AgNS were inhomogeneously distributed within microgels where the majority of the nanoparticles present within the loosely cross-linked shell. On the other hand AuNR were distributed more homogeneously within the microgels. Catalytic performance of various nanostructures loaded onto PNIPAM microgel beads were evaluated by studying the catalytic reduction of 4-nitrophenol. Complete catalytic conversion using AgNS occurred in ∼30 min with a first-order rate constant of 0.159 min-1 having a 7 min induction period. On the other hand no induction period was observed for AuNS and AuNR and the reaction completed in 3-4 min with a first-order rate constant of 1.607 min-1 and 1.627 min-1 respectively. Further, PNIPAM-AuNS and PNIPAM-AuNR possess better catalytic activity as well as recyclability compared to that of PNIPAM-AgNS.
Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vodnik, Vesna V., E-mail: vodves@vinca.rs; Šaponjić, Zoran, E-mail: saponjic@vinca.rs; Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com
2013-01-15
Graphical abstract: Display Omitted Highlights: ► Prismatic and plate-like Ag nanoparticles were used as a precursors for preparation Ag/poly(vinyl alcohol) nanocomposite films. ► Results showed that the degree of crystallinity of the polymer decreases with Ag nanoparticles content. ► The presence of Ag nanoparticles in PVA induces higher thermo-oxidative stability with respect to PVA. -- Abstract: Prismatic and plate-like silver nanoparticles (Ag NPs) were synthesized according to the seed-mediated method. These particles were used as precursors for preparation of homogenous, transparent and colored Ag/poly(vinyl alcohol) (PVA) nanocomposite films with different concentrations of Ag by solution-casting technique. Optical and structural characterizationmore » of these nanocomposites includes UV–visible spectroscopy, X-ray diffraction (XRD), FTIR spectroscopy and SEM measurements. Further, the effect of embedded nanoparticles on the thermal properties of the PVA matrix was studied. The value of the glass transition temperature of polymer is found to increase after embedding Ag NPs. Comparison of thermal properties of pure PVA and nanocomposite films showed that the thermo-oxidative stability of polymer slightly increased in the presence of Ag NPs. Furthermore, the effect of the Ag NPs on the crystallinity of polymer was also observed.« less
Nanoparticle embedded p-type electrodes for GaN-based flip-chip light emitting diodes.
Kwak, Joon Seop; Song, J O; Seong, T Y; Kim, B I; Cho, J; Sone, C; Park, Y
2006-11-01
We have investigated high-quality ohmic contacts for flip-chip light emitting diodes using Zn-Ni nanoparticles/Ag schemes. The Zn-Ni nanoparticles/Ag contacts produce specific contact resistances of 10(-5)-10(-6) omegacm2 when annealed at temperatures of 330-530 degrees C for 1 min in air ambient, which are much better than those obtained from the Ag contacts. It is shown that blue InGaN/GaN multi-quantum well light emitting diodes fabricated with the annealed Zn-Ni nanoparticles/Ag contacts give much lower forward-bias voltages at 20 mA compared with those of the multi-quantum well light emitting diodes made with the as-deposited Ag contacts. It is further presented that the multi-quantum well light emitting diodes made with the Zn-Ni nanoparticles/Ag contacts show similar output power compared to those fabricated with the Ag contact layers.
NASA Astrophysics Data System (ADS)
Bagratashvili, V. N.; Rybaltovsky, A. O.; Minaev, N. V.; Timashev, P. S.; Firsov, V. V.; Yusupov, V. I.
2010-05-01
Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 - 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 - 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
NASA Astrophysics Data System (ADS)
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Wimmer, Andreas; Kalinnik, Anna; Schuster, Michael
2018-05-10
For the first time, the natural formation of silver-based nanoparticles (Ag-b-NPs) was studied in field investigations of two pre-alpine lakes in Germany that contain geogenic silver traces in the sub-ng L -1 range. Light-sensitive microorganisms most likely accumulate and transport these silver traces from deeper water layers to the surface. At the surface of the eutrophic lake, approximately 40% of total silver (5.7 ng L -1 ) consisted of Ag-b-NPs, whereas in the oligotrophic lake with similar enrichment of silver species, no Ag-b-NPs were detected. Additional lab experiments with nature-related Ag(I) concentrations in the lower-ng L -1 range and natural organic matter with total organic carbon values of ≤5 mg L -1 revealed that, contrary to common interpretation in the literature, Ag-b-NPs are also or even preferably formed in the dark. Particle size increases gradually with increasing reaction time, showing that Ostwald ripening occurs even at such low particle concentrations. When sulfide ions are present, smaller Ag-b-NPs with a narrower size distribution are formed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Miyayama, Takamitsu; Matsuoka, Masato
2016-01-01
While silver nanoparticles (AgNPs) are widely used in consumer and medical products, the mechanism by which AgNPs cause pulmonary cytotoxicity is not clear. AgNP agglomerates are found in endo-lysosomal structures within the cytoplasm of treated cells. In this study, the functional role of lysosomes in AgNP-induced cellular damage was examined in A549 human lung alveolar epithelial cells. We evaluated the intracellular distribution of AgNPs, lysosomal pH, cellular viability, Ag dissolution, and metallothionein (MT) mRNA levels in AgNP-exposed A549 cells that were treated with bafilomycin A1, the lysosomal acidification inhibitor. Exposure of A549 cells to citrate-coated AgNPs (20 nm diameter) for 24 h induced cellular damage and cell death at 100 and 200 μg Ag/ml, respectively. Confocal laser microscopic examination of LysoTracker-stained cells showed that AgNPs colocalized with lysosomes and their agglomeration increased in a dose-dependent manner (50-200 μg Ag/ml). In addition, the fluorescence signals of LysoTracker were reduced following exposure to AgNPs, suggesting the elevation of lysosomal pH. Treatment of A549 cells with 200 nM bafilomycin A1 and AgNPs (50 μg Ag/ml) further reduced the fluorescence signals of LysoTracker. AgNP-induced cell death was also increased by bafilomycin A1 treatment. Finally, treatment with bafilomycin A1 suppressed the dissolution of Ag and decreased the mRNA expression levels of MT-I and MT-II following exposure to AgNPs. The perturbation of lysosomal pH by AgNP exposure may play a role in AgNP agglomeration and subsequent cellular damage in A549 cells.
Interaction between Silver Nanoparticles and Spinach Leaf
NASA Astrophysics Data System (ADS)
Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.
2013-12-01
Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. CytoViva Hyperspectral Imaging System was also employed to map the distribution of nanoAg in the leaf profile. Significant sorption of nanoAg on spinach leaf should urge the precaution with potential widespread use of ENPs in agriculture.
Decoration of vertical graphene with aerosol nanoparticles for gas sensing
NASA Astrophysics Data System (ADS)
Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong
2015-08-01
A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.
Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production
NASA Astrophysics Data System (ADS)
Herbani, Y.; Irmaniar; Nasution, R. S.; Mujtahid, F.; Masse, S.
2018-03-01
We have fabricated metal and oxide nanoparticles using pulse laser ablation of Au, Ag, and Cu metal targets immersed in water. While laser ablation of Au and Ag targets in water produced metal nanoparticles which were stable for a month even without any dispersant, we found CuO nanoparticles for Cu target due to rapid oxidation of Cu in water resulted in its poor stability. Au, Ag, and CuO nanoparticles production were barely identified by naked eyes for their distinctive colour of red, yellow, and dark green colloidal suspensions, respectively. It was also verified using UV-Vis spectrometer that Au, Ag, and CuO colloidal nanoparticles have their respective surface plasmon resonance at 520, 400, and 620 nm. TEM observation showed that particle sizes for all the fabricated nanoparticles were in the range of 20 – 40 nm with crystalline structures.
Anaerobic Toxicity of Cationic Silver Nanoparticles
The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...
NASA Astrophysics Data System (ADS)
Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang
2013-05-01
Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.
Yan, Jinhua; Abdelgawad, Abdelrahman M; El-Naggar, Mehrez E; Rojas, Orlando J
2016-08-20
Spray technique was used for the adsorption of in-situ silver nanoparticles (AgNPs) onto and inside the surface of nano- and micro- fibrillar cellulose (NFC and MFC) as well as filter paper. The abundance of hydroxyl and carboxyl groups located in NFC and MFC are used to stabilize Ag ions (Ag(+)) which were then in-situ reduced to (AgNPs) by chemical or UV reduction. The surface characteristic features, elemental analysis, particle size as well as size distribution of the obtained MFC, NFC and filter paper loaded with AgNPs were characterized via field emission scanning electron microscopy connected to energy dispersive X-ray spectroscopy (FESEM- EDX) and transmission electron microscopy (TEM). The associated chemical changes after growth of AgNPs onto the cellulose substrates were assessed by fourier transform infra-red (FT-IR) while the thermal stability of such systems were investigated by thermogravimetrical analyses (TGA). The antibacterial properties of AgNPs loaded NFC, MFC and filter paper as well was investigated against Escherichia Coli. The resulted data indicate that the particle size was found to be 11 and 26nm for AgNPs nucleated on NFC and MFC-based papers respectively. The antibacterial activity of AgNPs loaded MFC exhibited higher antibacterial activity than that of AgNPs loaded NFC. Overall, the present research demonstrates facile and fast method for in-situ antibacterial AgNPs loading on cellulose substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Uchida, Takayuki
2015-06-01
Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.
Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo
2016-11-04
Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.
Green synthesis of Ag nanoparticles for water treatment (antimicrobial on Eschirichia coli)
NASA Astrophysics Data System (ADS)
Darus, Mazlina Mat; Mahusin, Wan Norazwani
2017-05-01
Green synthesis approach was used to synthesis silver (Ag) nanoparticles. In this study, a one-step method was employed via hydrothermal technique. Samples are synthesized at different temperatures and times. All samples were characterized by Field Emission Scanning Electron Microscopy (FESEM). The morphology of the as-synthesized Ag samples are consists of nanoparticles and nanoplates with the diameter is in the range of 45 - 140 nm. The Ag nanoparticles were tested on Gram-Negative bacteria, Eschirichia coli (E.coli) which represent as an indicator for water pollution by using disc diffusion methods. Different concentrations of Ag nanoparticles were used to treat E.coli which is at 25 µg/ml, 50 µg/ml and 100 µg/ml respectively. The results show that for every samples, the inhibition zone of the E.coli increased as the concentration of Ag nanoparticles increased. Ag nanoparticles which synthesized at 100 °C/ 8 hrs exhibits the most optimum inhibition zone for the growth of E.coli due to its smaller size and the triangular nanoplate shaped. The diameter of the inhibition zone is between 6.17 ± 0.03 to 8.03 ± 0.03 mm.
Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles
NASA Astrophysics Data System (ADS)
Meena, Sharma, Annu
2018-05-01
This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.
Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...
The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current
Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant
NASA Astrophysics Data System (ADS)
Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.
2014-05-01
Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).
Moreno-Trejo, Maira Berenice; Sánchez-Domínguez, Margarita
2016-01-01
The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability that exceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple. PMID:28773938
Inbuilt Potential of YEM Medium and Its Constituents to Generate Ag/Ag2O Nanoparticles
Yamal, G.; Sharmila, P.; Rao, K. S.; Pardha-Saradhi, P.
2013-01-01
We discovered that Yeast Extract Mannitol (YEM) medium possessed immense potential to generate silver nanoparticles from AgNO3 upon autoclaving, which was evident from (i) alteration in color of the medium; (ii) peak at ∼410 nm in UV-Vis spectrum due to surface plasmon resonance specific to silver nanoparticles; and (iii) TEM investigations. TEM coupled with EDX confirmed that distinct nanoparticles were composed of silver. Yeast extract and mannitol were key components of YEM medium responsible for the formation of nanoparticles. PXRD analysis indicated crystalline geometry and Ag/Ag2O phases in nanoparticles generated with YEM medium, yeast extract and mannitol. Our investigations also revealed that both mannitol and yeast extract possessed potential to convert ∼80% of silver ions in 0.5 mM AgNO3 to nanoparticles, on autoclaving for 30 min at 121°C under a pressure of 1.06 kg/cm2. Addition of filter sterilized AgNO3 under ambient conditions to pre-autoclaved YEM medium and yeast extract brought about color change due to the formation of silver nanoparticles, but required prolonged duration. In general, even after 72 h intensity of color was significantly less than that recorded following autoclaving. Silver nanoparticles formed at room temperature were more heterogeneous compared to that obtained upon autoclaving. In summary, our findings demonstrated that (i) YEM medium and its constituents promote synthesis of silver nanoparticles; and (ii) autoclaving enhances rapid synthesis of silver nanoparticles by YEM medium, yeast extract and mannitol. PMID:23626722
Protein-silver nanoparticle interactions to colloidal stability in acidic environments.
Tai, Jui-Ting; Lai, Chao-Shun; Ho, Hsin-Chia; Yeh, Yu-Shan; Wang, Hsiao-Fang; Ho, Rong-Ming; Tsai, De-Hao
2014-11-04
We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.
As-synthesis of nanostructure AgCl/Ag/MCM-41 composite
NASA Astrophysics Data System (ADS)
Sohrabnezhad, Sh.; Pourahmad, A.
2012-02-01
In this work, we present the simple synthetic route for silver chloride/silver nanoparticles (AgCl/Ag-NPs) using as-synthesis method. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed that when AgNO 3 content is below 0.1 wt.% in synthetic gel, the guest AgCl/Ag-NPs is formed on the silica channel wall, and lower exists in the crystalline state. When AgNO 3 content exceeds this value, AgCl/Ag nanoparticles can be observed in high crystalline state. The absorption at 327 nm ascribed to the characteristic absorption of the AgCl semiconductor. Ag nanoparticles have been shown to exist in the nanocomposite at 375 nm. When AgNO 3 content is above 0.1 wt.% in synthetic gel, spectra exhibited stronger absorption at 450-700 nm that was attributed to the surface plasmonic resonance of silver nanoparticles. The obtained AgCl/Ag/MCM-41 sample exhibit enhanced photocatalytic activity for the degradation of methylene blue under visible-light irradiation.
NASA Astrophysics Data System (ADS)
Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich
2016-09-01
It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.
Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.
Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A
2015-03-05
Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brittle, S. W.; O'Neil, K. A.; Foose, D. P.; Stahler, A. C.; Johnson, J. K.; Higgins, S. R.; Sizemore, I. E.; Sikon, J.
2016-12-01
The expansive incorporation of silver nanoparticles (AgNPs) into over 400 consumer products has raised considerable concern about their eventual release into the environment. Although minerals make up a large component of soils, there has been limited research on their interactions with AgNPs. In this study, a representative nonsilicate mineral, corundum (α-Al2O3), was used in fused beaded form (specific surface area of 6-8 m2 g-1) as a model to study the interaction between minerals and negatively-charged, Creighton AgNPs. A concentration of 1 mg L-1 of AgNPs was selected in order to ensure sub-monolayer surface coverage and to surpass the maximum contaminant level (MCL) set by the U.S. Environmental Agency (EPA) for Ag+ in drinking water (0.1 mg L-1). Raman maps collected on the corundum particles exposed to AgNPs at environmentally relevant pH values (6-11) demonstrated AgNP adsorption onto the hydrated mineral surface through OH- moieties regardless of surface charge (i.e. no pH dependence). In addition, two other well-established analytical techniques were employed for supportive purposes. Namely, the AgNP-corundum interaction was also confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES) through the quantification of the total amount of AgNPs adsorbed onto α-Al2O3. It was found that approximately 75% of the available AgNPs had adsorbed to the mineral surface at all pH values. Atomic force microscopy (AFM), in intermittent contact mode, was also performed to map AgNPs surface distribution on polished and annealed flatter corundum windows. To further demonstrate the Raman analysis, the corundum were also imaged to observe AgNPs adsorption with less surface area and onto other minerals through the occurrence of molecular Ag- vibrations and/or the enhancement of a tracer compound dispensed on mineral surfaces with adsorbed AgNPs (i.e., Surface Enhanced Raman Spectroscopy hot-spots). Overall, this spectroscopic-based analysis promotes extrapolation to other studies as an effective way to observe the interactions between mineral surfaces and nanomaterials.
Salvadori, Marcia R; Ando, Rômulo A; Nascimento, Cláudio A Oller; Corrêa, Benedito
2017-09-19
This investigation was undertaken to describe a natural process for the removal of silver and the simultaneous recovery of Ag/Ag 2 O nanoparticles by dead biomass of the yeast Rhodotorula mucilaginosa. The removal of silver ions from aqueous solution and the synthesis of Ag/Ag 2 O nanoparticles were analyzed based on physicochemical factors and equilibrium concentration, combined with transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FTIR). A successful process for the synthesis of Ag/Ag 2 O nanoparticles was obtained, following the Langmuir isotherm model, showing a high biosorption capacity of silver (49.0 mg g -1 ). The nanoparticles were spherical, had an average size of 11.0 nm, were synthesized intracellularly and capped by yeast proteins. This sustainable protocol is an attractive platform for the industrial-scale production of silver nanoparticles and of a silver nanobiosorbent.
Peiris, Sunari; Sarina, Sarina; Han, Chenhui; Xiao, Qi; Zhu, Huai-Yong
2017-08-15
Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO 2 and Al 2 O 3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO 2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.
NASA Astrophysics Data System (ADS)
Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong
2011-05-01
Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.
NASA Astrophysics Data System (ADS)
Voravuthikunchai, Supayang P.; Chorachoo, Julalak; Jaiswal, Lily; Shankar, Shiv
2013-12-01
The capability of Rhodomyrtus tomentosa acetone extract (RAE) for the production of silver nanoparticles (AgNPs) has been explored for the first time. Silver nanoparticles with a surface plasmon resonance band centered at 420-430 nm were synthesized by reacting RAE with AgNO3. Reaction time, temperature, concentration of AgNO3 and RAE could accelerate the reduction rate of Ag+ and affect AgNPs size. The nanoparticles were found to be 10-30 nm in size and spherical in shape. XRD data demonstrated crystalline nature of AgNPs dominated by (200) facets. FTIR results showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 indicating the involvement of O-H, carbonyl group and C=C stretching with the formation of AgNPs with RAE, respectively. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the nanoparticles. High negative zeta potential values confirmed the stability of AgNPs in water. In vitro antibacterial activity of AgNPs was tested against Staphylococcus aureus using broth microdilution method. AgNPs capped with RAE demonstrated profound antibacterial activity against the organisms with minimum inhibitory concentration and minimum bactericidal concentration in the range between 3.1-6.2 and 6.2-50 μgmL-1, respectively. The synthesized nanoparticles could be applied as an effective antimicrobial agent against staphylococcal infections.
The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-...
Yao, Hiroshi; Shiratsu, Taisuke
2016-06-07
Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+); (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+-ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.
Iyer, R Indira; Panda, Tapobrata
2018-08-01
The potential of callus cultures and field-grown organs of pumpkin (Cucurbita maxima) for the biosynthesis of nanoparticles of the noble metals gold and silver has been investigated. Biosynthesis of AuNPs (gold nanoparticles) and AgNPs (silver nanoparticles) was obtained with flowers of C. maxima but not with pulp and seeds. With callus cultures established in MS-based medium the biogenesis of both AuNPs and AgNPs could be obtained. At 65 °C the biogenesis of AuNPs and AgNPs by callus extracts was enhanced. The AuNPs and AgNPs have been characterized by UV-visible spectroscopy, TEM, DLS and XRD. Well-dispersed nanoparticles, which exhibited a remarkable diversity in size and shape, could be visualized by TEM. Gold nanoparticles were found to be of various shapes, viz., rods, triangles, star-shaped particles, spheres, hexagons, bipyramids, discoid particles, nanotrapezoids, prisms, cuboids. Silver nanoparticles were also of diverse shapes, viz., discoid, spherical, elliptical, triangle-like, belt-like, rod-shaped forms and cuboids. EDX analysis indicated that the AuNPs and AgNPs had a high degree of purity. The surface charges of the generated AuNPs and AgNPs were highly negative as indicated by zeta potential measurements. The AuNPs and AgNPs exhibited remarkable stability in solution for more than four months. FTIR studies indicated that biomolecules in the callus extracts were associated with the biosynthesis and stabilisation of the nanoparticles. The synthesized AgNPs could catalyse degradation of methylene blue and exhibited anti-bacterial activity against E. coli DH5α. There is no earlier report of the biosynthesis of nanoparticles by this plant species. Callus cultures of Cucurbita maxima are effective alternative resources of biomass for synthesis of nanoparticles.
Anjum, Sumaira; Abbasi, Bilal Haider
2016-01-01
Green synthesis of silver nanoparticles (AgNPs) by using plants is an emerging class of nanobiotechnology. It revolutionizes all domains of medical sciences by synthesizing chemical-free AgNPs for various biomedical applications. In this report, AgNPs were successfully synthesized by using whole plant extract (WPE) and thidiazuron-induced callus extract (CE) of Linum usitatissimum. The phytochemical analysis revealed that the total phenolic and flavonoid contents were higher in CE than that in WPE. Ultraviolet-visible spectroscopy of synthesized AgNPs showed a characteristic surface plasmon band in the range of 410–426 nm. Bioreduction of CE-mediated AgNPs was completed in a shorter time than that of WPE-mediated AgNPs. Scanning electron microscopy showed that both types of synthesized AgNPs were spherical in shape, but CE-mediated AgNPs were smaller in size (19–24 nm) and more scattered in distribution than that of WPE-mediated AgNPs (49–54 nm). X-ray diffraction analysis confirmed crystalline nature (face-centered cubic) of both types of AgNPs. Fourier-transform infrared spectroscopy revealed that the polyphenols and flavonoids were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further confirmed the successful synthesis of AgNPs. Moreover, the synthesized AgNPs were found to be stable over months with no change in the surface plasmon bands. More importantly, CE-mediated AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens than WPE-mediated AgNPs. The present work highlighted the potent role of thidiazuron in in vitro-derived cultures for enhanced biosynthesis of chemical-free AgNPs, which can be used as nanomedicines in many biomedical applications. PMID:26955271
Anjum, Sumaira; Abbasi, Bilal Haider
2016-01-01
Green synthesis of silver nanoparticles (AgNPs) by using plants is an emerging class of nanobiotechnology. It revolutionizes all domains of medical sciences by synthesizing chemical-free AgNPs for various biomedical applications. In this report, AgNPs were successfully synthesized by using whole plant extract (WPE) and thidiazuron-induced callus extract (CE) of Linum usitatissimum. The phytochemical analysis revealed that the total phenolic and flavonoid contents were higher in CE than that in WPE. Ultraviolet-visible spectroscopy of synthesized AgNPs showed a characteristic surface plasmon band in the range of 410-426 nm. Bioreduction of CE-mediated AgNPs was completed in a shorter time than that of WPE-mediated AgNPs. Scanning electron microscopy showed that both types of synthesized AgNPs were spherical in shape, but CE-mediated AgNPs were smaller in size (19-24 nm) and more scattered in distribution than that of WPE-mediated AgNPs (49-54 nm). X-ray diffraction analysis confirmed crystalline nature (face-centered cubic) of both types of AgNPs. Fourier-transform infrared spectroscopy revealed that the polyphenols and flavonoids were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further confirmed the successful synthesis of AgNPs. Moreover, the synthesized AgNPs were found to be stable over months with no change in the surface plasmon bands. More importantly, CE-mediated AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens than WPE-mediated AgNPs. The present work highlighted the potent role of thidiazuron in in vitro-derived cultures for enhanced biosynthesis of chemical-free AgNPs, which can be used as nanomedicines in many biomedical applications.
Enhancement of antibiotic effect via gold:silver-alloy nanoparticles
NASA Astrophysics Data System (ADS)
dos Santos, Margarida Moreira; Queiroz, Margarida João; Baptista, Pedro V.
2012-05-01
A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.
Hassan, Syeda Sara; Carlson, Krista; Mohanty, Swomitra Kumar; Sirajuddin; Canlier, Ali
2018-06-01
This study reports a one-pot and eco-friendly method for the synthesis of spherical ibuprofen derived silver nanoparticles (IBU-AgNPs) in aqueous media using ibuprofen analgesics drug as capping as well as reducing agent. Formation of AgNPs occurred within a few min (less than 5 min) at room temperature without resorting to any harsh conditions and hazardous organic solvents. Synthesized AgNPs were characterized with common analytical techniques. Transmission electron microscope (TEM) images confirmed the formation of spherical particles having a size distribution in the range of 12.5 ± 1.5 nm. Employment of IBU analgesic aided the control of better size distribution and prevented agglomeration of particles. Such AgNPs solution was highly stable for more than two months when stored at ambient temperature. The IBU-AgNPs solution showed excellent ultra-rapid catalytic activity for the complete degradation of toxic 4-nitrophenol (4-NPh) into non-toxic 4-aminophenol (4-APh) within 40 s. AgNPs were recovered with the help of water insoluble-room temperature ionic liquid and reused with enhanced catalytic potential. This method provides a novel, rapid and economical alternative for the treatment of toxic organic pollutants to maintain water quality and environmental safety against water pollution. It is extendable for the control of other reducible contaminants in water as well. Furthermore, this catalytic activity for an effective degradation of organic toxins is expected to play a crucial role for achieving the Sustainable Development Goal 6 set by United Nations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Steinberg, Spencer; Hodge, Vernon; Schumacher, Brian; Sovocool, Wayne
2017-03-01
Amendment of a carbon paste electrode consisting of graphite and Nujol®, with a variety of organic and inorganic materials, allows direct adsorption of silver nanoparticles (AgNPs) from aqueous solution in either open or close circuit modes. The adsorbed AgNPs are detected by stripping voltammetry. Detection limits of less than 1 ppb Ag are achievable with a rotating disk system. More than one silver peak was apparent in many of the stripping voltammograms. The appearance of multiple peaks could be due to different species of silver formed upon stripping or variation in the state of aggregation or size of nanoparticles. With most of these packing materials, dissolved Ag + was also extracted from aqueous solution, but, with a packing material made with Fe(II,III) oxide nanoparticles, only AgNPs were extracted. Therefore, it is the best candidate for determination of metallic AgNPs in aqueous environmental samples without interference from Ag + .
NASA Astrophysics Data System (ADS)
Varadharajaperumal, Pradeepa; Subramanian, Balakumar; Santhanam, Amutha
2017-09-01
Silver nanoparticles (AgNPs) are an important class of nanomaterials, which have used as antimicrobial and disinfectant agents due to their detrimental effect on target cells. In the present study it was explored to deliver a novel tamoxifen drug system that can be used in breast cancer treatment, based on chitosan coated silver nanoparticles on MCF-7 human breast cancer cells. AgNPs synthesized from Adenia hondala tuber extract were used to make the chitosan coated AgNPs (Ch-AgNPs), in which the drug tamoxifen was loaded on chitosan coated silver nanoparticles (Tam-Ch-AgNPs) to construct drug loaded nanoparticles as drug delivery system. The morphology and characteristics of the Ch-AgNPs were investigated by UV, FTIR, zeta potential and FESEM. Furthermore, the toxicity of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs was evaluated through cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3, DNA laddering, and TUNEL assay in human breast cancer cells (MCF-7) and HBL-100 continuous cell line as a control. Treatment of cancer cells with various concentrations of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs for 24 h revealed that Tam-Ch-AgNPs could inhibit cell viability and induce significant membrane leakage in a dose-dependent manner. Cells exposed to Tam-Ch-AgNPs showed increased reactive oxygen species and hydroxyl radical production when compared to AgNPs, Ch-AgNPs. Furthermore, the apoptotic effects of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs were confirmed by activation of caspase-3 and DNA nuclear fragmentation. The present findings suggest that Tam-Ch-AgNPs could contribute to the development of a suitable anticancer drug delivery.
Bergin, Ingrid L.; Wilding, Laura A.; Morishita, Masako; Walacavage, Kim; Ault, Andrew P.; Axson, Jessica L.; Stark, Diana I.; Hashway, Sara A.; Capracotta, Sonja S.; Leroueil, Pascale R.; Maynard, Andrew D.; Philbert, Martin A.
2015-01-01
Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity. PMID:26305411
NASA Astrophysics Data System (ADS)
Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy
2017-01-01
In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.
Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure
NASA Astrophysics Data System (ADS)
Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu
2017-12-01
Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.
NASA Astrophysics Data System (ADS)
Shao, Kunjuan; Wang, Yanjie; Iqbal, Muzaffar; Lin, Lin; Wang, Kai; Zhang, Xuehua; He, Meng; He, Tao
2018-03-01
Modification of a wide-bandgap semiconductor with noble metals that can exhibit surface plasmon effect is an effective approach to make it responsive to the visible light. In this work, a series of cubic and all-edge-truncated SrTiO3 with and without thermal pretreatment in air are modified by Ag nanoparticles via photodeposition method. The crystal structure, morphology, loading amount of Ag nanoparticles, and optical properties of the obtained Ag-SrTiO3 nanomaterials are well characterized by powder X-ray diffraction, scanning microscope, transmission electron microscope, energy disperse X-ray spectroscopy, ICP-MS and UV-vis diffuse-reflection spectroscopy. The loading amount and size of the Ag nanoparticles can be controlled to some extent by tuning the photodeposition time via growth-dissolution mechanism. The Ag nanoparticles are inclined to deposit on different locations on the surface of cubic and truncated SrTiO3 with and without thermal pretreatment. The resultant SrTiO3 modified by Ag nanoparticles exhibits visible light activity for photocatalytic reduction of CO2, which is closely related to the oxygen vacancy induced by thermal pretreatment, size and amount of Ag nanoparticles. Accordingly, there is an optimized photodeposition time for the synthesis of the photocatalyst that exhibits the highest photocatalytic activity.
Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang
2017-04-01
Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Austin, Carlye Anne
This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver concentration in visceral yolk sac and low silver concentration in embryos, suggests that visceral yolk sac tissue mitigates AgNP transfer to embryos. No significant treatment-related effects on embryo morphology or tissue histology were detected. Chapter three constitutes an expanded study of silver distribution in pregnant mice and developing embryos, with the addition of 10 nm AgNP treatment groups and examination of fetuses at GD16. Very low concentrations of silver were measured in GD10 embryos and GD16 fetuses following 10 nm AgNP treatment or in GD16 fetuses following 50 nm AgNP treatment. Highest silver concentrations were measured in maternal liver, spleen, and visceral yolk sac. AgNP particle size (10 or 50 nm) did not consistently affect silver tissue distribution. At GD10, 50 nm AgNP treatment resulted in significantly higher silver concentrations than 10 nm AgNP treatment for liver, spleen, and visceral yolk sac only; at GD16, in visceral yolk sac only, 10 nm AgNP treatment resulted in a significantly higher silver concentration than 50 nm AgNP treatment. In liver, spleen, visceral yolk sac, and uterus, absolute silver concentrations following 10 nm AgNP treatment were significantly lower at GD16 compared to GD10; the patterns of silver tissue distribution were similar at both time points. Silver nitrate and 10 nm AgNP treatments resulted in similar tissue concentrations in GD10 tissues with the exception of visceral yolk sac, for which the silver concentration was significantly higher after silver nitrate treatment. Silver distribution patterns were generally similar between 10 nm AgNP and silver nitrate treatments. No histological abnormalities were noted in maternal tissues, extra-embryonic tissues, or embryos. A significantly increased incidence of developmentally young (for gestational age) GD10 embryos was seen following 10 nm AgNP treatment; no significant morphological effects were observed in embryos or maternal tissues. Further research will be needed to fully evaluate potential effects of prenatal AgNP exposure on embryos. (Abstract shortened by UMI.)
Synthesis of gold and silver nanoparticles using purified URAK.
Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi
2011-09-01
This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Waseem, M.; Awan, T.; Yasin, H. M.; Rehman, N. U.
2018-03-01
A strategy to treat the silver and PEGylated silver nanoparticles with plasma was being purposed. Oil in water (o/w) microemulsion method was used for the synthesis of Ag nanoparticles (AgNPs). Polyethylene glycol (PEG) having molecular weight 600 was used to coat the surface of AgNPs. Optical emission spectroscopy (OES) was used to characterize the plasma and it is noted that plasma treatment is useful to modify the structural characteristic of silver nanoparticles. The nanoparticles were treated with helium-oxygen mixture plasma, generated in plasma needle at atmospheric pressure. Both AgNPs and PEGylated AgNPs before and after plasma treatment were characterized by x-rays diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The crystallite size of silver nanoparticles after the treatment of plasma decreases from 71 nm to 27 nm. The SEM micrographs show that the size of Ag nanoparticles was nearly 118 nm whereas the thickness of the silver needle was around 135 nm. All the characteristics IR bands associated to the silver nanoparticles were detected. The FTIR spectrum also support the accumulation of OH radicals in the plasma treated samples. The samples before and after plasma treatment were screened against Gram positive (Bacillus Subtilis and Staphylococcus Aureus) and Gram negative (Escherichia Coli and Pseudomonas Aeruginosa) bacteria. The promising response was detected when plasma treated PEGylated AgNPs was tested against bacterial strains.
Raymundo-Pereira, Paulo A; Campos, Anderson M; Prado, Thiago M; Furini, Leonardo N; Boas, Naiza V; Calegaro, Marcelo L; Machado, Sergio A S
2016-07-05
We report on the synthesis, characterization and applications of a Printex L6 carbon-silver hybrid nanomaterial (PC-Ag), which was obtained using a polyol method. In addition, we also highlight the use of Printex L6 nano-carbon as a much cheaper alternative to the use of carbon nanotubes and graphene. The silver nanoparticles (AgNP) were prepared directly on the surface of the Printex 6L carbon "nanocarbon" material using ethylene glycol as the reducing agent. The hybrid nanomaterial was characterized by High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), Raman spectroscopy and cyclic voltammetry. Optimized electrocatalytic activity on glassy carbon electrode was reached for the architecture GC/PC-Ag, the silver nanoparticles with size ranging between 1 and 2 nm were well-distributed throughout the hybrid material. The synergy between PC nano-carbons and AgNPs was verified by detection of gallic acid (GA) at a low applied potential (0.091 V vs. Ag/AgCl). GA detection was performed in a concentration range between 5.0 × 10(-7) and 8.5 × 10(-6) mol L(-1), with a detection limit of 6.63 × 10(-8) mol L(-1) (66.3 nmol L(-1)), which is considerably lower than similar devices. The approach for fabricating the reproducible GC/PC-Ag electrodes is entirely generic and may be explored for other types of (bio)sensors and devices. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi
2017-08-01
A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.
Inbuilt potential of YEM medium and its constituents to generate Ag/Ag₂O nanoparticles.
Yamal, G; Sharmila, P; Rao, K S; Pardha-Saradhi, P
2013-01-01
We discovered that Yeast Extract Mannitol (YEM) medium possessed immense potential to generate silver nanoparticles from AgNO3 upon autoclaving, which was evident from (i) alteration in color of the medium; (ii) peak at ∼410 nm in UV-Vis spectrum due to surface plasmon resonance specific to silver nanoparticles; and (iii) TEM investigations. TEM coupled with EDX confirmed that distinct nanoparticles were composed of silver. Yeast extract and mannitol were key components of YEM medium responsible for the formation of nanoparticles. PXRD analysis indicated crystalline geometry and Ag/Ag2O phases in nanoparticles generated with YEM medium, yeast extract and mannitol. Our investigations also revealed that both mannitol and yeast extract possessed potential to convert ∼80% of silver ions in 0.5 mM AgNO3 to nanoparticles, on autoclaving for 30 min at 121°C under a pressure of 1.06 kg/cm(2). Addition of filter sterilized AgNO3 under ambient conditions to pre-autoclaved YEM medium and yeast extract brought about color change due to the formation of silver nanoparticles, but required prolonged duration. In general, even after 72 h intensity of color was significantly less than that recorded following autoclaving. Silver nanoparticles formed at room temperature were more heterogeneous compared to that obtained upon autoclaving. In summary, our findings demonstrated that (i) YEM medium and its constituents promote synthesis of silver nanoparticles; and (ii) autoclaving enhances rapid synthesis of silver nanoparticles by YEM medium, yeast extract and mannitol.
NASA Astrophysics Data System (ADS)
Mullaugh, Katherine M.; Pearce, Olivia M.
2017-04-01
The widespread use of silver nanoparticles (Ag NPs) in consumer goods has raised concerns about the release of silver in environmental waters. Of particular concern is the oxidative dissolution of Ag NPs to release Ag+ ions, which are highly toxic to many aquatic organisms. Here, we have investigated the application of differential pulse stripping voltammetry (DPSV) with carbon paste electrodes (CPEs) in monitoring the oxidation of Ag NPs. Using a commercially available, unmodified carbon paste and 60-s deposition times, a detection limit of 3 nM Ag+ could be achieved. We demonstrate its selectivity for free Ag+ ions over Ag nanoparticles, allowing for analysis of the oxidation of Ag NPs without the need for separation of ions and nanoparticles prior to analysis. We applied this approach to investigate the effect of pH in the oxidative dissolution of Ag NPs, demonstrating the usefulness of CPEs in studies of this type.
Vardanyan, Zaruhi; Gevorkyan, Vladimir; Ananyan, Michail; Vardapetyan, Hrachik; Trchounian, Armen
2015-10-16
Due to bacterial resistance to antibiotics there is a need for new antimicrobial agents. In this respect nanoparticles can be used as they have expressed antibacterial activity simultaneously being more reactive compared to their bulk material. The action of zinc (II), titanium (IV), copper (II) and (I) oxides thin films with nanostructured surface and silver nanoscale particles on Enterococcus hirae and Escherichia coli growth and membrane activity was studied by using microbiological, potentiometric and spectrophotometric methods. It was revealed that sapphire base plates with deposited ZnO, TiO2, CuO and Cu2O nanoparticles had no effects neither on E. hirae nor E. coli growth both on agar plates and in liquid medium. Concentrated Ag nanoparticles colloid solution markedly affected bacterial growth which was expressed by changing growth properties. E. hirae was able to grow only at <1:200 dilutions of Ag nanoparticles while E. coli grew even at 1:10 dilution. At the same time Ag nanoparticles directly affected membranes, as the FOF1-ATPase activity and H(+)-coupled transport was changed either (E. coli were less susceptible to nanoparticles compared to E. hirae). Ag nanoparticles increased H(+) and K(+) transport even in the presence of N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of FOF1. The stoichiometry of DCCD-inhibited ion fluxes was disturbed. These results point out to distinguishing antibacterial effects of Ag nanoparticles on different bacteria; the difference between effects can be explained by peculiarities in bacterial membrane structure and properties. H(+)-K(+)-exchange disturbance by Ag nanoparticles might be involved in antibacterial effects on E. hirae. The role of FOF1 in antibacterial action of Ag nanoparticles was shown using atpD mutant lacked β subunit in F1.
Li, Xue; Niitsoo, Olivia; Couzis, Alexander
2016-03-01
An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094
Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less
Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan
2012-10-26
A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.
Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu
2014-08-13
In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.
Preparation of PVA/Co/Ag film and evaluation of its magnetic and microstructural properties
NASA Astrophysics Data System (ADS)
Banerjee, M.; Sachdev, Preeti; Mukherjee, G. S.
2012-05-01
PVA/Co/Ag film has been prepared by sputtering Co followed by Ag in polyvinyl alcohol (PVA) matrix film by IBS technique, so as to get a 9 nm (thick) layer of Co metal nanoparticles followed by a protective 4 nm (thick) layer of Ag nanoparticles. Grazing incidence x-ray diffraction (GIXRD) pattern of the film reveals the formation of nanocrystalline Co with hcp phase. GIXRD pattern also indicates that there is no change in the crystalline structure of PVA even after sputtering of the metallic nanoparticles. The average particle size of Co nanoparticles as evaluated using Scherrer formula is found to be about 2.64 nm. UV visible absorption pattern of the film sample showed SPR peaks of Co and Ag metals in their nano size level embedded in the PVA matrix system. XPS study confirms the metallic nature of Co and Ag nanoparticles; and the depth profiling study reveals that both the metal nanoparticles have been embedded in the PVA matrix system. Surface morphology of such film has been studied using AFM; and the magnetic behaviour of the film studied by using MOKE shows soft ferromagnetic behaviour in this PVA/Co/Ag system.
Nasiriboroumand, Majid; Montazer, Majid; Barani, Hossein
2018-02-01
The potential application of any nanoparticles, including silver nanoparticles (AgNPs), strongly depends on their stability against aggregation. In the current study, an aqueous extract of pomegranate peel was used as a stabilizer during synthesis of AgNPs. Nanoparticles have been prepared by the chemical reduction method from an aqueous solution of silver nitrate in the presence of sodium borohydride as a reducing agent. The AgNPs were characterized by dynamic light scattering (DLS), zeta-potential measurements, UV-Vis spectroscopy and transmission electron microscopy (TEM). The antibacterial efficiency of AgNPs against Escherichia coli was investigated. The size, polydispersity index, FWHM, and colloidal stability of nanoparticles in dispersion depends on the extract concentrations. In the presence of pomegranate peel extract, the nanoparticles suspension shows colloidal stability at least for a week. Our studies show that synthesized AgNPs with the above described procedure were stable at pH = 3-12 and in the temperature range of 25-85 °C. Additionally, AgNPs exhibit antibacterial properties, especially at the lowest amount of extract to silver ratio (K Extract/Ag ). Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Rajbongshi, Himanshu; Bhattacharjee, Suparna; Datta, Pranayee
2017-02-01
Plasmonic Ag/ZnO core-shell nanoparticles have been synthesized via a simple two-step wet chemical method for application in Photocatalysis. The morphology, size, crystal structure, composition and optical properties of the nanoparticles are investigated by x-ray diffraction, transmission electron microscopy (TEM), FTIR spectroscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. The shell thicknesses are varied by varying the concentration of zinc nitrate hexa-hydrate and triethanolamine. The ZnO shell coating over Ag core enhances the charge separation, whereas the larger shell thickness and increased refractive index of surrounding medium cause red shifts of surface Plasmon resonance (SPR) peak of Ag core. The photoluminescence (PL) spectra of Ag/ZnO core-shell show that the larger shell thickness quenches the near band edge UV emission of ZnO. The electrochemical impedance spectra (EIS) i.e. Nyquist plots also confirm the higher charge transfer efficiency of the Ag/ZnO core-shell nanoparticles. The Photocatalytic activities of Ag/ZnO core-shell nanoparticles are investigated by the degradation of methylene blue (MB) dye under direct sunlight irradiation. Compared to pure ZnO nanoparticles (NPs), Ag/ZnO core-shell NPs display efficient sunlight plasmonic photocatalytic activity because of the influence of SPR of Ag core and the electron sink effect. The photocatalytic activity of Ag/ZnO core-shell NPs is found to be enhanced with increase in shell thickness.
NASA Astrophysics Data System (ADS)
Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon
2018-02-01
In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.
Rashid, Md Mamun Or; Ferdous, Jannatul; Banik, Sujan; Islam, Md Rabiul; Uddin, A H M Mazbah; Robel, Fataha Nur
2016-07-26
Present study has been conducted to know the anthelmintic activity of polyaniline coated silver nanoparticles (AgNPs) synthesized from Momordica charantia fruit extract. By reduction of AgNO3 in presence of NaBH4, silver nanoparticles were prepared. After mixing silver nanoparticles and extracts, coating was given on nanoparticles using polyaniline. Prepared nanoparticles were characterized by Visual, UV, FTIR spectroscopy, SEM techniques, and TEM analysis. The FTIR results implied that AgNPs were successfully synthesized and capped with bio-compounds present in the extract. The result showed that death times of worm were 35.12 ± 0.5 and 59.3 ± 0.3 minutes for M. charantia extract and Ag-nanoparticles individually. But when these two combined together, paralysis and death time fall drastically which were only 6.16 ± 0.6 and 9.1 ± 0.4 minutes respectively. Albendazole tablet was used as standard, which made worms death in 3.66 ± 0.1 minutes. Ag-Extract NPs showed strong anthelmintic activity against worm. This study has paved the way for further research to design new anthelmintic drug from the combination of M. charantia and AgNPs.
Screening of cyanobacterial extracts for synthesis of silver nanoparticles.
Husain, Shaheen; Sardar, Meryam; Fatma, Tasneem
2015-08-01
Improvement of reliable and eco-friendly process for synthesis of metallic nanoparticles is a significant step in the field of application nanotechnology. One approach that shows vast potential is based on the biosynthesis of nanoparticles using micro-organisms. In this study, biosynthesis of silver nanoparticles (AgNP) using 30 cyanobacteria were investigated. Cyanobacterial aqueous extracts were subjected to AgNP synthesis at 30 °C. Scanning of these aqueous extracts containing AgNP in UV-Visible range showed single peak. The λ max for different extracts varied and ranged between 440 and 490 nm that correspond to the "plasmon absorbance" of AgNP. Micrographs from scanning electron microscope of AgNP from cyanobacterial extracts showed that though synthesis of nanoparticles occurred in all strains but their reaction time, shape and size varied. Majority of the nanoparticles were spherical. Time taken for induction of nanoparticles synthesis by cyanobacterial extracts ranged from 30 to 360 h and their size from 38 to 88 nm. In terms of size Cylindrospermum stagnale NCCU-104 was the best organism with 38 and 40 nm. But in terms of time Microcheate sp. NCCU-342 was the best organism as it took 30 h for AgNP synthesis.
Singh, Hina; Du, Juan; Yi, Tae-Hoo
2017-11-01
This study highlights the facile, reliable, cost effective, and ecofriendly synthesis of silver nanoparticles (AgNPs) using Borago officinalis leaves extract efficiently. The biosynthesis of AgNPs was verified by UV-Vis spectrum which showed the surface plasmon resonance (SPR) band at 422 nm. Transmission electron microscope (TEM) analysis revealed that the particles were spherical, hexagonal, and irregular in shape and had size ranging from 30 to 80 nm. The energy dispersive X-ray spectroscopy (EDX) and elemental mapping have displayed the purity and maximum distribution of silver in the AgNPs. The crystalline nature of AgNPs had been identified using X-ray diffraction (XRD) and selected area diffraction pattern (SAED). The particle size analysis revealed that the Z-average diameter of the AgNPs was 50.86 nm with polydispersity index (PDI) 0.136. Zeta potential analysis displayed the colloidal stability of AgNPs. This work also showed the efficacy of AgNPs against lung cancer cell lines (A549) and cervical cancer cell line (HeLa), in vitro. The AgNPs showed cytotoxicity to the A549 and HeLa cancer cell line at the concentrations 5 and 2 μg/ml. The AgNPs were also explored for the antibacterial activity including biofilm inhibition against pathogenic bacteria. The B. officinalis leaves extract can be used efficiently for green synthesis AgNPs. The biosynthesized AgNPs demonstrated potentials as anticancer and antibacterial agents. This work provides helpful insight into the development of new anticancer and antimicrobial agents.
AgCl-doped CdSe quantum dots with near-IR photoluminescence.
Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich
2017-01-01
We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.
Sawosz, Ewa; Chwalibog, André; Mitura, Katarzyna; Mitura, Stanisław; Szeliga, Jacek; Niemiec, Tomasz; Rupiewicz, Marlena; Grodzik, Marta; Sokołowska, Aleksandra
2011-09-01
Currently, medicine intensively searches for methods to transport drugs to a target (sick) point within the body. The objective of the present investigation was to evaluate morphological characteristics of the assembles of silver or diamond nanoparticles with Salmonella Enteritidis (G-) or Listeria monocytogenes (G+), to reveal possibilities of constructing nanoparticle-bacteria vehicles. Diamond nanoparticles (nano-D) were produced by the detonation method. Hydrocolloids of silver nanoparticles (nano-Ag) were produced by electric non-explosive patented method. Hydrocolloids of nanoparticles (200 microl) were added to bacteria suspension (200 microl) in the following order: nano-D + Salmonella E.; nano-D + Listeria monocytogenes; nano-Ag + Salmonella E; nano-Ag + Listeria monocytogenes. Samples were inspected by transmission electron microscopy. Visualisation of nanoparticles and bacteria interaction showed harmful effects of both nanoparticles on bacteria morphology. The most spectacular effect of nano-D were strong links between nano-D packages and the flagella of Salmonella E. Nano-Ag were closely attached to Listeria monocytogenes but not to Salmonella E. There was no evidence of entering nano-Ag inside Listeria monocytogenes but smaller particles were placed inside Salmonella E. The ability of nano-D to attach to the flagella and the ability of nano-Ag to penetrate inside bacteria cells can be utilized to design nano-bacteria vehicles, being carriers for active substances attached to nanoparticles.
Poyraz, Selcuk; Cerkez, Idris; Huang, Tung Shi; Liu, Zhen; Kang, Litao; Luo, Jujie; Zhang, Xinyu
2014-11-26
Through a facile and effective seeding polymerization reaction via a one-step redox/complexation process, which took place in aqueous medium at ambient temperature, silver nanoparticles (Ag NPs) embedded polyaniline nanofiber (PANI NF) networks were synthesized as antibacterial agents. During the reaction, not only NF morphology formation of the resulting conducting polymers (CPs) but also amplification of the aqueous silver nitrate (AgNO3) solutions' oxidative potentials were managed by vanadium pentoxide (V2O5) sol-gel nanofibers, which acted as well-known nanofibrous seeding agents and the auxiliary oxidative agent at the same time. The PANI/Ag nanocomposites were proven to exhibit excellent antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Antibacterial property performance and average life span of the nanocomposite network were optimized through the homogeneous distribution/embedment of Ag NPs within one-dimensional (1-D) PANI NF matrix. The antibacterial efficacy tests and nanocomposite material characterization results further indicated that the sole components of PANI/Ag have a synergistic effect to each other in terms of antibacterial property. Thus, this well-known catalytic seeding approach via a one-step oxidative polymerization reaction can be considered as a general methodology and a substantial fabrication tool to synthesize Ag NP decorated nanofibrillar PANI networks as advanced antibacterial agents.
Direct nucleation of silver nanoparticles on graphene sheet.
Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J
2012-08-01
Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.
Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...
Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiuhua, E-mail: xhwang@mail.ahnu.edu.cn; Shi, Zhijie; Yao, Shangwu
2014-11-15
AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiationmore » improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.« less
NASA Astrophysics Data System (ADS)
Aboueloyoun Taha, Ahmed
2015-12-01
One-dimensional (1D) porous carbon nanofibers (CNFs) decorated by silver (Ag) nanoparticles (NPs) were prepared using a one-pot/self-template synthesis strategy by combining electrospinning and carbonization methods. The characterization results revealed that AgNPs were homogenously distributed along the CNFs and possessed a relatively uniform nano-size of about 12 nm. The novel membrane distinctively displayed enhanced photocatalytic activity under visible-light irradiation. The membrane exhibited excellent dye degradation and bacteria disinfection in batch experiments. The high photocatalytic activity can be attributed to the highly accessible surface areas, good light absorption capability, and high separation efficiency of photogenerated electron-hole pairs. The as-prepared membranes can be easily recycled because of their 1D property.
NASA Astrophysics Data System (ADS)
Semprini, L.; Bartow, S.; Radniecki, T.
2012-04-01
Understanding the toxicity of nanoparticles on ecologically significant wastewater microbiota, specifically ammonia oxidizing bacteria (AOB), is critical due to the exponential increase in commercialization of nanoparticles as well as the sensitivity of AOB to inhibitors. A high-throughput activity assay was developed to rapidly screen for nanoparticle toxicity on AOB, using a multi-well plate method and AOB Nitrosomonas Europaea. This method demonstrated good agreement with previously established batch bottle assays utilizing both silver ions (Ag+) and nanoparticles (Ag-NPs) as nitrification inhibitors. The method was used to study the inhibition of Ag+ and Ag-NPs (20 nm) on the nitrification by N. Europaea cells grown in fill-and-draw reactors compared exponentially grown batch cells. Results indicate longer hydraulic residence times increased some protection against inhibition as measured by the production of nitrite over a three hour assay. The cells were more sensitive to Ag+ than Ag-NP, which is consistent with our past observations. Studies are currently being conducted to determine the effects that the presence of humic acid and cations on the inhibition and toxicity. Our initial results show that the presence of Mg++ provides protect from Ag-NP inhibition, which partly results from the aggregation of the Ag-NP and a decrease in the rate of oxidation of the Ag-NP to Ag+. The presence of humic acid also provides for some protection from Ag-NP inhibition.
Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi
2017-08-14
A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10 -12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.
Rapid photogeneration of silver nanoparticles in ethanolic solution: a kinetic study.
Yahyaei, Bahareh; Azizian, Saeid
2013-01-15
Ag nanoparticles have been synthesized via UV irradiation of ethanolic solution of AgNO3 in presence of pluronic F127 surfactant. This study is aimed at developing a rapid, simple and green method to prepare Ag nanoparticles and understanding its generation kinetics. The formation dependency of silver nanoparticles on the concentration of reactants, UV exposure time and temperature has been investigated by using UV-vis spectroscopy. The 2D map technique has been used for the first time to estimate the switching time between the nucleation and growth of Ag nanoparticles. Appropriate kinetic models were used for modelling of both stages. Copyright © 2012 Elsevier B.V. All rights reserved.
Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells.
Zhu, Dan; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wu, Xin; Pei, Yuwei; Chen, Peng; Ma, Xueqin; Cui, Yiping
2014-07-21
A liposome-Ag nanohybrid has been demonstrated as a SERS traceable intracellular drug nanocarrier. Liposomes have been introduced for their special qualities in drug delivery systems. In essence, 4-aminothiophenol (4ATP) tagged Ag nanoparticles (Ag@4ATP) were adsorbed onto the surfaces of liposomes via electrostatic interactions, in which 4ATP was used as a SERS reporter. In such a nanohybrid, the locations of the carrier can be tracked by SERS signals while those of the drugs can be monitored through their fluorescence, allowing the simultaneous investigation of the intracellular distribution of both the carriers and the drugs. Our experimental results suggest that the reported liposomal system has substantial potential for intracellular drug delivery.
NASA Astrophysics Data System (ADS)
Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik
2013-10-01
For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.
Naraginti, Saraschandra; Thejaswini, T V L; Prabhakaran, D; Sivakumar, A; Satyanarayana, V S V; Arun Prasad, A S
2015-10-05
This work is focused on sol-gel synthesis of silver and strontium co-doped TiO2 nanoparticles and their utilization as photo-catalysts in degradation of two textile dyes. Effect of pH, intensity of light, amount of photo-catalyst, concentration of dye, sensitizers, etc., were studied to optimize conditions for obtaining enhanced photo-catalytic activity of synthesized nanoparticles. XRD, BET, HR-TEM, EDAX and UV-Vis (diffused reflectance mode) techniques were used to characterize the nanoparticles. Interestingly, band gap of Sr and Ag co-doped TiO2 nanoparticles showed considerable narrowing (2.6 eV) when compared to Ag doped TiO2 (2.7 eV) and undoped TiO2 (3.17 eV) nanoparticles. Incorporation of Ag and Sr in the lattice of TiO2 could bring isolated energy levels near conduction and valence bands thus narrowing band gap. The XRD analysis shows that both Ag and Sr nanoparticles are finely dispersed on the surface of titania framework, without disturbing its crystalline structure. TEM images indicate that representative grain sizes of Ag-doped TiO2 & Sr and Ag co-doped TiO2 nanoparticles are in the range of 8-20 nm and 11-25 nm, respectively. Effective degradation of Direct Green-6 (DG-6) and Reactive Blue-160 (RB-160) under UV and visible light has been achieved using the photo-catalysts. Sr and Ag co-doped TiO2 photo-catalysts showed higher catalytic activity during degradation process in visible region when compared to Ag-doped and undoped TiO2 nanoparticles which could be attributed to the interactive effect caused by band gap narrowing and enhancement in charge separation. For confirming degradation of the dyes, total organic carbon (TOC) content was monitored periodically. Copyright © 2015 Elsevier B.V. All rights reserved.
Silver nanoparticles added PVDF/ZnO nanocomposites: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Singh, Utpal; Kumari, Niraj; Jha, Anal K.; Chandra, K. P.; Kolte, Jayant; Kulkarni, A. R.; Prasad, K.
2018-05-01
Silver and zinc oxide nanoparticles were prepared using citric acid method. The formations and crystal structures were ascertained from the X-ray diffraction data and the average crystallite size was estimated using Williamson-Hall approach. The hybrid combinations of Ag and ZnO nanoparticles were utilized to prepare PVDF/ZnO(90/10)-Ag nanocomposites (with Ag as filler: 0.5, 1 and 1.5%) using melt-mixing technique. Cole-Cole analysis suggested the dielectric relaxation in this system to be of non-Debye type. Also, addition of Ag nanoparticles enabled long-range conductivity in PVDF/ZnO nanocomposite.
Li, Yinghua; Guo, Min; Lin, Zhengfang; Zhao, Mingqi; Xiao, Misi; Wang, Changbing; Xu, Tiantian; Chen, Tianfeng; Zhu, Bing
2016-01-01
Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer. PMID:27994465
Battistel, Dario; Baldi, Franco; Gallo, Michele; Faleri, Claudia; Daniele, Salvatore
2015-01-01
Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag(0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.
Interfacial functionalization and engineering of nanoparticles
NASA Astrophysics Data System (ADS)
Song, Yang
The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication. Experimentally, Janus nanoparticles were prepared by an interfacial engineering method where one hemisphere of the originally hydrophobic nanoparticles was replaced with hydrophilic ligands at the air|liquid or solid|liquid interface. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. In a further study, a mercapto derivative of diacetylene was used as the hydrophilic ligands to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold nanoparticles as the starting materials. Exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands and hence marked enhancement of the structural integrity of the Janus nanoparticles, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. More complicated bimetallic AgAu Janus nanoparticles were prepared by interfacial galvanic exchange reactions of a Langmuir-Blodgett monolayer of 1-hexanethiolate-passivated silver nanoparticles on a glass slide with gold(I)-mercaptopropanediol complex in a water/ethanol solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV--vis, XPS, and TEM measurements. More interestingly, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen. This interfacial protocol was then adopted to prepare trimetallic Ag AuPt Neapolitan nanoparticles by two sequential galvanic exchange reactions of 1-hexanethiolate-capped silver nanoparticles with gold(I)-thiomalic acid and platinum(II)-hexanethiolate complexes. As both reactions were confined to an interface, the Au and Pt elements were situated on two opposite poles of the original Ag nanoparticles, which was clearly manifested in elemental mapping of the nanoparticles, and consistent with the damping and red-shift of the nanoparticle surface plasmon resonance. As nanoscale analogs to conventional amphiphilic molecules, the resulting Janus nanoparticles were found to form oil-in-water micelle-like or water-in-oil reverse micelle-like superparticulate structures depending on the solvent media. These unique characteristics were exploited for the effective transfer of diverse guest nanoparticles between organic and water phase. The transfer of hydrophobic nanoparticles from organic to water media or water-soluble nanoparticles to the organic phase was evidenced by TEM, DLS, UV-Vis, and PL measurements. In particular, line scans based on EDS analysis showed that the vesicle-like structures consisted of multiple layers of the Janus nanoparticles, which encapsulated the guest nanoparticles in the cores. The results highlight the unique effectiveness of using Janus nanoparticles in the formation of functional nanocomposites. Part of the dissertation research was also devoted to graphene quantum dots (GQDs)-supported platinum (Pt/G) nanoparticles and their electrocatalytic activity in oxygen reduction reaction. These Pt/G nanocomposites were prepared by a hydrothermal procedure at controlled temperatures. Spectroscopic measurements based on FTIR, Raman and XPS confirmed the formation of various oxygenated structural defects on GQDs and the variation of their concentrations with the hydrothermal conditions. Interestingly, electrocatalytic activity of GQD/Pt composites exhibited a volcano-shaped variation with the GQD structural defects, with the best identified as the samples prepared at 160 °C for 6 h where the mass activity was found to meet the DOE target for 2015. This remarkable performance was accounted for by the deliberate manipulation of the adsorption of oxygen and reaction intermediates on platinum by the GQD structural defects through partial charge transfer. The strategy presented herein may offer a new paradigm in the design and engineering of nanoparticle catalysts for fuel cell electrochemistry. In addition, studies were also carried out to study intervalence charge transfer between ferrocenyl moieties bonded on carbon nanoparticle surfaces by diazonium reaction. Electrochemical studies exhibited two pairs of voltammetric waves with a difference of their formal potentials at about 78 mV, suggesting nanoparticle-mediated intraparticle charge delocalization at mixed valence as a result of the strong core-ligand covalent bonds and the conductive sp 2 carbon matrix of the graphitic cores. Consistent behaviors were observed in near-infrared measurements, indicating that the particles behaved analogously to a Class I/II mixed-valence compound.
NASA Astrophysics Data System (ADS)
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.
2014-07-01
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.
Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...
Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles.
Dong, Hong; Snyder, James F; Tran, Dat T; Leadore, Julia L
2013-06-20
In this work, we describe hydrogels, aerogels and films of nanofibrillated cellulose (NFC) functionalized with metal nanoparticles using silver as an example. The TEMPO process used to produce NFC generates negatively charged surface carboxylate groups that provide high binding capability to transition metal species such as Ag(+). The gelation of NFC triggered by transition monovalent metal ions was revealed for the first time. The interaction was utilized to bind Ag(+) on the NFC surface and simultaneously induce formation of NFC-Ag(+) hydrogels, where Ag(+) was slowly reduced to Ag nanoparticles by hydroxyl groups on NFC without additional reducing agent. The NFC-Ag(+) hydrogel was initiated by strong association of carboxylate groups on NFC with Ag(+) and sufficient NFC surface charge reduction. The stiff hydrogel has a storage modulus leveled off at a plateau value of ~6800Pa. Porous aerogels and flat thin films comprising a continuous matrix of NFC were decorated with Ag nanoparticles through freeze-drying or solution-casting of NFC-Ag(+) dispersions with low contents of Ag(+), respectively, followed by UV reduction. The presence of Ag species on NFC reduced coalescence of nanofibrils in the film formation as revealed from AFM phase images. Copyright © 2013 Elsevier Ltd. All rights reserved.
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei; ...
2018-03-26
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua
2010-12-20
We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.
Coiled-coil forming peptides for the induction of silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Božič Abram, Sabina; Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000; Aupič, Jana
Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at aroundmore » 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.« less
Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Min; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002; Zhang, De-Xiang
2016-05-15
An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB). - Graphical abstract: An amine-functionalized neutral Cd(II) boron imidazolate framework can load Ag NPs and show excellent photocatalytic degradation behavious for MB. - Highlights: • Amine-functionalization. • Neutral boron imidazolate framework. • Loading Ag nanoparticles (NPs). • Photocatalytic degradation of methylene blue.
Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek
2014-10-01
We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.
NASA Astrophysics Data System (ADS)
Zhang, Danhui; Liu, Xiaoheng
2013-03-01
The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.
NASA Astrophysics Data System (ADS)
Arivizhivendhan, Villalan; Mahesh, Mannacharaju; Boopathy, Ramasamy; Karthikeyan, Sekar; Mary, Rathanasamy Regina; Sekaran, Ganesan
2018-01-01
A novel continuous production and extraction of bacterial bioactive prodigiosin (PG) from fermented using silver nanoparticle impregnated functioned activated carbon composite is proposed for cost-effective and ecofriendly microbial technique. Hence, in this investigation silver nanoparticle was impregnated onto functioned activated carbon ([AC]F) as a support matrix and to enable the separation of PG conjugated silver nanoparticle from the fermented medium. A laboratory scale experiment was carried out to evaluate the continuous production and recovery of PG using [AC@Ag]F. Ag nanoparticle impregnated [AC]F ([AC@Ag]F) characterized by FT-IR, XRD, TGA, DSC and SEM. Instrumental analyses confirmed that Ag nanoparticles significantly impregnated on AC through the functionalization of AC with diethanolamine and it enhances the binding capacity between AC and Ag. The various process parameters, such as contact time, pH, and mass of [AC@Ag]F, were statistically optimized for the recovery of PG using Response Surface Methodology (RSM). The maximum extraction of PG in [AC@Ag]F was found to be 16.2 ± 0.2 mg g-1, its twofold higher than [AC]F. Further, PG conjugated [AC@Ag]F and ([AC@Ag]F-PG) were checked for the growth inhibition of gram negative and gram positive bacteria without formation of biofilm upto 96 h. Hence, the developed matrix could be eco-friendly, viable and lower energy consumption step for separation of the bacterial bioactive PG from fermented broth. In additionally, [AC@Ag]F-PG was used as an antifouling matrix without formation of biofilm.
NASA Astrophysics Data System (ADS)
Cynthia Jemima Swarnavalli, G.; Dinakaran, S.; Divya, S.
2016-10-01
Nanocomposites consisting of silver and solid lipid nanoparticles (SLN) elicit interest for their synergistic effect based enhanced properties in skin hydration. The nanocomposite preparation aims at combining the antimicrobial activity of silver with skin hydration performance of SLN. The nanocomposites designated Ag/SAN (silver/stearic acid nanoparticles), Ag/PAN (silver/palmitic acid nanoparticles) were prepared by incorporating silver nanoparticles into the dispersion of SLN and sonicating for 10 min followed by heating for 1 h at 50 °C in a thermostat. The occlusive property of the two nanocomposites was evaluated in comparison with the pure SLN by adopting de Vringer-de Ronde in vitro occlusion test. The incorporation of silver nanoparticles has improved occlusion factor by 10 % in the case of both composites at SLN concentration of 0.14 mmol. Characterization studies include XRD, DSC, HRSEM, DLS and zeta potential measurement. High resolution scanning electron microscopy (HRSEM) images divulge that the nanoparticles of composite (Ag/SAN) shows halo effect where the hydrophobic stearic acid is oriented at the core and is surrounded by silver nanoparticles while Ag/PAN shows cashew shaped SLN dispersed in silver nanoparticles matrix.
Arya, Geeta; Kumari, R Mankamna; Gupta, Nidhi; Kumar, Ajeet; Chandra, Ramesh; Nimesh, Surendra
2018-08-01
In the present study, silver nanoparticles (PJB-AgNPs) have been biosynthesized employing Prosopis juliflora bark extract. The biosynthesis of silver nanoparticles was monitored on UV-vis spectrophotometer. The size, charge and polydispersity index (PDI) of PJB-AgNPs were determined using dynamic light scattering (DLS). Different parameters dictating the size of PJB-AgNPs were explored. Nanoparticles biosynthesis optimization studies suggested efficient synthesis of highly dispersed PJB-AgNPs at 25 °C when 9.5 ml of 1 mM AgNO 3 was reduced with 0.5 ml of bark extract for 40 min. Characterization of PJB-AgNPs by SEM showed spherical-shaped nanoparticles with a size range ∼10-50 nm along with a hydrodynamic diameter of ∼55 nm as evaluated by DLS. Further, characterizations were done by FTIR and EDS to evaluate the functional groups and purity of PJB-AgNPs. The antibacterial potential of PJB-AgNPs was tested against E. coli and P. aeruginosa. The PJB-AgNPs remarkably exhibited anticancer activity against A549 cell line as evidenced by Alamar blue assay. The dye degradation activity was also evaluated against 4-nitrophenol that has carcinogenic effect. The results thus obtained suggest application of PJB-AgNPs as antimicrobial, anticancer and catalytic agents.
Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo
2013-10-01
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.
Naqvi, Syed Zeeshan Haider; Kiran, Urooj; Ali, Muhammad Ishtiaq; Jamal, Asif; Hameed, Abdul; Ahmed, Safia; Ali, Naeem
2013-01-01
Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs) was probed by reacting the precursor salt of silver nitrate (AgNO3) with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400-470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ) corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5-30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby-Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm) of antibiotics, AgNPs, and their conjugates against bacterial group (average) was; ciprofloxacin + AgNPs (23) . imipenem + AgNPs (21) > gentamycin + AgNPs (19) > vancomycin + AgNPs (16) > AgNPs (15) . imipenem (14) > trimethoprim + AgNPs (14) > ciprofloxacin (13) > gentamycin (11) > vancomycin (4) > trimethoprim (0). Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2-7.0 (average, 2.8) fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficacy against various pathogenic microbes.
Green synthesis of silver nanoparticles using Stevia leaves extracts
NASA Astrophysics Data System (ADS)
Laguta, Iryna; Stavinskaya, Oksana; Kazakova, Olga; Fesenko, Tetiana; Brychka, Sergey
2018-02-01
Three extracts of Stevia rebaudiana (Bertoni) were prepared using different types of raw materials: leaves of plants grown ex situ, leaves of plants grown in vitro, callus culture formed on damaged leaves. Composition of the extracts was studied by means of high-performance liquid chromatography and laser desorption/ionization mass spectrometry; total phenol content was estimated using Folin-Ciocalteau method. Flavonoids and hydroxycinnamic acids were found to be the main groups of phenol antioxidants available in the Stevia leaves, with the amount of these compounds in the extract being dependent on the type of raw material. The reducing properties of phenol compounds identified in the extracts were characterized using quantum chemical method; flavonoids and hydroxycinnamic acids were found to have similar redox parameters. Silver nanoparticles (AgNPs) colloids were synthesized using three Stevia extracts; AgNPs size distribution were characterized by means of scanning electron microscopy. All the extracts revealed significant activity in AgNPs synthesis; the nanoparticles of predominantly spherical shape with the average sizes of 16-25 nm were formed. The reducing properties of the extracts were found to correlate with total phenol content; the activity of extracts from the leaves of plants grown ex situ and from callus culture in Ag+ ions reduction was similar to each other and exceeded the activity of extract from the leaves of plants grown in vitro.
Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures
NASA Astrophysics Data System (ADS)
Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei
2012-10-01
Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.
Choi, Youngmin; Hwang, Yujin; Park, Minchan; Lee, Jaekeun; Choi, Cheol; Jung, Mihee; Oh, Jemyung; Lee, Jung Eun
2011-01-01
The tribological behavior of graphite and Ag nanoparticles as solid additive to base oil was evaluated on a four-ball test machine and a disc-on-disc tribotester. Extreme pressure and anti-wear results are shown according to ASTM D4172 and D2783 standard methods. It is found that Ag nanoparticles have better anti-wear behavior, and especially the smaller size nanoparticle have better anti-wear behavior.
Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun
2012-06-19
Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.
Role of nanoparticle size in self-assemble processes of collagen for tissue engineering application.
Vedhanayagam, Mohan; Nidhin, Marimuthu; Duraipandy, Natarajan; Naresh, Niranjan Dhanasekar; Jaganathan, Ganesh; Ranganathan, Mohan; Kiran, Manikantan Syamala; Narayan, Shoba; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan
2017-06-01
Nanoparticle mediated extracellular matrix may offer new and improved biomaterial to wound healing and tissue engineering applications. However, influence of nanoparticle size in extracellular matrix is still unclear. In this work, we synthesized different size of silver nanoparticles (AgNPs) comprising of 10nm, 35nm and 55nm using nutraceuticals (pectin) as reducing as well as stabilization agents through microwave irradiation method. Synthesized Ag-pectin nanoparticles were assimilated in the self-assemble process of collagen leading to fabricated collagen-Ag-pectin nanoparticle based scaffolds. Physico-chemical properties and biocompatibility of scaffolds were analyzed through FT-IR, SEM, DSC, mechanical strength analyzer, antibacterial activity and MTT assay. Our results suggested that 10nm sized Ag-pectin nanoparticles significantly increased the denaturation temperature (57.83°C) and mechanical strength (0.045MPa) in comparison with native collagen (50.29°C and 0.011MPa). The in vitro biocompatibility assay reveals that, collagen-Ag-pectin nanoparticle based scaffold provided higher antibacterial activity against to Gram positive and Gram negative as well as enhanced cell viability toward keratinocytes. This work opens up a possibility of employing the pectin caged silver nanoparticles to develop collagen-based nanoconstructs for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles
A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...
NASA Astrophysics Data System (ADS)
San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson
2016-06-01
Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.
Wang, Liying; Sun, Ying; Wang, Jing; Wang, Jian; Yu, Aimin; Zhang, Hanqi; Song, Daqian
2011-06-01
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kokila, T.; Ramesh, P. S.; Geetha, D.
2015-12-01
Biosynthesis of metallic silver nanoparticles has now become an alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized from Cavendish banana peel extract (CBPE) and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Atomic force microscopy (AFM), Field emission scanning electronic microscope (FESEM), Dynamic light scattering (DLS) and zeta potential (ZP). The AgNPs formation was confirmed by UV-visible spectroscopy through color conversion due to surface plasma resonance band at 430 nm. The effect of pH on nanoparticle synthesis was determined by adjusting the various pH of the reaction mixtures. The crystalline nature of nanoparticles was confirmed from the XRD pattern, and the grain size was found to be around 34 nm. To identify the compounds responsible for the bioreduction of Ag+ ion and the stabilization of AgNPs produced, the functional group present in Cavendish banana peel extract was investigated using FTIR. AFM has proved to be very helpful in determining morphological features and the diameter of AgNPs in the range of 23-30 nm was confirmed by FESEM. DLS studies revealed that the average size of AgNPs was found to be around 297 nm. Zeta potential value for AgNPs obtained was -11 mV indicating the moderate stability of synthesized nanoparticles. The antibacterial activity of the nanoparticles was studied against Gram-positive and Gram-negative bacteria. Biosynthesized AgNPs showed a strong DPPH radical and ABTS scavengers compared to the aqueous peel extract of Cavendish banana.
NASA Astrophysics Data System (ADS)
Moos, Rafaela; Graff, Ismael L.; de Oliveira, Vinicius S.; Schreiner, Wido H.; Bezerra, Arandi G.
2017-10-01
We investigate the photoluminescence, optical absorption and structural properties of ZnS submitted to laser irradiation in water and isopropyl alcohol. Nanoparticles were produced by irradiating micro-sized ZnS particles dispersed in both liquids, with and without the addition of Ag nanoparticles, taking advantage of the laser-assisted fragmentation effect. When ZnS microparticles are irradiated either in pure water or isopropyl alcohol a considerable size reduction is achieved (from micra to few nanometers). The photoluminescence of these nanoparticles mainly occurs in the UV, centered at 350 nm, and with smaller intensity in the visible, centered at 600 nm. Irradiation of ZnS microparticles dispersed in colloidal silver triggers a reaction between both materials, modifying its optical absorption and photoluminescent properties. After irradiation of ZnS in alcohol containing Ag nanoparticles, a giant increase of the UV photoluminescence is observed. Interestingly, when the irradiation is performed in aqueous Ag nanoparticles colloids, the photoluminescence suffers a red-shift towards the violet-blue. The data show that core-shell (Ag-ZnO) nanostructures are formed after irradiation and the visible emission likely originates from the ZnO shell grown around silver nanoparticles. The presence of Ag nanoparticles in the liquid medium promotes a stronger absorption of the laser beam during irradiation due to the coupling with the surface plasmon resonance, fostering intense reactions among ZnS, Ag nanoparticles, and the liquid medium. Our study shows that with a simple change of the liquid medium wherein the irradiation is conducted the photoluminescence can be tuned from UV to visible and core-shell nanostructures can be obtained.
Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles.
Niazi, Javed H; Sang, Byoung-In; Kim, Yeon Seok; Gu, Man Bock
2011-08-01
Silver nanoparticles (AgNPs), exhibiting a broad size range and morphologies with highly reactive facets, which are widely applicable in real-life but not fully verified for biosafety and ecotoxicity, were subjected to report transcriptome profile in yeast Saccharomyces cerevisiae. A large number of genes accounted for ∼3% and ∼5% of the genome affected by AgNPs and Ag-ions, respectively. Principal component and cluster analysis suggest that the different physical forms of Ag were the major cause in differential expression profile. Among 90 genes affected by both AgNPs and Ag-ions, metalloprotein mediating high resistance to copper (CUP1-1 and CUP1-2) were strongly induced by AgNPs (∼45-folds) and Ag-ions (∼22-folds), respectively. A total of 17 genes, responsive to chemical stimuli, stress, and transport processes, were differentially induced by AgNPs. The differential expression was also seen with Ag-ions that affected 73 up- and 161 down-regulating genes, and most of these were involved in ion transport and homeostasis. This study provides new information on the knowledge for impact of nanoparticles on living microorganisms that can be extended to other nanoparticles.
Biochemical changes in cyanobacteria during the synthesis of silver nanoparticles.
Cepoi, L; Rudi, L; Chiriac, T; Valuta, A; Zinicovscaia, I; Duca, Gh; Kirkesali, E; Frontasyeva, M; Culicov, O; Pavlov, S; Bobrikov, I
2015-01-01
The methods of synthesis of silver (Ag) nanoparticles by the cyanobacteria Spirulina platensis and Nostoc linckia were studied. A complex of biochemical, spectral, and analytical methods was used to characterize biomass and to assess changes in the main components of biomass (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation. The size and shape of Ag nanoparticles in the biomass of both types of cyanobacteria were determined. Neutron activation analysis was used to study the accumulation dynamics of the Ag quantity. The analytical results suggest that the major reduction of Ag concentration in solutions and the increase in biomass occur within the first 24 h of experiments. While in this time interval minor changes in the N. linckia and S. platensis biomass took place, a significant reduction of the levels of proteins, carbohydrates, and phycobiliproteins in both cultures and of lipids in S. platensis was observed after 48 h. At the same time, the antiradical activity of the biomass decreased. The obtained results show the necessity of determining the optimal conditions of the interaction between the biomass and the solution containing Ag ions that would allow nanoparticle formation without biomass degradation at the time of Ag nanoparticle formation by the studied cyanobacteria.
NASA Astrophysics Data System (ADS)
Rajamanickam, Karthic; Sudha, S. S.; Francis, Mebin; Sowmya, T.; Rengaramanujam, J.; Sivalingam, Periyasamy; Prabakar, Kandasamy
2013-09-01
The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem.
Oves, Mohammad; Khan, Mohammad Saghir; Zaidi, Almas; Ahmed, Arham S.; Ahmed, Faheem; Ahmad, Ejaz; Sherwani, Asif; Owais, Mohammad; Azam, Ameer
2013-01-01
Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases. PMID:23555625
Fungicidal activity of silver nanoparticles against Alternaria brassicicola
NASA Astrophysics Data System (ADS)
Gupta, Deepika; Chauhan, Pratima
2016-04-01
This work highlighted the fungicidal properties of silver nanoparticles against Alternaria brassicicola. Alternaria brassicicola causes Black spot of Cauliflower, radish, cabbage, kale which results in sever agricultural loss. We treat the synthesised silver nanoparticles (AgNPs) of 10, 25, 50, 100 and 110 ppm concentrations against Alternaria brassicicola on PDA containing Petri dish. We calculated inhibitory rate (%) in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. Treatment with 100ppm AgNPs resulted in maximum inhibition of Alternaria brassicicola i.e.92.2%. 110ppm of AgNPS also shows the same result, therefore 100ppm AgNPs was treated as optimize concentration. AgNPs effectively inhibited the growth of a Alternaria brassicicola, which suggests that AgNPs could be used as fungicide in plant disease management. Further research and development are necessary to translate this technology into plant disease management strategies.
Khan, Farman Ullah; Asimullah; Khan, Sher Bahadar; Kamal, Tahseen; Asiri, Abdullah M; Khan, Ihsan Ullah; Akhtar, Kalsoom
2017-09-01
A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu 0 -Ag 0 /CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH 4 . Additionally, the Cu 0 -Ag 0 /CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles. Copyright © 2017 Elsevier B.V. All rights reserved.
Fernández, Jorge G; Almeida, César A; Fernández-Baldo, Martín A; Felici, Emiliano; Raba, Julio; Sanz, María I
2016-01-01
Bactericidal water filters were developed. For this purpose, nitrocellulose membrane filters were impregnated with different biosynthesized silver nanoparticles. Silver nanoparticles (AgNPs) from Aspergillus niger (AgNPs-Asp), Cryptococcus laurentii (AgNPs-Cry) and Rhodotorula glutinis (AgNPs-Rho) were used for impregnating nitrocellulose filters. The bactericidal properties of these nanoparticles against Escherichia coli, Enterococcus faecalis and Pseudomona aeruginosa were successfully demonstrated. The higher antimicrobial effect was observed for AgNPs-Rho. This fact would be related not only to the smallest particles, but also to polysaccharides groups that surrounding these particles. Moreover, in this study, complete inhibition of bacterial growth was observed on nitrocellulose membrane filters impregnated with 1 mg L(-1) of biosynthesized AgNPs. This concentration was able to reduce the bacteria colony count by over 5 orders of magnitude, doing suitable for a water purification device. Copyright © 2015 Elsevier B.V. All rights reserved.
Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B.
Khatri, Kapil; Goyal, Amit K; Gupta, Prem N; Mishra, Neeraj; Vyas, Suresh P
2008-04-16
This work investigates the preparation and in vivo efficacy of plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Chitosan pDNA nanoparticles were prepared using a complex coacervation process. Prepared nanoparticles were characterized for size, shape, surface charge, plasmid loading and ability of nanoparticles to protect DNA against nuclease digestion and for their transfection efficacy. Nasal administration of nanoparticles resulted in serum anti-HBsAg titre that was less compared to that elicited by naked DNA and alum adsorbed HBsAg, but the mice were seroprotective within 2 weeks and the immunoglobulin level was above the clinically protective level. However, intramuscular administration of naked DNA and alum adsorbed HBsAg did not elicit sIgA titre in mucosal secretions that was induced by nasal immunization with chitosan nanoparticles. Similarly, cellular responses (cytokine levels) were poor in case of alum adsorbed HBsAg. Chitosan nanoparticles thus produced humoral (both systemic and mucosal) and cellular immune responses upon nasal administration. The study signifies the potential of chitosan nanoparticles as DNA vaccine carrier and adjuvant for effective immunization through non-invasive nasal route.
Zain, N Mat; Stapley, A G F; Shama, G
2014-11-04
Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo
2015-11-18
Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.
Development of HA/Ag-NPs Composite Coating from Green Process for Hip Applications.
Lozoya-Rodríguez, Denisse A; de Lima, Renata; Fraceto, Leonardo F; Ledezma Pérez, Antonio; Bazaldua Domínguez, Mercedes; Gómez Batres, Roberto; Reyes Rojas, Armando; Orozco Carmona, Víctor
2017-08-08
In the present study, biological hydroxyapatite (HA) was obtained from bovine bones through a thermal process. A total of 0% and 1% of silver nanoparticles (Ag-NPs) synthesized from Opuntia ficus (nopal) were added to the biological hydroxyapatite coatings using an atmospheric plasma spray (APS) on a Ti6Al4V substrate. Following this, its antimicrobial efficiency was evaluated against the following bacterial strains: Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . This was conducted according to the Japanese Industrial Standard (JIS) Z2801:2000 "Antimicrobial Product-Test for Antimicrobial Activity and Efficacy". Scanning electron microscopy (SEM) showed that the silver nanoparticles (Ag-NPs) were evenly distributed on the coating surface. Energy dispersive X-ray spectroscopy (EDX) shows that apatite deposition occurs on a daily basis, maintaining a Ca/P rate between 2.12 and 1.45. Biocompatibility properties were evaluated with osteoblast-like cells (MC3T3-E1) by single-cell gel electrophoresis assay and Tali image cytometry.
Effect of silver doping on the elastic properties of CdS nanoparticles
NASA Astrophysics Data System (ADS)
Dey, P. C.; Das, R.
2018-05-01
CdS and Ag doped CdS (CdS/Ag) nanoparticles have been prepared via chemical method from a Cadmium acetate precursor and Thiourea. The synthesized CdS and CdS/Ag nanoparticles have been characterized by the X-ray Diffraction and High Resolution Transmission Electron Microscope. Here, these nanoparticles have been synthesized at room temperature and all the characterization have also been done at room temperature only. The XRD results reveal that the products are crystalline with cubic zinc blende structure. HRTEM images show that the prepared nanoparticles are nearly spherical in shape. Williamson-Hall method and Size-Strain Plot (SSP) have been used to study the individual contribution of crystalline sizes and lattice strain on the peak broadening of the CdS and CdS/Ag nanoparticles. The different modified model of Williamson-Hall method such as, uniform deformation model, uniform stress deformation model and uniform energy density deformation model and SSP method have been used to calculate the different physical parameter such as lattice strain, stress and energy density for all diffraction peaks of the XRD, corresponding to the CdS and silver doped CdS (CdS/Ag). The obtained results reveal that the average particle size of the prepared CdS and CdS/Ag nanoparticles estimated from the HRTEM images, Williamson-Hall analysis and SSP method are highly correlated with each other. Further, all these result confirms that doping of Ag significantly affects the elastic properties of CdS.
NASA Astrophysics Data System (ADS)
Sharma, Maya; Madras, Giridhar; Bose, Suryasarathi
2016-07-01
In this study, Fe (iron) and Ag (silver) based adsorbents were synthesized using solution combustion and in situ reduction techniques. The synthesized adsorbents were comprehensively characterized by different techniques including electron microscopy, BET, XRD, Zeta potential etc. Three chlorinated cationic dyes used were malachite green, methyl violet and pyronin Y. These dyes were adsorbed on various synthesized adsorbents [iron III oxide (Fe2O3)], iron III oxide decorated silver nanoparticles by combustion synthesis technique [Fe2O3-Ag(C)] and iron III oxide decorated silver nanoparticles using in situ reduction, [Fe2O3-Ag (S)]. The isotherm and the adsorption kinetics have been studied systematically. The kinetic data can be explained by the pseudo second order model and the adsorption equilibrium followed Langmuir isotherm. The equilibrium and kinetics results suggest that Fe2O3-Ag(S) nanoparticles showed the maximum adsorption among all the adsorbents. Hence, Polyvinylidene fluoride based membranes containing Fe2O3-Ag(S) nanoparticles were prepared via phase inversion (precipitation immersion using DMF/water) technique. The adsorption kinetics were studied in detail and it was observed that the composite membrane showed synergistic improvement in dye adsorption. Such membranes can be used for water purification.
Fortunati, Elena; Mattioli, Samantha; Visai, Livia; Imbriani, Marcello; Fierro, Josè Luis G; Kenny, Josè Maria; Armentano, Ilaria
2013-03-11
The purpose of this study is to investigate the combined effects of oxygen plasma treatments and silver nanoparticles (Ag) on PLGA in order to modulate the surface antimicrobial properties through tunable bacteria adhesion mechanisms. PLGA nanocomposite films, produced by solvent casting with 1 wt % and 7 wt % of Ag nanoparticles were investigated. The PLGA and PLGA/Ag nanocomposite surfaces were treated with oxygen plasma. Surface properties of PLGA were investigated by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), static contact angle (CA), and high resolution X-ray photoelectron spectroscopy (XPS). Antibacterial tests were performed using an Escherichia coli RB (a Gram negative) and Staphylococcus aureus 8325-4 (a Gram positive). The PLGA surface becomes hydrophilic after the oxygen treatment and its roughness increases with the treatment time. The surface treatment and the Ag nanoparticle introduction have a dominant influence on the bacteria adhesion and growth. Oxygen-treated PLGA/Ag systems promote higher reduction of the bacteria viability in comparison to the untreated samples and neat PLGA. The combination of Ag nanoparticles with the oxygen plasma treatment opens new perspectives for the studied biodegradable systems in biomedical applications.
Green Silver Nanoparticles Based Dual Sensor for Toxic Hg (II) Ions.
Sebastian, Maria; Aravind, Archana; Mathew, Beena
2018-06-11
The present study focuses on the utilization of green silver nanoparticles as they are more preferred for sensing applications due to their environment friendly nature. We have examined the optical and electrochemical sensing behavior of silver nanoparticles from Agaricus Bispores (AgNP-AB) towards Hg(II) ions. AgNP-AB was prepared by microwave reactor. The synthesized AgNPs have been used for the sensing of Hg(II) ions without the use of modifiers or further sophisticated instrumentation. The synthesized nanoparticles were successfully characterized by different techniques. AgNP-AB leads to aggregation with addition of Hg(II) ions in aqueous medium and developed a color change from brown to black which leads to the formation of AgNP-AB-Hg(II) complex. Moreover, the metal sensing ability of AgNPs has been explored using electrochemical studies. AgNP-AB modified platinum electrode (AgNP-AB/PE) was developed for the fast sensing of toxic Hg(II) ions. The sensor exhibits good limit of detection at 2.1x10-6M. The sensitivity of AgNP-AB/PE towards Hg(II) ion was analyzed with various metal ions. The sensing skill of developed system was successfully checked with real water sample from Vembanade Lake, Kumarakom, Kerala. The silver nanoparticles from Agaricus Bispoes are highly versatile and promising for different environmental applications. © 2018 IOP Publishing Ltd.
Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications.
Singh, Richa; Shedbalkar, Utkarsha U; Wadhwani, Sweety A; Chopade, Balu A
2015-06-01
Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.
Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity
Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.
2015-01-01
The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330
NASA Astrophysics Data System (ADS)
Pisarek, Marcin; Nowakowski, Robert; Kudelski, Andrzej; Holdynski, Marcin; Roguska, Agata; Janik-Czachor, Maria; Kurowska-Tabor, Elżbieta; Sulka, Grzegorz D.
2015-12-01
Self-organized Al2O3 nanoporous/nanotubular (Al2O3-NP) oxide layers decorated with silver nanoparticles (Ag-NPs) exhibiting specific properties may serve as attractive SERS substrates for investigating the interactions between an adsorbate and adsorbent, or as stable platforms for detecting various organic compounds. This article presents the influence of the size of the alumina nanopores with a deposit of silver nanoparticles obtained by the magnetron sputtering technique on the morphology of silver film. Moreover, the effect of pore diameter on the intensity of SERS spectra in Ag-NPs/Al2O3-NP/Al composites has also been estimated. For such investigations we used pyridine as a probe molecule, since it has a large cross-section for Raman scattering. To characterize the morphology of the composite oxide layer Ag-NPs/Al2O3-NP/Al, before and after deposition of Ag-NPs by PVD methods (Physical Vapor Deposition), we used scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface analytical technique of surface-enhanced Raman spectroscopy (SERS) was used to investigate the surface activity of the composite. The results obtained show that, for a carefully controlled amount of Ag (0.020 mg/cm2 - deposited on the top of alumina nanopores whose average size varies from ∼86 nm up to ∼320 nm) in the composites investigated, pore size significantly affects SERS enhancement. We obtained distinctly higher intensities of SERS spectra for substrates with an Ag-NPs deposit having a larger diameter of the alumina nanopores. AFM results suggest that both the lateral and perpendicular distribution of Ag-NPs within and on the top of the largest pores is responsible for the highest SERS activity of the resulting Ag-NPs/Al2O3-NP/Al composite layer, since it produces a variety of cavities and slits which function as resonators for the adsorbed molecules. The Ag-NPs/MeOx-NP/Me composite layers obtained ensure a good reproducibility of the SERS measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jie; Li, Yuan; Chen, Yingnan
Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology andmore » structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.« less
USDA-ARS?s Scientific Manuscript database
Silver nanoparticles (Ag NPs) are effective antimicrobial agents, but their application on the surface of a fiber renders them ineffective because Ag NPs are washable. In this study, a stable, non-leaching Ag-cotton nanocomposite was produced by the in-situ formation of Ag NPs in the microfibrillar ...
Gupta, Arpita; Bonde, Shital R; Gaikwad, Swapnil; Ingle, Avinash; Gade, Aniket K; Rai, Mahendra
2014-09-01
Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.
Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation.
Liu, Jun-Hong; Wang, Ai-Qin; Chi, Yu-Shan; Lin, Hong-Ping; Mou, Chung-Yuan
2005-01-13
Au-Ag alloy nanoparticles supported on mesoporous aluminosilicate have been prepared by one-pot synthesis using hexadecyltrimethylammonium bromide (CTAB) both as a stabilizing agent for nanoparticles and as a template for the formation of mesoporous structure. The formation of Au-Ag alloy nanoparticles was confirmed by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Although the Au-Ag alloy nanoparticles have a larger particle size than the monometallic gold particles, they exhibited exceptionally high activity in catalysis for low-temperature CO oxidation. Even at a low temperature of 250 K, the reaction rate can reach 8.7 x 10(-6) mol.g(cat.)(-1).s(-1) at an Au/Ag molar ratio of 3/1. While neither monometallic Au@MCM-41 nor Ag@MCM-41 shows activity at this temperature, the Au-Ag alloy system shows a strongly synergistic effect in high catalytic activity. In this alloy system, the size effect is no longer a critical factor, whereas Ag is believed to play a key role in the activation of oxygen.
NASA Astrophysics Data System (ADS)
Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki
2016-07-01
Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.
Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials
NASA Astrophysics Data System (ADS)
Li, Xiaoyun; Gao, Guanhui; Sun, Chengjun; Zhu, Yaoyao; Qu, Lingyun; Jiang, Fenghua; Ding, Haibing
2015-03-01
In this study, we developed an environmentally friendly chemistry strategy to synthesize Ag nanoparticles (Ag-NPs) embedded biological material, powdered mussel shell (PMS). With the PMS as scaffolds and surfactant, Ag nanoparticles of controllable size dispersed uniformly on it via liquid chemical reduction approach. Morphologies and characteristics of synthesized Ag-NPs/PMS hybrids were analyzed with TEM, SEM and XPS. Antibacterial properties were investigated with Gram-positive bacteria (Arthrobacter sulfureus (A. sulfureus) YACS14, Staphylococcus aureus (S. aureus)) and Gram-negative bacteria (Vibrio anguillarum (V. anguillarum) MVM425, Escherichia coli (E. coli)). The antimicrobial results illustrated that Ag-NPs/PMS composites have antibacterial effect on both sea water and fresh water bacteria with a better effect on sea water bacteria. The degree of antibacterial effect is directly related to the amount of Ag released from Ag-NPs/PMS.
NASA Astrophysics Data System (ADS)
Hubenthal, Frank; Ziegler, Torsten; Hendrich, Christian; Träger, Frank
2004-03-01
For many applications like surface enhanced Raman scattering in which the optical field enhancement associated with surface plasmon excitation is exploited, tunability of this collective resonance over a wide range is required. For this purpose we have prepared Ag/Au core shell and Ag/Au alloyed nanoparticles with different shell thicknesses and different percentages of the two metals. The nanoparticles were made by subsequent deposition of Ag and Au atoms on dielectric substrates followed by diffusion and nucleation or heat treatment. Depending on the Au shell thickness the plasmon frequency can be tuned, e.g. from 2.8 eV (442 nm) to 2.1 eV (590 nm). Annealing of the core-shell nanoparticles causes a shift of the resonance frequency to 2.6 eV. Theoretical modelling allows us to attribute this observation to the production of alloyed nanoparticles. Possible application of the Ag/Au nanoparticles will be discussed.
NASA Astrophysics Data System (ADS)
Hamanaka, Yasushi; Yukitoki, Daichi; Kuzuya, Toshihiro
2015-09-01
AgInS2 nanoparticles were capped by ZnS via a widely used procedure to fabricate core/shell nanoparticles with highly efficient luminescence. The nanoparticle structures were investigated by ultrahigh-resolution analytical electron microscopy. We found that Zn-Ag-In-S nanoparticles were created by ZnS capping at ˜480 K, which suggests that the luminescence enhancement reported for such core/shell nanoparticles is not caused by the passivation of surface defects by ZnS shells but by Zn doping. Quasi-core/shell nanoparticles could be obtained by ZnS capping without heating. However, their luminescence efficiency remained unchanged, indicating that surface passivation was ineffective when ZnS shells were formed at room temperature.
Panda, Kamal K; Achary, V Mohan M; Phaomie, Ganngam; Sahu, Hrushi K; Parinandi, Narasimham L; Panda, Brahma B
2016-08-01
The silver nanoparticles (AgNPs) were synthesized extracellularly from silver nitrate (AgNO3) using kernel extract from ripe mango Mengifera indica L. under four different reaction conditions of the synthesis media such as the (i) absence of the reducing agent, trisodium citrate (AgNPI), (ii) presence of the reducing agent (AgNPII), (iii) presence of the cleansing agent, polyvinyl polypyrrolidone, PVPP (AgNPIII), and (iv) presence of the capping agent, polyvinyl pyrrolidone, PVP (AgNPIV). The synthesis of the AgNPs was monitored by UV-vis spectrophotometry. The AgNPs were characterised by the energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. Functional groups on the AgNPs were established by the Fourier transform infrared spectroscopy. The AgNPs (AgNPI, AgNPII, AgNPIII and AgNPIV) were spherical in shape with the diameters and size distribution-widths of 14.0±5.4, 19.2±6.6, 18.8±6.6 and 44.6±13.2nm, respectively. Genotoxicity of the AgNPs at concentrations ranging from 1 to 100mgL(-1) was determined by the Lathyrus sativus L. root bioassay and several endpoint assays including the generation of reactive oxygen species and cell death, lipid peroxidation, mitotic index, chromosome aberrations (CA), micronucleus formation (MN), and DNA damage as determined by the Comet assay. The dose-dependent induction of genotoxicity of the silver ion (Ag(+)) and AgNPs was in the order Ag(+)>AgNPII>AgNPI>AgNPIV>AgNPIII that corresponded with their relative potencies of induction of DNA damage and oxidative stress. Furthermore, the findings underscored the CA and MN endpoint-based genotoxicity assay which demonstrated the genotoxicity of AgNPs at concentrations (≤10mgL(-1)) lower than that (≥10mgL(-1)) tested in the Comet assay. This study demonstrated the protective action of PVPP against the genotoxicity of AgNPIII which was independent of the size of the AgNPs in the L. sativus L. root bioassay system. Copyright © 2016 Elsevier B.V. All rights reserved.
Substrates coated with silver nanoparticles as a neuronal regenerative material
Alon, Noa; Miroshnikov, Yana; Perkas, Nina; Nissan, Ifat; Gedanken, Aharon; Shefi, Orit
2014-01-01
Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnONPs) demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies. PMID:24872701
Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan
2013-12-15
In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vanathi Vijayalakshmi, R.; Praveen Kumar, P.; Selvarani, S.; Rajakumar, P.; Ravichandran, K.
2017-10-01
A series of core@shell nanoparticles (Co@TiO2, Ag@TiO2 and Co@AgCl) stabilized with zeroth generation triazolylchalcone dendrimer was synthesized using reduction transmetalation method. The coordination of chalcone dendrimer with silver ions was confirmed by UV-vis spectroscopy. The NMR spectrum ensures the number of protons and carbon signals in the chalcone dendrimer. The prepared samples were structurally characterized by XRD, FESEM and HRTEM analysis. The SAED and XRD analyses exhibited the cubic structure with d hkl = 2.2 Å, 1.9 Å and 1.38 Å. The antibacterial and antifungal activities of the dendrimer stabilized core@shell nanoparticles (DSCSNPs) were tested against the pathogens Bacillus subtilis, Proteus mirabilis, Candida albicans and Aspergillus nigir from which it is identified that the dendrimer stabilized core shell nanoparticles with silver ions at the shell (Co@AgCl) shows effectively high activity against the tested pathogen following the other core@shell nanoparticles viz Ag@TiO2 and Co@TiO2.
Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P
2014-07-15
This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method.
Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin
2017-04-12
The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles.
Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method
Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin
2017-01-01
The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles. PMID:28772762
NASA Astrophysics Data System (ADS)
Chung, Ill-Min; Park, Inmyoung; Seung-Hyun, Kim; Thiruvengadam, Muthu; Rajakumar, Govindasamy
2016-01-01
Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.
NASA Astrophysics Data System (ADS)
Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman
2018-02-01
Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.
S, Sreeja; K, Vidya Shetty
2016-09-01
The studies on photocatalytic disinfection of water contaminated with Escherichia coli using Ag core and TiO2 shell (Ag@TiO2) nanoparticles under UV irradiation showed that these nanoparticles are very efficient in water disinfection both in their free and immobilised form. Complete disinfection of 40 × 10(8) CFU/mL could be achieved in 60 min with 0.4 g/L catalyst loading and in 35 min with 1 g/L catalyst loading. Ag@TiO2 nanoparticles were found to be superior to TiO2 nanoparticles in photocatalytic disinfection of water. Kinetics of disinfection followed Chick's law, and the pseudo-first-order rate constant was 0.0168 min(-1) for a catalyst loading of 0.1 g/L. Disinfection of water and degradation of endotoxins (harmful disinfection residual) occurred simultaneously during photocatalysis thereby making the treated water safe for use. Endotoxin degradation showed a shifting order of kinetics. The rate of photocatalysis with nanoparticles immobilised in cellulose acetate film was marginally lower as compared to that of free nanoparticles. Negligible Ag ion leakage and re-growth of cells post-photo-catalytic treatment of water confirmed that complete disintegration of E. coli occurred during photocatalysis making the treated water safe for use. Therefore, Ag@TiO2 nanoparticles have a potential for large-scale application in drinking water treatment plants and household purification units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Rajesh; Malla, Shova; Gyawali, Gobinda
2013-09-01
Graphical abstract: - Highlights: • Ag-CdMoO{sub 4} solar light driven photocatalyst was successfully synthesized. • Photocatalyst exhibited strong absorption in the visible region. • Photocatalytic activity was significantly enhanced. • Enhanced activity was caused by the SPR effect induced by Ag nanoparticles. - Abstract: Ag-CdMoO{sub 4} plasmonic photocatalyst was synthesized in ethanol/water mixture by photo assisted co-precipitation method at room temperature. As synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Photocatalytic activity was evaluated by performing the degradation experiment over methylenemore » blue (MB) and indigo carmine (IC) as model dyes under simulated solar light irradiation. The results revealed that the Ag-CdMoO{sub 4} showed the higher photocatalytic performance as compared to CdMoO{sub 4} nanoparticles. Dispersion of Ag nanoparticles over the surface of CdMoO{sub 4} nanoparticles causes the surface plasmon resonance (SPR) and enhances the broad absorption in the entire visible region of the solar spectrum. Hence, dispersion of Ag nanoparticles over CdMoO{sub 4} nanoparticles could be the better alternative to enhance the absorption of visible light by scheelite crystal family for effective photocatalysis.« less
Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M
2017-02-10
In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.
Patil, Maheshkumar Prakash; Singh, Rahul Dheerendra; Koli, Prashant Bhimrao; Patil, Kalpesh Tumadu; Jagdale, Bapu Sonu; Tipare, Anuja Rajesh; Kim, Gun-Do
2018-05-25
The green and one-step synthesis of silver nanoparticles (AgNPs) has been proposed as simple and ecofriendly. In the present study, a flower extract of Madhuca longifolia was used for the reduction of silver nitrate into AgNPs, with phytochemicals from the flower extract as a reducing and stabilizing agents. The synthesized AgNPs were spherical and oval shaped and about 30-50 nm sizes. The appearance of a brown color in the reaction mixture is a primary indication of AgNPs formation, and it was confirmed by observing UV-visible spectroscopy peak at 436 nm. The Energy Dispersive X-ray spectra and X-ray diffraction analysis results together confirm that the synthesized nanoparticles contain silver and silver chloride nanoparticles. The Zeta potential analysis indicates presence of negative charges on synthesized AgNPs. The FT-IR study represents involvement of functional groups in AgNPs synthesis. Synthesized AgNPs shows potential antibacterial activity against Gram-positive and Gram-negative pathogens. M. longifolia flower is a good source for AgNPs synthesis and synthesized AgNPs are applicable as antibacterial agent in therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bakare, Rotimi Ayotunde
Failure of orthopedic implants due to bacterial infection has been a major concern in bone tissue engineering. To this end, we have formulated a potential orthopedic implant made of naturally occurring biodegradable polymer, i.e. poly (3-hydroxylbutyrate-co-3-hydroxylvalerate) (PHBV), modified with BSA conjugated silver nanoparticles and or silver chloride. Upon release of Ag NPs and or Ag+ in the implant region, can promote aseptic environment by inhibition of bacteria growth and also support/maintain bone cell adhesion, growth, and proliferation. For formulating nanoparticles loaded PHBV scaffold, we exploit specific interaction between bovine serum albumin (BSA) of BSA capped silver nanoparticles and collagen of collagen immobilized PHBV scaffold. Therefore, the first part of this study dealt with synthesis and characterization of collagen immobilized PHBV film for loading of BSA stabilized silver (Ag/BSA) nanoparticles. Two different approaches were used to immobilize collagen on macroporous PHBV film. First approach uses thermal radical copolymerization with 2-hydroxyethylmethacrylate (HEMA), while the second approach uses aminolysis to functionalize macroporous PHBV film. Using collagen crosslinker, type I collagen was covalently grafted to formulate collagen immobilized PHEMA-g-PHBV and collagen immobilized NH2-PHBV films, respectively. Spectroscopic (FTIR, XPS), physical (SEM), and thermal (TGA) techniques were used to characterize the functionalized PHBV films. The Ag/BSA nanoparticles were then loaded on collagen immobilized PHBV films and untreated PHBV films. The concentration of nanoparticles loaded on PHBV film was determined by atomic absorption spectrometry and fluorescence spectroscopy. The amount of nanoparticles loaded on collagen immobilized PHBV film was found to be significantly greater than that on untreated PHBV film. The amount of Ag/BSA nanoparticles loaded on collagen immobilized PHBV film was found to depend on the concentration of Ag/BSA nanoparticles solution used for loading and on the molecular weight of type I collagen used in collagen immobilization on PHBV film. At physiological pH, optimum amount of nanoparticles was retained on Type I collagen immobilized PHBV film because at pH 7.4, protonated amino groups of collagen immobilized PHBV film promote strong electrostatic interaction with the carboxylate anions of BSA stabilized silver nanoparticles. The second part of this study dealt with formulating AgCl/PHBV film that can potentially release silver ions for effective antimicrobial activity. In this study, we formulated AgCl/PHBV composite film by a salt exchange mechanism. Thermogravimetric analysis (TGA) was used to quantify the amount of NaCl present before and after salt exchange. The Na content in the pre-washed and partially washed NaCl/PHBV film was found to be 43.60% and 1.24% by mass, respectively. The AgCl/PBHV composite film was acid digested and assayed for Na+ and Ag+ content by using Atomic Absorption Spectrometry (AAS) and was found to be 2.15 and 10.25 ppm, respectively. XPS technique was used to characterize the surface elemental composition of the AgCl/PHBV composite film. The survey spectrum of AgCl/PHBV film showed emergence of Ag 3d and Cl 2s peaks compared to pure PHBV which was predominantly composed of C 1s and O 1s peaks. The release kinetics of silver ions from AgCl/PHBV composite film showed an initial burst of about 1.5 ppm of silver ions during the first day of desorption followed by a gradual release of silver ions at an average rate of 0.3 ppm per day during the span of two weeks studied. Ag/BSA nanoparticles loaded collagen immobilized PHBV films and AgCl/PHBV composite films were tested for antibacterial efficacy against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Colony forming unit and optical density measurements of Ag/BSA nanoparticles loaded collagen immobilized PHBV films showed broad antimicrobial activity at low Ag/BSA nanoparticles concentration (0.19and 0.31 microg) compared to commercially available gentamicin and sulfamethoxazole/trimethoprim which showed sometimes selective antimicrobial activity and antimicrobial activity at high concentration (10 microg and 23.75/1.25 microg/disc). Additionally, a clear zone of inhibition around AgCl/PHBV composite film was noticed on a modified Kirby-Bauer disk diffusion assay. Optical density results and colony forming unit measurements showed that AgCl/PHBV composite film exhibit broad bactericidal activity. Next, we evaluated the cytotoxicity of Ag/BSA nanoparticles loaded collagen immobilized PHBV films and AgCl/PHBV composite films towards MC3T3-E1 cells at the same concentration both films showed broad antimicrobial activity. By using MTT assay, we established that Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed minimal, if any, cytotoxic effect towards MC3T3-E1 cells while AgCl/PHBV composite film showed significant cytotoxic effect compared to tissue culture polystyrene. Our research findings provide several formulations for preparation of scaffold, if properly tuned; it can be used as a potential biocompatible and biodegradable scaffold for the prevention of bacterial infections and promotion of cell attachment and proliferation in bone tissue engineering applications.
Rehan, Mohamed; Barhoum, Ahmed; Van Assche, Guy; Dufresne, Alain; Gätjen, Linda; Wilken, Ralph
2017-05-01
Herein, the highly multifunctional cotton fabric surfaces were designed with excellent coloration, UV-protection function, and antimicrobial activity. These multifunctional functions were developed by in-situ synthesis of silver nanoparticles (Ag NPs) into the cotton fabric surface using a simple green one-pot "UV-reduction" method. Cotton fabrics were pretreated with non-anionic detergent, immersed into alcoholic silver nitrate solution (concentration ranging from 100 to 500ppm), squeezed to remove excess solution and then exposed to UV-irradiation (range 320-400nm) for 1h. The influence UV-irradiation on the thermal, chemical, optical and biological properties of the cotton fabric surface was discussed in details. The UV-irradiation promotes reducing of Ag + ions and the cotton fabrics act as seed medium for Ag NPs formation by "heterogeneous nucleation". Increasing Ag + concentration (from 100 to 500ppm) results in Ag NPs of particle size (distribution) of 50-100nm. Interestingly, the Ag NPs exhibited different localized surface Plasmon resonance properties causing a coloration of the cotton fabrics with different color shades ranging from bright to dark brown with excellent color fastness properties. The treated cotton fabrics also show high protecting functions against UV-transmission (reduction of 65%) and Escherichia coli growth (99%). The side-effects of the UV-reduction process are further investigated. Published by Elsevier B.V.
Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie
2016-01-01
Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Shibin; Chang Xueting, E-mail: xuetingchang@yahoo.cn; Dong Lihua
2011-08-15
A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W{sub 18}O{sub 49} nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W{sub 18}O{sub 49} NRs sensors exhibit superior reducing gas-sensing properties to those of bare W{sub 18}O{sub 49} NRs, and they are highly selective and sensitive to NH{sub 3}, acetone, and H{sub 2}S with short response and recovery times. The Ag/AgCl/W{sub 18}O{sub 49} NRs photocatlysts also possess higher photocatalytic performance thanmore » bare W{sub 18}O{sub 49} NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W{sub 18}O{sub 49} NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W{sub 18}O{sub 49} nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W{sub 18}O{sub 49} and AgCl. Highlights: > Ag/AgCl/W{sub 18}O{sub 49} NRs were successfully obtained via a clean photochemical route. > The Ag/AgCl nanoparticles decorated on the W{sub 18}O{sub 49} NRs possessed cladding structure. > The Ag/AgCl/W{sub 18}O{sub 49} NRs exhibited excellent gas-sensing and photocatalytic properties.« less
NASA Astrophysics Data System (ADS)
A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen
2013-08-01
Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083; Wu, Min
The semiconductor nanostructures decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. In this work, urchin-like monoclinic (m-) LaVO{sub 4} microspheres were prepared by a hydrothermal method and used as a template to fabricate Ag nanoparticle-decorated m-LaVO{sub 4} composites. The morphology and structure were characterized by transmission electron microscope, high-resolution transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray. It was found that Ag nanoparticles with narrow size distribution were uniformly loaded on urchin-like m-LaVO{sub 4} microspheres, and the resulted composite microspheres showed distinct surface plasmon absorption band compared to pure m-LaVO{sub 4}more » microspheres. Photocatalytic activities of as-prepared samples were examined by studying the degradation of methyl orange solutions under visible-light irradiation (> 400 nm). Results clearly showed that urchin-like m-LaVO{sub 4}/Ag microspheres possess much higher photocatalytic activity than pure m-LaVO{sub 4} microspheres and P25. - Highlights: • m-LaVO{sub 4}/Ag composites microspheres were fabricated by a hydrothermal method. • m-LaVO{sub 4} microspheres show higher photocatalytic activity than m-LaVO{sub 4} microspheres. • m-LaVO{sub 4}/Ag microspheres exhibit a good stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ao, Yanhui, E-mail: andyao@hhu.edu.cn; Wang, Dandan; Wang, Peifang
Highlights: • 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite was prepared. • The nanocomposites exhibited high photocatalytic activities on different organic pollutants. • The mechanism of the enhanced activity were investigated. - Abstract: A facile anion-exchange precipitation method was employed to synthesize 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite photocatalyst. Results showed that Ag{sub 2}CO{sub 3} nanoparticles dispersed uniformly on the petals of the flower-like Mg-Al LDH. The obtained nanocomposites exhibited high photocatalytic activities on different organic pollutants (cationic and anionic dyes, phenol) under visible light illumination. The high photocatalytic activity can be ascribed to themore » special structure which accomplishes the wide-distribution of Ag{sub 2}CO{sub 3} nanoparticles on the surfaces of the 3D flower-like nanocomposites. Therefore, it can provide much more active sites for the degradation of organic pollutant. Then the photocatalytic mechanism was also verified by reactive species trapping experiments in detail. The work would pave a facile way to prepare LDHs based hierarchical photocatalysts with high activity for the degradation of wide range organic pollutants under visible light irradiation.« less
He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T
2017-02-15
Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.
Zhou, Wenwen; Zhao, Weiyun; Lu, Ziyang; Zhu, Jixin; Fan, Shufen; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu
2012-07-07
In this work, n-type Ag(2)Te nanoparticles are prepared by a solvothermal approach with uniform and controllable sizes, e.g. 5-15 nm. The usage of dodecanethiol during the synthesis effectively introduces sulfur doping into the sample, which optimizes the charge carrier concentration of the nanoparticles to >1 × 10(20) cm(-3). This allows us to achieve the desired electrical resistivities of <5 × 10(-6)Ω m. It is demonstrated that Ag(2)Te particles prepared by this solvothermal process can exhibit high ZT values, e.g. 15 nm Ag(2)Te nanoparticles with effective sulphur doping show a maximum ZT value of ~0.62 at 550 K.
Hsiao, I-Lun; Hsieh, Yi-Kong; Wang, Chu-Fang; Chen, I-Chieh; Huang, Yuh-Jeen
2015-03-17
The so-called "Trojan-horse" mechanism, in which nanoparticles are internalized within cells and then release high levels of toxic ions, has been proposed as a behavior in the cellular uptake of Ag nanoparticles (AgNPs). While several reports claim to have proved this mechanism by measuring AgNPs and Ag ions (I) in cells, it cannot be fully proven without examining those two components in both intra- and extracellular media. In our study, we found that even though cells take up AgNPs similarly to (microglia (BV-2)) or more rapidly than (astrocyte (ALT)) Ag (I), the ratio of AgNPs to total Ag (AgNPs+Ag (I)) in both cells was lower than that in outside media. It could be explained that H2O2, a major intracellular reactive oxygen species (ROS), reacts with AgNPs to form more Ag (I). Moreover, the major speciation of Ag (I) in cells was Ag(cysteine) and Ag(cysteine)2, indicating the possible binding of monomer cysteine or vital thiol proteins/peptides to Ag ions. Evidence we found indicates that the Trojan-horse mechanism really exists.
Enhanced wound healing activity of Ag-ZnO composite NPs in Wistar Albino rats.
Kantipudi, Sravani; Sunkara, Jhansi Rani; Rallabhandi, Muralikrishna; Thonangi, Chandi Vishala; Cholla, Raga Deepthi; Kollu, Pratap; Parvathaneni, Madhu Kiran; Pammi, Sri Venkata Narayana
2018-06-01
In the present study, silver (Ag) and Ag-zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound-healing efficacy on rat model. Ultraviolet-visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X-ray diffraction analysis Ag-ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face-centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag-ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi-hexagonal NPs with distribution of particle size of 20-40 nm. Furthermore, the authors investigated the wound-healing properties of Ag-ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.
Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi
2015-01-01
Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.
NASA Astrophysics Data System (ADS)
Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi
2015-02-01
Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.
Rao, K Jagajjanani; Paria, Santanu
2015-07-01
The growing awareness toward the environment is increasing commercial demand for nanoparticles by green route syntheses. In this study, alloy-like Ag-Au-Pd trimetallic nanoparticles have been prepared by two plants extracts Aegle marmelos leaf (LE) and Syzygium aromaticum bud extracts (CE). Compositionally different Ag-Au-Pd nanoparticles with an atomic ratio of 5.26:2.16:1.0 (by LE) and 11.36:13.14:1.0 (by LE + CE) of Ag:Au:Pd were easily synthesized within 10 min at ambient conditions by changing the composition of phytochemicals. The average diameters of the nanoparticles by LE and LE + CE are ∼8 and ∼11 nm. The catalytic activity of the trimetallic nanoparticles was studied, and they were found to be efficient catalysts for the glucose oxidation process. The prepared nanoparticles also exhibited efficient antibacterial activity against a model Gram-negative bacteria Escherichia coli. The catalytic and antimicrobial properties of these readymade trimetallic nanoparticles have high possibility to be utilized in diverse fields of applications such as health care to environmental.
Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand
2014-10-01
In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.
Patil, Maheshkumar Prakash; Kim, Gun-Do
2017-01-01
This review covers general information about the eco-friendly process for the synthesis of silver nanoparticles (AgNP) and gold nanoparticles (AuNP) and focuses on mechanism of the antibacterial activity of AgNPs and the anticancer activity of AuNPs. Biomolecules in the plant extract are involved in reduction of metal ions to nanoparticle in a one-step and eco-friendly synthesis process. Natural plant extracts contain wide range of metabolites including carbohydrates, alkaloids, terpenoids, phenolic compounds, and enzymes. A variety of plant species and plant parts have been successfully extracted and utilized for AgNP and AuNP syntheses. Green-synthesized nanoparticles eliminate the need for a stabilizing and capping agent and show shape and size-dependent biological activities. Here, we describe some of the plant extracts involved in nanoparticle synthesis, characterization methods, and biological applications. Nanoparticles are important in the field of pharmaceuticals for their strong antibacterial and anticancer activity. Considering the importance and uniqueness of this concept, the synthesis, characterization, and application of AgNPs and AuNPs are discussed in this review.
Biocompatible silver nanoparticles prepared with amino acids and a green method.
de Matos, Ricardo Almeida; Courrol, Lilia Coronato
2017-02-01
The synthesis of nanoparticles is usually carried out by chemical reduction, which is effective but uses many toxic substances, making the process potentially harmful to the environment. Hence, as part of the search for environmentally friendly or green synthetic methods, this study aimed to produce silver nanoparticles (AgNPs) using only AgNO 3 , Milli-Q water, white light from a xenon lamp (Xe) and amino acids. Nanoparticles were synthetized using 21 amino acids, and the shapes and sizes of the resultant nanoparticles were evaluated. The products were characterized by UV-Vis, zeta potential measurements and transmission electron microscopy. The synthesis of silver nanoparticles with tryptophan and tyrosine, methionine, cystine and histidine was possible through photoreduction method. Spherical nanoparticles were produced, with sizes ranging from 15 to 30 nm. Tryptophan does not require illumination nor heating, and the solution color changes immediately after the mixing of reagents if sodium hydroxide is added to the solution (pH = 10). The Xe illumination acts as sodium hydroxide in the nanoparticles synthesis, releases H + and allows the reduction of silver ions (Ag + ) in metallic silver (Ag 0 ).
Peng, Yinbo; Song, Chenlu; Yang, Chuanfeng; Guo, Qige; Yao, Min
2017-01-01
Silver nanoparticles (AgNPs) are being widely applied as topical wound materials; however, accumulated deposition of silver in the liver, spleen, and other main organs may lead to organ damage and dysfunction. We report here that low molecular weight chitosan-coated silver nanoparticles (LMWC-AgNPs) are effective against methicillin-resistant Staphylococcus aureus (MRSA), have better biocompatibility, and have lower body absorption characteristics when compared with polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) and silver nanoparticles without surface stabilizer (uncoated-AgNPs) in a dorsal MRSA wound infection mouse model. LMWC-AgNPs were synthesized by reducing silver nitrate with low molecular weight chitosan as a stabilizer and reducing agent, while PVP-AgNPs were synthesized using polyvinylpyrrolidone as a stabilizer and ethanol as a reducing agent. AgNPs with different surface stabilizers were identified by UV-visible absorption spectrometry, and particle size was determined by transmission electron microscopy. UV-visible absorption spectra of LMWC-AgNPs, PVP-AgNPs and uncoated-AgNPs were similar and their sizes were in the range of 10-30 nm. In vitro experiments showed that the three types of AgNPs had similar MRSA-killing effects, with obvious effect at 4 μg/mL and 100% effect at 8 μg/mL. Bacteriostatic annulus experiments also showed that all the three types of AgNPs had similar antibacterial inhibitory effect at 10 μg/mL. Cell counting kit-8 assay and Hoechst/propidium iodide (PI) staining showed that LMWC-AgNPs were significantly less toxic to human fibroblasts than PVP-AgNPs and uncoated-AgNPs. Treatment of mice with MRSA wound infection demonstrated that the three types of AgNPs effectively controlled MRSA wound infection and promoted wound healing. After continuous application for 14 days, LMWC-AgNPs-treated mice showed significantly reduced liver dysfunction as demonstrated by the reduced alanine aminotransferase and aspartate aminotransferase levels and liver deposition of silver, in comparison to mice treated with uncoated-AgNPs or PVP-AgNPs. Our results demonstrated that LMWC-AgNPs had good anti-MRSA effects, while harboring a better biocompatibility and lowering the body's absorption characteristics.
Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots
NASA Astrophysics Data System (ADS)
Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil
2018-05-01
Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).
NASA Astrophysics Data System (ADS)
Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi
2016-01-01
Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07918g
Avinash, B; Venu, R; Alpha Raj, M; Srinivasa Rao, K; Srilatha, Ch; Prasad, T N V K V
2017-04-15
An investigation was undertaken to study, for the first time, in vitro acaricidal activity of green silver nanoparticles on deltamethrin resistance Rhipicephalus (Boophilus) microplus. The compounds tested were neem coated silver nanoparticles (N-Ag NPs), deltamethrin neem coated silver nanoparticles (DN-Ag NPs), 2, 3 dehydrosalannol (2,3 DHS), 2, 3 DHS coated silver nanoparticles (2, 3-DHS-Ag NPs), Quercetin dihydrate (QDH) and QDH coated silver nanoparticles (QDH-Ag NPs). Also included in this study, for the purpose of comparison, were neem leaf extract (NLE), silver nitrate (AgNO 3 ) and deltamethrin (D). Acaricidal activity on larvae and adults of R. (B.) microplus was tested by larval packet test (LPT) and adult immersion test (AIT) respectively. In the LPT, 100% mortality was obtained at concentrations (ppm) of 360, 6000, 260, 200, 50, 300, 85, 600 and 200 for the compounds, D, NLE, Ag NO 3 , N-Ag NPs, DN-Ag NPs, 2, 3 DHS, 2, 3 DHS-Ag NPs, QDH, QDH-Ag NPs respectively. In AIT, the proportions of mortality and oviposition inhibition were proportionate but the reproductive index was inversely proportional to the concentration of the compounds used. The effect of DN-Ag NPs on mortality was the highest (93.33%) at 50ppm concentration. The mean reproductive index (0.01) and oviposition inhibition (99.16%) values were statistically significant when compared to control group. DN-Ag NPs showed significantly (P<0.05) lower LC 50 (3.87ppm; 21.95ppm) and LC 99 (53.05ppm; 90.06ppm) values against both the larvae and adults of R. (B.) microplus. The oviposition inhibiting ability of various compounds was determined to assess the reproductive performance of adult female ticks. The DN-Ag NPs had potent oviposition inhibitory activity with significantly lower IC 50 and IC 99 values compared to the rest of the treatments at 0.034 and 51.07ppm respectively. These results showed that the DN-Ag NPs had significant acaricidal activity against R. (B.) microplus. Copyright © 2017 Elsevier B.V. All rights reserved.
Dielectric spectroscopy of Ag-starch nanocomposite films
NASA Astrophysics Data System (ADS)
Meena; Sharma, Annu
2018-04-01
In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.
Biological Mechanism of Silver Nanoparticle Toxicity
NASA Astrophysics Data System (ADS)
Armstrong, Najealicka Nicole
Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities above that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, these investigations were attempted to monitor the effects of AgNPs at a non-lethal concentration on wild type Drosophila melanogaster by exposing them to nanoparticles throughout their development. All adult flies raised in AgNP doped food indicated that of not more than 50 mg/L had no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised after AgNP feeding. The determination of the amount of free ionic silver (Ag+) indicated that the observed biological effects had resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, were decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Furthermore, copper supplementation restored the loss of AgNP induced demelanization, and the reduction of functional Ctr1 in Ctr1 heterozygous mutants caused the flies to be resistant to demelanization. Consequently, these studies proposed a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explained the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, these investigations demonstrated that Drosophila, an established genetic model system, can be well utilized for further characterizing the biological effects of nanoparticles.
Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)
Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan
2014-01-01
In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239
Qian, Hongchang; Li, Minglu; Li, Zhong; Lou, Yuntian; Huang, Luyao; Zhang, Dawei; Xu, Dake; Du, Cuiwei; Lu, Lin; Gao, Jin
2017-11-01
In this study, a multilayer antibacterial film was assembled onto 316L stainless steel via mussel-inspired depositions of polydopamine (PDA) and silver (Ag) nanoparticles followed by post-modification with 1H, 1H, 2H, 2H-perfluorodecanethiol. The resulting surface exhibited excellent superhydrophobicity with hierarchical micro/nanostructures that were constructed by both PDA and Ag nanoparticles. The crystal structure and chemical composition of these surfaces were investigated using X-ray photoelectron spectroscopy (XPS) analysis. Potentiodynamic polarization measurements revealed that the corrosion resistance of the as-prepared surfaces were sequentially increased after each step of the fabrication process. Compared with the surface covered with only Ag nanoparticles, the superhydrophobic surfaces exhibited substantially enhanced antibacterial activity against the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, resulting from the synergistic antibacterial actions of the superhydrophobic surface and Ag nanoparticles. The superhydrophobic surface exhibited lower cytotoxicity, compared to the surface covered with Ag nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Yuan; Yang, Dong; Li, Xiyu; Liu, Yu; Hu, Xiang; Zhou, Dianfa; Lu, Yalin
2017-01-19
We report a novel graphene-metal hybrid system by introducing monolayer graphene between gold nanoparticles (Au NPs) and silver nanohole (Ag NH) arrays. The design incorporates three key advantages to promote the surface-enhanced Raman scattering (SERS) sensing capacity: (i) making full use of the single-atomic feature of graphene for generating uniform sub-nanometer spaces; (ii) maintaining the bottom layer of Ag nanoarrays with an ordered manner for facilitating the transfer of graphene films and assembly of the top layer of Au NPs; (iii) integrating the advantages of the strong plasmonic effect of Ag, the chemical stability of Au, as well as the mechanical flexibility and biological compatibility of graphene. In this configuration, the plasmonic properties can be fine-tuned by separately optimizing the horizontal or vertical gaps between the metal NPs. Exactly, sub-20 nm spaces between the horizontally patterned Ag tips constructed by adjacent Ag NHs, and sub-nanometer scale graphene gaps between the vertically distributed Au NP-Ag NH have been achieved. Finite element numerical simulations demonstrate that the multi-dimensional plasmonic couplings (including the Au NP-Au NP, Au NP-Ag NH and Ag NH-Ag NH couplings) promote for the hybrid platform an electric field enhancement up to 137 times. Impressively, the as-prepared 3D Au NP-graphene-Ag NH array hybrid structure manifests ultrahigh SERS sensitivity with a detection limit of 10 -13 M for R6G molecules, as well as good reproducibility and stability. This work represents a step towards high-performance SERS substrate fabrication, and opens up a new route for graphene-plasmonic hybrids in SERS applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr
Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less
X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.
Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less
X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite
Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.
2017-03-29
Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less
Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.
Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra
2014-12-01
Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits.
NASA Astrophysics Data System (ADS)
Ojha, Sunita; Sett, Arghya; Bora, Utpal
2017-09-01
In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).
NASA Astrophysics Data System (ADS)
Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.
2015-09-01
We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.
NASA Astrophysics Data System (ADS)
Ueno, Shintaro; Sakamoto, Yasunao; Nakashima, Kouichi; Wada, Satoshi
2014-09-01
To develop ceramic capacitors with a high effective dielectric constant, we attempted to fabricate BaTiO3 (BT) complexes with embedded Ag nanoparticles by wet chemical processes. Ag nanoparticle-adsorbed dendritic BT particles, Ag-BT hybrid particles, were synthesized from the sol-gel-derived precursor gel powders containing Ag, Ba, and Ti by hydrothermal treatment. These particles were pressed with BT fillers and TiO2 precursor nanoparticles into green compacts, and then, the green compacts were chemically converted into the Ag/BT nanocomplex compacts in Ba(OH)2 aqueous solution under the hydrothermal condition at 160 °C. The effective dielectric constant of the resultant Ag/BT nanocomplexes increases with an increase in Ag content. The maximal effective dielectric constant of approximately 900 was recorded for the nanocomplex with the Ag content of 10.7 vol %.
Chen, Yongpeng; Li, Shichuan; Wei, Xuebin; Tang, Runze; Zhou, Zunning
2018-06-21
Fe3O4@SiO2@Ag ternary hybrid nanoparticles were synthesized via a facile seed-mediated growth route. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the as-prepared product. The results indicated that the nanoparticles exhibited excellent magnetic properties and an extremely dense structure with Ag layer thicknesses of 30 nm, 40 nm, and 50 nm. Furthermore, the microwave shielding effectiveness exceeded 20 dB over almost the entire frequency range (2-18 GHz), and the effectiveness obviously improved as the thickness of the Ag layer increased. In addition, the IR extinction coefficient of the nanoparticles was calculated by a finite-difference time-domain (FDTD) method, which showed that the nanoparticles can inherit the extinction performance of pure silver when the Ag shell thickness was 30 nm. Specifically, after assembling into chains, the peak position of the IR extinction curves displayed a significant redshift and an intensity increase as the number of nanoparticles increased in the chain, which dramatically promoted the IR extinction capability. As a result, the Fe3O4@SiO2@Ag nanoparticles are expected to be used as a new multispectral interference material. © 2018 IOP Publishing Ltd.
Rajamanickam, Karthic; Sudha, S S; Francis, Mebin; Sowmya, T; Rengaramanujam, J; Sivalingam, Periyasamy; Prabakar, Kandasamy
2013-09-01
The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem. Copyright © 2013 Elsevier B.V. All rights reserved.
Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.
The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...
Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin
NASA Astrophysics Data System (ADS)
Azhniuk, Yu M.; Dzhagan, V. M.; Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Ya; Valakh, M. Ya; Zahn, D. R. T.
2008-11-01
CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles are obtained by colloidal synthesis from aqueous solutions in the presence of gelatin. Optical absorption, luminescence, and Raman spectra of the nanoparticles obtained are measured. The variation of the optical spectra of CdSe/HgSe and CdSe/Ag2Se core-shell nanoparticles with the shell thickness is discussed. Sharp non-monotonous variation of the photoluminescence spectra at low shell coverage is observed.
Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities
NASA Astrophysics Data System (ADS)
Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.
2010-06-01
In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive ( Bacillus megaterium and Staphylococcus aureus), and three Gram negative ( Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.
Green synthesis of silver nanoparticle using Bambusa arundinacea leaves
NASA Astrophysics Data System (ADS)
Kataria, Bharat; Shyam, Vasvani; Kaushik, Babiya; Vasoya, Jaydeep; Joseph, Joyce; Savaliya, Chirag; Kumar, Sumit; Parikh, Sachin P.; Thakar, C. M.; Pandya, D. D.; Ravalia, A. B.; Markna, J. H.; Shah, N. A.
2017-05-01
The synthesis of nanoparticles using ecofriendly way is an interesting area in advance nanotechnology. Silver (Ag) nanoparticles are usually synthesized by chemicals route, which are quite flammable and toxic in nature. This study deals with a biosynthesis process (environment friendly) of silver nanoparticles using Bambusa arundinacea leaves for its antibacterial activity. The formation and characterization of AgNPs was confirmed by UV-Vis spectroscopy. Silver nanoparticles were successfully synthesized from AgNO3 through a simple green route using the latex of Bambusa arundinacea leaves as reducing as well as capping agent. Scanning Electron Microscopy (SEM) study indicates the formation of grains (particles) with different size and shape.
Mpenyana-Monyatsi, Lizzy; Mthombeni, Nomcebo H.; Onyango, Maurice S.; Momba, Maggy N. B.
2012-01-01
The contamination of groundwater sources by pathogenic bacteria poses a public health concern to communities who depend totally on this water supply. In the present study, potentially low-cost filter materials coated with silver nanoparticles were developed for the disinfection of groundwater. Silver nanoparticles were deposited on zeolite, sand, fibreglass, anion and cation resin substrates in various concentrations (0.01 mM, 0.03 mM, 0.05 mM and 0.1 mM) of AgNO3. These substrates were characterised by SEM, EDS, TEM, particle size distribution and XRD analyses. In the first phase, the five substrates coated with various concentrations of AgNO3 were tested against E. coli spiked in synthetic water to determine the best loading concentration that could remove pathogenic bacteria completely from test water. The results revealed that all filters were able to decrease the concentration of E. coli from synthetic water, with a higher removal efficiency achieved at 0.1 mM (21–100%) and a lower efficiency at 0.01 mM (7–50%) concentrations. The cation resin-silver nanoparticle filter was found to remove this pathogenic bacterium at the highest rate, namely 100%. In the second phase, only the best performing concentration of 0.1 mM was considered and tested against presumptive E. coli, S. typhimurium, S. dysenteriae and V. cholerae from groundwater. The results revealed the highest bacteria removal efficiency by the Ag/cation resin filter with complete (100%) removal of all targeted bacteria and the lowest by the Ag/zeolite filter with an 8% to 67% removal rate. This study therefore suggests that the filter system with Ag/cation resin substrate can be used as a potential alternative cost-effective filter for the disinfection of groundwater and production of safe drinking water. PMID:22470290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes
Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less
Huang, Siqi; Wang, Jing; Zhang, Yang; Yu, Zhiming; Qi, Chusheng
2016-06-17
A facile, efficient, and eco-friendly approach for the preparation of uniform silver nanoparticles (Ag NPs) was developed. The synthesis was conducted in an aqueous medium exposed to microwave irradiation for 8 min, using laboratory-prepared, water-soluble quaternized carboxymethyl chitosan (QCMC) as a chemical reducer and stabilizer and silver nitrate as the silver source. The structure of the prepared QCMC was characterized using Fourier transform infrared (FT-IR) and ¹H nuclear magnetic resonance (NMR). The formation, size distribution, and dispersion of the Ag NPs in the QCMC matrix were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM) analysis, and the thermal stability and antibacterial properties of the synthesized QCMC-based Ag NPs composite (QCMC-Ag) were also explored. The results revealed that (1) QCMC was successfully prepared by grafting quaternary ammonium groups onto carboxymethyl chitosan (CMC) chains under microwave irradiation in water for 90 min and this substitution appeared to have occurred at -NH₂ sites on C2 position of the pyranoid ring; (2) uniform and stable spherical Ag NPs could be synthesized when QCMC was used as the reducing and stabilizing agent; (3) Ag NPs were well dispersed in the QCMC matrix with a narrow size distribiution in the range of 17-31 nm without aggregation; and (4) due to the presence of Ag NPs, the thermal stability and antibacterial activity of QCMC-Ag were dramatically improved relative to QCMC.
Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng
2017-12-01
The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5-16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7-8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5-7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5-6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8-16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.
Yao, Yung-Chi; Yang, Zu-Po; Hwang, Jung-Min; Chuang, Yi-Lun; Lin, Chia-Ching; Haung, Jing-Yu; Chou, Chun-Yang; Sheu, Jinn-Kong; Tsai, Meng-Tsan; Lee, Ya-Ju
2016-02-28
ZnO nanorods (NRs) and Ag nanoparticles (NPs) are known to enhance the luminescence of light-emitting diodes (LEDs) through the high directionality of waveguide mode transmission and efficient energy transfer of localized surface plasmon (LSP) resonances, respectively. In this work, we have demonstrated Ag NP-incorporated n-ZnO NRs/p-GaN heterojunctions by facilely hydrothermally growing ZnO NRs on Ag NP-covered GaN, in which the Ag NPs were introduced and randomly distributed on the p-GaN surface to excite the LSP resonances. Compared with the reference LED, the light-output power of the near-band-edge (NBE) emission (ZnO, λ = 380 nm) of our hybridized structure is increased almost 1.5-2 times and can be further modified in a controlled manner by varying the surface morphology of the surrounding medium of the Ag NPs. The improved light-output power is mainly attributed to the LSP resonance between the NBE emission of ZnO NRs and LSPs in Ag NPs. We also observed different behaviors in the electroluminescence (EL) spectra as the injection current increases for the treatment and reference LEDs. This observation might be attributed to the modification of the energy band diagram for introducing Ag NPs at the interface between n-ZnO NRs and p-GaN. Our results pave the way for developing advanced nanostructured LED devices with high luminescence efficiency in the UV emission regime.
Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles
NASA Astrophysics Data System (ADS)
Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert
2015-03-01
The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. Dedicated to Prof. Brigitte Weiss.
NASA Astrophysics Data System (ADS)
Rasamani, Kowsalya D.; Foley, Jonathan J., IV; Sun, Yugang
2018-03-01
Silver-doped silver chloride [AgCl(Ag)] nanoparticles represent a unique class of visible-light-driven photocatalysts, in which the silver dopants introduce electron-abundant mid-gap energy levels to lower the bandgap of AgCl. However, free-standing AgCl(Ag) nanoparticles, particularly those with small sizes and large surface areas, exhibit low colloidal stability and low compositional stability upon exposure to light irradiation, leading to easy aggregation and conversion to metallic silver and thus a loss of photocatalytic activity. These problems could be eliminated by attaching the small AgCl(Ag) nanoparticles to the surfaces of spherical dielectric silica particles with submicrometer sizes. The high optical transparency in the visible spectral region (400-800 nm), colloidal stability, and chemical/electronic inertness displayed by the silica spheres make them ideal for supporting photocatalysts and significantly improving their stability. The spherical morphology of the dielectric silica particles can support light scattering resonances to generate significantly enhanced electric fields near the silica particle surfaces, on which the optical absorption cross-section of the AgCl(Ag) nanoparticles is dramatically increased to promote their photocatalytic activity. The hybrid silica/AgCl(Ag) structures exhibit superior photocatalytic activity and stability, suitable for supporting photocatalysis sustainably; for instance, their efficiency in the photocatalytic decomposition of methylene blue decreases by only ˜9% even after ten cycles of operation.
Phytofabrication of bioinduced silver nanoparticles for biomedical applications.
Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv
2015-01-01
Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60-80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs.
NASA Astrophysics Data System (ADS)
Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.
2015-01-01
We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.
Phytofabrication of bioinduced silver nanoparticles for biomedical applications
Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv
2015-01-01
Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715
NASA Astrophysics Data System (ADS)
Johnson, I.; Prabu, H. Joy
2015-01-01
Biosynthesis of nanoparticles is a kind of bottom-up approach where the main reaction occurring is reduction. Since silver nanoparticles (AgNPs) have been used for infection prevention in medical field, it is more relevant to reduce their size using ancient Indian herbal plants. This method is good in anti-microbial efficiency against bacteria, viruses and other microorganisms and hence clearly enhances the medicinal usage of AgNPs. This type of green biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmental-friendly technologies for nano-materials synthesis. In the process of synthesizing AgNPs, we observed a rapid reduction of silver ions leading to the formation of stable crystalline AgNPs in the solution. Plant extracts from Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora were used for the synthesis of AgNPs from silver nitrate solution. AgNPs were characterized by different techniques.
NASA Astrophysics Data System (ADS)
Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang
2016-09-01
An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment.
Dutta, Soumen; Ray, Chaiti; Sarkar, Sougata; Pradhan, Mukul; Negishi, Yuichi; Pal, Tarasankar
2013-09-11
Herein, a simple wet-chemical pathway has been demonstrated for the synthesis of silver nanoparticle conjugated reduced graphene oxide nanosheets where dimethylformamide (DMF) is judiciously employed as an efficient reducing agent. Altogether, DMF reduces both silver nitrate (AgNO3) and graphene oxide (GO) in the reaction mixture. Additionally, the presence of polyvinylpyrolidone (PVP) assists the nanophasic growth and homogeneous distribution of the plasmonic nanoparticle Ag(0). Reduction of graphene oxide and the presence of aggregated Ag NPs on reduced graphene oxide (rGO) nanosheets are confirmed from various spectroscopic techniques. Finally, the composite material has been exploited as an intriguing platform for surface enhanced Raman scattering (SERS) based selective detection of uranyl (UO2(2+)) ion. The limit of detection has been achieved to be as low as 10 nM. Here the normal Raman spectral (NRS) band of uranyl acetate (UAc) at 838 cm(-1) shifts to 714 and 730 cm(-1) as SERS bands for pH 5.0 and 12.0, respectively. This distinguished Raman shift of the symmetric stretching mode for UO2(2+) ion is indicative of pronounced charge transfer (CT) effect. This CT effect even supports the higher sensitivity of the protocol toward UO2(2+) over other tested oxo-ions. It is anticipated that rGO nanosheets furnish a convenient compartment to favor the interaction between Ag NPs and UO2(2+) ion through proximity induced adsorption even at low concentration.
NASA Astrophysics Data System (ADS)
Sahni, Geetika; Panwar, Amit; Kaur, Balpreet
2015-02-01
A controlled "green synthesis" approach to synthesize silver nanoparticles by Allium cepa and Musa acuminata plant extract has been reported. The effect of different process parameters, such as pH, temperature and time, on synthesis of Ag nanoparticles from plant extracts has been highlighted. The work reports an easy approach to control the kinetics of interaction of metal ions with reducing agents, stabilized by ammonia to achieve sub-10 nm particles with narrow size distribution. The nanoparticles have been characterized by UV-Visible spectra and TEM analysis. Excellent antimicrobial activity at extremely low concentration of the nanoparticles was observed against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Fusarium oxysporum which may allow their exploitation as a new generation nanoproduct in biomedical and agricultural applications.
USDA-ARS?s Scientific Manuscript database
Silver nanoparticles (Ag NPs) are known to have efficient antimicrobial properties, but the direct application of Ag NPs onto the surface of textiles has shown to be ineffective and raise environmental concerns because Ag NPs leach out during washing. In this study, non-leaching and stable Agcotton ...
Light-dependent controlled synthesis and photocatalytic properties of stable Ag{sub 3} nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian-Dong; Liu, Jin-Ku, E-mail: jkliu@ecust.edu.cn; Luo, Chong-Xiao
2014-12-15
The silver phosphate (Ag{sub 3}PO{sub 4}) is applied in organic matter photodegradation as a novel catalyst materials, however, its instability reduces the photocatalytic life and limits its further applications. In this work, a series of Ag{sub 3}PO{sub 4} crystalline nanoparticle clusters have been synthesized by a photocontrol method. By comparing their sunlight photocatalytic properties, the Ag{sub 3}PO{sub 4} nanoparticles with dominant (2 2 0) facets have a lower surface energy (1.05 J m{sup −2}) than existing Ag{sub 3}PO{sub 4} crystals which can offer a longer catalyst service life. The photodegradation rate of the Ag{sub 3}PO{sub 4} nanoparticles is about 3more » times that of common Ag{sub 3}PO{sub 4} bulk materials and the sunlight is used as the power source instead of high cost artificial visible light sources in this catalytic system. An effective continuous photodegradation reactor using Ag{sub 3}PO{sub 4} nanoparticles is successfully fabricated to degrade rhodamine B solution. At the same time, this work provides an example for how oxidation photocatalyst works without extra adding sacrificial reagent.« less
AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B
NASA Astrophysics Data System (ADS)
Fang, Jing; Zhao, Huamei; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Abbas, Waseem; Su, Huilan; You, Zhengwei; Zhang, Di
2018-03-01
The treatment of organic pollution via photocatalysis has been investigated for a few decades. However, earth-abundant, cheap, stable, and efficient substrates are still to be developed. Here, we prepare an efficient visible-light-driven photocatalyst via the deposition of Ag nanoparticles (< 60 nm) on diatomite and the conversion of Ag to AgBr nanoparticles (< 600 nm). Experimental results show that 95% of Rhodamine B could be removed within 20 min, and the degradation rate constant ( κ) is 0.11 min-1 under 100 mW/cm2 light intensity. For comparison, AgBr/SiO2 ( κ = 0.04 min-1) and commercial AgBr nanoparticles ( κ = 0.05 min-1) were measured as well. The experimental results reveal that diatomite acted more than a substrate benefiting the dispersion of AgBr nanoparticles, as well as a cooperator to help harvest visible light and adsorb dye molecules, leading to the efficient visible-light-driven photocatalytic performance of AgBr/diatomite. Considering the low cost (10 per ton) and large-scale availability of diatomite, our study provides the possibility to prepare other types of diatomite-based efficient photocatalytic composites with low-cost but excellent photocatalytic performance.
Cathcart, Nicole; Kitaev, Vladimir
2012-11-21
We describe the synthetic preparation of well-defined symmetric multifaceted prismatic silver nanoparticles with chemically controlled faceting advantageous for strong and tunable surface-enhanced Raman scattering, SERS. These silver nanoparticles, that have been termed nanoflowers, AgNFls for their characteristic morphologies, have been prepared by a one-pot aqueous reaction under ambient conditions. AgNFl faceting is synthetically controlled by selective nanoparticle growth driven by chloride ions. Selective chloride binding to the surface of growing AgNFls results in nanoparticle enlargement predominantly at the points of their highest energy. These growth points are located at the tips of prismatic polygons in precursor prismatic morphologies that have been produced from thiolate-protected silver clusters whose coalescence is triggered with a strong base. For the practical aspects of AgNFl synthesis, concentrations of thiol and a strong base were found to be the key variables reliably controlling the extent of AgNFl faceting, as well as the kinetics of AgNFl formation and their stability. The selective growth of AgNFls progresses slower compared to that of non-faceted prisms: fewer nuclei can form leading to larger AgNFls with the diameter ranging from 130 to 2250 nm and asperity sizes on the order of 20 to 100 nm. Self-assembly of AgNFls yields columnar stacking. AgNFls were demonstrated to function as a promising substrate for surface-enhanced Raman scattering. SERS measurements were performed for a series of AgNFls with variable faceting, where the enhancement factors of 4.6 × 10(8) and 425 have been achieved for dry solid films and aqueous dispersions of non-aggregated AgNFls with single-particle enhancement, respectively. These SERS results are promising, especially in combination with that AgNFl nanoscale asperities can be conveniently tailored synthetically. Overall, AgNFls offer valuable opportunities for a system with synthetically variable nanoscale asperities.
Asharani, P V; Lianwu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh
2011-03-01
Nanoparticles have diverse applications in electronics, medical devices, therapeutic agents and cosmetics. While the commercialization of nanoparticles is rapidly expanding, their health and environmental impact is not well understood. Toxicity assays of silver, gold, and platinum nanoparticles, using zebrafish embryos to study their developmental effects were carried out. Gold (Au-NP, 15-35 nm), silver (Ag-NP, 5-35 nm) and platinum nanoparticles (Pt-NP, 3-10 nm) were synthesized using polyvinyl alcohol (PVA) as a capping agent. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. The addition of Ag-NP resulted in a concentration-dependant increase in mortality rate. Both Ag-NP and Pt-NP induced hatching delays, as well as a concentration dependant drop in heart rate, touch response and axis curvatures. Ag-NP also induced other significant phenotypic changes including pericardial effusion, abnormal cardiac morphology, circulatory defects and absence or malformation of the eyes. In contrast, Au-NP did not show any indication of toxicity. Uptake and accumulation of nanoparticles in embryos was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES), which revealed detectable levels in embryos within 72 hpf. Ag-NP and Au-NP were taken up by the embryos in relatively equal amounts whereas lower Pt concentrations were observed in embryos exposed to Pt-NP. This was probably due to the small size of the Pt nanoparticles compared to Ag-NP and Au-NP, thus resulting in fewer metal atoms being retained in the embryos. Among the nanoparticles studied, Ag-NPs were found to be the most toxic and Au-NPs the non-toxic. The toxic effects exhibited by the zebrafish embryos as a consequence of nanoparticle exposure, accompanied by the accumulation of metals inside the body calls for urgent further investigations in this field.
Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability
NASA Astrophysics Data System (ADS)
Olson, M. S.; Digiovanni, K. A.
2007-12-01
Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.
Venugopal, K; Ahmad, H; Manikandan, E; Thanigai Arul, K; Kavitha, K; Moodley, M K; Rajagopal, K; Balabhaskar, R; Bhaskar, M
2017-08-01
The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles. Copyright © 2017. Published by Elsevier B.V.
Structure and optical properties of silica-supported Ag-Au nanoparticles.
Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano
2007-07-01
Bimetallic Ag-Au nanoparticles are synthesized by sequential deposition of Au and Ag on amorphous silica by Radio Frequency (RF)-sputtering under mild conditions. Specimens are thoroughly characterized by a multi-technique approach, aimed at investigating the system properties as a function of the Ag/Au content, as well as the evolution induced by ex-situ annealing under inert (N2) or reducing (4% H2/N2) atmospheres. The obtained results demonstrate the possibility to obtain Ag-Au alloyed nanoparticles with controllable size, shape, structure, and dispersion under mild conditions, so that the optical properties can be finely tuned as a function of the synthesis and thermal treatment conditions.
Interactions of silver nanoparticles with the marine macroalga, Ulva lactuca.
Turner, Andrew; Brice, David; Brown, Murray T
2012-01-01
The marine macroalga, Ulva lactuca, has been exposed for 48 h to different concentrations of Ag added as either silver nanoparticles (AgNP) or aqueous metal (AgNO(3)) and the resulting toxicity, estimated from reductions in quenching of chlorophyll-a fluorescence, and accumulation of Ag measured. Aqueous Ag was toxic at available concentrations as low as about 2.5 μg l(-1) and exhibited considerable accumulation that could be defined by the Langmuir equation. AgNP were not phytotoxic to the macroalga at available Ag concentrations up to at least 15 μg l(-1) and metal measured in U. lactuca was attributed to a physical association of nanoparticles at the algal surface. At higher AgNP concentrations, a dose-response relationship was observed that was similar to that for aqueous Ag recorded at much lower concentrations. These findings suggest that AgNP are only indirectly toxic to marine algae through the dissolution of Ag(+) ions into bulk sea water, albeit at concentrations orders of magnitude greater than those predicted in the environment.
Zhang, Xi-Feng; Liu, Zhi-Guo; Shen, Wei; Gurunathan, Sangiliyandi
2016-09-13
Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.
Wu, Tong-Shun; Wang, Kai-Xue; Li, Guo-Dong; Sun, Shi-Yang; Sun, Jian; Chen, Jie-Sheng
2010-02-01
Montmorillonite (MMT)-supported Ag/TiO(2) composite (Ag/TiO(2)/MMT) has been prepared through a one-step, low-temperature solvothermal technique. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that the Ag particles coated with TiO(2) nanoparticles are well-dispersed on the surface of MMT in the composite. As a support for the Ag/TiO(2) composite, the MMT prevents the loss of the catalyst during recycling test. This Ag/TiO(2)/MMT composite exhibits high photocatalytic activity and good recycling performance in the degradation of E. coli under visible light. The high visible-light photocatalytic activity of the Ag/TiO(2)/MMT composite is ascribed to the increase in surface active centers and the localized surface plasmon effect of the Ag nanoparticles. The Ag/TiO(2)/MMT materials with excellent stability, recyclability, and bactericidal activities are promising photocatalysts for application in decontamination.
Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis
NASA Astrophysics Data System (ADS)
He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying
2014-07-01
TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.
NASA Astrophysics Data System (ADS)
Xu, Wei; Fan, Yapei; Liu, Xinfang; Luo, Denglin; Liu, Huan; Yang, Ningning
2018-04-01
Silver nanoparticles (Ag NPs) were green fabricated using soluble green tea powder (SGTP) as stabilizer and reducing agent. The properties and morphology of Ag NPs were investigated through UV–visible spectroscopy, field emission transmission electron microscope (FE-TEM) and fourier transform infrared (FT-IR). The spectroscopy showed surface plasmon resonance around at 420 nm revealing the synthesis of Ag NPs. FE-TEM results confirmed that the Ag NPs are spherical and face-centered cubic structure. FT-IR spectroscopy identified the role of various functional groups in the nanoparticle synthesis. The one spot biosynthesized Ag NPs showed favourable antibacterial properties on Escherichia coli and Staphyloccocus aureus, and excellent catalytic reduction of 4-nitrophenol. This work provided a feasible, green method to fabricate Ag NPs with promising photocatalytic and antimicrobial activities.
Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Anna, Kiran Kumar
2017-01-01
A green, facile method for the size selective synthesis of silver nanoparticles (AgNPs) using diastase as green reducing and stabilizing agent is reported. The thiol groups present in the diastase are mainly responsible for the rapid reaction rate of silver nanoparticles synthesis. The variation in the size and morphology of AgNPs were studied by changing the pH of diastase. The prepared silver nanoparticles were characterized by using UV-vis, XRD, FTIR, TEM and SAED. The FTIR analysis revealed the stabilization of diastase molecules on the surface of AgNPs. Additionally, in-vitro cytotoxicity experiments concluded that the cytotoxicity of the as-synthesized AgNPs towards mouse fibroblast (3T3) cell lines is dose and size dependent. Furthermore, the present method is an alternative to the traditional chemical methods of size controlled AgNPs synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Peng, Jian-Min; Lin, Jia-Cheng; Chen, Zhuo-Yu; Wei, Meng-Chao; Fu, Yuan-Xiang; Lu, Shu-Shen; Yu, Dong-Sheng; Zhao, Wei
2017-02-01
As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. Copyright © 2016 Elsevier B.V. All rights reserved.
Facile synthesis of microporous SiO2/triangular Ag composite nanostructures for photocatalysis
NASA Astrophysics Data System (ADS)
Sirohi, Sidhharth; Singh, Anandpreet; Dagar, Chakit; Saini, Gajender; Pani, Balaram; Nain, Ratyakshi
2017-11-01
In this article, we present a novel fabrication of microporous SiO2/triangular Ag nanoparticles for dye (methylene blue) adsorption and plasmon-mediated degradation. Microporous SiO2 nanoparticles with pore size <2 nm were synthesized using cetyltrimethylammonium bromide as a structure-directing agent and functionalized with APTMS ((3-aminopropyl) trimethoxysilane) to introduce amine groups. Amine-functionalized microporous silica was used for adsorption of triangular silver (Ag) nanoparticles. The synthesized microporous SiO2 nanostructures were investigated for adsorption of different dyes including methylene blue, congo red, direct green 26 and curcumin crystalline. Amine-functionalized microporous SiO2/triangular Ag nanostructures were used for plasmon-mediated photocatalysis of methylene blue. The experimental results revealed that the large surface area of microporous silica facilitated adsorption of dye. Triangular Ag nanoparticles, due to their better charge carrier generation and enhanced surface plasmon resonance, further enhanced the photocatalysis performance.
Croteau, Marie-Noële; Dybowska, Agnieszka D.; Luoma, Samuel N.; Misra, Superb K.; Valsami-Jones, Eugenia
2014-01-01
A major challenge in understanding the environmental implications of nanotechnology lies in studying nanoparticle uptake in organisms at environmentally realistic exposure concentrations. Typically, high exposure concentrations are needed to trigger measurable effects and to detect accumulation above background. But application of tracer techniques can overcome these limitations. Here we synthesised, for the first time, citrate-coated Ag nanoparticles using Ag that was 99.7 % 109Ag. In addition to conducting reactivity and dissolution studies, we assessed the bioavailability and toxicity of these isotopically modified Ag nanoparticles (109Ag NPs) to a freshwater snail under conditions typical of nature. We showed that accumulation of 109Ag from 109Ag NPs is detectable in the tissues of Lymnaea stagnalis after 24-h exposure to aqueous concentrations as low as 6 ng L–1 as well as after 3 h of dietary exposure to concentrations as low as 0.07 μg g–1. Silver uptake from unlabelled Ag NPs would not have been detected under similar exposure conditions. Uptake rates of 109Ag from 109Ag NPs mixed with food or dispersed in water were largely linear over a wide range of concentrations. Particle dissolution was most important at low waterborne concentrations. We estimated that 70 % of the bioaccumulated 109Ag concentration in L. stagnalis at exposures –1 originated from the newly solubilised Ag. Above this concentration, we predicted that 80 % of the bioaccumulated 109Ag concentration originated from the 109Ag NPs. It was not clear if agglomeration had a major influence on uptake rates.
Sohrabnezhad, Sh; Zanjanchi, M A; Razavi, M
2014-09-15
Metal-semiconductor compounds, such as Ag/AgX (X=Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that O2- and OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Mohanta, Yugal K; Panda, Sujogya K; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K; Mohanta, Tapan K
2017-01-01
In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent.
Mohanta, Yugal K.; Panda, Sujogya K.; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K.; Mohanta, Tapan K.
2017-01-01
In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent. PMID:28367437
Sangappa, M.; Thiagarajan, Padma
2015-01-01
The antibiogram study of methicillin resistant Staphylococcus aureus isolates revealed 100% resistance to vancomycin, bacitracin, erythromycin, ciprofloxacin and nalidixic acid. Eight isolates (53.3%) showed resistance to co-trimoxazole and one isolate to rifampicin, which was the drug of choice. An effort was made to evaluate the antimethicillin resistant Staphylococcus aureus activity of silver oxide (Ag2O) nanoparticles synthesized from Aspergillus terreus VIT 2013. Production of Ag2O nanoparticles was confirmed by color change of fungal filtrate and UV light absorption at 450 nm. X-ray diffraction pattern showed 2θ values at 27, 32, 38 and 57°, which corresponded to the cubic structure of Ag2O nanocrystals. Fourier transform infrared spectroscopy indicated the presence of primary amine, carbonyl group, NO2 and silver, revealing protein mediated nanoparticle production. The scanning electron microscope image showed freely dispersed Ag2O nanoparticles. The nanoparticles were active against all methicillin resistant isolates and hence can be used as antibacterial agents against drug resistant bacteria. PMID:26009646
Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili
2015-04-07
Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.
NASA Astrophysics Data System (ADS)
Ma, Jianqi; Guo, Xiaohua; Ge, Hongguang; Tian, Guanghui; Zhang, Qiang
2018-03-01
Ag-decorated SiO2@TiO2 microspheres (SiO2@TiO2-Ag) with ideal core-shell structure and enhanced photocatalytic activity were successfully fabricated by combining both coating anatase TiO2 on the surface of SiO2 spheres and subsequent depositing face-centered cubic Ag nanoparticles (NPs) on the coated TiO2 surface via novel sol-gel method and Ag-seed-mediated photodeposition (PD) route, respectively. The morphology, structure, composition and optical properties of the resulting composites were characterized in detail. The results reveal that the monodisperse SiO2 spheres of ∼260 nm were covered uniformly and perfectly by the TiO2 nanoparticle coating layer with the thickness of ca. 55 nm by the novel sol-gel method. Further, homogeneously and highly dispersed Ag NPs with an average size of 8 ± 1.5 nm were strongly anchored onto the TiO2 surface in SiO2@TiO2 core-shell spheres by the modified PD process (Ag-seed-mediated PD route), whereas polydispersed Ag aggregates and detached Ag NPs were irregularly deposited over the TiO2 surface in previous works, which is the inherent problem and has not been effectively solved for depositing noble metal NPs such as Au, Ag, Pt, Pd on TiO2 surface by conventional PD method. The formation mechanism of small and uniformly dispersed Ag NPs with narrow size distribution via the modified PD method is tentatively explained by both nucleation kinetics and growth kinetics. The key reason is that the pre-deposited seeds firmly tethered on SiO2@TiO2 spheres served as nucleation sites and anchoring points for the further nucleation and subsequent growth of Ag via photoreduction of Ag+.
NASA Astrophysics Data System (ADS)
Bento, J. B.; Franca, R. D. G.; Pinheiro, T.; Alves, L. C.; Pinheiro, H. M.; Lourenço, N. D.
2017-08-01
The use of engineered nanoparticles in the textile industry has been rapidly increasing but their fate during biological wastewater treatment is largely unknown. The goal of the current study was to characterize the interaction of silver nanoparticles (AgNPs), used in the textile industry, with a biological wastewater treatment system based on aerobic granular sludge (AGS). The exposure tests were performed using a laboratory-scale sequencing batch reactor (SBR) system with AGS. The behavior and fate of textile AgNPs in the AGS system was studied with nuclear microscopy techniques. Elemental maps of AGS samples collected from the SBR showed that AgNPs typically clustered in agglomerates of small dimensions (<10 μm), which were preferentially associated with extracellular polymeric substances (EPS). This preliminary study highlights the potential application of nuclear microscopy for the characterization of the behavior and fate of AgNPs in AGS. The detailed compartmentalization of AgNPs in AGS components obtained with nuclear microscopy provides new and relevant information concerning AgNPs retention. This will be important in biotechnological terms to delineate strategies for AgNPs removal from textile wastewater.
Zhou, Shuai; Chen, Qianwang
2011-09-14
Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Trabelsi, K.; Hajjaji, A.; Gaidi, M.; Bessais, B.; El Khakani, M. A.
2017-08-01
We report on the pulsed laser deposition (PLD) based nanodecoration of titanium dioxide (TiO2) nanotube arrays (NTAs) by Ag nanoparticles (NPs). We focus here on the investigation of the effect of the number of laser ablation pulses (NLP) of the silver target on both the average size of the Ag-NPs and the photoelectrochemical conversion efficiency of the Ag-NP decorated TiO2-NT based photoanodes. By varying the NLP, we were able to not only control the size of the PLD-deposited Ag nanoparticles from 20 to ˜50 nm, but also to increase concomitantly the surface coverage of the TiO2 NTAs by Ag-NPs. The red-shifting of the surface plasmon resonance peak of the PLD-deposited Ag-NPs deposited onto quartz substrates confirmed the increase of their size as the NLP is increased from 500 to 10 000. By investigating the photo-electrochemical properties of Ag-NP decorated TiO2-NTAs, by means of linear sweep cyclic voltammetry under UV-Vis illumination, we found that the generated photocurrent is sensitive to the size of the Ag-NPs and reaches a maximum value at NLP =500 (i.e.,; Ag-NP size of ˜20 nm). For NLP = 500, the photoconversion efficiency of the Ag-NP decorated TiO2-NTAs is shown to reach a maximum of 4.5% (at 0.5 V vs Ag/AgCl). The photocurrent enhancement of Ag-NP decorated TiO2-NTAs is believed to result from the additional light harvesting enabled by the ability of Ag-NPs to absorb visible irradiation caused by various localized surface plasmon resonances, which in turn depend on the size and interdistance of the Ag nanoparticles.
Chen, Yannan; Zhu, Gangqiang; Hojamberdiev, Mirabbos; Gao, Jianzhi; Zhu, Runliang; Wang, Chenghui; Wei, Xiumei; Liu, Peng
2018-02-15
Ag 2 O nanoparticles-loaded Bi 5 O 7 I microspheres forming a three dimensional Ag 2 O/Bi 5 O 7 I p-n heterojunction photocatalyst with wide-spectrum response were synthesized in this study. The results of transmission electron microscopy observations revealed that the Ag 2 O nanoparticles with the diameter of ca. 10-20nm were distributed on the surfaces of Bi 5 O 7 I nanosheets. The as-synthesized Ag 2 O/Bi 5 O 7 I exhibited an excellent wide-spectrum response to wavelengths ranging from ultraviolet (UV) to near-infrared (NIR), indicating its potential for effective utilization of solar energy. Compared with pure Bi 5 O 7 I, the Ag 2 O/Bi 5 O 7 I composite also demonstrated excellent photocatalytic activity for the degradation of Bisphenol A and phenol in aqueous solution under visible LED light irradiation. Among samples, the 20% Ag 2 O/Bi 5 O 7 I composite photocatalyst showed the highest photocatalytic activity for the degradation of Bisphenol A and phenol in aqueous solution. In addition, the 20% Ag 2 O/Bi 5 O 7 I composite also exhibited a photocatalytic activity for the degradation of Bisphenol A under NIR light irradiation. The improved photocatalytic activity is attributed to the formation of a p-n heterojunction between Ag 2 O and Bi 5 O 7 I, allowing the efficient utilization of solar energy (from UV to NIR) and high separation efficiency of photogenerated electron-hole pairs. The present work is desirable to explore a possible avenue for the full utilization of solar energy. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Govindappa, M.; Farheen, H.; Chandrappa, C. P.; Channabasava; Rai, Ravishankar V.; Raghavendra, Vinay B.
2016-09-01
Silver nanoparticles were synthesized using endophytic fungal species, Penicillium species from Glycosmis mautitiana. Phytochemicals, namely tannins, saponins, terpenoids and flavonoids, were identified in Penicillium species extracts, and act as agents of reducing and capping in the conversion of silver nanoparticles into nanoparticles. Using SEM, UV-spectroscopy and XRD, the Penicillium species silver nanoparticles (PsAgNPs) were characterized. The PsAgNPs are shown to be strong antioxidants (DDPH and FRAP), have demonstrated anti-inflammatory properties by three different methods in vitro and strongly inhibited the activity of xanthine oxidase, lipoxygenase and tyrosine kinase. E. coli and P. aeruginosa bacterial species were strongly inhibited by PsAgNPs activity at maximum levels and SEM picture of P. aeruginosa confirms these effects and that they were shrunken due to the toxic effect of PsAgNPs.
NASA Astrophysics Data System (ADS)
Buzulukov, Yu; Antsiferova, A.; Demin, V. A.; Demin, V. F.; Kashkarov, P.
2015-11-01
The method to measure the mass of inorganic nanoparticles in biological (or any other samples) using nanoparticles labeled with radioactive tracers is developed and applied to practice. The tracers are produced in original nanoparticles by radioactive activation of some of their atomic nuclei. The method of radioactive tracers demonstrates a sensitivity, specificity and accuracy equal or better than popular methods of optical and mass spectrometry, or electron microscopy and has some specific advantages. The method can be used for study of absorption, distribution, metabolism and excretion in living organism, as well as in ecological and fundamental research. It was used in practice to study absorption, distribution, metabolism and excretion of nanoparticles of Ag, Au, Se, ZnO, TiO2 as well as to study transportation of silver nanoparticles through the barriers of blood-brain, placenta and milk gland of rats. Brief descriptions of data obtained in experiments with application of this method included in the article. The method was certified in Russian Federation standard system GOST-R and recommended by the Russian Federation regulation authority ROSPOTREBNADZOR for measuring of toxicokinetic and organotropy parameters of nanoparticles.
Malva parviflora extract assisted green synthesis of silver nanoparticles
NASA Astrophysics Data System (ADS)
Zayed, Mervat F.; Eisa, Wael H.; Shabaka, A. A.
2012-12-01
Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.
Nanoparticles generated by laser in liquids as contrast medium and radiotherapy intensifiers
NASA Astrophysics Data System (ADS)
Restuccia, Nancy; Torrisi, Lorenzo
2018-01-01
The synthesis of Au and Ag nanoparticles (NP) though laser ablation in liquids as a function the laser parameters is presented. Spherical NPs with diameter distribution within 1 and 100 nm were prepared by laser ablation in water. The nanoparticles characterization was performed using optical spectroscopy and electronic microscopy (SEM and TEM) measurements. Studies of the possible use of metallic nanoparticles as intensifier of diagnostics imaging contrast medium and absorbing dose from ionizing radiations in traditional radiotherapy and protontherapy are presented. Examples of in vitro (in tissue equivalent materials) and in vivo (in mice), were conducted thank to simulation programs permitting to evaluate the enhancement of efficiency in imaging and therapy as a function of the NPs concentrations and irradiation conditions.
2014-01-01
Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates. PMID:24959110
NASA Astrophysics Data System (ADS)
Tanahashi, Ichiro; Harada, Yoshiyuki
2014-06-01
Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.
An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol
NASA Astrophysics Data System (ADS)
Rai, Tripti; Panda, Debashis
2015-03-01
Cellulase reduces silver ions in both aqueous and methanolic media yielding stable narrow-sized silver nanoparticles (Ag-NP) at room temperature. The synthesized nanoparticles have been characterized by various spectroscopic, microscopic methods. The redox potentials of tyrosine residues and protein backbone play an instrumental role to reduce the metal ions. The average size of nanoparticles formed in aqueous medium is of 5.04 ± 3.50 nm. Post-synthesis of Ag-NP secondary structure of enzyme is completely lost whereas upon incubation with chemically synthesized Ag-NP a significant gain in secondary structure is observed. Cellulase as a capping ligand stabilizes the silver nanoparticles even in methanol.
NASA Astrophysics Data System (ADS)
Guigas, Claudia; Walz, Elke; Gräf, Volker; Heller, Knut J.; Greiner, Ralf
2017-06-01
The potential of engineered nanomaterials to induce genotoxic effects is an important aspect of hazard identification. In this study, cytotoxicity and mutagenicity as a function of metabolic activation of three silver nanoparticle (AgNP) preparations differing in surface coating were determined in Chinese hamster ovary (CHO) subclone K1 cells. Three silver nanoparticle preparations ( x 90,0 <30 nm) stabilized with polyoxyethylene glycerol trioleate and polyoxyethylene sorbitan monolaurate (AgPure™), citrate (Citrate-Ag), and polyvinylpyrrolidone (PVP-Ag) were used for the experiments. The cytotoxic effect of AgNPs was assessed with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide) test using different concentrations of nanoparticles, while the mutagenicity was evaluated using the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation assay. The cytotoxicity of all three AgNPs was lower in a cell culture medium containing 10% fetal calf serum (FCS) than in medium without FCS. The HPRT test without metabolic activation system S9 revealed that compared to the other AgNP formulations, citrate-coated Ag showed a lower genotoxic effect. However, addition of S9 increased the mutation frequency of all AgNPs and especially influenced the genotoxicity of Citrate-Ag. The results showed that exogenous metabolic activation of nanosilver is crucial even if interactions of the metabolic activation system, nanosilver, and cells are not really understood up to now.
Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong
2018-01-26
As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.
Kondeti, V. S. Santosh K.; Gangal, Urvashi; Yatom, Shurik; ...
2017-07-21
Here, the involvement of plasma produced species in the reduction of silver ions at the plasma–liquid interface is investigated using a well-characterized radio-frequency driven atmospheric pressure plasma jet. The absolute gas phase H density was measured using two photon absorption laser induced fluorescence in the free jet. Broadband absorption and transmission electron microscopy were used to study the synthesis of silver nanoparticles (AgNPs). It is shown that fructose, an often used surfactant/stabilizer for AgNP synthesis, also acts as a reducing agent after plasma exposure. Nonetheless, surfactant free AgNP synthesis is observed. Several experimental findings indicate that H plays an importantmore » role in the reduction of silver ions for the plasma conditions in this study. Vacuum ultraviolet photons generated by the plasma are able to reduce silver ions in the presence of fructose. Adding H2 to the argon feed gas leads to the production of a large amount of AgNPs having a particle size distribution with a maximum at a diameter of 2–3 nm, which is not observed for argon plasmas. This finding is consistent with a smaller concentration of reducing species at the plasma–liquid interface for Ar with the H2 admixture plasma. The smaller flux of reactive species to the liquid is in this case due to a less strong interaction of the plasma with the liquid. The formation of the nanoparticles was observed even at a distance of 6–7 mm below the tip of the plasma plume, conditions not favoring the injection of electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondeti, V. S. Santosh K.; Gangal, Urvashi; Yatom, Shurik
Here, the involvement of plasma produced species in the reduction of silver ions at the plasma–liquid interface is investigated using a well-characterized radio-frequency driven atmospheric pressure plasma jet. The absolute gas phase H density was measured using two photon absorption laser induced fluorescence in the free jet. Broadband absorption and transmission electron microscopy were used to study the synthesis of silver nanoparticles (AgNPs). It is shown that fructose, an often used surfactant/stabilizer for AgNP synthesis, also acts as a reducing agent after plasma exposure. Nonetheless, surfactant free AgNP synthesis is observed. Several experimental findings indicate that H plays an importantmore » role in the reduction of silver ions for the plasma conditions in this study. Vacuum ultraviolet photons generated by the plasma are able to reduce silver ions in the presence of fructose. Adding H2 to the argon feed gas leads to the production of a large amount of AgNPs having a particle size distribution with a maximum at a diameter of 2–3 nm, which is not observed for argon plasmas. This finding is consistent with a smaller concentration of reducing species at the plasma–liquid interface for Ar with the H2 admixture plasma. The smaller flux of reactive species to the liquid is in this case due to a less strong interaction of the plasma with the liquid. The formation of the nanoparticles was observed even at a distance of 6–7 mm below the tip of the plasma plume, conditions not favoring the injection of electrons.« less
Transformation of Silver Nanoparticles in Fresh, Aged, and Incinerated Biosolids
Abstract The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot...
Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika
2017-01-01
Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles.
da Silva Ferreira, Veronica; ConzFerreira, Mateus Eugenio; Lima, Luís Maurício T R; Frasés, Susana; de Souza, Wanderley; Sant'Anna, Celso
2017-02-01
Silver nanoparticles are powerful antimicrobial agents. Here, the synthesis of silver chloride nanoparticles (AgCl-NPs) was consistently evidenced from a commercially valuable microalgae species, Chlorella vulgaris. Incubation of C. vulgaris conditioned medium with AgNO 3 resulted in a medium color change to yellow/brown (with UV-vis absorbance at 415nm), indicative of silver nanoparticle formation. Energy-dispersive X-ray spectroscopy (EDS) of purified nanoparticles confirmed the presence of both silver and chlorine atoms, and X-ray diffraction (XRD) showed the typical pattern of cubic crystalline AgCl-NPs. Transmission electron microscopy (TEM) showed that most particles (65%) were spherical, with average diameter of 9.8±5.7nm. Fourier transform infrared spectroscopy (FTIR) of purified nanoparticle fractions suggested that proteins are the main molecular entities involved in AgCl-NP formation and stabilization. AgCl-NPs (from 10μg/mL) decreased by 98% the growth of Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae bacterial pathogens, and had a dose-dependent effect on cell viability, which was measured by automated image-based high content screening (HCS). Ultrastructural analysis of treated bacteria by TEM revealed the abnormal arrangement of the chromosomal DNA. Our findings strongly indicated that the AgCl-NPs from C. vulgaris conditioned medium is a promising 'green' alternative for biomedical application as antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.
Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika
2017-01-01
Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles. PMID:28184158
Huang, Siqi; Yu, Zhiming; Zhang, Yang; Qi, Chusheng; Zhang, Shifeng
2017-01-01
In order to fabricate antimicrobial carboxymethyl chitosan-nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO 3 ), 2) CMC and glucose (adding glucose before AgNO 3 ), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6-20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO 3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli . Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3.
Targeted silver nanoparticles for ratiometric cell phenotyping
NASA Astrophysics Data System (ADS)
Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet
2016-04-01
Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo. Electronic supplementary information (ESI) available: TEM images of isotopic AgNPs, cell antibody staining, coadministration ICP-MS data, and biotin control particle ICP-MS data. See DOI: 10.1039/C5NR07928D
Tran, Chieu D; Prosenc, Franja; Franko, Mladen; Benzi, Gerald
2016-12-21
A novel, simple method was developed to synthesize biocompatible composites containing 50% cellulose (CEL) and 50% keratin (KER) and silver in the form of either ionic (Ag + ) or Ag 0 nanoparticles (Ag + NPs or Ag 0 NPs). In this method, butylmethylimmidazolium chloride ([BMIm + Cl - ]), a simple ionic liquid, was used as the sole solvent and silver chloride was added to the [BMIm + Cl - ] solution of [CEL+KER] during the dissolution process. The silver in the composites can be maintained as ionic silver (Ag + ) or completely converted to metallic silver (Ag 0 ) by reducing it with NaBH 4 . The results of spectroscopy [Fourier transform infrared and X-ray diffraction (XRD)] and imaging [scanning electron microscopy (SEM)] measurements confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. Powder XRD and SEM results show that the silver in the [CEL+KER+Ag + ] and [CEL+KER+Ag 0 ] composites is homogeneously distributed throughout the composites in either Ag + (in the form of AgClNPs) or Ag 0 NPs form with sizes of 27 ± 2 or 9 ± 1 nm, respectively. Both composites were found to exhibit excellent antibacterial activity against many bacteria including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, methicillin-resistant S. aureus (MRSA), and vancomycin-resistant Enterococus faecalis (VRE). The antibacterial activity of both composites increases with the Ag + or Ag 0 content in the composites. More importantly, for the same bacteria and the same silver content, the [CEL+KER+AgClNPs] composite is relatively more toxic than [CEL+KER+Ag 0 NPs] composite. Experimental results confirm that there was hardly any Ag 0 NPs release from the [CEL+KER+Ag 0 NPs] composite, and hence its antimicrobial activity and biocompatibility is due not to any released Ag 0 NPs but rather entirely to the Ag 0 NPs embedded in the composite. Both AgClNPs and Ag 0 NPs were found to be toxic to human fibroblasts at higher concentration (>0.72 mmol), and for the same silver content, the [CEL+KER+AgClNPs] composite is relatively more toxic than the [CEL+KER+Ag 0 NPs] composite. As expected, by lowering the Ag 0 NPs concentration to 0.48 mmol or less, the [CEL+KER+Ag 0 NPs] composite can be made biocompatible while still retaining its antimicrobial activity against bacteria such as E. coli, S. aureus, P. aeruginosa, MRSA, and VRE. These results, together with our previous finding that [CEL+KER] composites can be used for the controlled delivery of drugs such as ciprofloxacin, clearly indicate that the [CEL+KER+Ag 0 NPs] composite possesses all of the required properties for it to be successfully used as a high-performance dressing to treat chronic ulcerous infected wounds.
Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots
NASA Astrophysics Data System (ADS)
Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling
2015-07-01
A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.
NASA Astrophysics Data System (ADS)
Biswas, Supratim; Mulaba-Bafubiandi, Antoine F.
2016-12-01
The present scientific endeavour focuses on the optimization of process parameters using central composite design towards development of an efficient technique for the biosynthesis of silver nanoparticles. The combined effects of three process variables (days of fermentation, duration of incubation, concentration of AgNO3) upon extracellular biological synthesis of silver nanoparticles (AgNPs) by Aspergillus wentii NCIM 667 were studied. A single absorption peak at 455 nm confirming the presence of silver nanoparticles was observed in the UV-visible spectrophotometric graph. Using Fourier transform infrared spectroscopic analysis the presence of proteins as viable reducing agents for the formation AgNPs was recorded. High resolution transmission electron microscopy showed the realization of spherically shaped AgNPs of size 15-40 nm. Biologically formed AgNPs revealed higher antimicrobial activity against gram-negative than gram-positive bacterial strains. We present the enumeration of the properties of biosynthesized nanoparticles which exhibit photocatalysis exhausting an organic dye, the methyl orange, upon exposure to sunlight thereby accomplishing the degradation of almost (88%) the methyl orange dye within 5 h.
Zhang, Lin; Zhou, Lingyan; Li, Qing X; Liang, Hong; Qin, Huaming; Masutani, Stephen; Yoza, Brandon
2018-05-01
Moniliella wahieum Y12 T , isolated from biodiesel was used as a model organism to assess the use of lanthanum oxide (La 2 O 3 ) (60-80 nm) and silver oxide (AgO) (10-40 nm) nanoparticles as potential fungal inhibitors. This is the first study to investigate the use of nanoscale La 2 O 3 as a eukaryotic bio-inhibitor. The AgO nanoparticles were relatively effective at inhibiting the growth of M. wahieum Y12 T . The half maximal effective concentration (EC 50 ) for AgO was 0.012 mg/mL as compared with 4.63 mg/mL of La 2 O 3 . Fluorescein diacetate analysis showed that AgO nanoparticles significantly reduced metabolic activity in M. wahieum Y12 T . The results of this study indicated that AgO nanoparticles can be a nonspecific inhibitor for the treatment of M. wahieum Y12 T , a eukaryotic biodiesel contaminant. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles.
Li, Shuo; Bandy, Jason A; Hamers, Robert J
2018-02-14
Silver nanoparticles embedded into the diamond thin films enhance the optical absorption and the photocatalytic activity toward the solvated electron-initiated reduction of N 2 to NH 3 in water. Here, we demonstrate the formation of diamond films with embedded Ag nanoparticles <100 nm in diameter. Cross-sectional scanning electron microscopy (SEM), energy-dependent SEM, and energy-dispersive X-ray analysis demonstrate the formation of encapsulated nanoparticles. Optical absorption measurements in the visible and ultraviolet region show that the resulting films exhibit plasmonic resonances in the visible and near-ultraviolet region. Measurements of photocatalytic activity using supraband gap (λ < 225 nm) and sub-band gap (λ > 225 nm) excitation show significantly enhanced ability to convert N 2 to NH 3 . Incorporation of Ag nanoparticles induces a nearly 5-fold increase in activity using a sub-band gap excitation with λ > 225 nm. Our results suggest that internal photoemission, in which electrons are excited from Ag into diamond's conduction band, is an important process that extends the wavelength region beyond diamond's band gap. Other factors, including Ag-induced optical scattering and formation of graphitic impurities are also discussed.
Kim, Jun Y; Kim, Ki-Tae; Lee, Byeong G; Lim, Byung J; Kim, Sang D
2013-06-01
The final destination point of nanoparticles is the environment, where they remain a long period; therefore, a deep understanding of the relationship between nanoparticles and the environmental factors is required. Japanese medaka embryos were exposed to two differently prepared AgNPs: freshly prepared AgNPs and aged AgNPs. With these two AgNP preparations, we studied the impacts of humic acid in terms of embryonic toxicity, as well as the behavior of AgNPs. Aged AgNPs exhibited a lower lethal concentration (LC50) value (1.44mg/L) compared to fresh AgNPs (3.53mg/L) through 96h acute toxicity tests, due to the release of silver ions, as confirmed by kinetic analysis. The presence of humic acids considerably reduced the toxicity of aged AgNPs due to complexation with silver ions. Agglomeration, induced by interactions with humic acid, might reduce the bioavailability of AgNPs to Japanese medaka embryos. This study demonstrates that aged AgNPs releasing more silver ions are more toxic than fresh AgNPs, and humic acids play a role in reducing the toxicity of aged AgNPs. Copyright © 2013 Elsevier Inc. All rights reserved.
The mechanism of metal nanoparticle formation in plants: limits on accumulation
NASA Astrophysics Data System (ADS)
Haverkamp, R. G.; Marshall, A. T.
2009-08-01
Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO3, Na3Ag(S2O3)2, and Ag(NH3)2NO3 solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of AgI to Ag0 is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).
NASA Astrophysics Data System (ADS)
Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming
2018-02-01
Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current-voltage (I-V) measurements.
Singh, Priyanka; Pandit, Santosh; Garnæs, Jørgen; Tunjic, Sanja; Mokkapati, Venkata RSS; Sultan, Abida; Thygesen, Anders; Mackevica, Aiga; Mateiu, Ramona Valentina; Daugaard, Anders Egede; Baun, Anders; Mijakovic, Ivan
2018-01-01
Background Cannabis sativa (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of C. sativa in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). Methods and results The nanoparticles were synthesized by utilizing an aqueous extract of C. sativa stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents. In the synthesis of AuNPs using the cortex enriched in bast fibers, fiber-AuNPs (F-AuNPs) were achieved. When using the core part of the stem, which is enriched with phenolic compounds such as alkaloids and cannabinoids, core-AuNPs (C-AuNPs) and core-AgNPs (C-AgNPs) were formed. Synthesized nanoparticles were character-ized by UV–visible analysis, transmission electron microscopy, atomic force microscopy, dynamic light scattering, Fourier transform infrared, and matrix-assisted laser desorption/ionization time-of-flight. In addition, the stable nature of nanoparticles has been shown by thermogravimetric analysis and inductively coupled plasma mass spectrometry (ICP-MS). Finally, the AgNPs were explored for the inhibition of Pseudomonas aeruginosa and Escherichia coli biofilms. Conclusion The synthesized nanoparticles were crystalline with an average diameter between 12 and 18 nm for F-AuNPs and C-AuNPs and in the range of 20–40 nm for C-AgNPs. ICP-MS analysis revealed concentrations of synthesized nanoparticles as 0.7, 4.5 and 3.6 mg/mL for F-AuNPs, C-AuNPs and C-AgNPs, respectively. Fourier transform infrared spectroscopy revealed the presence of flavonoids, cannabinoids, terpenes and phenols on the nanoparticle surface, which could be responsible for reducing the salts to nanoparticles and further stabilizing them. In addition, the stable nature of synthesized nanoparticles has been shown by thermogravimetric analysis and ICP-MS. Finally, the AgNPs were explored for the inhibition of P. aeruginosa and E. coli biofilms. The nanoparticles exhibited minimum inhibitory concentration values of 6.25 and 5 µg/mL and minimum bactericidal concentration values of 12.5 and 25 µg/mL against P. aeruginosa and E. coli, respectively.
Shi, Huixian; Chen, Jiangyao; Li, Guiying; Nie, Xin; Zhao, Huijun; Wong, Po-Keung; An, Taicheng
2013-08-14
A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition-precipitation method at the room temperature (25 ± 1 °C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, scanning electron microscopy, and ultraviolet-visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency.
Okafor, Florence; Janen, Afef; Kukhtareva, Tatiana; Edwards, Vernessa; Curley, Michael
2013-01-01
Our research focused on the production, characterization and application of silver nanoparticles (AgNPs), which can be utilized in biomedical research and environmental cleaning applications. We used an environmentally friendly extracellular biosynthetic technique for the production of the AgNPs. The reducing agents used to produce the nanoparticles were from aqueous extracts made from the leaves of various plants. Synthesis of colloidal AgNPs was monitored by UV-Visible spectroscopy. The UV-Visible spectrum showed a peak between 417 and 425 nm corresponding to the Plasmon absorbance of the AgNPs. The characterization of the AgNPs such as their size and shape was performed by Atom Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) techniques which indicated a size range of 3 to 15 nm. The anti-bacterial activity of AgNPs was investigated at concentrations between 2 and 15 ppm for Gram-negative and Gram-positive bacteria. Staphylococcus aureus and Kocuria rhizophila, Bacillus thuringiensis (Gram-positive organisms); Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium (Gram-negative organisms) were exposed to AgNPs using Bioscreen C. The results indicated that AgNPs at a concentration of 2 and 4 ppm, inhibited bacterial growth. Preliminary evaluation of cytotoxicity of biosynthesized silver nanoparticles was accomplished using the InQ™ Cell Research System instrument with HEK 293 cells. This investigation demonstrated that silver nanoparticles with a concentration of 2 ppm and 4 ppm were not toxic for human healthy cells, but inhibit bacterial growth. PMID:24157517
Le, Nhung Thi Tuyet; Nagata, Hirofumi; Aihara, Mutsumi; Takahashi, Akira; Okamoto, Toshihiro; Shimohata, Takaaki; Mawatari, Kazuaki; Kinouchi, Yhosuke; Akutagawa, Masatake; Haraguchi, Masanobu
2011-01-01
There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO2 is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO2, SiO2, and Ag to identify optimal production conditions for the production of TiO2- and/or TiO2/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO2 or TiO2 plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO2 films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO2/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO2/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO2, producing a more pronounced effect with increasing levels of catalyst loading. PMID:21724887
Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale
2017-01-01
Background: Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. Objective: This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. Materials and Methods: AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Results: The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375–480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3–6 nm, 3–22 nm, and 3–18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Conclusion: Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. SUMMARY The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV-Vis spectroscopy, SEM and TEM microscopy, as well as EDX, XRD and FTIR spectroscopy AgNPs were well dispersed with spherical shapes and average sizes of 3-6nm, 3-22nm and 3-18 nm for garlic, ginger and cayenne pepper respectivelyAmine, protein, phenolic and alkyne groups were revealed as the capping agents for the nanoparticlesThe silver nanoparticles were confirmed to be crystalline with characteristic face centred cubic natureThe antibacterial and antioxidant activities of the AgNPs confirmed the therapeutic potential of the AgNPs. Abbreviations used: AgNPs: Silver nanoparticles; UV-Vis: ultraviolet-visible; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; EDX: Energy dispersive X-ray; XRD: X-ray diffraction; FTIR: Fourier transform infrared; GaNPs: Garlic nanoparticles; GiNPs: Ginger nanoparticles; C.PeNPs: Cayenne pepper nanoparticles; FCC: Face centred cubic; SPR: Surface Plasmon resonance; ABTS-2: 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); DPPH-1: 1-diphenyl-2-picrylhydrazyl. PMID:28808381
Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale
2017-07-01
Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV-Vis spectroscopy, SEM and TEM microscopy, as well as EDX, XRD and FTIR spectroscopy AgNPs were well dispersed with spherical shapes and average sizes of 3-6nm, 3-22nm and 3-18 nm for garlic, ginger and cayenne pepper respectivelyAmine, protein, phenolic and alkyne groups were revealed as the capping agents for the nanoparticlesThe silver nanoparticles were confirmed to be crystalline with characteristic face centred cubic natureThe antibacterial and antioxidant activities of the AgNPs confirmed the therapeutic potential of the AgNPs. Abbreviations used: AgNPs: Silver nanoparticles; UV-Vis: ultraviolet-visible; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; EDX: Energy dispersive X-ray; XRD: X-ray diffraction; FTIR: Fourier transform infrared; GaNPs: Garlic nanoparticles; GiNPs: Ginger nanoparticles; C.PeNPs: Cayenne pepper nanoparticles; FCC: Face centred cubic; SPR: Surface Plasmon resonance; ABTS-2: 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); DPPH-1: 1-diphenyl-2-picrylhydrazyl.
NASA Astrophysics Data System (ADS)
Li, Shi-Kuo; Yan, You-Xian; Wang, Jin-Long; Yu, Shu-Hong
2013-11-01
In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications.In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications. Electronic supplementary information (ESI) available: Preparation of GO aqueous colloid solution; XPS spectra of GO paper and PDA modified rGO paper; SEM images of rGO/Ag hybrid paper after immersed in mercaptoethanol solution or in high alkaline solution; photograph and SEM image of pure rGO paper after reaction with AgNO3 solution. SEM image and TEM graph of the pre-synthesized Ag NPs and their SEM images incubated with PDA modified rGO paper; SERS spectra of R6G (1.0 × 10-4 M) molecules before and after cleaning with concentrated hydrochloric acid liquid taken on rGO/Ag hybrid paper obtained by a reaction with 1.0 M AgNO3 solution; SERS spectra of R6G (1.0 × 10-4 M) molecules with different reusable cycles taken on rGO/Ag hybrid paper obtained by a reaction with 1.0 M AgNO3 solution; comparison between different kinds of substrates with the detection limit toward R6G. See DOI: 10.1039/c3nr03857b
Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza
2015-10-01
Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.
2015-02-01
Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.
Chakraborty, Biswajit; Pal, Ramkrishna; Ali, Mohammed; Singh, Leichombam Mohindro; Shahidur Rahman, Dewan; Kumar Ghosh, Sujit; Sengupta, Mahuya
2016-01-01
The use of nanotechnology in nanoparticle-based cancer therapeutics is gaining impetus due to the unique biophysical properties of nanoparticles at the quantum level. Silver nanoparticles (AgNPs) have been reported as one type of potent therapeutic nanoparticles. The present study is aimed to determine the effect of AgNPs in arresting the growth of a murine fibrosarcoma by a reductive mechanism. Initially, a bioavailability study showed that mouse serum albumin (MSA)-coated AgNPs have enhanced uptake; therefore, toxicity studies of AgNP-MSA at 10 different doses (1–10 mg/kg b.w.) were performed in LACA mice by measuring the complete blood count, lipid profile and histological parameters. The complete blood count, lipid profile and histological parameter results showed that the doses from 2 to 8 mg (IC50: 6.15 mg/kg b.w.) sequentially increased the count of leukocytes, lymphocytes and granulocytes, whereas the 9- and 10-mg doses showed conclusive toxicity. In an antitumor study, the incidence and size of fibrosarcoma were reduced or delayed when murine fibrosarcoma groups were treated by AgNP-MSA. Transmission electron micrographs showed that considerable uptake of AgNP-MSA by the sentinel immune cells associated with tumor tissue and a morphologically buckled structure of the immune cells containing AgNP-MSA. Because the toxicity studies revealed a relationship between AgNPs and immune function, the protumorigenic cytokines TNF-α, IL-6 and IL-1β were also assayed in AgNP-MSA-treated and non-treated fibrosarcoma groups, and these cytokines were found to be downregulated after treatment with AgNP-MSA. PMID:25938978
Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel
2016-04-06
A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.
Ion beam nano-engineering of erbium doped silicon for enhanced light emission at 1.54 microns
NASA Astrophysics Data System (ADS)
Naczas, Sebastian
Erbium doped silicon is of great interest as a potential light source in Silicon Photonics research due to its light emission at 1.54 mum, which corresponds to the minimal loss of optical transmission in silica fibers for telecommunications. In this thesis a basic mechanism for excitation and de-excitation of Er in Si is reviewed. Based on such fundamental understanding, an innovative approach is proposed and implemented to improve Er luminescence properties through the formation of metal nanoparticles via impurity gettering in Si nanocavities. The first part of the work demonstrates the use of ion implantation combined with thermal treatments for forming Ag nanoparticles in the vicinity of Er luminescence centers in Si. The utilization of standard semiconductor fabrication equipment and moderate thermal budgets make this approach fully compatible with Si CMOS technologies. The presence of Ag nanoparticles leads to an enhancement in the Er photoluminescence intensity, its excitation cross section and the population of optically active Er, possibly due to the surface plasmon excitation effects related to Ag nanoparticles. The resulting structures were characterized by Hydrogen depth profiling (NRA), Rutherford backscattering spectroscopy (RBS), Photoluminescence (PL), Transmission electron microscopy (TEM). In order to optimize the Er luminescence properties in such a system it is necessary to understand how the sample conditions affect the formation of Ag nanoparticles in Si. Therefore in the second part of this project we investigate the role of surface oxide in point defect generation and recombination, and the consequence on nanocavity formation and defect retention in Si. Investigation of the surface oxide effects on nanocavity formation in hydrogen implanted silicon and the influence of resultant nanocavities on diffusion and gettering of implanted silver atoms. Two sets of Si samples were prepared, depending on whether the oxide layer was etched off before (Group-A) or after (Group-B) post-H-implantation annealing. As evidenced by transmission electron microscopy, Group-A samples exhibited an array of large-sized nanocavities in hexagon-like shape, whereas a narrow band of sphere-shaped nanocavities of small size was present below the surface in Group-B samples. These Si samples with pre-existing nanocavities were further implanted with Ag ions in the surface region and post-Ag-implantation annealing was conducted in the temperature range between 600 and 900 °C. Measurements based on RBS revealed much different behaviors for Ag redistribution and defect accumulation in these two sets of samples. Compared to the case for Group-B Si, Group-A Si exhibited a lower concentration of residual defects and a slower kinetics in Ag diffusion as well. The properties of nanocavities, e.g., their depth distribution, size, and even shape, are believed to be responsible for the observed disparities between the samples with and without surface oxides, including an interesting contrast of surface vs. bulk diffusion phenomena for implanted Ag atoms. Based on this thesis work, we believe that this approach is promising for achieving monolithically integrated room-temperature light emitting devices based on Er-doped Si, if the properties (e.g., density/size/type of nanoparticles) of these novel Si nanostructures could be further optimized in future studies.
Shankar, Shiv; Rhim, Jong-Whan
2015-10-05
Silver nanoparticles (AgNPs) were synthesized using amino acids (tyrosine and tryptophan) as reducing and capping agents, and they were incorporated into the agar to prepare antimicrobial composite films. The AgNPs solutions exhibited characteristic absorption peak at 420 nm that showed a red shift to ∼434 nm after forming composite with agar. XRD data demonstrated the crystalline structure of AgNPs with dominant (111) facet. Apparent surface color and transmittance of agar films were greatly influenced by the AgNPs. The incorporation of AgNPs into agar did not exhibit any change in chemical structure, thermal stability, moisture content, and water vapor permeability. The water contact angle, tensile strength, and modulus decreased slightly, but elongation at break increased after AgNPs incorporation. The agar/AgNPs nanocomposite films possessed strong antibacterial activity against Listeria monocytogenes and Escherichia coli. The agar/AgNPs film could be applied to the active food packaging by controlling the food-borne pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of ablation time on femtosecond laser synthesis of Au- Ag colloidal nanoalloys
NASA Astrophysics Data System (ADS)
Hidayah, A. N.; Triyono, D.; Herbani, Y.; Isnaeni; Suliyanti, M. M.
2018-03-01
Au-Ag nanoalloys have been synthesized by laser irradiation technique. First, Au and Ag nanoparticles were prepared from Au and Ag pure metal (99.9%) ablated using an 800 nm femtosecond laser in distilled water. Using the same laser, Au and Ag nanoparticle with 1:1 ratio were subsequently mixed and irradiated with various irradiation time, i.e. 0, 5, 20, and 35 minutes. We varied the ablation time for each metal nanoparticles, i.e. 25 minutes and 1 hour to see its effect on the production of nanoalloys in the subsequent irradiation. Au-Ag nanoalloys were characterized and analyzed using transmission electron microscope and UV-Vis spectrophotometry. The result shows that Au-Ag nanoalloys were already formed in 20 minutes irradiation, either for the sample ablated for 25 minutes or 1 hour. The result of TEM shows that the size of Au-Ag nanoalloys prepared from 1 hour ablation was around 15.03 nm.