Sample records for distributed aperture sensor

  1. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  2. Acquisition of Cooperative Small Unmanned Aerial Systems for Advancing Man Machine Interface Research

    DTIC Science & Technology

    2016-08-24

    global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...synthetic, global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...such as an insect fly eye , but allowing multiple aperture configurations. Due to the desired nature of distributed networked aerial vehicles (for the

  3. The Fate of Colloidal Swarms in Fractures

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Olander, M. K.

    2009-12-01

    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was released under gravity into the water. The swarm density is slightly greater than water and falls faster than the terminal velocity of an individual particle in water. The cohesiveness of the swarm was maintained over 50 mm to 95 mm even in the presence of fluid currents. The swarm velocity decreased with decreasing fracture aperture. When the apertures are small, swarms break-up and reform as they pass through a variable aperture fracture. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022) and the Summer Undergraduate Research Fellowship program at Purdue University.

  4. Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter

    2015-06-01

    The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.

  5. Space environment simulation and sensor calibration facility

    NASA Astrophysics Data System (ADS)

    Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  6. Space environment simulation and sensor calibration facility.

    PubMed

    Engelhart, Daniel P; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  7. Analyzing spatial coherence using a single mobile field sensor.

    PubMed

    Fridman, Peter

    2007-04-01

    According to the Van Cittert-Zernike theorem, the intensity distribution of a spatially incoherent source and the mutual coherence function of the light impinging on two wave sensors are related. It is the comparable relationship using a single mobile sensor moving at a certain velocity relative to the source that is calculated in this paper. The auto-corelation function of the electric field at the sensor contains information about the intensity distribution. This expression could be employed in aperture synthesis.

  8. Temporal dosimeter and method

    DOEpatents

    Warner, Benjamin P.; Lopez, Thomas A.

    2003-09-30

    The invention includes a temporal dosimeter. One dosimeter embodiment includes a housing that is opaque to visible light but transparent to ionizing radiation. The dosimeter also includes a sensor for recording dosages of ionizing radiation, a drive mechanism, a power source, and rotatable shields that work together to produce a compound aperture to unveil different portions of the sensor at different times to ionizing radiation. Another dosimeter embodiment includes a housing, a sensor, a shield with an aperture portion, and a linear actuator drive mechanism coupled to the sensor for moving the sensor past the aperture portion. The sensor turns as it moves past the aperture, tracing a timeline record of exposure to ionizing radiation along a helical path on the sensor.

  9. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  10. Thumb-actuated two-axis controller

    NASA Technical Reports Server (NTRS)

    Hollow, R. H. (Inventor)

    1986-01-01

    A two axis joystick controller is described. It produces at least one output signal in relation to pivotal displacement of a member with respect to an intersection of the two axes. The member is pivotally movable on a support with respect to the two axes. The support has a centrally disposed aperture. A light source is mounted on the pivotally movable member above the aperture to direct light through the aperture. A light sensor is mounted below the aperture in the support at the intersection of the two axes to receive the light from the light source directed through the aperture. The light sensor produces at least one output signal related to a location on the sensor at which the light from the light source strikes the sensor.

  11. Process for manufacturing shell membrane force and deflection sensor

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae (Inventor); Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Cutkosky, Mark R. (Inventor); Chau, Kelvin K. (Inventor)

    2012-01-01

    A sensor for force is formed from an elastomeric cylinder having a region with apertures. The apertures have passageways formed between them, and an optical fiber is introduced into these passageways, where the optical fiber has a grating for measurement of tension positioned in the passageways between apertures. Optionally, a temperature measurement sensor is placed in or around the elastomer for temperature correction, and if required, a copper film may be deposited in the elastomer for reduced sensitivity to spot temperature variations in the elastomer near the sensors.

  12. Force and deflection sensor with shell membrane and optical gratings and method of manufacture

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae (Inventor); Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Cutkosky, Mark R. (Inventor); Chau, Kelvin K (Inventor)

    2011-01-01

    A sensor for force is formed from an elastomeric cylinder having a region with apertures. The apertures have passageways formed between them, and an optical fiber is introduced into these passageways, where the optical fiber has a grating for measurement of tension positioned in the passageways between apertures. Optionally, a temperature measurement sensor is placed in or around the elastomer for temperature correction, and if required, a copper film may be deposited in the elastomer for reduced sensitivity to spot temperature variations in the elastomer near the sensors.

  13. A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm

    PubMed Central

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770

  14. Vision systems for manned and robotic ground vehicles

    NASA Astrophysics Data System (ADS)

    Sanders-Reed, John N.; Koon, Phillip L.

    2010-04-01

    A Distributed Aperture Vision System for ground vehicles is described. An overview of the hardware including sensor pod, processor, video compression, and displays is provided. This includes a discussion of the choice between an integrated sensor pod and individually mounted sensors, open architecture design, and latency issues as well as flat panel versus head mounted displays. This technology is applied to various ground vehicle scenarios, including closed-hatch operations (operator in the vehicle), remote operator tele-operation, and supervised autonomy for multi-vehicle unmanned convoys. In addition, remote vision for automatic perimeter surveillance using autonomous vehicles and automatic detection algorithms is demonstrated.

  15. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  16. Data Intensive Systems (DIS) Benchmark Performance Summary

    DTIC Science & Technology

    2003-08-01

    models assumed by today’s conventional architectures. Such applications include model- based Automatic Target Recognition (ATR), synthetic aperture...radar (SAR) codes, large scale dynamic databases/battlefield integration, dynamic sensor- based processing, high-speed cryptanalysis, high speed...distributed interactive and data intensive simulations, data-oriented problems characterized by pointer- based and other highly irregular data structures

  17. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor

    PubMed Central

    Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424

  18. Generating Artificial Reference Images for Open Loop Correlation Wavefront Sensors

    NASA Astrophysics Data System (ADS)

    Townson, M. J.; Love, G. D.; Saunter, C. D.

    2018-05-01

    Shack-Hartmann wavefront sensors for both solar and laser guide star adaptive optics (with elongated spots) need to observe extended objects. Correlation techniques have been successfully employed to measure the wavefront gradient in solar adaptive optics systems and have been proposed for laser guide star systems. In this paper we describe a method for synthesising reference images for correlation Shack-Hartmann wavefront sensors with a larger field of view than individual sub-apertures. We then show how these supersized reference images can increase the performance of correlation wavefront sensors in regimes where large relative shifts are induced between sub-apertures, such as those observed in open-loop wavefront sensors. The technique we describe requires no external knowledge outside of the wavefront-sensor images, making it available as an entirely "software" upgrade to an existing adaptive optics system. For solar adaptive optics we show the supersized reference images extend the magnitude of shifts which can be accurately measured from 12% to 50% of the field of view of a sub-aperture and in laser guide star wavefront sensors the magnitude of centroids that can be accurately measured is increased from 12% to 25% of the total field of view of the sub-aperture.

  19. Determination of the paraxial focal length using Zernike polynomials over different apertures

    NASA Astrophysics Data System (ADS)

    Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich

    2017-02-01

    The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.

  20. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1996-08-13

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  1. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1995-10-17

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  2. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  3. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1996-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  4. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels.

    PubMed

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-06-17

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays.

  5. Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels

    PubMed Central

    Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian

    2016-01-01

    Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays. PMID:27312072

  6. Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam (Inventor); Manohara, Harish (Inventor); Mobasser, Sohrab (Inventor); Lee, Choonsup (Inventor)

    2011-01-01

    Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

  7. Anti- reflective device having an anti-reflection surface formed of silicon spikes with nano-tips

    NASA Technical Reports Server (NTRS)

    Bae, Youngsman (Inventor); Mooasser, Sohrab (Inventor); Manohara, Harish (Inventor); Lee, Choonsup (Inventor); Bae, Kungsam (Inventor)

    2009-01-01

    Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

  8. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    PubMed

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  9. Characterization of an air jet haptic lump display.

    PubMed

    Bianchi, Matteo; Gwilliam, James C; Degirmenci, Alperen; Okamura, Allison M

    2011-01-01

    During manual palpation, clinicians rely on distributed tactile information to identify and localize hard lumps embedded in soft tissue. The development of tactile feedback systems to enhance palpation using robot-assisted minimally invasive surgery (RMIS) systems is challenging due to size and weight constraints, motivating a pneumatic actuation strategy. Recently, an air jet approach has been proposed for generating a lump percept. We use this technique to direct a thin stream of air through an aperture directly on the finger pad, which indents the skin in a hemispherical manner, producing a compelling lump percept. We hypothesize that the perceived parameters of the lump (e.g. size and stiffness) can be controlled by jointly adjusting air pressure and the aperture size through which air escapes. In this work, we investigate how these control variables interact to affect perceived pressure on the finger pad. First, we used a capacitive tactile sensor array to measure the effect of aperture size on output pressure, and found that peak output pressure increases with aperture size. Second, we performed a psychophysical experiment for each aperture size to determine the just noticeable difference (JND) of air pressure on the finger pad. Subject-averaged pressure JND values ranged from 19.4-24.7 kPa, with no statistical differences observed between aperture sizes. The aperture-pressure relationship and the pressure JND values will be fundamental for future display control.

  10. Multi-Beam Radio Frequency (RF) Aperture Arrays Using Multiplierless Approximate Fast Fourier Transform (FFT)

    DTIC Science & Technology

    2017-08-01

    filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics

  11. The application of Fresnel zone plate based projection in optofluidic microscopy.

    PubMed

    Wu, Jigang; Cui, Xiquan; Lee, Lap Man; Yang, Changhuei

    2008-09-29

    Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM's aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter = 255 microm, focal length = 800 microm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter = 1 microm, separation = 10 microm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength = 633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system--a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples.

  12. Development of two-dimensional interdigitated center of pressure sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok; Pines, Darryll J.

    2017-12-01

    This paper presents the development of a two-dimensional (2D) flexible patch sensor to detect and monitor the center of pressure (CoP) location and the total magnitude of a spatially distributed pressure to the specific surface areas of engineering structures. The CoP sensor with the contact mode induced by a pressure distribution was formulated by force sensitive resistor technology and was mainly composed of a thin conductive polymer layer, adhesive spacers, and two interdigitated patterned electrode films with unique sensing aperture shadings. By properly mapping the interdigitated electrode patterns to the top and bottom surfaces of the conductive polymer, the proposed sensor ideally enables to measure an overall applied pressure level and its centroid location within a predetermined sensing region in real-time. The CoP sensor containing 36 sensing sections within a dimension of around 3 × 3 inches was prototyped and experimentally investigated to verify its capability to identify the CoP location and magnitude due to the presence of a permanent magnet-based local pressure distribution. Only five electric wires connected to the CoP sensor to inspect the pressure-sensing positions of 36 segments. The evaluation results of the measured sensor data demonstrate good agreements with the actual test parameters such as the total pressure and its centroid position with about 5% locational error. However, to provide accurate information on the overall pressure range, the compensation factors must be determined and applied to the individual sensing sections of the sensor.

  13. Phase difference statistics related to sensor and forest parameters

    NASA Technical Reports Server (NTRS)

    Lopes, A.; Mougin, E.; Beaudoin, A.; Goze, S.; Nezry, E.; Touzi, R.; Karam, M. A.; Fung, A. K.

    1992-01-01

    The information content of ordinary synthetic aperture radar (SAR) data is principally contained in the radiometric polarization channels, i.e., the four Ihh, Ivv, Ihv and Ivh backscattered intensities. In the case of clutter, polarimetric information is given by the four complex degrees of coherence, from which the mean polarization phase differences (PPD), correlation coefficients or degrees of polarization can be deduced. For radiometric features, the polarimetric parameters are corrupted by multiplicative speckle noise and by some sensor effects. The PPD distribution is related to the sensor, speckle and terrain properties. Experimental results are given for the variation of the terrain hh/vv mean phase difference and magnitude of the degree of coherence observed on bare soil and on different pine forest stands.

  14. Nanotip Carpets as Antireflection Surfaces

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; Mobasser, Sohrab; Manohara, Harish; Lee, Choonsup

    2008-01-01

    Carpet-like random arrays of metal-coated silicon nanotips have been shown to be effective as antireflection surfaces. Now undergoing development for incorporation into Sun sensors that would provide guidance for robotic exploratory vehicles on Mars, nanotip carpets of this type could also have many uses on Earth as antireflection surfaces in instruments that handle or detect ultraviolet, visible, or infrared light. In the original Sun-sensor application, what is required is an array of 50-micron-diameter apertures on what is otherwise an opaque, minimally reflective surface, as needed to implement a miniature multiple-pinhole camera. The process for fabrication of an antireflection nanotip carpet for this application (see Figure 1) includes, and goes somewhat beyond, the process described in A New Process for Fabricating Random Silicon Nanotips (NPO-40123), NASA Tech Briefs, Vol. 28, No. 1 (November 2004), page 62. In the first step, which is not part of the previously reported process, photolithography is performed to deposit etch masks to define the 50-micron apertures on a silicon substrate. In the second step, which is part of the previously reported process, the non-masked silicon area between the apertures is subjected to reactive ion etching (RIE) under a special combination of conditions that results in the growth of fluorine-based compounds in randomly distributed formations, known in the art as "polymer RIE grass," that have dimensions of the order of microns. The polymer RIE grass formations serve as microscopic etch masks during the next step, in which deep reactive ion etching (DRIE) is performed. What remains after DRIE is the carpet of nano - tips, which are high-aspect-ratio peaks, the tips of which have radii of the order of nanometers. Next, the nanotip array is evaporatively coated with Cr/Au to enhance the absorption of light (more specifically, infrared light in the Sun-sensor application). The photoresist etch masks protecting the apertures are then removed by dipping the substrate into acetone. Finally, for the Sun-sensor application, the back surface of the substrate is coated with a 57-nm-thick layer of Cr for attenuation of sunlight.

  15. Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor.

    PubMed

    Meimon, Serge; Fusco, Thierry; Michau, Vincent; Plantet, Cédric

    2014-05-15

    We propose here a novel way to analyze Shack-Hartmann wavefront sensor images in order to retrieve more modes than the two centroid coordinates per sub-aperture. To do so, we use the linearized focal-plane technique (LIFT) phase retrieval method for each sub-aperture. We demonstrate that we can increase the number of modes sensed with the same computational burden per mode. For instance, we show the ability to control a 21×21 actuator deformable mirror using a 10×10 lenslet array.

  16. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    PubMed

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  17. Optimizing sensor cover energy for directional sensors

    NASA Astrophysics Data System (ADS)

    Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna

    2016-10-01

    The Directional Sensors Continuous Coverage Problem (DSCCP) aims at covering a given set of targets in a plane by means of a set of directional sensors. The location of these sensors is known in advance and they are characterized by a discrete set of possible radii and aperture angles. Decisions to be made are about orientation (which in our approach can vary continuously), radius and aperture angle of each sensor. The objective is to get a minimum cost coverage of all targets, if any. We introduce a MINLP formulation of the problem and define a Lagrangian heuristics based on a dual ascent procedure operating on one multiplier at a time. Finally we report the results of the implementation of the method on a set of test problems.

  18. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  19. Analysis of High Grazing Angle Sea-clutter with the KK-Distribution

    DTIC Science & Technology

    2013-11-01

    work undertaken at the DSTO in characterising the maritime environment from high altitude airborne platforms. The focus of this report is to characterise...multichannel synthetic aperture radar through Adelaide University. He has worked at the DSTO as an RF engineer in the missile simulation centre, as a...with the Cooperative Research Centre for Sensor, Signal and Information Processing where he worked in the Pattern Recognition Group on the application

  20. Applications of space observations to the management and utilization of coastal fishery resources

    NASA Technical Reports Server (NTRS)

    Kemmerer, A. J.; Savastano, K. J.; Faller, K. H.

    1977-01-01

    Information needs of those concerned with the harvest and management of coastal fishery resources can be satisfied in part through applications of satellite remote sensing. Recently completed and ongoing investigations have demonstrated potentials for defining fish distribution patterns from multispectral data, monitoring fishing distribution and effort with synthetic aperture radar systems, forecasting recruitment of certain estuarine-dependent species, and tracking marine mammals. These investigations, which are reviewed in this paper, have relied on Landsat 1 and 2, Skylab-3, and Nimbus-6 supported sensors and sensors carried by aircraft and mounted on surface platforms to simulate applications from Seasat-A and other future spacecraft systems. None of the systems are operational as all were designed to identify and demonstrate applications and to aid in the specification of requirements for future spaceborne systems.

  1. Model of an optical system's influence on sensitivity of microbolometric focal plane array

    NASA Astrophysics Data System (ADS)

    Gogler, Sławomir; Bieszczad, Grzegorz; Zarzycka, Alicja; Szymańska, Magdalena; Sosnowski, Tomasz

    2012-10-01

    Thermal imagers and used therein infrared array sensors are subject to calibration procedure and evaluation of their voltage sensitivity on incident radiation during manufacturing process. The calibration procedure is especially important in so-called radiometric cameras, where accurate radiometric quantities, given in physical units, are of concern. Even though non-radiometric cameras are not expected to stand up to such elevated standards, it is still important, that the image faithfully represents temperature variations across the scene. The detectors used in thermal camera are illuminated by infrared radiation transmitted through a specialized optical system. Each optical system used influences irradiation distribution across an sensor array. In the article a model describing irradiation distribution across an array sensor working with an optical system used in the calibration set-up has been proposed. In the said method optical and geometrical considerations of the array set-up have been taken into account. By means of Monte-Carlo simulation, large number of rays has been traced to the sensor plane, what allowed to determine the irradiation distribution across the image plane for different aperture limiting configurations. Simulated results have been confronted with proposed analytical expression. Presented radiometric model allows fast and accurate non-uniformity correction to be carried out.

  2. A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors

    NASA Astrophysics Data System (ADS)

    Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.

    2018-04-01

    The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.

  3. Common aperture multispectral sensor flight test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, R.S.; Kaufman, C.S.

    1996-11-01

    This paper will provide an overview of the Common Aperture Multispectral Sensor (CAMS) Hardware Demonstrator. CAMS is a linescanning sensor that simultaneously collected digital imagery over the Far-IR (8 to 12 {mu}m) and visible spectral (0.55 to 1.1 PM) spectral bands, correlated at the pixel level. CAMS was initially sponsored by the U.S. Naval Air System Commands F/A-18 program office (PMA-265). The current CAMS field tests are under the direction of Northrop-Grumman for the Defense Nuclear Agency (DNA) in support of the Follow-On Open Skies Sensor Evaluation Program (FOSEP) and are scheduled to be conducted in April 1996. 8 figs.,more » 4 tabs.« less

  4. Improving slowness estimate stability and visualization using limited sensor pair correlation on seismic arrays

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.

    2018-04-01

    Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.

  5. Double Wigner distribution function of a first-order optical system with a hard-edge aperture.

    PubMed

    Pan, Weiqing

    2008-01-01

    The effect of an apertured optical system on Wigner distribution can be expressed as a superposition integral of the input Wigner distribution function and the double Wigner distribution function of the apertured optical system. By introducing a hard aperture function into a finite sum of complex Gaussian functions, the double Wigner distribution functions of a first-order optical system with a hard aperture outside and inside it are derived. As an example of application, the analytical expressions of the Wigner distribution for a Gaussian beam passing through a spatial filtering optical system with an internal hard aperture are obtained. The analytical results are also compared with the numerical integral results, and they show that the analytical results are proper and ascendant.

  6. Flow line sampler

    DOEpatents

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  7. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array

    PubMed Central

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-01-01

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271

  8. Data Assimilation and verification based on GEO microwave observations

    NASA Astrophysics Data System (ADS)

    He, J.

    2017-12-01

    THE frequency band from 50 to 56 GHz has been used to retrieve atmospheric temperature profiles through radiometric measurements at and near absorption maxima. Sensors working around 50-56 GHz are now only available on low earth orbit (LEO), and are still lacked in the geostationary earth orbit (GEO) application. Compared with LEO sounding, sensors working in GEO orbit can continuously monitor the full earth disk and perform. The Geostationary Interferometric Microwave Sounder (GIMS) is a synthetic aperture microwave sounder working in time-sharing sampling mode with a rotating circular antenna array. Real-time forecasting for short-term meteorological phenomena such as tropical cyclones, which is one of the most important natural disasters that cause severe damage in coastal areas around the world. Furthermore, since information available in microwave band is different from that available in visible/ infrared frequency, microwave sensor in GEO orbit can complement the existing sensors in GEO orbit that work in visible/infrared frequency to determine vertical temperature distribution and thus help investigate inner structure of tropical cyclone. As we know, a lot of improvement of WRFDA has been realized, such as radar data and LEO microwave data. It has the ability of providing initial conditions for the WRF model and assessing observing system. However, one major constraint of WRFDA is the ability of assimilating GEO microwave observations into the assimilation model and verify how the GIMS sensor effect the output data of model, especially for synthetic aperture microwave sounder. So, for my group, we focus on surface pressure and precipitation in hurricane and typhoon areas based on WRF and WRFDA model, and also, combine polar-orbit observations and geostationary microwave simulations to improve the tracking accuracy.

  9. Joint estimation of high resolution images and depth maps from light field cameras

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki

    2014-03-01

    Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.

  10. Off-Grid Direction of Arrival Estimation Based on Joint Spatial Sparsity for Distributed Sparse Linear Arrays

    PubMed Central

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-01-01

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150

  11. Ground truth data for test sites (SL-3). [solar radiation and thermal radiation brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneously with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. The solar radiation region from 400 to 1300 nanometers and the thermal radiation region from 8 to 14 micrometer region were investigated. The measurements of direct solar radiation were analyzed for atmospheric optical depth; the total and reflected solar radiation were analyzed for target reflectivity. These analyses were used in conjunction with a radiative transfer computer program in order to calculate the amount and spectral distribution of solar radiation at the apertures of the EREP sensors. The instrumentation and techniques employed, calibrations and analyses performed, and results obtained are discussed.

  12. Diffraction of cosine-Gaussian-correlated Schell-model beams.

    PubMed

    Pan, Liuzhan; Ding, Chaoliang; Wang, Haixia

    2014-05-19

    The expression of spectral density of cosine-Gaussian-correlated Schell-model (CGSM) beams diffracted by an aperture is derived, and used to study the changes in the spectral density distribution of CGSM beams upon propagation, where the effect of aperture diffraction is emphasized. It is shown that, comparing with that of GSM beams, the spectral density distribution of CGSM beams diffracted by an aperture has dip and shows dark hollow intensity distribution when the order-parameter n is big enough. The central intensity increases with increasing truncation parameter of aperture. The comparative study of spectral density distributions of CGSM beams with aperture and that of without aperture is performed. Furthermore, the effect of order-parameter n and spatial coherence of CGSM beams on the spectral density distribution is discussed in detail. The results obtained may be useful in optical particulate manipulation.

  13. EOS radiometer concepts for soil moisture remote sensing

    NASA Technical Reports Server (NTRS)

    Carr, J.

    1986-01-01

    Preliminary work with aperture synthesis concepts for EOS is reported. The effects of nonvanishing bandwidths on image reconstruction in aperture synthesis system was studied. It is found that nonvanishing bandwidths introduce errors in off-axis pixels when naive Fourier processing is used. The net effect is for bandwidth to limit sensor field-of-view. To quantify this effect a computer program was written which is documented. Example runs are included which illustrate the resultant radiometric errors and effective fields-of-view for a plausible simple sensor.

  14. The ABLE ACE wavefront sensor

    NASA Astrophysics Data System (ADS)

    Butts, Robert R.

    1997-08-01

    A low noise, high resolution Shack-Hartmann wavefront sensor was included in the ABLE-ACE instrument suite to obtain direct high resolution phase measurements of the 0.53 micrometers pulsed laser beam propagated through high altitude atmospheric turbulence. The wavefront sensor employed a Fired geometry using a lenslet array which provided approximately 17 sub-apertures across the pupil. The lenslets focused the light in each sub-aperture onto a 21 by 21 array of pixels in the camera focal plane with 8 pixels in the camera focal plane with 8 pixels across the central lobe of the diffraction limited spot. The goal of the experiment was to measure the effects of the turbulence in the free atmosphere on propagation, but the wavefront sensor also detected the aberrations induced by the aircraft boundary layer and the receiver aircraft internal beam path. Data analysis methods used to extract the desired atmospheric contribution to the phase measurements from the data corrupted by non-atmospheric aberrations are described. Approaches which were used included a reconstruction of the phase as a linear combination of Zernike polynomials coupled with optical estimator sand computation of structure functions of the sub-aperture slopes. The theoretical basis for the data analysis techniques is presented. Results are described, and comparisons with theory and simulations are shown. Estimates of average turbulence strength along the propagation path from the wavefront sensor showed good agreement with other sensor. The Zernike spectra calculated from the wavefront sensor data were consistent with the standard Kolmogorov model of turbulence.

  15. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    DTIC Science & Technology

    2016-04-21

    Distribution A: Public Release; unlimited distribution 2016 Optical Society of America OCIS codes: (060.1660) Coherent communications; (070.2025) Discrete ...Coherent combining algorithm Multi-aperture coherent combining enables using many discrete apertures together to create a large effective aperture. A

  16. Examples of current radar technology and applications, chapter 5, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.

  17. The Lemur Conjecture

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    In previous research we designed an interferometric quantum seismograph that uses entangled photon states to enhance sensitivity in an optomechanic device. However, a spatially-distributed array of such sensors, with each sensor measuring only nm-vibrations, may not provide sufficient sensitivity for the prediction of major earthquakes because it fails to exploit potentially critical phase information. We conjecture that relative phase information can explain the anecdotal observations that animals such as lemurs exhibit sensitivity to impending earthquakes earlier than can be done confidently with traditional seismic technology. More specifically, we propose that lemurs use their limbs as ground motion sensors and that relative phase differences are fused in the brain in a manner similar to a phased-array or synthetic-aperture radar. In this paper we will describe a lemur-inspired quantum sensor network for early warning of earthquakes. The system uses 4 interferometric quantum seismographs (e.g., analogous to a lemurs limbs) and then conducts phase and data fusion of the seismic information. Although we discuss a quantum-based technology, the principles described can also be applied to classical sensor arrays

  18. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  19. Unmanned Aircraft Systems (UAS) Sensor and Targeting

    DTIC Science & Technology

    2010-07-27

    4.7.1 Objective. The objective of this subtest is to determine the detection performance of the Synthetic Aperture Radar (SAR) with the radar...Detection SAR – Synthetic Aperture Radar 4.7.3 Data Required. Section 5.1 outlines general test data required. The following additional data may...m – meter No. – Number PC – Probability of Classification SAR – Synthetic Aperture Radar 4.8.3 Data Required. Section 5.1 outlines

  20. Optimum parameters of image preprocessing method for Shack-Hartmann wavefront sensor in different SNR condition

    NASA Astrophysics Data System (ADS)

    Wei, Ping; Li, Xinyang; Luo, Xi; Li, Jianfeng

    2018-02-01

    The centroid method is commonly adopted to locate the spot in the sub-apertures in the Shack-Hartmann wavefront sensor (SH-WFS), in which preprocessing image is required before calculating the spot location due to that the centroid method is extremely sensitive to noises. In this paper, the SH-WFS image was simulated according to the characteristics of the noises, background and intensity distribution. The Optimal parameters of SH-WFS image preprocessing method were put forward, in different signal-to-noise ratio (SNR) conditions, where the wavefront reconstruction error was considered as the evaluation index. Two methods of image preprocessing, thresholding method and windowing combing with thresholding method, were compared by studying the applicable range of SNR and analyzing the stability of the two methods, respectively.

  1. Fabrication of Extremely Short Length Fiber Bragg Gratings for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Rogowski, Robert S.; Tedjojuwono, Ken K.

    2002-01-01

    A new technique and a physical model for writing extremely short length Bragg gratings in optical fibers have been developed. The model describes the effects of diffraction on the spatial spectra and therefore, the wavelength spectra of the Bragg gratings. Using an interferometric technique and a variable aperture, short gratings of various lengths and center wavelengths were written in optical fibers. By selecting the related parameters, the Bragg gratings with typical length of several hundred microns and bandwidth of several nanometers can be obtained. These short gratings can be apodized with selected diffraction patterns and hence their broadband spectra have a well-defined bell shape. They are suitable for use as miniaturized distributed strain sensors, which have broad applications to aerospace research and industry as well.

  2. Functional Form of the Radiometric Equation for the SNPP VIIRS Reflective Solar Bands: An Initial Study

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager, observing radiative energy from the Earth in 22 spectral bands from 0.41 to 12 microns which include 14 reflective solar bands (RSBs). Extending the formula used by the Moderate Resolution Imaging Spectroradiometer instruments, currently the VIIRS determines the sensor aperture spectral radiance through a quadratic polynomial of its detector digital count. It has been known that for the RSBs the quadratic polynomial is not adequate in the design specified spectral radiance region and using a quadratic polynomial could drastically increase the errors in the polynomial coefficients, leading to possible large errors in the determined aperture spectral radiance. In addition, it is very desirable to be able to extend the radiance calculation formula to correctly retrieve the aperture spectral radiance with the level beyond the design specified range. In order to more accurately determine the aperture spectral radiance from the observed digital count, we examine a few polynomials of the detector digital count to calculate the sensor aperture spectral radiance.

  3. Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant

    2004-08-01

    The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.

  4. Optical path difference microscopy with a Shack-Hartmann wavefront sensor.

    PubMed

    Gong, Hai; Agbana, Temitope E; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2017-06-01

    In this Letter, we show that a Shack-Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.

  5. Interferometric rotation sensor

    NASA Technical Reports Server (NTRS)

    Walsh, T. M. (Inventor)

    1973-01-01

    An interferometric rotation sensor and control system is provided which includes a compound prism interferometer and an associated direction control system. Light entering the interferometer is split into two paths with the light in the respective paths being reflected an unequal number of times, and then being recombined at an exit aperture in phase differing relationships. Incoming light is deviated from the optical axis of the device by an angle, alpha. The angle causes a similar displacement of the two component images at the exit aperture which results in a fringe pattern. Fringe numbers are directly related to angle alpha. Various control systems of the interferometer are given.

  6. Sparse aperture differential piston measurements using the pyramid wave-front sensor

    NASA Astrophysics Data System (ADS)

    Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong

    2016-07-01

    In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.

  7. Autonomous collection of dynamically-cued multi-sensor imagery

    NASA Astrophysics Data System (ADS)

    Daniel, Brian; Wilson, Michael L.; Edelberg, Jason; Jensen, Mark; Johnson, Troy; Anderson, Scott

    2011-05-01

    The availability of imagery simultaneously collected from sensors of disparate modalities enhances an image analyst's situational awareness and expands the overall detection capability to a larger array of target classes. Dynamic cooperation between sensors is increasingly important for the collection of coincident data from multiple sensors either on the same or on different platforms suitable for UAV deployment. Of particular interest is autonomous collaboration between wide area survey detection, high-resolution inspection, and RF sensors that span large segments of the electromagnetic spectrum. The Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) is building sensors with such networked communications capability and is conducting field tests to demonstrate the feasibility of collaborative sensor data collection and exploitation. Example survey / detection sensors include: NuSAR (NRL Unmanned SAR), a UAV compatible synthetic aperture radar system; microHSI, an NRL developed lightweight hyper-spectral imager; RASAR (Real-time Autonomous SAR), a lightweight podded synthetic aperture radar; and N-WAPSS-16 (Nighttime Wide-Area Persistent Surveillance Sensor-16Mpix), a MWIR large array gimbaled system. From these sensors, detected target cues are automatically sent to the NRL/SDL developed EyePod, a high-resolution, narrow FOV EO/IR sensor, for target inspection. In addition to this cooperative data collection, EyePod's real-time, autonomous target tracking capabilities will be demonstrated. Preliminary results and target analysis will be presented.

  8. Survey of United States Commercial Satellites in Geosynchronous Earth Orbit

    DTIC Science & Technology

    1994-09-01

    248 a. Imaging Sensors ...... ............ 248 (1) Return Beam Vidicon Camera . ... 249 (2) Scanners. ...... ............ 249 b. Nonimaging ...251 a. Imaging Microwave Sensors ......... .. 251 (1) Synthetic Aperture Radar . ... 251 b. Nonimaging Microwave Sensors ..... .. 252 (1) Radar...The stream of electrons travels alonq the axis oa the tube, constrained by focusing magnets, until it reaches the collector . Surrounding this electron

  9. A hybrid method for synthetic aperture ladar phase-error compensation

    NASA Astrophysics Data System (ADS)

    Hua, Zhili; Li, Hongping; Gu, Yongjian

    2009-07-01

    As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.

  10. Processing for spaceborne synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Lybanon, M.

    1973-01-01

    The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.

  11. Highly Directive Array Aperture

    DTIC Science & Technology

    2013-02-13

    generally to sonar arrays with acoustic discontinuities, and, more particularly, to increasing the directivity gain of a sonar array aperture by...sought by sonar designers. [0005] The following patents and publication show various types of acoustic arrays with coatings and discontinuities that...discloses a sonar array uses multiple acoustically transparent layers. One layer is a linear array of acoustic sensors that is substantially

  12. Multi-port valve

    DOEpatents

    Lewin, Keith F.

    1997-04-15

    A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.

  13. Multi-port valve

    DOEpatents

    Lewin, K.F.

    1997-04-15

    A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.

  14. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  15. CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1994-01-01

    Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  16. Amplitude and phase beam characterization using a two-dimensional wavefront sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1996-09-01

    We have developed a two-dimensional Shack-Hartman wavefront sensor that uses binary optic lenslet arrays to directly measure the wavefront slope (phase gradient) and amplitude of the laser beam. This sensor uses an array of lenslets that dissects the beam into a number of samples. The focal spot location of each of these lenslets (measured by a CCD camera) is related to the incoming wavefront slope over the lenslet. By integrating these measurements over the laser aperture, the wavefront or phase distribution can be determined. Since the power focused by each lenslet is also easily determined, this allows a complete measurementmore » of the intensity and phase distribution of the laser beam. Furthermore, all the information is obtained in a single measurement. Knowing the complete scalar field of the beam allows the detailed prediction of the actual beam`s characteristics along its propagation path. In particular, the space- beamwidth product M{sup 2}, can be obtained in a single measurement. The intensity and phase information can be used in concert with information about other elements in the optical train to predict the beam size, shape, phase and other characteristics anywhere in the optical train. We present preliminary measurements of an Ar{sup +} laser beam and associated M{sup 2} calculations.« less

  17. Distributed Beam Former for Distributed-Aperture Electronically Steered Antennas

    DTIC Science & Technology

    2006-11-01

    of planar or conformal aperture, it will be replaced by a distributed aperture configuration with a base-band digital network that is used to combine...beam forming network that can be designed with pre-set scanning directions. The beam former for this stage can be realized using a printed Butler...matrix (Bona et al, 2002; Neron and Delisle, 2005), a printed Rotman lens (Kilic and Dahlstrom, 2005) or other switched time delay system. The

  18. Self-calibrating solar position sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxey, Lonnie Curt

    A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated bymore » the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.« less

  19. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  20. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  1. Adaptive optics technique to overcome the turbulence in a large-aperture collimator.

    PubMed

    Mu, Quanquan; Cao, Zhaoliang; Li, Dayu; Hu, Lifa; Xuan, Li

    2008-03-20

    A collimator with a long focal length and large aperture is a very important apparatus for testing large-aperture optical systems. But it suffers from internal air turbulence, which may limit its performance and reduce the testing accuracy. To overcome this problem, an adaptive optics system is introduced to compensate for the turbulence. This system includes a liquid crystal on silicon device as a wavefront corrector and a Shack-Hartmann wavefront sensor. After correction, we can get a plane wavefront with rms of about 0.017 lambda (lambda=0.6328 microm) emitted out of a larger than 500 mm diameter aperture. The whole system reaches diffraction-limited resolution.

  2. NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover

    2017-01-01

    Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture.

  3. Geostationary Microwave Sounders: Science, Applications and the Geostar Instrument Concept

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Gaier, Todd; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan

    2011-01-01

    Microwave atmospheric sounders have long provided some of the most imporant data for use in numerical weather prediction (NWP) and have played an important role in atmospheric weather and climate research. With 7 US satellites now carrying such sensors, we are in a 'golden age' of microwave remote sensing of the atmosphere. However, as this fleet ages and is replaced by a smaller number of new sensors in the coming yars, the main shortcoming of sensors in low Earth orbit -i.e. poor spacial and temporal converage and sampling - will become more apparent. Placing such sensors on geostationary satellites, enabling time-continuous views of large portions of the Earth disc, would solve this problem. but the GEO orbit is approximately 40 times higher than a typical LEO orbit, which requires antenna apertures also about 40 times larger than for LEO systems to maintain spatial resolution, and it has not been feasible to develop such systems. Recently, a solution to this problem has appeared in the form of aperture synthesis.

  4. Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links.

    PubMed

    Lyke, Stephen D; Voelz, David G; Roggemann, Michael C

    2009-11-20

    The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to strong. Results show that under weak scintillation conditions both the gamma-gamma and lognormal PDF models provide a good fit to the simulation data for all aperture sizes studied. Our results indicate that in moderate scintillation the gamma-gamma PDF provides a better fit to the simulation data than the lognormal PDF for all aperture sizes studied. In the strong scintillation regime, the simulation data distribution is gamma gamma for aperture sizes much smaller than the coherence radius rho0 and lognormal for aperture sizes on the order of rho0 and larger. Examples of how these results affect the bit-error rate of an on-off keyed free space optical communication link are presented.

  5. Coded aperture solution for improving the performance of traffic enforcement cameras

    NASA Astrophysics Data System (ADS)

    Masoudifar, Mina; Pourreza, Hamid Reza

    2016-10-01

    A coded aperture camera is proposed for automatic license plate recognition (ALPR) systems. It captures images using a noncircular aperture. The aperture pattern is designed for the rapid acquisition of high-resolution images while preserving high spatial frequencies of defocused regions. It is obtained by minimizing an objective function, which computes the expected value of perceptual deblurring error. The imaging conditions and camera sensor specifications are also considered in the proposed function. The designed aperture improves the depth of field (DoF) and subsequently ALPR performance. The captured images can be directly analyzed by the ALPR software up to a specific depth, which is 13 m in our case, though it is 11 m for the circular aperture. Moreover, since the deblurring results of images captured by our aperture yield fewer artifacts than those captured by the circular aperture, images can be first deblurred and then analyzed by the ALPR software. In this way, the DoF and recognition rate can be improved at the same time. Our case study shows that the proposed camera can improve the DoF up to 17 m while it is limited to 11 m in the conventional aperture.

  6. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  7. Statistical analysis of wavefront fluctuations from measurements of a wave-front sensor

    NASA Astrophysics Data System (ADS)

    Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Lukin, V. P.

    2017-11-01

    Measurements of the wave front aberrations at the input aperture of the Big Solar Vacuum Telescope (LSVT) were carried out by a wave-front sensor (WFS) of an adaptive optical system when the controlled deformable mirror was replaced by a plane one.

  8. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  9. Model development and system performance optimization for staring infrared search and track (IRST) sensors

    NASA Astrophysics Data System (ADS)

    Olson, Craig; Theisen, Michael; Pace, Teresa; Halford, Carl; Driggers, Ronald

    2016-05-01

    The mission of an Infrared Search and Track (IRST) system is to detect and locate (sometimes called find and fix) enemy aircraft at significant ranges. Two extreme opposite examples of IRST applications are 1) long range offensive aircraft detection when electronic warfare equipment is jammed, compromised, or intentionally turned off, and 2) distributed aperture systems where enemy aircraft may be in the proximity of the host aircraft. Past IRST systems have been primarily long range offensive systems that were based on the LWIR second generation thermal imager. The new IRST systems are primarily based on staring infrared focal planes and sensors. In the same manner that FLIR92 did not work well in the design of staring infrared cameras (NVTherm was developed to address staring infrared sensor performance), current modeling techniques do not adequately describe the performance of a staring IRST sensor. There are no standard military IRST models (per AFRL and NAVAIR), and each program appears to perform their own modeling. For this reason, L-3 has decided to develop a corporate model, working with AFRL and NAVAIR, for the analysis, design, and evaluation of IRST concepts, programs, and solutions. This paper provides some of the first analyses in the L-3 IRST model development program for the optimization of staring IRST sensors.

  10. The rapid terrain visualization interferometric synthetic aperture radar sensor

    NASA Astrophysics Data System (ADS)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  11. Dynamically variable spot size laser system

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  12. Addressing practical challenges in utility optimization of mobile wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Eswaran, Sharanya; Misra, Archan; La Porta, Thomas; Leung, Kin

    2008-04-01

    This paper examines the practical challenges in the application of the distributed network utility maximization (NUM) framework to the problem of resource allocation and sensor device adaptation in a mission-centric wireless sensor network (WSN) environment. By providing rich (multi-modal), real-time information about a variety of (often inaccessible or hostile) operating environments, sensors such as video, acoustic and short-aperture radar enhance the situational awareness of many battlefield missions. Prior work on the applicability of the NUM framework to mission-centric WSNs has focused on tackling the challenges introduced by i) the definition of an individual mission's utility as a collective function of multiple sensor flows and ii) the dissemination of an individual sensor's data via a multicast tree to multiple consuming missions. However, the practical application and performance of this framework is influenced by several parameters internal to the framework and also by implementation-specific decisions. This is made further complex due to mobile nodes. In this paper, we use discrete-event simulations to study the effects of these parameters on the performance of the protocol in terms of speed of convergence, packet loss, and signaling overhead thereby addressing the challenges posed by wireless interference and node mobility in ad-hoc battlefield scenarios. This study provides better understanding of the issues involved in the practical adaptation of the NUM framework. It also helps identify potential avenues of improvement within the framework and protocol.

  13. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  14. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  15. The Effect of a Pre-Lens Aperture on the Temperature Range and Image Uniformity of Microbolometer Infrared Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Parris, Larkin S.; Lindal, John M.

    This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image.more » An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.« less

  16. Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen

    2018-03-01

    Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.

  17. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.

  18. Improving land vehicle situational awareness using a distributed aperture system

    NASA Astrophysics Data System (ADS)

    Fortin, Jean; Bias, Jason; Wells, Ashley; Riddle, Larry; van der Wal, Gooitzen; Piacentino, Mike; Mandelbaum, Robert

    2005-05-01

    U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (NVESD) has performed early work to develop a Distributed Aperture System (DAS). The DAS aims at improving the situational awareness of armored fighting vehicle crews under closed-hatch conditions. The concept is based on a plurality of sensors configured to create a day and night dome of surveillance coupled with heads up displays slaved to the operator's head to give a "glass turret" feel. State-of-the-art image processing is used to produce multiple seamless hemispherical views simultaneously available to the vehicle commander, crew members and dismounting infantry. On-the-move automatic cueing of multiple moving/pop-up low silhouette threats is also done with the possibility to save/revisit/share past events. As a first step in this development program, a contract was awarded to United Defense to further develop the Eagle VisionTM system. The second-generation prototype features two camera heads, each comprising four high-resolution (2048x1536) color sensors, and each covering a field of view of 270°hx150°v. High-bandwidth digital links interface the camera heads with a field programmable gate array (FPGA) based custom processor developed by Sarnoff Corporation. The processor computes the hemispherical stitch and warp functions required for real-time, low latency, immersive viewing (360°hx120°v, 30° down) and generates up to six simultaneous extended graphics array (XGA) video outputs for independent display either on a helmet-mounted display (with associated head tracking device) or a flat panel display (and joystick). The prototype is currently in its last stage of development and will be integrated on a vehicle for user evaluation and testing. Near-term improvements include the replacement of the color camera heads with a pixel-level fused combination of uncooled long wave infrared (LWIR) and low light level intensified imagery. It is believed that the DAS will significantly increase situational awareness by providing the users with a day and night, wide area coverage, immersive visualization capability.

  19. Methods for determining infrasound phase velocity direction with an array of line sensors.

    PubMed

    Walker, Kristoffer T; Zumberge, Mark A; Hedlin, Michael A H; Shearer, Peter M

    2008-10-01

    Infrasound arrays typically consist of several microbarometers separated by distances that provide predictable signal time separations, forming the basis for processing techniques that estimate the phase velocity direction. The directional resolution depends on the noise level and is proportional to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many microphones that instantaneously integrate pressure change. The instrument response is a function of the orientation of the line with respect to the signal wavefront. Real data recorded at the Piñon Flat Observatory in southern California and synthetic data show that this spectral property can be exploited with multiple line sensors to determine the phase velocity direction with a precision comparable to a larger aperture array of microbarometers. Three types of instrument-response-dependent beamforming and an array deconvolution technique are evaluated. The results imply that an array of five radial line sensors, with equal azimuthal separation and an aperture that depends on the frequency band of interest, provides directional resolution while requiring less space compared to an equally effective array of five microbarometers with rosette wind filters.

  20. Phenomenology of electromagnetic coupling: Conductors penetrating an aperture

    NASA Astrophysics Data System (ADS)

    Wright, D. B.; King, R. J.

    1987-06-01

    The purpose of this study was to investigate the coupling effects of penetrating conductors through free-standing apertures. This penetrating conductor and aperture arrangement are referred to as a modified aperture. A penetrating conductor is defined here to be a thin, single wire bent twice at 90 angles. The wire was inserted through a rectangular aperture in a metal wall. Vertical segments on both sides of the wall coupled energy from one region to the other. Energy was incident upon the modified aperture from what is referred to as the exterior region. The amount of coupling was measured by a D sensor on the other (interior) side of the wall. This configuration of an aperture in a metal wall was used as opposed to an aperture in a cavity in order to simplify the interpretation of resulting data. The added complexity of multiple cavity resonances was therefore eliminated. Determining the effects of penetrating conductors on aperture coupling is one of several topics being investigated as part of on-going research at Lawrence Livermore National Laboratory on the phenomenology of electromagnetic coupling. These phenomenology studies are concerned with the vulnerability of electronic systems to high intensity electromagnetic fields. The investigation is relevant to high altitude EMP (HEMP), enhanced HEMP (EHEMP), and high power microwave (HPM) coupling.

  1. More Zernike modes' open-loop measurement in the sub-aperture of the Shack-Hartmann wavefront sensor.

    PubMed

    Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li

    2016-10-17

    The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.

  2. Integrated Multi-Aperture Sensor and Navigation Fusion

    DTIC Science & Technology

    2010-02-01

    Visio, Springer-Verlag Inc., New York, 2004. [3] R. G. Brown and P. Y. C. Hwang , Introduction to Random Signals and Applied Kalman Filtering, Third...formulate Kalman filter vision/inertial measurement observables for other images without the need to know (or measure) their feature ranges. As compared...Internal Data Fusion Multi-aperture/INS data fusion is formulated in the feature domain using the complementary Kalman filter methodology [3]. In this

  3. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  4. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  5. Confocal epifluorescence sensor with an arc-shaped aperture for slide-based PCR quantification.

    PubMed

    Weng, Jui-Hong; Chen, Lin-Chi

    2018-02-15

    The increasing needs of point-of-care diagnostics, quarantine of epidemic pathogens, and prevention of terrorism's bio-attacks have promised the future of portable real-time quantitative polymerase chain reaction (qPCR) sensors. This work aims at developing a highly sensitive and low-cost light emitting diode (LED)-based epifluorescence sensor module for qPCR sensor development and relevant bioassay applications. Inspired by the light stop design and dark-field detection of microscopes, this paper first reports a compact confocal LED epifluorescence sensor using a light stop with an arc-shaped aperture for enhancing the flexibility of quick DNA and PCR detection. The sensor features the advantages of the dichroic mirror-free and confocal (shared-focus) characteristics, which benefits size reduction and minimal optics used. It also allows extension to integrate with in situ real-time PCR thermal cycling since the sample slide is placed apart from the epi-sensing module. The epifluorescence sensor can detect as low as sub-ng/μL standard DNA and 10 1 copies of Salmonella typhimurium InvA gene sequences (cloned in E. coli and after 30-cycle PCR) with SYBR ® Green I from non-purified culture samples, having highly sensitive and specific signal responses comparable with that of a commercial qPCR instrument. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ground Testing of Prototype Hardware and Processing Algorithms for a Wide Area Space Surveillance System (WASSS)

    NASA Astrophysics Data System (ADS)

    Goldstein, N.; Dressler, R. A.; Richtsmeier, S. S.; McLean, J.; Dao, P. D.; Murray-Krezan, J.; Fulcoly, D. O.

    2013-09-01

    Recent ground testing of a wide area camera system and automated star removal algorithms has demonstrated the potential to detect, quantify, and track deep space objects using small aperture cameras and on-board processors. The camera system, which was originally developed for a space-based Wide Area Space Surveillance System (WASSS), operates in a fixed-stare mode, continuously monitoring a wide swath of space and differentiating celestial objects from satellites based on differential motion across the field of view. It would have greatest utility in a LEO orbit to provide automated and continuous monitoring of deep space with high refresh rates, and with particular emphasis on the GEO belt and GEO transfer space. Continuous monitoring allows a concept of change detection and custody maintenance not possible with existing sensors. The detection approach is equally applicable to Earth-based sensor systems. A distributed system of such sensors, either Earth-based, or space-based, could provide automated, persistent night-time monitoring of all of deep space. The continuous monitoring provides a daily record of the light curves of all GEO objects above a certain brightness within the field of view. The daily updates of satellite light curves offers a means to identify specific satellites, to note changes in orientation and operational mode, and to queue other SSA assets for higher resolution queries. The data processing approach may also be applied to larger-aperture, higher resolution camera systems to extend the sensitivity towards dimmer objects. In order to demonstrate the utility of the WASSS system and data processing, a ground based field test was conducted in October 2012. We report here the results of the observations made at Magdalena Ridge Observatory using the prototype WASSS camera, which has a 4×60° field-of-view , <0.05° resolution, a 2.8 cm2 aperture, and the ability to view within 4° of the sun. A single camera pointed at the GEO belt provided a continuous night-long record of the intensity and location of more than 50 GEO objects detected within the camera's 60-degree field-of-view, with a detection sensitivity similar to the camera's shot noise limit of Mv=13.7. Performance is anticipated to scale with aperture area, allowing the detection of dimmer objects with larger-aperture cameras. The sensitivity of the system depends on multi-frame averaging and an image processing algorithm that exploits the different angular velocities of celestial objects and SOs. Principal Components Analysis (PCA) is used to filter out all objects moving with the velocity of the celestial frame of reference. The resulting filtered images are projected back into an Earth-centered frame of reference, or into any other relevant frame of reference, and co-added to form a series of images of the GEO objects as a function of time. The PCA approach not only removes the celestial background, but it also removes systematic variations in system calibration, sensor pointing, and atmospheric conditions. The resulting images are shot-noise limited, and can be exploited to automatically identify deep space objects, produce approximate state vectors, and track their locations and intensities as a function of time.

  7. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  8. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.

  9. Optical fibres in pre-detector signal processing

    NASA Astrophysics Data System (ADS)

    Flinn, A. R.

    The basic form of conventional electro-optic sensors is described. The main drawback of these sensors is their inability to deal with the background radiation which usually accompanies the signal. This 'clutter' limits the sensors performance long before other noise such as 'shot' noise. Pre-detector signal processing using the complex amplitude of the light is introduced as a means to discriminate between the signal and 'clutter'. Further improvements to predetector signal processors can be made by the inclusion of optical fibres allowing radiation to be used with greater efficiency and enabling certain signal processing tasks to be carried out with an ease unequalled by any other method. The theory of optical waveguides and their application in sensors, interferometers, and signal processors is reviewed. Geometrical aspects of the formation of linear and circular interference fringes are described along with temporal and spatial coherence theory and their relationship to Michelson's visibility function. The requirements for efficient coupling of a source into singlemode and multimode fibres are given. We describe interference experiments between beams of light emitted from a few metres of two or more, singlemode or multimode, optical fibres. Fresnel's equation is used to obtain expressions for Fresnel and Fraunhofer diffraction patterns which enable electro-optic (E-0) sensors to be analysed by Fourier optics. Image formation is considered when the aperture plane of an E-0 sensor is illuminated with partially coherent light. This allows sensors to be designed using optical transfer functions which are sensitive to the spatial coherence of the illuminating light. Spatial coherence sensors which use gratings as aperture plane reticles are discussed. By using fibre arrays, spatial coherence processing enables E-0 sensors to discriminate between a spatially coherent source and an incoherent background. The sensors enable the position and wavelength of the source to be determined. Experiments are described which use optical fibre arrays as masks for correlation with spatial distributions of light in image planes of E-0 sensors. Correlations between laser light from different points in a scene is investigated by interfering the light emitted from an array of fibres, placed in the image plane of a sensor, with each other. Temporal signal processing experiments show that the visibility of interference fringes gives information about path differences in a scene or through an optical system. Most E-0 sensors employ wavelength filtering of the detected radiation to improve their discrimination and this is shown to be less selective than temporal coherence filtering which is sensitive to spectral bandwidth. Experiments using fibre interferometers to discriminate between red and blue laser light by their bandwidths are described. In most cases the path difference need only be a few tens of centimetres. We consider spatial and temporal coherence in fibres. We show that high visibility interference fringes can be produced by red and blue laser light transmitted through over 100 metres of singlemode or multimode fibre. The effect of detector size, relative to speckle size, is considered for fringes produced by multimode fibres. The effect of dispersion on the coherence of the light emitted from fibres is considered in terms of correlation and interference between modes. We describe experiments using a spatial light modulator called SIGHT-MOD. The device is used in various systems as a fibre optic switch and as a programmable aperture plane reticle. The contrast of the device is measured using red and green, HeNe, sources. Fourier transform images of patterns on the SIGHT-MOD are obtained and used to demonstrate the geometrical manipulation of images using 2D fibre arrays. Correlation of Fourier transform images of the SIGHT-MOD with 2D fibre arrays is demonstrated.

  10. Estimation of Forest Fuel Load from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Despain, Don G.; Halligan, Kerry; Crabtree, Robert

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar imagery acquired over a large area of the Yellowstone National Park (YNP) by the AIRSAR sensor, to estimate the distribution of forest biomass and canopy fuel loads. Semi-empirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, canopy fuel weight, canopy bulk density, and foliage moisture content. These estimates when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy, and when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R(sup 2) = 85 for the canopy fuel weight, R(sup 2)=.84 for canopy bulk density and R(sup 2) = 0.78 for the foliage biomass.

  11. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Zuo, Chao; Idir, Mourad

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  12. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGES

    Huang, Lei; Zuo, Chao; Idir, Mourad; ...

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  13. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    NASA Astrophysics Data System (ADS)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  14. A Morphogenetic Model Accounting for Pollen Aperture Pattern in Flowering Plants.

    PubMed

    Ressayre; Godelle; Mignot; Gouyon

    1998-07-21

    Pollen grains are embeddded in an extremely resistant wall. Apertures are well defined places where the pollen wall is reduced or absent that permit pollen tube germination. Pollen grains are produced by meiosis and aperture number definition appears to be linked with the partition that follows meiosis and leads to the formation of a tetrad of four haploid microspores. In dicotyledonous plants, meiosis is simultaneous which means that cytokinesis occurs once the two nuclear divisions are completed. A syncitium with the four nuclei stemming from meiosis is formed and cytokinesis isolates simulataneously the four products of meiosis. We propose a theoretical morphogenetic model which takes into account part of the features of the ontogeny of the pollen grains. The nuclei are considered as attractors acting upon a morphogenetic substance distributed within the cytoplasm of the dividing cell. This leads to a partition of the volume of the cell in four domains that is similar to the observations of cytokinesis in the studied species. The most widespread pattern of aperture distribution in dicotyledonous plants (three apertures equidistributed on the pollen grain equator) can be explained by bipolar interactions between nuclei stemming from the second meiotic division, and observed variations on these patterns by disturbances of these interactions. In numerous plant species, several pollen grains differing in aperture number are produced by a single individual. The distribution of the different morphs within tetrads indicates that the four daughter cells can have different aperture number. The model provides an explanation for the duplication of one of the apertures of a three-aperture pollen grain leading to a four-aperture one and in parallel it gives an explanation for how heterogeneous tetrads can be formed.Copyright 1998 Academic Press

  15. Study on Persistent Monitoring of Maritime, Great Lakes and St. Lawrence Seaway Border Regions

    DTIC Science & Technology

    2011-12-01

    narcotics between both countries, particularly due to the burgeoning marijuana market originating in British Columbia (BC). Additionally, due to the...Sensors 2008, Vol. 8, pp. 2959-2973 Crisp D. J., The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery, DSTO– RR–0272...Network SAR – Synthetic Aperture radar SII-Surveillance Intelligence and Interdiction SNR - Signal-to-Noise SOLAS - Safety of Life at Sea

  16. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2015-05-01

    We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-π,π) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2π. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper, we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.

  17. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2015-05-01

    We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-pi, pi) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2pi. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.

  18. Advances in spaceborne synthetic aperture radar sensor technology

    NASA Technical Reports Server (NTRS)

    Caro, E. R.; Ruzek, M.

    1986-01-01

    The evolution of space SARs for NASA projects since Seasat (1978) is surveyed, with an emphasis on hardware development. The fundamental principles of SAR are reviewed; the SIR-A and SIR-B instruments flown as Shuttle payloads are characterized; their antennas, transmitters, receivers, and data subsystems are described; the advantages offered by the SIR-C dual-frequency (L and C band) dual-polarization distributed SAR (being developed for a future Shuttle flight and as the basis of an SAR for the Earth Observing System) are explained; and a number of technical challenges are identified (including RF elements, structural fidelity, pointing accuracy, data handling, and dc power). Drawings, diagrams, sample images, photographs, and tables are provided.

  19. 3rd-generation MW/LWIR sensor engine for advanced tactical systems

    NASA Astrophysics Data System (ADS)

    King, Donald F.; Graham, Jason S.; Kennedy, Adam M.; Mullins, Richard N.; McQuitty, Jeffrey C.; Radford, William A.; Kostrzewa, Thomas J.; Patten, Elizabeth A.; McEwan, Thomas F.; Vodicka, James G.; Wootan, John J.

    2008-04-01

    Raytheon has developed a 3rd-Generation FLIR Sensor Engine (3GFSE) for advanced U.S. Army systems. The sensor engine is based around a compact, productized detector-dewar assembly incorporating a 640 x 480 staring dual-band (MW/LWIR) focal plane array (FPA) and a dual-aperture coldshield mechanism. The capability to switch the coldshield aperture and operate at either of two widely-varying f/#s will enable future multi-mode tactical systems to more fully exploit the many operational advantages offered by dual-band FPAs. RVS has previously demonstrated high-performance dual-band MW/LWIR FPAs in 640 x 480 and 1280 x 720 formats with 20 μm pitch. The 3GFSE includes compact electronics that operate the dual-band FPA and variable-aperture mechanism, and perform 14-bit analog-to-digital conversion of the FPA output video. Digital signal processing electronics perform "fixed" two-point non-uniformity correction (NUC) of the video from both bands and optional dynamic scene-based NUC; advanced enhancement processing of the output video is also supported. The dewar-electronics assembly measures approximately 4.75 x 2.25 x 1.75 inches. A compact, high-performance linear cooler and cooler electronics module provide the necessary FPA cooling over a military environmental temperature range. 3GFSE units are currently being assembled and integrated at RVS, with the first units planned for delivery to the US Army.

  20. MM wave SAR sensor design: Concept for an airborne low level reconnaissance system

    NASA Astrophysics Data System (ADS)

    Boesswetter, C.

    1986-07-01

    The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.

  1. Imaging through strong turbulence with a light field approach.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2016-05-30

    Under strong turbulence conditions, object's images can be severely distorted and become unrecognizable throughout the observing time. Conventional image restoring algorithms do not perform effectively in these circumstances due to the loss of good references on the object. We propose the use a plenoptic sensor as a light field camera to map a conventional camera image onto a cell image array in the image's sub-angular spaces. Accordingly, each cell image on the plenoptic sensor is equivalent to the image acquired by a sub-aperture of the imaging lens. The wavefront distortion over the lens aperture can be analyzed by comparing cell images in the plenoptic sensor. By using a modified "Laplacian" metric, we can identify a good cell image in a plenoptic image sequence. The good cell image corresponds with the time and sub-aperture area on the imaging lens where wavefront distortion becomes relatively and momentarily "flat". As a result, it will reveal the fundamental truths of the object that would be severely distorted on normal cameras. In this paper, we will introduce the underlying physics principles and mechanisms of our approach and experimentally demonstrate its effectiveness under strong turbulence conditions. In application, our approach can be used to provide a good reference for conventional image restoring approaches under strong turbulence conditions. This approach can also be used as an independent device to perform object recognition tasks through severe turbulence distortions.

  2. The need for separate operational and engineering user interfaces for command and control of airborne synthetic aperture radar systems

    NASA Astrophysics Data System (ADS)

    Klein, Laura M.; McNamara, Laura A.

    2017-05-01

    In this paper, we address the needed components to create usable engineering and operational user interfaces (UIs) for airborne Synthetic Aperture Radar (SAR) systems. As airborne SAR technology gains wider acceptance in the remote sensing and Intelligence, Surveillance, and Reconnaissance (ISR) communities, the need for effective and appropriate UIs to command and control these sensors has also increased. However, despite the growing demand for SAR in operational environments, the technology still faces an adoption roadblock, in large part due to the lack of effective UIs. It is common to find operational interfaces that have barely grown beyond the disparate tools engineers and technologists developed to demonstrate an initial concept or system. While sensor usability and utility are common requirements to engineers and operators, their objectives for interacting with the sensor are different. As such, the amount and type of information presented ought to be tailored to the specific application.

  3. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    NASA Technical Reports Server (NTRS)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  4. Pixel super resolution using wavelength scanning

    DTIC Science & Technology

    2016-04-08

    the light source is adjusted to ~20 μW. The image sensor chip is a color CMOS sensor chip with a pixel size of 1.12 μm manufactured for cellphone...pitch (that is, ~ 1 μm in Figure 3a, using a CMOS sensor that has a 1.12-μm pixel pitch). For the same configuration depicted in Figure 3, utilizing...section). The a Lens-free raw holograms captured by 1.12 μm CMOS image sensor Field of view ≈ 20.5 mm2 Angle change directions for synthetic aperture

  5. Continued Optical Sensor Operations in a Laser Environment

    DTIC Science & Technology

    2012-10-01

    Power (W) Aperture (mm) Intensity at target (W/m2) Gain of laser to desired signal handheld 532 0.5 1.5 1120 @ 25 km 5.6 × 1024 Industrial diode ...AIR UNIVERSITY AIR WAR COLLEGE Continued Optical Sensor Operations in a Laser Environment WILLIAM J. DIEHL Commander, USN...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Continued Optical Sensor Operations in a Laser Environment 5a. CONTRACT NUMBER 5b. GRANT

  6. Wave analysis of a plenoptic system and its applications

    NASA Astrophysics Data System (ADS)

    Shroff, Sapna A.; Berkner, Kathrin

    2013-03-01

    Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.

  7. Optical system design of CCD star sensor with large aperture and wide field of view

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Jiang, Lun; Li, Ying-chao; Liu, Zhuang

    2017-10-01

    The star sensor is one of the sensors which are used to determine the spatial attitude of the space vehicle. An optical system of star sensor with large aperture and wide field of view was designed in this paper. The effective focal length of the optics was 16mm, and the F-number is 1.2, the field of view of the optical system is 20°.The working spectrum is 500 to 800 nanometer. The lens system selects a similar complicated Petzval structure and special glass-couple, and get a high imaging quality in the whole spectrum range. For each field-of-view point, the values of the modulation transfer function at 50 cycles/mm is higher than 0.3. On the detecting plane, the encircled energy in a circle of 14μm diameter could be up to 80% of the total energy. In the whole range of the field of view, the dispersion spot diameter in the imaging plane is no larger than 13μm. The full field distortion was less than 0.1%, which was helpful to obtain the accurate location of the reference star through the picture gotten by the star sensor. The lateral chromatic aberration is less than 2μm in the whole spectrum range.

  8. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    PubMed

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  9. A geometrical optics approach for modeling aperture averaging in free space optical communication applications

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Davis, Christopher C.

    2006-09-01

    Intensity fluctuations at the receiver in free space optical (FSO) communication links lead to a received power variance that depends on the size of the receiver aperture. Increasing the size of the receiver aperture reduces the power variance. This effect of the receiver size on power variance is called aperture averaging. If there were no aperture size limitation at the receiver, then there would be no turbulence-induced scintillation. In practice, there is always a tradeoff between aperture size, transceiver weight, and potential transceiver agility for pointing, acquisition and tracking (PAT) of FSO communication links. We have developed a geometrical simulation model to predict the aperture averaging factor. This model is used to simulate the aperture averaging effect at given range by using a large number of rays, Gaussian as well as uniformly distributed, propagating through simulated turbulence into a circular receiver of varying aperture size. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. For each statistical representation of the atmosphere, the three-dimensional trajectory of each ray is analyzed using geometrical optics. These Monte Carlo techniques have proved capable of assessing the aperture averaging effect, in particular, the quantitative expected reduction in intensity fluctuations with increasing aperture diameter. In addition, beam wander results have demonstrated the range-cubed dependence of mean-squared beam wander. An effective turbulence parameter can also be determined by correlating beam wander behavior with the path length.

  10. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  11. Analysis to determine the maximum dimensions of flexible apertures in sensored security netting products.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.

    2013-08-01

    Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inchestypically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inchmore » opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.« less

  12. GIS Integration for Quantitatively Determining the Capabilities of Five Remote Sensors for Resource Exploration

    NASA Technical Reports Server (NTRS)

    Pascucci, R. F.; Smith, A.

    1982-01-01

    To assist the U.S. Geological Survey in carrying out a Congressional mandate to investigate the use of side-looking airborne radar (SLAR) for resources exploration, a research program was conducted to define the contribution of SLAR imagery to structural geologic mapping and to compare this with contributions from other remote sensing systems. Imagery from two SLAR systems and from three other remote sensing systems was interpreted, and the resulting information was digitized, quantified and intercompared using a computer-assisted geographic information system (GIS). The study area covers approximately 10,000 square miles within the Naval Petroleum Reserve, Alaska, and is situated between the foothills of the Brooks Range and the North Slope. The principal objectives were: (1) to establish quantitatively, the total information contribution of each of the five remote sensing systems to the mapping of structural geology; (2) to determine the amount of information detected in common when the sensors are used in combination; and (3) to determine the amount of unique, incremental information detected by each sensor when used in combination with others. The remote sensor imagery that was investigated included real-aperture and synthetic-aperture radar imagery, standard and digitally enhanced LANDSAT MSS imagery, and aerial photos.

  13. Numerical analysis of fundamental mode selection of a He-Ne laser by a circular aperture

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhang, Bin

    2011-11-01

    In the He-Ne laser with an integrated cavity made of zerodur, the inner face performance of the gain tube is limited by the machining techniques, which tends to influence the beam propagation and transverse mode distribution. In order to improve the beam quality and select out the fundamental mode, an aperture is usually introduced in the cavity. In the process of laser design, the Fresnel-Kirchhoff diffraction integral equation is adopted to calculate the optical field distributions on each interface. The transit matrix is obtained based on self-reproducing principle and finite element method. Thus, optical field distribution on any interface and field loss of each transverse mode could be acquired by solving the eigenvalue and eigenvector of the transit matrix. For different-sized apertures in different positions, we could get different matrices and corresponding calculation results. By comparing these results, the optimal size and position of the aperture could be obtained. As a result, the feasibility of selecting fundamental mode in a zerodur He-Ne laser by a circular aperture has been verified theoretically.

  14. NASA Tech Briefs, January 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell-Based Biosensors for Monitoring Microbes; A Constant-Force Resistive Exercise Unit; GUI to Facilitate Research on Biological Damage from Radiation; On-Demand Urine Analyzer; More-Realistic Digital Modeling of a Human Body; and Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets.

  15. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  16. Characterization of fracture aperture for groundwater flow and transport

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.

    2007-12-01

    This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.

  17. Bottlenecks of the wavefront sensor based on the Talbot effect.

    PubMed

    Podanchuk, Dmytro; Kovalenko, Andrey; Kurashov, Vitalij; Kotov, Myhaylo; Goloborodko, Andrey; Danko, Volodymyr

    2014-04-01

    Physical constraints and peculiarities of the wavefront sensing technique, based on the Talbot effect, are discussed. The limitation on the curvature of the measurable wavefront is derived. The requirements to the Fourier spectrum of the periodic mask are formulated. Two kinds of masks are studied for their performance in the wavefront sensor. It is shown that the boundary part of the mask aperture does not contribute to the initial data for wavefront restoration. It is verified by experiment and computer simulation that the performance of the Talbot sensor, which meets established conditions, is similar to that of the Shack-Hartmann sensor.

  18. Vehicle Counting and Moving Direction Identification Based on Small-Aperture Microphone Array.

    PubMed

    Zu, Xingshui; Zhang, Shaojie; Guo, Feng; Zhao, Qin; Zhang, Xin; You, Xing; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-05-10

    The varying trend of a moving vehicle's angles provides much important intelligence for an unattended ground sensor (UGS) monitoring system. The present study investigates the capabilities of a small-aperture microphone array (SAMA) based system to identify the number and moving direction of vehicles travelling on a previously established route. In this paper, a SAMA-based acoustic monitoring system, including the system hardware architecture and algorithm mechanism, is designed as a single node sensor for the application of UGS. The algorithm is built on the varying trend of a vehicle's bearing angles around the closest point of approach (CPA). We demonstrate the effectiveness of our proposed method with our designed SAMA-based monitoring system in various experimental sites. The experimental results in harsh conditions validate the usefulness of our proposed UGS monitoring system.

  19. Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector.

    PubMed

    Del Hougne, Philipp; F Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N; Fink, Mathias; Lerosey, Geoffroy; Smith, David R

    2018-04-25

    Detecting and analysing motion is a key feature of Smart Homes and the connected sensor vision they embrace. At present, most motion sensors operate in line-of-sight Doppler shift schemes. Here, we propose an alternative approach suitable for indoor environments, which effectively constitute disordered cavities for radio frequency (RF) waves; we exploit the fundamental sensitivity of modes of such cavities to perturbations, caused here by moving objects. We establish experimentally three key features of our proposed system: (i) ability to capture the temporal variations of motion and discern information such as periodicity ("smart"), (ii) non line-of-sight motion detection, and (iii) single-frequency operation. Moreover, we explain theoretically and demonstrate experimentally that the use of dynamic metasurface apertures can substantially enhance the performance of RF motion detection. Potential applications include accurately detecting human presence and monitoring inhabitants' vital signs.

  20. Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array.

    PubMed

    Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-03-04

    Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively.

  1. The Seasat commercial demonstration program

    NASA Technical Reports Server (NTRS)

    Mccandless, S. W.; Miller, B. P.; Montgomery, D. R.

    1981-01-01

    The background and development of the Seasat commercial demonstration program are reviewed and the Seasat spacecraft and its sensors (altimeter, wind field scatterometer, synthetic aperture radar, and scanning multichannel microwave radiometer) are described. The satellite data distribution system allows for selected sets of data, reformatted or tailored to specific needs and geographical regions, to be available to commercial users. Products include sea level and upper atmospheric pressure, sea surface temperature, marine winds, significant wave heights, primary wave direction and period, and spectral wave data. The results of a set of retrospective case studies performed for the commercial demonstration program are described. These are in areas of application such as marine weather and ocean condition forecasting, offshore resource exploration and development, commercial fishing, and marine transportation.

  2. Implementation of Satellite Formation Flight Algorithms Using SPHERES Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mandy, Christophe P.; Sakamoto, Hiraku; Saenz-Otero, Alvar; Miller, David W.

    2007-01-01

    The MIT's Space Systems Laboratory developed the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) as a risk-tolerant spaceborne facility to develop and mature control, estimation, and autonomy algorithms for distributed satellite systems for applications such as satellite formation flight. Tests performed study interferometric mission-type formation flight maneuvers in deep space. These tests consist of having the satellites trace a coordinated trajectory under tight control that would allow simulated apertures to constructively interfere observed light and measure the resulting increase in angular resolution. This paper focuses on formation initialization (establishment of a formation using limited field of view relative sensors), formation coordination (synchronization of the different satellite s motion) and fuel-balancing among the different satellites.

  3. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  4. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  5. Estimation of forest fuel load from radar remote sensing

    USGS Publications Warehouse

    Saatchi, S.; Halligan, K.; Despain, Don G.; Crabtree, R.L.

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.

  6. The AOLI Non-Linear Curvature Wavefront Sensor: High sensitivity reconstruction for low-order AO

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; King, David; Mackay, Craig

    2013-12-01

    Many adaptive optics (AO) systems in use today require bright reference objects to determine the effects of atmospheric distortions on incoming wavefronts. This requirement is because Shack Hartmann wavefront sensors (SHWFS) distribute incoming light from reference objects into a large number of sub-apertures. Bright natural reference objects occur infrequently across the sky leading to the use of laser guide stars which add complexity to wavefront measurement systems. The non-linear curvature wavefront sensor as described by Guyon et al. has been shown to offer a significant increase in sensitivity when compared to a SHWFS. This facilitates much greater sky coverage using natural guide stars alone. This paper describes the current status of the non-linear curvature wavefront sensor being developed as part of an adaptive optics system for the Adaptive Optics Lucky Imager (AOLI) project. The sensor comprises two photon-counting EMCCD detectors from E2V Technologies, recording intensity at four near-pupil planes. These images are used with a reconstruction algorithm to determine the phase correction to be applied by an ALPAO 241-element deformable mirror. The overall system is intended to provide low-order correction for a Lucky Imaging based multi CCD imaging camera. We present the current optical design of the instrument including methods to minimise inherent optical effects, principally chromaticity. Wavefront reconstruction methods are discussed and strategies for their optimisation to run at the required real-time speeds are introduced. Finally, we discuss laboratory work with a demonstrator setup of the system.

  7. Coastal Bathymetry Using Satellite Observation in Support of Intelligence Preparation of the Environment

    DTIC Science & Technology

    2011-09-01

    Sensor ..........................................................................25 2. The Environment for Visualizing Images 4.7 (ENVI......DEM Digital Elevation Model ENVI Environment for Visualizing Images HADR Humanitarian and Disaster Relief IfSAR Interferometric Synthetic Aperture

  8. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  9. High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi

    2018-05-01

    An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Keisuke, E-mail: k.yasui.20@west-med.jp; Toshito, Toshiyuki; Omachi, Chihiro

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integralmore » depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.« less

  11. A multifrequency evaluation of active and passive microwave sensors for oil spill detection and assessment

    NASA Technical Reports Server (NTRS)

    Fenner, R. G.; Reid, S. C.; Solie, C. H.

    1980-01-01

    An evaluation is given of how active and passive microwave sensors can best be used in oil spill detection and assessment. Radar backscatter curves taken over oil spills are presented and their effect on synthetic aperture radar (SAR) imagery are discussed. Plots of microwave radiometric brightness variations over oil spills are presented and discussed. Recommendations as to how to select the best combination of frequency, viewing angle, and sensor type for evaluation of various aspects of oil spills are also discussed.

  12. Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress

    DTIC Science & Technology

    2010-07-30

    conformal acoustic velocity sensor wide aperture array (CAVES WAA), and a flexible payload sail. AESR is a software package comprised of two systems...when they are modernized. CAVES WAA is a sensor array that is designed to detect the vibrations and acoustic signatures of targets. The Navy has...require reliability improvements (Active Shaft Grounding System, Circuit D, Ship Service Turbine Generator magnetic levitation bearings / throttle

  13. Development of a novel omnidirectional magnetostrictive transducer for plate applications

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergey; Cobb, Adam; Bartlett, Jonathan; Udagawa, Youichi

    2018-04-01

    The application of guided waves for the testing of plate-type structures has been recently investigated by a number of research groups due to the ability of guided waves to detect corrosion in remote and hidden areas. Guided wave sensors for plate applications can be either directed (i.e., the waves propagate in a single direction) or omnidirectional. Each type has certain advantages and disadvantages. Omnidirectional sensors can inspect large areas from a single location, but it is challenging to define where a feature is located. Conversely, directed sensors can be used to precisely locate an indication, but have no sensitivity to flaws away from the wave propagation direction. This work describes a newly developed sensor that combines the strengths of both sensor types to create a novel omnidirectional transducer. The sensor transduction is based on a custom magnetostrictive transducer (MsT). In this new probe design, a directed, plate-application MsT with known characteristics was incorporated into an automated scanner. This scanner rotates the directed MsT for data collection at regular intervals. Coupling of the transducer to the plate is accomplished using a shear wave couplant. The array of data that is received is used for compiling B-scans and imaging, utilizing a synthetic aperture focusing algorithm (SAFT). The performance of the probe was evaluated on a 0.5-inch thick carbon steel plate mockup with a surface area of over 100 square feet. The mockup had a variety of known anomalies representing localized and distributed pitting corrosion, gradual wall thinning, and notches of different depths. Experimental data was also acquired using the new probe on a retired storage tank with known corrosion damage. The performance of the new sensor and its limitations are discussed together with general directions in technology development.

  14. Interferometric Shack-Hartmann wavefront sensor with an array of four-hole apertures.

    PubMed

    López, David; Ríos, Susana

    2010-04-20

    A modified Hartmann test based on the interference produced by a four-hole mask can be used to measure an unknown wavefront. To scan the wavefront, the interference pattern is measured for different positions of the mask. The position of the central fringe of the diamond-shaped interference pattern gives a measure of the local wavefront slopes. Using a set of four-hole apertures located behind an array of lenslets in such a way that each four-hole window is inside one lenslet area, a set of four-hole interference patterns can be obtained in the back focal plane of the lenslets without having to scan the wavefront. The central fringe area of each interference pattern is narrower than the area of the central maximum of the diffraction pattern of the lenslet, increasing the accuracy in the estimate of the lobe position as compared with the Shack-Hartmann wavefront sensor.

  15. Shack-Hartmann reflective micro profilometer

    NASA Astrophysics Data System (ADS)

    Gong, Hai; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2018-01-01

    We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.

  16. Interference data correction methods for lunar observation with a large-aperture static imaging spectrometer.

    PubMed

    Zhang, Geng; Wang, Shuang; Li, Libo; Hu, Xiuqing; Hu, Bingliang

    2016-11-01

    The lunar spectrum has been used in radiometric calibration and sensor stability monitoring for spaceborne optical sensors. A ground-based large-aperture static image spectrometer (LASIS) can be used to acquire the lunar spectral image for lunar radiance model improvement when the moon orbits over its viewing field. The lunar orbiting behavior is not consistent with the desired scanning speed and direction of LASIS. To correctly extract interferograms from the obtained data, a translation correction method based on image correlation is proposed. This method registers the frames to a reference frame to reduce accumulative errors. Furthermore, we propose a circle-matching-based approach to achieve even higher accuracy during observation of the full moon. To demonstrate the effectiveness of our approaches, experiments are run on true lunar observation data. The results show that the proposed approaches outperform the state-of-the-art methods.

  17. A portfolio of products from the rapid terrain visualization interferometric SAR

    NASA Astrophysics Data System (ADS)

    Bickel, Douglas L.; Doerry, Armin W.

    2007-04-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor was built by Sandia National Laboratories for the Joint Programs Sustainment and Development (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieved better than HRTe Level IV position accuracy in near real-time. The system was flown on a deHavilland DHC-7 Army aircraft. This paper presents a collection of images and data products from the Rapid Terrain Visualization interferometric synthetic aperture radar. The imagery includes orthorectified images and DEMs from the RTV interferometric SAR radar.

  18. Penalization of aperture complexity in inversely planned volumetric modulated arc therapy

    PubMed Central

    Younge, Kelly C.; Matuszak, Martha M.; Moran, Jean M.; McShan, Daniel L.; Fraass, Benedick A.; Roberts, Donald A.

    2012-01-01

    Purpose: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions. Methods: An aperture-based metric (“edge penalty”) was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area. To assess the utility of the metric, VMAT plans were created for example paraspinal, brain, and liver SBRT cases with and without incorporating the edge penalty in the cost function. To investigate the dose calculation accuracy, Gafchromic EBT2 film was used to measure the 15 highest weighted apertures individually and as a composite from each of two paraspinal plans: one with and one without the edge penalty applied. Films were analyzed using a triple-channel nonuniformity correction and measurements were compared directly to calculations. Results: Apertures generated with the edge penalty were larger, more regularly shaped and required up to 30% fewer monitor units than those created without the edge penalty. Dose volume histogram analysis showed that the changes in doses to targets, organs at risk, and normal tissues were negligible. Edge penalty apertures that were measured with film for the paraspinal plan showed a notable decrease in the number of pixels disagreeing with calculation by more than 10%. For a 5% dose passing criterion, the number of pixels passing in the composite dose distributions for the non-edge penalty and edge penalty plans were 52% and 96%, respectively. Employing gamma with 3% dose/1 mm distance criteria resulted in a 79.5% (without penalty)/95.4% (with penalty) pass rate for the two plans. Gradient compensation of 3%/1 mm resulted in 83.3%/96.2% pass rates. Conclusions: The use of the edge penalty during optimization has the potential to markedly improve dose delivery accuracy for VMAT plans while still maintaining high quality optimized dose distributions. The penalty regularizes aperture shape and improves delivery efficiency. PMID:23127107

  19. A new miniature hand-held solar-blind reagentless standoff chemical, biological, and explosives (CBE) sensor

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Reid, R. D.; Bhartia, R.; Lane, A. L.

    2008-04-01

    Improvised explosive devices (IEDs), vehicle-borne improvised explosive devices (VBIEDs), and suicide bombers are a major threat to many countries and their citizenry. The ability to detect trace levels of these threats with a miniature, hand-held, reagentless, standoff sensor represents a major improvement in the state of the art of CBE surface sensors. Photon Systems, Inc., in collaboration with Jet Propulsion Laboratory, recently demonstrated a new technology hand-held sensor for reagentless, close-range, standoff detection and identification of trace levels CBE materials on surfaces. This targeted ultraviolet CBE (TUCBE) sensor is the result of an Army Phase I STTR program. The resulting 5lb, 5W, flashlight-sized sensor can discriminate CBE from background materials using a combination of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions resulting from excitation by a new technology deep UV laser. Detection and identification is accomplished in less than 1ms. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using wavelengths below 250nm where Raman and native fluorescence emissions occupy distinctly different wavelength regions. This enables simultaneous detection of RR and LINF emissions with no interferences. The sensor employs fused RR/LINF chemometric methods to extract the identity of targeted materials from background clutter. Photon Systems has demonstrated detection and identification of 100ng/cm2 of explosives materials at a distance of 1 meter using a sensor with 3.8 cm optical aperture. Expansion of the optical aperture to 38 cm in a lantern-sized sensor will enable similar detection and identification of CBE materials at standoff distances of 10 meters. As a result of excitation and detection in the deep UV and the use of a gated detection system, the sensor is solar blind and can operate in full daylight conditions.

  20. Novel Battery Management System with Distributed Wireless and Fiber Optic Sensors for Early Detection and Suppression of Thermal Runaway in Large Battery Packs, FY13 Q4 Report, ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.; Chang, J.; Zumstein, J.

    Technology has been developed that enables monitoring of individual cells in highcapacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array ofmore » sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high-capacity battery management system at Yardney Technical Products; (10) demonstrated operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less

  1. Distributed Fiber Optic Sensors for Earthquake Detection and Early Warning

    NASA Astrophysics Data System (ADS)

    Karrenbach, M. H.; Cole, S.

    2016-12-01

    Fiber optic cables placed along pipelines, roads or other infrastructure provide dense sampling of passing seismic wavefields. Laser interrogation units illuminate the fiber over its entire length, and strain at desired points along the fiber can be determined from the reflected signal. Single-mode optical fibers up to 50 km in length can provide a distributed acoustic sensing system (DAS) where the acoustic bandwidth of each channel is limited only by the round-trip time over the length of the cable (0.0005 s for a 50 km cable). Using a 10 m spatial resolution results in 4000 channels sampled at 2.5 kHz spanning a 40 km-long fiber deployed along a pipeline. The inline strain field is averaged along the fiber over a 10 m section of the cable at each desired spatial sample, creating a virtual sensor location. Typically, a dynamic strain sensitivity of sub-nanometers within each gauge along the entire length of the fiber can be achieved. This sensitivity corresponds to a particle displacement figure of approximately -90 dB ms-2Hz-½. Such a fiber optic sensor is not as sensitive as long-period seismometers used in earthquake networks, but given the large number of channels, small to medium-sized earthquakes can be detected, depending on distance from the array, and can be located with precision through arrival time inversions. We show several examples of earthquake recordings using distributed fiber optic arrays that were deployed originally for other purposes. A 480 km long section of a pipeline in Turkey was actively monitored with a DAS fiber optic system for activities in the immediate vicinity of the pipeline. The densely spaced sensor array along the pipeline detected earthquakes of 3.6 - 7.2 magnitude range, centered near Van, Turkey. Secondly, a fiber optic system located along a rail line near the Salton Sea in California was used to create a smaller scale fiber optic sensor array, on which earthquakes with magnitudes 2.2 - 2.7 were recorded from epicenters up to 65 km away. Our analysis shows that existing fiber optic installations along infrastructure could be combined to form a large aperture array with tens of thousands of channels for epicenter estimation and for early warning purposes, augmenting existing earthquake sensor networks.

  2. A SEASAT-A synthetic aperture imaging radar system

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.; Rodgers, D. H.

    1975-01-01

    The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.

  3. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.

    PubMed

    Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C

    2012-10-01

    A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

  4. "Sturdy as a house with four windows," the star tracker of the future

    NASA Astrophysics Data System (ADS)

    Duivenvoorde, Tom; Leijtens, Johan; van der Heide, Erik J.

    2017-11-01

    Ongoing miniaturization of spacecraft demands the reduction in size of Attitude and Orbit Control Systems (AOCS). Therefore TNO has created a new design of a multi aperture, high performance, and miniaturized star tracker. The innovative design incorporates the latest developments in camera technology, attitude calculation and mechanical design into a system with 5 arc seconds accuracy, making the system usable for many applications. In this paper the results are presented of the system design and analysis, as well as the performance predictions for the Multi Aperture Baffled Star Tracker (MABS). The highly integrated system consists of multiple apertures without the need for external baffles, resulting in major advantages in mass, volume, alignment with the spacecraft and relative aperture stability. In the analysis part of this paper, the thermal and mechanical stability are discussed. In the final part the simulation results will be described that have lead to the predicted accuracy of the star tracker system and a peek into the future of attitude sensors is given.

  5. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project.

    PubMed

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric; Cottineau, Louis-Marie; Cuomo, Vincenzo; Della Vecchia, Pietro; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call "ICT and Security" of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project.

  6. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    PubMed Central

    Proto, Monica; Bavusi, Massimo; Bernini, Romeo; Bigagli, Lorenzo; Bost, Marie; Bourquin, Frédrèric.; Cottineau, Louis-Marie; Cuomo, Vincenzo; Vecchia, Pietro Della; Dolce, Mauro; Dumoulin, Jean; Eppelbaum, Lev; Fornaro, Gianfranco; Gustafsson, Mats; Hugenschmidt, Johannes; Kaspersen, Peter; Kim, Hyunwook; Lapenna, Vincenzo; Leggio, Mario; Loperte, Antonio; Mazzetti, Paolo; Moroni, Claudio; Nativi, Stefano; Nordebo, Sven; Pacini, Fabrizio; Palombo, Angelo; Pascucci, Simone; Perrone, Angela; Pignatti, Stefano; Ponzo, Felice Carlo; Rizzo, Enzo; Soldovieri, Francesco; Taillade, Fédrèric

    2010-01-01

    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project. PMID:22163489

  7. Investigating the capabilities of new microwave ALOS-2/PALSAR-2 data for biomass estimation

    NASA Astrophysics Data System (ADS)

    Anh, L. V.; Paull, D. J.; Griffin, A. L.

    2016-10-01

    Most studies indicate that L-band synthetic aperture radar (SAR) has a great capacity to estimate biomass due to its ability to penetrate deeply through canopy layers. Many applications using L-band space-borne data have showcased their own significant contribution in biomass estimation but some limitations still exist. New data have been released recently that are designed to overcome limitations and drawbacks of previous sensor generations. The Japan Aerospace Exploration Agency (JAXA) launched the new sensor ALOS-2 to improve wide and high-resolution observation technologies in order to further meet social and environmental objectives. In the list of priority tasks addressed by JAXA there are experiments utilizing these new data for vegetation biomass distribution measurement. This study, therefore, focused on investigating the capabilities of these new microwave data in above ground biomass (AGB) estimation. The data mode used in this study was a full polarimetric ALOS-2/PALSAR-2 (L-band) scene. The experiment was conducted on a portion of a tropical forest in a Central Highland province in Vietnam.

  8. DE 1 RIMS operational characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Comfort, R. H.; Chandler, M. O.; Moore, T. E.; Waite, J. H., Jr.; Reasoner, D. L.; Biddle, A. P.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer 1 spacecraft observes both the thermal and superthermal (50 eV) ions of the ionosphere and inner magnetosphere. It is capable of measuring the detailed species distribution function of these ions in many cases. It was equipped with an integral electrometer to permit in-flight calibration of the detector sensitivities and variations thereof. A guide to understanding the RIMS data set is given. The reduction process from count rates to physical quantities is discussed in some detail. The procedure used to establish in-flight calibration is described, and results of a comparison with densities from plasma wave measurements are provided. Finally, a discussion is provided of various anomalies in the data set, including changes of channeltron efficiency with time, spin modulation of the axial sensor heads, apparent potential differences between the sensor heads, and failures of the radial head retarding potential sweep and of the -Z axial head aperture plane bias. Studies of the RIMS data set should be conducted only with a thorough awareness of the material presented here, or in collaboration with one of the scientists actively involved with RIMS data analysis.

  9. One to Large N Gradiometry

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2017-12-01

    The seismic wave gradient tensor can be derived from a variety of field observations including measurements of the wavefield by a dense seismic array, strain meters, and rotation meters. Coupled with models of wave propagation, wave gradients along with the original wavefield can give estimates of wave attributes that can be used to infer wave propagation directions, apparent velocities, spatial amplitude behavior, and wave type. Compact geodetic arrays with apertures of 0.1 wavelength or less can be deployed to provide wavefield information at a localized spot similar to larger phased arrays with apertures of many wavelengths. Large N, spatially distributed arrays can provide detailed information over an area to detect structure changes. Key to accurate computation of spatial gradients from arrays of seismic instruments is knowledge of relative instrument responses, particularly component sensitivities and gains, along with relative sensor orientations. Array calibration has been successfully performed for the 14-element Pinyon Flat, California, broadband array using long-period teleseisms to achieve relative precisions as small as 0.2% in amplitude and 0.35o in orientation. Calibration has allowed successful comparison of horizontal seismic strains from local and regional seismic events with the Plate Boundary Observatory (PBO) borehole strainmeter located at the facility. Strains from the borehole strainmeter in conjunction with ground velocity from a co-located seismometer are used as a "point" array in estimating wave attributes for the P-SV components of the wavefield. An effort is underway to verify the calibration of PBO strainmeters in southern California and their co-located borehole seismic sensors to create an array of point arrays for use in studies of regional wave propagation and seismic sources.

  10. On the mechanism of transverse-mode beatings in a Fabry - Perot laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, N; Ledenev, V I

    2010-06-23

    The mechanism of emergence of fundamental-mode and first-mode beatings in the case of a step-wise increase in the pump rate is studied under the stationary single-mode lasing conditions. Investigation is based on the numerical solution of nonstationary wave equations in a resonator in the quasi-optic approximation and on the equation for a relaxation-type medium as well as on the use of the first two Hermite - Gaussian polynomials {psi}{sub 0,1}(x) to obtain the distribution projections I{sub 0,1}(t), g{sub 0,1}(t) of the radiation intensity and gain, respectively. It is shown that the transverse-mode beatings emerge at early stages of two-mode lasing,more » the appearance of radiation intensity oscillations in the active medium preceding the development of the gain oscillations. The time of the passage of two-mode lasing to the stationary regime is determined. The phase shift {pi}/2 between the oscillations I{sub 1}(t) and g{sub 1}(t) is found for the established beating regime and the modulation depth {Delta}I averaged over the output aperture of the radiation intensity in the established two-mode regime is shown to be proportional to the pump rate excess k over the single-mode lasing threshold. A scheme for controlling the mode composition of laser radiation is proposed, which is based on the rules for determining I{sub 0,1}(t) by the sensor signals. The efficiency of the scheme is studied. The scheme employs two field intensity sensors mounted inside the resonator behind the output aperture. (resonators. modes)« less

  11. Seasat data utilization project

    NASA Technical Reports Server (NTRS)

    Born, G. H.; Held, D. N.; Lame, D. B.; Lipes, R. G.; Montgomery, D. R.; Rygh, P. J.; Scott, J. F.

    1981-01-01

    During the three months of orbital operations, the satellite returned data from the world's oceans. Dozens of tropical storms, hurricanes and typhoons were observed, and two planned major intensive surface truth experiments were conducted. The utility of the Seasat-A microwave sensors as oceanographic tools was determined. Sensor and geophysical evaluations are discussed, including surface observations, and evaluation summaries of an altimeter, a scatterometer, a scanning multichannel microwave radiometer, a synthetic aperture radar, and a visible and infrared radiometer.

  12. Review of Current Aided/Automatic Target Acquisition Technology for Military Target Acquisition Tasks

    DTIC Science & Technology

    2011-07-01

    radar [e.g., synthetic aperture radar (SAR)]. EO/IR includes multi- and hyperspectral imaging. Signal processing of data from nonimaging sensors, such...enhanced recognition ability. Other nonimage -based techniques, such as category theory,45 hierarchical systems,46 and gradient index flow,47 are possible...the battle- field. There is a plethora of imaging and nonimaging sensors on the battlefield that are being networked together for trans- mission of

  13. Arctic coastal polynya observations with ERS-1 SAR and DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Onstott, R. G.

    1993-01-01

    Work to improve the characterization of the distribution of new and young sea ice types and open water amount within Arctic coastal polynyas through the combined use of ERS-1 SAR (Synthetic Aperture Radar) and DMSP SSM/I (Defense Meteorological Satellite Program Special Sensor Microwave/Imager) data is described. Two St. Lawrence Island polynya events are studied using low resolution, geocoded SAR images and coincident SSM/I data. The SAR images are analyzed in terms of polarization and spectral gradient ratios. Results of the combined analysis show that the SAR ice type classification is consistent with that from SSM/I and that the combined use of SAR and SSM/I can improve the characterization of thin ice better than either data set can do alone.

  14. Tracking heat flux sensors for concentrating solar applications

    DOEpatents

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  15. Optical Displacement Sensor for Sub-Hertz Applications

    NASA Technical Reports Server (NTRS)

    Abramovici, Alexander; Chiao, Meng P.; Dekens, Frank G.

    2008-01-01

    A document discusses a sensor made from off-the-shelf electro-optical photodiodes and electronics that achieves 20 nm/(Hz)(exp 1/2) displacement sensitivity at 1 mHz. This innovation was created using a fiber-coupled laser diode (or Nd:YAG) through a collimator and an aperture as the illumination source. Together with a germanium quad photodiode, the above-mentioned displacement sensor sensitivities have been achieved. This system was designed to aid the Laser Interferometer Space Antenna (LISA) with microthruster tests and to be a backup sensor for monitoring the relative position between a proof mass and a spacecraft for drag-free navigation. The optical displacement sensor can be used to monitor any small displacement from a remote location with minimal invasion on the system.

  16. Analysis of fluid flow and solute transport through a single fracture with variable apertures intersecting a canister: Comparison between fractal and Gaussian fractures

    NASA Astrophysics Data System (ADS)

    Liu, L.; Neretnieks, I.

    Canisters with spent nuclear fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90° intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown that the previous basic model can be simply amended to account for these effects. More importantly, it has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both fractal and Gaussian fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. Thus, two simple statistical relations can be developed to describe the stochastic properties of fluid flow and solute transport through a single fracture with spatially variable apertures. This obviates, then, the need to simulate each fracture that intersects a canister in great detail, and allows the use of complex fractures also in very large fracture network models used in performance assessment.

  17. A dispersed fringe sensor prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Frostig, Danielle; McLeod, Brian A.; Kopon, Derek

    2017-01-01

    The Giant Magellan Telescope (GMT) will employ seven 8.4m primary mirror segments and seven 1m secondary mirror segments to achieve the diffraction limit of a 25.4m aperture. One challenge of the GMT is keeping the seven pairs of mirror segments in phase. We present a conceptual opto mechanical design for a prototype dispersed fringe sensor. The prototype, which operates at J-band and incorporates an infrared avalanche photodiode array, will be deployed on the Magellan Clay Telescope to verify the sensitivity and accuracy of the planned GMT phasing sensor.

  18. The AOLI low-order non-linear curvature wavefront sensor: laboratory and on-sky results

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; King, David; MacKay, Craig

    2014-08-01

    Many adaptive optics (AO) systems in use today require the use of bright reference objects to determine the effects of atmospheric distortions. Typically these systems use Shack-Hartmann Wavefront sensors (SHWFS) to distribute incoming light from a reference object between a large number of sub-apertures. Guyon et al. evaluated the sensitivity of several different wavefront sensing techniques and proposed the non-linear Curvature Wavefront Sensor (nlCWFS) offering improved sensitivity across a range of orders of distortion. On large ground-based telescopes this can provide nearly 100% sky coverage using natural guide stars. We present work being undertaken on the nlCWFS development for the Adaptive Optics Lucky Imager (AOLI) project. The wavefront sensor is being developed as part of a low-order adaptive optics system for use in a dedicated instrument providing an AO corrected beam to a Lucky Imaging based science detector. The nlCWFS provides a total of four reference images on two photon-counting EMCCDs for use in the wavefront reconstruction process. We present results from both laboratory work using a calibration system and the first on-sky data obtained with the nlCWFS at the 4.2 metre William Herschel Telescope, La Palma. In addition, we describe the updated optical design of the wavefront sensor, strategies for minimising intrinsic effects and methods to maximise sensitivity using photon-counting detectors. We discuss on-going work to develop the high speed reconstruction algorithm required for the nlCWFS technique. This includes strategies to implement the technique on graphics processing units (GPUs) and to minimise computing overheads to obtain a prior for a rapid convergence of the wavefront reconstruction. Finally we evaluate the sensitivity of the wavefront sensor based upon both data and low-photon count strategies.

  19. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    NASA Astrophysics Data System (ADS)

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  20. Comparison of Sensible Heat Flux from Eddy Covariance and Scintillometer over different land surface conditions

    NASA Astrophysics Data System (ADS)

    Zeweldi, D. A.; Gebremichael, M.; Summis, T.; Wang, J.; Miller, D.

    2008-12-01

    The large source of uncertainty in satellite-based evapotranspiration algorithm results from the estimation of sensible heat flux H. Traditionally eddy covariance sensors, and recently large-aperture scintillometers, have been used as ground truth to evaluate satellite-based H estimates. The two methods rely on different physical measurement principles, and represent different foot print sizes. In New Mexico, we conducted a field campaign during summer 2008 to compare H estimates obtained from the eddy covariance and scintillometer methods. During this field campaign, we installed sonic anemometers; one propeller eddy covariance (OPEC) equipped with net radiometer and soil heat flux sensors; large aperture scintillometer (LAS); and weather station consisting of wind speed, direction and radiation sensors over three different experimental areas consisting of different roughness conditions (desert, irrigated area and lake). Our results show the similarities and differences in H estimates obtained from these various methods over the different land surface conditions. Further, our results show that the H estimates obtained from the LAS agree with those obtained from the eddy covariance method when high frequency thermocouple temperature, instead of the typical weather station temperature measurements, is used in the LAS analysis.

  1. Advanced flow noise reducing acoustic sensor arrays

    NASA Astrophysics Data System (ADS)

    Fine, Kevin; Drzymkowski, Mark; Cleckler, Jay

    2009-05-01

    SARA, Inc. has developed microphone arrays that are as effective at reducing flow noise as foam windscreens and sufficiently rugged for tough battlefield environments. These flow noise reducing (FNR) sensors have a metal body and are flat and conformally mounted so they can be attached to the roofs of land vehicles and are resistant to scrapes from branches. Flow noise at low Mach numbers is created by turbulent eddies moving with the fluid flow and inducing pressure variations on microphones. Our FNR sensors average the pressure over the diameter (~20 cm) of their apertures, reducing the noise created by all but the very largest eddies. This is in contrast to the acoustic wave which has negligible variation over the aperture at the frequencies of interest (f less or equal than 400 Hz). We have also post-processed the signals to further reduce the flow noise. Two microphones separated along the flow direction exhibit highly correlated noise. The time shift of the correlation corresponds to the time for the eddies in the flow to travel between the microphones. We have created linear microphone arrays parallel to the flow and have reduced flow noise as much as 10 to 15 dB by subtracting time-shifted signals.

  2. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  3. More than sixty origins of pantoporate pollen in angiosperms.

    PubMed

    Prieu, Charlotte; Sauquet, Hervé; Gouyon, Pierre-Henri; Albert, Béatrice

    2017-12-01

    Apertures in pollen grains are key structures of the wall, involved in pollen tube germination and exchanges with the environment. Aperture types in angiosperms are diverse, but pollen with one and three apertures (including monosulcate and tricolpate, respectively) are the two most common types. Here, we investigate the phylogenetic distribution in angiosperms of pollen with many round, scattered apertures called pantoporate pollen. We constructed a morphological data set with species producing pantoporate pollen and representative angiosperm species with other pollen types, sampled from every angiosperm order, with a total of 1260 species distributed in 330 families. This data set was analyzed with parsimony to characterize the phylogenetic distribution of pantoporate pollen in angiosperms. We show that pantoporate pollen is distributed throughout most of the angiosperm tree, including early diverging angiosperms, monocots, and eudicots. However, this pollen type is usually restricted to a few species in a given group, and is seldom fixed at large taxonomical scales, with a few notable exceptions. Pantoporate pollen evolved many times during angiosperm history, but the persistence of this morphology in the long term is infrequent. This distribution pattern could indicate conflicting short-term and long-term selective pressures, pantoporate pollen being selected in the short run, but eliminated in the long run. Biological hypotheses supporting this scenario are discussed, in the context of both theoretical and empirical data on pollen biology. © 2017 Botanical Society of America.

  4. Long-period fibre grating writing with a slit-apertured femtosecond laser beam (λ = 1026 nm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dostovalov, A V; Wolf, A A; Babin, S A

    We report on long-period grating (LPG) writing in a standard telecom fibre, SMF-28e+, via refractive index modification by femtosecond pulses. A method is proposed for grating writing with a slit-apertured beam, which enables one to produce LPGs with reduced background losses and a resonance peak markedly stronger than that in the case of grating writing with a Gaussian beam. The method can be used to fabricate LPGs for use as spectral filters of fibre lasers and sensing elements of sensor systems. (fibre and integrated-optical structures)

  5. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-03-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor (the size of the standard 35mm frame) with the means to select left and right image information. Even with the added stereoscopic capability the appearance of existing camera bodies will be unaltered.

  6. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  7. Integrated approach for automatic target recognition using a network of collaborative sensors.

    PubMed

    Mahalanobis, Abhijit; Van Nevel, Alan

    2006-10-01

    We introduce what is believed to be a novel concept by which several sensors with automatic target recognition (ATR) capability collaborate to recognize objects. Such an approach would be suitable for netted systems in which the sensors and platforms can coordinate to optimize end-to-end performance. We use correlation filtering techniques to facilitate the development of the concept, although other ATR algorithms may be easily substituted. Essentially, a self-configuring geometry of netted platforms is proposed that positions the sensors optimally with respect to each other, and takes into account the interactions among the sensor, the recognition algorithms, and the classes of the objects to be recognized. We show how such a paradigm optimizes overall performance, and illustrate the collaborative ATR scheme for recognizing targets in synthetic aperture radar imagery by using viewing position as a sensor parameter.

  8. Comparison between broadband Bessel beam launchers based on either Bessel or Hankel aperture distribution for millimeter wave short pulse generation.

    PubMed

    Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo

    2017-08-07

    In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.

  9. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    PubMed Central

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  10. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  11. The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture

    DOE PAGES

    Favorite, Jeffrey A.

    2016-01-13

    It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.

  12. Boeing infrared sensor (BIRS) calibration facility

    NASA Technical Reports Server (NTRS)

    Hazen, John D.; Scorsone, L. V.

    1990-01-01

    The Boeing Infrared Sensor (BIRS) Calibration Facility represents a major capital investment in optical and infrared technology. The facility was designed and built for the calibration and testing of the new generation large aperture long wave infrared (LWIR) sensors, seekers, and related technologies. Capability exists to perform both radiometric and goniometric calibrations of large infrared sensors under simulated environmental operating conditions. The system is presently configured for endoatmospheric calibrations with a uniform background field which can be set to simulate the expected mission background levels. During calibration, the sensor under test is also exposed to expected mission temperatures and pressures within the test chamber. Capability exists to convert the facility for exoatmospheric testing. The configuration of the system is described along with hardware elements and changes made to date are addressed.

  13. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution

    PubMed Central

    Bishara, Waheb; Su, Ting-Wei; Coskun, Ahmet F.; Ozcan, Aydogan

    2010-01-01

    We demonstrate lensfree holographic microscopy on a chip to achieve ~0.6 µm spatial resolution corresponding to a numerical aperture of ~0.5 over a large field-of-view of ~24 mm2. By using partially coherent illumination from a large aperture (~50 µm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans. PMID:20588977

  14. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  15. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  16. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.

    PubMed

    Gul, M Shahzeb Khan; Gunturk, Bahadir K

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  17. Evaluation of Data Applicability for D-Insar in Areas Covered by Abundant Vegetation

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Zhao, Z.

    2018-04-01

    In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar) has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR) datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2), and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.

  18. Low Frequency Radar Sensor Observations of Tropical Forests in the Panama Canal Area

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L.; Lawrence, W.; Condit, R.; Wright, J.; Johnson, P.; Hyer, J.; May, L.; Carson, S.; Smith, David E. (Technical Monitor)

    2000-01-01

    A synthetic aperture radar sensor operating in 5 bands between 80 and 120 MHz was flown over forested areas in the canal zone of the Republic of Panama in an experiment to measure biomass in heavy tropical forests. The sensor is a pulse coherent SAR flown on a small aircraft and oriented straight down. The doppler history is processed to collect data on the ground in rectangular cells of varying size over a range of incidence angles fore and aft of nadir (+45 to - 45 degrees). Sensor data consists of 5 frequency bands with 20 incidence angles per band. Sensor data for over 12+ sites were collected with forest stands having biomass densities ranging from 50 to 300 tons/ha dry above ground biomass. Results are shown exploring the biomass saturation thresholds using these frequencies, the system design is explained, and preliminary attempts at data visualization using this unique sensor design are described.

  19. A deployable telescope for sub-meter resolutions from microsatellite platforms

    NASA Astrophysics Data System (ADS)

    Dolkens, D.; Kuiper, J. M.

    2017-11-01

    Sub-meter resolution imagery has become increasingly important for disaster response, defence and security applications. Earth Observation (EO) at these resolutions has long been the realm of large and heavy telescopes, which results in high image costs, limited availability and long revisit times. Using synthetic aperture technology, instruments can now be developed that can reach these resolutions using a substantially smaller launch volume and mass. To obtain a competitive MicroSatellite telescope design, a concept study was performed to develop a deployable instrument that can reach a ground resolution of 25 cm from an orbital altitude of 500 km. Two classes of instruments were analysed: the Fizeau synthetic aperture, a telescope that uses a segmented primary mirror, and a Michelson synthetic aperture, an instrument concept that combines the light of a distributed array of afocal telescopes into a final image. In a trade-off the Fizeau synthetic aperture was selected as the most promising concept for obtaining high resolution imagery from a Low Earth Orbit. The optical design of the Fizeau synthetic aperture is based on a full-field Korsch telescope that has been optimized for compactness and an excellent wavefront quality. It uses three aperture segments in a tri-arm configuration that can be folded alongside the instrument during launch. The secondary mirror is mounted on a deployable boom, further decreasing the launch volume. To maintain a high image quality while operating in the harsh and dynamic space environment, one of the most challenging obstacles that must be addressed is the very tight tolerance on the positioning of the three primary mirror segments and the secondary mirror. Following a sensitivity analysis, systems engineering budgets have been defined. The instrument concept features a robust thermo-mechanical design, aimed at reducing the mechanical uncertainties to a minimum. Silicon Carbide mirror segments, the use of Invar for the deployable arms and a main housing with active thermal control, will guarantee a high thermal stability during operations. Since a robust mechanical design alone is insufficient to ensure a diffraction limited performance, an inorbit calibration system was developed. Post launch, a combination of interferometric measurements and capacitive sensors will be used to characterise the system. Actuators beneath the primary mirror segments will then correct the position of the mirror segments to meet the required operating accuracies. During operations, a passive system will be used. This system relies on a phase diversity algorithm to retrieve residual wavefront aberrations and deconvolve the image data. Using this approach, a good end-to-end imaging performance can be achieved.

  20. Advanced Concurrent-Multiband, Multibeam, Aperture-Synthesis with Intelligent Processing for Urban Operation Sensing

    DTIC Science & Technology

    2012-04-09

    signatures (RSS), in particular, despeckling, superresolution and convergence rate, for a variety of admissible 115 imaging array sensor...attain the superresolution performances in the resulting SSP estimates (3.4), we propose the VA inspired approach [13], [14] to specify the POCS

  1. Nonimaging polygonal mirrors achieving uniform irradiance distributions on concentrating photovoltaic cells.

    PubMed

    Schmitz, Max; Dähler, Fabian; Elvinger, François; Pedretti, Andrea; Steinfeld, Aldo

    2017-04-10

    We introduce a design methodology for nonimaging, single-reflection mirrors with polygonal inlet apertures that generate a uniform irradiance distribution on a polygonal outlet aperture, enabling a multitude of applications within the domain of concentrated photovoltaics. Notably, we present single-mirror concentrators of square and hexagonal perimeter that achieve very high irradiance uniformity on a square receiver at concentrations ranging from 100 to 1000 suns. These optical designs can be assembled in compound concentrators with maximized active area fraction by leveraging tessellation. More advanced multi-mirror concentrators, where each mirror individually illuminates the whole area of the receiver, allow for improved performance while permitting greater flexibility for the concentrator shape and robustness against partial shading of the inlet aperture.

  2. Cubic law with aperture-length correlation: implications for network scale fluid flow

    NASA Astrophysics Data System (ADS)

    Klimczak, Christian; Schultz, Richard A.; Parashar, Rishi; Reeves, Donald M.

    2010-06-01

    Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.

  3. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.

  4. Advanced Sensors and Applications Study (ASAS)

    NASA Technical Reports Server (NTRS)

    Chism, S. B.; Hughes, C. L.

    1976-01-01

    The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.

  5. The AEDC aerospace chamber 7V: An advanced test capability for infrared surveillance and seeker sensors

    NASA Technical Reports Server (NTRS)

    Simpson, W. R.

    1994-01-01

    An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.

  6. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    NASA Astrophysics Data System (ADS)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  7. a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear

    NASA Astrophysics Data System (ADS)

    Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu

    This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.

  8. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-05-01

    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.

  9. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...

    2016-08-01

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  10. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less

  11. Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function

    PubMed

    Zalvidea; Colautti; Sicre

    2000-05-01

    An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.

  12. Low-Cost Nested-MIMO Array for Large-Scale Wireless Sensor Applications.

    PubMed

    Zhang, Duo; Wu, Wen; Fang, Dagang; Wang, Wenqin; Cui, Can

    2017-05-12

    In modern communication and radar applications, large-scale sensor arrays have increasingly been used to improve the performance of a system. However, the hardware cost and circuit power consumption scale linearly with the number of sensors, which makes the whole system expensive and power-hungry. This paper presents a low-cost nested multiple-input multiple-output (MIMO) array, which is capable of providing O ( 2 N 2 ) degrees of freedom (DOF) with O ( N ) physical sensors. The sensor locations of the proposed array have closed-form expressions. Thus, the aperture size and number of DOF can be predicted as a function of the total number of sensors. Additionally, with the help of time-sequence-phase-weighting (TSPW) technology, only one receiver channel is required for sampling the signals received by all of the sensors, which is conducive to reducing the hardware cost and power consumption. Numerical simulation results demonstrate the effectiveness and superiority of the proposed array.

  13. Low-Cost Nested-MIMO Array for Large-Scale Wireless Sensor Applications

    PubMed Central

    Zhang, Duo; Wu, Wen; Fang, Dagang; Wang, Wenqin; Cui, Can

    2017-01-01

    In modern communication and radar applications, large-scale sensor arrays have increasingly been used to improve the performance of a system. However, the hardware cost and circuit power consumption scale linearly with the number of sensors, which makes the whole system expensive and power-hungry. This paper presents a low-cost nested multiple-input multiple-output (MIMO) array, which is capable of providing O(2N2) degrees of freedom (DOF) with O(N) physical sensors. The sensor locations of the proposed array have closed-form expressions. Thus, the aperture size and number of DOF can be predicted as a function of the total number of sensors. Additionally, with the help of time-sequence-phase-weighting (TSPW) technology, only one receiver channel is required for sampling the signals received by all of the sensors, which is conducive to reducing the hardware cost and power consumption. Numerical simulation results demonstrate the effectiveness and superiority of the proposed array. PMID:28498329

  14. Electromagnetic field scattering by a triangular aperture.

    PubMed

    Harrison, R E; Hyman, E

    1979-03-15

    The multiple Laplace transform has been applied to analysis and computation of scattering by a double triangular aperture. Results are obtained which match far-field intensity distributions observed in experiments. Arbitrary polarization components, as well as in-phase and quadrature-phase components, may be determined, in the transform domain, as a continuous function of distance from near to far-field for any orientation, aperture, and transformable waveform. Numerical results are obtained by application of numerical multiple inversions of the fully transformed solution.

  15. The Application of MP-FTS to Aperture Synthesis

    NASA Astrophysics Data System (ADS)

    Hattori, M.; Ohta, I. S.; Matsuo, H.; Shibata, Y.

    2000-12-01

    The application of the Martin-Puplett type Fourier transform spectrometer to aperture synthesis is considered. The configuration of the mirrors and beam splitters and the fundamental mathematical elements of the system are summarized. We show that the system can measure spectrally resolved spatial distribution of the Stokes parameters of sources as interfered signals. An original Martin-Puplett type Fourier transform spectrometer that can be applied to aperture synthesis in mm and sub-mm wave bands has been constructed. The preliminary results of our laboratory experiments are reported.

  16. Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1991-01-01

    The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.

  17. A numerical study on the correlation between fracture transmissivity, hydraulic aperture and transport aperture

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Takebe, A.; Sakamoto, K.

    2006-12-01

    Quantitative evaluation of the groundwater velocity in the fractures is a key part of contaminants transport assessment especially in the radioactive waste disposal programs. In a hydrogeological model such as the discrete fracture network model, the transport aperture of water conducting fracture is one of the important parameters for evaluating groundwater velocity. Tracer tests that measure velocity (or transport aperture) are few compared with flow tests that measure transmissivity (or hydraulic aperture). Thus it is useful to estimate transport properties from flow properties. It is commonly assumed that flow and transport aperture are the same, and that aperture is related to the cube root of transmissivity by the parallel-plate analog. Actual field experiments, however, show transport and hydraulic apertures are not always the same, and that transport aperture relates to an empirical constant times the square root of transmissivity. Compared with these field results, the cubic law underestimates transport aperture and overestimates velocity. A possible source of this discrepancy is in-plane heterogeneity of aperture and transmissivity. To study this behavior, numerical simulations using MAFIC were conducted for a single fracture model with a heterogeneous aperture distribution. The simulations varied three parameters - the mean geometrical aperture, JRC (Joint Roughness Coefficient), and the contact area ratio (fracture contact area divided by total fracture area). For each model we determined the equivalent transmissivity and cubic-law aperture under steady flow conditions. Then we simulated mass transport using particle tracking through the same fracture. The transport aperture was estimated from the particle peak arrival time at the downstream boundary. The results show that the mean geometrical aperture is the most sensitive parameter among the three variable parameters in this study. It is also found that the contact area ratio affects transmissivity more than the JRC, and while the JRC strongly affects the velocity and transport aperture. Based on these results, a correlation between the transmissivity, the hydraulic conductivity and the transport aperture will be discussed.

  18. Mean Performance Optimization of an Orbiting Distributed Aperture by Warped Aperture Image Plane Comparisons

    DTIC Science & Technology

    2002-09-01

    1-4 II. Satellite Formation Dynamics . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Clohessy - Wiltshire ...8-3 8.3 Recommendations for Future Research . . . . . . . . . . . . . 8-5 Appendix A. The Clohessy - Wiltshire ...7-18 A.1. The Clohessy - Wiltshire Reference Frame . . . . . . . . . . . . . . . A-1 B.1. Definitions of Hills’ Parameters

  19. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  20. A fiber optic sensor for ophthalmic refractive diagnostics

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Campbell, Melanie C. W.; Dellavecchia, Michael A.

    1992-01-01

    This paper demonstrates the application of a lensless fiber optic spectrometer (sensor) to study the onset of cataracts. This new miniaturized and rugged fiber optic probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for cold-induced cataract in excised bovine eye lenses, and aging effects in excised human eye lenses. The device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics.

  1. Video semaphore decoding for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  2. Flight software operation of the Hubble Space Telescope fine guidance sensor

    NASA Technical Reports Server (NTRS)

    Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.

    1988-01-01

    The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.

  3. Color camera computed tomography imaging spectrometer for improved spatial-spectral image accuracy

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Bearman, Gregory H. (Inventor); Johnson, William R. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTIS"s) having color focal plane array detectors are provided. The color FPA detector may comprise a digital color camera including a digital image sensor, such as a Foveon X3.RTM. digital image sensor or a Bayer color filter mosaic. In another embodiment, the CTIS includes a pattern imposed either directly on the object scene being imaged or at the field stop aperture. The use of a color FPA detector and the pattern improves the accuracy of the captured spatial and spectral information.

  4. Polar research from satellites

    NASA Technical Reports Server (NTRS)

    Thomas, Robert H.

    1991-01-01

    In the polar regions and climate change section, the topics of ocean/atmosphere heat transfer, trace gases, surface albedo, and response to climate warming are discussed. The satellite instruments section is divided into three parts. Part one is about basic principles and covers, choice of frequencies, algorithms, orbits, and remote sensing techniques. Part two is about passive sensors and covers microwave radiometers, medium-resolution visible and infrared sensors, advanced very high resolution radiometers, optical line scanners, earth radiation budget experiment, coastal zone color scanner, high-resolution imagers, and atmospheric sounding. Part three is about active sensors and covers synthetic aperture radar, radar altimeters, scatterometers, and lidar. There is also a next decade section that is followed by a summary and recommendations section.

  5. Study of cross-shaped ultrasonic array sensor applied to partial discharge location in transformer oil.

    PubMed

    Li, Jisheng; Xin, Xiaohu; Luo, Yongfen; Ji, Haiying; Li, Yanming; Deng, Junbo

    2013-11-01

    A conformal combined sensor is designed and it is used in Partial Discharge (PD) location experiments in transformer oil. The sensor includes a cross-shaped ultrasonic phased array of 13 elements and an ultra-high-frequency (UHF) electromagnetic rectangle array of 2 × 2 elements. Virtual expansion with high order cumulants, the ultrasonic array can achieve the effect of array with 61 elements. This greatly improves the aperture and direction sharpness of original array and reduces the cost of follow-up hardware. With the cross-shaped ultrasonic array, the results of PD location experiments are precise and the maximum error of the direction of arrival (DOA) is less than 5°.

  6. Development of Planar Optics for an Optical Tracking Sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro

    1998-10-01

    An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.

  7. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1998-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  8. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1996-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  9. Compressive Coded-Aperture Multimodal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Rueda-Chacon, Hoover F.

    Multimodal imaging refers to the framework of capturing images that span different physical domains such as space, spectrum, depth, time, polarization, and others. For instance, spectral images are modeled as 3D cubes with two spatial and one spectral coordinate. Three-dimensional cubes spanning just the space domain, are referred as depth volumes. Imaging cubes varying in time, spectra or depth, are referred as 4D-images. Nature itself spans different physical domains, thus imaging our real world demands capturing information in at least 6 different domains simultaneously, giving turn to 3D-spatial+spectral+polarized dynamic sequences. Conventional imaging devices, however, can capture dynamic sequences with up-to 3 spectral channels, in real-time, by the use of color sensors. Capturing multiple spectral channels require scanning methodologies, which demand long time. In general, to-date multimodal imaging requires a sequence of different imaging sensors, placed in tandem, to simultaneously capture the different physical properties of a scene. Then, different fusion techniques are employed to mix all the individual information into a single image. Therefore, new ways to efficiently capture more than 3 spectral channels of 3D time-varying spatial information, in a single or few sensors, are of high interest. Compressive spectral imaging (CSI) is an imaging framework that seeks to optimally capture spectral imagery (tens of spectral channels of 2D spatial information), using fewer measurements than that required by traditional sensing procedures which follows the Shannon-Nyquist sampling. Instead of capturing direct one-to-one representations of natural scenes, CSI systems acquire linear random projections of the scene and then solve an optimization algorithm to estimate the 3D spatio-spectral data cube by exploiting the theory of compressive sensing (CS). To date, the coding procedure in CSI has been realized through the use of ``block-unblock" coded apertures, commonly implemented as chrome-on-quartz photomasks. These apertures block or permit to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. In the first part, this thesis aims to expand the framework of CSI by replacing the traditional block-unblock coded apertures by patterned optical filter arrays, referred as ``color" coded apertures. These apertures are formed by tiny pixelated optical filters, which in turn, allow the input image to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed colored coded apertures are either synthesized through linear combinations of low-pass, high-pass and band-pass filters, paired with binary pattern ensembles realized by a digital-micromirror-device (DMD), or experimentally realized through thin-film color-patterned filter arrays. The optical forward model of the proposed CSI architectures will be presented along with the design and proof-of-concept implementations, which achieve noticeable improvements in the quality of the reconstructions compared with conventional block-unblock coded aperture-based CSI architectures. On another front, due to the rich information contained in the infrared spectrum as well as the depth domain, this thesis aims to explore multimodal imaging by extending the range sensitivity of current CSI systems to a dual-band visible+near-infrared spectral domain, and also, it proposes, for the first time, a new imaging device that captures simultaneously 4D data cubes (2D spatial+1D spectral+depth imaging) with as few as a single snapshot. Due to the snapshot advantage of this camera, video sequences are possible, thus enabling the joint capture of 5D imagery. It aims to create super-human sensing that will enable the perception of our world in new and exciting ways. With this, we intend to advance in the state of the art in compressive sensing systems to extract depth while accurately capturing spatial and spectral material properties. The applications of such a sensor are self-evident in fields such as computer/robotic vision because they would allow an artificial intelligence to make informed decisions about not only the location of objects within a scene but also their material properties.

  10. Calibration of High Heat Flux Sensors at NIST

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Gibson, C. E.

    1997-01-01

    An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry, three different types of calibration facilities currently are under development at NIST: convection, conduction, and radiation. This paper describes the research activities associated with the NIST Radiation Calibration Facility. Two different techniques, transfer and absolute, are presented. The transfer calibration technique employs a transfer standard calibrated with reference to a radiometric standard for calibrating the sensors using a graphite tube blackbody. Plans for an absolute calibration facility include the use of a spherical blackbody and a cooled aperture and sensor-housing assembly to calibrate the sensors in a low convective environment. PMID:27805156

  11. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  12. Multi-Sensor Characterization of the Boreal Forest: Initial Findings

    NASA Technical Reports Server (NTRS)

    Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.

  13. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  14. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  15. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    NASA Astrophysics Data System (ADS)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  16. A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere

    PubMed Central

    Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing

    2008-01-01

    The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865

  17. Development of a low-cost sun sensor for nanosatellites

    NASA Astrophysics Data System (ADS)

    Antonello, Andrea; Olivieri, Lorenzo; Francesconi, Alessandro

    2018-03-01

    Sun sensors represent a common and reliable technology for attitude determination, employed in many space missions thanks to their limited size and weight. Typically, two-axis digital Sun sensors employ an array of active pixels arranged behind a small aperture; the position of the sunlight's spot allows to determine the direction of the Sun. With the advent of smaller vehicles such as CubeSats and Nanosats, there is the need to further reduce the size and weight of such devices: as a trade-off, this usually results in the curtail of the performances. Nowadays, state of the art Sun sensors for CubeSats have resolutions of about 0.5°, with fields of view in the ±45° to ±90° range, with off-the-self prices of several thousands of dollars. In this work we introduce a novel low-cost miniaturized Sun sensor, based on a commercial CMOS camera detector; its main feature is the reduced size with respect to state-of-the-art sensors developed from the same technology, making it employable on CubeSats. The sensor consists of a precisely machined pinhole with a 10 μm circular aperture, placed at a distance of 7 mm from the CMOS. The standoff distance and casing design allow for a maximum resolution of less than 0.03°, outperforming most of the products currently available for nano and pico platforms; furthermore, the nature of the technology allows for reduced size and lightweight characteristics. The design, development and laboratory tests of the sensor are here introduced, starting with the definition of the physical model, the geometrical layout and its theoretical resolution; a more accurate model was then developed in order to account for the geometrical deviations and deformations of the pinhole-projected light-spot, as well as to account for the background noise and disturbances to the electronics. Finally, the laboratory setup is presented along with the test campaigns: the results obtained are compared with the simulations, allowing for the validation of the theoretical model.

  18. Feature-Enhanced, Model-Based Sparse Aperture Imaging

    DTIC Science & Technology

    2008-03-01

    See additional restrictions described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Massachusetts Institute of Technology Laboratory for Information and Decision Systems 77 Massachusetts...Avenue Cambridge, MA 02139 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory 10

  19. Experimental Verification of Sparse Aperture Mask for Low Order Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, N. Jeremy

    2017-01-01

    To directly image exoplanets, future space-based missions are equipped with coronagraphs which manipulate the diffraction of starlight and create regions of high contrast called dark holes. Theoretically, coronagraphs can be designed to achieve the high level of contrast required to image exoplanets, which are billions of times dimmer than their host stars, however the aberrations caused by optical imperfections and thermal fluctuations cause the degradation of contrast in the dark holes. Focal plane wavefront control (FPWC) algorithms using deformable mirrors (DMs) are used to mitigate the quasi-static aberrations caused by optical imperfections. Although the FPWC methods correct the quasi-static aberrations, they are blind to dynamic errors caused by telescope jitter and thermal fluctuations. At Princeton's High Contrast Imaging Lab we have developed a new technique that integrates a sparse aperture mask with the coronagraph to estimate these low-order dynamic wavefront errors. This poster shows the effectiveness of a SAM Low-Order Wavefront Sensor in estimating and correcting these errors via simulation and experiment and compares the results to other methods, such as the Zernike Wavefront Sensor planned for WFIRST.

  20. Diagnosing the Neutral Interstellar Gas Flow at 1 AU with IBEX-Lo

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Kucharek, H.; Clark, G.; O'Neill, M.; Petersen, L.; Bzowski, M.; Saul, L.; Wurz, P.; Fuselier, S. A.; Izmodenov, V. V.; McComas, D. J.; Müller, H. R.; Alexashov, D. B.

    2009-08-01

    Every year in fall and spring the Interstellar Boundary Explorer (IBEX) will observe directly the interstellar gas flow at 1 AU over periods of several months. The IBEX-Lo sensor employs a powerful triple time-of-flight mass spectrometer. It can distinguish and image the O and He flow distributions in the northern fall and spring, making use of sensor viewing perpendicular to the Sun-pointing spin axis. To effectively image the narrow flow distributions IBEX-Lo has a high angular resolution quadrant in its collimator. This quadrant is employed selectively for the interstellar gas flow viewing in the spring by electrostatically shutting off the remainder of the aperture. The operational scenarios, the expected data, and the necessary modeling to extract the interstellar parameters and the conditions in the heliospheric boundary are described. The combination of two key interstellar species will facilitate a direct comparison of the pristine interstellar flow, represented by He, which has not been altered in the heliospheric boundary region, with a flow that is processed in the outer heliosheath, represented by O. The O flow distribution consists of a depleted pristine component and decelerated and heated neutrals. Extracting the latter so-called secondary component of interstellar neutrals will provide quantitative constraints for several important parameters of the heliosheath interaction in current global heliospheric models. Finding the fraction and width of the secondary component yields an independent value for the global filtration factor of species, such as O and H. Thus far filtration can only be inferred, barring observations in the local interstellar cloud proper. The direction of the secondary component will provide independent information on the interstellar magnetic field strength and orientation, which has been inferred from SOHO SWAN Ly- α backscattering observations and the two Voyager crossings of the termination shock.

  1. Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  2. Spatially variant apodization for squinted synthetic aperture radar images.

    PubMed

    Castillo-Rubio, Carlos F; Llorente-Romano, Sergio; Burgos-García, Mateo

    2007-08-01

    Spatially variant apodization (SVA) is a nonlinear sidelobe reduction technique that improves sidelobe level and preserves resolution at the same time. This method implements a bidimensional finite impulse response filter with adaptive taps depending on image information. Some papers that have been previously published analyze SVA at the Nyquist rate or at higher rates focused on strip synthetic aperture radar (SAR). This paper shows that traditional SVA techniques are useless when the sensor operates with a squint angle. The reasons for this behaviour are analyzed, and a new implementation that largely improves the results is presented. The algorithm is applied to simulated SAR images in order to demonstrate the good quality achieved along with efficient computation.

  3. The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-10-01

    Aperture has a controlling impact on porosity and permeability and is a source of uncertainty in modeling of naturally fractured reservoirs. This uncertainty results from difficulties in accurately quantifying aperture in the subsurface and from a limited fundamental understanding of the mechanical and diagenetic processes that control aperture. In the absence of cement bridges and high pore pressure, fractures in the subsurface are generally considered to be closed. However, experimental work, outcrop analyses and subsurface data show that some fractures remain open, and that aperture varies even along a single fracture. However, most fracture flow models consider constant apertures for fractures. We create a stress-dependent heterogeneous aperture by combining Finite Element modeling of discrete fracture networks with an empirical aperture model. Using a modeling approach that considers fractures explicitly, we quantify equivalent permeability, i.e. combined matrix and stress-dependent fracture flow. Fracture networks extracted from a large outcropping pavement form the basis of these models. The results show that the angle between fracture strike and σ1 has a controlling impact on aperture and permeability, where hydraulic opening is maximum for an angle of 15°. At this angle, the fracture experiences a minor amount of shear displacement that allows the fracture to remain open even when fluid pressure is lower than the local normal stress. Averaging the heterogeneous aperture to scale up permeability probably results in an underestimation of flow, indicating the need to incorporate full aperture distributions rather than simplified aperture models in reservoir-scale flow models.

  4. Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.

    PubMed

    Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C

    2002-06-01

    IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.

  5. Improved particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, G.

    1987-03-23

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

  6. A precise method for adjusting the optical system of laser sub-aperture

    NASA Astrophysics Data System (ADS)

    Song, Xing; Zhang, Xue-min; Yang, Jianfeng; Xue, Li

    2018-02-01

    In order to adapt to the requirement of modern astronomical observation and warfare, the resolution of the space telescope is needed to improve, sub-aperture stitching imaging technique is one method to improve the resolution, which could be used not only the foundation and space-based large optical systems, also used in laser transmission and microscopic imaging. A large aperture main mirror of sub-aperture stitching imaging system is composed of multiple sub-mirrors distributed according to certain laws. All sub-mirrors are off-axis mirror, so the alignment of sub-aperture stitching imaging system is more complicated than a single off-axis optical system. An alignment method based on auto-collimation imaging and interferometric imaging is introduced in this paper, by using this alignment method, a sub-aperture stitching imaging system which is composed of 12 sub-mirrors was assembled with high resolution, the beam coincidence precision is better than 0.01mm, and the system wave aberration is better than 0.05λ.

  7. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    PubMed Central

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

    2013-01-01

    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10−4 RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10−5 RIU, and greater linearity at R2 = 0.999. PMID:23535636

  8. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    PubMed

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  9. The future of EUV lithography: enabling Moore's Law in the next decade

    NASA Astrophysics Data System (ADS)

    Pirati, Alberto; van Schoot, Jan; Troost, Kars; van Ballegoij, Rob; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos; Finders, Jo; Meiling, Hans; van Setten, Eelco; Mika, Niclas; Dredonx, Jeannot; Stamm, Uwe; Kneer, Bernhard; Thuering, Bernd; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha

    2017-03-01

    While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their development activities on a EUV exposure tool with Numerical Aperture greater than 0.5. The purpose of this scanner, targeting a resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, has been developed to provide the required Numerical Aperture; this lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling, and possibly in the metrology concepts. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the key technology innovations and infrastructure requirements for the next generation EUV systems.

  10. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    PubMed Central

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  11. Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

    NASA Astrophysics Data System (ADS)

    Freisem, L.; Jansen, G. S. M.; Rudolf, D.; Eikema, K. S. E.; Witte, S.

    2018-03-01

    Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.

  12. Compressed Symmetric Nested Arrays and Their Application for Direction-of-Arrival Estimation of Near-Field Sources.

    PubMed

    Li, Shuang; Xie, Dongfeng

    2016-11-17

    In this paper, a new sensor array geometry, called a compressed symmetric nested array (CSNA), is designed to increase the degrees of freedom in the near field. As its name suggests, a CSNA is constructed by getting rid of some elements from two identical nested arrays. The closed form expressions are also presented for the sensor locations and the largest degrees of freedom obtainable as a function of the total number of sensors. Furthermore, a novel DOA estimation method is proposed by utilizing the CSNA in the near field. By employing this new array geometry, our method can identify more sources than sensors. Compared with other existing methods, the proposed method achieves higher resolution because of increased array aperture. Simulation results are demonstrated to verify the effectiveness of the proposed method.

  13. Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques

    PubMed Central

    Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D.

    2010-01-01

    In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors. PMID:22294896

  14. Improving the ability of image sensors to detect faint stars and moving objects using image deconvolution techniques.

    PubMed

    Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D

    2010-01-01

    In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.

  15. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Fifth Quarterly Project Report - FY14 Q1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less

  16. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Monthly Report - November 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less

  17. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.

    PubMed

    Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao

    2016-06-10

    The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.

  18. Compensation in the presence of deep turbulence using tiled-aperture architectures

    NASA Astrophysics Data System (ADS)

    Spencer, Mark F.; Brennan, Terry J.

    2017-05-01

    The presence of distributed-volume atmospheric aberrations or "deep turbulence" presents unique challenges for beam-control applications which look to sense and correct for disturbances found along the laser-propagation path. This paper explores the potential for branch-point-tolerant reconstruction algorithms and tiled-aperture architectures to correct for the branch cuts contained in the phase function due to deep-turbulence conditions. Using wave-optics simulations, the analysis aims to parameterize the fitting-error performance of tiled-aperture architectures operating in a null-seeking control loop with piston, tip, and tilt compensation of the individual optical beamlet trains. To evaluate fitting-error performance, the analysis plots normalized power in the bucket as a function of the Fried coherence diameter, the log-amplitude variance, and the number of subapertures for comparison purposes. Initial results show that tiled-aperture architectures with a large number of subapertures outperform filled-aperture architectures with continuous-face-sheet deformable mirrors.

  19. Three dimensional fracture aperture and porosity distribution using computerized tomography

    NASA Astrophysics Data System (ADS)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the presence of strong heterogeneities in fracture aperture at the mm-scale. These results exemplify the use of non-destructive imaging to determine fracture aperture maps, which can be used to address flow channelization and heat transfer that cannot be obtained from core-flooding experiments alone.

  20. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  1. Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region

    NASA Astrophysics Data System (ADS)

    Liu, Pusheng; Lü, Baida

    2007-04-01

    By using the vectorial Debye diffraction theory, phase singularities of high numerical aperture (NA) dark-hollow Gaussian beams in the focal region are studied. The dependence of phase singularities on the truncation parameter δ and semi-aperture angle α (or equally, NA) is illustrated numerically. A comparison of phase singularities of high NA dark-hollow Gaussian beams with those of scalar paraxial Gaussian beams and high NA Gaussian beams is made. For high NA dark-hollow Gaussian beams the beam order n additionally affects the spatial distribution of phase singularities, and there exist phase singularities outside the focal plane, which may be created or annihilated by variation of the semi-aperture angle in a certain region.

  2. Analysis of remote sensing data collected for detection and mapping of oil spills: Reduction and analysis of multi-sensor airborne data of the NASA Wallops oil spill exercise of November 1978

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Airborne, remotely sensed data of the NASA Wallops controlled oil spill were corrected, reduced and analysed. Sensor performance comparisons were made by registering data sets from different sensors, which were near-coincident in time and location. Multispectral scanner images were, in turn, overlayed with profiles of correlation between airborne and laboratory-acquired fluorosensor spectra of oil; oil-thickness contours derived (by NASA) from a scanning fluorosensor and also from a two-channel scanning microwave radiometer; and synthetic aperture radar X-HH images. Microwave scatterometer data were correlated with dual-channel (UV and TIR) line scanner images of the oil slick.

  3. Sensored fiber reinforced polymer grate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Michael P.; Mack, Thomas Kimball

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based onmore » a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.« less

  4. Recent Progresses of Microwave Marine Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  5. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  6. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Technical volume. Executive summary

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R. (Editor); Chafaris, G.; Chestek, J.; Contrad, J.; Frippel, G.; Gulatsi, R.; Heath, A.; Hodara, H.; Kritikos, H.; Tamiyasu, K.

    1980-01-01

    The potential of space systems and technology for detecting and monitoring ocean oil spills and waste pollution was assessed as well as the impact of this application on communication and data handling systems. Agencies charged with responsibilities in this area were identified and their measurement requirements were ascertained in order to determine the spatial resolution needed to characterize operational and accidental discharges. Microwave and optical sensors and sensing techniques were evaluated as candidate system elements. Capabilities are described for the following: synthetic aperture radar, microwave scatterometer, passive microwave radiometer, microwave altimeter, electro-optical sensors currently used in airborne detection, existing space-based optical sensors, the thematic mapper, and the pointable optical linear array.

  7. Photographic zoom fisheye lens design for DSLR cameras

    NASA Astrophysics Data System (ADS)

    Yan, Yufeng; Sasian, Jose

    2017-09-01

    Photographic fisheye lenses with fixed focal length for cameras with different sensor formats have been well developed for decades. However, photographic fisheye lenses with variable focal length are rare on the market due in part to the greater design difficulty. This paper presents a large aperture zoom fisheye lens for DSLR cameras that produces both circular and diagonal fisheye imaging for 35-mm sensors and diagonal fisheye imaging for APS-C sensors. The history and optical characteristics of fisheye lenses are briefly reviewed. Then, a 9.2- to 16.1-mm F/2.8 to F/3.5 zoom fisheye lens design is presented, including the design approach and aberration control. Image quality and tolerance performance analysis for this lens are also presented.

  8. Embedded electronics for a video-rate distributed aperture passive millimeter-wave imager

    NASA Astrophysics Data System (ADS)

    Curt, Petersen F.; Bonnett, James; Schuetz, Christopher A.; Martin, Richard D.

    2013-05-01

    Optical upconversion for a distributed aperture millimeter wave imaging system is highly beneficial due to its superior bandwidth and limited susceptibility to EMI. These features mean the same technology can be used to collect information across a wide spectrum, as well as in harsh environments. Some practical uses of this technology include safety of flight in degraded visual environments (DVE), imaging through smoke and fog, and even electronic warfare. Using fiber-optics in the distributed aperture poses a particularly challenging problem with respect to maintaining coherence of the information between channels. In order to capture an image, the antenna aperture must be electronically steered and focused to a particular distance. Further, the state of the phased array must be maintained, even as environmental factors such as vibration, temperature and humidity adversely affect the propagation of the signals through the optical fibers. This phenomenon cannot be avoided or mitigated, but rather must be compensated for using a closed-loop control system. In this paper, we present an implementation of embedded electronics designed specifically for this purpose. This novel architecture is efficiently small, scalable to many simultaneously operating channels and sufficiently robust. We present our results, which include integration into a 220 channel imager and phase stability measurements as the system is stressed according to MIL-STD-810F vibration profiles of an H-53E heavy-lift helicopter.

  9. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  10. Simultaneous displacement and slope measurement in electronic speckle pattern interferometry using adjustable aperture multiplexing.

    PubMed

    Lu, Min; Wang, Shengjia; Aulbach, Laura; Koch, Alexander W

    2016-08-01

    This paper suggests the use of adjustable aperture multiplexing (AAM), a method which is able to introduce multiple tunable carrier frequencies into a three-beam electronic speckle pattern interferometer to measure the out-of-plane displacement and its first-order derivative simultaneously. In the optical arrangement, two single apertures are located in the object and reference light paths, respectively. In cooperation with two adjustable mirrors, virtual images of the single apertures construct three pairs of virtual double apertures with variable aperture opening sizes and aperture distances. By setting the aperture parameter properly, three tunable spatial carrier frequencies are produced within the speckle pattern and completely separate the information of three interferograms in the frequency domain. By applying the inverse Fourier transform to a selected spectrum, its corresponding phase difference distribution can thus be evaluated. Therefore, we can obtain the phase map due to the deformation as well as its slope of the test surface from two speckle patterns which are recorded at different loading events. By this means, simultaneous and dynamic measurements are realized. AAM has greatly simplified the measurement system, which contributes to improving the system stability and increasing the system flexibility and adaptability to various measurement requirements. This paper presents the AAM working principle, the phase retrieval using spatial carrier frequency, and preliminary experimental results.

  11. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Technical Reports Server (NTRS)

    Barrie, A.; Adrian, Mark L.; Yeh, P.-S.; Winkert, G. E.; Lobell, J. V.; Vinas, A.F.; Simpson, D. J.; Moore, T. E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eights (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 deg x 180 deg fields-of-view (FOV) are set 90 deg apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 deg x 180 deg fan about its nominal viewing (0 deg deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the results in the DES complement of a given spacecraft generating 6.5-Mbs(exp -1) of electron data while the DIS generates 1.1-Mbs(exp -1) of ion data yielding an FPI total data rate of 6.6-MBs(exp -1). The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mbs(exp -1). Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements. Topics to be discussed include: review of compression algorithm; data quality; data formatting/organization; and, implications for data/matrix pruning. To conclude a presentation of the base-lined FPI data compression approach is provided.

  12. Sea ice motion measurements from Seasat SAR images

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Raggam, J.; Elachi, C.; Campbell, W. J.

    1983-01-01

    Data from the Seasat synthetic aperture radar (SAR) experiment are analyzed in order to determine the accuracy of this information for mapping the distribution of sea ice and its motion. Data from observations of sea ice in the Beaufort Sea from seven sequential orbits of the satellite were selected to study the capabilities and limitations of spaceborne radar application to sea-ice mapping. Results show that there is no difficulty in identifying homologue ice features on sequential radar images and the accuracy is entirely controlled by the accuracy of the orbit data and the geometric calibration of the sensor. Conventional radargrammetric methods are found to serve well for satellite radar ice mapping, while ground control points can be used to calibrate the ice location and motion measurements in the cases where orbit data and sensor calibration are lacking. The ice motion was determined to be approximately 6.4 + or - 0.5 km/day. In addition, the accuracy of pixel location was found over land areas. The use of one control point in 10,000 sq km produced an accuracy of about + or 150 m, while with a higher density of control points (7 in 1000 sq km) the location accuracy improves to the image resolution of + or - 25 m. This is found to be applicable for both optical and digital data.

  13. Common aperture multispectral spotter camera: Spectro XR

    NASA Astrophysics Data System (ADS)

    Petrushevsky, Vladimir; Freiman, Dov; Diamant, Idan; Giladi, Shira; Leibovich, Maor

    2017-10-01

    The Spectro XRTM is an advanced color/NIR/SWIR/MWIR 16'' payload recently developed by Elbit Systems / ELOP. The payload's primary sensor is a spotter camera with common 7'' aperture. The sensor suite includes also MWIR zoom, EO zoom, laser designator or rangefinder, laser pointer / illuminator and laser spot tracker. Rigid structure, vibration damping and 4-axes gimbals enable high level of line-of-sight stabilization. The payload's list of features include multi-target video tracker, precise boresight, strap-on IMU, embedded moving map, geodetic calculations suite, and image fusion. The paper describes main technical characteristics of the spotter camera. Visible-quality, all-metal front catadioptric telescope maintains optical performance in wide range of environmental conditions. High-efficiency coatings separate the incoming light into EO, SWIR and MWIR band channels. Both EO and SWIR bands have dual FOV and 3 spectral filters each. Several variants of focal plane array formats are supported. The common aperture design facilitates superior DRI performance in EO and SWIR, in comparison to the conventionally configured payloads. Special spectral calibration and color correction extend the effective range of color imaging. An advanced CMOS FPA and low F-number of the optics facilitate low light performance. SWIR band provides further atmospheric penetration, as well as see-spot capability at especially long ranges, due to asynchronous pulse detection. MWIR band has good sharpness in the entire field-of-view and (with full HD FPA) delivers amount of detail far exceeding one of VGA-equipped FLIRs. The Spectro XR offers level of performance typically associated with larger and heavier payloads.

  14. A novel lightweight Fizeau infrared interferometric imaging system

    NASA Astrophysics Data System (ADS)

    Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert

    2016-05-01

    Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.

  15. High resolution beamforming on large aperture vertical line arrays: Processing synthetic data

    NASA Astrophysics Data System (ADS)

    Tran, Jean-Marie Q.; Hodgkiss, William S.

    1990-09-01

    This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.

  16. An atlas of November 1978 synthetic aperture radar digitized imagery for oil spill studies

    NASA Technical Reports Server (NTRS)

    Maurer, H. E.; Oderman, W.; Crosswell, W. F.

    1982-01-01

    A data set is described which consists of digitized synthetic aperture radar (SAR) imagery plus correlative data and some preliminary analysis results. This data set should be of value to experimenters who are interested in the SAR instrument and its application to the detection and monitoring of oil on water and other distributed targets.

  17. Analysis of aperture averaging measurements. [laser scintillation data on the effect of atmospheric turbulence on signal fluctuations

    NASA Technical Reports Server (NTRS)

    Fried, D. L.

    1975-01-01

    Laser scintillation data obtained by the NASA Goddard Space Flight Center balloon flight no. 5 from White Sands Missile Range on 19 October 1973 are analyzed. The measurement data, taken with various size receiver apertures, were related to predictions of aperture averaging theory, and it is concluded that the data are in reasonable agreement with theory. The following parameters are assigned to the vertical distribution of the strength of turbulence during the period of the measurements (daytime), for lambda = 0.633 microns, and the source at the zenith; the aperture averaging length is d sub o = 0.125 m, and the log-amplitude variance is (beta sub l)2 = 0.084 square nepers. This corresponds to a normalized point intensity variance of 0.40.

  18. Digital sun sensor multi-spot operation.

    PubMed

    Rufino, Giancarlo; Grassi, Michele

    2012-11-28

    The operation and test of a multi-spot digital sun sensor for precise sun-line determination is described. The image forming system consists of an opaque mask with multiple pinhole apertures producing multiple, simultaneous, spot-like images of the sun on the focal plane. The sun-line precision can be improved by averaging multiple simultaneous measures. Nevertheless, the sensor operation on a wide field of view requires acquiring and processing images in which the number of sun spots and the related intensity level are largely variable. To this end, a reliable and robust image acquisition procedure based on a variable shutter time has been considered as well as a calibration function exploiting also the knowledge of the sun-spot array size. Main focus of the present paper is the experimental validation of the wide field of view operation of the sensor by using a sensor prototype and a laboratory test facility. Results demonstrate that it is possible to keep high measurement precision also for large off-boresight angles.

  19. VHF Radar Measurements of Tropical Forests in Panama: Results from the BioSAR Deployment in Central America

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc; Lawrence, William; Condit, Richard; Wright, Joseph; Johnson, Patrick; Holford, Warren; Hyer, Joseph; May, Lisa; Carson, Steven

    2000-01-01

    A synthetic aperture radar sensor operating in 5 bands between 80 and 120 MHz was flown over forested areas in the canal zone of the Republic of Panama in an experiment to measure biomass in heavy tropical forests. The sensor is a pulse coherent SAR flown on a small aircraft and oriented straight down. The doppler history is processed to collect data on the ground in rectangular cells of varying size over a range of incidence angles fore and aft of nadir (+45 to - 45 degrees). Sensor data consists of 5 frequency bands with 20 incidence angles per band. Sensor data for over 12+ sites were collected with forest stands having biomass densities ranging from 50 to 300 tons/ha dry above ground biomass. Results are shown exploring the biomass saturation thresholds using these frequencies, the system design is explained, and preliminary attempts at data visualization using this unique sensor design are described.

  20. NASA Tech Briefs, July 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Dual Cryogenic Capacitive Density Sensor; Hail Monitor Sensor; Miniature Six-Axis Load Sensor for Robotic Fingertip; Improved Blackbody Temperature Sensors for a Vacuum Furnace; Wrap-Around Out-the-Window Sensor Fusion System; Wide-Range Temperature Sensors with High-Level Pulse Train Output; Terminal Descent Sensor Simulation; A Robust Mechanical Sensing System for Unmanned Sea Surface Vehicles; Additive for Low-Temperature Operation of Li-(CF)n Cells; Li/CFx Cells Optimized for Low-Temperature Operation; Number Codes Readable by Magnetic-Field-Response Recorders; Determining Locations by Use of Networks of Passive Beacons; Superconducting Hot-Electron Submillimeter-Wave Detector; Large-Aperture Membrane Active Phased-Array Antennas; Optical Injection Locking of a VCSEL in an OEO; Measuring Multiple Resistances Using Single-Point Excitation; Improved-Bandwidth Transimpedance Amplifier; Inter-Symbol Guard Time for Synchronizing Optical PPM; Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules; Light-Curing Adhesive Repair Tapes; Thin-Film Solid Oxide Fuel Cells; Zinc Alloys for the Fabrication of Semiconductor Devices; Small, Lightweight, Collapsible Glove Box; Radial Halbach Magnetic Bearings; Aerial Deployment and Inflation System for Mars Helium Balloons; Steel Primer Chamber Assemblies for Dual Initiated Pyrovalves; Voice Coil Percussive Mechanism Concept for Hammer Drill; Inherently Ducted Propfans and Bi-Props; Silicon Nanowire Growth at Chosen Positions and Orientations; Detecting Airborne Mercury by Use of Gold Nanowires; Detecting Airborne Mercury by Use of Palladium Chloride; Micro Electron MicroProbe and Sample Analyzer; Nanowire Electron Scattering Spectroscopy; Electron-Spin Filters Would Offer Spin Polarization Greater than 1; Subcritical-Water Extraction of Organics from Solid Matrices; A Model for Predicting Thermoelectric Properties of Bi2Te3; Integrated Miniature Arrays of Optical Biomolecule Detectors; A Software Rejuvenation Framework for Distributed Computing; Kurtosis Approach to Solution of a Nonlinear ICA Problem; Robust Software Architecture for Robots; R4SA for Controlling Robots; Bio-Inspired Neural Model for Learning Dynamic Models; Evolutionary Computing Methods for Spectral Retrieval; Monitoring Disasters by Use of Instrumented Robotic Aircraft; Complexity for Survival of Living Systems; Using Drained Spacecraft Propellant Tanks for Habitation; Connecting Node; and Electrolytes for Low-Temperature Operation of Li-CFx Cells.

  1. Fracture Characterization in the Astor Pass Geothermal Field, Nevada

    NASA Astrophysics Data System (ADS)

    Walsh, D. C.; Reeves, D. M.; Pohll, G.; Lyles, B. F.; Cooper, C. A.

    2011-12-01

    The Astor Pass geothermal field, near Pyramid Lake, NV, is under study as a site of potential geothermal energy production. Three wells have been completed in the graben of this typical Basin and Range geologic setting. Lithologies include a layer of unconsolidated sediment (basin fill) underlain by various tertiary volcanic units and granodiorite and metavolcanic basement rock. Characterization of fractures within the relatively impermeable rock matrix is being conducted for the three wells. Statistical analysis of fracture orientation, densities, and spacing obtained from borehole imaging logs is used to determine stress orientation and to generate a statistically equivalent Discrete Fracture Network (DFN) model. Fractures at depth are compared to fracture data collected in nearby outcrops of the same lithologic stratigraphy. Fracture geometry and density is correlated to mechanically discrete layers within the stratigraphy to test whether variations in fracturing can be attributed to variations in Young's modulus. Correlation of fracture geometry and densities with spinner flowmeter logs and distributed temperature sensor records are made in an effort to identify potential flowing fracture zones intersecting the borehole. Mean fracture aperture is obtained from open fracture counts and reservoir-scale transmissivity values (computed from a 30 day pump test) in the absence of readily available aperture data. The goal of this thorough fracture characterization is to create a physically relevant model which may be coupled with a multipurpose fluid flow and thermal simulator for investigation of geothermal reservoir behavior, particularly at the borehole scale.

  2. Production of Ultra-Light Normal Incidence Mirrors

    NASA Technical Reports Server (NTRS)

    Jones, Ruth; Muntele, Iulia; Muntele, Claudiu; Zimmerman, Robert L.; Ila, Daryush; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Mirrors fabrication for large aperture telescopes is an important aspect in space exploration programs. One of the cost effective techniques to obtain such mirrors is electroplating of Ni-Co alloys from sulfamate solution. The Center for Irradiation of Materials at Alabama A&M University - Research Institute has been involved in a NASA-MSFC project for producing ultra-light Ni-Co alloy mirrors since the summer of year 2000. The goal of this project is to obtain ultra-light, high strength electroformed large aperture normal incidence replicated mirrors, (weighting less than 5 kg/m2), free of stress, with a good figure and reproducible thickness variation. In order to simplify the control of parameters such as temperature gradient, concentration gradient, distribution of the electric field lines and flow control, the proposed geometry involves a cylindrical main tank contained in another cylindrical tank, which plays the role of a weir. Designs were created to accommodate the new horizontal position of the mandrel and the pipes fitting through the outer tank's lid. The inner tank contains the working electrodes and a series of sensors for monitoring temperature, flow, stress and pH. The outer tank holds the electric heaters, the filters and a part of the piping system. Another two tanks complete the setup and serve for rinsing/preheating and equilibrating the electroplating bath. This paper will describe advantages of the new experimental setup and the parameters achieved in the electroplating bath for the proposed geometry.

  3. Carrier Air Wing Tactics Incorporating Navy Unmanned Combat Air System (NUCAS)

    DTIC Science & Technology

    2010-03-01

    Profile Curves of Mean Target Casualty Rate Versus GBU-31 Phit and NUCAS Sensor Aperture (After SAS Institute, 2010...Prediction Profile Curve of Mean Blue Survivability Percent Versus AIM- 120 Weapons Phit (After SAS Institute, 2010...Weapons Phit is a major factor in target destruction and blue survivability. Our approach shows how simulation, data farming techniques, and data

  4. High-Accuracy Multisensor Geolocation Technology to Support Geophysical Data Collection at MEC Sites

    DTIC Science & Technology

    2012-12-01

    image with intensity data in a single step. Flash LiDAR can use both basic solutions to emit laser , either a single pulse with large aperture will...45 6. LASER SENSOR DEVELOPMENTS...and a terrestrial laser scanner (TLS). State-of-the-art GPS navigation allows for cm- accurate positioning in open areas where a sufficient number

  5. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    USGS Publications Warehouse

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  6. Glacier and snow hydrology investigation in the Upper Indus Basin using Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Jouvet, G.; Stastny, T.; Oettershagen, P.; Hugentobler, M.; Mantel, T.; Melzer, A.; Weidmann, Y.; Funk, M.; Siegwart, R.; Lund, J.; Forster, R. R.; Burgess, E. W.

    2017-12-01

    The flows of the Indus River are a vital resource for food security, ecosystem services, hydropower and economy for China, India and Pakistan. Glaciers of the Karakoram Mountains are the largest drivers of discharge in the Upper Indus Basin, and combined with snowmelt constitute the majority of runoff. While recently verified in near balance, the glaciers of the Karakoram exhibit substantial variation both spatially and temporally. Complex climatology, coupled with the challenges of field study in this rugged range, illicit notable uncertainties in observation and prediction of glacial status. Satellite-borne radar sensors acquire imagery regardless of cloud cover or time of day, and offer unique insights into physical processes due to their wavelength. Here we utilize Sentinel-1 synthetic aperture radar (SAR) imagery to track transient snow lines on glaciers of the Shigar watershed throughout multiple ablation seasons, and discuss the utility of this information in relation to snow and glacier mass balance. As the Sentinel-1 sensor ascending and descending passes capture morning and evening imagery in this region, diurnal radar variations will also be explored as indicators of melt-refreeze cycles and their correlation with peak runoff.

  7. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    PubMed

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  8. Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information

    NASA Astrophysics Data System (ADS)

    Mishra, Varun Narayan; Prasad, Rajendra; Kumar, Pradeep; Srivastava, Prashant K.; Rai, Praveen Kumar

    2017-10-01

    Updated and accurate information of rice-growing areas is vital for food security and investigating the environmental impact of rice ecosystems. The intent of this work is to explore the feasibility of dual-polarimetric C-band Radar Imaging Satellite-1 (RISAT-1) data in delineating rice crop fields from other land cover features. A two polarization combination of RISAT-1 backscatter, namely ratio (HH/HV) and difference (HH-HV), significantly enhanced the backscatter difference between rice and nonrice categories. With these inputs, a QUEST decision tree (DT) classifier is successfully employed to extract the spatial distribution of rice crop areas. The results showed the optimal polarization combination to be HH along with HH/HV and HH-HV for rice crop mapping with an accuracy of 88.57%. Results were further compared with a Landsat-8 operational land imager (OLI) optical sensor-derived rice crop map. Spatial agreement of almost 90% was achieved between outputs produced from Landsat-8 OLI and RISAT-1 data. The simplicity of the approach used in this work may serve as an effective tool for rice crop mapping.

  9. Continuous, real time microwave plasma element sensor

    DOEpatents

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  10. 3D active edge silicon sensors: Device processing, yield and QA for the ATLAS-IBL production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Vià, Cinzia; Boscardil, Maurizio; Dalla Betta, GianFranco

    2013-01-01

    3D silicon sensors, where plasma micromachining is used to etch deep narrow apertures in the silicon substrate to form electrodes of PIN junctions, were successfully manufactured in facilities in Europe and USA. In 2011 the technology underwent a qualification process to establish its maturity for a medium scale production for the construction of a pixel layer for vertex detection, the Insertable B-Layer (IBL) at the CERN-LHC ATLAS experiment. The IBL collaboration, following that recommendation from the review panel, decided to complete the production of planar and 3D sensors and endorsed the proposal to build enough modules for a mixed IBLmore » sensor scenario where 25% of 3D modules populate the forward and backward part of each stave. The production of planar sensors will also allow coverage of 100% of the IBL, in case that option was required. This paper will describe the processing strategy which allowed successful 3D sensor production, some of the Quality Assurance (QA) tests performed during the pre-production phase and the production yield to date.« less

  11. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    PubMed Central

    Xiong, Jijun; Wu, Guozhu; Tan, Qiulin; Wei, Tanyong; Wu, Dezhi; Shen, Sanmin; Dong, Helei; Zhang, Wendong

    2016-01-01

    The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C. PMID:27916920

  12. DUSTER: demonstration of an integrated LWIR-VNIR-SAR imaging system

    NASA Astrophysics Data System (ADS)

    Wilson, Michael L.; Linne von Berg, Dale; Kruer, Melvin; Holt, Niel; Anderson, Scott A.; Long, David G.; Margulis, Yuly

    2008-04-01

    The Naval Research Laboratory (NRL) and Space Dynamics Laboratory (SDL) are executing a joint effort, DUSTER (Deployable Unmanned System for Targeting, Exploitation, and Reconnaissance), to develop and test a new tactical sensor system specifically designed for Tier II UAVs. The system is composed of two coupled near-real-time sensors: EyePod (VNIR/LWIR ball gimbal) and NuSAR (L-band synthetic aperture radar). EyePod consists of a jitter-stabilized LWIR sensor coupled with a dual focal-length optical system and a bore-sighted high-resolution VNIR sensor. The dual focal-length design coupled with precision pointing an step-stare capabilities enable EyePod to conduct wide-area survey and high resolution inspection missions from a single flight pass. NuSAR is being developed with partners Brigham Young University (BYU) and Artemis, Inc and consists of a wideband L-band SAR capable of large area survey and embedded real-time image formation. Both sensors employ standard Ethernet interfaces and provide geo-registered NITFS output imagery. In the fall of 2007, field tests were conducted with both sensors, results of which will be presented.

  13. Effects of time of day and monensin on the size distribution of particles in digestive tract sites of heifers fed corn silage.

    PubMed

    Deswysen, A G; Pond, K R; Rivera-Villarreal, E; Ellis, W C

    1989-07-01

    Effects of time of day and dietary monensin in the distribution of size of digesta particles in different digestive tract sites and their intersite relationships were examined in six heifers (290 kg BW) with ruminal, duodenal and ileal cannulas given ad libitum access to corn silage, with or without 100 mg monensin.head-1.d-1, in a two-period crossover design. Ingestive masticate and digesta of corn silage were collected via esophageal, ruminal or intestinal cannulas. The distribution of particulate matter retained on sieves with apertures larger than 20 microm was determined by wet-sieving. The cumulative distribution of particulate matter on a series of sieves was regressed on retaining sieve aperture to estimate the sieve aperture that would retain 50% weight of the particulate matter (median retaining aperture, MRA). The MRA of masticate was 6,494 microm. The MRA of digesta particles decreased (P less than .05) from ventral rumen (1,847 microm) to dorsal rumen (1,797 microm) to duodenum (346 microm), but increased to the rectum (359 microm). The MRA was lower (P = .044) for the monensin treatment only in feces. The MRA of particulate matter in the dorsal and ventral rumen, duodenum and rectum all changed (P less than .05) over 24 h. An inverse pattern between the MRA of ruminal and duodenal digesta occurred, presumably the result of a nycterohemeral pattern of eating and ruminating activity. Across sampling times, an inverse relationship existed between MRA of ventral rumen and duodenal digesta. This relationship suggests that a ruminal digesta raft composed of larger particles (immediately following major meals) is more effective than a raft of smaller particles (prior to such meals) in preventing flux of large particles to the duodenum.

  14. Atmospheric corrections in interferometric synthetic aperture radar surface deformation - a case study of the city of Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Balbarani, S.; Euillades, P. A.; Euillades, L. D.; Casu, F.; Riveros, N. C.

    2013-09-01

    Differential interferometry is a remote sensing technique that allows studying crustal deformation produced by several phenomena like earthquakes, landslides, land subsidence and volcanic eruptions. Advanced techniques, like small baseline subsets (SBAS), exploit series of images acquired by synthetic aperture radar (SAR) sensors during a given time span. Phase propagation delay in the atmosphere is the main systematic error of interferometric SAR measurements. It affects differently images acquired at different days or even at different hours of the same day. So, datasets acquired during the same time span from different sensors (or sensor configuration) often give diverging results. Here we processed two datasets acquired from June 2010 to December 2011 by COSMO-SkyMed satellites. One of them is HH-polarized, and the other one is VV-polarized and acquired on different days. As expected, time series computed from these datasets show differences. We attributed them to non-compensated atmospheric artifacts and tried to correct them by using ERA-Interim global atmospheric model (GAM) data. With this method, we were able to correct less than 50% of the scenes, considering an area where no phase unwrapping errors were detected. We conclude that GAM-based corrections are not enough for explaining differences in computed time series, at least in the processed area of interest. We remark that no direct meteorological data for the GAM-based corrections were employed. Further research is needed in order to understand under what conditions this kind of data can be used.

  15. High-performance etching of multilevel phase-type Fresnel zone plates with large apertures

    NASA Astrophysics Data System (ADS)

    Guo, Chengli; Zhang, Zhiyu; Xue, Donglin; Li, Longxiang; Wang, Ruoqiu; Zhou, Xiaoguang; Zhang, Feng; Zhang, Xuejun

    2018-01-01

    To ensure the etching depth uniformity of large-aperture Fresnel zone plates (FZPs) with controllable depths, a combination of a point source ion beam with a dwell-time algorithm has been proposed. According to the obtained distribution of the removal function, the latter can be used to optimize the etching time matrix by minimizing the root-mean-square error between the simulation results and the design value. Owing to the convolution operation in the utilized algorithm, the etching depth error is insensitive to the etching rate fluctuations of the ion beam, thereby reducing the requirement for the etching stability of the ion system. As a result, a 4-level FZP with a circular aperture of 300 mm was fabricated. The obtained results showed that the etching depth uniformity of the full aperture could be reduced to below 1%, which was sufficiently accurate for meeting the use requirements of FZPs. The proposed etching method may serve as an alternative way of etching high-precision diffractive optical elements with large apertures.

  16. SU-E-T-344: Dynamic Electron Beam Therapy Using Multiple Apertures in a Single Cut-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A; Yin, F; Wu, Q

    2015-06-15

    Purpose: Few leaf electron collimators (FLEC) or electron MLCs (eMLC) are highly desirable for dynamic electron beam therapies as they produce multiple apertures within a single delivery to achieve conformal dose distributions. However, their clinical implementation has been challenging. Alternatively, multiple small apertures in a single cut-out with variable jaw sizes could be utilized in a single dynamic delivery. In this study, we investigate dosimetric characteristics of such arrangement. Methods: Monte Carlo (EGSnrc/BEAMnrc/DOSXYnrc) simulations utilized validated Varian TrueBeam phase spaces. Investigated quantities included: Energy (6 MeV), jaw size (1×1 to 22×22 cm {sup 2}; centered to aperture), applicator/cut-out (15×15 cm{supmore » 2}), aperture (1×1, 2×2, 3×3, 4×4 cm{sup 2}), and aperture placement (on/off central axis). Three configurations were assessed: (1) single aperture on-axis, (2) single aperture off-axis, and (3) multiple apertures. Reference was configuration (1) with standard jaw size. Aperture placement and jaw size were optimized to maintain reference dosimetry and minimize leakage through unused apertures to <5%. Comparison metrics included depth dose and orthogonal profiles. Results: Configuration (1) and (2): Jaw openings were reduced to 10×10 cm{sup 2} without affecting dosimetry (gamma 2%/1mm) regardless of on- or off-axis placement. For smaller jaw sizes, reduced surface (<2%, 5% for 1×1 cm{sup 2} aperture) and increased Bremsstrahlung (<2%, 10% for 1×1 cm{sup 2} aperture) dose was observed. Configuration (3): Optimal aperture placement was in the corners (order: 1×1, 4×4, 2×2, 3×3 cm{sup 2}) and jaw sizes were 4×4, 4×4, 7×7, and 5×5 cm{sup 2} (apertures: 1×1, 2×2, 3×3, 4×4 cm{sup 2} ). Asymmetric leakage was found from upper and lower jaws. Leakage was generally within 5% with a maximum of 10% observed for the 1×1 cm{sup 2} aperture irradiation. Conclusion: Multiple apertures in a single cut-out with variable jaw size can be used in a single dynamic delivery, providing a practical alternative to FLEC or eMLC. Future simulations will expand on all variables.« less

  17. Water flow in high-speed handpieces.

    PubMed

    Cavalcanti, Bruno Neves; Serairdarian, Paulo Isaías; Rode, Sigmar Mello

    2005-05-01

    This study measured the water flow commonly used in high-speed handpieces to evaluate the water flow's influence on temperature generation. Different flow speeds were evaluated between turbines that had different numbers of cooling apertures. Two water samples were collected from each high-speed handpiece at private practices and at the School of Dentistry at São José dos Campos. The first sample was collected at the customary flow and the second was collected with the terminal opened for maximum flow. The two samples were collected into weighed glass receptacles after 15 seconds of turbine operation. The glass receptacles were reweighed and the difference between weights was recorded to calculate the water flow in mL/min and for further statistical analysis. The average water flow for 137 samples was 29.48 mL/min. The flow speeds obtained were 42.38 mL/min for turbines with one coolant aperture; 34.31 mL/min for turbines with two coolant apertures; and 30.44 mL/min for turbines with three coolant apertures. There were statistical differences between turbines with one and three coolant apertures (Tukey-Kramer multiple comparisons test with P < .05). Turbine handpieces with one cooling aperture distributed more water for the burs than high-speed handpieces with more than one aperture.

  18. Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture

    PubMed Central

    Zheng, Guoan; Wang, Yingmin; Yang, Changhuei

    2010-01-01

    The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography. PMID:20721038

  19. High-NA EUV lithography enabling Moore's law in the next decade

    NASA Astrophysics Data System (ADS)

    van Schoot, Jan; Troost, Kars; Bornebroek, Frank; van Ballegoij, Rob; Lok, Sjoerd; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos P.; Finders, Jo; Meiling, Hans; van Setten, Eelco; Kneer, Bernhard; Kuerz, Peter; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha; Neumann, Jens Timo

    2017-10-01

    While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their activities on a EUV exposure tool with Numerical Aperture of 0.55. The purpose of this scanner, targeting an ultimate resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, capable of providing the required Numerical Aperture has been investigated; This lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the target specifications, key technology innovations and imaging simulations demonstrating the advantages as compared to 0.33NA and showing the capabilities of the next generation EUV systems.

  20. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    NASA Astrophysics Data System (ADS)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.

  1. Atmospheric Compensation and Surface Temperature and Emissivity Retrieval with LWIR Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Pieper, Michael

    Accurate estimation or retrieval of surface emissivity spectra from long-wave infrared (LWIR) or Thermal Infrared (TIR) hyperspectral imaging data acquired by airborne or space-borne sensors is necessary for many scientific and defense applications. The at-aperture radiance measured by the sensor is a function of the ground emissivity and temperature, modified by the atmosphere. Thus the emissivity retrieval process consists of two interwoven steps: atmospheric compensation (AC) to retrieve the ground radiance from the measured at-aperture radiance and temperature-emissivity separation (TES) to separate the temperature and emissivity from the ground radiance. In-scene AC (ISAC) algorithms use blackbody-like materials in the scene, which have a linear relationship between their ground radiances and at-aperture radiances determined by the atmospheric transmission and upwelling radiance. Using a clear reference channel to estimate the ground radiance, a linear fitting of the at-aperture radiance and estimated ground radiance is done to estimate the atmospheric parameters. TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the sharp features added by the atmosphere. The ground temperature and emissivity are found by finding the temperature that provides the smoothest emissivity estimate. In this thesis we develop models to investigate the sensitivity of AC and TES to the basic assumptions enabling their performance. ISAC assumes that there are perfect blackbody pixels in a scene and that there is a clear channel, which is never the case. The developed ISAC model explains how the quality of blackbody-like pixels affect the shape of atmospheric estimates and the clear channel assumption affects their magnitude. Emissivity spectra for solids usually have some roughness. The TES model identifies four sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise and wavelength calibration. The ways these errors interact determines the overall TES performance. Since the AC and TES processes are interwoven, any errors in AC are transferred to TES and the final temperature and emissivity estimates. Combining the two models, shape errors caused by the blackbody assumption are transferred to the emissivity estimates, where magnitude errors from the clear channel assumption are compensated by TES temperature induced emissivity errors. The ability for the temperature induced error to compensate for such atmospheric errors makes it difficult to determine the correct atmospheric parameters for a scene. With these models we are able to determine the expected quality of estimated emissivity spectra based on the quality of blackbody-like materials on the ground, the emissivity of the materials being searched for, and the properties of the sensor. The quality of material emissivity spectra is a key factor in determining detection performance for a material in a scene.

  2. Miniature Wide-Angle Lens for Small-Pixel Electronic Camera

    NASA Technical Reports Server (NTRS)

    Mouroulils, Pantazis; Blazejewski, Edward

    2009-01-01

    A proposed wideangle lens is shown that would be especially well suited for an electronic camera in which the focal plane is occupied by an image sensor that has small pixels. The design of the lens is intended to satisfy requirements for compactness, high image quality, and reasonably low cost, while addressing issues peculiar to the operation of small-pixel image sensors. Hence, this design is expected to enable the development of a new generation of compact, high-performance electronic cameras. The lens example shown has a 60 degree field of view and a relative aperture (f-number) of 3.2. The main issues affecting the design are also shown.

  3. Comparison of JPL-AIRSAR and DLR E-SAR images from the MAC Europe 1991 campaign over testsite Oberpfaffenhofen: Frequency and polarization dependent backscatter variations from agricultural fields

    NASA Technical Reports Server (NTRS)

    Schmullius, C.; Nithack, J.

    1992-01-01

    On July 12, the MAC Europe '91 (Multi-Sensor Airborne Campaign) took place over test site Oberpfaffenhofen. The DLR Institute of Radio-Frequency Technology participated with its C-VV, X-VV, and X-HH Experimental Synthetic Aperture Radar (E-SAR). The high resolution E-SAR images with a pixel size between 1 and 2 m and the polarimetric AIRSAR images were analyzed. Using both sensors in combination is a unique opportunity to evaluate SAR images in a frequency range from P- to X-band and to investigate polarimetric information.

  4. Image sensor for testing refractive error of eyes

    NASA Astrophysics Data System (ADS)

    Li, Xiangning; Chen, Jiabi; Xu, Longyun

    2000-05-01

    It is difficult to detect ametropia and anisometropia for children. Image sensor for testing refractive error of eyes does not need the cooperation of children and can be used to do the general survey of ametropia and anisometropia for children. In our study, photographs are recorded by a CCD element in a digital form which can be directly processed by a computer. In order to process the image accurately by digital technique, formula considering the effect of extended light source and the size of lens aperture has been deduced, which is more reliable in practice. Computer simulation of the image sensing is made to verify the fineness of the results.

  5. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  6. Measurement of seeing and the atmospheric time constant by differential scintillations.

    PubMed

    Tokovinin, Andrei

    2002-02-20

    A simple differential analysis of stellar scintillations measured simultaneously with two apertures opens the possibility to estimate seeing. Moreover, some information on the vertical turbulence distribution can be obtained. A general expression for the differential scintillation index for apertures of arbitrary shape and for finite exposure time is derived, and its applications are studied. Correction for exposure time bias by use of the ratio of scintillation indices with and without time binning is studied. A bandpass-filtered scintillation in a small aperture (computed as the differential-exposure index) provides a reasonably good estimate of the atmospheric time constant for adaptive optics.

  7. The Multispectral Atmospheric Mapping Sensor (MAMS): Instrument description, calibration and data quality

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Menzel, W. P.; Atkinson, R.; Wilson, G. S.; Arvesen, J.

    1986-01-01

    A new instrument has been developed to produce high resolution imagery in eight visible and three infared spectral bands from an aircraft platform. An analysis of the data and calibration procedures has shown that useful data can be obtained at up to 50 m resolution with a 2.5 milliradian aperture. Single sample standard errors for the measurements are 0.5, 0.2, and 0.9 K for the 6.5, 11.1, and 12.3 micron spectral bands, respectively. These errors are halved when a 5.0 milliradian aperture is used to obtain 100 m resolution data. Intercomparisons with VAS and AVHRR measurements show good relative calibration. MAMS development is part of a larger program to develop multispectral Earth imaging capabilities from space platforms during the 1990s.

  8. Reducing the Requirements and Cost of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)

    2002-01-01

    Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.

  9. A hydrostatic leak test for water pipeline by using distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang

    2015-07-01

    A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.

  10. A higher-speed compressive sensing camera through multi-diode design

    NASA Astrophysics Data System (ADS)

    Herman, Matthew A.; Tidman, James; Hewitt, Donna; Weston, Tyler; McMackin, Lenore

    2013-05-01

    Obtaining high frame rates is a challenge with compressive sensing (CS) systems that gather measurements in a sequential manner, such as the single-pixel CS camera. One strategy for increasing the frame rate is to divide the FOV into smaller areas that are sampled and reconstructed in parallel. Following this strategy, InView has developed a multi-aperture CS camera using an 8×4 array of photodiodes that essentially act as 32 individual simultaneously operating single-pixel cameras. Images reconstructed from each of the photodiode measurements are stitched together to form the full FOV. To account for crosstalk between the sub-apertures, novel modulation patterns have been developed to allow neighboring sub-apertures to share energy. Regions of overlap not only account for crosstalk energy that would otherwise be reconstructed as noise, but they also allow for tolerance in the alignment of the DMD to the lenslet array. Currently, the multi-aperture camera is built into a computational imaging workstation configuration useful for research and development purposes. In this configuration, modulation patterns are generated in a CPU and sent to the DMD via PCI express, which allows the operator to develop and change the patterns used in the data acquisition step. The sensor data is collected and then streamed to the workstation via an Ethernet or USB connection for the reconstruction step. Depending on the amount of data taken and the amount of overlap between sub-apertures, frame rates of 2-5 frames per second can be achieved. In a stand-alone camera platform, currently in development, pattern generation and reconstruction will be implemented on-board.

  11. Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.

    PubMed

    Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun

    2018-05-03

    This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.

  12. Maximizing the potential of direct aperture optimization through collimator rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milette, Marie-Pierre; Otto, Karl; Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia

    Intensity-modulated radiation therapy (IMRT) treatment plans are conventionally produced by the optimization of fluence maps followed by a leaf sequencing step. An alternative to fluence based inverse planning is to optimize directly the leaf positions and field weights of multileaf collimator (MLC) apertures. This approach is typically referred to as direct aperture optimization (DAO). It has been shown that equivalent dose distributions may be generated that have substantially fewer monitor units (MU) and number of apertures compared to fluence based optimization techniques. Here we introduce a DAO technique with rotated apertures that we call rotating aperture optimization (RAO). The advantagesmore » of collimator rotation in IMRT have been shown previously and include higher fluence spatial resolution, increased flexibility in the generation of aperture shapes and less interleaf effects. We have tested our RAO algorithm on a complex C-shaped target, seven nasopharynx cancer recurrences, and one multitarget nasopharynx carcinoma patient. A study was performed in order to assess the capabilities of RAO as compared to fixed collimator angle DAO. The accuracy of fixed and rotated collimator aperture delivery was also verified. An analysis of the optimized treatment plans indicates that plans generated with RAO are as good as or better than DAO while maintaining a smaller number of apertures and MU than fluence based IMRT. Delivery verification results show that RAO is less sensitive to tongue and groove effects than DAO. Delivery time is currently increased due to the collimator rotation speed although this is a mechanical limitation that can be eliminated in the future.« less

  13. Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels.

    PubMed

    Wang, Ping; Zhang, Lu; Guo, Lixin; Huang, Feng; Shang, Tao; Wang, Ranran; Yang, Yintang

    2014-08-25

    The average bit error rate (BER) for binary phase-shift keying (BPSK) modulation in free-space optical (FSO) links over turbulence atmosphere modeled by the exponentiated Weibull (EW) distribution is investigated in detail. The effects of aperture averaging on the average BERs for BPSK modulation under weak-to-strong turbulence conditions are studied. The average BERs of EW distribution are compared with Lognormal (LN) and Gamma-Gamma (GG) distributions in weak and strong turbulence atmosphere, respectively. The outage probability is also obtained for different turbulence strengths and receiver aperture sizes. The analytical results deduced by the generalized Gauss-Laguerre quadrature rule are verified by the Monte Carlo simulation. This work is helpful for the design of receivers for FSO communication systems.

  14. Project MEDSAT: The design of a remote sensing platform for malaria research and control

    NASA Astrophysics Data System (ADS)

    1991-04-01

    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.

  15. Training site statistics from Landsat and Seasat satellite imagery registered to a common map base

    NASA Technical Reports Server (NTRS)

    Clark, J.

    1981-01-01

    Landsat and Seasat satellite imagery and training site boundary coordinates were registered to a common Universal Transverse Mercator map base in the Newport Beach area of Orange County, California. The purpose was to establish a spatially-registered, multi-sensor data base which would test the use of Seasat synthetic aperture radar imagery to improve spectral separability of channels used for land use classification of an urban area. Digital image processing techniques originally developed for the digital mosaics of the California Desert and the State of Arizona were adapted to spatially register multispectral and radar data. Techniques included control point selection from imagery and USGS topographic quadrangle maps, control point cataloguing with the Image Based Information System, and spatial and spectral rectifications of the imagery. The radar imagery was pre-processed to reduce its tendency toward uniform data distributions, so that training site statistics for selected Landsat and pre-processed Seasat imagery indicated good spectral separation between channels.

  16. An Approach to Monitoring Mangrove Extents Through Time-Series Comparison of JERS-1 SAR and ALOS PALSAR Data

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Lucas, Richard; Itoh, Takuya; Simard, Marc; Fatoyinbo, Lucas; Bunting, Peter; Rosenqvist, Ake

    2014-01-01

    Between 2007 and 2010, Japan's Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) captured dual polarization HH and HV data across the tropics and sub-tropics. A pan tropical dataset of Japanese Earth Resources Satellite (JERS-1) SAR (HH) data was also acquired between 1995 and 1998. The provision of these comparable cloud-free datasets provided an opportunity for observing changes in the extent of coastal mangroves over more than a decade. Focusing on nine sites distributed through the tropics, this paper demonstrates how these data can be used to backdate and update existing baseline maps of mangrove extent. The benefits of integrating dense timeseries of Landsat sensor data for both validating assessments of change and determining the causes of change are outlined. The approach is evaluated for wider application across the geographical range of mangroves in order to advance the development of JAXA's Global Mangrove Watch (GMW) program.

  17. Project MEDSAT: The design of a remote sensing platform for malaria research and control

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.

  18. Polarization-Based Radar Detection in Sea Clutter

    DTIC Science & Technology

    2015-02-27

    Boerner, "Introduction to Synthetic Aperture Radar (SAR) Polarimetry ," Wexford College Press, 2007. [7] E. Pottier, J. S. Lee, and L. Ferro...Application, US 20140169428 Al, December 10, 2013 T. Pratt, "Methods and Apparatus for Radio Frequency Polarimetry Sensing," non- provisional... Polarimetry ," submitted to IEEE Transactions on Instrumentation and Measurement, 2012 J. Mueller and T. Pratt, "A Radio Frequency Polarimetric Sensor for

  19. Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress

    DTIC Science & Technology

    2010-09-28

    advanced electromagnetic signature reduction (AESR), a conformal acoustic velocity sensor wide aperture array (CAVES WAA), and a flexible payload...vibrations and acoustic signatures of targets. The Navy has stated that CAVES WAA could save approximately $4 million per submarine. The Navy is analyzing...Turbine Generator magnetic levitation bearings / throttle control system, etc.); • Special Hull Treatment continues to debond from VIRGINIA Class

  20. The Conflicting Forces Driving Future Avionics Acquisition (Les Arguments Contradictoires pour les Futurs Achats d’Equipements d’Avionique)

    DTIC Science & Technology

    1991-09-01

    Homogbnes, commo indiqu6 sur Ia figure 3 E~I- ODVE et moteurs (non 6tudi~e ici) EH-2: Interface Syst~mes Avion ISA EH3 ONI (Communications, Navigation...common, modular avionics in both RF and EO sensors, along with The Integrated Core Processing " meta - the sharing of aperture and receiver electronics

  1. Outline of the survey on the development of earth observation satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An independent earth observation system with land and sea satellites to be developed by Japan is described. Visible and infrared radiometers, microwave radiometers, microwave scattermeters, synthetic aperture radar, and laser sensors are among the instrumentation discussed. Triaxial attitude control, basic technology common to sea and land observation satellites as well as land data analytical technology developed for U.S. LANDSAT data are reviewed.

  2. Material Characterization for Composite Materials in Load Bearing Wave Guides

    DTIC Science & Technology

    2012-03-01

    ISIS Integrated Sensor Is Structure MUSTRAP Multifunctional Structural Aperture MWCNT Multi-walled Carbon Nanotube SWCNT Single-walled Carbon...CNTs go through a specific process to coat them with nickel. The process includes conditioning the CNTs in different solutions and adding...a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube ( MWCNT ), or a graphene nanoribbon (GNR). A SWCNT is a hollow cylindrical

  3. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  4. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.

    2017-01-01

    Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.

  5. Ultra-compact imaging system based on multi-aperture architecture

    NASA Astrophysics Data System (ADS)

    Meyer, Julia; Brückner, Andreas; Leitel, Robert; Dannberg, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2011-03-01

    As a matter of course, cameras are integrated in the field of information and communication technology. It can be observed, that there is a trend that those cameras get smaller and at the same time cheaper. Because single aperture have a limit of miniaturization, while simultaneously keeping the same space-bandwidth-product and transmitting a wide field of view, there is a need of new ideas like the multi aperture optical systems. In the proposed camera system the image is formed with many different channels each consisting of four microlenses which are arranged one after another in different microlens arrays. A partial image which fits together with the neighbouring one is formed in every single channel, so that a real erect image is generated and a conventional image sensor can be used. The microoptical fabrication process and the assembly are well established and can be carried out on wafer-level. Laser writing is used for the fabrication of the masks. UV-lithography, a reflow process and UV-molding is needed for the fabrication of the apertures and the lenses. The developed system is very small in terms of both length and lateral dimensions and has a VGA resolution and a diagonal field of view of 65 degrees. This microoptical vision system is appropriate for being implemented in electronic devices such as webcams integrated in notebookdisplays.

  6. Image Reconstruction from Data Collected with an Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.

    The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.

  7. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A. C.; Adrian, M. L.; Yeh, P.; Winkert, G. E.; Lobell, J. V.; Viňas, A. F.; Simpson, D. G.; Moore, T. E.

    2008-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° × 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° × 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 7.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm- based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re- processed Cluster/PEACE electron measurements. Topics to be discussed include: (i) Review of compression algorithm; (ii) Data quality; (iii) Data formatting/organization; (iv) Compression optimization; and (v) Implications for data/matrix pruning. We conclude with a presentation of the base-lined FPI data compression approach.

  8. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    PubMed

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  9. Throughput Calibration of the 52x0.2E1 Aperture

    NASA Astrophysics Data System (ADS)

    Heap, Sara

    2009-07-01

    The Next Generation Spectral Library {NGSL} is a library of low-dispersion STIS spectra extending from 0.2-1.0 microns. So far, 378 stars with a wide range in metallicity have been observed. Despite their high S/N>100, many NGSL spectra have 5-10% systematic errors in their spectral energy distributions, which can be traced to throughput variations in the 52x0.2E1 aperture caused by vignetting of a wavelength-dependent asymmetric PSF. We propose to obtain STIS spectra of the HST standard star, BD+75D325, at several positions in the 52x0.2E1 aperture, which will enable us to calibrate the NGSL spectra properly.

  10. Overseas testing of a multisensor landmine detection system: results and lessons learned

    NASA Astrophysics Data System (ADS)

    Keranen, Joe G.; Topolosky, Zeke

    2009-05-01

    The Nemesis detection system has been developed to provide an efficient and reliable unmanned, multi-sensor, groundbased platform to detect and mark landmines. The detection system consists of two detection sensor arrays: a Ground Penetrating Synthetic Aperture Radar (GPSAR) developed by Planning Systems, Inc. (PSI) and an electromagnetic induction (EMI) sensor array developed by Minelab Electronics, PTY. Limited. Under direction of the Night Vision and Electronic Sensors Directorate (NVESD), overseas testing was performed at Kampong Chhnang Test Center (KCTC), Cambodia, from May 12-30, 2008. Test objectives included: evaluation of detection performance, demonstration of real-time visualization and alarm generation, and evaluation of system operational efficiency. Testing was performed on five sensor test lanes, each consisting of a unique soil mixture and three off-road lanes which include curves, overgrowth, potholes, and non-uniform lane geometry. In this paper, we outline the test objectives, procedures, results, and lessons learned from overseas testing. We also describe the current state of the system, and plans for future enhancements and modifications including clutter rejection and feature-level fusion.

  11. Optimizing Radiometric Fidelity to Enhance Aerial Image Change Detection Utilizing Digital Single Lens Reflex (DSLR) Cameras

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew D.

    Determining optimal imaging settings and best practices related to the capture of aerial imagery using consumer-grade digital single lens reflex (DSLR) cameras, should enable remote sensing scientists to generate consistent, high quality, and low cost image data sets. Radiometric optimization, image fidelity, image capture consistency and repeatability were evaluated in the context of detailed image-based change detection. The impetus for this research is in part, a dearth of relevant, contemporary literature, on the utilization of consumer grade DSLR cameras for remote sensing, and the best practices associated with their use. The main radiometric control settings on a DSLR camera, EV (Exposure Value), WB (White Balance), light metering, ISO, and aperture (f-stop), are variables that were altered and controlled over the course of several image capture missions. These variables were compared for their effects on dynamic range, intra-frame brightness variation, visual acuity, temporal consistency, and the detectability of simulated cracks placed in the images. This testing was conducted from a terrestrial, rather than an airborne collection platform, due to the large number of images per collection, and the desire to minimize inter-image misregistration. The results point to a range of slightly underexposed image exposure values as preferable for change detection and noise minimization fidelity. The makeup of the scene, the sensor, and aerial platform, influence the selection of the aperture and shutter speed which along with other variables, allow for estimation of the apparent image motion (AIM) motion blur in the resulting images. The importance of the image edges in the image application, will in part dictate the lowest usable f-stop, and allow the user to select a more optimal shutter speed and ISO. The single most important camera capture variable is exposure bias (EV), with a full dynamic range, wide distribution of DN values, and high visual contrast and acuity occurring around -0.7 to -0.3EV exposure bias. The ideal values for sensor gain, was found to be ISO 100, with ISO 200 a less desirable. This study offers researchers a better understanding of the effects of camera capture settings on RSI pairs and their influence on image-based change detection.

  12. Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    NASA Astrophysics Data System (ADS)

    J, Gibbons, Steven; Kværna, Tormod; Mykkeltveit, Svein

    2015-04-01

    The infrasound stations of the International Monitoring System are arrays consisting of up to 15 sites and with apertures of up to 3 km. The arrays are distributed remarkably uniformly over the globe and provide excellent coverage of South America, Africa, and Antarctica. This is to say that there are many infrasound arrays in regions many thousands of kilometers from the closest seismic array. Several infrasound arrays are in the immediate vicinity of existing 3-component seismic stations and these provide us with examples of how typical seismic signals look at these locations. We can make idealized estimates of the predicted performance of seismic arrays, consisting of seismometers at each site of the infrasound arrays, by duplicating the signals from the 3-C stations at all sites of the array. However, the true performance of seismic arrays at these sites will depend both upon Signal-to-Noise Ratios of seismic signals and the coherence of both signal and noise between sensors. These properties can only be determined experimentally. Recording seismic data of sufficient quality at many of these arrays may require borehole deployments since the microbarometers in the infrasound arrays are often situated in vaults placed in soft sediments. The geometries of all the current IMS infrasound arrays are examined and compared and we demonstrate that, from a purely geometrical perspective, essentially all the array configurations would provide seismic arrays with acceptable slowness resolution for both regional and teleseismic phase arrivals. Seismic arrays co-located with the infrasound arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would facilitate the development of seismic arrays that share the infrastructure of the infrasound arrays, reducing the development and operational costs. Hosting countries might find such added capabilities valuable from a national perspective. In addition, the seismic recordings may also help to identify the sources of infrasound signals with consequences for improved event screening and evaluating models of infrasound propagation and atmospheric properties.

  13. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2016-03-21

    distribution is unlimited. Successful HPM tests at AFRL/RDH (2007-8). Curved Aperture Waveguide Sidewall- Emitting Antenna (CAWSEA) 2009 Arched Aperture...model*. (Others have added various correction terms and expanded on it.) • R.C. Honey (1959) used these methods with much success with his “Flush...output beam Input *See the periodic technical reports delivered under ONR Contract # N00014-13-C-0352. 21 3/8/2016 12 Adapted from: Honey , R.C

  14. The Comstar D/3 gain degradation experiment

    NASA Technical Reports Server (NTRS)

    Lee, T. C.; Hodge, D. B.

    1981-01-01

    The results of gain degradation measurements using the Comstar D/3 19.04 GHz beacon are reported. This experiment utilized 0.6 and 5 m aperture antennas aligned along the same propagation path to examine propagation effects which are related to the antenna aperture size. Sample data for clear air, scintillation in clear air, and precipitation fading are presented. Distributions of the received signal levels and variances for both antennas are also presented.

  15. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  16. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  17. Comparison of two methodologies for calibrating satellite instruments in the visible and near infrared

    PubMed Central

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher

    2016-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861

  18. Extended sources near-field processing of experimental aperture synthesis data and application of the Gerchberg method for enhancing radiometric three-dimensional millimetre-wave images in security screening portals

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.

    2017-10-01

    Aperture synthesis for passive millimetre wave imaging provides a means to screen people for concealed threats in the extreme near-field configuration of a portal, a regime where the imager to subject distance is of the order of both the required depth-of-field and the field-of-view. Due to optical aberrations, focal plane array imagers cannot deliver the large depth-of-fields and field-of-views required in this regime. Active sensors on the other hand can deliver these but face challenges of illumination, speckle and multi-path issues when imaging canyon regions of the body. Fortunately an aperture synthesis passive millimetre wave imaging system can deliver large depth-of-fields and field-of-views, whilst having no speckle effects, as the radiometric emission from the human body is spatially incoherent. Furthermore, as in portal security screening scenarios the aperture synthesis imaging technique delivers a half-wavelength spatial resolution, it can effectively screen the whole of the human body. Some recent measurements are presented that demonstrate the three-dimensional imaging capability of extended sources using a 22 GHz aperture synthesis system. A comparison is made between imagery generated via the analytic Fourier transform and a gridding fast Fourier transform method. The analytic Fourier transform enables aliasing in the imagery to be more clearly identified. Some initial results are also presented of how the Gerchberg technique, an image enhancement algorithm used in radio astronomy, is adapted for three-dimensional imaging in security screening. This technique is shown to be able to improve the quality of imagery, without adding extra receivers to the imager. The requirements of a walk through security screening system for use at entrances to airport departure lounges are discussed, concluding that these can be met by an aperture synthesis imager.

  19. The SEASAT-A synthetic aperture radar design and implementation

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.

    1978-01-01

    The SEASAT-A synthetic aperture imaging radar system is the first imaging radar system intended to be used as a scientific instrument designed for orbital use. The requirement of the radar system is to generate continuous radar imagery with a 100 kilometer swath with 25 meter resolution from an orbital altitude of 800 kilometers. These requirements impose unique system design problems and a description of the implementation is given. The end-to-end system is described, including interactions of the spacecraft, antenna, sensor, telemetry link, recording subsystem, and data processor. Some of the factors leading to the selection of critical system parameters are listed. The expected error sources leading to degradation of image quality are reported as well as estimate given of the expected performance from data obtained during a ground testing of the completed subsystems.

  20. Camera array based light field microscopy

    PubMed Central

    Lin, Xing; Wu, Jiamin; Zheng, Guoan; Dai, Qionghai

    2015-01-01

    This paper proposes a novel approach for high-resolution light field microscopy imaging by using a camera array. In this approach, we apply a two-stage relay system for expanding the aperture plane of the microscope into the size of an imaging lens array, and utilize a sensor array for acquiring different sub-apertures images formed by corresponding imaging lenses. By combining the rectified and synchronized images from 5 × 5 viewpoints with our prototype system, we successfully recovered color light field videos for various fast-moving microscopic specimens with a spatial resolution of 0.79 megapixels at 30 frames per second, corresponding to an unprecedented data throughput of 562.5 MB/s for light field microscopy. We also demonstrated the use of the reported platform for different applications, including post-capture refocusing, phase reconstruction, 3D imaging, and optical metrology. PMID:26417490

  1. A new star (sensor) is born

    NASA Astrophysics Data System (ADS)

    Leijtens, Johan; Vliegenthart, Willem; Lampridis, Dimitris; Vacanti, Giuseppe; Monna, Bert; Bechthum, Elbert; Hagenaars, Koen; van der Heide, Erik; Kruijff, Michiel; van Breukelen, Eddie; LeMair, Anita

    2017-11-01

    In the frame of the Dutch Prequalification for ESA Programs(PEP), as part of the efforts to design an integrated optical attitude control subsytem (IOPACS), a consortium of TNO and several SME's in the Netherlands have been working on a novel type of startracker called MABS (Multiple Aperture Baffled Startracker). The system comprises a single cast metal housing with four reflective optical telescopes which use only structural internal baffling. Inherent to the design are a very high stability and excellent co-alignment between the apertures, a significant decrease in system size and low recurring production cost. The concept is a radical change from more common multiple startracker setups. The presentation will concentrate on the validity of the concept, the predicted performance and benefits for space applications, the produced breadboard and measured performances as well as the costing aspects.

  2. Systems level feasibility study for the detection of extra-solar planets. Volume 1: Infrared interferometer (IRIS) known as the Stanford Concept

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A sensor system for the direct detection of extrasolar planets from an Earth orbit is evaluated: a spinning, infrared interferometer (IRIS). It is shuttle deployed, free flying, requires no on-orbit assembly and no reservicing over a design life of five years. The sensor concept and the mission objectives are reviewed, and the performance characteristics of a baseline sensor for standard observation conditions are derived. A baseline sensor design is given and the enabling technology discussed. Cost and weight estimates are performed; and a schedule for an IRIS program including technology development and assessment of risk are given. Finally, the sensor is compared with the apodized visual telescope sensor (APOTS) proposed for the same mission. The major conclusions are: that with moderate to strong technology advances, particularly in the fields of long life cryogenics, dynamical control, mirror manufacturing, and optical alignment, the detection of a Jupiter like planet around a Sunlike star at a distance of 30 light years is feasible, with a 3 meter aperture and an observation time of 1 hour. By contrast, major and possibly unlikely breakthroughs in mirror technology are required for APOTS to match this performance.

  3. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    NASA Technical Reports Server (NTRS)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  4. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  5. EXPERIMENTS IN LITHOGRAPHY FROM REMOTE SENSOR IMAGERY.

    USGS Publications Warehouse

    Kidwell, R. H.; McSweeney, J.; Warren, A.; Zang, E.; Vickers, E.

    1983-01-01

    Imagery from remote sensing systems such as the Landsat multispectral scanner and return beam vidicon, as well as synthetic aperture radar and conventional optical camera systems, contains information at resolutions far in excess of that which can be reproduced by the lithographic printing process. The data often require special handling to produce both standard and special map products. Some conclusions have been drawn regarding processing techniques, procedures for production, and printing limitations.

  6. Integrated and Multi-Function Navigation (Les Systemes de Navigation Integres Multifunctions)

    DTIC Science & Technology

    1992-11-01

    assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field. The...SARMCS is aimed at the motion compensation of experience in the development and applications radar returns to achieve high resolution, high of Integrated...development project such as the essentially the same technology and utilize Synthetic Aperture Radar Motion Compensation similar sensors, the mission

  7. Satellite Atmospheric Radiance Measurements in the Vacuum Ultraviolet.

    DTIC Science & Technology

    1979-07-05

    APERTURE I I 1_ _~~J ;~- WHEEL MOTOR IDRIVE r~~ II I :_-~I ~~~~~~~~~~~~~~~~~~ ~~~_I ~~APERT URE WHEEL\\ ELLIPSOIDAL PRIMARY MIRROR VV ~ V SUNSHADE V I...Table 1. Vacuum Ultraviolet Backg rounds Sensors (Cont ) P~ iot ometer Interf erence Filters (A) 1216 1340 1550 1750 no f

  8. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  9. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  10. Progress in Development of Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a relatively thick dielectric layer between the top of the well and the top electrode. This layer greatly reduces the capacitance of an aperture across which the ion channels are formed, thereby increasing the signal-to-noise ratio. The use of a relatively large aperture with agarose support makes it possible to form many ion channels instead of only one, thereby further increasing the signal-to-noise ratio and effectively increasing the size of the available ionic reservoir. The relatively large reservoir makes it possible to measure AC rather than DC. This concludes the recapitulation from the cited previous article.

  11. Obstacle traversal and route choice in flying honeybees: Evidence for individual handedness

    PubMed Central

    Ong, Marielle; Bulmer, Michael; Groening, Julia

    2017-01-01

    Flying insects constantly face the challenge of choosing efficient, safe and collision-free routes while navigating through dense foliage. We examined the route-choice behavior of foraging honeybees when they encountered a barrier which could be traversed by flying through one of two apertures, positioned side by side. When the bees’ choice behavior was averaged over the entire tested population, the two apertures were chosen with equal frequency when they were equally wide. When the apertures were of different width, the bees, on average, showed a preference for the wider aperture, which increased sharply with the difference between the aperture widths. Thus, bees are able to discriminate the widths of oncoming gaps and choose the passage which is presumably safer and quicker to transit. Examination of the behavior of individual bees revealed that, when the two apertures were equally wide, ca. 55% of the bees displayed no side bias in their choices. However, the remaining 45% showed varying degrees of bias, with one half of them preferring the left-hand aperture, and the other half the right-hand aperture. The existence of distinct individual biases was confirmed by measuring the times required by biased bees to transit various aperture configurations: The transit time was longer if a bee’s intrinsic bias forced it to engage with the narrower aperture. Our results show that, at the population level, bees do not exhibit ‘handedness’ in choosing routes; however, individual bees display an idiosyncratic bias that can range from a strong left bias, through zero bias, to a strong right bias. In honeybees, previous studies of olfactory and visual learning have demonstrated clear biases at the population level. To our knowledge, our study is the first to uncover the existence of individually distinct biases in honeybees. We also show how a distribution of biases among individual honeybees can be advantageous in facilitating rapid transit of a group of bees through a cluttered environment, without any centralized decision-making or control. PMID:29095830

  12. SU-F-T-142: An Analytical Model to Correct the Aperture Scattered Dose in Clinical Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, B; Liu, S; Zhang, T

    2016-06-15

    Purpose: Apertures or collimators are used to laterally shape proton beams in double scattering (DS) delivery and to sharpen the penumbra in pencil beam (PB) delivery. However, aperture-scattered dose is not included in the current dose calculations of treatment planning system (TPS). The purpose of this study is to provide a method to correct the aperture-scattered dose based on an analytical model. Methods: A DS beam with a non-divergent aperture was delivered using a single-room proton machine. Dose profiles were measured with an ion-chamber scanning in water and a 2-D ion chamber matrix with solid-water buildup at various depths. Themore » measured doses were considered as the sum of the non-contaminated dose and the aperture-scattered dose. The non-contaminated dose was calculated by TPS and subtracted from the measured dose. Aperture scattered-dose was modeled as a 1D Gaussian distribution. For 2-D fields, to calculate the scatter-dose from all the edges of aperture, a sum of weighted distance was used in the model based on the distance from calculation point to aperture edge. The gamma index was calculated between the measured and calculated dose with and without scatter correction. Results: For a beam with range of 23 cm and aperture size of 20 cm, the contribution of the scatter horn was ∼8% of the total dose at 4 cm depth and diminished to 0 at 15 cm depth. The amplitude of scatter-dose decreased linearly with the depth increase. The 1D gamma index (2%/2 mm) between the calculated and measured profiles increased from 63% to 98% for 4 cm depth and from 83% to 98% at 13 cm depth. The 2D gamma index (2%/2 mm) at 4 cm depth has improved from 78% to 94%. Conclusion: Using the simple analytical method the discrepancy between the measured and calculated dose has significantly improved.« less

  13. The design of common aperture and multi-band optical system based on day light telescope

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng

    2017-02-01

    As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.

  14. Optical and Thermal Behaviors of Plasmonic Bowtie Aperture and Its NSOM Characterization for Heat-Assisted Magnetic Recording

    DTIC Science & Technology

    2016-02-01

    NFT), plasmonic materials, scattering-type scanning near-field optical microscopy (s-NSOM). I . INTRODUCTION THE continuous growth in data storage is...recording stack for (a) gold and (b) silver bowtie apertures. The spatial distributions are calculated at 1 ns. TABLE I COMPARISON BETWEEN GOLD AND SILVER...NFTs From the calculation results, we can obtain the thermal efficiency defined in (1). A detailed comparison is summarized in Table I , where the

  15. Game theoretic sensor management for target tracking

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh; Douville, Philip; Yang, Chun; Kadar, Ivan

    2010-04-01

    This paper develops and evaluates a game-theoretic approach to distributed sensor-network management for target tracking via sensor-based negotiation. We present a distributed sensor-based negotiation game model for sensor management for multi-sensor multi-target tacking situations. In our negotiation framework, each negotiation agent represents a sensor and each sensor maximizes their utility using a game approach. The greediness of each sensor is limited by the fact that the sensor-to-target assignment efficiency will decrease if too many sensor resources are assigned to a same target. It is similar to the market concept in real world, such as agreements between buyers and sellers in an auction market. Sensors are willing to switch targets so that they can obtain their highest utility and the most efficient way of applying their resources. Our sub-game perfect equilibrium-based negotiation strategies dynamically and distributedly assign sensors to targets. Numerical simulations are performed to demonstrate our sensor-based negotiation approach for distributed sensor management.

  16. Terahertz detection of alcohol using a photonic crystal fiber sensor.

    PubMed

    Sultana, Jakeya; Islam, Md Saiful; Ahmed, Kawsar; Dinovitser, Alex; Ng, Brian W-H; Abbott, Derek

    2018-04-01

    Ethanol is widely used in chemical industrial processes as well as in the food and beverage industry. Therefore, methods of detecting alcohol must be accurate, precise, and reliable. In this content, a novel Zeonex-based photonic crystal fiber (PCF) has been modeled and analyzed for ethanol detection in terahertz frequency range. A finite-element-method-based simulation of the PCF sensor shows a high relative sensitivity of 68.87% with negligible confinement loss of 7.79×10 -12    cm -1 at 1 THz frequency and x -polarization mode. Moreover, the core power fraction, birefringence, effective material loss, dispersion, and numerical aperture are also determined in the terahertz frequency range. Owing to the simple fiber structure, existing fabrication methods are feasible. With the outstanding waveguiding properties, the proposed sensor can potentially be used in ethanol detection, as well as polarization-preserving applications of terahertz waves.

  17. The use of the Space Shuttle for land remote sensing

    NASA Technical Reports Server (NTRS)

    Thome, P. G.

    1982-01-01

    The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.

  18. Model-Based Wavefront Control for CCAT

    NASA Technical Reports Server (NTRS)

    Redding, David; Lou, John Z.; Kissil, Andy; Bradford, Matt; Padin, Steve; Woody, David

    2011-01-01

    The 25-m aperture CCAT submillimeter-wave telescope will have a primary mirror that is divided into 162 individual segments, each of which is provided with 3 positioning actuators. CCAT will be equipped with innovative Imaging Displacement Sensors (IDS) inexpensive optical edge sensors capable of accurately measuring all segment relative motions. These measurements are used in a Kalman-filter-based Optical State Estimator to estimate wavefront errors, permitting use of a minimum-wavefront controller without direct wavefront measurement. This controller corrects the optical impact of errors in 6 degrees of freedom per segment, including lateral translations of the segments, using only the 3 actuated degrees of freedom per segment. The global motions of the Primary and Secondary Mirrors are not measured by the edge sensors. These are controlled using a gravity-sag look-up table. Predicted performance is illustrated by simulated response to errors such as gravity sag.

  19. Multispectral and polarimetric photodetection using a plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Pelzman, Charles; Cho, Sang-Yeon

    2018-01-01

    We present a metasurface-integrated Si 2-D CMOS sensor array for multispectral and polarimetric photodetection applications. The demonstrated sensor is based on the polarization selective extraordinary optical transmission from periodic subwavelength nanostructures, acting as artificial atoms, known as meta-atoms. The meta-atoms were created by patterning periodic rectangular apertures that support optical resonance at the designed spectral bands. By spatially separating meta-atom clusters with different lattice constants and orientations, the demonstrated metasurface can convert the polarization and spectral information of an optical input into a 2-D intensity pattern. As a proof-of-concept experiment, we measured the linear components of the Stokes parameters directly from captured images using a CMOS camera at four spectral bands. Compared to existing multispectral polarimetric sensors, the demonstrated metasurface-integrated CMOS system is compact and does not require any moving components, offering great potential for advanced photodetection applications.

  20. HYDICE postflight data processing

    NASA Astrophysics Data System (ADS)

    Aldrich, William S.; Kappus, Mary E.; Resmini, Ronald G.; Mitchell, Peter A.

    1996-06-01

    The hyperspectral digital imagery collection experiment (HYDICE) sensor records instrument counts for scene data, in-flight spectral and radiometric calibration sequences, and dark current levels onto an AMPEX DCRsi data tape. Following flight, the HYDICE ground data processing subsystem (GDPS) transforms selected scene data from digital numbers (DN) to calibrated radiance levels at the sensor aperture. This processing includes: dark current correction, spectral and radiometric calibration, conversion to radiance, and replacement of bad detector elements. A description of the algorithms for post-flight data processing is presented. A brief analysis of the original radiometric calibration procedure is given, along with a description of the development of the modified procedure currently used. Example data collected during the 1995 flight season, but uncorrected and processed, are shown to demonstrate the removal of apparent sensor artifacts (e.g., non-uniformities in detector response over the array) as a result of this transformation.

  1. Decision-level fusion of SAR and IR sensor information for automatic target detection

    NASA Astrophysics Data System (ADS)

    Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon

    2017-05-01

    We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.

  2. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  3. Multi-frequency SAR, SSM/I and AVHRR derived geophysical information of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Onstott, R. G.; Wackerman, C. C.; Russel, C. A.; Sutherland, L. L.; Johannessen, O. M.; Johannessen, J. A.; Sandven, S.; Gloerson, P.

    1991-01-01

    A description is given of the fusion of synthetic aperture radar (SAR), special sensor microwave imager (SSM/I), and NOAA Advanced Very High Resolution Radiometer (AVHRR) data to study arctic processes. These data were collected during the SIZEX/CEAREX experiments that occurred in the Greenland Sea in March of 1989. Detailed comparisons between the SAR, AVHRR, and SSM/I indicated: (1) The ice edge position was in agreement to within 25 km, (2) The SSM/I SAR total ice concentration compared favorably, however, the SSM/I significantly underpredicted the multiyear fraction, (3) Combining high resolution SAR with SSM/I can potentially map open water and new ice features in the marginal ice zone (MIZ) which cannot be mapped by the single sensors, and (4) The combination of all three sensors provides accurate ice information as well as sea surface temperature and wind speeds.

  4. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  5. Multisensor comparison of ice concentration estimates in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.

    1987-01-01

    Aircraft remote sensing data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how ice surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of ice concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in ice surface signatures in the scene.

  6. a Method of Time-Series Change Detection Using Full Polsar Images from Different Sensors

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yang, J.; Zhao, J.; Shi, H.; Yang, L.

    2018-04-01

    Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, difference images between any two images in different times ware acquired by Rj statistic test. Generalized Gaussian mixture model (GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change from different sensors.

  7. Thermal drawdown-induced flow channeling in a single fracture in EGS

    DOE PAGES

    Guo, Bin; Fu, Pengcheng; Hao, Yue; ...

    2016-01-28

    Here, the evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution causes non-uniform temperature decrease in the rock body, which makes the flow increasingly concentrated into some preferential paths through the action of thermal stress. This mechanism may cause rapid heat production deterioration of EGS reservoirs. In this study, we investigated the effects of aperture heterogeneity on flow pattern evolution in a single fracture in a low-permeability crystalline formation. We developedmore » a numerical model on the platform of GEOS to simulate the coupled thermo-hydro-mechanical processes in a penny-shaped fracture accessed via an injection well and a production well. We find that aperture heterogeneity generally exacerbates flow channeling and reservoir performance generally decreases with longer correlation length of aperture field. The expected production life is highly variable (5 years to beyond 30 years) when the aperture correlation length is longer than 1/5 of the well distance, whereas a heterogeneous fracture behaves similar to a homogeneous one when the correlation length is much shorter than the well distance. Besides, the mean production life decreases with greater aperture standard deviation only when the correlation length is relatively long. Although flow channeling is inevitable, initial aperture fields and well locations that enable tortuous preferential paths tend to deliver long heat production lives.« less

  8. Inverse modeling of the overpressure distribution in an extension fracture with an arbitrary aperture variation: application to non-feeder dikes in the Miyake-jima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu; Geshi, Nobuo; Gudmundsson, Agust

    2010-05-01

    We derived a solution for the overpressure distribution acting on the walls (surfaces) of an extension fracture (a hydrofracture) with an arbitrary opening-displacement (or aperture) variation. In the proposed model, we assume that the overpressure distribution can be described by Fourier cosine series. We at first present a solution for the forward model giving the fracture aperture when it is opened by an irregular overpressure variation obtained using the Fourier cosine series. Next, by changing the form of the solution for the forward model, we obtain a matrix equation that can be used to estimate the Fourier coefficients to obtain the overpressure distribution from the fracture aperture variation. As simple examples of this inverse analysis, we estimate the overpressure conditions from crack apertures given analytically for two cases, namely, 1) the overpressure in the crack is constant, and 2) the overpressure variation in the crack varies linearly from its center. The estimated overpressure distributions were found to be correct, although a small 'noise' was present. Since the method presented here gives the overpressure distribution as a Fourier series by the aperture data measured at a finite number of points, the overpressure conditions for forming the fracture can be determined for each wavelength. The Fourier coefficient of n = 0 is an important coefficient that gives the average value of the overpressure acting inside the crack. With the exception of n = 0, the Fourier coefficient of n = 1 expresses the longest wavelength component of the irregular overpressure. Thus, because this coefficient including the coefficient of n = 0 gives the longest wavelength component in the irregular overpressure, the component may be an important indicator of the overpressure condition that decides the basic form of the crack. We applied the solution for the inverse analysis to the thickness data of 19 non-feeder dikes exposed in the caldera wall of the Miyake-jima Volcano, Japan. In the analysis, the host-rock Young's modulus and Poisson's ratio were taken as 1 GPa and 0.25. The results show that most of the estimated overpressures increase toward the tips of the dikes and reach about 5 to 15 MPa (average was 8 MPa). In addition, results indicate host-rock fracture toughnesses between 60 MPa m1-2 and 170 MPa m1-2 (average 100 MPa m1-2). For comparison, we also estimated the magma overpressure by the least square method, assuming constant overpressure. This method gives overpressure between 1.5 MPa and 4 MPa (average 2.8 MPa). Similarly, the fracture toughnesses estimated in this way range between 30 MPa m1-2 and 120 MPa m1-2 (average 55 MPa m1-2). These methods and assumptions thus yield somewhat different results, as expected, but indicate the likely ranges of the magma overpressures and host-rock fracture toughnesses both of which are very reasonable and agree with earlier results obtained by different methods.

  9. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  10. Guiding center model to interpret neutral particle analyzer results

    NASA Technical Reports Server (NTRS)

    Englert, G. W.; Reinmann, J. J.; Lauver, M. R.

    1974-01-01

    The theoretical model is discussed, which accounts for drift and cyclotron components of ion motion in a partially ionized plasma. Density and velocity distributions are systematically precribed. The flux into the neutral particle analyzer (NPA) from this plasma is determined by summing over all charge exchange neutrals in phase space which are directed into apertures. Especially detailed data, obtained by sweeping the line of sight of the apertures across the plasma of the NASA Lewis HIP-1 burnout device, are presented. Selection of randomized cyclotron velocity distributions about mean azimuthal drift yield energy distributions which compared well with experiment. Use of data obtained with a bending magnet on the NPA showed that separation between energy distribution curves of various mass species correlate well with a drift divided by mean cyclotron energy parameter of the theory. Use of the guiding center model in conjunction with NPA scans across the plasma aid in estimates of ion density and E field variation with plasma radius.

  11. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  12. DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.

    1998-01-01

    An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.

  13. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  14. A Simplified Theory of Coupled Oscillator Array Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R. J.; York, R. A.

    1997-01-01

    Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.

  15. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  16. Sea ice type maps from Alaska synthetic aperture radar facility imagery: An assessment

    NASA Technical Reports Server (NTRS)

    Fetterer, Florence M.; Gineris, Denise; Kwok, Ronald

    1994-01-01

    Synthetic aperture radar (SAR) imagery received at the Alaskan SAR Facility is routinely and automatically classified on the Geophysical Processor System (GPS) to create ice type maps. We evaluated the wintertime performance of the GPS classification algorithm by comparing ice type percentages from supervised classification with percentages from the algorithm. The root mean square (RMS) difference for multiyear ice is about 6%, while the inconsistency in supervised classification is about 3%. The algorithm separates first-year from multiyear ice well, although it sometimes fails to correctly classify new ice and open water owing to the wide distribution of backscatter for these classes. Our results imply a high degree of accuracy and consistency in the growing archive of multiyear and first-year ice distribution maps. These results have implications for heat and mass balance studies which are furthered by the ability to accurately characterize ice type distributions over a large part of the Arctic.

  17. A General theory of Signal Integration for Fault-Tolerant Dynamic Distributed Sensor Networks

    DTIC Science & Technology

    1993-10-01

    related to a) the architecture and fault- tolerance of the distributed sensor network, b) the proper synchronisation of sensor signals, c) the...Computational complexities of the problem of distributed detection. 5) Issues related to recording of events and synchronization in distributed sensor...Intervals for Synchronization in Real Time Distributed Systems", Submitted to Electronic Encyclopedia. 3. V. G. Hegde and S. S. Iyengar "Efficient

  18. Multi-Source Fusion for Explosive Hazard Detection in Forward Looking Sensors

    DTIC Science & Technology

    2016-12-01

    include; (1) Investigating (a) thermal, (b) synthetic aperture acoustics ( SAA ) and (c) voxel space Radar for buried and side threat attacks. (2...detection. (3) With respect to SAA , we developed new approaches in the time and frequency domains for analyzing signature of concealed targets (called...Fraz). We also developed a method to extract a multi-spectral signature from SAA and deep learning was used on limited training and class imbalance

  19. Common Aperture Techniques for Imaging Electro-Optical Sensors (CATIES).

    DTIC Science & Technology

    1980-02-01

    milliradians ) at the 5.33:1 zoom point. The zoom optics contain five elements with two moveable air -spaced doublets for accomplishing the zoom function...included in the electrical and optical design but due to funding limitations, system safety requirements during the testing phase and lack of long-term...determined during the system testing phase to be conducted by the Air Force. Limited electronic signal processing (split screen and video mix) was

  20. LWT Based Sensor Node Signal Processing in Vehicle Surveillance Distributed Sensor Network

    NASA Astrophysics Data System (ADS)

    Cha, Daehyun; Hwang, Chansik

    Previous vehicle surveillance researches on distributed sensor network focused on overcoming power limitation and communication bandwidth constraints in sensor node. In spite of this constraints, vehicle surveillance sensor node must have signal compression, feature extraction, target localization, noise cancellation and collaborative signal processing with low computation and communication energy dissipation. In this paper, we introduce an algorithm for light-weight wireless sensor node signal processing based on lifting scheme wavelet analysis feature extraction in distributed sensor network.

  1. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  2. A concept of a wide aperture klystron with RF absorbing drift tubes for a linear collider

    NASA Astrophysics Data System (ADS)

    Dolbilov, G. V.; Azorsky, N. I.; Fateev, A. A.; Lebedev, N. I.; Petrov, V. A.; Shvetsov, V. S.; Yurkov, M. V.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Solyak, N. A.; Teryaev, V. E.; Vogel, V. F.

    1996-02-01

    This paper is devoted to a problem of the optimal design of the electrodynamic structure of the X-band klystron for a linear collider. It is shown that the optimal design should provide a large aperture and a high power gain, about 80 dB. The most severe problem arising here is that of parasitic self-excitation of the klystron, which becomes more complicated at increasing aperture and power gain. Our investigations have shown that traditional methods for suppressing the self-excitation become ineffective at the desired technical parameters of the klystron. In this paper we present a novel concept of a wide aperture klystron with distributed suppression of parasitic oscillations. Results of an experimental study of the wide-aperture relativistic klystron for VLEPP are presented. Investigations have been performed using the driving beam of the JINR LIA-3000 induction accelerator ( E = 1 MeV, I = 250 A, τ = 250 ns). To suppress self-excitation parasitic modes we have used the technique of RF absorbing drift tubes. As a result, we have obtained design output parameters of the klystron and achieved a level of 100 MW output power.

  3. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.

    1999-01-01

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  4. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  5. Comparison of Aperture Averaging and Receiver Diversity Techniques for Free Space Optical Links in Presence of Turbulence and Various Weather Conditions

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhmandeep; Jain, Virander Kumar; Kar, Subrat

    2014-12-01

    In this paper, we investigate the performance of a Free Space Optic (FSO) link considering the impairments caused by the presence of various weather conditions such as very clear air, drizzle, haze, fog, etc., and turbulence in the atmosphere. Analytic expression for the outage probability is derived using the gamma-gamma distribution for turbulence and accounting the effect of weather conditions using the Beer-Lambert's law. The effect of receiver diversity schemes using aperture averaging and array receivers on the outage probability is studied and compared. As the aperture diameter is increased, the outage probability decreases irrespective of the turbulence strength (weak, moderate and strong) and weather conditions. Similar effects are observed when the number of direct detection receivers in the array are increased. However, it is seen that as the desired level of performance in terms of the outage probability decreases, array receiver becomes the preferred choice as compared to the receiver with aperture averaging.

  6. WE-DE-BRA-10: Development of a Novel Scanning Beam Low-Energy Intraoperative Radiation Therapy (SBIORT) System for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wears, B; Mohiuddin, I; Flynn, R

    2016-06-15

    Purpose: Developing a compact collimator system and validating a 3D surface imaging module for a scanning beam low-energy x-ray radiation therapy (SBIORT) system that enables delivery of non-uniform radiation dose to targets with irregular shapes intraoperatively. Methods: SBIORT consists of a low energy x-ray source, a custom compact collimator module, a robotic arm, and a 3D surface imaging module. The 3D surface imaging system (structure sensor) is utilized for treatment planning and motion monitoring of the surgical cavity. SBIORT can deliver non-uniform dose distributions by dynamically moving the x-ray source assembly along optimal paths with various collimator apertures. The compactmore » collimator utilizes a dynamic shutter mechanism to form a variable square aperture. The accuracy and reproducibility of the collimator were evaluated using a high accuracy encoder and a high resolution camera platform. The dosimetrical characteristics of the collimator prototype were evaluated using EBT3 films with a Pantak Therapax unit. The accuracy and clinical feasibility of the 3D imaging system were evaluated using a phantom and a cadaver cavity. Results: The SBIORT collimator has a compact size: 66 mm diameter and 10 mm thickness with the maximum aperture of 20 mm. The mechanical experiment indicated the average accuracy of leaf position was 0.08 mm with a reproducibility of 0.25 mm at 95% confidence level. The dosimetry study indicated the collimator had a penumbra of 0.35 mm with a leaf transmission of 0.5%. 3D surface scans can be acquired in 5 seconds. The average difference between the acquired 3D surface and the ground truth is 1 mm with a standard deviation of 0.6 mm. Conclusion: This work demonstrates the feasibility of the compact collimator and 3D scanning system for the SBIORT. SBIORT is a way of delivering IORT with a compact system that requires minimum shielding of the procedure room. This research is supported by the University of Iowa Internal Funding Initiatives.« less

  7. Research on high-efficiency polishing technology of photomask substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Shijie; Xie, Ruiqing; Zhou, Lian; Liao, Defeng; Chen, Xianhua; Wang, Jian

    2018-03-01

    A method of photomask substrate fabrication is demonstrated ,that the surface figure and roughness of fused silica will converge to target precision rapidly with the full aperture polishing. Surface figure of optical flats in full aperture polishing processes is primarily dependent on the surface profile of polishing pad, therefor, a improved function of polishing mechanism was put forward based on two axis lapping machine and technology experience, and the pad testing based on displacement sensor and the active conditioning method of the pad is applied in this research. Moreover , the clamping deformation of the thin glass is solved by the new pitch dispensing method. The experimental results show that the surface figure of the 152mm×152mm×6.35mm optical glass is 0.25λ(λ=633nm) and the roughness is 0.32nm ,which has meet the requirements of mask substrate for 90 45nm nodes.

  8. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  9. Plenoptic Imager for Automated Surface Navigation

    NASA Technical Reports Server (NTRS)

    Zollar, Byron; Milder, Andrew; Milder, Andrew; Mayo, Michael

    2010-01-01

    An electro-optical imaging device is capable of autonomously determining the range to objects in a scene without the use of active emitters or multiple apertures. The novel, automated, low-power imaging system is based on a plenoptic camera design that was constructed as a breadboard system. Nanohmics proved feasibility of the concept by designing an optical system for a prototype plenoptic camera, developing simulated plenoptic images and range-calculation algorithms, constructing a breadboard prototype plenoptic camera, and processing images (including range calculations) from the prototype system. The breadboard demonstration included an optical subsystem comprised of a main aperture lens, a mechanical structure that holds an array of micro lenses at the focal distance from the main lens, and a structure that mates a CMOS imaging sensor the correct distance from the micro lenses. The demonstrator also featured embedded electronics for camera readout, and a post-processor executing image-processing algorithms to provide ranging information.

  10. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    NASA Astrophysics Data System (ADS)

    Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd

    2017-09-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  11. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    NASA Astrophysics Data System (ADS)

    Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting

    2018-01-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  12. Integration of piezo-capacitive and piezo-electric nanoweb based pressure sensors for imaging of static and dynamic pressure distribution.

    PubMed

    Jeong, Y J; Oh, T I; Woo, E J; Kim, K J

    2017-07-01

    Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.

  13. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    NASA Astrophysics Data System (ADS)

    Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David

    2010-11-01

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.

  14. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    NASA Astrophysics Data System (ADS)

    Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin

    2017-09-01

    The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  15. On the soil moisture estimate at basin scale in Mediterranean basins with the ASAR sensor: the Mulargia basin case study

    NASA Astrophysics Data System (ADS)

    Fois, Laura; Montaldo, Nicola

    2017-04-01

    Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.

  16. Multi-sensor millimeter-wave system for hidden objects detection by non-collaborative screening

    NASA Astrophysics Data System (ADS)

    Zouaoui, Rhalem; Czarny, Romain; Diaz, Frédéric; Khy, Antoine; Lamarque, Thierry

    2011-05-01

    In this work, we present the development of a multi-sensor system for the detection of objects concealed under clothes using passive and active millimeter-wave (mmW) technologies. This study concerns both the optimization of a commercial passive mmW imager at 94 GHz using a phase mask and the development of an active mmW detector at 77 GHz based on synthetic aperture radar (SAR). A first wide-field inspection is done by the passive imager while the person is walking. If a suspicious area is detected, the active imager is switched-on and focused on this area in order to obtain more accurate data (shape of the object, nature of the material ...).

  17. MAC Europe 1991 campaign: AIRSAR/AVIRIS data integration for agricultural test site classification

    NASA Technical Reports Server (NTRS)

    Sangiovanni, S.; Buongiorno, M. F.; Ferrarini, M.; Fiumara, A.

    1993-01-01

    During summer 1991, multi-sensor data were acquired over the Italian test site 'Otrepo Pavese', an agricultural flat area in Northern Italy. This area has been the Telespazio pilot test site for experimental activities related to agriculture applications. The aim of the investigation described in the following paper is to assess the amount of information contained in the AIRSAR (Airborne Synthetic Aperture Radar) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data, and to evaluate classification results obtained from each sensor data separately and from the combined dataset. All classifications are examined by means of the resulting confusion matrices and Khat coefficients. Improvements of the classification results obtained by using the integrated dataset are finally evaluated.

  18. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  19. Integrated optics interferometer for high precision displacement measurement

    NASA Astrophysics Data System (ADS)

    Persegol, Dominique; Collomb, Virginie; Minier, Vincent

    2017-11-01

    We present the design and fabrication aspects of an integrated optics interferometer used in the optical head of a compact and lightweight displacement sensor developed for spatial applications. The process for fabricating the waveguides of the optical chip is a double thermal ion exchange of silver and sodium in a silicate glass. This two step process is adapted for the fabrication of high numerical aperture buried waveguides having negligible losses for bending radius as low as 10 mm. The optical head of the sensor is composed of a reference arm, a sensing arm and an interferometer which generates a one dimensional fringe pattern allowing a multiphase detection. Four waveguides placed at the output of the interferometer deliver four ideally 90° phase shifted signals.

  20. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  1. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  2. Numerical study on response time of a parallel plate capacitive polyimide humidity sensor based on microhole upper electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Wenhe; He, Xuan; Wu, Jianyun; Wang, Liangbi; Wang, Liangcheng

    2017-07-01

    The parallel plate capacitive humidity sensor based on the grid upper electrode is considered to be a promising one in some fields which require a humidity sensor with better dynamic characteristics. To strengthen the structure and balance the electric charge of the grid upper electrode, a strip is needed. However, it is the strip that keeps the dynamic characteristics of the sensor from being further improved. The numerical method is time- and cost-saving, but the numerical study on the response time of the sensor is just of bits and pieces. The numerical models presented by these studies did not consider the porosity effect of the polymer film on the dynamic characteristics. To overcome the defect of the grid upper electrode, a new structure of the upper electrode is provided by this paper first, and then a model considering the porosity effects of the polymer film on the dynamic characteristics is presented and validated. Finally, with the help of software FLUENT, parameter effects on the response time of the humidity sensor based on the microhole upper electrode are studied by the numerical method. The numerical results show that the response time of the microhole upper electrode sensor is 86% better than that of the grid upper electrode sensor, the response time of humidity sensor can be improved by reducing the hole spacing, increasing the aperture, reducing film thickness, and reasonably enlarging the porosity of the film.

  3. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    PubMed

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  4. Distributed-effect optical fiber sensors for trusses and plates

    NASA Technical Reports Server (NTRS)

    Reichard, Karl; Lindner, Douglas K.

    1991-01-01

    Modal domain optical fiber sensors, or distributed effect sensors, for active vibration suppression in flexible structures are considered. Preliminary modeling results indicate that these sensors can be used to sense vibrations in a flexible beam and the signal can be used to damp vibrations in the beam. Weighted distributed-effect sensors can be used to implement high order compensators with low order functional observers.

  5. Quantify fluid saturation in fractures by light transmission technique and its application

    NASA Astrophysics Data System (ADS)

    Ye, S.; Zhang, Y.; Wu, J.

    2016-12-01

    The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.

  6. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A.; Adrian, M. L.; Yeh, P.; Winkert, G.; Lobell, J.; Vinas, A. F.; Simpson, D. G.

    2009-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° x 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° x 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 6.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present updated simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data as well as the FPI-DIS ion data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements and Cluster/CIS ion measurements. Topics to be discussed include: (i) Review of compression algorithm; (ii) Data quality; (iii) Data formatting/organization; (iv) Compression optimization; (v) Investigation of pseudo-log precompression; and (vi) Analysis of compression effectiveness for burst mode as well as fast survey mode data packets for both electron and ion data We conclude with a presentation of the current base-lined FPI data compression approach.

  7. Investigation of Polarization Phase Difference Related to Forest Fields Characterizations

    NASA Astrophysics Data System (ADS)

    Majidi, M.; Maghsoudi, Y.

    2013-09-01

    The information content of Synthetic Aperture Radar (SAR) data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD) statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench Voss), black spruce (Picea mariana (Mill) B.S.P.), poplar (Populus L.), red oak (Quercus rubra L.) , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  8. Evaluation of coded aperture radiation detectors using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Miller, Kyle; Huggins, Peter; Labov, Simon; Nelson, Karl; Dubrawski, Artur

    2016-12-01

    We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.

  9. Determining X-ray source intensity and confidence bounds in crowded fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primini, F. A.; Kashyap, V. L., E-mail: fap@head.cfa.harvard.edu

    We present a rigorous description of the general problem of aperture photometry in high-energy astrophysics photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior probability density function for the expected source intensity for various cases of interest, including the important cases in which both source and background apertures contain contributions from the source, and when multiple source apertures partially overlap. A Bayesian approach offers the advantages of allowing one to (1) include explicit prior information on source intensities, (2) propagate posterior distributions as priors for future observations, and (3) use Poisson likelihoods,more » making the treatment valid in the low-counts regime. Elements of this approach have been implemented in the Chandra Source Catalog.« less

  10. Distribution of pectins in the pollen apertures of Oenothera hookeri.velans ster/+ster.

    PubMed

    Noher de Halac, I; Cismondi, I A; Rodriguez-Garcia, M I; Famá, G

    2003-04-01

    Cell wall pectins are some of the most complex biopolymers known, and yet their functions remain largely mysterious. The aim of this paper was to deepen the study of the spatial pattern of pectin distribution in the aperture of Oenothera hookeri.velans ster/+ster fertile pollen. We used "in situ" immunocytochemical techniques at electron microscopy, involving monoclonal antibodies JIM5 and JIM7 directed against pectin epitopes in fertile pollen grains of Oenothera hookeri.velans ster/+ster. The same region was also analyzed by classical cytochemistry for polysaccharide detection. Immunogold labelling at the JIM7 epitope showed only in mature pollen labelling mainly located at the intine endo-aperture region. Cytoplasmic structures near the plasma membrane of the vegetative cell showed no labelling gold grains. In the same pollen stge the labelling at the JIM5 epitope was mostly confined to a layer located in the limit between the endexine and the ektexine at the level of the border of the oncus. Some tubuli at the base of the ektexine showed also an accumulation of gold particles. No JIM5 label was demonstrated in the aperture chamber and either in any cytoplasmic structure of the pollen grains. The immunocytochemical technique, when compared with the traditional methods for non-cellulose polysaccharide cytochemistry is fare more sensitive and allows the univocal determination of temporal and spatial location of pectins recognized by the JIM7 and JIM5 MAbs.

  11. Mixed Modeling of a SAW Delay Line Using VHDL-AMS

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2006-01-01

    To aid in the development of SAW sensors for aerospace applications we have created a model of a SAW Delay line using VHDL. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. The model includes optimization for the number of finger pairs in the IDTs and for the aperture height. This paper presents the model and the results from the model for a SAW delay line design.

  12. Analytical evaluation of ILM sensors

    NASA Technical Reports Server (NTRS)

    Kirk, R. J.; Johnson, C. E.; Doty, D.

    1975-01-01

    Functional requirements and operating environment constraints for an Independent Landing Monitor for aircraft landings in Cat. 2/3 weather conditions are identified and translated into specific sensing requirements. State-of-the-art capabilities of radar, TV, FLIR, multilateration, microwave radiometry, interferometry, redundant MLS and nuclear sensing concepts are evaluated and compared to the requirements. Concepts showing the best ILM potential are identified elsewhere in this series. Three specific concepts are identified: bistatic radar, complex interferometry, and circular synthetic aperture.

  13. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  14. A light sheet confocal microscope for image cytometry with a variable linear slit detector

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua A.; Khan, Foysal Z.; Powless, Amy J.; Benson, Devin; Hunter, Courtney; Fritsch, Ingrid; Muldoon, Timothy J.

    2016-03-01

    We present a light sheet confocal microscope (LSCM) capable of high-resolution imaging of cell suspensions in a microfluidic environment. In lieu of conventional pressure-driven flow or mechanical translation of the samples, we have employed a novel method of fluid transport, redox-magnetohydrodynamics (redox-MHD). This method achieves fluid motion by inducing a small current into the suspension in the presence of a magnetic field via electrodes patterned onto a silicon chip. This on-chip transportation requires no moving parts, and is coupled to the remainder of the imaging system. The microscopy system comprises a 450 nm diode 20 mW laser coupled to a single mode fiber and a cylindrical lens that converges the light sheet into the back aperture of a 10x, 0.3 NA objective lens in an epi-illumination configuration. The emission pathway contains a 150 mm tube lens that focuses the light onto the linear sensor at the conjugate image plane. The linear sensor (ELiiXA+ 8k/4k) has three lateral binning modes which enables variable detection aperture widths between 5, 10, or 20 μm, which can be used to vary axial resolution. We have demonstrated redox-MHD-enabled light sheet microscopy in suspension of fluorescent polystyrene beads. This approach has potential as a high-throughput image cytometer with myriad cellular diagnostic applications.

  15. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    DTIC Science & Technology

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  16. Evaluation of the soil moisture prediction accuracy of a space radar using simulation techniques. [Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Stiles, J. A.; Moore, R. K.; Holtzman, J. C.

    1981-01-01

    Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior.

  17. Pure random search for ambient sensor distribution optimisation in a smart home environment.

    PubMed

    Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming

    2011-01-01

    Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.

  18. Preliminary determination of geothermal working area based on Thermal Infrared and Synthetic Aperture Radar (SAR) remote sensing

    NASA Astrophysics Data System (ADS)

    Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.

  19. The Mushroom: A half-sky energetic ion and electron detector

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Mitchell, D. G.; Andrews, G. B.; Cooper, S. A.; Gurnee, R. S.; Hayes, J. R.; Layman, R. S.; McNutt, R. L.; Nelson, K. S.; Parker, C. W.; Schlemm, C. E.; Stokes, M. R.; Begley, S. M.; Boyle, M. P.; Burgum, J. M.; Do, D. H.; Dupont, A. R.; Gold, R. E.; Haggerty, D. K.; Hoffer, E. M.; Hutcheson, J. C.; Jaskulek, S. E.; Krimigis, S. M.; Liang, S. X.; London, S. M.; Noble, M. W.; Roelof, E. C.; Seifert, H.; Strohbehn, K.; Vandegriff, J. D.; Westlake, J. H.

    2017-02-01

    We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compatible with a spinning spacecraft. The most important new feature of the Mushroom is the method through which uncomplicated electrostatic optics and clean position sensing combine to permit many apertures to fit into a compact, low-mass sensor head (or wedge), several of which (ideally eight) compose a full instrument. Most of the sensor head's volume is an empty, equipotential region, resulting in the modest 250 g mass of each 10-aperture wedge. The Mushroom is capable of separating ion species across most of its energy range and angular field of view. For example, separation of the neighboring 3He and 4He isotopes is excellent; the full width at half maximum mass resolution has been measured to be 0.24 amu to 0.32 amu, respectively. Converting this to a Gaussian width σm in mass m, this represents a σm/m mass resolution better than 0.04. This separation is highly desirable for the flight program for which the first Mushroom was built, the Solar Probe Plus mission. More generally, we estimate the mass resolution to be σm/m ≈ 0.1, but this is energy, mass, and angularly dependent. We also discuss the solid-state detector stack capability, which extends the energy range of protons and helium, with composition, to 100 MeV.

  20. Development of Control Models and a Robust Multivariable Controller for Surface Shape Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winters, Scott Eric

    2003-06-18

    Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less

  1. A Decade of Ocean Acoustic Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    D'Spain, G. L.

    2002-12-01

    Studies of the properties of low frequency acoustic fields in the ocean continue to benefit from the use of manned, stable offshore platforms such as R/P FLIP. A major benefit is providing the at-sea stability required for deployment of extremely large aperture line arrays, line arrays composed of both acoustic motion and acoustic pressure sensors, and arrays that provide measurements in all 3 spatial dimensions. In addition, FLIP provides a high-profile (25 m) observation post with 360 deg coverage for simultaneous visual observations of marine mammals. A few examples of the scientific results that have been achieved over this past decade with ocean acoustic data collected on FLIP are presented. These results include the normal mode decomposition of earthquake T phases to study their generation and water/land coupling characteristics using a 3000 m vertical aperture hydrophone array, simultaneous vertical and horizontal directional information on the underwater sound field from line arrays of hydrophones and geophones, the strange nightime chorusing behavior of fish measured by 3D array aperture, the mirage effect caused by bathymetry changes in inversions for source location in shallow water, and the diving behavior of blue whales determined from 1D recordings of their vocalizations. Presently, FLIP serves as the central data recording platform in ocean acoustic studies using AUV's.

  2. Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.

    PubMed

    Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan

    2016-12-01

    The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.

  3. Nanostructured cavity devices for extracellular stimulation of HL-1 cells

    NASA Astrophysics Data System (ADS)

    Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard

    2015-05-01

    Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. Electronic supplementary information (ESI) available: Comparison of non-filtered and Savitzky-Golay filtered action potential recordings, electrical signals and corresponding optical signals. See DOI: 10.1039/c5nr01690h

  4. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network

    PubMed Central

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701

  5. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    PubMed

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  6. Evaluation of cable tension sensors of FAST reflector from the perspective of EMI

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao

    2016-06-01

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

  7. Observation of enhanced spontaneous emission in dielectrically apertured microcavities

    NASA Astrophysics Data System (ADS)

    Graham, Luke Alan

    The effects of enhanced spontaneous emission are important in determining the low threshold characteristics of oxide confined vertical cavity semiconductor lasers. This enhancement effect increases as Q/V, where Q = λ/Δλ for the cavity and V is the mode volume. In particular we investigate the effects of mode diameter on enhancement in microcavity structures with successively smaller dielectric apertures. These structures were fabricated by etching and back filling with SiO 2 and by lateral steam oxidation. For both cavities, InAlGaAs quantum dot emitters were used in the active region in order to avoid carrier diffusion and recombination at the side walls. Decay data was obtained at 10 K using time resolved photoluminescence of individual microcavities, and arrays. The detector used here is based on a silicon avalanche photodiode operated in ``Geiger'' mode. It provides a resolution of 350 ps and a quantum efficiency of ~1% at a wavelength of 1 μm. For the etched aperture structures we observed enhancement factors as high as 1.4 for the 1 μm diameter cavities with a maximum Q ~ 200. The enhancement is limited by the low Qs induced by etched side wall scattering. For 1 μm apertures fabricated by lateral steam oxidation, a Q of 450 is obtained with an enhancement factor of 2.3. In these devices we show that the enhancement is limited by distribution of quantum dots throughout the aperture region. Dots resonant with the cavity and located along the aperture edge decay more slowly than those in the center, leading to spatial hole burning effects in the decay data. Microcavities with aperture sizes ranging from 1-5 μm and Qs greater than 5000 are also demonstrated. We show 0th and 1 st order mode spacings as a function of aperture size and from this data calculate the transverse optical mode diameter as a function of aperture diameter. We find that the optical mode size becomes larger than the aperture size for diameters of ~2.5 μm and below and that this is correlated with a steep drop in Q for smaller apertures. We also find that the upper limit in cavity Q in these structures appears to come from losses induced by the MgF2/ZnSe e-beam deposited DBRs.

  8. Numerical investigation of a vortex ring impinging on a coaxial aperture

    NASA Astrophysics Data System (ADS)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr < 0.9) exhibits the classical unsteady boundary layer interaction in a vortex ring-wall collision. The vortex ring is able to slip past the aperture when Rr >= 0.9 , and an increase in the vortex ring impulse is observed for 1.0 <= Rr <= 1.3 due to fluid entrainment. Furthermore, pressure loadings are also compared to elucidate an optimal energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  9. Control systems using modal domain optical fiber sensors for smart structure applications

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  10. 222Rn transport in a fractured crystalline rock aquifer: Results from numerical simulations

    USGS Publications Warehouse

    Folger, P.F.; Poeter, E.; Wanty, R.B.; Day, W.; Frishman, D.

    1997-01-01

    Dissolved 222Rn concentrations in ground water from a small wellfield underlain by fractured Middle Proterozoic Pikes Peak Granite southwest of Denver, Colorado range from 124 to 840 kBq m-3 (3360-22700 pCi L-1). Numerical simulations of flow and transport between two wells show that differences in equivalent hydraulic aperture of transmissive fractures, assuming a simplified two-fracture system and the parallel-plate model, can account for the different 222Rn concentrations in each well under steady-state conditions. Transient flow and transport simulations show that 222Rn concentrations along the fracture profile are influenced by 222Rn concentrations in the adjoining fracture and depend on boundary conditions, proximity of the pumping well to the fracture intersection, transmissivity of the conductive fractures, and pumping rate. Non-homogeneous distribution (point sources) of 222Rn parent radionuclides, uranium and 226Ra, can strongly perturb the dissolved 222Rn concentrations in a fracture system. Without detailed information on the geometry and hydraulic properties of the connected fracture system, it may be impossible to distinguish the influence of factors controlling 222Rn distribution or to determine location of 222Rn point sources in the field in areas where ground water exhibits moderate 222Rn concentrations. Flow and transport simulations of a hypothetical multifracture system consisting of ten connected fractures, each 10 m in length with fracture apertures ranging from 0.1 to 1.0 mm, show that 222Rn concentrations at the pumping well can vary significantly over time. Assuming parallel-plate flow, transmissivities of the hypothetical system vary over four orders of magnitude because transmissivity varies with the cube of fracture aperture. The extreme hydraulic heterogeneity of the simple hypothetical system leads to widely ranging 222Rn values, even assuming homogeneous distribution of uranium and 226Ra along fracture walls. Consequently, it is concluded that 222Rn concentrations vary, not only with the geometric and stress factors noted above, but also according to local fracture aperture distribution, local groundwater residence time, and flux of 222Rn from parent radionuclides along fracture walls.

  11. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Men Chunhua; Romeijn, H. Edwin; Jia Xun

    2010-11-15

    Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less

  12. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).

    PubMed

    Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B

    2010-11-01

    To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.

  13. Collimator of multiple plates with axially aligned identical random arrays of apertures

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Underwood, J. H. (Inventor)

    1973-01-01

    A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.

  14. Elastic rebound following the Kocaeli earthquake, Turkey, recorded using synthetic aperture radar interferometry

    USGS Publications Warehouse

    Mayer, Larry; Lu, Zhong

    2001-01-01

    A basic model incorporating satellite synthetic aperture radar (SAR) interferometry of the fault rupture zone that formed during the Kocaeli earthquake of August 17, 1999, documents the elastic rebound that resulted from the concomitant elastic strain release along the North Anatolian fault. For pure strike-slip faults, the elastic rebound function derived from SAR interferometry is directly invertible from the distribution of elastic strain on the fault at criticality, just before the critical shear stress was exceeded and the fault ruptured. The Kocaeli earthquake, which was accompanied by as much as ∼5 m of surface displacement, distributed strain ∼110 km around the fault prior to faulting, although most of it was concentrated in a narrower and asymmetric 10-km-wide zone on either side of the fault. The use of SAR interferometry to document the distribution of elastic strain at the critical condition for faulting is clearly a valuable tool, both for scientific investigation and for the effective management of earthquake hazard.

  15. Imprinting continuously varying topographical structure onto large-aperture optical surfaces using magnetorheological finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Davis, P J; Dixit, S

    2007-03-07

    Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and themore » MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications.« less

  16. Features and technologies of ERS-1 (ESA) and X-SAR antennas

    NASA Technical Reports Server (NTRS)

    Schuessler, R.; Wagner, R.

    1986-01-01

    Features and technologies of planar waveguide array antennas developed for spaceborne microwave sensors are described. Such antennas are made from carbon fiber reinforced plastic (CFRP) employing special manufacturing and metallization techniques to achieve satisfactory electrical properties. Mechanical design enables deployable antenna structures necessary for satellite applications (e.g., ESA ERS-1). The slotted waveguide concept provides high aperture efficiency, good beamshaping capabilities, and low losses. These CFRP waveguide antennas feature low mass, high accuracy and stiffness, and can be operated within wide temperature ranges.

  17. Optical components of adaptive systems for improving laser beam quality

    NASA Astrophysics Data System (ADS)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  18. Range Compressed Holographic Aperture Ladar

    DTIC Science & Technology

    2017-06-01

    prescribed phase and the phase correction estimate given by the PGA estimator, respectively. Finally, 50 trials were run over which a new random draw of...target mounted to the rotation stage and tilted vertically away from the sensor by 40o. The target consists of 36 aluminum blades (360 mm X 25.4 mm X...1.57 mm), stacked and rotated by 5° each. A flat surface finish was achieved by lightly sandblasting the blades before assembly. By design, this is a

  19. Co-Prime Frequency and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing

    DTIC Science & Technology

    2018-03-10

    can be generated using only two sensors in the physical array. In case ofredundancy in the difference coarray, there is more than one antenna pair that...estimation results based on the MUSIC algorithm using multi- frequency co-prime arrays. Both proportional and nonproportional source spectra cases are...be made in this case as well. However, two differences can be noticed by comparing the RMSE plots in Figs. 11 and 13. First, the RMSE takes on lower

  20. A Near Term Approach to Embedded Training: Battle Command Visualization 101

    DTIC Science & Technology

    2006-05-01

    Example of Task Guidance area at the end of Module 1, Exercise 1 (Level 1) ...... 26 Figure 9 Example of Robo -Scout information, accessed through the...unmanned ground vehicle (UGV) sensor, the Robo -Scout. They will be equipped with both passive and active systems to provide target acquisition, real...PIR# Track of Update RqieTemplated Required 1 Tracked & NAI 1, 2 S, T S200 synthetic L 2 hrs Vehicle type, Intel, Fires (PIR 1) Wheeled aperture radar

  1. Dualband infrared imaging spectrometer: observations of the moon

    NASA Astrophysics Data System (ADS)

    LeVan, Paul D.; Beecken, Brian P.; Lindh, Cory

    2008-08-01

    We reported previously on full-disk observations of the sun through a layer of black polymer, used to protect the entrance aperture of a novel dualband spectrometer while transmitting discrete wavelength regions in the MWIR & LWIR1. More recently, the spectrometer was used to assess the accuracy of recovery of unknown blackbody temperatures2. Here, we briefly describe MWIR observations of the full Moon made in Jan 2008. As was the case for the solar observations, the Moon was allowed to drift across the spectrometer slit by Earth's rotation. A detailed sensor calibration performed prior to the observations accounts for sensor non-uniformities; the spectral images of the Moon therefore include atmospheric transmission features. Our plans are to repeat the observations at liquid helium temperatures, thereby allowing both MWIR & LWIR spectral coverage.

  2. Wavefront sensor-driven variable-geometry pupil for ground-based aperture synthesis imaging

    NASA Astrophysics Data System (ADS)

    Tyler, David W.

    2000-07-01

    I describe a variable-geometry pupil (VGP) to increase image resolution for ground-based near-IR and optical imaging. In this scheme, a curvature-type wavefront sensor provides an estimate of the wavefront curvature to the controller of a high-resolution spatial light modulator (SLM) or micro- electromechanical (MEM) mirror, positioned at an image of the telescope pupil. This optical element, the VGP, passes or reflects the incident beam only where the wavefront phase is sufficiently smooth, viz., where the curvature is sufficiently low. Using a computer simulation, I show the VGP can sharpen and smooth the long-exposure PSF and increase the OTF SNR for tilt-only and low-order AO systems, allowing higher resolution and more stable deconvolution with dimmer AO guidestars.

  3. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  4. Wavefront image sensor chip

    PubMed Central

    Cui, Xiquan; Ren, Jian; Tearney, Guillermo J.; Yang, Changhuei

    2010-01-01

    We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 µm) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications. PMID:20721059

  5. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less

  6. Seasat-A and the commercial ocean community

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.; Wolff, P.

    1977-01-01

    The Seasat-A program has been initiated as a 'proof-of-concept' mission to evaluate the effectiveness of remotely sensing oceanology and related meteorological phenomena from a satellite platform in space utilizing sensors developed on previous space and aircraft test programs. The sensors include three active microwave sensors; a radar altimeter, a windfield scatterometer, and a synthetic aperture radar. A passive scanning multifrequency microwave radiometer, visual and infrared radiometer are also included. All weather, day-night measurements of sea surface temperature, surface wind speed/direction and sea state and directional wave spectra will be made. Two key programs are planned for data utilization with users during the mission. Foremost is a program with the commercial ocean community to test the utility of Seasat-A data and to begin the transfer of ocean remote sensing technology to the civil sector. A second program is a solicitation of investigations, led by NOAA, to involve the ocean science community in a series of scientific investigations.

  7. The Impact of Model Uncertainty on Spatial Compensation in Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.; Sprofera, Joseph D.; Clark, Robert L.

    2004-01-01

    Turbulent boundary layer (TBL) noise is considered a primary factor in the interior noise experienced by passengers aboard commercial airliners. There have been numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a challenge since the physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions have been assumed; however, realistic panels likely display a range of varying boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of actuators and sensors required to achieve the desired control. The impact of model uncertainties, uncertain boundary conditions in particular, on the selection of actuator and sensor locations for structural acoustic control are considered herein. Results from this research effort indicate that it is possible to optimize the design of actuator and sensor location and aperture, which minimizes the impact of boundary conditions on the desired structural acoustic control.

  8. Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

    PubMed Central

    Kašalynas, Irmantas; Venckevičius, Rimvydas; Minkevičius, Linas; Sešek, Aleksander; Wahaia, Faustino; Tamošiūnas, Vincas; Voisiat, Bogdan; Seliuta, Dalius; Valušis, Gintaras; Švigelj, Andrej; Trontelj, Janez

    2016-01-01

    A terahertz (THz) imaging system based on narrow band microbolometer sensors (NBMS) and a novel diffractive lens was developed for spectroscopic microscopy applications. The frequency response characteristics of the THz antenna-coupled NBMS were determined employing Fourier transform spectroscopy. The NBMS was found to be a very sensitive frequency selective sensor which was used to develop a compact all-electronic system for multispectral THz measurements. This system was successfully applied for principal components analysis of optically opaque packed samples. A thin diffractive lens with a numerical aperture of 0.62 was proposed for the reduction of system dimensions. The THz imaging system enhanced with novel optics was used to image for the first time non-neoplastic and neoplastic human colon tissues with close to wavelength-limited spatial resolution at 584 GHz frequency. The results demonstrated the new potential of compact RT THz imaging systems in the fields of spectroscopic analysis of materials and medical diagnostics. PMID:27023551

  9. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  10. Performance bounds for modal analysis using sparse linear arrays

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie

    2017-05-01

    We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.

  11. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    PubMed

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  12. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    NASA Astrophysics Data System (ADS)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.

  13. An investigation of kV CBCT image quality and dose reduction for volume-of-interest imaging using dynamic collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, David, E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca; Robar, James L., E-mail: david.parsons@dal.ca, E-mail: james.robar@cdha.nshealth.ca

    2015-09-15

    Purpose: The focus of this work was to investigate the improvements in image quality and dose reduction for volume-of-interest (VOI) kilovoltage-cone beam CT (CBCT) using dynamic collimation. Methods: A prototype iris aperture was used to track a VOI during a CBCT acquisition. The current aperture design is capable of 1D translation as a function of gantry angle and dynamic adjustment of the iris radius. The aperture occupies the location of the bow-tie filter on a Varian On-Board Imager system. CBCT and planar image quality were investigated as a function of aperture radius, while maintaining the same dose to the VOI,more » for a 20 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Corresponding scatter-to-primary ratios (SPR) were determined at the detector plane with Monte Carlo simulation using EGSnrc. Dose distributions for various sizes VOI were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field distributions. Results: SPR was reduced by a factor of 8.4 when decreasing iris diameter from 21.2 to 2.4 cm (at isocenter). Depending upon VOI location and size, dose was reduced to 16%–90% of the full-field value along the central axis plane and down to 4% along the axis of rotation, while maintaining the same dose to the VOI compared to full-field techniques. When maintaining constant dose to the VOI, this change in iris diameter corresponds to a factor increase of approximately 1.6 in image contrast and a factor decrease in image noise of approximately 1.2. This results in a measured gain in contrast-to-noise ratio by a factor of approximately 2.0. Conclusions: The presented VOI technique offers improved image quality for image-guided radiotherapy while sparing the surrounding volume of unnecessary dose compared to full-field techniques.« less

  14. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  15. Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation Conditions

    DTIC Science & Technology

    2009-03-01

    IN WIRELESS SENSOR NETWORKS WITH RANDOMLY DISTRIBUTED ELEMENTS UNDER MULTIPATH PROPAGATION CONDITIONS by Georgios Tsivgoulis March 2009...COVERED Engineer’s Thesis 4. TITLE Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation...the non-line-of-sight information. 15. NUMBER OF PAGES 111 14. SUBJECT TERMS Wireless Sensor Network , Direction of Arrival, DOA, Random

  16. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCary, Kelly Marie

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  17. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete overlay

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda

    2017-08-01

    This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.

  18. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  19. Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Shi, Chuan Bo; Chen, Tian Yi; Qing Qi, Mei; Li, Yun Bo; Cui, Tie Jun

    2018-04-01

    A new method is proposed to design gradient refractive-index metamaterial lens antennas by optimizing both the refractive-index distribution of the lens and the feed directivity. Comparing to the conventional design methods, source optimization provides a new degree of freedom to control aperture fields effectively. To demonstrate this method, two lenses with special properties based on this method are designed, to emit high-efficiency plane waves and fan-shaped beams, respectively. Both lenses have good performance and wide frequency band from 12 to 18 GHz, verifying the validity of the proposed method. The plane-wave emitting lens realized a high aperture efficiency of 75%, and the fan-beam lens achieved a high gain of 15 dB over board bandwidth. The experimental results have good agreement with the design targets and full-wave simulations.

  20. A proof of concept investigation: A unique mobility spectrometer for In Situ diagnostics of positive and negative ion distributions in the mesosphere and lower ionosphere

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1996-01-01

    We have carried out a proof-of-concept development and test effort that not only promises the reduction of parasitic effects of surface contamination (therefore increasing the integrity of 'in situ' measurements in the 60-130 km regime), but promises a uniquely expanded measurement set that includes electron densities, plasma conductivities, charged-particle mobilities, and mass discrimination of positive and negative ion distributions throughout the continuum to free-molecular-flow regimes. Three different sensor configurations were designed, built and tested, along with specialized driving voltage, electrometer and channeltron control electronics. The individual systems were tested in a variety of simulated space environments ranging from pressures near the continuum limit of 100 mTorr to the collisionless regime at 10(exp -6) Torr. Swept modes were initially employed to better understand ion optics and ion 'beam' losses to end walls and to control electrodes. This swept mode also helped better understand and mitigate the influences of secondary electrons on the overall performance of the PIMS design concept. Final results demonstrated the utility of the concept in dominant single-ion plasma environments. Accumulated information, including theoretical concepts and laboratory data, suggest that multi-ion diagnostics are fully within the instrument capabilities and that cold plasma tests with minimized pre-aperture sheath acceleration are the key ingredients to multi-ion success.

  1. The effect of changes in surface wettability on two-phase saturated flow in horizontal replicas of single natural fractures.

    PubMed

    Bergslien, Elisa; Fountain, John

    2006-12-15

    By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.

  2. The COWVR Mission: Demonstrating Small Satellite Capability to Fill the Looming Gap in Microwave Radiometer Coverage

    NASA Astrophysics Data System (ADS)

    Brown, S. T.; Focardi, P.; Kitiyakara, A.; Maiwald, F.; Milligan, L.; Montes, O.; Padmanabhan, S.; Redick, R.; Russell, D.

    2017-12-01

    Passive microwave radiometer systems have been providing important Earth observations for over 30 years, including by not limited to surface wind vector, atmospheric and surface temperature, water vapor, clouds, precipitation, snow and sea ice. These data are critical for weather forecasting and the longevity of the record, along with careful calibration, has also enabled the extraction of climate records. But the future of these systems, conically scanning systems in particular, is uncertain. These sensors are have typically been developed at high cost and deployed on large spacecraft. A solution may lie in smaller, lower-cost but equally capable sensors manifested on free-flying small-satellites which can open the door to new possibilities and an avenue for sustainable passive microwave observation. Among the possibilities are deployment in constellations to shorten revisit time to improve weather forecasting or routine deployment of single sensors over time to ensure an unbroken long duration climate record. The Compact Ocean Wind Vector Radiometer (COWVR) mission, formally the US Air Force ORS-6 mission, will demonstrate a new generation conically scanning passive microwave radiometer on a small satellite. COWVR is an 18-34 GHz fully polarimetric radiometer with a 75cm aperture designed to provide measurements of ocean vector winds with an accuracy that meets or exceeds that provided by WindSat in all non-precipitating conditions, but using a simpler design which has both performance and cost advantages. This paper will give an overview of the COWVR instrument and mission and its performance estimated from pre-launch calibration data. While the COWVR mission is a focused technology demonstration mission, the sensor design is scalable to a much broader frequency range while retaining its low-cost advantage. We will describe extensions of the COWVR design that have been developed and the capabilities of such systems when deployed in a constellation scenario or climate monitoring scenario. We will also describe deployable reflector technologies being developed at JPL to enable large apertures (>2-meter) to stow inside an ESPA volume (<80cm) and be suitable for operation from 6-200 GHz. This removes any limitations on the spatial resolution of the sensor, even when launched as a ESPA secondary payload.

  3. 3D synthetic aperture for controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Knaak, Allison

    Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets correctly, which allows use of the method in locations where the subsurface models are built from only estimates. In addition to the technical work in this thesis, I explore the interface between science, government, and society by examining the controversy over hydraulic fracturing and by suggesting a process to aid the debate and possibly other future controversies.

  4. Predicting mineral precipitation in fractures: The influence of local heterogeneity on the feedback between precipitation and permeability

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2016-12-01

    Long-term subsurface energy production and contaminant storage strategies often rely on induced-mineralization to control the transport of dissolved ions. In low-permeability rocks, precipitation is most likely to occur in fractures that act as leakage pathways for fluids that are in chemical disequilibrium with the formation minerals. These fractures are commonly idealized as parallel-plate channels with uniform surface mineralogy, and as a result, our predictions often suggest that precipitation leads to fast permeability reduction. However, natural fractures contain both heterogeneous mineralogy and three-dimensional surface roughness, and our understanding of how precipitation affects local permeability in these environments is limited. To examine the impacts of local heterogeneity on the feedback between mineral precipitation and permeability, we performed two long-term experiments in transparent analog fractures: (i) uniform-aperture and (ii) variable-aperture. We controlled the initial heterogeneous surface mineralogy in both experiments by seeding the bottom borosilicate fracture surfaces with randomly distributed clusters of CaCO3 crystals. Continuous flow ISCO pumps injected a well-mixed CaCl2-NaHCO3 solution, log(ΩCaCO3) = 1.44, into the fracture at 0.5 ml/min and transmitted-light techniques provided high-resolution (83 x 83 µm), direct measurements of aperture and fluid transport across the fracture. In experiment (i), precipitation decreased local aperture at discrete CaCO3 reaction sites near the fracture inlet, but transport variations across the fracture remained relatively small due to the initial lack of aperture heterogeneity. In contrast, the feedback between precipitation and aperture in experiment (ii) focused flow into large-aperture, preferential flow paths that contained significantly less CaCO3 area than the fracture scale average. Precipitation-induced aperture reduction in (ii) reduced dissolved ion transport into small-aperture regions of the fracture that were abundant with CaCO3 and led to a 72% decrease in measured precipitation rate. These results suggest that incorporating the effects of local heterogeneity may dramatically improve our ability to predict precipitation-induced permeability alterations in fractured rocks.

  5. UrtheCast Second-Generation Earth Observation Sensors

    NASA Astrophysics Data System (ADS)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  6. NASA Tech Briefs, September 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics include: Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask; Three-Dimensional Venturi Sensor for Measuring Extreme Winds; Swarms of Micron-Sized Sensors; Monitoring Volcanoes by Use of Air-Dropped Sensor Packages; Capacitive Sensors for Measuring Masses of Cryogenic Fluids; UHF Microstrip Antenna Array for Synthetic- Aperture Radar; Multimode Broad-Band Patch Antennas; 164-GHz MMIC HEMT Frequency Doubler; GPS Position and Heading Circuitry for Ships; Software for Managing Parametric Studies; Software Aids Visualization of Computed Unsteady Flow; Software for Testing Electroactive Structural Components; Advanced Software for Analysis of High-Speed Rolling-Element Bearings; Web Program for Development of GUIs for Cluster Computers; XML-Based Generator of C++ Code for Integration With GUIs; Oxide Protective Coats for Ir/Re Rocket Combustion Chambers; Simplified Waterproofing of Aerogels; Improved Thermal-Insulation Systems for Low Temperatures; Device for Automated Cutting and Transfer of Plant Shoots; Extension of Liouville Formalism to Postinstability Dynamics; Advances in Thrust-Based Emergency Control of an Airplane; Ultrasonic/Sonic Mechanisms for Drilling and Coring; Exercise Device Would Exert Selectable Constant Resistance; Improved Apparatus for Measuring Distance Between Axles; Six Classes of Diffraction-Based Optoelectronic Instruments; Modernizing Fortran 77 Legacy Codes; Active State Model for Autonomous Systems; Shields for Enhanced Protection Against High-Speed Debris; Scaling of Two-Phase Flows to Partial-Earth Gravity; Neutral-Axis Springs for Thin-Wall Integral Boom Hinges.

  7. Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle

    NASA Astrophysics Data System (ADS)

    Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon

    2018-03-01

    Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.

  8. Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985

    NASA Technical Reports Server (NTRS)

    Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)

    1986-01-01

    The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.

  9. Tunable MOEMS Fabry-Perot interferometer for miniaturized spectral sensing in near-infrared

    NASA Astrophysics Data System (ADS)

    Rissanen, A.; Mannila, R.; Tuohiniemi, M.; Akujärvi, A.; Antila, J.

    2014-03-01

    This paper presents a novel MOEMS Fabry-Perot interferometer (FPI) process platform for the range of 800 - 1050 nm. Simulation results including design and optimization of device properties in terms of transmission peak width, tuning range and electrical properties are discussed. Process flow for the device fabrication is presented, with overall process integration and backend dicing steps resulting in successful fabrication yield. The mirrors of the FPI consist of LPCVD (low-pressure chemical vapor) deposited polySi-SiN λ/4-thin film Bragg reflectors, with the air gap formed by sacrificial SiO2 etching in HF vapor. Silicon substrate below the optical aperture is removed by inductively coupled plasma (ICP) etching to ensure transmission in the visible - near infra-red (NIR), which is below silicon transmission range. The characterized optical properties of the chips are compared to the simulated values. Achieved optical aperture diameter size enables utilization of the chips in both imaging as well as single-point spectral sensors.

  10. A SPECT system simulator built on the SolidWorks TM 3D-Design package.

    PubMed

    Li, Xin; Furenlid, Lars R

    2014-08-17

    We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design workflow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorks TM -created stereolithography (.STL) representations with a full complement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorks TM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.

  11. A SPECT system simulator built on the SolidWorksTM 3D design package

    NASA Astrophysics Data System (ADS)

    Li, Xin; Furenlid, Lars R.

    2014-09-01

    We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design work flow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorksTM-created stereolithography (.STL) representations with a full com- plement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorksTM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.

  12. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing.

    PubMed

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-04-14

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.

  13. Looped back fiber mode for reduction of false alarm in leak detection using distributed optical fiber sensor.

    PubMed

    Chelliah, Pandian; Murgesan, Kasinathan; Samvel, Sosamma; Chelamchala, Babu Rao; Tammana, Jayakumar; Nagarajan, Murali; Raj, Baldev

    2010-07-10

    Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.

  14. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Integrated feeds for electronically reconfigurable apertures

    NASA Astrophysics Data System (ADS)

    Nicholls, Jeffrey Grant

    With the increasing ubiquity of wireless technology, the need for lower-profile, electronically reconfigurable, highly-directive beam-steering antennas is increasing. This thesis proposes a new electronic beam-steering antenna architecture which combines the full-space beam-steering properties of reflectarrays and transmitarrays with the low-profile feeding characteristics of leaky-wave antennas. Two designs are developed: an integrated feed reflectarray and an integrated feed transmitarray, both of which integrate a leaky-wave feed directly next to the reconfigurable aperture itself. The integrated feed transmitarray proved to be the better architecture due to its simpler design and better performance. A 6-by-6 element array was fabricated and experimentally verified, and full-space (both azimuth and elevation) beam-steering was demonstrated at angles up to 45 degrees off broadside. In addition to the reduction in profile, the integrated feed design enables robust fixed control of the amplitude distribution across the aperture, a characteristic not as easily attained in typical reflectarrays/transmitarrays.

  16. Resonant coupling through a slot to a loaded cylindrical cavity: Experimental results

    NASA Astrophysics Data System (ADS)

    Norgard, John D.; Sega, Ronald M.

    1990-03-01

    The effect of cavity geometry on the energy coupled through a slot aperture is investigated through the use of planar mappings of the internal cavity field. A copper cylinder, closed at both ends, is constructed with copper mesh sections incorporated at the ends of the cylinder and in the cylinder wall opposite a thin slot aperture placed in the wall. The frequencies used for testing are 2 to 4 GHz. Internal field mapping is accomplished by placing thin carbon-loaded sheets in the plane of interest and recording the digitized temperature distribution using an infrared scanning system. The sheets are calibrated such that the temperature data is transformed to current densities or electric field strengths. Using several positions for the detection material, a three-dimensional field profile is obtained. The onset of the internal cavity resonance is studied as it is related to the energy coupled through small apertures.

  17. Analysis of the fractal dimension of volcano geomorphology through Synthetic Aperture Radar (SAR) amplitude images acquired in C and X band.

    NASA Astrophysics Data System (ADS)

    Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.

    2012-04-01

    In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe in Japan, Merapi in Indonesia. Preliminary results reveal that the fractal dimension of natural areas, being related only to the roughness of the observed surface, is very stable as the radar illumination geometry, the resolution and the wavelength change, thus holding a very unique property in SAR data inversion. Such a behavior is not verified in case of non-natural objects. As a matter of fact, when the fractal estimation is performed in the presence of either man-made objects or SAR image features depending on geometrical distortions due to the SAR system acquisition (i.e. layover, shadowing), fractal dimension (D) values outside the range of fractality of natural surfaces (2 < D < 3) are retrieved. These non-fractal characteristics show to be heavily dependent on sensor acquisition parameters (e.g. view angle, resolution). In this work, the behaviour of the maps generated starting from the C- and X- band SAR data, relevant to all the considered volcanoes, is analyzed: the distribution of the obtained fractal dimension values is investigated on different zones of the maps. In particular, it is verified that the fore-slope and back-slope areas of the image share a very similar fractal dimension distribution that is placed around the mean value of D=2.3. We conclude that, in this context, the fractal dimension could be considered as a signature of the identification of the volcano growth as a natural process. The COSMO-SkyMed data used in this study have been processed at IREA-CNR within the SAR4Volcanoes project under Italian Space Agency agreement n. I/034/11/0.

  18. Fast Plasma Investigation for MMS: Simulation of the Burst Triggering System

    NASA Technical Reports Server (NTRS)

    Barrie, A. C.; Dorelli, J. C.; Winkert, G. E.; Lobell, J. V.; Holland, M. P.; Adrian, M. L.; Pollock, C. J.

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 degree x 180 degree fields-of-view (FOV) are set 90 degrees apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 degree x 180 degree fan about the its nominal viewing (0 deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb (raised dot) per second of electron data while the DIS generates 1.1-Mb (raised dot) per second of ion data yielding an FPI total data rate of 6.6-Mb (raised dot) per second. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. This requires a data ranking process known as the burst trigger system. The burst trigger system uses pseudo physical quantities to approximate the local plasma environments. As each pseudo quantity will have a different value, a set of two scaling factors is employed for each pseudo term. These pseudo quantities are then combined at the instrument, spacecraft, and observatory level leading to a final ranking of data based on expected scientific interest. Here, we present simulations of the fixed point burst trigger system for the FPI. A variety of data sets based on previous mission data as well as analytical formulations are tested. Comparisons of floating point calculations versus the fixed point hardware simulation are shown. Analysis of the potential sources of error from overflows, quantization, etc. are examined and mitigation methods are presented. Finally a series of calibration curves are presented, showing the expected error in pseudo quantities based solely on the scale parameters chosen and the expected data range. We conclude with a presentation of the current base-lined FPI burst trigger approach.

  19. Simulation of noise involved in synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Grandchamp, Myriam; Cavassilas, Jean-Francois

    1996-08-01

    The synthetic aperture radr (SAR) returns from a linear distribution of scatterers are simulated and processed in order to estimate the reflectivity coefficients of the ground. An original expression of this estimate is given, which establishes the relation between the terms of signal and noise. Both are compared. One application of this formulation consists of detecting a surface ship wake on a complex SAR image. A smoothing is first accomplished on the complex image. The choice of the integration area is determined by the preceding mathematical formulation. Then a differential filter is applied, and results are shown for two parts of the wake.

  20. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  1. The SKA1 LOW telescope: system architecture and design performance

    NASA Astrophysics Data System (ADS)

    Waterson, Mark F.; Labate, Maria Grazia; Schnetler, Hermine; Wagg, Jeff; Turner, Wallace; Dewdney, Peter

    2016-07-01

    The SKA1-LOW radio telescope will be a low-frequency (50-350 MHz) aperture array located in Western Australia. Its scientific objectives will prioritize studies of the Epoch of Reionization and pulsar physics. Development of the telescope has been allocated to consortia responsible for the aperture array front end, timing distribution, signal and data transport, correlation and beamforming signal processors, infrastructure, monitor and control systems, and science data processing. This paper will describe the system architectural design and key performance parameters of the telescope and summarize the high-level sub-system designs of the consortia.

  2. Analysis of fratricide effect observed with GeMS and its relevance for large aperture astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Neichel, Benoit; Wang, Lianqi; Boyer, Corinne; Ellerbroek, Brent; Rigaut, François

    2013-12-01

    Large aperture ground-based telescopes require Adaptive Optics (AO) to correct for the distortions induced by atmospheric turbulence and achieve diffraction limited imaging quality. These AO systems rely on Natural and Laser Guide Stars (NGS and LGS) to provide the information required to measure the wavefront from the astronomical sources under observation. In particular one such LGS method consists in creating an artificial star by means of fluorescence of the sodium atoms at the altitude of the Earth's mesosphere. This is achieved by propagating one or more lasers, at the wavelength of the Na D2a resonance, from the telescope up to the mesosphere. Lasers can be launched from either behind the secondary mirror or from the perimeter of the main aperture. The so-called central- and side-launch systems, respectively. The central-launch system, while helpful to reduce the LGS spot elongation, introduces the so-called "fratricide" effect. This consists of an increase in the photon-noise in the AO Wave Front Sensors (WFS) sub-apertures, with photons that are the result of laser photons back-scattering from atmospheric molecules (Rayleigh scattering) and atmospheric aerosols (dust and/or cirrus clouds ice particles). This affects the performance of the algorithms intended to compute the LGS centroids and subsequently compute and correct the turbulence-induced wavefront distortions. In the frame of the Thirty Meter Telescope (TMT) project and using actual LGS WFS data obtained with the Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS), we show results from an analysis of the temporal variability of the observed fratricide effect, as well as comparison of the absolute magnitude of fratricide photon-flux level with simulations using models that account for molecular (Rayleigh) scattering and photons backscattered from cirrus clouds.

  3. Multidirectional seismo-acoustic wavefield of strombolian explosions at Yasur, Vanuatu using a broadband seismo-acoustic network, infrasound arrays, and infrasonic sensors on tethered balloons

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Jolly, A. D.; Fee, D.; Johnson, R.; Kilgour, G.; Christenson, B. W.; Garaebiti, E.; Iezzi, A. M.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Key, N.

    2016-12-01

    Seismo-acoustic wavefields at volcanoes contain rich information on shallow magma transport and subaerial eruption processes. Acoustic wavefields from eruptions are predicted to be directional, but sampling this wavefield directivity is challenging because infrasound sensors are usually deployed on the ground surface. We attempt to overcome this observational limitation using a novel deployment of infrasound sensors on tethered balloons in tandem with a suite of dense ground-based seismo-acoustic, geochemical, and eruption imaging instrumentation. We present preliminary results from a field experiment at Yasur Volcano, Vanuatu from July 26th to August 4th 2016. Our observations include data from a temporary network of 11 broadband seismometers, 6 single infrasonic microphones, 7 small-aperture 3-element infrasound arrays, 2 infrasound sensor packages on tethered balloons, an FTIR, a FLIR, 2 scanning Flyspecs, and various visual imaging data. An introduction to the dataset and preliminary analysis of the 3D seismo-acoustic wavefield and source process will be presented. This unprecedented dataset should provide a unique window into processes operating in the shallow magma plumbing system and their relation to subaerial eruption dynamics.

  4. Radar Interferometry for Monitoring the Vibration Characteristics of Buildings and Civil Structures: Recent Case Studies in Spain.

    PubMed

    Luzi, Guido; Crosetto, Michele; Fernández, Enric

    2017-03-24

    The potential of a coherent microwave sensor to monitor the vibration characteristics of civil structures has been investigated in the past decade, and successful case studies have been published by different research teams. This remote sensing technique is based on the interferometric processing of real aperture radar acquisitions. Its capability to estimate, simultaneously and remotely, the displacement of different parts of the investigated structures, with high accuracy and repeatability, is its main advantage with respect to conventional sensors. A considerable amount of literature on this technique is available, including various case studies aimed at testing the ambient vibration of bridges, buildings, and towers. In the last years, this technique has been used in Spain for civil structures monitoring. In this paper, three examples of such case studies are described: the monitoring of the suspended bridge crossing the Ebro River at Amposta, the communications tower of Collserola in Barcelona, and an urban building located in Vilafranca del Penedès, a small town close to Barcelona. This paper summarizes the main outcomes of these case studies, underlining the advantages and limitations of the sensors currently available, and concluding with the possible improvements expected from the next generation of sensors.

  5. A dose optimization method for electron radiotherapy using randomized aperture beams

    NASA Astrophysics Data System (ADS)

    Engel, Konrad; Gauer, Tobias

    2009-09-01

    The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.

  6. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  7. Electrostatic analyzer with a 3-D instantaneous field of view for fast measurements of plasma distribution functions in space

    NASA Astrophysics Data System (ADS)

    Morel, X.; Berthomier, M.; Berthelier, J.-J.

    2017-03-01

    We describe the concept and properties of a new electrostatic optic which aims to provide a 2π sr instantaneous field of view to characterize space plasmas. It consists of a set of concentric toroidal electrodes that form a number of independent energy-selective channels. Charged particles are deflected toward a common imaging planar detector. The full 3-D distribution function of charged particles is obtained through a single energy sweep. Angle and energy resolution of the optics depends on the number of toroidal electrodes, on their radii of curvature, on their spacing, and on the angular aperture of the channels. We present the performances, as derived from numerical simulations, of an initial implementation of this concept that would fit the need of many space plasma physics applications. The proposed instrument has 192 entrance windows corresponding to eight polar channels each with 24 azimuthal sectors. The initial version of this 3-D plasma analyzer may cover energies from a few eV up to 30 keV, typically with a channel-dependent energy resolution varying from 10% to 7%. The angular acceptance varies with the direction of the incident particle from 3° to 12°. With a total geometric factor of two sensor heads reaching 0.23 cm2 sr eV/eV, this "donut" shape analyzer has enough sensitivity to allow very fast measurements of plasma distribution functions in most terrestrial and planetary environments on three-axis stabilized as well as on spinning satellites.

  8. An adaptive distributed data aggregation based on RCPC for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hua, Guogang; Chen, Chang Wen

    2006-05-01

    One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks

  9. Network Computing for Distributed Underwater Acoustic Sensors

    DTIC Science & Technology

    2014-03-31

    underwater sensor network with mobility. In preparation. [3] EvoLogics (2013), Underwater Acoustic Modems, (Product Information Guide... Wireless Communications, 9(9), 2934–2944. [21] Pompili, D. and Akyildiz, I. (2010), A multimedia cross-layer protocol for underwater acoustic sensor networks ... Network Computing for Distributed Underwater Acoustic Sensors M. Barbeau E. Kranakis

  10. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing

    PubMed Central

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-01-01

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083

  11. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  12. Application of particle size distributions to total particulate stack samples to estimate PM2.5 and PM10 emission factors for agricultural sources

    USDA-ARS?s Scientific Manuscript database

    Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...

  13. Low-order wavefront sensing for coronagraphic telescopes

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Kasdin, Jeremy; Peter Varnai

    2018-01-01

    Space telescopes equipped with a coronagraph to detect and characterize exoplanets must have the ability to sense and control low-order wavefront aberrations. Most concepts for low-order wavefront sensing use the starlight rejected by the coronagraph to sense these aberrations. The sensor must be able to make precise estimates and be robust to photon and read noise. A thorough study of various differential low-order wavefront sensors (LOWFSs) would be beneficial for future space-based observatories designed for exoplanet detection and characterization. In this talk, we will expand on the comparison of different LOWFSs that use the rejected starlight either from the coronagraphic focal plane or the Lyot plane to estimate these aberrations. We will also present the experimental results of the sparse aperture mask (SAM) LOWFS that we have designed at the Princeton High Contrast Imaging Lab (PHCIL).

  14. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  15. An improved land mask for the SSM/I grid

    NASA Technical Reports Server (NTRS)

    Martino, Michael G.; Cavalieri, Donald J.; Gloersen, Per; Zwally, H. Jay; Acker, James G. (Editor)

    1995-01-01

    This paper discusses the development of a new land/ocean/coastline mask for use with Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) data, and other types of data which are mapped to the polar stereographic SSM/I grid. Pre-existing land masks were found to disagree, to lack certain land features, and to disagree with land boundaries that are visible in high resolution sensor imagery, such as imagery from the Synthetic Aperture Radar (SAR) on the Earth Resources Satellite (ERS-1). The Digital Chart of the World (DCW) database was initially selected as a source of shoreline data for this effort. Techniques for developing a land mask from these shoreline data are discussed. The resulting land mask, although not perfect, is seen to exhibit significant improvement over previous land mask products.

  16. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  17. Modified plenoptic camera for phase and amplitude wavefront sensing

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Davis, Christopher C.

    2013-09-01

    Shack-Hartmann sensors have been widely applied in wavefront sensing. However, they are limited to measuring slightly distorted wavefronts whose local tilt doesn't surpass the numerical aperture of its micro-lens array and cross talk of incident waves on the mrcro-lens array should be strictly avoided. In medium to strong turbulence cases of optic communication, where large jitter in angle of arrival and local interference caused by break-up of beam are common phenomena, Shack-Hartmann sensors no longer serve as effective tools in revealing distortions in a signal wave. Our design of a modified Plenoptic Camera shows great potential in observing and extracting useful information from severely disturbed wavefronts. Furthermore, by separating complex interference patterns into several minor interference cases, it may also be capable of telling regional phase difference of coherently illuminated objects.

  18. Distributed Localization of Active Transmitters in a Wireless Sensor Network

    DTIC Science & Technology

    2012-03-01

    Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Oba L. Vincent, 2nd Lieutenant, USAF AFIT/GE/ENG/12-41 DEPARTMENT...protection in the United States. AFIT/GE/ENG/12-41 Distributed Localization of Active Transmitters in a Wireless Sensor Network THESIS Presented to the...Transmitters in a Wireless Sensor Network Oba L. Vincent, B.S.E.E. 2nd Lieutenant, USAF Approved: /signed/ 29 Feb 2012 Maj. Mark D. Silvius, Ph.D. (Chairman

  19. Variance based joint sparsity reconstruction of synthetic aperture radar data for speckle reduction

    NASA Astrophysics Data System (ADS)

    Scarnati, Theresa; Gelb, Anne

    2018-04-01

    In observing multiple synthetic aperture radar (SAR) images of the same scene, it is apparent that the brightness distributions of the images are not smooth, but rather composed of complicated granular patterns of bright and dark spots. Further, these brightness distributions vary from image to image. This salt and pepper like feature of SAR images, called speckle, reduces the contrast in the images and negatively affects texture based image analysis. This investigation uses the variance based joint sparsity reconstruction method for forming SAR images from the multiple SAR images. In addition to reducing speckle, the method has the advantage of being non-parametric, and can therefore be used in a variety of autonomous applications. Numerical examples include reconstructions of both simulated phase history data that result in speckled images as well as the images from the MSTAR T-72 database.

  20. In-situ measurement of concentrated solar flux and distribution at the aperture of a central solar receiver

    NASA Astrophysics Data System (ADS)

    Ferriere, Alain; Volut, Mikael; Perez, Antoine; Volut, Yann

    2016-05-01

    A flux mapping system has been designed, implemented and experimented at the top of the Themis solar tower in France. This system features a moving bar associated to a CCD video camera and a flux gauge mounted onto the bar used as reference measurement for calibration purpose. Images and flux signal are acquired separately. The paper describes the equipment and focus on the data processing to issue the distribution of flux density and concentration at the aperture of the solar receiver. Finally, the solar power entering into the receiver is estimated by integration of flux density. The processing is largely automated in the form of a dedicated software with fast execution. A special attention is paid to the accuracy of the results, to the robustness of the algorithm and to the velocity of the processing.

Top